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Abstract
Recent advances in single-cell acquisition technology have led to a shift towards single-cell analysis in many fields of biology.
In immunology, detailed knowledge of the cellular composition is of interest, as it can be the cause of deregulated immune re-
sponses, which cause diseases. Similarly, vaccination is based on triggering proper immune responses; however, many vaccines
are ineffective or only work properly in a subset of those who are vaccinated. Identifying differences in the cellular composition
of the immune system in such cases can lead to more precise treatment. Cytosplore is an integrated, interactive visual analysis
framework for the exploration of large single-cell datasets. We have developed Cytosplore in close collaboration with immunol-
ogy researchers and several partners use the software in their daily workflow. Cytosplore enables efficient data analysis and
has led to several discoveries alongside high-impact publications.

CCS Concepts
• Human-centered computing → Information visualization; Visualization theory, concepts and paradigms;

1. Introduction

The rapid development of high-throughput single-cell acquisition
techniques based on transcriptional and proteomic profiling enable
the comprehensive classification of cell types. The power of these
techniques led to broad efforts to explore and understand the cellu-
lar composition of the human body [RTL∗17]. However, the com-
plex and large data pose considerable challenges for analysis.

In immunology research, recently-introduced single-cell mass
cytometry [OKB∗08] has gained considerable traction as the pre-
ferred data acquisition tool. The functionality of immune cells
mostly relates to a set of proteins expressed on the cells’ surface
and, at the moment, mass cytometry allows to measure the expres-
sion of approximately 50 different proteins per cell simultaneously.
This is a significant increase over the clinical standard, flow cy-
tometry, which typically allows for simultaneously measuring up
to 15 proteins However, this number is still orders of magnitude
smaller than the estimated 10,000 immune-system-wide available
proteins. Consequently, researchers are required to select an often
unique subset of proteins for their studies. While this enables the
discovery of previously unknown cell types, it requires the identi-
fication and classification of different cell types to be carried out
in a data-driven fashion by studying data heterogeneity rather than
applying prior knowledge. The classified cells can then be used to
facilitate further analysis at different levels, ranging from unravel-
ling developmental pathways at the cellular level to comparison of
the cellular composition of the immune system at a patient level.

Traditionally, flow cytometry data is being analyzed manually
through a set of two-dimensional scatterplot visualizations show-
ing two user-selected proteins at a time. The analyst plots the data
according to two proteins of interest as the axes of a scatterplot,
then selects a subset of interest of the data, typically by dividing
the two axes into low and high expression regions and subsequently
visualizes this subset according to two different proteins in a new
plot. This process is repeated until all proteins of interest have been
inspected. This strategy, known as hierarchical gating, has several
problems. Most importantly, covering the complete combinatorial
space, even for only 15 proteins is infeasible; therefore, analysts
need to focus on specific combinations of interest, which requires
prior knowledge, thus implictly biasing the results and limiting the
potential for new discoveries.

Here, we present Cytosplore [CSP17], an interactive visual anal-
ysis framework for the exploration of mass cytometry data. Cy-
tosplore is designed around dimensionality reduction to facilitate
unbiased exploration without prior knowledge. Cytosplore is being
developed in close collaboration with immunology researchers at
Leiden University Medical Center (LUMC). Together, we designed
and implemented interactive, data-driven workflows for different
analysis tasks, alongside improved and new progressive analytics
methods to facilitate these workflows. Cytosplore is used through-
out LUMC in a wide array of clinical research projects and the pub-
lic version has been downloaded over 1,500 times since its release
in November 2017.
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Figure 1: Cytosplore Screenshot with multiple views open; a) CyteGuide, b) HSNE plot, and c) cluster heatmap.

2. Mass Cytometry
Mass cytometry is a relatively new, mass spectrometry-based tech-
nique for characterizing protein expression on cells (cytometry) at
single-cell resolution. In short, antibodies, selected to bind to spe-
cific proteins of interest are conjugated with heavy-metal reporters
which can be measured in a time-of-flight mass spectrometer to
quantify the selected proteins on a per-cell basis. Mass cytometry
currently enables the simultaneous analysis of approximately 50
proteins. The resulting data is a table where each row represents
a cell and each column one of the measured proteins. The con-
tinuous values correspond to the expression of the protein for the
given cell. The proteins, i.e., columns are typically interpreted as
the axes of a high-dimensional space and accordingly each cell can
be interpreted as a high-dimensional data point in the constructed
space encoding the different proteins. The cellular composition of
the immune system can be described by a hierarchy consisting of
a few main compartments, or cell lineages, which divide into more
fine-grained subsets. The increased number of proteins measured in
mass cytometry, compared to flow cytometry, allows investigating
several cell lineages simultaneously, resulting in a broad coverage
of the immune system. Analysis techniques can potentially exploit
the hierarchical structure of the resulting data.

Typical data sizes greatly vary, depending on the type and goal of
the related study. In our collaborations the smallest mass cytometry
dataset in terms of the number of cells after preprocessing consists
of 220,000 cells, distributed over 7 tissue samples [LvUH∗18],
while the largest contains 33 million cells over 75 blood samples
taken from 25 donors at 3 time points [dJ17, Chapter 7].

The basis for any analysis and main goal for Cytosplore is
a reliable cell phenotype identification and classification. In this
context, neighborhood-preserving dimensionality-reduction tech-
niques, such as t-SNE [vdMH08] are commonly used. By preserv-
ing the high-dimensional neighborhoods, such techniques group
cells with similar protein expression (similar types) in a two-
dimensional visualization, while maintaining access to single cells.
This enables the easy identification and classification of known cell
types as well as the discovery of new phenotypes.

3. Cytosplore
Cytosplore (Figure 1) aims at providing interactive exploration for
cell phenotype identification and discovery through a combination
of different clustering and dimensionality-reduction techniques in
combination with a set of linked visualizations for interactive detail
inspection. However, many of these techniques are computationally
intensive and the large data sizes described in Section 2 pose sig-
nificant challenges. In fact, most existing tools are not feasible for
interactive exploration and often resort to downsampling in some
part of the analysis pipeline, posing the risk of information loss.

Through a flexible design, Cytosplore allows the analyst to com-
bine the implemented computational tools as desired and set up a
workflow specific to the needs of the goal and size of the given
study. For cell phenotype identification such a workflow usually
consists of grouping similar cells into clusters followed by inspect-
ing, refining, and labeling those clusters. In Section 3.1 we high-
light some examples of different workflows.

3.1. Interactive Cell Phenotype Identification
Cytosplore has been made possible through a number of technical
and workflow contributions, described in the following.

A-tSNE. At the center of any of the implemented workflows is
a neighborhood embedding. The goal of the embedding is to pro-
vide a visualization of the data that preserves local structure (i.e.,
clusters) of the high-dimensional space. Such clusters in the high-
dimensional space can be assumed to represent cells with a similar
expression over all proteins, that is, cells of the same type. While
t-SNE [vdMH08] is a widely used neighborhood-preserving di-
mensionality reduction technique, it is computationally extremely
demanding and would severely limit interactivity. Therefore, we
developed A-tSNE [PLvdM∗17] a variant of t-SNE following the
progressive visual analytics paradigm [TPB∗18]. A-tSNE approx-
imates the neighborhoods in the high-dimensional space, reducing
preprocessing time by up to two orders of magnitude. The em-
bedding is then iteratively optimized allowing us to visualize the
process and interact during the optimization. We visualize the em-
bedding in a two-dimensional scatterplot, where the points that are
close together indicate phenotypically similar cells.
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Embedding Clustering. While the resulting embedding allows
the analyst to visually identify groups of similar cells, a subse-
quent step is necessary to define and label these groups. Early
works proposed manual selection [ADT∗13], similar to the tradi-
tional gating, we propose to use automated clustering. Therefore,
we implemented a GPU-based version of the Gaussian mean-shift
algorithm [HPvU∗16]. Mean-shift clustering effectively maps vi-
sual clusters to logical clusters, including non-linear separations
between clusters. With our GPU-based implementation it can be
applied in real-time, even for hundreds of thousands of data points.
The resulting clusters can then be inspected, adjusted, and labeled
in a linked heatmap visualization (Figure 1c).

Hierarchical Exploration. Even though A-tSNE is much more
scalable than the original t-SNE, it is still not feasible to em-
bed millions of cells in one go. For such cases we have two
options, both exploiting the hierarchical nature of the data. In
early work [vULM∗16, HPvU∗16], we have used SPADE cluster-
ing [QSB∗11] to partition the data into the main lineages. SPADE is
a relatively fast but imprecise clustering technique making it suit-
able for roughly partitioning the data. Then, for each of the lin-
eages, the analyst can create an A-tSNE embedding and define the
cell types within the lineage as described above. While this com-
bination provides some relief in terms of computational complex-
ity it still provides only limited scalability. In fact, for the origi-
nal study [vULM∗16] it was necessary to downsample the main
lineages and were only able to classify approximately one million
of the original 5.2 million cells. Furthermore, researchers need to
learn and understand multiple tools and algorithms, their parame-
ters, and interpretation of the resulting visualizations.

HSNE. To further improve scalability and usability, we devel-
oped and integrated Hierarchical Stochastic Neighbor Embedding
(HSNE) [PHL∗16]. As the name suggests, HSNE is a hierarchi-
cal variation of t-SNE. First, HSNE builds a hierarchy on the data.
Therefore, a neighborhood graph is constructed on the data which is
evaluated to find representative data points. These so-called land-
marks are pushed to the next level of the hierarchy, where a new
neighborhood graph is constructed. To maintain the non-linear
structure of the data even on the coarser hierarchy levels, the simi-
larity in the new neighborhood graph is based on the neighborhood
graph of the previous level. The hierarchy is then explored top-
down through a set of similarity embeddings (Figure 1b). In Cy-
tosplore the analyst can cluster these embeddings using mean-shift
clustering as described above and then select one or multiple clus-
ters to request more detail in a new embedding using the data from
the next, more detailed hierarchy level. We have shown [vUHP∗17]
that we were not only able to reproduce a previous study, using the
SPADE/A-tSNE workflow in a fraction of the time but were able to
identify several cell types, some of them previously unreported, that
were missed in that original study due to downsampling. In fact, in
later work, our collaborators were able to confirm some of these
cell types through developmental pathway analysis in Cytosplore,
followed by confirmation in the wet lab [LvUH∗18].

CyteGuide. The exploration of HSNE hierarchies with multiple
levels often requires tens of plots. Keeping track of origins and con-
nections between, and navigating those plots imposes a high cog-
nitive load on the analyst. Therefore, we designed and integrated
CyteGuide [HPvU∗18], to guide the analyst through the explo-

ration, and provide a complete overview of the current state of the
analysis. CyteGuide is a meta-visualization collecting and arrang-
ing all plots according to their origin in the hierarchy (Figure 1a), as
they are created during the exploration. Furthermore, it augments
the embeddings with information such as protein expression varia-
tion per cluster to guide the exploration.

3.2. Biomedical Discoveries Facilitated by Cytosplore
Here, we summarize results, including several significant discover-
ies and accompanying publications in high-impact domain journals
that have been made possible by Cytosplore.

We started Cytosplore development in collaboration with a small
group of domain experts from LUMC (co-authors of this paper) in
2015 and gradually extended collaborations throughout LUMC. We
designed and implemented the hierarchical workflow using SPADE
and t-SNE for a broad study on the immune system in relation to
different gastrointestinal diseases [vULM∗16] which we later re-
analyzed with an HSNE-based workflow [vUHP∗17]. The origi-
nal study revealed unprecedented heterogeneity in the mucosal im-
mune system and led to the identification of disease-specific im-
mune subsets. Furthermore, using HSNE we were able to identify
several subsets that were previously missed, due to the necessary
downsampling. Finally, the scalability of HSNE made a large-scale
clinical study on immune cell infiltrates in inflammatory bowel dis-
ease possible [vU18, Chapter 5]. In two studies on the human fetal
intestine, Li, van Unen et al. [LvUH∗18] first identified novel innate
lymphoid cell types and their differentiation pathways, through
a pathway analysis enabled by the progressive nature of our A-
tSNE algorithm, allowing the visualization of intermediate results.
In another study they show that memory CD4+ T cells are gener-
ated in the human fetal intestine [LvUA∗19], suggesting that the
immune system before birth is far more mature than previously
thought. Redeker et al. [RRvdG∗18] used an A-tSNE-based anal-
ysis in Cytosplore to elucidate the effect of a chronic viral infec-
tion over time, revealing the importance of the infectious dose to
the extent of immune senescence. Santegoets et al. [SvHE∗19] fol-
lowed a similar approach to associate the Cytosplore-identified im-
mune compositions with the anatomical location of tumors to show
their impact on survival rates of cancer patients. Laban, Suwandi et
al. [LSvU∗18] used Cytosplore and HSNE to show the heterogene-
ity of circulating antigen-specific CD8 T cells in relation to type 1
diabetes in a study which would not have been possible without a
hierarchical approach. Finally, de Jong et al. [dJ17, Chapter 7] used
Cytosplore to investigate natural immunity to malaria. The corre-
sponding dataset consists of 33 million cells.

In collaboration with the Allen Institute for Brain Science we de-
veloped Cytosplore Viewer, including CyteGuide, which they have
used in a comprehensive study of human and mouse cortex cells
acquired through single-nuclei RNA sequencing [HBM∗18].

In the studies presented above, Cytosplore was used to ex-
plore and annotate the acquired data with the corresponding cell
types. However, this is often only the first step in a comprehen-
sive analysis. By following domain-specific standards, we made
sure that Cytosplore integrates well into larger workflows. Beyrend
et al. [BSH∗18] exploited this to implement a workflow in R tak-
ing the output of Cytosplore to rapidly prepare plots on the sample
composition that can be used in publications.
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4. Conclusion
We presented Cytosplore, an interactive visual analysis software for
single-cell mass cytometry data. Thanks to several technical con-
tributions such as A-tSNE and HSNE, Cytosplore scales to large
datasets and enables progressive analysis. By supporting standard
file formats for import and export, Cytosplore can be embedded in
larger workflows of the application domain.

Throughout our collaborations with LUMC researchers, Cy-
tosplore has enabled a significant number of biological discoveries,
resulting in high-impact publications. Cytosplore has been down-
loaded more than 1,500 times by researchers from all over the
world, actively using the software. First publications [SHF∗18] us-
ing the software outside of our direct collaborations start to appear.

By facilitating in-depth profiling of the immune system, we ex-
pect that Cytosplore can aid in the development of improved diag-
nostics and personalized therapeutics in the future.
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