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Fig. 1: Example screenshot of ManiVault used for the exploration of a hyperspectral imaging data set. 

Abstract—Exploration and analysis of high-dimensional data are important tasks in many felds that produce large and complex data, 
like the fnancial sector, systems biology, or cultural heritage. Tailor-made visual analytics software is developed for each specifc 
application, limiting their applicability in other felds. However, as diverse as these felds are, their characteristics and requirements for 
data analysis are conceptually similar. Many applications share abstract tasks and data types and are often constructed with similar 
building blocks. Developing such applications, even when based mostly on existing building blocks, requires signifcant engineering 
efforts. We developed ManiVault, a fexible and extensible open-source visual analytics framework for analyzing high-dimensional data. 
The primary objective of ManiVault is to facilitate rapid prototyping of visual analytics workfows for visualization software developers and 
practitioners alike. ManiVault is built using a plugin-based architecture that offers easy extensibility. While our architecture deliberately 
keeps plugins self-contained, to guarantee maximum fexibility and re-usability, we have designed and implemented a messaging API 
for tight integration and linking of modules to support common visual analytics design patterns. We provide several visualization and 
analytics plugins, and ManiVault’s API makes the integration of new plugins easy for developers. ManiVault facilitates the distribution of 
visualization and analysis pipelines and results for practitioners through saving and reproducing complete application states. As such, 
ManiVault can be used as a communication tool among researchers to discuss workfows and results. 
A copy of this paper and all supplemental material is available at osf.io/9k6jw, and source code at github.com/ManiVaultStudio. 

Index Terms—High-dimensional data, Visual analytics, Visualization framework, Progressive analytics, Prototyping system. 

1 INTRODUCTION 

High-dimensional data has become important and ubiquitous in many sualizations, visual analytics (VA) [12,25], have proven to assist well in 
applications. Yet, understanding this type of data remains challeng- gaining insight for high-dimensional data. A variety of visual encodings 
ing and poses many hurdles ranging from computational effciency to and processing algorithms for high-dimensional data exist. At the same 
interpretability. Combinations of automated analysis and interactive vi- time, specialized application domains require specialized workfows 

for handling their data and often need to adapt established methods to 
their use case. Even though these domains encounter different domain-
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VA software developers, application designers, and practitioners to im-
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Table 1: Comparison with other visual analysis tools that are most similar to ManiVault. 

ManiVault XmdvTool [66] GGobi [58] Visplore [65] Tableau [59] ParaView [3] Inviwo [23] 

Focus on high-dim. data • • • • • — — 
Focus on feld data — — — — — • • 
Extensible • • a • — — • • 

d• cVisual Analytics • • • b • • — 
d dProgressive Analytics • — • b • — — — 

VA system authoring • — — — • d • e — 
Active development • — — • • • • 
License LGPL-3 Public domain EPL Commercial Commercial BSD-3 BSD-2 

a No dynamic extension loading b When used with its API, e.g., in combination with R c Via Trame [27] d The systems can be extended with Visual 
Analytics functionality by plugins or Python integration, but the focus is on interactive feld visualization e Focus on dashboards with pre-populated data 

plement algorithms and visual encodings, prototype workfow-specifc 
tool sets, and perform their data exploration and analysis respectively. 

Existing VA systems for exploring general multivariate data do not 
meet all of these goals. Commercial products like Visplore [40, 41] 
or Spotfre [1, 2] come with wide feature ranges but are closed-
source and not easily extensible. Older open-source frameworks like 
XmdvTool [66] and GGobi [58] are mostly limited to visual analysis 
and lack analytics functions. ParaView [3] and Inviwo [23] are capable 
of displaying multivariate data as well but focus on feld data and the 
representation of spatial structures. Business intelligence solutions like 
Tableau [56, 59] mostly focus on dashboard creation and chart recom-
mendations. Other fast dashboard prototyping tools, like Keshif [70], 
provide infrastructure like linked selections of various data visualiza-
tions but lack analytics capability. With ManiVault we propose a visual 
analytics framework for general high-dimensional data that is easily 
extendable and lets both developers and practitioners re-use algorithmic 
and visualization building blocks for prototyping and reusing visual 
analytics systems. 

Growing data sizes, both in the number of items and dimensions, 
increasingly complicate interactive analysis. Progressive visual ana-
lytics [55] intends to overcome this issue by continuously providing 
intermediate results of the current data analysis step. The ability to con-
trol the analysis based on continuous feedback is crucial for progressive 
VA systems [4]. In ManiVault we implement a data-centric and modular 
framework that facilitates continuous data updates and algorithm steer-
ing out of the box. The ManiVault core application manages data sets 
and plugins, which provide both analysis and visualization functional-
ity. This architecture allows for fast data changes, selection updates, 
and overall fexible data exploration. Additionally, since each plugin 
is agnostic of any other, the system is easy to extend with new data 
types, visualizations, and analysis algorithms. ManiVault is written in 
C++, using the Qt framework [60] for cross-platform GUI development. 
OpenGL is used for high-performance rendering (e.g., our scatterplot 
plugin) but viewer plugins based on lower threshold JavaScript libraries 
like D3 [7] and Vega-Lite [50] are also possible. ManiVault is open 
source and can be found at github.com/ManiVaultStudio. 

To summarize, in this paper we describe 
• ManiVault, a modular and extensible visual analytics framework 

designed for high-dimensional data, 

• several functionality extensions in the form of basic data-, viewer-, 
and analytics plugins, and 

• three use cases ranging from plugin development to a practi-
tioner’s workfow. 

2 RELATED WORK 

Visual analysis of high- and multidimensional data is broadly discussed 
in literature [17, 24, 68]. Here, we review the most relevant work on 
Visual Analytics (VA) systems for multidimensional data and visualiza-
tion design environments with respect to our framework. 

2.1 Visual Analysis and Analytics Systems 
VA systems for the exploration and analysis of high-dimensional data 
are well established both in academia and industry [14, 19]. Table 1 
gives an overview comparison between ManiVault and visual analysis 
tools that we deem most similar. Most VA systems employ coordinated 

multiple views [47] with linked selections for data exploration, and we 
follow this approach with ManiVault as well. Chen et al. [10] discuss 
common practices and guidelines for the layout of multiple views. 

Pioneering visual analysis frameworks for multidimensional data 
include XmdvTool [66], Spotfre [1], GGobi [58] and the InfoVis 
toolkit [16]. These frameworks mostly focused on displaying data with 
a variety of visual idioms and enabled exploration with brushing tools 
and linked selections. XmdvTool was extended with several dimen-
sionality reduction and clustering methods [13, 71, 72]. GGobi [58] 
integrates with the R language which enables users to apply analysis al-
gorithms via scripting. Spotfre grew into a commercial, closed-source 
product with extensive analytics capabilities, while the others are open-
source, albeit unmaintained. All of these tools predate Progressive VA 
and are not optimized for the specifc needs of continuous updates and 
steering of analytics processes. ManiVault is designed around the prin-
ciples of progressive VA from the start using a data-centric architecture. 
Data-producing and -transforming plugins can continuously update 
the data managed by the core, while data consumers get automatically 
notifed about these changes. Tableau [59], building on the Polaris 
system [56], might be the most prominent and representative universal 
VA system. Marketing itself as a business intelligence tool, Tableau 
focuses on fexible visualization of various data types and more general 
analytics functions can be added via Python or R scripts. Similarly, Vis-
plore [40, 41] implements a suit of statistical analysis and visualization 
methods for tabular data and aims at providing quick visual feedback 
for visual interactions and data queries. Its commercial offspring [65] 
offers a more direct integration of scripting languages to supplement 
built-in analysis functions. 

The open-source ParaView [3], like many other analysis frameworks 
for spatial feld data, e.g., volume data, [6, 11, 48, 52] is based on the 
VTK library [51], and provides a wide range of visualization and anal-
ysis functions in an extensible framework. ParaView follows VTK’s 
visualization pipeline and is designed around the fow of data through 
various transformations to their fnal visual presentation. Similarly, the 
commercial Amira Software [54, 61] offers a range of analysis func-
tions for multidimensional volumetric data but it is not freely extensible. 
Many visual analysis systems traditionally target either geometric or 
abstract tabular data. However, in recent years, the analysis of spatial 
and non-spatial data has become increasingly integrated [53]. With 
ManiVault we create a system for general high-dimensional data that 
can be extended to handle arbitrary spatial or abstract data types. Our 
data-centric system design enables fexible exploration workfows in-
stead of having practitioners concerned about data fow through each 
step of the visualization pipeline. 

2.2 Visualization Design Environments 

Visualization design environments or similarly visualization prototyping 
systems are tools for creating visualizations that provide a graphical 
user interface for specifying visual encodings of data and interaction 
dynamics. Many such systems exist, and here we provide an overview 
of the tools most similar to ManiVault. 

Lyra [49] offers fne-grained design options for single plots through 
handles, drop-zones, and other interaction mechanisms for graphical 
setup of re-usable Vega or Vega-Lite [50] specifcations. Lyra 2 [73] 
extends this framework by letting users defne interactions like brush-
ing and selection linkage between multiple plots. iVisDesigner [46] 
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follows similar principles but places emphasis on collections of data 
visualizations in a dashboard format. Keshif [70] focuses on a novice 
user audience by automatically aggregating data and selecting visual 
representations based on pre-defned mappings for various data types. 
In contrast to the above design environments for single or multiple 
visualizations, ManiVault is a design environment for complete visual 
analytics systems including automated analysis methods. While the 
above systems are focused on abstract data, Inviwo [23] presents a 
visualization prototyping system for spatial feld data. Its design allows 
users to specify visualizations on various abstraction levels, from visual 
(connecting functional boxes) to conventional programming. Compared 
to Inviwo’s data-fow model, ManiVault is data-centric and focused 
on providing several visualizations and analytics tool building blocks. 
ManiVault’s core system coordinates views on the data and enables 
linked selections between views out-of-the-box. 

From a plugin-in developer’s perspective, ManiVault resembles the 
prefuse [20] and ComVis [35] toolkits. They provide development 
environments and software components for building dynamic visual-
izations. Both focus on non-spatial data and target graph and tabular 
data set types. Scripting-based solutions like Dash [43] for creating 
dashboard applications or Voilà [28] for converting Jupyter notebooks 
into standalone web pages provide a GUI front-end to the wide offer of 
analysis libraries in the Python, R or Julia ecosystems. ManiVault is 
specifcally laid out for progressive and high-dimensional data analysis. 
Our C++ implementation supports high-performance computations and 
interactions necessary for visual analytics. 

3 DESIGN CONSIDERATIONS 

We designed ManiVault as a VA framework with multiple user groups 
in mind. While these groups can overlap, their requirements for the 
effective and convenient use of ManiVault are varied. 

3.1 General Setting 
High-dimensional data has become ubiquitous in many domains and the 
analysis of such data plays a pivotal role in acquiring insights into com-
plex systems. Analytics software in different domains targeted at such 
data generally utilizes comparable sets of analytical and visual tools, 
such as dimensionality reduction, clustering algorithms, scatterplots, or 
parallel coordinates plots. These generic tools are then combined with 
data-, user-, and domain-specifc tools and customizations to create a 
specifc application. The primary motivation for developing ManiVault 
is to facilitate rapid construction of visual analytics applications for 
high-dimensional data without the need to re-implement common func-
tionality. Modularity is a key aspect for creating reusable tools, both 
on a code as well as a user-facing abstraction level. The second main 
motivation for ManiVault is a need for fexible exploratory analysis, 
but also subsequent sharing of results, as well as the means to recreate 
the corresponding workfows. We learned of the target user charac-
teristics and design requirements during multiple collaborations with 
practitioners in various felds [21, 33, 44, 62] spanning several years. 

3.2 Target Users 
We identifed three target user groups, each with specifc requirements: 
U1 Developers use ManiVault to implement new ideas and methods. 
These users, e.g., visualization researchers, interact with the system 
via code in order to create customized modules. Developers need 
the framework to provide a stable API that allows for the integration 
of their methods with little overhead. Further, they need existing 
modules to focus on their specifc contribution; e.g., a developer of a 
dimensionality reduction method might want to visualize results in an 
existing scatterplot module without having to implement their own. 

U2 Application designers combine and adapt existing modules to 
create stand-alone applications for specifc use-cases. Not all options 
of a view (e.g., the point size in a scatterplot) might be necessary 
for a specifc workfow, and providing all options in the GUI can be 
distracting. In these scenarios, ManiVault needs to support fexible 
GUI customization. To minimize the burden, the framework should 
support such customization directly in the GUI without programming. 

U3 Practitioners and domain experts use the software to analyze their 
high-dimensional data. Practitioners need ManiVault to allow for a 
fexible data exploration process, to provide responsive user interfaces, 
and to offer domain-specifc visualization and analysis modules. Once 
their analysis is fnished, practitioners need the ability to easily share 
and reproduce the results and their workfow in ManiVault. Given a 
well-defned workfow, they also need easy access to specifed presets 
of visualization and analysis layouts. 

The boundaries between these user groups are fuid. E.g., a skilled 
practitioner might want to extend a pre-bundled application with a 
module or develop a module themselves. 

3.3 System Requirements 
Based on the general usage setting and needs of our target users, we 
defne the following high-level requirements for a visual analytics 
platform such as ManiVault. The framework must be: 
R1 Extensible: ManiVault has to provide an interface for adding new 
functionalities. It must be possible to create modules for new 

a data types, 
b visualizations, 
c analytics methods, 
d data transformations, 
e loading/writing data. 

R2 Flexible: ManiVault must allow for workfows in multiple domains 
and specifcally enable straightforward workfow adaption during use. 

R3 Linkable: ManiVault must provide modules with an API to easily 
link data selections and synchronize parameters, such that no depen-
dencies between modules are created. 

R4 Confgurable: ManiVault must provide options for GUI confgu-
ration during runtime through the user interface. 

R5 Distributable: ManiVault must be able to save its current state, 
including layout, data sets, and settings and reproduce a saved state. 

R6 Performant: ManiVault must be performant when handling large 
data, stay responsive and provide interfaces to interact with processes 
during calculation to support progressive VA. 

4 MANIVAULT ARCHITECTURE 

In order to ensure easy extensibility (R1), ManiVault is implemented as 
a modular system, see Fig. 2a. The core application is a lightweight set 
of managers and any user-facing functionality is dynamically loaded 
from self-contained libraries, i.e., plugins, respectively discussed in 
Secs. 4.1 and 4.2 (R6). This compartmentalization into a core and 
extensions provides easier maintainability, better scalability, and faster 
development. Together with a data-centric system structure (Sec. 4.3), 
this enables fexible workfows (R2) with various analytics and visu-
alization techniques. ManiVault features an intricate notifcation and 
parameter sharing system to allow for communicating between plugins, 
see Sec. 4.4 (R3). GUI management objects, called actions (Sec. 4.5), 
implement a part of the communication system and the confguration 
and serialization system, see Secs. 4.6 and 4.7 (R4, R5). 

4.1 Core Application 
ManiVault’s core is modularized into a set of managers, actions, and 
utilities as shown in Fig. 2a. ManiVault comprises a data-centric archi-
tecture: a data manager stores and administers access to data sets. All 
data sets are organized hierarchically, such that derived data sets like 
clusterings, embeddings, or proper subsets are marked as children of 
their respective source data. This enables simple access to properties of 
the parent data set and propagation of selections from derived to source 
data sets. Analysis, transformation, visualization, and loading/writ-
ing functionality as well as the defnition of data types themselves 
are separated into plugins. A plugin manager loads plugins into the 
core and makes them available to the user. Each plugin can consume 
data, i.e., process existing data in the core and/or produce data, i.e., 
store a new or alter an existing data set in the core. While each plugin 
is self-contained, communication between plugins is made possible 
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event triggered by View A, but any plugin could. (c) a view plugin published a DecimalAction, moving the action in a shared parameters space and 
immediately subscribes to it. Now, an analytics plugin can connect to the shared action, enabling synchronization across plugins. 

using two messaging systems (Sec. 4.4). An event manager in the core 
administers globally defnes notifcations while actions are used for 
run-time confgurable notifcations (see Figs. 2b and 2c). 

The general application layout is handled by a workspace manager 
which takes care of the arrangement of all GUI widgets provided by 
view plugins. The core contains two main system view plugins, a 
data hierarchy, and a data properties viewer. The former displays the 
internal hierarchical data structure, while the latter shows properties 
of the data (number of data points, dimensions, active selections) and 
gives users access to the settings of analytics plugins, as discussed in 
more detail in Sec. 5. ManiVault provides a number of actions, GUI 
management objects, and administers any user-defned linking between 
them, see Sec. 4.5. Further, a project manager is responsible for saving 
and loading the current state of the application, including loaded data 
sets, the GUI layout, opened plugins, and linked parameters. Global 
settings applicable to, e.g., all plugins or the general application layout 
are handled by a dedicated settings manager. 

Additionally, ManiVault’s core supplies a set of utilities like dedi-
cated renderers, shaders, color maps, mathematical helper classes, such 
as vectors and matrices, as well as common algorithms like mean shift 
clustering. These tools can be used to create a more coherent visualiza-
tion and analysis setup across plugins. E.g., developers can rely on the 
availability of a standard set of color map types in every view plugin, 
while maintaining the ability to introduce custom ones. 

4.2 Plugin Types 
ManiVault works with six distinct plugin types that bundle various 
types of functionality. The system can be easily extended with new 
functionality by writing a new plugin that will automatically be loaded 
on start-up (R1). In combination with the data-centric core architecture, 
this enables a user to perform fexible workfow changes (R2). 
Data plugins enable extending the types of data the system can handle. 
ManiVault provides a base data plugin class that developers can extend 
to defne a custom data format. E.g., we provide an image data type 
that extends our basic point data type with image dimensions and thus 
a mapping of points to image coordinates. The system can generally be 
extended with arbitrary data formats. 

View plugins provide a view on the data and allow interaction, such as 
selection of data elements. Views can be fully-fedged visualizations or 
simpler views such as lists. View plugins are primarily data consumers, 
i.e., they take a data set as input for visualization, but can also function 
as data producers, e.g., by providing means for annotating data. We 
provide example plugins with diverse backends, like OpenGL and D3. 

Analytics plugins allow for the implementation of data analytics mod-
ules such as dimensionality reduction. As such, they are primarily data 
producers but also follow the data consumer API to receive the input 
data on which they perform calculations. 

Transformation plugins resemble analytics plugins in code but are 
semantically different. They are also primarily data producers, but 
while analytics plugins derive new properties, e.g., an embedding, that 

can have an arbitrary shape, transformation plugins produce data of the 
same shape, i.e., with identical items and attributes. An example of 
such a transformation is a normalization of the original data. 

Loader/Writer plugins respectively load specifc types of data into 
the system (data producer) or write it back to fle (data consumer). 

4.3 Data Handling 
The data handling in ManiVault follows a model-view pattern. Inter-
nally, the core’s data manager keeps a list of raw data models, data 
set views, and selection views. A data plugin has to defne both a raw 
data model and data set view — the selection view is simply another 
instance of the same data set view on the raw data. The raw data model 
holds the physical data values of a set and is never exposed directly to 
non-data plugins. Therefore, for most intents and purposes, the data 
set views can be regarded as the actual data sets present in the system. 
They defne access to the raw data for all non-data plugins by providing, 
e.g., views on or copies of it. Each raw data object is associated with 
exactly one selection object to ensure straightforward selection sharing 
across all plugins that access a data set. Selection and set views can be 
separately requested and adjusted. This model-view pattern allows for 
a simple API and to create and use subsets with minimal overhead. 

New data sets can be marked as derived from existing ones, e.g., 
when a new data set is created by an analytics plugin. The derived 
data also functions as the user-facing entry point through which the 
analytics settings can be accessed. This operation will create new data 
set and raw data objects but no new selection view. Instead, selection 
views are shared between parent and derived data sets. This simplifes 
the propagation of selections between views, e.g., a derived embedding 
shown in a scatterplot and the original data in a parallel coordinates 
plot. To enable selection sharing between arbitrary data sets, ManiVault 
lets users group data sets in the hierarchy view. Selections of any data 
sets within a group and with the same number of data points are then 
automatically synchronized. 

We implemented a set of base data plugins in ManiVault, including 
plugins for point data, multichannel images, clusters, color, and text 
data. The development of ManiVault so far primarily targeted the 
point data type, which can store various high-dimensional integer and 
foating point formats. Our image data plugin shows the versatility of 
ManiVault’s data handling and the point data type. When loading an 
image, two data sets are created: a point data set whose raw data object 
stores the actual pixel values and a child image data set whose raw 
data object stores metadata like image size. The image data set view 
provides access to the parent’s raw data. This confguration ensures 
compatibility with analytics, transformation, and view plugins that 
expect point data to process multichannel images. 

The implemented data handling system is lightweight. Besides 
the basic ManiVault core (< 90 MB), the data manager and hierarchy 
require < 8 MB of memory (on Windows). Each loaded data set 
produces less than 1.5 MB overhead in addition to its binary size, 
stemming from the plugin instance and core integration. More details 
can be found in Supplemental Material S1. 
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4.4 Plugin Communication 

Coordinated Multiple Views (CMVs) [47] are the basis for virtually 
any visual analytics application. While the individual views in a CMV 
system naturally map to modules in a modular architecture, an essential 
part of CMV systems is the integration of those views. This enables 
techniques like brushing and linking [9], where selections on the data 
are propagated to all views in the system, or the synchronization of 
parameters, like the viewport in an Overview+Detail system [42]. En-
abling such linking of views, without breaking the system’s modularity 
(R3) is no trivial task. A plugin should be self-contained with respect to 
its functionality. Yet, at the same time, plugins need to be able to com-
municate, such that they can inform other plugins about data changes 
and that their parameters can be linked and synchronized throughout 
the application. 

We have designed and implemented two interfaces to solve the issue 
of inter-plugin communication. First, an event-based communication 
API to cover common system-wide types of events related to data set 
changes (Sec. 4.4.1) and second a parameter-sharing API (Sec. 4.4.2) 
as part of our GUI building blocks (Sec. 4.5). 

4.4.1 Core Events 

The ManiVault core API provides an event-based system for inter-
plugin communication using the publish-subscriber pattern. Plugins 
send predefned events to the core, which distributes them, and all 
subscribers (typically plugins) can digest these events as depicted in 
Fig. 2b. To effciently support linking and brushing (R3), we have im-
plemented such events for any changes of data values like addition 
(notifyDatasetAdded), updates (notifyDatasetDataChanged), 
removal (notifyDatasetRemoved)), changes to data selections 
(notifyDatasetSelectionChanged) and several other data related 
changes. A plugin can choose to listen to all events of a certain type or 
subscribe only to certain events concerning a specifc data set. 

An example of a linked selection is shown in Fig. 3. The fgure 
shows a screenshot with three views, a scatterplot and a density plot on 
the left, and the properties of a clustering analysis on the right. Clicking 
any cluster in the clusters list (Fig. 3a) will update the selection set 
attached to the data set and notify the core of these changes with the 
notifyDatasetDataSelectionChanged event. The core will then 
emit the dataSelectionChanged event with the changed data as an 
argument and subscribed plugins will receive a notifcation that triggers 
a refresh of the view with the updated selection (red points in Fig. 3b). 

4.4.2 Shared Parameters 

We designed a complementary API to share parameters between mod-
ules (R3) using GUI actions (Sec. 4.5). With this system, a plugin 
parameter is exposed to other plugins by placing it in a public shared 
parameter pool, i.e., the parameter is published (Fig. 2c). From there, 
other plugins can subscribe to published parameters (provided that the 
parameter types match). Any change to a published parameter will 
be synchronized with all subscribed parameters. We provide common 
GUI elements with ManiVault, that developers can integrate into their 
plugins such that the user can publish a parameter or subscribe to any 
published parameter at run-time through the GUI (R4). 

Figure 3 presents an example in the form of the kernel band-
width (sigma) parameter used in kernel density estimation (KDE) 
employed in density plot visualizations (Fig. 3c) but also mean-shift 
clustering. We have implemented plugins for both that allow real-time 
changes of the sigma parameter, based on Lampe and Hausers real-time 
KDE [31]. Linking this parameter between the density plot and the 
clustering module enables visually fnding a suitable density estimation 
while the clustering is updated on-the-fy. To link the parameters the 
user simply clicks on the underlined label in the GUI (Fig. 3d), e.g., in 
the density plot view, and chooses "publish". After defning a suitable 
name for the parameter, the user can then click on the corresponding 
label in the settings widget of the mean shift clustering plugin (Fig. 3e) 
and click subscribe to be presented with a list of suitable parameters, 
including the just defned one. After subscribing, the connection is 
indicated by the italic font of the Sigma label. 

a

e

d

b

c

Fig. 3: Parameter sharing by connecting two actions of the same type 
in the GUI. Both, the Mean-Shift plugin and Scatterplot plugin use a 
DecimalAction to steer their computation and view respectively. 

4.5 Actions 
To support sharing of parameters as described above, but also to make 
it easy to capture the state of a plugin, confgure the GUI and unify the 
look and feel between plugins, we have devised and implemented a 
number of building blocks we call actions on top of the standard Qt 
GUI widgets. These include simple actions for decimal and integral 
values as well as strings but also more complex elements such as 
colors, color maps, file-pickers, etc.. In addition to those stan-
dard GUI elements we implemented a number of custom actions target-
ing typical VA applications. These include a general-purpose selection 
action, that supports different modalities (brushing, rectangle, lasso, 
etc.) and Boolean combinations (replace, add, remove), and a di-
mension picker action that provides a consistent way to select one or 
multiple dimensions of a data set, e.g., to limit the input to a dimen-
sionality reduction plugin. Although we believe that we provide large 
coverage of commonly required tasks with the built-in actions, we also 
provide an API for plugin developers to create custom actions. 

By using our actions API, sharing of parameters as described in 
Sec. 4.4 is automatically available through the GUI. In addition, actions 
can also be attached to data objects, to expose their functionality to 
other plugins. A data producer plugin can, e.g., attach an action to 
trigger a calculation within the plugin. Other plugins can query these 
attached actions and provide the corresponding GUI elements within 
their scope. We showcase this in our Hierarchical Stochastic Neighbor 
Embedding (HSNE) [37] analytics plugin. The plugin creates a hierar-
chical embedding structure that can be refned interactively. We attach 
an action for triggering the refnement to the produced embedding data 
set. When viewing the embedding in a scatterplot, the scatterplot view 
plugin exposes the refne action and other attached actions through 
the context menu. The user can then trigger the refnement directly 
from the scatterplot visualization, even though the actual calculation is 
carried out by the HSNE plugin. 

Besides serving as GUI building blocks, we have also implemented 
support for serialization in the action system. Each action can be 
serialized into a QVariant object, including its complete current state, 
consisting of whether it is active, visible, writable, and the parameter 
itself. All actions that belong to a plugin form a hierarchy that can 
again be serialized into a QVariant object and from there into a JSON 
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Fig. 4: Example of the plugin GUI confguration editor which allows 
application designers to edit the properties of the plugin actions hierarchy 
from within the application. 

object in memory or fle on disk. As such, a plugin that has consistently 
been implemented with the actions API supports saving and loading of 
the state out-of-the-box. Currently, we use this to create presets of a 
plugin’s confguration and to save the complete state of the application 
to a project fle. In the future, we intend to extend this to a complete 
provenance mechanism. 

An example of a simple decimal action is the implementation of 
the Sigma parameter discussed above and shown in Fig. 3d. The GUI 
for this parameter consists of the label, a spinbox, and a slider. Rather 
than manually creating the GUI elements, the desired elements can be 
specifed when creating the action. An example of a customization 
that we integrated in the decimal action is to show a spinbox or slider 
individually or both, as in this example. The action then creates the 
GUI elements on-the-fy and also makes sure they are synchronized by 
creating them as linked views on the parameter itself. The underlined 
label indicates that the parameter is publishable and/or ready to sub-
scribe, while the italics font indicates that it is already linked. Clicking 
the label opens a GUI interface for setting up parameter linking. 

4.6 Projects and Workspaces 
To save the entire state of the application and fully restore it at a later 
point in time ManiVault uses projects (R5). Projects extend the serial-
ization of actions, described in Sec. 4.5, to the core framework, captur-
ing settings and the layout of the CMV system. In addition, a project 
contains a complete snapshot of the data hierarchy. We implemented 
projects as self-contained, compressed archives that are a combination 
of human-readable JSON fles and binary fles. Two JSON fles are 
used to save the entire state of the application. A workspace.json 
contains the CMV layout and actions state and a project.json saves 
the data hierarchy and additional project metadata. The actual data sets 
are saved as raw binary blobs, with unique identifers referenced in 
project.json, to minimize load and save times. As such, a project is 
completely self-contained and can be easily distributed to share fndings 
or simply used to come back to an analysis at a later point in time. 

We split the description of the project into project.json and 
workspace.json to add an additional feature, i.e., the defnition of 
user-defned workspaces. As described above, the workspace contains 
the complete spatial arrangement of views (layout confguration) and 
their complete state. A workspace is used to set up a complete tailor-
made CMV VA application, including customized GUI elements, but 
without preset data, as a project would. To enable easy tailoring of 
layouts and cross-plugin connections directly in the application, even 
without programming, we designed the Studio Mode for ManiVault. 

4.7 Studio Mode 
For the confguration of actions, workspaces, and complete projects, 

A plugin editor, shown in Fig. 4, enables fne-grained control over 
the user interface. It lists an overview of all actions that are currently 
available for opened plugins (Fig. 4a). Therein each action can be 
enabled or disabled as a whole , but also customized with respect to 
its visibility or whether it can be published , connected , or 
disconnected . Additionally, the editor lets a user confgure general 
options like the name of a plugin instance, shown in its title bar, or 
whether the GUI of the plugin may be moved or closed (Fig. 4b). 

The plugin editor is an essential tool for application designers, to cre-
ate a completely customized user experience for a specifc application. 
At the same time, it provides the possibility for advanced users of the 
system to create presets of views. Besides saving a complete project, 
users can adjust the interface of an individual plugin to their needs and 
save the resulting confguration as a template for future instances of 
that plugin. Using the serialization described above, these templates 
can be saved to disk, providing persistent access across sessions. 

For a user-defnable fexible layout of the application, we incorporate 
the Qt advanced docking system [22] into ManiVault. The system 
allows users and application designers to re-arrange the entire layout 
according to their needs and preferences. 

5 MANIVAULT IMPLEMENTATION 

The ManiVault core is implemented in C++ and the Qt [60] cross-
platform application development framework. ManiVault provides 
a plugin API for data types, view, analytics, transformation, and 
writer/loader modules. For each of these types we provide template 
implementations to lower the entry barrier for developers. In addition, 
we have already implemented a number of plugins for various use cases, 
including some of the core functionality of ManiVault such as the basic 
data types, and the data hierarchy and data properties view plugins. 

The data hierarchy view (Fig. 5a) functions as the central access 
point to any data loaded or created in ManiVault. It displays the data 
hierarchy in a searchable tree widget where derived data, such as a 
clustering, are added as children to the original data. A data set can be 
loaded into a viewer plugin by simply dragging it from the hierarchy 
onto the view (Fig. 5c). Alternatively, the user can also interact with 
each data set through a context menu providing access to all compatible 
data consumer plugins. For a fast setup of plugins that expect more than 
a single input, users can select multiple data sets in the hierarchy and 
open them through the same menu. The info panel shows additional 
information like an analytics progress bar, status messages from plugins 
or data group affliation. If a data set is associated with an analytics 
plugin, selecting the hierarchy entry will open the analytics settings in 
the properties view. 

The data properties view (Fig. 5b) provides information for a data 
set selected in the data hierarchy. For a loaded data set this can be 
additional metadata created by the loader, e.g., the extents of an image 
data set. More importantly, the data properties view also functions 
as the user interface for analytics and transformation plugins. These 

ManiVault can be put into Studio Mode. This mode of operation allows 
Fig. 5: Data hierarchy (a) and data properties view (b) in ManiVault.application designers to create complete tailor-made applications and 
Data sets can easily be shown in views via drag and drop (c). data viewers from within the GUI of ManiVault itself. 
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(a) Scatterplot (b) Parallel Coordinates (c) Cluster Heatmap (d) Image View (e) Spectral View 

Fig. 6: A selection of viewer plugins in ManiVault. 

plugins are instantiated through the context menu of a data set, which 
then functions as their input; their output data sets are then created as 
children of the input. Selecting an output data set provides access to the 
parameters of the analytics or transformation plugin. Fig. 5b shows the 
data properties view of an embedding data set, created with our t-SNE 
plugin. From here, the user can at any time interact with the t-SNE 
algorithm, e.g., to pause the calculation, change parameters or compute 
more iterations. 

The data hierarchy and data properties views are integral parts of 
the system. More specifc functionality is implemented in a number of 
further plugins. Dimensionality reduction, integral to high-dimensional 
data analysis, is provided by Principal Component Analysis (PCA), 
t-distributed Stochastic Neighbor Embedding (t-SNE) [63], and Hier-
archical Stochastic Neighbor Embedding (HSNE) [37] plugins. The 
t-SNE and HSNE plugins wrap the high-performance HDI library [36] 
and as such scale to millions of data points using its GPU-based imple-
mentations [38]. For clustering, we provide an interactive mean-shift 
clustering plugin, based on real-time kernel density estimation [31]. 

For visualization, we provide a number of plugins for common 
plots, including a scatterplot (Fig. 6a), parallel coordinates plot 
(Fig. 6b), and cluster heatmap (Fig. 6c). If performance is not a 
major concern, developers can use web views in combination with Qt’s 
webchannel API for communicating between the C++ back-end and 
web-technology-based front-end. This allows for easily integrating 
the vast amount of available visualizations in languages like D3 [7] 
and Vega-lite [50]. Our heatmap and parallel coordinates plot are 
based on this technology. While the webchannel introduces some 
overhead, such plugins are generally limited by the performance of the 
JavaScript rendering libraries. If the scalability of a visualization is 
of high priority, developers can implement custom high-performance 
views, e.g., using OpenGL. We have done so with our scatterplot and 
image view (Sec. 5.1) plugins. The scatterplot enables visualization 
and interaction with millions of points in real-time. In the default 
point rendering mode, the different visual channels (point size, color, 
opacity, etc.) are fully confgurable either using fxed values or based 
on any ftting data available. Additionally, we implemented a density 
representation, to provide more visual scalability. 

Finally, for data loading and writing, we currently provide support 
for basic formats in the form of a comma-separated value (CSV) load-
er/writer and a binary loader/writer. 

5.1 High-Dimensional Imaging 
Besides traditional abstract high-dimensional data analytics, we target 
a number of applications related to high-dimensional imaging (e.g., the 
workfow presented in Sec. 6.2). As such, we developed a number of 
plugins targeting such image data. 

Central to these efforts is the image data type plugin. The image 
data type extends the point data type by the extent of the image. Con-
sequently, the image data type is compatible with all data consumer 
plugins that take point data as input; e.g., this allows to calculate a 
t-SNE using the pixels of a high-dimensional image as input. 

We implemented a sophisticated image view plugin (Fig. 6d). In-
spired by widely used image editors, we opted for a layer-based ap-
proach. Users can simply drag multiple data sets into the view, where 
they are added as layers. From here, users can defne the transparency, 

as well as the position of each layer, e.g., to stack multiple properties of 
a single data set as semi-transparent layers or arrange complementing 
data sets next to each other. These interactions are possible through 
standard navigation tools for zooming and panning, while selection is 
implemented using the action described in Sec. 4.5. The actual visual-
ization of the image is fully confgurable: One or two attributes can be 
displayed by using 1D and 2D color mapping, and three attributes by 
directly mapping them to the three channels of RGB, HSL, or CIELAB 
color spaces. 

Next to the image viewer, we also provide a spectral view plugin 
(Fig. 6e), specifcally for hyperspectral images. The viewer is based 
on a simple D3 line plot and shows spectra of individual pixels or, in 
the case of groups (e.g., selections or clusters), a mean spectrum and a 
variation as a band around it. 

To load image data into ManiVault, we currently provide two options. 
The frst one is a versatile general image loader plugin. Hyperspec-
tral image data is commonly available as a stack of grayscale images, 
where each image represents a specifc wavelength, also interpreted as 
a dimension of a high-dimensional space. Our image loader detects 
such stack in a folder containing common image formats (including 
.png, .jpg, .tiff), and also allows direct loading of other common image 
formats (grayscale, RGB, ARGB). Dimensions can be interactively 
included or excluded from the data set in the loading menu. We also 
support re-sampling of the data before loading and the creation of image 
pyramids to enable analysis at varying levels of detail, depending on 
the features of interest or time available for the analysis. Specifc to hy-
perspectral images, we also provide an ENVI loader plugin compatible 
with L3Harris’ geospatial analysis software ENVI [67]. 

6 APPLICATION EXAMPLES 

ManiVault has already been used for several projects across four uni-
versities and several partners. Popa et al. [44] and Li et al. [33] describe 
the design of complete VA systems for analysis of cultural heritage and 
biological data, respectively. Vieth et al. [64] and Thijssen et al. [62] 
developed VA approaches for dimensionality reduction and explaining 
projections as ManiVault plugins. Here, we walk through exemplary 
usage scenarios for our framework from the perspective of our three tar-
get user groups (Sec. 3.2): software developers (Sec. 6.1), practitioners 
(Sec. 6.2) and application designers (Sec. 6.3). 

6.1 Writing ManiVault Plugins – Developer Perspective 
ManiVault provides developers of VA modules with a comprehen-
sive API for data set access, the event notifcation system, and 
the other core managers (Sec. 4.1). Extending the functional-
ity of ManiVault through new plugins thus comes with minimal 
overhead. Example code for each plugin type is available at 
github.com/ManiVaultStudio/ExamplePlugins. 

Here, we present two examples of the necessary steps for creating 
basic plugins (R1). First, we create an analytics plugin based on the 
high-performance t-SNE library HDI [36]. In addition, we discuss 
the implementation of a parallel coordinates plot (PCP) plugin using 
an existing D3 implementation. Together with the existing image 
viewer and scatterplot, these plugins combine into a complete GUI-
based application shown in Fig. 7 that is usable by domain expert users 
without programming knowledge. 

7 

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://doc.qt.io/qt-6/qtwebchannel-javascript.html
https://doc.qt.io/qt-6/qtwebchannel-javascript.html
https://www.github.com/ManiVaultStudio/ExamplePlugins


b
a

Fig. 7: The Spidr analysis and parallel coordinates plot as imple-
mented with the plugin setups from Figs. 8 and 9. 

To implement the analytics plugin, we follow the steps laid out 
in Fig. 8. In step 1, we create the output data set by deriving a 
new data set from the input data, for which the plugin is opened in 
ManiVault. In this case, we will create a two-dimensional t-SNE em-
bedding containing x- and y-coordinates for all of the points in the 
input data set. As such, the output data set will be a points data set 
that has the same number of points and two dimensions. Next, we 
add a settings action to the created data set and defne GUI elements 
using ManiVault’s action system. The actions are added to the out-
put data and listed in the data properties view as shown in Fig. 7a 
(step 2). We create TriggerActions which add pushbuttons to the 
GUI, to start, pause, and resume the calculations and a number of 
categorical OptionActions and numerical DecimalActions, e.g., to 
expose t-SNE parameters like the distance metric (OptionAction) or 
perplexity (DecimalAction) (R4). Finally, in step 3, calls and reac-
tions to library functions need to be defned. Here, we notify the core 
and thereby other plugins about updated output data, in particular, as 
the t-SNE optimization iteratively progresses, we notify the core after 
every iteration, such that the viewer plugins can show the progress live. 
The result is a lightweight wrapper with no notable performance over-
head. Comparing the performance to running the HDI library using its 
own Python wrapper showed no performance regression (Supplemental 
Material S1), even when including progressive updates in ManiVault. 

To implement the PCP viewer plugin, we need to set up a view 
widget that shows the PCP chart in addition to settings, like with 
the analytics plugin. Here, the settings are displayed in the same 
windows as the view widget (Fig. 7b). Since we build a JavaScript-
driven plot, we derive this widget from ManiVault::WebWidget and 
introduce all HTML and JavaScript resources that are used for the PCP 
through a Qt resource fle, pcp.qrc (step 1, Fig. 9). Step 2 is to 
simply set the existing pcp.html fle in the existing viewWidget. All 
JavaScript resources are automatically included through the HTML 
fle. At this point, the viewer is only able to show the content of the 
provided HTML page. To establish interactions to and from the C++ 
side, we set up a ManiVault::WebCommunicationObject, which 
uses a QWebChannel. Within this communication object, we defne 

void AnalyticsPlugin::init() { 
// 1. Derive output from input data set 
setOutputDataset(_core->createDerivedDataset("outData")); 
// 2. Add settings actions to output data set 
outDataset->addAction(_settings->getSettings()); 
// 3. Connect GUI interactions (e.g. button press) 
// and library callbacks (e.g. progress or finish) 
connect(_settings->getStart(), press, this, runTask); 
connect(_lib, finishedTask, this, updateCore); 

} 

Fig. 8: Bare bone analytics plugin setup for wrapping a C++ library. 
Notifying of output data change (step 4) can be called progressively 
during the calculation of or on fnishing a task. 

[ViewWidget.cpp] 
ViewWidget::ViewWidget() : WebWidget() { 
// 1. Init resources and communication bridge 
Q_INIT_RESOURCE(pcp); 
init(_comObj); 

} 

[ViewPlugin.cpp] 
void ViewPlugin::init() { 
// 2. Init web widget (set HTML contents) 
viewWidget->setPage(":res/pcp.html", "qrc:/res/"); 
layout->addWidget(viewWidget); 

} 

[CommunicationObject.h] 
class ComObj : public WebCommunicationObject { 
// 3. Init signals for communication from cpp to js 
signals: 
void setData(QVariantList& data); 

// 5. Init slots for communication from js to cpp 
public slots: 
void updateSelection(QVariantList& selection); 

} 

[qwebchannel.tools.js] 
// 4. Register signals sent by the view widget 
bridge.setData.connect(function(){initPlot(arguments[0])}) 

Fig. 9: Bare bone viewer plugin setup for wrapping a JavaScript library. 
Some boilerplate code is left out for brevity; complete implementation is 
available alongside other example plugins online. 

signals and slots for communication. E.g., the setData signal (step 
3) is used to send the data, provided as a QVariantList object, to 
a receiver on the JavaScript side. This receiver, i.e., the initPlot 
function is connected in step 4 to receive the signal. Vice versa, slots 
defned in the communication object can be called directly in JavaScript 
code, e.g., here we defne an updateSelection slot, that can be called 
from the JavaScript side with a list of selected items. The plugin then 
handles any related computations in the corresponding C++ function. 

6.2 Data Exploration – Practitioner Perspective 

Practitioners in various disciplines work with high-dimensional data 
sets. Here, we consider the exemplary case of exploring remote sensing 
data using ManiVault. Similar to other application areas, visual explo-
ration of geospatial data is considered important but challenging [18]. 
While specifc considerations and fnal insights will differ from domain 
to domain, we can follow the task abstraction by Lam et al. [30] to 
create a partial workfow that will be representative of many felds (R2). 

We want to explore a hyperspectral image data set, the HYDICE 
image of the National Mall [32], showing 307 by 1280 pixels, each 
attached to 191 spectral bands covering the 0.4 µm to 2.4 µm region of 
the light spectrum refected by the objects in view. Each band can be 
interpreted as an image channel. A major objective when exploring 
hyperspectral images is the identifcation of surface cover classes. It is 
typical to manually defne class labels for a small subset of pixels that 
afterwards are used in semi-supervised automated classifcation for the 
rest of the data. Connecting any derived features from the spectrum 
back to the spatial image layout is essential during these analysis steps. 
More specifcally, our goals are now to (I) explore the data, connected to 
the task of discovering and describing observations, and to (II) explain 
these observations by identifying main causes. These steps will yield 
well-justifed classes that can be used in downstream analysis. 

First, in ManiVault, we load the HYDICE data set using an image 
loader plugin. To inspect the loaded image we can open it in an im-
age viewer plugin, which provides single-channel and false-coloring 
visualizations based on any three channels. We additionally open a 
spectral view plugin which shows the full spectrum of a single pixel or 
the averaged spectrum of a selection that we defne in the image viewer, 
resulting in the setup of Fig. 10a. Then, to easily discover a hierarchical 
class structure, we use the HSNE analytics plugin to create a hierar-
chical embedding of the data employing angular distance: we open 

8 

https://doc.qt.io/qt-6/qwebchannel.html
https://qwebchannel.tools.js


© 2023 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and 
Computer Graphics. The fnal version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/ 

a b c

Top-level HSNE 
embedding

Average spectra
of selected

image region

Manual selection
Selected cluster

Fig. 10: A typical exploration workfow with ManiVault: A user can open and re-arrange views on the fy, derive new data sets using analytics 
plugins and connect parameters between plugins. Linked colormaps of the scatterplot and image viewer are shown in Fig. 1. 

the analysis through a context-menu of the data set entry in the data 
hierarchy, select the cosine distance metric, start the embedding and 
display it in a scatterplot as seen in Fig. 10b. Next, we manually outline 
three clusters that are apparent in the top-level HSNE embedding as 
shown in Fig. 1 (center top). To inspect their spectra, we drag and drop 
the new cluster data set from the data hierarchy into the spectral viewer, 
Fig. 1 (right). Additionally, we might inspect the cluster sizes in the 
data properties. Clicking on a specifc cluster displayed in the data 
properties will select corresponding data points in the embedding and 
highlight corresponding pixels in the image (Fig. 10c). Thus, we can 
quickly relate the cluster spectra to image positions and defne the main 
pixel classes water, vegetation, and buildings. We want to focus on a 
single cluster — the one corresponding to buildings. Therefore, we 
refne the cluster of interest to a lower HSNE hierarchy level through a 
context menu opened by clicking inside the embedding — the HSNE 
plugin added an action to the data set that is displayed there as well as 
in the data properties window. To establish a visual connection between 
the spatial data layout and embedding, we drag the new embedding 
data set to the image viewer, which automatically infers the proper 
image dimensions for the data subset from its parent in the data hier-
archy and converts it into an additional image layer. Further, we can 
link the colormaps of this image layer and the embedding through the 
parameter-sharing system by publishing one and connecting the other 
to it (R3). Zooming into a spatial area of interest, Fig. 1 (left), we can 
discriminate between several building structures like houses and streets, 
and even create sub-classes of roofs that immediately stand out thanks 
to the embedding-based recoloring. 

The above procedure intertwined the accomplishment of goals (I) 
and (II). ManiVault made it easy to connect various views on the data, 
i.e., a spatial layout, high-dimensional pixel attributes, and derived 
features in the form of embedding positions. We quickly discriminated 
between classes in the data and identifed differing spectral characteris-
tics as their cause. A video that walks through the full procedure can 
be found as supplemental material. 

6.3 Sharing Analysis Setups – Designer Perspective 

ManiVault’s workspace and project features can be used to save and 
continue an analysis session but also enable dissemination of results 
and complete workfows. To showcase this, we re-implemented the 
Cytosplore Viewer application [15] dedicated to sharing the results of 
Bakken et al. [5] in ManiVault, shown in Fig. 11. Instead of having 
to write an entire stand-alone application to share an interactive en-
vironment alongside data to explore related insights in, we can use a 
ManiVault project to bundle both views and data (R5). 

The viewer application depicts RNA sequencing data on brain cells 
from three vertebrate species. The viewer aims to highlight differences 

the GUI (R4). We start with loading all data sets and setting up a single 
scatterplot plugin. We link scatterplot parameters like its colormap to a 
global settings panel that lets users confgure all three scatterplots, like 
in the original application. Its settings can be saved as a preset which 
we use for the other two scatterplot instances. Similarly, we populate 
the cluster hierarchy view and table viewer with data. Figure 11 shows a 
confguration in which a user-selected entry in the table view defnes the 
data attributes (here a gene’s expression) used to recolor the scatterplot 
data points (here tissue samples). 

ManiVault’s Studio Mode allows us to lock this setup of views and 
parameter connections. This is achieved by simply publishing the 
current view layout, loaded data, and parameter linkage through the 
"File" menu tab. We can now share the viewer with other parties. 

7 DISCUSSION AND CONCLUSION 

This paper describes the design considerations for and implementa-
tion of ManiVault, an extensible visual analytics framework for high-
dimensional data. Due to its modular architecture and data-centric de-
sign, the software enables fexible exploration and analysis workfows. 
We presented various plugins that provide visualization and analytics 
functionalities to the system. To build upon these, we showed how ex-
isting libraries can be easily incorporated into the system. ManiVault’s 
action and event systems allow users to adjust plugins and their inter-
play, enabling the creation of fully customized applications. 

Currently, the system provides data plugins that cover a wide range 
of applications. New data types like multivariate graph data [26] can be 
introduced into the system as new data plugins without changes to the 
application’s core. We plan to extend the current serialization mech-
anism, used for saving the state of the system, to handle information 
about interaction history and other kinds of provenance [45]. Finally, 
we would like to include analytics plugins that run code in interpreted 
languages like Python or R, to easily integrate the vast amount of data 
science tools available in those languages. 

We believe that ManiVault has great potential in aiding with the 
creation and use of visual analytics applications for visualization devel-
opers, practitioners, and application designers. 

in the expression of genes and cell types that are shared across the 
species as described in the original paper. The main elements of the Fig. 11: Screenshot of a re-implementation of a Cytosplore Viewer for 
viewer application are three scatterplots showing t-SNE embeddings of comparative cellular analysis of motor cortex in human, marmoset, and 
the gene data of each species, a hierarchical cluster viewer showing cell mouse [5]. The viewer shows embeddings of cells from the three species 

in combination with a shared cluster hierarchy and the option to calculate types, and a table view showing statistical properties of the expression 
differential gene expression. See Suppl. S2 for a larger fgure version. data. To create the viewer, we confgure ManiVault’s GUI from within 
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SUPPLEMENTAL MATERIALS 

All supplemental materials are available on OSF at https://osf.io/ 
9k6jw/, released under a CC BY SA 4.0 license. In particular, they 
include (1) benchmark results, S1, and a larger version of Fig. 11, S2, 
(2) Excel fles containing the data presented in S1, (3) Python scripts 
to run the nptsne benchmark from S1, (4) two videos showcasing 
ManiVault and (5) a full version of this paper. 
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S1: BENCHMARKS 

Speed ManiVault can show progressive updates of analytics plugins with only small additional computational penalties. To show this, we 
compute t-SNE embeddings with a ManiVault analytics plugin that uses the HDI library GPGPU implementation of t-SNE [4, 5]. First, we 
compute embeddings non-progressively, and then, in a second setting, we show intermediate embeddings every 10 gradient descent iterations 
(respectively "no updated" and "with updates" in Tab 2. Additionally, we compare these runs with a lightweight python wrapper [7] around the 
same t-SNE library. Every embedding is laid out over 500 gradient descent iterations. The non-progressive computation is slightly faster than the 
Python wrapper around the same library calls. The difference between the total runtime of the t-SNE embeddings in ManiVault with and without 
updates is explained by the difference in the gradient descent time: In the former setting, the analytics plugin notifes ManiVault’s core about the 
current embedding layout. All measurements were taken on a machine equipped with an NVIDIA GeForce RTX 2080 SUPER GPU and an Intel 
Core i5-9600K CPU and running Windows 11 22H2. The supplemental material "benchmark_time.xlxs" contains the full data. 

Supplementary Table 2: Duration of t-SNE embedding computations with the same implementation, invoked via a Python wrapper 
and ManiVault, once showing only the fnal embedding and once progressively updating a scatterplot. Times, in seconds, are 
averages over 10 runs with sample standard deviation. 

Data set 
# points 

# dimensions 

Swiss Roll 3D [6] 
1,500 

3 

COIL-20 [3] 
1,440 
16,384 

MNIST [2] 
70,000 

784 

Fashion-MNIST [8] 
70,000 

784 

10x Mouse [9] 
1,306,127 

50 (frst PCs) 

nptsne [7] (Python wrapper) 
ManiVault (no updates) 
ManiVault (with updates) 

0.30 
0.58 
0.59 

(0.02) 
(0.05) 
(0.07) 

2.32 (0.08) 
2.37 (0.05) 
2.46 (0.09) 

23.31 
22.51 
22.85 

(0.14) 
(0.11) 
(0.15) 

20.58 
20.20 
20.24 

(0.01) 
(0.27) 
(0.11) 

268.38 (2.21) 
258.60 (5.76) 
257.91 (4.02) 

Note: Times in seconds, sample standard deviation in parentheses. 

Memory After starting ManiVault, with the Data Hierarchy and Data Property Viewer open, the software consumes around 87 MB of memory 
(on Windows). Loading data sets comes with a small memory overhead. Here, we loaded various data sets, as listed in Tab 2, and compared 
their binary size on disk with the growing memory footprint of ManiVault after loading them. We observe a 0.7 − 1.5 MB overhead per data set, 
compared to their binary size, when utilizing the point data type plugin. For larger data set, it can be useful to trade off precision for lower memory 
uptake. We can employ a bfoat16 foating point implementation [1] to store large data set, and thereby effectively half the memory ManiVault 
requires: e.g. the 10x Mouse data will take up 126.15 MB instead of 249.87 MB. The supplemental material "benchmark_memory.xlxs" contains 
the full data. 

Supplementary Table 3: Memory consumption of loaded data sets, as 
listed in Tab 2, in ManiVault compared to their binary size on disk. Values 
are averages over 4 loaded data sets. 

Data set [6] [3] [2] [8] [9] 
Binary type foat32 uint8 uint8 uint8 foat32 

Raw binary 0.017 22.5 52.34 52.34 249.12 
ManiVault (foat32) 0.97 - - - 249.87 
ManiVault (uint8) - 23.77 53.5 54.1 -

Note: Values in MB. Slight deviations might occur due to Qt’s memory man-
agement on Windows 11, e.g., the difference between MNIST and Fashion-
MNIST. 
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S2: LARGER FIGURES 

Supplementary Fig. 12: Large version of Fig. 11. 
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