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Abstract

Fiber tracking is a powerful technique that provides valuable insights into the complex white matter structure of the human
brain. However, the processing pipeline involves many sources of uncertainty, with one notable factor being the user-defined
parameters that significantly influence the resulting outputs. Among these parameters, the definition of seed-points is a crucial
aspect in most fiber tracking algorithms. These seed-points are determined through regions of interest (ROI) and serve as the
initial points for fiber tract generation. In this work, we present an interactive technique that utilizes seed-point sensitivities to
guide the definition of regions of interest (ROI). We examine various scenarios where sensitivity information can enhance the
ROI definition process and provide user guidelines and recommended actions for each scenario. Building upon this analysis,
we have developed a visualization strategy that enables users to explore seed-point sensitivities effectively and facilitate the
definition of optimal ROIs. We present results highlighting the benefits of the proposed visual design in the clinical pipelines.

1. Introduction

Diffusion Weighted Imaging (DWI) is a non-invasive Magnetic
Resonance based technique that allows virtual reconstruction of
the brain’s white matter and provides insight into the structural or-
ganization of the brain’s anatomical connections [SKM*90]. DWI
works by measuring the diffusion of water molecules within a tis-
sue. Tissue structure, e.g., the axons in the brain, restricts the mo-
bility of the water molecules [Bea02]. This causes anisotropic dif-
fusion. Here, the strongest direction of diffusion indicates the di-
rection of the underlying fibrous structure [BML94], which can
be reconstructed by tracking the paths along the strongest diffu-
sion direction [MCCV99; PB96], commonly referred to as fiber-
tracking [NGH*05]. This process has proven to be helpful for in-
terpreting brain anatomy [Laz10] and has been used by researchers
for several brain diseases [FTC*13; HSO*01]. It has also gained
traction in clinical practice, like planning brain tumor resection
surgery [OYA*22].

Despite the potential of fiber-tracking methods, several down-
sides limit their widespread use. Most importantly, the acquired
data has to go through a complex transformation and visualiza-
tion pipeline, accumulating uncertainties at each step [SVBK14;
SHV21b]. Apart from uncertainties in the modeling and the ac-
quisition stage [BVPtH09; VW21; TMA*09; SHV21a], uncertain-
ties also arise from various user-defined parameters, such as thresh-
olds or seed-region definition, that significantly affect the resulting
fibers [BVPtH09; VW21; TMA*09]. In this work, we investigate

the uncertainties involved in the seed-region definition, i.e., regions
from which the fiber tracking algorithms start [BPP*00; VES16].

In clinical fiber tracking applications, Regions of Interest (ROIs)
like the seed region, are defined by users manually to extract a spe-
cific bundle, i.e., a coherent set of fibers connecting two specific re-
gions in the brain. In most cases, users take guidance from anatom-
ical imaging in combination with a 2D directional encoded color
(DEC) map (see Figure 1a and 1b). A DEC map encodes the main
tensor direction by mapping the (x,y,z)-components of the direc-
tion to RGB color channels, respectively, weighted by Fractional
Anisotopy (FA) [PP99]. Interactive and automated ROI definition

Figure 1: Potential ROI R overlaid on a T1 image (a) and DEC map
(b). In both images, the values in R are homogeneous. However, the
resulting fiber tract from the given seed region R is divided into two
different fiber bundles (c, orange, and purple) corresponding to a
division in the ROI shown in the inset.
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based on the local diffusion properties is well studied [WH11;
VW21]. Automatic ROI definition methods often require manual
tuning and re-definitions, resulting in a trial and error process, re-
quiring multiple iterations to extract the desired fiber tracts and
meet the expectations of the clinician [WH11]. Relying solely on
the DEC maps and the anatomical information is sometimes not
enough for ROI definition since it only indicates the local direc-
tional and anatomical information. Figure 1 shows an example
where both the anatomical image (Figure 1a) and the DEC map
(Figure 1b) indicate homeogeneouos values within a potential ROI
R. This could indicate that the fiber tracts seeded from this region
may form a coherent bundle. However, the resulting fiber tracts
generated from the region R are from two different bundles namely
Arcuate Fasciculus (AF) bundle and the superior longitudinal fas-
ciculus (SLF) bundle, as shown in Figure 1c. The resulting fiber
demonstrates that there is a division in the region that is not visi-
ble on anatomical images and DEC maps, which are the common
visualization techniques in a clinical setting.

In this paper, we explore the use of seed-point sensitivity as
additional guidance for users. Seed-point sensitivity refers to the
variation in fiber tract structures due to slight changes in the seed-
point location. By quantifying and visualizing seed-point sensitiv-
ity, users can identify the boundaries of desired fiber bundles, aid-
ing in the generation of optimal fiber tracking results. In the ex-
ample, ROI R in Figure 1, such a measure would produce large
sensitivity values in the region where the bundle diverges and as
such, alleviate the adjustment of R. Our main contributions are

� the identification and analysis of scenarios in which seed-point
sensitivity can aid in ROI definition,
� corresponding ROI guidance and course of action per scenario

for ROI optimization,
� visualization and interaction techniques to guide the definition

of ROIs based on the defined scenarios and course of action.

2. Clinical Workflow

To understand the fiber tracking workflow in the neurosurgical set-
ting, we conducted exploratory sessions with our collaborators,
which include neurosurgeons, radiologists, and researchers who
use fiber tracking for planning tumor resection surgeries. Our clin-
ical collaborators expressed a specific interest in reconstructing the
core bundles: Arcuate Fasciculus (AF), Inferior Frontal Occipi-
tal Fasciculus (IFOF), Corticospinal Tract (CST), Optic Radiation
(OR), and the Frontal Aslant Tract (FAT). These bundles are rele-
vant for neural communication and function in visual perception,
recognition, language processing, and motor movements.

Our collaborators employ both automatic and manual pipelines
for fiber tracking during preoperative planning. In the manual clin-
ical pipeline, the workflow starts with the image acquisition, fol-
lowed by the preprocessing of the data, which includes correct-
ing for motion artifacts and eddy currents and normalizing the
data to a common space. After the data has been preprocessed,
diffusion modeling takes place. The manual clinical pipeline re-
lies on diffusion tensor imaging (DTI) [LMP*01]. However, in our
work, other modeling techniques such as HARDI [TRW*02] can
also be integrated. After diffusion tensor modeling, ROIs are de-

fined using anatomical information and DEC maps. The ROIs in-
clude seed regions and AND regions that are used to filter irrele-
vant fibers [JLT*13; JC10; MV02; SPW*07]. Using AND ROIs in
fiber tracking improves the specificity and reliability of resulting
fiber bundles, avoiding spurious fibers. Within the clinical work-
flow, users manually define ROIs to extract particular bundles. Typ-
ically, anatomical cues like T1 images and DEC maps offer par-
tial guidance yet prove insufficient for accurate ROI definition.
The task requires multiple iterations to adequately define ROIs,
demanding expertise and anatomical insight for optimal accuracy.
To circumvent this issue, a guidance strategy is needed to help
users in defining desired ROIs. Our collaborators are also testing
an automatic pipeline for use in the clinical workflow. Here, ROIs
are defined automatically using Spatially Localized Atlas Net-
work Tiles (SLANT) [HXA*18], which use deep learning to com-
pute subject-optimized whole brain segmentations. Fiber tracking
is performed using Constrained-Spherical Deconvolution (CSD)
method [TCC07]. Although ROIs are defined automatically, man-
ual user input and tuning are needed when the generated results are
not adequate.

Our work aims to provide interactive visual guidance in deter-
mining ROIs based on seed point sensitivity. Our framework can
be used with any diffusion modeling and fiber tracking method that
provides fiber tracts through ROI definitions, as we base our sensi-
tivity computation solely on the resulting fiber tracts, i.e., the geo-
metrical features of the fiber tracking results. We demonstrate the
feasibility of our framework by utilizing both the manual and auto-
matic workflows of our collaborating partners.

3. Related Work

In this section, we provide a comprehensive review of the literature
that is relevant to our work, specifically focusing on studies that in-
vestigate fiber tracking parameters and their sensitivities, as well as
the definition of ROIs. In addition, we also examine related work
on the visual encoding of multiple scalar fields along with the dis-
cussion on coherence measures. Our primary emphasis is on papers
that explore sensitivities and ROIs.

The fiber-tracking pipeline comprises several input parameters
that control the tracking process. The most critical user-defined
parameters are Fractional Anisotropy (FA) thresholds and ROIs.
Taoka et al. [TMA*09] evaluated the influence of FA thresholds
in measuring diffusion tensor parameters for tract-based analysis.
Gutierrez et al. [GSN*20] presented a framework to optimize FA
thresholds of fiber tracking algorithms using multi-objective op-
timization techniques. Brecheisen et al. [BVPtH09] evaluated the
sensitivity of FA thresholds in fiber-tracking algorithms and pro-
vided an interactive visualization for parameter exploration.

Schlaier et al. [SBF*17] studied the influence of seed regions to
delineate cerebellar-thalamic fibers in deep-brain stimulation and
analyze how seed regions affect the results in both deterministic and
probabilistic fiber tracking. Huang et al. [HZVM04] assessed the
effects of noise, ROI size, and location on DTI-based fiber recon-
struction results for one-ROI (i.e., seed region only) and two-ROI
approaches (i.e., seed region plus AND regions). They analyzed the
differences in the resulting tracts by dilating the ROI size and per-
turbing the location. Even though the study was principally focused
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on comparing one- and two-ROI approaches, they concluded that
the ROI placement could be a major source of poor reproducibility
in fiber tracking. Several approaches have been proposed in the lit-
erature to automatically define ROIs [HLZ*22; EYQ*20]. Weiler et
al. [WH11] employed local diffusion parameters, such as fractional
anisotropy and radial diffusivity, to generate automated ROIs for
fiber tracking. Despite the existence of automatic methods, man-
ual user input in ROI definition is still needed in complex cases.
Schonberg et al. [SPH*06] propose to use functional MRI (fMRI)
data to define ROIs for adequate fiber tracking results, especially
when ROIs have to be placed within or in the vicinity of a lesion.
The presence of lesions deforms the fiber structures, affecting the
DEC map and T1 image and thus impeding ROI definition. In com-
plex cases, fMRI data is also affected by edema or glioma. Voltoline
et al. [VW21] proposed to combine shape and FA information and
show them as glyphs to guide ROI definition. To the best of our
knowledge, there has been no research on the inclusion of seed-
point and ROI sensitivities.

The use of tensor lines to visualize tensor fields is closely related
to vector field visualization using integral curves, modeling the tra-
jectories of particles through the field. Visualizing the coherence of
motion among neighboring particles has been studied in this con-
text [CMLZ08; LSM07; SP07; GGTH07]. These approaches lo-
cally express the change of the particle trajectory with a variation
of the initial position. Hlawitschka et al. [HGT*10] presented an
approach based on similar concepts applied to tensor lines. They in-
troduced a coherence measure defined for fiber tracts and provided
an effective visualization to represent the fiber coherence combined
with the existing visualization. Moberts et al. [MVV05] and Qazi
et al. [QRO*09] discuss measures for the quantification of coher-
ence of neighboring fibers in diffusion tensor data. In our work, we
use existing coherence measures based on the global geometrical
shape to compute the sensitivity of seed point placement and pro-
vide guidance to the users to define an optimal ROI. To the best of
our knowledge, no related work proposes using sensitivity analysis
for ROI definition and guidance in fiber tracking workflow.

Numerous contributions have been presented in the literature
concerning the visual encoding of multiple scalar fields, encom-
passing measures like coherence, hemodynamics, uncertainty, etc.
Meuschke et al. [MVB*16] introduced a method for concurrently
displaying two scalar fields for the visual analysis of aneurysm
data, aiming to enhance insights into complex anatomical struc-
tures. The first attribute is color-coded, while the second utilizes
an image-based hatching scheme. Building on this foundation,
Meuschke et al. [MGB*18] further proposed a checkerboard vi-
sualization that facilitates the simultaneous exploration of diverse
attributes. Hlawitschka et al. [HGT*10] adopt a continuous scalar
map with distinct color scales to represent point-wise coherence
measures. In our work, we embrace a similar concept, utilizing
an interactive discrete color map for scalar field visualization to
mitigate visual clutter and effectively portray sensitivity alongside
anatomical information.

4. Sensitivity Analysis

Based on the sensitivity definition [Cac81], we present the seed-
point sensitivity as the relation of a slight change, δs, in the seed-

point position, s, and the amount of change of the resulting fiber
tract, f (s), i.e., amount of change of seed point, jjδsjj versus dis-
tance between resulting fiber tracts d( f (s+δs), f (s)).

We calculate the seed point sensitivity in a predefined grid as a
scalar field. To do so, we first assign a sensitivity value Si to each
seed-point position si. Si is defined as the mean of the distances of
its corresponding fiber Fi to all other fiber samples within a radius
jjδsjj. The sensitivity Sc for each grid cell c in the field is then
calculated by averaging the sensitivity values Si of each seed point
within the cell. The resolution of the grid can also be adjusted to
achieve the desired precision. Seed points are distributed randomly
within the cell based on the predetermined number of fibers per grid
cell. However, when pre-computed fibers are utilized, the quantity
of fibers per cell depends on the defined fiber density parameter.

There are various options to define the distance d( f (s +
δs), f (s)), depending on the goal. Here, we focus on definitions
that consider the geometrical properties of the fiber tracts since
the evaluation of the fiber bundle relies primarily on the geome-
try of the tracts. Other sensitivity parameters, e.g., diffusion prop-
erties [HGT*10], could also be incorporated. There has been a
considerable amount of research on similarity measures between
fiber tracts and, more generally, integral lines or curves in vector
field [JPS*10; CFJ*05; Goo09]. The first category measures the
Euclidean distance between pairs of points on two curves, such
as the closest point measure, the Hausdorff distance [RW09], or
the Fréchet distance [AG95]. A second category is the mean Eu-
clidean distance along the run lengths of the curves, such as the
mean distance of closest distances [CGG04] or the mean thresh-
old closest distances [ZDL03]. There are also distances computed
based on Euclidean space embedding of the curves, such as the
Gaussian kernel distance [BKP*04]. Each of these measures has
its own strengths and limitations in terms of sensitivity and in-
variance. In our work, we focus on the coherent geometrical fea-
tures of fiber tracts as it is considered an essential criterion that
characterizes bundles. A general assumption is that the fiber tracts
belonging to the same bundle have smoothly changing geometri-
cal properties. We explore distance-based metrics, as discussed by
Moberts et al. [MVV05] and Corouge et al. [CFJ*06]. We com-
pute the distance measure d between the fiber tracts Fi and Fj using
the mean of the closest point distance, which is proven as a rele-
vant distance measure for automatic clustering for bundle identifi-
cation [MVV05; CFJ*06]. The distance is defined as:

dm(Fi,Fj) = mean
pi∈Fi

min
p j∈Fj
jjpi�p jjj (1)

where the minimum distance for each point pi of Fi to the points
p j of Fj is computed, and then the mean of all closest distances
of pi to Fj is used. Notice that dm is not symmetric; therefore,
the distance between the two fiber tracts d is then computed by
min(dm(Fi,Fj),dm(Fj,Fi)). Using the minimum allows us to ac-
count for different fiber lengths. Other distance measures to calcu-
late the similarity between two curves can be integrated into the
pipeline. The choice depends on the specific case to be explored
and the fiber tracking algorithm used.
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5. Scenario Analysis

To support ROI de�nition in a structured way, we analyze differ-
ent scenarios in relation to the use of computed sensitivities for
ROI de�nition. As discussed in Section 4, �ber tracts belonging to
the same bundle generally have similar or smoothly changing ge-
ometrical features. Our assumption is that sensitivity can indicate
potential boundaries of bundles that indicate relatively large sensi-
tivity. In the following, we follow previous works [MVV05; JD88;
JMF99] and use the termscomplete and correct to evaluate the
�ber tracts, resulting from a de�ned ROI. Here, correctness means
that all produced �bers belong to the correct bundle, while com-
pleteness means that all �bers belonging to a speci�c bundle are
produced. Given the absence of ground truth in �ber tracking data
and our goal being to support the interactive de�nition of ROIs, cor-
rectness, and completeness rely on the speci�c user requirements
and may differ from user to user. Hence, we provide the guidance
strategy based on the de�ned assumptions of similarity and conti-
nuity of bundles but ultimately leave it to the user's discretion to
decide.

Figure 2 illustrates four basic scenarios concerning sensitivity
based only on the seeding ROI. To explain the possible scenar-
ios, we give an example of a region where two different bundles
are diverging and close to each other. We are interested in gener-
ating one �ber bundle. The area where the bundles meet can also
be identi�ed and investigated with the sensitivity map. For simplic-
ity, we only show two sensitivity levels: dark for high sensitivity
and light for low sensitivity. The black outline represents the seed
ROI, and the blue curves depict �ber tracts. Solid curves show se-
lected tracts, while transparent ones display �ltered �bers based on
de�ned ROIs.

Figure 2: Illustrations of the possible scenarios for ROI de�nition.

Scenario 1in Figure 2 shows the ideal case where all �bers of
the desired bundle are produced, i.e.,complete and correct. This
situation occurs when the ROI extends to the boundary between
a low and high-sensitive area without including parts of the high-
sensitivity area.Scenario 2shows the case where the seed ROI
does not produce the whole bundle, i.e., the produced �bers are
correct but incomplete. The de�ned region needs to beextendedto
cover the complete bundle. InScenario 3, the de�ned seed ROI has
two low sensitivity areas divided by a high sensitivity area depict-
ing that the resulting �bers arecomplete, but due to coverage of an
incorrect region, some of the �bers areincorrect. The ROI needs
to beshrunkto only one of the low sensitivity areas.Scenario 4
shows the combination of Scenarios 2 and 3, where the seed ROI
contains low and high sensitivity areas; hence, the resulting set of
�bers is incomplete and incorrect.

As discussed in Section 2, users employ AND ROIs, in addition
to the seed region in most clinical cases, to extract speci�c �ber
bundles [BPP*00]. We extend the previously discussed scenarios
by adding an AND region. We do not consider Scenario 4 as it is
a local combination of other scenarios. The scenarios summarized
in Figure 3 specify the characteristics of the de�ned ROIs and the
corresponding �ber bundle selection. As previously discussed, we
distinguish the ROIs in each scenario based on the completeness
and correctness of the selected �ber bundle. In Scenario 1.1, both
the Seed and AND ROIs generate complete and correct �ber tracts.
The combination of these de�ned ROIs results in a complete and
correct �ber bundle. All scenarios with the addition of an AND
ROI (represented with the green area) are illustrated in Figure 4.
The glyph on the top left shows the scenario according to Figure 3.

In Scenarios 1.x, the seed ROI is de�ned as complete and correct,
as discussed earlier. Therefore, only a too-small AND ROI impact
the result, thus producing an incomplete result (Scenario 1.2). Here,
the AND region needs to be extended or removed.

In Scenarios 2.x, the seed ROI misses similar �bers which belong
to the desired bundle. Therefore all scenarios are incomplete. This
cannot be addressed by adjusting the AND ROIs. Thus, the user
will want to extend the seed ROI to be complete and correct. The
result will be the corresponding Scenarios 1.x.

In Scenarios 3.x, the seed ROI covers �ber tracts from different
bundles generating complete but incorrect results. In Scenario 3.1,
the AND ROI makes the result complete and correct being the only

Figure 3: Summary of the characteristics of the Seed and AND
ROIs and their combined effect for each scenario.
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