

Supplemental Figure 1. Bioinformatical pipeline imaging mass cytometry data analyses.

Total cells

464,550

A) Overview of the multi-dimensional study workflow yielding comprehensive high-dimensional information of the immune landscape of Oropharyngeal Squamous Cell Carcinoma (OPSCC). FFPE=formalin-fixed paraffin-embedded; IMC=imaging mass cytometry; scRNAseq=single cell RNA sequencing; TCR=T cell receptor; TCGA=the cancer genome atlas. B) Visualization of the imaging mass cytometry staining and image acquisition workflow. Image created with BioRender. C) All analytical steps performed to process the imaging mass cytometry data, including the programs used to perform that analytical step, and visualization of the stepwise image processing. D) Counts of cells analyzed by imaging mass cytometry in the total OPSCC cohort and per subgroup, of immune cells, tumor cells, stromal cells and the total of all cells analyzed.

98,303

94,496

271,751

Supplemental Table 1. OPSCC patient characteristics.

Patient	Sex	Age	Tumor	pTNM	HPV16	IR status	Received	Analysis techniques
ID *		**	location	stage	status	***	treatment	
H62	Μ	61	Tongue base	4a-2c-0	+	-	RT	NanoString
H68	F	64	Tonsil	3-2b-0	+	+	RT	Hyperion, scRNAseq, NanoString, Luminex
H71	F	62	Tongue base	2-2c-0	+	+	RT	Hyperion, NanoString
H72	Μ	58	Tongue base	2-0-0	-	-	RT	Hyperion, NanoString
H74	F	65	Tonsil	4a-0-0	-	-	none	Hyperion, NanoString
H77	Μ	48	Tonsillar fossa	1-2a-0	+	+	S+RT	Hyperion, NanoString
H78	Μ	54	Tonsillar fossa	2-0-0	-	-	RT	NanoString
H93	Μ	57	Tongue base	1-2b-0	+	+	S+RT	Hyperion, NanoString
H95	Μ	59	Tongue base	2-1-0	+	+	RT	NanoString
H125	Μ	64	Posterior wall	3-0-0	-	-	CT+RT	NanoString
H136	V	47	Tonsil	2-2b-0	+	+	CT+RT	Hyperion, NanoString, Luminex
H138	Μ	74	Tongue base	2-0-0	+	+	RT	Hyperion, Luminex
H141	Μ	67	Tongue base	2-2b-0	+	+	CT+RT	Hyperion, scRNAseq, NanoString
H143	V	74	Tonsil	1-2a-0	-	-	RT	Hyperion, scRNAseq, NanoString
H148	V	64	Tonsil	2-2b-0	+	+	S+RT	Luminex
H149	V	47	Tonsil	2-2a-0	+	-	S+RT	Hyperion, scRNAseq, NanoString, Luminex
H150	Μ	59	Tonsil	2-2a-0	+	-	S+RT	Luminex
H159	V	67	Tonsil	4a-2c-0	+	+	CT+RT	Luminex
H160	Μ	69	Tongue base	2-2b-0	+	+	CT+RT	Hyperion, scRNAseq, NanoString, Luminex
H161	V	65	Tongue base	2-2b-0	+	+	S+RT	Luminex
H176	Μ	52	Tongue base	3-0-0	+	+	CT+RT	Hyperion, scRNAseq, NanoString
H180	Μ	59	Tonsil	2-2a-0	+	+	RT	Luminex
H182	Μ	66	Tongue base	4-3-0	+	-	СТ	Hyperion, scRNAseq, NanoString
H185	Μ	58	Tongue base	2-0-0	+	+	RT	Hyperion, scRNAseq, NanoString
H187	V	67	Pallatum mole	2-0-0	-	-	RT	NanoString
H188	V	56	Tonsil	3-0-0	+	+	CT+RT	Hyperion, scRNAseq, NanoString, Luminex
H191	Μ	39	Tonsil	2-2b-0	+	-	RT	Luminex
H197	V	63	Tonsil	4b-0-0	-	-	CT+RT+CX	Hyperion, scRNAseq, NanoString
H205	Μ	56	Tonsil	4a-2b-1	-	-	RT	Hyperion, scRNAseq, NanoString
H208	Μ	60	Tongue base	4-2a-0	+	-	CT+RT	Hyperion, scRNAseq, NanoString, Luminex
H211	Μ	62	Tongue base	3-2b-0	+	-	CT+RT	Hyperion, scRNAseq, NanoString, Luminex

* 'H' indicates OPSCC patients included in the P07-112 head and neck cancer study

** Age at diagnosis and sampling of tumor tissue pre-therapy

*** Immune response (IR) status was determined by analyzing cultured tumor infiltrating lymphocytes for the presence of HPV16-specific T cells using a [3H]-thymidine-based proliferation assay and antigen-specific cytokine production assay

CT: chemotherapy; CX: cetuximab; F: female; M: male; pTNM: pathological Tumor, lymph Nodes, Metastasis; RT: radiotherapy; S: surgical resection

Supplemental Table 2. Definition of NanoString nSolver cell types.

Cell type	Gene	Cell type	Gene	Cell type	Gene
CD45	PTPRC	CD8	CD8A	Macrophage	CD163
T cells	CD3D		CD8B		CD68
	CD3E	Th1	TBX21		CD84
	CD3G	Treg	FOXP3		MS4A4A
	CD6	Exhausted CD8	CD244	Neutrophils	CEACAM3
	SH2D1A		EOMES		CSF3R
	TRAT1		LAG3		FCAR
B cells	BLK		PTGER4		FPR1
	CD19	Cytotoxic cell	CTSW		S100A12
	FCRL2		GNLY		SIGLEC5
	MS4A1		GZMA	NK cells	NCR1
	PNOC		GZMB	NK CD56dim	IL21R
	SPIB		GZMH		KIR2DL3
	TCL1A		KLRB1		KIR3DL1
	TNFRSF17		KLRD1		KIR3DL2
DC	CCL13		KLRK1	Mast cells	СРАЗ
	CD209		NKG7		HDC
	HSD11B1		PRF1		MS4A2

Cell types as automatically defined by the expression of the indicated genes by NanoString nSolver software.

_

Supplemental Table 3. Imaging mass cytometry 33-marker panel.

		Conjugated	Antibody	
Marker	Antibody clone	heavy metal	dilution	Incubation conditions
HLA-DR	TAL1B5	¹⁴¹ Pr	1:100	5 hours at room temperature
CD11b	D6X1N	¹⁴⁴ Nd	1:100	5 hours at room temperature
CD4	EPR6855	¹⁴⁵ Nd	1:50	5 hours at room temperature
CD8	D8A8Y	¹⁴⁶ Nd	1:50	5 hours at room temperature
CD73	D7F9A	¹⁴⁸ Nd	1:100	5 hours at room temperature
TGFβ	TB21	¹⁴⁹ Sm	1:100	5 hours at room temperature
PD-L1	E1L3N(R)	¹⁵⁶ Gd	1:100	5 hours at room temperature
FoxP3	D608R	¹⁵⁹ Tb	1:100	5 hours at room temperature
IDO	D5J4E(TM)	¹⁶² Dy	1:50	5 hours at room temperature
CD204	J5HTR3	¹⁶⁴ Dy	1:100	5 hours at room temperature
CD45ro	UCHL1	¹⁶⁵ Ho	1:50	5 hours at room temperature
CD38	EPR4106	¹⁶⁹ Tm	1:50	5 hours at room temperature
CD163	EPR14643-36	¹⁷³ Yb	1:100	5 hours at room temperature
CD7	EPR4242	¹⁷⁴ Yb	1:50	5 hours at room temperature
P16	D3W8G	¹⁷⁵ Lu	1:100	5 hours at room temperature
Vimentin	D21H3	¹⁹⁴ Pt	1:100	5 hours at room temperature
β-catenin	D10A8	¹¹⁵ In	1:100	overnight at 4 degrees Celsius
CD20	H1	¹⁴² Nd	1:100	overnight at 4 degrees Celsius
CD68	D4B9C	¹⁴³ Nd	1:100	overnight at 4 degrees Celsius
CD31	89C2	¹⁴⁷ Sm	1:100	overnight at 4 degrees Celsius
CD57	HNK-1/Leu-7	¹⁵¹ Eu	1:100	overnight at 4 degrees Celsius
Ki67	8D5	¹⁵² Sm	1:100	overnight at 4 degrees Celsius
CD3	D7AGE(TM)	¹⁵³ Eu	1:50	overnight at 4 degrees Celsius
VISTA	D1L2G(TM)	¹⁵⁸ Gd	1:50	overnight at 4 degrees Celsius
ICOS	D1K2T(TM)	¹⁶¹ Dy	1:50	overnight at 4 degrees Celsius
CD14	D7A2T	¹⁶³ Dy	1:100	overnight at 4 degrees Celsius
D2-40	D2-40	¹⁶⁶ Er	1:100	overnight at 4 degrees Celsius
CD56	EPR2566	¹⁶⁷ Er	1:100	overnight at 4 degrees Celsius
CD103	EPR4166(2)	¹⁶⁸ Er	1:100	overnight at 4 degrees Celsius
CD15	BRA-4F1	¹⁷¹ Yb	1:100	overnight at 4 degrees Celsius
Cleaved-caspase	ASP175	¹⁷² Yb	1:100	overnight at 4 degrees Celsius
CD11c	EP1347Y	¹⁷⁶ Yb	1:100	overnight at 4 degrees Celsius
Keratin	C11 and AE1/AE3	¹⁹⁸ Pt	1:50	overnight at 4 degrees Celsius

DEG

CCL20

BMP2

Log2 fold change

-3.67

-2.68

P-value

2.20E-05

5.60E-05

Method

Lm.nb

Lm.nb

Corrected P-value

0.0124

0.0124

BLK	5.85	1.13	6.35E-05	Lm.nb	0.0124	
HLA-DRB1	3.55	0.705	8.73E-05	Lm.nb	0.0124	
CXCL3	-3.25	0.652	9.56E-05	Lm.nb	0.0124	
LTB	5.22	1.06	0.00011	Lm.nb	0.0124	
PFKFB3	-1.69	0.347	0.000123	Lm.nb	0.0124	
CXCL12	4.59	0.98	0.000186	Lm.nb	0.0164	
CCL19	4.1	0.943	0.000386	Lm.nb	0.028	
CSF2	-4.26	0.984	4.00E-04	Lm.nb	0.028	
TNFSF13	4.08	0.962	0.000489	Lm.nb	0.028	
NLRC5	1.84	0.439	0.000539	Lm.nb	0.028	
HLA-DQA2	-6.12	1.45	0.000586	Wald	0.028	
HSD11B1	3.21	0.771	0.000639	Wald	0.028	
TNFRSF18	3.71	0.9	0.00064	Lm.nb	0.028	
PIK3CD	3.03	0.745	0.000721	Lm.nb	0.028	
HLA-A	2.87	0.706	0.000737	Lm.nb	0.028	
TREM1	-2.56	0.633	0.000762	Lm.nb	0.028	
INHBA	-3.93	0.98	0.000819	Lm.nb	0.028	
IL1B	-3.16	0.791	0.000834	Lm.nb	0.028	
LILRB4	3	0.751	0.000837	Lm.nb	0.028	
HRAS	3.66	0.921	0.000891	Lm.nb	0.028	
KLRD1	3.38	0.845	0.000913	Wald	0.028	
CXCL8	-3.65	0.928	0.000968	Lm.nb	0.0285	
IL11	-3.43	0.885	0.00112	Lm.nb	0.0308	
IKBKB	2.79	0.724	0.00115	Lm.nb	0.0308	
HLA-F	3.62	0.946	0.00123	Lm.nb	0.0308	
CD79A	3.74	0.985	0.00132	Lm.nb	0.0308	
TNFSF9	3.57	0.931	0.00132	Wald	0.0308	
APOL6	2.87	0.755	0.00132	Lm.nb	0.0308	
CD58	2.59	0.684	0.00135	Lm.nb	0.0308	
PNOC	2.84	0.75	0.00148	Wald	0.0325	
IRF5	1.55	0.417	0.00156	Lm.nb	0.0325	
NEIL1	2.11	0.569	0.00159	Lm.nb	0.0325	
IRF4	2.97	0.801	0.00161	Lm.nb	0.0325	
IL6R	2.16	0.586	0.00167	Lm.nb	0.0326	
LYZ	1.79	0.487	0.00171	Lm.nb	0.0326	
CD6	2.59	0.709	0.0018	Lm.nb	0.0329	
PGPEP1	2.61	0.715	0.00182	Lm.nb	0.0329	
GZMM	2.41	0.656	0.0019	Wald	0.0336	
PSMB10	2.03	0.577	0.00246	Lm.nb	0.0424	
CTSW	2.79	0.798	0.00258	Lm.nb	0.0434	
TGFB1	2.9	0.845	0.00295	Lm.nb	0.0474	

Supplemental Table 4A. Differentially expressed genes (DEGs) between HPV16⁺IR⁺ and HPV16⁺IR⁻ OPSCC patients.

SD

0.647

0.512

Supplemental Table 4B. Differentially expressed genes (DEGs) between HPV16⁺IR⁻ and HPV⁻ OPSCC patients.

DEG	Log2 fold change	SD	P-value	Method	Corrected P-value
CCL20	3.25	0.628	6.43E-05	lm.nb	0.0454

Supplemental Table 4C. Differentially expressed genes (DEGs) between HPV16⁺IR⁺ and HPV⁻ OPSCC patients.

DEG	Log2 fold change	SD	P-value	Method	Corrected P-value
CXCL12	5.74	0.912	6.21E-06	lm.nb	0.00259
LTB	6.04	0.986	8.60E-06	lm.nb	0.00259
KLRD1	4.19	0.743	2.92E-05	Wald	0.00259
BBC3	2.71	0.493	3.22E-05	lm.nb	0.00259
BLK	5.75	1.05	3.40E-05	lm.nb	0.00259
PIK3CD	3.73	0.693	4.06E-05	lm.nb	0.00259
TNFSF13	4.8	0.895	4.28E-05	lm.nb	0.00259
IKBKB	3.61	0.673	4.29E-05	lm.nb	0.00259
UBA7	4.44	0.831	4.42E-05	lm.nb	0.00259
HRAS	4.57	0.856	4.49E-05	lm.nb	0.00259
APOL6	3.73	0.702	4.77E-05	lm.nb	0.00259
HLA-F	4.65	0.88	5.06E-05	lm.nb	0.00259
С5	3.3	0.628	5.40E-05	lm.nb	0.00259
DNMT1	3.69	0.703	5.43E-05	lm.nb	0.00259
DDB2	3.49	0.666	5.50E-05	lm.nb	0.00259
ICAM5	5.15	0.988	5.89E-05	lm.nb	0.0026
GNLY	3.58	0.704	7.82E-05	lm.nb	0.00325
GZMB	3.65	0.712	8.35E-05	Wald	0.00327
POLD1	1.78	0.357	9.52E-05	lm.nb	0.00329
LILRB4	3.48	0.698	9.58E-05	lm.nb	0.00329
VHL	2.91	0.586	9.77E-05	lm.nb	0.00329
CD58	3.13	0.637	0.000113	lm.nb	0.00362
GLS	4.02	0.831	0.000134	lm.nb	0.00406
CCL19	4.22	0.877	0.000138	lm.nb	0.00406
DLL4	3.03	0.636	0.000157	lm.nb	0.00426
TGFB1	3.73	0.786	0.00016	lm.nb	0.00426
PGPEP1	3.16	0.666	0.000163	lm.nb	0.00426
MSH6	3.56	0.757	0.000177	lm.nb	0.00446
CCND1	-2.87	0.612	0.000186	lm.nb	0.00453
PIK3R2	3.52	0.758	0.000203	lm.nb	0.00477
CTLA4	3.04	0.659	0.000212	lm.nb	0.00477
CSF1	2.87	0.623	0.000216	lm.nb	0.00477
NLRP3	4.44	0.97	0.000235	lm.nb	0.00503
CD7	3.14	0.691	0.000252	lm.nb	0.00516
CD80	2.73	0.604	0.000261	lm.nb	0.00516
IRF7	1.43	0.316	0.000263	lm.nb	0.00516
HSD11B1	3.23	0.707	0.000277	Wald	0.00529
FANCA	2.29	0.513	0.000301	lm.nb	0.00559

DEG	Log2 fold change	SD	P-value	Method	Corrected P-value
EZH2	1.02	0.228	0.000309	lm.nb	0.0056
IRF1	2.44	0.549	0.000318	lm.nb	0.0056
CSF2RB	2.75	0.622	0.00033	lm.nb	0.00568
JAK2	2.41	0.55	0.000361	lm.nb	0.00585
HLA-DRB1	2.87	0.656	0.000364	lm.nb	0.00585
NLRC5	1.78	0.408	0.000377	lm.nb	0.00585
NOTCH1	2.32	0.531	0.000377	lm.nb	0.00585
TNFRSF25	2.29	0.526	0.000389	lm.nb	0.00585
СНИК	2.66	0.611	0.000393	lm.nb	0.00585
AXL	3.3	0.761	0.000397	lm.nb	0.00585
JAG2	3.41	0.782	0.000427	Wald	0.00615
MB21D1	0.921	0.215	0.000455	lm.nb	0.00632
CCL18	2.68	0.626	0.000456	lm.nb	0.00632
PPARGC1B	2.1	0.494	0.000472	lm.nb	0.00641
ULBP2	-2.19	0.518	0.000505	lm.nb	0.00654
TMFM140	2.53	0.599	0.000507	lm.nb	0.00654
CYBB	2.78	0.657	0.000509	lm.nb	0.00654
PSMB10	2.25	0.537	0.000555	lm.nb	0.00689
IGALS9	2 78	0.664	0.000557	lm nh	0.00689
NCR1	2.86	0.682	0.000616	Wald	0.00729
CD68	27	0.653	0.000617	lm nh	0.00729
TNESE9	3 65	0.873	0.000622	Wald	0.00729
TNFRSF18	3 46	0.837	0.000629	lm nh	0.00729
RAD51C	2 42	0.591	0.000687	lm nh	0.00723
CD794	3 74	0.916	0.000707	lm nh	0.00792
SIGLEC1	2 65	0.510	0.00073	lm nh	0.00752
CTSW/	3.01	0.031	0.000747	lm nh	0.00811
ever BVRIG	2.82	0.745	0.000747	lm nh	0.00011
	1 72	0.055	0.000770	lm nh	0.0082
TIF1	2.82	0.427	0.000791	lm nh	0.0082
BRD3	2.52	0.7	0.000758	lm nh	0.0082
MTOR	1 32	0.000	0.000801	lm nh	0.0082
CDE	2.52	0.555	0.000892	lm nh	0.00885
TVMS	2.02	0.632	0.000858	lm nh	0.00885
MELK	1 17	0.032	0.000902	lm nh	0.00885
II GR	2 15	0.235	0.000918	lm nh	0.00887
	2.15	0.545	0.00093	Mald	0.00887
TAD2	1.62	0.304	0.000978	lmnb	0.00911
CD74	2.57	0.415	0.00098	lm nh	0.00911
14/2	2.57	0.050	0.00102	lm nh	0.00950
74070	2.42	0.022	0.00100	lm nh	0.00958
REIA	3.07 2.52	0.705	0.00107	lm.nb	0.00930
	2.33	0.052	0.00112	lm nh	0.0037
RAY	2.37	0.012	0.00112	lm nh	0.00973
	1.24	0.322	0.00113	lm.nb	0.00991
	1.5	0.593	0.00127	1111.11D	0.0107
INFRSF18	2.14	0.212	0.00132	ini.np	0.0108
	1.10	0.512	0.00136	1111.11D	0.0108
TIGAL	2.82	0.745	0.00137	1111.11D	0.0108
SIAIZ	1.13	0.298	0.00137	dn.m	0.0108
HLA-C	2.67	0.708	0.00138	im.nb	0.0108

DEG	Log2 fold change	SD	P-value	Method	Corrected P-value
HLA-DMA	2.4	0.637	0.00139	lm.nb	0.0108
HELLS	1.45	0.385	0.0014	lm.nb	0.0108
SBNO2	1.25	0.331	0.0014	lm.nb	0.0108
IRF4	2.78	0.745	0.00153	lm.nb	0.0113
FUT4	2.68	0.72	0.00153	lm.nb	0.0113
CD3D	2.84	0.762	0.00156	lm.nb	0.0113
DUSP5	1.52	0.409	0.00156	lm.nb	0.0113
IKBKG	2.1	0.563	0.00156	lm.nb	0.0113
TREM1	-2.18	0.59	0.00165	lm.nb	0.0118
CD8A	3.13	0.846	0.00166	lm.nb	0.0118
CCL4	1.85	0.503	0.00169	lm.nb	0.0119
TNFSF12	1.91	0.519	0.00175	lm.nb	0.0122
BAD	2.19	0.597	0.00176	lm.nb	0.0122
ITGB2	1.69	0.462	0.00178	lm.nb	0.0122
TRAF1	2.35	0.644	0.00181	lm.nb	0.0122
VSIR	1.87	0.511	0.00181	lm.nb	0.0122
NECTIN2	1.86	0.512	0.00187	lm.nb	0.0125
CX3CL1	1.66	0.462	0.00204	lm.nb	0.0135
TNFRSF14	1.68	0.466	0.00206	lm nh	0.0135
CD47	1.60	0.445	0.00213	lm nh	0.0138
CC15	2 36	0.667	0.00232	lm nh	0.0130
APOF	2.30	0.653	0.00232	lm nh	0.0159
ΤΔΡΒΡΙ	1 38	0.000	0.00243	lm nh	0.0159
PNOC	2.49	0.354	0.00255	Wald	0.0155
PDGERB	2.45	0.707	0.00268	lmnh	0.0166
CXCL9	2.0	0.748	0.00208	lm nh	0.0168
TMEN172	1 74	0.755	0.00275	lm nh	0.0168
CD45PO	1.74	0.502	0.00270	lm nh	0.0160
DTCER4	1.52	0.333	0.0028	lm.nb	0.0103
C1OP	1.00	0.402	0.00288	lm.nb	0.0172
	1.02	0.327	0.0029	lm.nb	0.0172
	1.55	0.455	0.00300	lin.itu	0.0182
I REIVIZ	2.02	0.592	0.00313	IIII.IID	0.0183
LAGS	2.1	0.010	0.00324	lm.nb	0.0100
CEDPD TCED2	1.05	0.545	0.00347	lin.itu	0.0199
IGFB3	2.78	0.83	0.00356	Im.np	0.0203
	2.02	0.004	0.00368	IIII.IID	0.0208
CD3E	2.30	0.709	0.0037	UN.III	0.0208
ILK/	2.25	0.671	0.00374	waid	0.0208
ILZRA	1.78	0.535	0.00376	Im.np	0.0208
HLA-E	1.25	0.376	0.00384	im.np	0.0209
GLUDI	1.63	0.491	0.00384	im.np	0.0209
EGFR	-1.67	0.505	0.00394	Im.nb	0.0211
CCND3	1./3	0.525	0.00408	im.nb	0.0214
IVIIVIP9	2.72	0.828	0.00412	im.nb	0.0214
BKD4	1.02	0.311	0.00416	im.nb	0.0214
MAP3K7	1.55	0.4/3	0.00421	Im.nb	0.0214
BCA11	-1./	0.52	0.00422	im.nb	0.0214
IIGAX	1./5	0.536	0.00422	Im.nb	0.0214
TAPBP	1.6	0.49	0.00426	Im.nb	0.0214
ITGA4	1.79	0.548	0.00428	lm.nb	0.0214

DEG	Log2 fold change	SD	P-value	Method	Corrected P-value
HLA-A	2.14	0.657	0.00432	lm.nb	0.0215
BCL2L1	1.26	0.388	0.00438	lm.nb	0.0216
RSAD2	2.04	0.632	0.00461	lm.nb	0.0225
IFIH1	1.11	0.343	0.00462	lm.nb	0.0225
BRIP1	1.3	0.404	0.00475	lm.nb	0.023
IF135	1.69	0.529	0.00503	lm.nb	0.0241
HLA-B	2.02	0.632	0.00505	lm.nb	0.0241
MYD88	0.857	0.269	0.00514	lm.nb	0.0243
GBP2	1.61	0.507	0.00519	lm.nb	0.0244
HERC6	1.8	0.57	0.00542	lm.nb	0.0253
IRF5	1.22	0.387	0.00555	lm.nb	0.0257
MFNG	1.56	0.496	0.00557	lm.nb	0.0257
ICAM3	1.31	0.42	0.00588	lm.nb	0.027
OAS3	1.03	0.329	0.00592	lm.nb	0.027
TNF	1.78	0.571	0.00597	lm.nb	0.027
OAS1	1.03	0.332	0.00601	lm.nb	0.027
MAGEA1	-2.29	0.732	0.00617	Wald	0.0276
PSMB9	1.72	0.556	0.00627	lm.nb	0.0276
VEGFA	1.8	0.582	0.00627	lm.nb	0.0276
CXCL10	2.06	0.668	0.0063	lm.nb	0.0276
APC	1.45	0.472	0.00647	lm.nb	0.0282
BMP2	-1.47	0.477	0.00654	lm.nb	0.0283
DUSP2	1.59	0.52	0.0067	lm.nb	0.0288
IRF9	1.08	0.353	0.00682	lm.nb	0.0292
GBP1	1.41	0.463	0.00697	lm.nb	0.0296
CDKN2A	2.81	0.935	0.00756	lm.nb	0.032
NKG7	2.18	0.726	0.00765	lm.nb	0.0322
OAS2	1.26	0.422	0.00794	lm.nb	0.0329
MARCO	2.47	0.823	0.00797	Wald	0.0329
BRCA2	1.11	0.373	0.00798	lm.nb	0.0329
IFITM1	1.2	0.407	0.00874	lm.nb	0.0359
CXCL6	-2.82	0.964	0.00904	lm.nb	0.0368
CD69	1.37	0.471	0.00919	lm.nb	0.0368
ICAM1	1.02	0.351	0.0092	lm.nb	0.0368
GIMAP4	1.37	0.47	0.00921	lm.nb	0.0368
PARP4	1.14	0.391	0.00925	lm.nb	0.0368
SNAI1	1.74	0.597	0.00929	lm.nb	0.0368
CASP9	1.12	0.386	0.00941	lm.nb	0.0371
CD3G	2.14	0.738	0.00952	lm.nb	0.0371
GPSM3	1.38	0.476	0.0096	lm.nb	0.0371
P4HA2	-3.58	1.24	0.00963	loglinear	0.0371
SGK1	1.58	0.547	0.00974	lm.nb	0.0371
MXI1	1.81	0.626	0.00975	lm.nb	0.0371
FYN	1.16	0.404	0.00993	lm.nb	0.0375
CD4	1.44	0.503	0.0102	lm.nb	0.0383
FAP	-1.33	0.463	0.0104	lm.nb	0.0385
МҮС	1.23	0.433	0.0105	lm.nb	0.0389
C1QA	1.3	0.458	0.0106	lm.nb	0.0389
ITGAM	1.61	0.566	0.0106	lm.nb	0.0389
PALMD	2.11	0.744	0.0109	lm.nb	0.0397

DEG	Log2 fold change	SD	P-value	Method	Corrected P-value
IL2RB	1.59	0.561	0.0111	lm.nb	0.0402
IL11	-2.33	0.825	0.0112	lm.nb	0.0402
SH2D1A	2.22	0.787	0.0113	lm.nb	0.0404
BCL2	1.81	0.643	0.0113	lm.nb	0.0404
STAT1	1.15	0.41	0.0116	lm.nb	0.0409
SOX2	2.38	0.848	0.0116	lm.nb	0.0409
MKI67	1.18	0.421	0.0117	lm.nb	0.0411
TIGIT	1.92	0.687	0.012	lm.nb	0.0418
HIF1A	-1.02	0.368	0.0122	lm.nb	0.0423
HES1	1.11	0.4	0.0122	lm.nb	0.0423
FCGRT	1.28	0.463	0.0128	lm.nb	0.0437
MMP7	-2.39	0.866	0.0129	lm.nb	0.0437
CXCL14	-1.76	0.636	0.0129	lm.nb	0.0437
CXCL5	-4.06	1.47	0.0129	loglinear	0.0437
CD2	1.14	0.412	0.0131	lm.nb	0.044
COL6A3	-1.03	0.377	0.0134	lm.nb	0.0449
FZD8	2.03	0.741	0.0139	Wald	0.0463
CD14	1.37	0.504	0.014	lm.nb	0.0463
CXCL3	-1.65	0.608	0.0141	lm.nb	0.0467
IL1R2	2.28	0.841	0.0143	lm.nb	0.0469
NDUFA4L2	2.02	0.748	0.0148	lm.nb	0.0483

Differentially expressed genes (DEGs) that are upregulated in (A) HPV16⁺IR⁺ compared to HPV16⁺IR⁻ OPSCC, (B) HPV16⁺IR⁺ compared to HPV⁻ OPSCC and (C) HPV16⁺IR⁻ compared to HPV⁻ OPSCC are given as a positive log2 fold change value, while downregulated DEGs are indicated as a negative log2 fold change value. The standard deviation (SD), P-value and corrected P-value (method Im.nb, linear model.negative binomial or Wald) is given for each DEG.

Supplemental Table 5. Imaging mass cytometry clusters and superclusters.

Supercluste	r	Cluster	
number	Supercluster name	number	Cluster name
sc01	HLADR+ tumor cell	c11	11_HLADR+_Ki67+_D240+_P16+_Bcat+_Ker+_tumor_cell
		c23	23_HLADR+_Bcat+_Ker+_tumor_cell
sc02	HLADR-Ki67+ tumor cell	c26	26_Ki67+_D240+_TGFb+_Bcat+_Ker+_tumor_cell
		c28	28_Ki67+_Bcat+_Ker+_tumor_cell
		c30	30_Ki67+_D240+_P16+_Bcat+_Ker+_tumor_cell
		c31	31_Ki67+_TGFb+_P16+_Bcat+_Ker+_tumor_cell
sc03	HLADR-Ki67- tumor cell	c07	07_CD103+_Bcat+_Ker+_tumor_cell
		c24	24_P16+_Bcat+_Ker+_tumor_cell
		c25	25_D240+_Bcat+_Ker+_tumor_cell
		c27	27_TGFb+_Bcat+_Ker+_tumor_cell
		c40	40_VISTA+_CD103+_Bcat+_Ker+_tumor_cell
		c46	46_PDL1+_P16+_Bcat+_Ker+_tumor_cell
		c47	47_IDO+_PDL1+_P16+_Bcat+_Ker+_tumor_cell
		c50	50_Caspase+_Bcat+_Ker+_tumor_cell
sc04	CD3+CD4+FOXP3- T cell	c01	01_CD3+_CD4+_CD7+_ICOS+_CD45ro+_T_cell
		c05	05_CD3+_CD4+_VISTA+_CD73+_CD38+_CD45ro+_T_cell
		c14	14_CD3+_CD4+_CD7+_CD45ro+_T_cell
		c34	34_CD3+_CD4+_CD7+_CD73+_CD38+_TGFb+_CD45ro+_T_cell
		c35	35_CD3+_CD4+_CD7+_CD73+_TGFb+_CD45ro+_T_cell
		c37	37_CD3+_CD4+_CD7+_ICOS+_CD103+_D240+_CD45ro+_T_cell
sc05	CD3+CD4+FOXP3+ Treg	c42	42_CD3+_CD4+_CD7+_FOXP3+_CD45ro+_D240+_Treg
		c43	43_CD3+_CD4+_CD7+_FOXP3+_ICOS+_CD45ro+_Treg
sc06	CD3+CD8+ T cell	c03	03_CD3+_CD8+_CD4+_CD57+_CD7+_CD45ro+_T_cell
		c04	04_CD3+_CD8+_CD7+_CD103+_CD45ro+_T_cell
		c36	36_CD3+_CD8+_CD7+_TGFb+_CD45ro+_T_cell
sc07	CD20+HLADR+ B cell	c02	02_CD20+_HLADR+_CD57+_CD45ro+_B_cell
		c41	41_CD20+_HLADR+_Ki67+_CD45+_B_cell
sc08	CD56+ NK cell	c08	08_CD56+_CD73+_VISTA+_NK_cell
sc09	CD3-CD7+ ILC	c06	06_CD7+_CD73+_TGFb+_ILC
sc10	CD11b+CD15+ granulocyte	c48	48_CD11b+_CD15+_VISTA+_CD45ro+_granulocyte
		c49	49_CD11b+_CD15+_CD45ro+_granulocyte
sc11	CD11c+CD14+HLADR+ DC	c12	12_CD11c+_CD14+_HLADR+_D240+_CD45ro+_DC
		c13	13_CD11c+_CD14+_HLADR+_CD45ro+_DC
sc12	CD68+CD163- M1 macrophage	c15	15_CD68+_CD14+_CD204+_HLADR+_TGFb+_macrophage
		c32	32_CD68+_VISTA+_CD38+_CD31+_macrophage
		c38	38_CD68+_CD14+_CD204+_CD11c+_HLADR+_macrophage
sc13	CD68+CD163+ M2 macrophage	c39	39_CD68+_CD163+_CD14+_CD204+_CD11c+_HLADR+_macrophage
		c44	44_CD68+_CD163+_CD14+_CD11c+_HLADR+_VISTA+_macrophage
		c45	45_CD68+_CD163+_CD14+_VISTA+_CD38+_CD31+_macrophage
		c51	51_CD68+_CD163+_macrophage
sc14	CD68-CD14+HLADR+ myeloid cell	c16	16_CD14+_CD204+_HLADR+_CD45ro+_myeloid_cell
		c17	17_CD14+_HLADR+_CD73+_TGFb+_myeloid_cell
sc15	CD45ro+lin- memory immune cell	c22	22_CD45ro+_memory_immune_cell
		c29	29_HLADR+_CD45ro+_memory_immune_cell
sc16	Vim+lin- fibroblast	c18	18_TGFb+_Vim+_fibroblast
		c19	19_Vim+_fibroblast
		c20	20_Vim+_D240+_fibroblast
sc17	CD38+Vim+lin- stromal cell	c21	21_CD38+_stromal_cell
		c33	33_CD38+_CD31+_CD73+_TGFb+_stromal_cell
sc18	CD31+ blood vessel endothelial cell	c09	09_CD31+_CD73+_blood_vessel
		c10	10_CD31+_CD73+_TGFb+_blood_vessel

Supplemental Table 5. Continued.

Supercluster	r	Cluster	
number	Supercluster name	number	Cluster name
sc19	D240+ tumor cell	c11	11_HLADR+_Ki67+_D240+_P16+_Bcat+_Ker+_tumor_cell
		c25	25_D240+_Bcat+_Ker+_tumor_cell
		c26	26_Ki67+_D240+_TGFb+_Bcat+_Ker+_tumor_cell
		c30	30_Ki67+_D240+_P16+_Bcat+_Ker+_tumor_cell
sc20	CD103+ tumor cell	c07	07_CD103+_Bcat+_Ker+_tumor_cell
		c40	40_VISTA+_CD103+_Bcat+_Ker+_tumor_cell
sc21	Ki67+ tumor cell	c11	11_HLADR+_Ki67+_D240+_P16+_Bcat+_Ker+_tumor_cell
		c26	26_Ki67+_D240+_TGFb+_Bcat+_Ker+_tumor_cell
		c28	28_Ki67+_Bcat+_Ker+_tumor_cell
		c30	30_Ki67+_D240+_P16+_Bcat+_Ker+_tumor_cell
		c31	31_Ki67+_TGFb+_P16+_Bcat+_Ker+_tumor_cell
sc22	CD3+FOXP3-TGFb+ T cell	c34	34_CD3+_CD4+_CD7+_CD73+_CD38+_TGFb+_CD45ro+_Th_cell
		c35	35_CD3+_CD4+_CD7+_CD73+_TGFb+_CD45ro+_T_cell
		c36	36_CD3+_CD8+_CD7+_TGFb+_CD45ro+_Tc_cell
sc23	CD11c+ cell	c12	12_CD11c+_CD14+_HLADR+_D240+_CD45ro+_DC
		c13	13_CD11c+_CD14+_HLADR+_CD45ro+_DC
		c38	38_CD68+_CD14+_CD204+_CD11c+_HLADR+_macrophage
sc24	CD38+CD31+ stromal cell	c32	32_CD68+_VISTA+_CD38+_CD31+_macrophage
		c33	33_CD38+_CD31+_CD73+_TGFb+_stromal_cell
		c45	45_CD68+_CD163+_CD14+_VISTA+_CD38+_CD31+_macrophage
sc25	CD103+ T cell	c37	37_CD3+_CD4+_CD7+_ICOS+_CD103+_D240+_CD45ro+_Th_cell
		c04	04_CD3+_CD8+_CD7+_CD103+_CD45ro+_Tc_cell
sc26	ICOS+ T cell	c01	01_CD3+_CD4+_CD7+_ICOS+_CD45ro+_Th_cell
		c37	37_CD3+_CD4+_CD7+_ICOS+_CD103+_D240+_CD45ro+_Th_cell
		c43	43_CD3+_CD4+_CD7+_FOXP3+_ICOS+_CD45ro+_Treg
sc27	TGFb+ myeloid cell	c15	15_CD68+_CD14+_CD204+_HLADR+_TGFb+_macrophage
		c17	17_CD14+_HLADR+_CD73+_TGFb+_myeloid_cell
sc28	CD14+ myeloid cell	c12	12_CD11c+_CD14+_HLADR+_D240+_CD45ro+_DC
		c13	13_CD11c+_CD14+_HLADR+_CD45ro+_DC
		c15	15_CD68+_CD14+_CD204+_HLADR+_TGFb+_macrophage
		c38	38_CD68+_CD14+_CD204+_CD11c+_HLADR+_macrophage
		c39	39_CD68+_CD163+_CD14+_CD204+_CD11c+_HLADR+_macrophage
		c44	44_CD68+_CD163+_CD14+_CD11c+_HLADR+_VISTA+_macrophage
		c45	45_CD68+_CD163+_CD14+_VISTA+_CD38+_CD31+_macrophage
		c16	16_CD14+_ CD204+_HLADR+_ CD45ro+_myeloid_cell
		c17	17_CD14+_HLADR+_CD73+_TGFb+_myeloid_cell

Cluster name is based on the markers that are expressed by that cluster, indicating that that cluster is negative for all other tested markers that are not mentioned in the cluster name.

Supplemental Table 6. Single cell sequencing counts per identified cluster.

	H143	H197	H205	H149	H182	H208	H211	H141	H160	H176	H185	H188	H68
				HPV+									
Cluster	HPV-	HPV-	HPV-	IR-	IR-	IR-	IR-	IR+	IR+	IR+	IR+	IR+	IR+
CD8_0	31*	66	10	5	45	10	15	19	73	50	302	184	49
CD8_1	276	7	10	10	90	8	23	63	81	70	54	18	64
CD8_2	446	2	5	2	12	0	6	8	32	10	14	6	1
CD8_3	0	71	6	0	7	41	2	0	10	83	65	18	212
CD8_4	9	8	4	17	96	2	11	7	9	33	81	205	33
CD8_5	7	87	9	10	15	15	10	21	11	30	90	132	15
CD8_6	0	15	2	1	9	316	2	2	5	15	17	24	22
CD8_7	1	1	1	9	11	3	4	12	1	12	7	40	305
CD8_8	0	0	0	0	8	5	4	2	3	4	8	26	255
CD8_9	2	2	1	0	0	5	3	0	1	101	0	0	151
CD8_10	0	16	3	0	2	45	0	1	1	10	13	4	38
CD8_11	1	19	1	0	3	5	1	0	6	1	0	2	0
CD4_0	2	0	4	202	51	5	28	7	1	33	40	324	224
CD4_1	103	12	53	87	82	7	78	48	251	23	136	8	11
CD4_2	3	17	12	9	98	172	28	27	10	33	14	82	379
CD4_3	203	0	43	74	52	1	175	96	104	2	16	5	3
CD4_4	17	2	15	11	15	16	112	516	13	9	8	8	22
CD4_5	16	61	19	47	81	7	32	34	24	45	113	239	42
CD4_6	9	3	33	309	54	0	5	19	8	11	85	16	8
CD4_7	19	46	16	15	40	41	44	22	87	113	53	21	10
CD4_8	11	99	8	8	26	41	7	10	16	34	38	90	100
CD4_9	38	6	14	3	54	19	74	39	93	95	7	3	14
CD4_10	2	3	0	0	0	2	0	2	6	29	0	4	107
Treg_0	4	67	8	17	46	23	31	71	31	58	61	101	116
Treg_1	3	20	6	6	41	94	7	5	7	42	15	51	102
Treg_2	0	7	0	0	4	181	4	10	0	7	0	7	13
Treg_3	0	141	1	0	4	3	0	0	0	2	2	1	3
Treg_4	0	16	3	3	18	38	8	5	10	20	5	8	21
Treg_5	0	0	0	0	0	5	0	0	0	25	1	1	36
Tother_0	18	0	4	0	23	2	13	10	8	2	9	11	3
Tother_1	2	0	7	0	11	1	1	4	0	0	0	3	5
Tother_2	1	0	1	3	5	1	1	2	1	0	0	3	0
NK_0	2	21	21	46	149	14	20	16	28	78	59	97	272
NK_1	1	222	8	6	46	34	14	11	42	55	288	35	22
NK_2	0	12	1	1	9	586	0	22	0	9	6	5	11
NK_3	2	5	13	7	54	22	40	19	37	16	13	8	8
NK_4	0	146	5	1	13	18	4	4	6	8	6	7	14
NK_5	0	0	1	0	0	2	0	0	1	36	2	0	35

* Number of cells identified per patient in each cluster.

Expression levels of *CD19*, *MS4A1* (CD20) and *BLK* are depicted in color code. Violin plot (right) displaying expression of *BLK* within B cells from HPV16⁺IR⁺ (blue; left) and HPV16⁺IR⁻ (orange; right) OPSCC. **D)** Kaplan-Meier survival curves based on high/low *BLK* or *CXCL12* expression (classification based on median *BLK* or *CXCL12* expression) upregulated in HPV16⁺IR⁺ compared to HPV16⁺IR⁻ OPSCC patients for all OPSCC patients analyzed by Nanostring Pancancer IO360 (n=21; left), for the HPV16⁺ patients within this cohort (n=13; middle), and for a large independent TCGA cohort of HPV16⁺ OPSCC (n=69; right). **E)** Kaplan-Meier survival curves based on high/low expression of the top 3 DEGs (*CCL20, BMP2 and CXCL3*) upregulated in HPV16⁺IR⁻ compared to HPV16⁺TR⁺ OPSCC patients for all OPSCC patients analyzed by Nanostring Pancancer IO360 (n=21, left), for the HPV16⁺ patients within this cohort (n=13; middle), and for a large independent TCGA cohort of HPV16⁺ OPSCC (n=69; right). **E)** Kaplan-Meier survival curves based on high/low expression of the top 3 DEGs (*CCL20, BMP2 and CXCL3*) upregulated in HPV16⁺IR⁻ compared to HPV16⁺IR⁺ OPSCC patients for all OPSCC patients analyzed by Nanostring Pancancer IO360 (n=21, left), for the HPV16⁺ patients within this cohort (n=13; middle), and for a large independent TCGA cohort of HPV16⁺ OPSCC (n=69; right). **F)** Linear regression analysis of top upregulated DEGs *BLK* and *CXCL12* in HPV16⁺IR⁺ compared to HPV16⁺IR⁺ OPSCC versus cell type profiles of CD8 (*CD8A*), CD4, Tbet⁺ T cells (*TBX21*) and DC (*ITGAX*, CD11c). Upper 2 panels display all OPSCC patients analyzed by Nanostring Pancancer IO360 (n=21). Each patient is represented by a colored dot: HPV⁻ (red), HPV16⁺IR⁻ (blue) and HPV16⁺IR⁺ (green). The lower 2 panels show the regression analysis of the 69 HPV16⁺ OPSCC patients of the independent TCGA cohort. **G)** Linear regression analysis of *LTB* versus indicated genes involved in tumor cell migrati

Supplemental Figure 3. Imaging mass cytometry identified (super)clusters in the TME of OPSCC.

Using the unsupervised HSNE-based clustering program Cytosplore, 51 individual cell clusters were identified. **A)** Heatmap of the verified markers expressed in the identified clusters (c01-c51), and the manual grouping into mutually exclusive superclusters (sc01-sc18). **B)** Quantitative comparisons of the remaining 13 of the 18 superclusters present in OPSCC. The three distinct OPSCC subgroups are indicated by different colors: HPV- red (n=5), HPV16+IR- blue (n=4) and HPV16+IR+ green (n=11). Boxplots with bars in box representing the median and interquartile range.

01_CD3+_CD4+_CD7+_ICOS+_CD45ro+_T_cell

02_CD20+_HLADR+_CD103+_CD45ro+_B_cell

03_CD3+_CD8+_CD4+_CD7+_CD45ro+_T_cell

Supplemental Figure 4. Imaging mass cytometry images of the 51 identified clusters. Representative images of cells of all 51 clusters, including separate images of all positive markers, including cell nuclei (DNA) consistently in white, and overlays for all clusters.

04_CD3+_CD8+_CD7+_CD103+_CD45ro+_T_cell

05_CD3+_CD4+_VISTA+_CD73+_CD38+_CD45ro+_T_cell

06_CD7+_CD73+_TGFb+_ILC

07_CD103+_Bcat+_Ker+_tumor_cell

08_CD56+_CD73+_VISTA+_NK_cell

09_CD31+_CD73+_blood_vessel

10_CD31+_CD73+_TGFb+_blood_vessel

11_HLADR+_Ki67+_D240+_P16+_Bcat+_Ker+_tumor_cell

12_CD11c+_CD14+_HLADR+_D240+_CD45ro+_DC

13_CD11c+_CD14+_HLADR+_CD45ro+_DC

14_CD3+_CD4+_CD7+_CD45ro+_T_cell

15_CD68+_CD14+_CD204+_HLADR+_TGFb+_macrophage

16_CD14+_ CD204+_HLADR+_ CD45ro+_myeloid_cell

17_CD14+_HLADR+_CD73+_TGFb+_myeloid_cell

18_TGFb+_Vim+_fibroblast

19_Vim+_fibroblast

20_Vim+_D240+_fibroblast

21_CD38+_stromal_cell

22_CD45ro+_memory_immune_cell

23_HLADR+_Bcat+_Ker+_tumor_cell

24_P16+_Bcat+_Ker+_tumor_cell

25_D240+_Bcat+_Ker+_tumor_cell

26_Ki67+_D240+_TGFb+_Bcat+_Ker+_tumor_cell

27_TGFb+_Bcat+_Ker+_tumor_cell

28_Ki67+_Bcat+_Ker+_tumor_cell

29_HLADR+_CD45ro+_memory_immune_cell

30_Ki67+_D240+_P16+_Bcat+_Ker+_tumor_cell

31_Ki67+_TGFb+_P16+_ Bcat+_Ker+_tumor_cell

34_CD3+_CD4+_CD7+_CD73+_CD38+_⊺ರ೯៦__CD45ro+_T_cell

35_CD3+_CD4+_CD7+_CD73+_TGFb+_CD45ro+_T_cell

36_CD3+_CD8+_CD7+_TGFb+_CD45ro+_T_cell

Abdulrahman Z, et al. J Immunother Cancer 2022; 10:e004346. doi: 10.1136/jitc-2021-004346

37_CD3+_CD4+_CD7+_ICOS+_CD103-+_D240+_CD45ro+_T_cell

38_CD68+_CD14+_CD204+_CD11c+_HLADR+_macrophage

39_CD68+_CD163+_CD14+_CD204+_CD11c+_HLADR+_macrophage

40_VISTA+_CD103+_Bcat+_Ker+_tumor_cell

41_CD20+_HLADR+_Ki67+_CD45+_B_cell

42_CD3+_CD4+_CD7+_FOXP3+_D240+_CD45ro+_Treg

43_CD3+_CD4+_CD7+_FOXP3+_ICOS+_CD45ro+_Treg

44_CD68+_CD163+_CD14+_CD11c+_HLADR+_VISTA+_macrophage

45_CD68+_CD163+_CD14+_VISTA+_CD38+_CD31+_macrophage

46_PDL1+_P16+_Bcat+_Ker+_tumor_cell

47_IDO+_PDL1+_P16+_Bcat+_Ker+_tumor_cell

48_CD11b+_CD15+_VISTA+_CD45ro+_granulocyte

49_CD11b+_CD15+_CD45ro+_granulocyte

50_Caspase+_Bcat+_Ker+_tumor_cell

51_CD68+_CD163+_macrophage

Supplemental Figure 5. Imaging mass cytometry quantitative findings 51 clusters.

Boxplots showing quantitative comparisons of all 51 identified different cell clusters present in the whole tumor. In **A**) the immune cell clusters and in **B**) the other cell clusters. The three distinct OPSCC subgroups are indicated by different dot colors: HPV⁻ red (n=5), HPV16⁺IR⁻ blue (n=4) and HPV16⁺IR⁺ green (n=11). Boxplots with bars in box representing the median and interquartile range

2

Supplemental Figure 6. Permutation testing of spatial cellular interactions.

A) Spearman quantitative correlation heatmaps of the 28 superclusters (18 mutually exclusive, and 10 non-mutually exclusive) in the whole tumor for HPV- (n=5) and HPV16+IR- (n=4) OPSCC. B) Heatmap of permutation based Z-scores for spatial interactions between the 51 identified clusters, in HPV- (n=5), HPV16+IR- (n=4) and HPV16+IR+ (n=11) OPSCC. Only interactions with a permutation based Z-score>2 (i.e. outside the 95% normal distribution range) are visualized.

Supplemental Figure 7. Characterization of CD14⁺CD1c⁺ DC and CD14⁺CD1c⁻ monocytes/macrophages in the TME of HPV16⁺IR⁻ and HPV16⁺IR⁺ OPSCC tumors.

Freshly dissociated OPSCC tumor tissue from 9 HPV16⁺ OPSCC patients was analyzed by 13-parameter flow cytometry analysis with antibodies directed against CD3/CD19/CD20/CD56, CD11c, HLA-DR, CD14, CD11b, CD163, CD141, CLEC9A, CD1c, CD16, CD123, CD36 and CD32B. **A**, **B**) The gating strategy is depicted for a representative OPSCC sample. **A**) Dot plot showing expression of CD14 and CD1c within lineage-negative (LIN-), CD11c⁺ and HLA-DR⁺ myeloid cells. Singlets were gated on FSC-H/FSC-A properties, after which dead cells were excluded through gating on yellow amine reactive dye-negative cells. Next, CD3-CD19-CD20-CD56-HLA-DR⁺CD11c⁺ myeloid cells were subsequently divided based on CD14 and CD1c expression. **B**) Histogram plots showing CD16, CD163, CD32B, CD36, CD123, CD141 and CLEC9A expression for CD14-CD1c⁻ (black), CD14⁺CD1c⁻ (blue) and CD14⁺CD1c⁺ cells (red). **C**) Histogram plots showing CD40 and CD86 expression for CD45⁺lin⁻ (black), CD11c⁻HLA-DR⁺ (blue) and CD14⁺CD1c⁺ monocytes/macrophages (right) among HPV16⁺IR⁻ (blue, n=3) and HPV16⁺IR⁺ (green, n=6) OPSCC tumors. Data is represented as percentage of live cells.

HPV⁺IR⁺ OPSCC

Composition: 35, surrounded by 35 and 14 Frequency: 1075 cells (7.0%) Z-score: 2888.6

Z-score: 2086.9

Composition: 32, surrounded by 32, 45 and 5 Frequency: 282 cells (1.7%) Z-score: 1994.0

Composition: 22. surrounded by 22 and 48 Frequency: 254 cells (1.9%) Z-score: 1796.1

Composition: 5. surrounded by 5, 45 and 32 Frequency: 229 cells (5.1%) Z-score: 1619.3

Composition: 35, surrounded by 35, 14 and 38 Frequency: 369 cells (2.4%) Z-score: 1505.0

Composition: 14, surrounded by 14, 34 and 3 Frequency: 395 cells (0.9%) Z-score: 1818.3

Composition: 14, surrounded by 14 and 35 Frequency: cells 798 (1.9%) Z-score: 1791.6

Composition: 14. surrounded by 14 and 3 Frequency: 441 cells (1.1%) Z-score: 1564.2

Composition: 45 surrounded by 45, 32 and 5 Frequency: 242 cells (5.1%) Z-score: 1499.1

HPV⁺ IR⁻ OPSCC

В

Composition: 32 surrounded by 32 and 45 Frequency: 422 cells (7.7%) Z-score: 2490.7

Composition: 35, surrounded by 35 and 36 Frequency: 343 cells (5.1%) Z-score: 2124.7

Composition: 32, surrounded by 32, 45 and 5 Frequency: 109 cells (2.0%) Z-score: 675.1

Composition: 32, surrounded by 32, 45 and 14 surrounded by 35, 36 and 38 Frequency: 83 cells (1.5%) Z-score: 586.9

Composition: 35, surrounded by 35 and 15 Frequency: 86 cells (1.3%) Z-score: 532.6

Composition: 35,

Z-score: 551.5

Frequency: 78 cells (1.2%)

Cell color legend:

Myeloid cell T cell

Immune cell lineage-**Tumor cell**

Supplemental Figure 8. Top 10 360° spatial immune compositions per OPSCC subgroup.

Top 10 360° spatial immune compositions with the highest Z-scores are depicted. In A) HPV16+IR+ (n=11), B) HPV16+IR- (n=4), and C) HPV- (n=5) OPSCC. Clusters, frequency and Z-score are described below each composition. Interaction neighborhood is defined as 5µm (direct spatial cellular interaction). Threshold for the 360° compositions: ≥20 occurrences.

Composition: 45, surrounded by 45 and 32 Frequency: 302 cells (11.9%) Z-score: 2135.5

Composition: 45, surrounded by 45, 32 and 5 Frequency: 113 cells (4.5%) Z-score: 799.0

surrounded by 35 and 14 Frequency: 135 cells (2.0%) Z-score: 628.0

Composition:45, surrounded by 45, 5 and 32 Frequency: 97 cells (2.6%) Z-score: 685.9

surrounded by 32 and 45 Frequency: 61 cells (4.0%) Z-score: 431.3

HPV OPSCC

Composition: 2. surrounded by 2 and 14 Frequency: 232 cells (11.0%) Z-score: 1437.11

С

Composition:2, surrounded by 2, 14 and 4 Frequency: 167 cells (7.9%) Z-score: 1180.9

Composition: 2, surrounded by 2 and 4 Frequency: 138 cells (6.6%) 7-score: 854.8

Composition: 32,

surrounded by 45 and 32 Frequency: 199 cells (5.4%) Z-score: 1407.1

Composition: 45, surrounded by 45 and 5 Frequency: 142 cells (3.8%) Z-score: 879.6

Composition: 14, surrounded by 14 and 2 Frequency: 113 cells (2.1%) Z-score: 700.0

Composition: 35, surrounded by 35 and 49 Frequency: 84 cells (4.9%) Z-score: 594.0

Composition: 4, surrounded by 4 and 2 Frequency: 55 cells (2.8%) Z-score: 340.6

Supplemental Figure 9. Distribution of the identified clusters among HPV-, HPV16+IR- and HPV16+IR+ OPSCC tumors.

Magnetic-bead sorted CD3+ T cells and CD56+ NK cells from 13 OPSCC samples were analyzed by integrated single-cell transcriptome and TCR repertoire RNA sequencing analysis. Box plots depict the distribution of the Tother **(A)** and NK **(B)** cell clusters among HPV- (red, n=3), HPV16+IR- (blue, n=4) and HPV16+IR+ (green, n=6) OPSCC tumors. Data is represented as percentage of cluster. * p-value<0.05.

Supplemental Figure 10. Clonotype size among individual OPSCC and T cell clusters. Magnetic-bead sorted CD3+ T cells and CD56+ NK cells from 13 OPSCC samples were analyzed by integrated single-cell transcriptome and TCR repertoire RNA sequencing analysis. A) Graphs depicting the expanded clonotype clusters, colored by patient (left) and cell type (right). B) Box plots displaying the number of expanded cells (top) and clonotypes (bottom) within Tregs (left) and Tother (right) cells detected in HPV- (red, n=3), HPV16+IR- (blue, n=4) and HPV16+IR+ (green, n=6) OPSCC patients. C, D) Graphs depicting the clonotype size of the expanded TCR in CD8+ T cells, CD4+ T cells, Treg and Tother cells per patient (C) and per cluster (D). Data is given as percentage of expanded CD8, CD4, Treg or Tother cells. Colored outline indicates the HPV- and immune response status (HPV- (red, n=3), HPV16+IR- (blue, n=4) and

Supplemental Figure 11. T cell expansion among the different T cell clusters.

Integrated single-cell transcriptome and TCR repertoire RNA sequencing analysis was performed on magnetic-bead sorted CD3+ T cells and CD56+ NK cells from 13 OPSCC samples. A-C) Box plots displaying the percentage of expanded cells within the identified CD8 (A), CD4 (B) and Treg (C) clusters in HPV- (red, n=3), HPV16+IR- (blue, n=4) and HPV16+IR+ (green, n=6) OPSCC patients. Data are represented as percentage of total expanded CD8, CD4 and Treg cells.

Supplementary Figure 12. Expression of tissue-resident memory T cell, co-stimulatory and co-inhibitory markers within the intratumoral CD8, CD4, Treg, Tother and NK cell cluster in OPSCC.

Single-cell transcriptome RNA sequencing analysis was performed on magnetic-bead sorted CD3⁺ T cells and CD56⁺ NK cells from 13 OPSCC samples. Dot plots depict the expression levels of **A**) tissue-resident memory T cell, **B**) co-stimulatory and **C**) co-inhibitory genes (Y-axis) for all identified CD8, CD4, Treg, Tother and NK clusters (X-axis, from left to right). The size of the dots represent the percentage of cells expressing the genes, and the color scale indicates the mean expression of the genes.

Supplemental Figure 13. Expression of LTB, BLK, CXCL12, CCL4, XCL1 and LMNA within T cells and NK cells. Two-dimensional UMAP plots displaying single cell transciptomics of 14,242 T cells and 2,820 NK cells from 13 OPSCC patients. Each dot represents a single cell. Expression levels of LTB, BLK, CXCL12 and CCL4 are depicted in color code. Dotted borders denote where CD4, CD8 and NK cell clusters are located.

Supplemental Figure 14. HPV reactivity of cultured OPSCC TIL. Graphs displaying CCL4 (blue), CXCL13 (red), IFN γ (green), TNF α (yellow), IL-10 (orange) and IL-5 (purple) production of cultured OPSCC TIL in response to medium, HPV16 E6 peptide (pool 1+2 and 3+4), HPV16 E7 peptide (pool 1+2)-loaded autologous monocytes for HPV16⁺IR⁺ (n=9; A) and HPV16⁺IR⁻ (n=5; B) OPSCC. Cytokine production in response to PHA served as positive control. Positive cytokine production, which is defined as at least twice above that of the cells stimulated with medium-loaded monocytes, is indicated by the asterisk. CCL4 and CXCL13 were determined by a multiplex cytokine assay and IFN γ , TNF α , IL-10 and IL-5 by cytometric bead array.

Α

В

%Genes / Term																
5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	
9**																Î
7*		i						i.						i		
4	-								-					-		
5	i.	i.		i i			i i	i.		i i	i.			i.		
12		-														
-	3			i.		i i	i.	i.		i.	i.			i.		
5	*							-	-					-		
ы С		-												1		
1	i.						i i	i		i i				i.		
	-	-					1	-	-					-		
-	9 **	i		i.	i i	i	i.	i.	i.	i.	i.			i.		
5																
4	ł					i i	i.	i.	1	i.	i.			i.		
	3	3*					1	÷	-					÷		
1	2**													-		
															*4	
/ /		ł														
5	. !	1		1			1	-	-	1	1			1		
D	6 **	i		i	i	i	i	i	i	i	i			i	i i	
1	2**															
	<u> </u>	7**														
5	1															
4	1							1						1		
6*	i	i		i.	i	i	i.	i.	i	i.	i.			i	i i	
	6**															
6*	ł							1	1					1		
		7**														
		5 **														
) c	1	5		i.	i.		i.	i.	i.	i.	i.			i.		
ຸວ	i	I	2*											i.		
6	:	!	3				1	1	1	1				1		
4		i					i i	i						i		
20	**	-														
24**		1												1		
22**		1												-		
12	•	-													-	
		13**												i i		
	9 **													1	-	
3								i.						i.	i.	
6	× I	1	1													

positive regulation of immune effector process lymphocyte activation involved in immune response regulation of production of molecular mediator of immu T cell activation involved in immune response regulation of lymphocyte proliferation positive regulation of leukocyte mediated cytotoxicity positive regulation of lymphocyte mediated immunity positive regulation of adaptive immune response based positive regulation of leukocyte differentiation regulation of alpha-beta T cell activation CD4-positive, alpha-beta T cell differentiation involved positive regulation of T cell proliferation regulation of T cell differentiation regulation of osteoclast differentiation regulation of CD4-positive, alpha-beta T cell differentiation response to interferon-gamma ptide antigen assembly with MHC class II protein complex antigen processing and presentation of exogenous peptide neutrophil chemotaxis interferon-gamma-mediated signaling pathway monocyte chemotaxis response to interferon-gamma_1 lymphocyte chemotaxis neutrophil chemotaxis_1 regulation of osteoclast differentiation 1 positive regulation of leukocyte migration monocyte chemotaxis_1 regulation of leukocyte chemotaxis lymphocyte chemotaxis_ T cell migration regulation of lymphocyte migration neutrophil chemotaxis_2 -positive regulation of monocyte chemotaxis ve regulation of leukocyte differentiation_1 regulation of osteoclast differentiation 2 positive regulation of leukocyte activation T cell activation regulation of lymphocyte activation regulation of lymphocyte proliferation_1 T cell costimulation positive regulation of T cell proliferation_1

negative regulation of lymphocyte proliferation negative regulation of T cell activation

Supplemental Figure 15. CCL4 expression is associated with a productive tumor immune microenvironment. **A)** High expression of CCL4 is positively associated with the hallmark gene sets of tumor rejection and negatively associated with the hallmarks of tumor promotion. The log2 fold change level of each gene between a high and low group was used as input for the GSEA-preranked. The GSEA was performed using the Molecular Signatures Database (MSigDB). The 50 hallmark gene sets were illustrated by their normalized enrichment score (NES). Red and blue dots show the enrichment and depletion of hallmark gene sets, respectively. **B)** ClueGO analysis of highly significant associated genes with high expression of CCL4 in the tumor microenvironment (R>0.7 and R>0.4, respectively, adj-value <0.05). The bars represent the percentage of highly significantly correlated genes associated with the GO terms (%Genes/term). The number of expressed genes per term is shown as bar label. P-value is indicated by asterisks. **C)** Overview chart with functional groups including specific terms for highly significantly associated genes with high expression of CCL4. * mid-P values of two-sided (enrichment/depletion) tests based on the hyper geometric distribution (Rivals, 2007, PMID. 17182697).

Tumor specific T cells support chemokine-driven spatial organization of intratumoral immune microaggregates needed for long survival

Ziena Abdulrahman, Saskia J. Santegoets, Gregor Sturm, Pornpimol Charoentong, Marieke E. Ijsselsteijn, Antonios Somarakis, Thomas Höllt, Francesca Finotello, Zlatko Trajanoski, Sylvia L. van Egmond, Dana A.M. Mustafa, Marij J.P. Welters[#], Noel F.C.C. de Miranda[#], Sjoerd H. van der Burg

Key findings:

A specific spatial phenotypic signature (SPS) portrays long surviving oropharyngeal cancer patients
The SPS consists of intratumoral T cell and dendritic cell microaggregates
Chemokines produced by tumor-specific T cells sustain the orchestration of the SPS
Patients lacking this SPS express multiple targetable immunosuppressive mechanisms