Computing p-adic heights on hyperelliptic curves and linear quadratic Chabauty

Stevan Gajović (Charles University Prague/MI SASA) Joint work with Steffen Müller (University of Groningen)

Winter Workshop Chabauty-Kim 2024, Heidelberg University, 15/02/2024

p-adic heights

* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce p-adic heights on Jacobians of curves.

p-adic heights

* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.

p-adic heights

* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.

p-adic heights

* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.

p-adic heights

* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.

Application discussed today:

Linear quadratic Chabauty for integral points on even degree hyperelliptic curves.

p-adic heights

* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.

Application discussed today:

Linear quadratic Chabauty for integral points on even degree hyperelliptic curves.

Other applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.

p-adic heights

* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.

Application discussed today:

Linear quadratic Chabauty for integral points on even degree hyperelliptic curves.

Other applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.
- Numerically test p-adic BSD.

Introduction to p-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.

Introduction to p-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.
- First constructions: Schneider, Mazur-Tate.
- More general: Nekovár.

Introduction to p-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.
- First constructions: Schneider, Mazur-Tate.
- More general: Nekovář.
- $X / \mathbb{Q}=$ nice curve of genus $g>0$, with good reduction at p, and $J(X)=J=$ its Jacobian.
- Works also for number fields K / \mathbb{Q}.
- Coleman-Gross: p-adic heights on J.

Comparison with the real (Néron-Tate) heights

Real heights	p-adic heights
$h:=\sum_{v \text { non-arch }} h_{v}+\sum_{v \mid \infty} h_{v}$	$h:=\sum_{q \neq p \text { finite prime }} h_{q}+h_{p}$
sum of local heights over all places	sum of local heights over all non- archimedean places
distinguish non-archimedean and archimedean places	distinguish primes not diving and diving p

Comparison with the real (Néron-Tate) heights

Real heights	p-adic heights
$h:=\sum_{v \text { non-arch }} h_{v}+\sum_{v \mid \infty} h_{v}$	$h:=\sum_{q \neq p \text { finite prime }} h_{q}+h_{p}$
sum of local heights over all places	sum of local heights over all non- archimedean places
distinguish non-archimedean and archimedean places	distinguish primes not diving and diving p
v non-archimedean: h_{v} defined us- ing intersection theory multiplied by a log factor	$q \neq p: h_{q}$ defined using intersec- tion theory multiplied by a log fac- tor

Comparison with the real (Néron-Tate) heights

Real heights	p-adic heights
$h:=\sum_{v}$ non-arch $h_{v}+\sum_{v \mid \infty} h_{v}$	$h:=\sum_{q \neq p \text { finite prime }} h_{q}+h_{p}$
sum of local heights over all places	sum of local heights over all non- archimedean places
distinguish non-archimedean and archimedean places	distinguish primes not diving and diving p
v non-archimedean: h_{v} defined us- ing intersection theory multiplied by a log factor	$q \neq p: h_{q}$ defined using intersec- tion theory multiplied by a log fac- tor
v archimedean: $h_{v}=$ integral of a certain differential of the third kind	$h_{p}=$ Coleman integral of a certain differential of the third kind

Comparison with the real (Néron-Tate) heights

Real heights	p-adic heights
$h:=\sum_{v}$ non-arch $h_{v}+\sum_{v \mid \infty} h_{v}$	$h:=\sum_{q \neq p \text { finite prime }} h_{q}+h_{p}$
sum of local heights over all places	sum of local heights over all non- archimedean places
distinguish non-archimedean and archimedean places	distinguish primes not diving and diving p
v non-archimedean: h_{v} defined us- ing intersection theory multiplied by a log factor	$q \neq p: h_{q}$ defined using intersec- tion theory multiplied by a log fac- tor
v archimedean: $h_{v}=$ integral of a certain differential of the third kind	$h_{p}=$ Coleman integral of a certain differential of the third kind

- Log factor and a hidden term in h_{p} come from a continuous idèle class character $\mathbb{A}_{\mathbb{Q}}^{*} / \mathbb{Q}^{*} \longrightarrow \mathbb{Q}_{p}$ with some conditions, which we fix.

Comparison with the real (Néron-Tate) heights

Real heights	p-adic heights
$h:=\sum_{v \text { non-arch }} h_{v}+\sum_{v \mid \infty} h_{v}$	$h:=\sum_{q \neq p \text { finite prime }} h_{q}+h_{p}$
sum of local heights over all places	sum of local heights over all non- archimedean places
distinguish non-archimedean and archimedean places	distinguish primes not diving and diving p
v non-archimedean: h_{v} defined us- ing intersection theory multiplied by a log factor	$q \neq p: h_{q}$ defined using intersec- tion theory multiplied by a log fac- tor
v archimedean: $h_{v}=$ integral of a certain differential of the third kind	$h_{p}=$ Coleman integral of a certain differential of the third kind

- Log factor and a hidden term in h_{p} come from a continuous idèle class character $\mathbb{A}_{\mathbb{Q}}^{*} / \mathbb{Q}^{*} \longrightarrow \mathbb{Q}_{p}$ with some conditions, which we fix.
- There is an ambiguity in the choice of the differentials when computing h_{p} - so we need another input to fix the desired one.

Coleman-Gross (CG) p-adic heights

- p-adic height: bilinear map

$$
h:=\sum_{q \text { finite prime }} h_{q}: J(\mathbb{Q}) \times J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p} .
$$

Coleman-Gross (CG) p-adic heights

- p-adic height: bilinear map

$$
h:=\sum_{q \text { finite prime }} h_{q}: J(\mathbb{Q}) \times J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p} .
$$

- For a prime number q, denote $X_{q}:=X \otimes \mathbb{Q}_{q}$.
- For each prime $q \in \mathbb{Z}$, define local heights

$$
h_{q}\left(D_{1}, D_{2}\right), \text { for } D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right) \text { with disjoint support. }
$$

Coleman-Gross (CG) p-adic heights

- p-adic height: bilinear map

$$
h:=\sum_{q \text { finite prime }} h_{q}: J(\mathbb{Q}) \times J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p} .
$$

- For a prime number q, denote $X_{q}:=X \otimes \mathbb{Q}_{q}$.
- For each prime $q \in \mathbb{Z}$, define local heights

$$
h_{q}\left(D_{1}, D_{2}\right), \text { for } D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right) \text { with disjoint support. }
$$

- Distinguish h_{q} for $q \neq p$ and $h_{p}(*)$.
- h_{q} for $q \neq p$: intersection multiplicities.
- h_{p} : Coleman integral of a non-holomorphic differential with only simple poles.

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} :

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} : (1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} : (1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;
(2) bi-additive, continuous, and symmetric;

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} :
(1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;
(2) bi-additive, continuous, and symmetric;
(3) $\forall f \in \mathbb{Q}_{p}\left(X_{q}\right)^{*}$ (if defined): $h_{q}\left(\operatorname{div}(f), D_{2}\right)=-\log _{p}(q) \operatorname{ord}_{q}\left(f\left(D_{2}\right)\right)$.

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} :
(1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;
(2) bi-additive, continuous, and symmetric;
(3) $\forall f \in \mathbb{Q}_{p}\left(X_{q}\right)^{*}$ (if defined): $h_{q}\left(\operatorname{div}(f), D_{2}\right)=-\log _{p}(q) \operatorname{ord}_{q}\left(f\left(D_{2}\right)\right)$.
- $\mathcal{X}_{q} / \mathbb{Q}_{q}=$ regular model of X_{q} with $(-\cdot-)=(\mathbb{Q}$-valued $)$ intersection multiplicity on \mathcal{X}_{q}.
- $\mathcal{D}_{1}, \mathcal{D}_{2}=$ extensions of D_{1}, D_{2} to \mathcal{X}_{q} such that $\left(\mathcal{D}_{i} \cdot V\right)=0$ for all vertical divisors V on \mathcal{X}_{q}.

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} :
(1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;
(2) bi-additive, continuous, and symmetric;
(3) $\forall f \in \mathbb{Q}_{p}\left(X_{q}\right)^{*}$ (if defined): $h_{q}\left(\operatorname{div}(f), D_{2}\right)=-\log _{p}(q) \operatorname{ord}_{q}\left(f\left(D_{2}\right)\right)$.
- $\mathcal{X}_{q} / \mathbb{Q}_{q}=$ regular model of X_{q} with $(-\cdot-)=(\mathbb{Q}$-valued $)$ intersection multiplicity on \mathcal{X}_{q}.
- $\mathcal{D}_{1}, \mathcal{D}_{2}=$ extensions of D_{1}, D_{2} to \mathcal{X}_{q} such that $\left(\mathcal{D}_{i} \cdot V\right)=0$ for all vertical divisors V on \mathcal{X}_{q}.

Construction of h_{q}

$$
h_{q}\left(D_{1}, D_{2}\right)=-\log _{p}(q) \cdot\left(\mathcal{D}_{1} \cdot \mathcal{D}_{2}\right)
$$

- van Bommel-Holmes-Müller's algorithm: Compute h_{q}.

Introduction to local p-adic heights at p

Construction of h_{p}

- The local height $h_{p}\left(D_{1}, D_{2}\right)$ is a Coleman integral $\int_{D_{2}} \omega_{D_{1}}$:
- $\omega_{D_{1}}$: differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_{1} are exactly the poles of $\omega_{D_{1}}$, with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, $\omega_{D_{1}}$ apriori is not determined uniquely, so we need another input to define h_{p} properly.

Introduction to local p-adic heights at p

Construction of h_{p}

- The local height $h_{p}\left(D_{1}, D_{2}\right)$ is a Coleman integral $\int_{D_{2}} \omega_{D_{1}}$:
- $\omega_{D_{1}}$: differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_{1} are exactly the poles of $\omega_{D_{1}}$, with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, $\omega_{D_{1}}$ apriori is not determined uniquely, so we need another input to define h_{p} properly.

Third and second kind meromorphic differentials

- ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z}.

Introduction to local p-adic heights at p

Construction of h_{p}

- The local height $h_{p}\left(D_{1}, D_{2}\right)$ is a Coleman integral $\int_{D_{2}} \omega_{D_{1}}$:
- $\omega_{D_{1}}$: differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_{1} are exactly the poles of $\omega_{D_{1}}$, with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, $\omega_{D_{1}}$ apriori is not determined uniquely, so we need another input to define h_{p} properly.

Third and second kind meromorphic differentials

- ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z}.
- ω is of the second kind if all of its residues are 0 .

Introduction to local p-adic heights at p

Construction of h_{p}

- The local height $h_{p}\left(D_{1}, D_{2}\right)$ is a Coleman integral $\int_{D_{2}} \omega_{D_{1}}$:
- $\omega_{D_{1}}$: differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_{1} are exactly the poles of $\omega_{D_{1}}$, with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, $\omega_{D_{1}}$ apriori is not determined uniquely, so we need another input to define h_{p} properly.

Third and second kind meromorphic differentials

- ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z}.
- ω is of the second kind if all of its residues are 0 .
- $\{$ third kind $\} \cap\{$ second kind $\}=\{$ holomorphic $\}$.

Introduction to local p-adic heights at p

Construction of h_{p}

- The local height $h_{p}\left(D_{1}, D_{2}\right)$ is a Coleman integral $\int_{D_{2}} \omega_{D_{1}}$:
- $\omega_{D_{1}}$: differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_{1} are exactly the poles of $\omega_{D_{1}}$, with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, $\omega_{D_{1}}$ apriori is not determined uniquely, so we need another input to define h_{p} properly.

Third and second kind meromorphic differentials

- ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z}.
- ω is of the second kind if all of its residues are 0 .
- $\{$ third kind $\} \cap\{$ second kind $\}=\{$ holomorphic $\}$.
- $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \simeq\{$ differentials of the second kind $\} /\left\{d f: f \in \mathbb{Q}_{p}(X)^{\times}\right\}$.

Introduction to local p-adic heights at p

- The residue divisor homomorphism is

Res: $\left\{\right.$ third kind on $\left.X_{p}\right\} \longrightarrow \operatorname{Div}^{0}\left(X_{p}\right), \operatorname{Res}(\omega)=\sum_{P \in X_{p}} \operatorname{Res}_{P}(\omega) P$.

- Res surjective, but not injective $(\operatorname{Res}(\{$ holomorphic $\})=0)$.
- Want $\omega_{D_{1}}$ to be such that $\operatorname{Res}\left(\omega_{D_{1}}\right)=D_{1}$. This choice is not unique!

Introduction to local p-adic heights at p

- The residue divisor homomorphism is

Res: $\left\{\right.$ third kind on $\left.X_{p}\right\} \longrightarrow \operatorname{Div}^{0}\left(X_{p}\right), \operatorname{Res}(\omega)=\sum_{P \in X_{p}} \operatorname{Res}_{P}(\omega) P$.

- Res surjective, but not injective $(\operatorname{Res}(\{$ holomorphic $\})=0)$.
- Want $\omega_{D_{1}}$ to be such that $\operatorname{Res}\left(\omega_{D_{1}}\right)=D_{1}$. This choice is not unique!
- \exists homomorphism "projection" ψ (with many useful properties):
$\psi:\left\{\right.$ meromorphic differentials on $\left.X_{p}\right\} \longrightarrow \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)$.

Introduction to local p-adic heights at p

- The residue divisor homomorphism is

Res: $\left\{\right.$ third kind on $\left.X_{p}\right\} \longrightarrow \operatorname{Div}^{0}\left(X_{p}\right), \operatorname{Res}(\omega)=\sum_{P \in X_{p}} \operatorname{Res}_{P}(\omega) P$.

- Res surjective, but not injective $(\operatorname{Res}(\{$ holomorphic $\})=0)$.
- Want $\omega_{D_{1}}$ to be such that $\operatorname{Res}\left(\omega_{D_{1}}\right)=D_{1}$. This choice is not unique!
- \exists homomorphism "projection" ψ (with many useful properties):
$\psi:\left\{\right.$ meromorphic differentials on $\left.X_{p}\right\} \longrightarrow \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)$.
- Input for h_{p} : A choice of a subspace $W_{p} \subseteq \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)$ complementary to the space of holomorphic forms $H_{d R}^{1,0}\left(X_{p} / \mathbb{Q}_{p}\right)$.

$$
\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)=\mathrm{H}_{\mathrm{dR}}^{1,0}\left(X_{p} / \mathbb{Q}_{p}\right) \oplus W_{p}
$$

- $\Longrightarrow D \in \operatorname{Div}^{0}\left(X_{p}\right) \rightsquigarrow$ unique ω_{D} of the third kind such that

$$
\operatorname{Res}\left(\omega_{D}\right)=D \text { and } \psi\left(\omega_{D}\right) \in W_{p}
$$

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :
* $h_{p}\left(D_{1}, D_{2}\right)$ is continuous and bi-additive.

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :
* $h_{p}\left(D_{1}, D_{2}\right)$ is continuous and bi-additive.
* $h_{p}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right)$.

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :
* $h_{p}\left(D_{1}, D_{2}\right)$ is continuous and bi-additive.
* $h_{p}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right)$.
* h_{p} is symmetric if and only if $W_{p} \subseteq \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)$ is isotropic with respect to the cup product pairing.
* When X_{p} has good ordinary reduction, we can take $W_{p}:=$ the unit root subspace (necessary for p-adic BSD).

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :
* $h_{p}\left(D_{1}, D_{2}\right)$ is continuous and bi-additive.
* $h_{p}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right)$.
* h_{p} is symmetric if and only if $W_{p} \subseteq \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)$ is isotropic with respect to the cup product pairing.
* When X_{p} has good ordinary reduction, we can take $W_{p}:=$ the unit root subspace (necessary for p-adic BSD).
* Independent of a model of X_{p} under reasonable technical conditions: $\tau: X_{p} \rightarrow X_{p}^{\prime} \Longrightarrow h_{p}\left(\tau_{*}\left(D_{1}\right), \tau_{*}\left(D_{2}\right)\right)_{\text {on } X_{p}^{\prime}}=h_{p}\left(D_{1}, D_{2}\right)_{\text {on }} X_{p}$.

Coleman integration in Sage

- Sage implementation-Balakrishnan: Hyperelliptic curves $C: y^{2}=f(x) / \mathbb{Q}_{p}$ (WARNING: Sage sees only one point at infinity!):

Coleman integration in Sage

- Sage implementation-Balakrishnan: Hyperelliptic curves $C: y^{2}=f(x) / \mathbb{Q}_{p}$ (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_{i}:=\frac{x^{i} d x}{y}$ for $0 \leq i \leq \operatorname{deg}(f)-2 \rightsquigarrow$ can compute $\int_{S}^{R} \omega_{i}$.
- In particular: Coleman integrals of holomorphic differentials.

Coleman integration in Sage

- Sage implementation - Balakrishnan: Hyperelliptic curves $C: y^{2}=f(x) / \mathbb{Q}_{p}$ (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_{i}:=\frac{x^{i} d x}{y}$ for $0 \leq i \leq \operatorname{deg}(f)-2 \rightsquigarrow$ can compute $\int_{S}^{R} \omega_{i}$.
- In particular: Coleman integrals of holomorphic differentials.
- Tiny integrals $\int_{S}^{R} \omega$, where $S \equiv R(\bmod p)$.

Local heights $h_{p}\left(D_{1}, D_{2}\right)$ setup

- Assume that $D_{1}, D_{2} \in \operatorname{Div}^{0}(C)$ are pointwise \mathbb{Q}_{p}-rational.
- Compute $h_{p}\left(D_{1}, D_{2}\right) \rightsquigarrow$ compute $h_{p}(P-Q, R-S)$ for fixed distinct points $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$.

Local heights $h_{p}\left(D_{1}, D_{2}\right)$ setup

- Assume that $D_{1}, D_{2} \in \operatorname{Div}^{0}(C)$ are pointwise \mathbb{Q}_{p}-rational.
- Compute $h_{p}\left(D_{1}, D_{2}\right) \rightsquigarrow$ compute $h_{p}(P-Q, R-S)$ for fixed distinct points $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$.
- Assume from now on that $C: y^{2}=f(x)$, with $f \in \mathbb{Z}_{p}[x]$ monic has good reduction. Denote by $\iota: C \rightarrow C$ the hyperelliptic involution.

Local heights $h_{p}\left(D_{1}, D_{2}\right)$ setup

- Assume that $D_{1}, D_{2} \in \operatorname{Div}^{0}(C)$ are pointwise \mathbb{Q}_{p}-rational.
- Compute $h_{p}\left(D_{1}, D_{2}\right) \rightsquigarrow$ compute $h_{p}(P-Q, R-S)$ for fixed distinct points $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$.
- Assume from now on that $C: y^{2}=f(x)$, with $f \in \mathbb{Z}_{p}[x]$ monic has good reduction. Denote by $\iota: C \rightarrow C$ the hyperelliptic involution.
- Recall: Balakrishnan and Besser [BB] compute $h_{p}(P-Q, R-S)$ when $\operatorname{deg}(f)$ odd.
- Gajović-Müller [GM]: Compute $h_{p}(P-Q, R-S)$ for all hyperelliptic curves over \mathbb{Q}_{p} with good reduction.

Local heights $h_{p}\left(D_{1}, D_{2}\right)$ setup

- Assume that $D_{1}, D_{2} \in \operatorname{Div}^{0}(C)$ are pointwise \mathbb{Q}_{p}-rational.
- Compute $h_{p}\left(D_{1}, D_{2}\right) \rightsquigarrow$ compute $h_{p}(P-Q, R-S)$ for fixed distinct points $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$.
- Assume from now on that $C: y^{2}=f(x)$, with $f \in \mathbb{Z}_{p}[x]$ monic has good reduction. Denote by $\iota: C \rightarrow C$ the hyperelliptic involution.
- Recall: Balakrishnan and Besser [BB] compute $h_{p}(P-Q, R-S)$ when $\operatorname{deg}(f)$ odd.
- Gajović-Müller [GM]: Compute $h_{p}(P-Q, R-S)$ for all hyperelliptic curves over \mathbb{Q}_{p} with good reduction.
- For even degree, one more case - when $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$. [GM] depends on the points - if they are all affine or $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.

Local heights $h_{p}\left(D_{1}, D_{2}\right)$ setup

- Assume that $D_{1}, D_{2} \in \operatorname{Div}^{0}(C)$ are pointwise \mathbb{Q}_{p}-rational.
- Compute $h_{p}\left(D_{1}, D_{2}\right) \rightsquigarrow$ compute $h_{p}(P-Q, R-S)$ for fixed distinct points $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$.
- Assume from now on that $C: y^{2}=f(x)$, with $f \in \mathbb{Z}_{p}[x]$ monic has good reduction. Denote by $\iota: C \rightarrow C$ the hyperelliptic involution.
- Recall: Balakrishnan and Besser [BB] compute $h_{p}(P-Q, R-S)$ when $\operatorname{deg}(f)$ odd.
- Gajović-Müller [GM]: Compute $h_{p}(P-Q, R-S)$ for all hyperelliptic curves over \mathbb{Q}_{p} with good reduction.
- For even degree, one more case - when $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$. [GM] depends on the points - if they are all affine or $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.
- We now recall [BB] algorithm. [GM] follows the key steps of [BB], but computes some of them differently.

[BB] algorithm - key steps

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.

[BB] algorithm - key steps

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.

[BB] algorithm - key steps

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.

[BB] algorithm - key steps

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
(4) Obtain a holomorphic differential ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.

[BB] algorithm - key steps

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
(4) Obtain a holomorphic differential ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.
(5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega^{\prime}$.

[BB] algorithm - key steps

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
(4) Obtain a holomorphic differential ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.
(5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega^{\prime}$.
(6) Compute $h_{p}(P-\iota(P), R-S)=\int_{S}^{R} \omega^{\prime}-\int_{S}^{R} \omega_{h}$.

Computations depending only on C

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C :

Computations depending only on C

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C :
(i) Extend the basis $\left\{\omega_{0}, \ldots, \omega_{g-1}\right\}$ of $H_{d R}^{1,0}\left(C / \mathbb{Q}_{p}\right)$ to a basis $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$ of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ using Monsky-Washnitzer basis differentials.

Computations depending only on C

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C :
(i) Extend the basis $\left\{\omega_{0}, \ldots, \omega_{g-1}\right\}$ of $H_{d R}^{1,0}\left(C / \mathbb{Q}_{p}\right)$ to a basis $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$ of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ using Monsky-Washnitzer basis differentials.
(ii) A basis $B_{W_{p}}$ of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ corresponding to the decomposition $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)=\mathrm{H}_{\mathrm{dR}}^{1,0}\left(C / \mathbb{Q}_{p}\right) \oplus W_{p}$ for the fixed complement W_{p}.

Computations depending only on C

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C :
(i) Extend the basis $\left\{\omega_{0}, \ldots, \omega_{g-1}\right\}$ of $H_{d R}^{1,0}\left(C / \mathbb{Q}_{p}\right)$ to a basis $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$ of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ using Monsky-Washnitzer basis differentials.
(ii) A basis $B_{W_{p}}$ of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ corresponding to the decomposition $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)=\mathrm{H}_{\mathrm{dR}}^{1,0}\left(C / \mathbb{Q}_{p}\right) \oplus W_{p}$ for the fixed complement W_{p}.
(iii) Cup product matrix CPM.

Computations depending only on C

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C :
(i) Extend the basis $\left\{\omega_{0}, \ldots, \omega_{g-1}\right\}$ of $H_{d R}^{1,0}\left(C / \mathbb{Q}_{p}\right)$ to a basis $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$ of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ using Monsky-Washnitzer basis differentials.
(ii) A basis $B_{W_{p}}$ of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ corresponding to the decomposition $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)=\mathrm{H}_{\mathrm{dR}}^{1,0}\left(C / \mathbb{Q}_{p}\right) \oplus W_{p}$ for the fixed complement W_{p}.
(iii) Cup product matrix CPM.
(iv) Action of Frobenius $\phi: C \longrightarrow C$ (given by $\left.x \mapsto x^{p}\right)$ on $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

- We first consider $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

- We first consider $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.
(v) (NEW) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=\infty_{-}-\infty_{+}$.
* We can take $\omega^{\prime}=\omega_{g}=\frac{x^{g} d x}{y}$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

- We first consider $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.
(v) (NEW) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=\infty_{-}-\infty_{+}$.
* We can take $\omega^{\prime}=\omega_{g}=\frac{x^{g} d x}{y}$.
(vi) (NEW) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$.
* Only in terms of the Frobenius map and the reduction in cohomology (trick: $\phi^{*}\left(\omega^{\prime}\right)-p \omega^{\prime}$ is of second kind).

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.

* Base change from $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$ to $B_{W_{p}} \rightsquigarrow$ compute $u_{0}, \ldots, u_{g-1} \in \mathbb{Q}_{p}$ such that $\omega_{h}=\sum_{i=0}^{g-1} u_{i} \omega_{i}$.
* Recall $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)=\int_{S}^{R} \omega$ for $\omega:=\omega^{\prime}-\sum_{i=0}^{g-1} u_{i} \omega_{i}$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.

* Base change from $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$ to $B_{W_{p}} \rightsquigarrow$ compute $u_{0}, \ldots, u_{g-1} \in \mathbb{Q}_{p}$ such that $\omega_{h}=\sum_{i=0}^{g-1} u_{i} \omega_{i}$.
* Recall $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)=\int_{S}^{R} \omega$ for $\omega:=\omega^{\prime}-\sum_{i=0}^{g-1} u_{i} \omega_{i}$.
(viii) Compute the third kind integral $\int_{S}^{R} \omega^{\prime}$ and holomorphic integrals.
* Using Balakrishnan's algorithm for Coleman integration, we compute $\int_{S}^{R} \omega_{g}, u_{0} \int_{S}^{R} \omega_{0}+\cdots+u_{g-1} \int_{S}^{R} \omega_{g-1}$.

Computation of $h_{p}(P-Q, R-S)$ - affine points

- Now, P and Q are affine points.

Computation of $h_{p}(P-Q, R-S)$ - affine points

- Now, P and Q are affine points.
- Note $\operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)=P+\iota(P)-Q-\iota(Q)$.
- Rewrite $P-Q=\frac{1}{2} \operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)+\frac{1}{2}(P-\iota(P))-\frac{1}{2}(Q-\iota(Q))=$ principal + antisymmetric divisors.

Computation of $h_{p}(P-Q, R-S)$ - affine points

- Now, P and Q are affine points.
- Note $\operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)=P+\iota(P)-Q-\iota(Q)$.
- Rewrite $P-Q=\frac{1}{2} \operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)+\frac{1}{2}(P-\iota(P))-\frac{1}{2}(Q-\iota(Q))=$ principal + antisymmetric divisors.
- Recall $h_{p}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right) \rightsquigarrow$ enough to compute antisymmetric heights $h_{p}(P-\iota(P), R-S)$.

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(v) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.

- For $\omega^{\prime}=\frac{y(P)}{x-x(P)} \frac{d x}{y}$, we have $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(v) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.

- For $\omega^{\prime}=\frac{y(P)}{x-x(P)} \frac{d x}{y}$, we have $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(vi) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$.
* [BB] express it in terms of CPM, some Coleman integrals and certain residues of differentials.

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(v) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.

- For $\omega^{\prime}=\frac{y(P)}{x-x(P)} \frac{d x}{y}$, we have $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(vi) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$.
* [BB] express it in terms of CPM, some Coleman integrals and certain residues of differentials.
* (NEW) [GM] All these residues are 0 - computational improvement.

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(v) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.

- For $\omega^{\prime}=\frac{y(P)}{x-x(P)} \frac{d x}{y}$, we have $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(vi) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis $B_{\mathrm{H}_{\mathrm{dR}}^{1}}$.
* [BB] express it in terms of CPM, some Coleman integrals and certain residues of differentials.
* (NEW) [GM] All these residues are 0 - computational improvement.
(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$ - as before.

Computation of $h_{p}(P-\iota(P), R-S)$ - key step

(viii) (NEW) Compute

$$
\int_{S}^{R} \omega^{\prime}=\int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}
$$

Computation of $h_{p}(P-\iota(P), R-S)$ - key step

(viii) (NEW) Compute

$$
\int_{S}^{R} \omega^{\prime}=\int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}
$$

* [BB] compute it using a clever but complicated formula that involves computing residues over Weierstrass points which are defined over extensions of \mathbb{Q}_{p}.
- Use a change of variables $\tau: C \rightarrow C^{\prime}$ that maps $P, \iota(P) \in C$ to $\infty_{-}, \infty_{+} \in C^{\prime}$, we have

$$
\Longrightarrow\left(\int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}\right)_{\text {on } C}=\left(\int_{\tau(S)}^{\tau(R)} \frac{x^{g} d x}{y}\right)_{\text {on } C^{\prime}} .
$$

Computation of $h_{p}(P-\iota(P), R-S)$ - key step

(viii) (NEW) Compute

$$
\int_{S}^{R} \omega^{\prime}=\int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}
$$

* [BB] compute it using a clever but complicated formula that involves computing residues over Weierstrass points which are defined over extensions of \mathbb{Q}_{p}.
- Use a change of variables $\tau: C \rightarrow C^{\prime}$ that maps $P, \iota(P) \in C$ to $\infty_{-}, \infty_{+} \in C^{\prime}$, we have

$$
\Longrightarrow\left(\int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}\right)_{\text {on } C}=\left(\int_{\tau(S)}^{\tau(R)} \frac{x^{g} d x}{y}\right)_{\text {on } C^{\prime}} .
$$

- $\frac{x^{g} d x}{y}$ is a basis MW-differential on $C^{\prime} \Longrightarrow \int_{\tau(S)}^{\tau(R)} \frac{x^{g} d x}{y}$ computed directly (and quickly) by Balakrishnan's algorithm.

Importance of the infinity case

- Recall: change of variables $\tau: C \rightarrow C^{\prime}$ maps $P, \iota(P) \in C$ to $\infty_{-}, \infty_{+} \in C^{\prime}$
- By the independence of a model of local heights, we have $h_{p}(P-\iota(P), R-S)=h_{p}\left(\infty_{-}-\infty_{+}, \tau(R)-\tau(S)\right)$.
- \Longrightarrow It suffices to compute heights of the type $h_{p}\left(\infty_{-} \infty_{+}, R-S\right)$!

Importance of the infinity case

- Recall: change of variables $\tau: C \rightarrow C^{\prime}$ maps $P, \iota(P) \in C$ to $\infty_{-}, \infty_{+} \in C^{\prime}$
- By the independence of a model of local heights, we have $h_{p}(P-\iota(P), R-S)=h_{p}\left(\infty_{-}-\infty_{+}, \tau(R)-\tau(S)\right)$.
- \Longrightarrow It suffices to compute heights of the type $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$!
- (NEW - work in progress) Our approach generalises to superelliptic curves. Further goal: more general curves using divisors of degree zero supported at infinity.

Quickly recall the algorithm

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve and $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$. Want to compute $h_{p}(P-Q, R-S)$.

Quickly recall the algorithm

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve and $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$. Want to compute $h_{p}(P-Q, R-S)$.
- Precompute all quantities related to C only.

Quickly recall the algorithm

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve and $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$. Want to compute $h_{p}(P-Q, R-S)$.
- Precompute all quantities related to C only.
- $h_{p}(P-Q, R-S)=$
computed $+\frac{1}{2}\left(h_{p}(P-\iota(P), R-S)-h_{p}(Q-\iota(Q), R-S)\right)$.

Quickly recall the algorithm

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve and $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$. Want to compute $h_{p}(P-Q, R-S)$.
- Precompute all quantities related to C only.
- $h_{p}(P-Q, R-S)=$
computed $+\frac{1}{2}\left(h_{p}(P-\iota(P), R-S)-h_{p}(Q-\iota(Q), R-S)\right)$.
- We can compute $h_{p}(P-\iota(P), R-S)$ as $h_{p}\left(\infty_{-}-\infty_{+}, R^{\prime}-S^{\prime}\right)$ on some other hyperelliptic curve $C^{\prime} / \mathbb{Q}_{p}$, but prefer directly.

Quickly recall the algorithm

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve and $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$. Want to compute $h_{p}(P-Q, R-S)$.
- Precompute all quantities related to C only.
- $h_{p}(P-Q, R-S)=$
computed $+\frac{1}{2}\left(h_{p}(P-\iota(P), R-S)-h_{p}(Q-\iota(Q), R-S)\right)$.
- We can compute $h_{p}(P-\iota(P), R-S)$ as $h_{p}\left(\infty_{-}-\infty_{+}, R^{\prime}-S^{\prime}\right)$ on some other hyperelliptic curve $C^{\prime} / \mathbb{Q}_{p}$, but prefer directly.
- For $\omega^{\prime}=\frac{y(P)}{x-x(P)} \frac{d x}{y}$, we have $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
- We compute $\psi\left(\omega^{\prime}\right)$ and find the correct one $\omega_{P}=\omega^{\prime}$ - holomorphic.

Quickly recall the algorithm

- Let C / \mathbb{Q}_{p} be a hyperelliptic curve and $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$. Want to compute $h_{p}(P-Q, R-S)$.
- Precompute all quantities related to C only.
- $h_{p}(P-Q, R-S)=$
computed $+\frac{1}{2}\left(h_{p}(P-\iota(P), R-S)-h_{p}(Q-\iota(Q), R-S)\right)$.
- We can compute $h_{p}(P-\iota(P), R-S)$ as $h_{p}\left(\infty_{-}-\infty_{+}, R^{\prime}-S^{\prime}\right)$ on some other hyperelliptic curve $C^{\prime} / \mathbb{Q}_{p}$, but prefer directly.
- For $\omega^{\prime}=\frac{y(P)}{x-x(P)} \frac{d x}{y}$, we have $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
- We compute $\psi\left(\omega^{\prime}\right)$ and find the correct one $\omega_{P}=\omega^{\prime}$ - holomorphic.
- Compute $h_{p}(P-\iota(P), R-S)=\int_{S}^{R} \omega^{\prime}-\int_{S}^{R}$ holomorphic $=$ $=\int_{S^{\prime}}^{R^{\prime}} \frac{x^{g} d x}{y}-\int_{S}^{R}$ holomorphic.
- Similarly, compute $h_{p}(Q-\iota(Q), R-S)$, hence, $h_{p}(P-Q, R-S)$.

Summary for the local p-adic height above p

- The main difference between [BB] and our algorithm is in computing Coleman integrals of differentials of the third kind and residues.
- Our algorithm is simpler and faster than [BB], and works for both odd and even degree models.

Summary for the local p-adic height above p

- The main difference between [BB] and our algorithm is in computing Coleman integrals of differentials of the third kind and residues.
- Our algorithm is simpler and faster than [BB], and works for both odd and even degree models.
- We compare the timings and success of our and [BB] algorithm in several examples.

Genus	p	Precision	Our time	$[\mathrm{BB}]$ time
2	7	10	2 s	7 s
2	7	300	11 m	$?>1$ week
2	503	10	4 m	19 h
3	11	10	6 s	28 s
4	23	20	2 m	46 m
17	11	7	14 m	$?>1$ week

Linear Quadratic Chabauty for integral points

- $X / \mathbb{Q}=$ nice curve of genus $g \geq 2$, with good reduction at $p, J=$ its Jacobian whose rank over \mathbb{Q} is $r=g$.
- Assume that $\int_{D} \omega_{0}, \ldots, \int_{D} \omega_{g-1}: J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ form a basis of $\left(J(\mathbb{Q}) \otimes \mathbb{Q}_{p}\right)^{\vee} \rightsquigarrow$ we want to use quadratic Chabauty.

Linear Quadratic Chabauty for integral points

- $X / \mathbb{Q}=$ nice curve of genus $g \geq 2$, with good reduction at $p, J=$ its Jacobian whose rank over \mathbb{Q} is $r=g$.
- Assume that $\int_{D} \omega_{0}, \ldots, \int_{D} \omega_{g-1}: J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ form a basis of $\left(J(\mathbb{Q}) \otimes \mathbb{Q}_{p}\right)^{\vee} \rightsquigarrow$ we want to use quadratic Chabauty.
- Let $X / \mathbb{Q}: y^{2}=f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\operatorname{deg}(f)=2 g+2$.
- Then $\infty_{ \pm} \in X(\mathbb{Q})$. Let $D_{\infty}:=\left[\infty_{-}-\infty_{+}\right]$.

Linear Quadratic Chabauty for integral points

- $X / \mathbb{Q}=$ nice curve of genus $g \geq 2$, with good reduction at $p, J=$ its Jacobian whose rank over \mathbb{Q} is $r=g$.
- Assume that $\int_{D} \omega_{0}, \ldots, \int_{D} \omega_{g-1}: J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ form a basis of $\left(J(\mathbb{Q}) \otimes \mathbb{Q}_{p}\right)^{\vee} \rightsquigarrow$ we want to use quadratic Chabauty.
- Let $X / \mathbb{Q}: y^{2}=f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\operatorname{deg}(f)=2 g+2$.
- Then $\infty_{ \pm} \in X(\mathbb{Q})$. Let $D_{\infty}:=\left[\infty_{-}-\infty_{+}\right]$.
- Denote $X(\mathbb{Z}):=$ integral points on X. Goal today: Compute $X(\mathbb{Z})$.

Linear Quadratic Chabauty for integral points

- $X / \mathbb{Q}=$ nice curve of genus $g \geq 2$, with good reduction at $p, J=$ its Jacobian whose rank over \mathbb{Q} is $r=g$.
- Assume that $\int_{D} \omega_{0}, \ldots, \int_{D} \omega_{g-1}: J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ form a basis of $\left(J(\mathbb{Q}) \otimes \mathbb{Q}_{p}\right)^{\vee} \rightsquigarrow$ we want to use quadratic Chabauty.
- Let $X / \mathbb{Q}: y^{2}=f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\operatorname{deg}(f)=2 g+2$.
- Then $\infty_{ \pm} \in X(\mathbb{Q})$. Let $D_{\infty}:=\left[\infty_{-}-\infty_{+}\right]$.
- Denote $X(\mathbb{Z}):=$ integral points on X. Goal today: Compute $X(\mathbb{Z})$.
- Recall: $h: J(\mathbb{Q}) \times J(\mathbb{Q}) \longrightarrow \mathbb{Q}_{p}$ is a bilinear pairing.
- Then $\lambda(D):=h\left(D_{\infty}, D\right)$ is a linear map $J(\mathbb{Q}) \longrightarrow \mathbb{Q}_{p}$.
- \rightsquigarrow We can write $h\left(D_{\infty}, D\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{D} \omega_{i}$, for some $\alpha_{i} \in \mathbb{Q}_{p}$.

Linear Quadratic Chabauty for integral points

- Assume $P_{0} \in X(\mathbb{Z})$. Consider $\rho_{P_{0}}: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{P_{0}}(P):=\sum_{i=0}^{g-1} \alpha_{i} \int_{P_{0}}^{P} \omega_{i}-h_{p}\left(D_{\infty}, P-P_{0}\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{P_{0}}^{P} \omega_{i}-\int_{P_{0}}^{P} \omega_{D_{\infty}}
$$

Linear Quadratic Chabauty for integral points

- Assume $P_{0} \in X(\mathbb{Z})$. Consider $\rho_{P_{0}}: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{P_{0}}(P):=\sum_{i=0}^{g-1} \alpha_{i} \int_{P_{0}}^{P} \omega_{i}-h_{p}\left(D_{\infty}, P-P_{0}\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{P_{0}}^{P} \omega_{i}-\int_{P_{0}}^{P} \omega_{D_{\infty}} .
$$

- ρ_{Q} is a locally analytic function.
- If $P \in X(\mathbb{Q}), \rho_{P_{0}}(P)=h-h_{p}=\sum_{q \neq p} h_{q}\left(D_{\infty}, P-P_{0}\right)$.

Linear Quadratic Chabauty for integral points

- Assume $P_{0} \in X(\mathbb{Z})$. Consider $\rho_{P_{0}}: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{P_{0}}(P):=\sum_{i=0}^{g-1} \alpha_{i} \int_{P_{0}}^{P} \omega_{i}-h_{p}\left(D_{\infty}, P-P_{0}\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{P_{0}}^{P} \omega_{i}-\int_{P_{0}}^{P} \omega_{D_{\infty}} .
$$

- ρ_{Q} is a locally analytic function.
- If $P \in X(\mathbb{Q}), \rho_{P_{0}}(P)=h-h_{p}=\sum_{q \neq p} h_{q}\left(D_{\infty}, P-P_{0}\right)$.
- We prove $\forall q \neq p, \forall P, Q \in X\left(\mathbb{Z}_{q}\right)$:
(1) $h_{q}\left(D_{\infty}, P-Q\right) \in$ finite and computable T_{q};
(2) $T_{q}=\{0\}$ for almost all (including good) primes.
- $\Longrightarrow \rho_{P_{0}}(X(\mathbb{Z})) \subseteq T$ for a finite and computable set T.

Linear Quadratic Chabauty for integral points

- Assume $P_{0} \in X(\mathbb{Z})$. Consider $\rho_{P_{0}}: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{P_{0}}(P):=\sum_{i=0}^{g-1} \alpha_{i} \int_{P_{0}}^{P} \omega_{i}-h_{p}\left(D_{\infty}, P-P_{0}\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{P_{0}}^{P} \omega_{i}-\int_{P_{0}}^{P} \omega_{D_{\infty}} .
$$

- ρ_{Q} is a locally analytic function.
- If $P \in X(\mathbb{Q}), \rho_{P_{0}}(P)=h-h_{p}=\sum_{q \neq p} h_{q}\left(D_{\infty}, P-P_{0}\right)$.
- We prove $\forall q \neq p, \forall P, Q \in X\left(\mathbb{Z}_{q}\right)$:
(1) $h_{q}\left(D_{\infty}, P-Q\right) \in$ finite and computable T_{q};
(2) $T_{q}=\{0\}$ for almost all (including good) primes.
- $\Longrightarrow \rho_{P_{0}}(X(\mathbb{Z})) \subseteq T$ for a finite and computable set T.
- We can compute $S:=\rho_{P_{0}}^{-1}(T) \rightsquigarrow X(\mathbb{Z}) \subseteq S$ for some finite and computable $S \subseteq X\left(\mathbb{Q}_{p}\right)$. If necessary + Mordell-Weil sieve $\rightsquigarrow X(\mathbb{Z})$.

LQC for integral points - algorithm + example $r=g=2$

- Let $X / \mathbb{Q}: y^{2}=f(x)=x^{6}+2 x^{5}-7 x^{4}-18 x^{3}+2 x^{2}+20 x+9$.
- $X(\mathbb{Z})_{\text {known }}:=\{(0, \pm 3),(1, \pm 3),(-1, \pm 1),(-2, \pm 3),(-4, \pm 37)\}$.
- Goal: Prove $X(\mathbb{Z})=X(\mathbb{Z})_{\text {known }}$. Use $p=7$.

LQC for integral points - algorithm + example $r=g=2$

- Let $X / \mathbb{Q}: y^{2}=f(x)=x^{6}+2 x^{5}-7 x^{4}-18 x^{3}+2 x^{2}+20 x+9$.
- $X(\mathbb{Z})_{\text {known }}:=\{(0, \pm 3),(1, \pm 3),(-1, \pm 1),(-2, \pm 3),(-4, \pm 37)\}$.
- Goal: Prove $X(\mathbb{Z})=X(\mathbb{Z})_{\text {known }}$. Use $p=7$.
(1) Compute the finite set $T:=\left\{\sum_{q \neq p} h_{q}\left(D_{\infty}, P-Q\right): P, Q \in X\left(\mathbb{Z}_{q}\right)\right\}$.
- For $P, Q \in X\left(\mathbb{Z}_{q}\right)$ and all $q \neq 7: h_{q}\left(D_{\infty}, P-Q\right)=0 \Longrightarrow T=\{0\}$.

LQC for integral points - algorithm + example $r=g=2$

- Let $X / \mathbb{Q}: y^{2}=f(x)=x^{6}+2 x^{5}-7 x^{4}-18 x^{3}+2 x^{2}+20 x+9$.
- $X(\mathbb{Z})_{\text {known }}:=\{(0, \pm 3),(1, \pm 3),(-1, \pm 1),(-2, \pm 3),(-4, \pm 37)\}$.
- Goal: Prove $X(\mathbb{Z})=X(\mathbb{Z})_{\text {known }}$. Use $p=7$.
(1) Compute the finite set $T:=\left\{\sum_{q \neq p} h_{q}\left(D_{\infty}, P-Q\right): P, Q \in X\left(\mathbb{Z}_{q}\right)\right\}$.
- For $P, Q \in X\left(\mathbb{Z}_{q}\right)$ and all $q \neq 7: h_{q}\left(D_{\infty}, P-Q\right)=0 \Longrightarrow T=\{0\}$.
(2) Represent $h\left(D_{\infty}, D\right)=\alpha_{0} \int_{D} \omega_{0}+\cdots+\alpha_{g-1} \int_{D} \omega_{g-1}$.
- Find D_{0}, D_{1} such that $\left[J(\mathbb{Q}):\left\langle D_{0}, D_{1}\right\rangle\right]<\infty$. Solve the system of equations for $i=0,1$ to compute α_{0}, α_{1}

$$
\begin{gathered}
h\left(D_{\infty}, D_{i}\right)=\alpha_{0} \int_{D_{i}} \omega_{0}+\alpha_{1} \int_{D_{i}} \omega_{1} . \\
\Longrightarrow \alpha_{0}=5+4 \cdot 7+6 \cdot 7^{2}+O\left(7^{3}\right), \alpha_{1}=6+3 \cdot 7+5 \cdot 7^{2}+O\left(7^{3}\right)
\end{gathered}
$$

LQC for integral points - algorithm + example $r=g=2$

(3) Assume $P_{0} \in X(\mathbb{Z})$. Define $\rho_{P_{0}}: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{P_{0}}(P)=\alpha_{0} \int_{P_{0}}^{P} \omega_{0}+\cdots+\alpha_{g-1} \int_{P_{0}}^{P} \omega_{g-1}-h_{p}\left(D_{\infty}, P-P_{0}\right) .
$$

- Set $P_{0}=(0,3)$. Define $\rho_{P_{0}}(P): X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{P_{0}}(P)=\alpha_{0} \int_{P_{0}}^{P} \omega_{0}+\alpha_{1} \int_{P_{0}}^{P} \omega_{1}-h_{p}\left(D_{\infty}, P-P_{0}\right)
$$

- $\Longrightarrow \rho_{P_{0}}(X(\mathbb{Z}))=\{0\}$.

LQC for integral points - algorithm + example $r=g=2$

(3) Assume $P_{0} \in X(\mathbb{Z})$. Define $\rho_{P_{0}}: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{P_{0}}(P)=\alpha_{0} \int_{P_{0}}^{P} \omega_{0}+\cdots+\alpha_{g-1} \int_{P_{0}}^{P} \omega_{g-1}-h_{p}\left(D_{\infty}, P-P_{0}\right) .
$$

- Set $P_{0}=(0,3)$. Define $\rho_{P_{0}}(P): X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{P_{0}}(P)=\alpha_{0} \int_{P_{0}}^{P} \omega_{0}+\alpha_{1} \int_{P_{0}}^{P} \omega_{1}-h_{p}\left(D_{\infty}, P-P_{0}\right) .
$$

- $\Longrightarrow \rho_{P_{0}}(X(\mathbb{Z}))=\{0\}$.
(4) In each affine $D(Q)$, for $P \in D(Q)$, compute $\rho(P) \in \mathbb{Q}_{p} \llbracket z \rrbracket$.
- Consider $Q=P_{0}=(0,3)$ and $P=(7 z, \cdot) \in D\left(P_{0}\right)$ for some $z \in \mathbb{Z}_{7}$:

$$
\rho_{P_{0}}(z)=\left(42+O\left(7^{2}\right)\right) z+\left(6 \cdot 7^{3}+O\left(7^{4}\right)\right) z^{2}+\left(62 \cdot 7^{3}+O\left(7^{6}\right)\right) z^{3}+O\left((7 z)^{4}\right) .
$$

LQC for integral points - algorithm + example + theorem

(5) For each $u \in T, p$-adically locate the solutions of $\rho_{P_{0}}(z)=u$ in all affine residue discs. Obtain a finite set $S: X(\mathbb{Z}) \subseteq S \subseteq X\left(\mathbb{Q}_{p}\right)$.

LQC for integral points - algorithm + example + theorem

(5) For each $u \in T, p$-adically locate the solutions of $\rho_{P_{0}}(z)=u$ in all affine residue discs. Obtain a finite set $S: X(\mathbb{Z}) \subseteq S \subseteq X\left(\mathbb{Q}_{p}\right)$.

- Recall, for $P \in D(Q)$, parameterised by z,

$$
\rho_{P_{0}}(z)=\left(42+O\left(7^{2}\right)\right) z+\left(6 \cdot 7^{3}+O\left(7^{4}\right)\right) z^{2}+\left(62 \cdot 7^{3}+O\left(7^{6}\right)\right) z^{3}+O\left((7 z)^{4}\right) .
$$

- Strassmann's theorem $\Longrightarrow D(Q) \cap X(\mathbb{Z})=\{Q\}$.

LQC for integral points - algorithm + example + theorem

(5) For each $u \in T, p$-adically locate the solutions of $\rho_{P_{0}}(z)=u$ in all affine residue discs. Obtain a finite set $S: X(\mathbb{Z}) \subseteq S \subseteq X\left(\mathbb{Q}_{p}\right)$.

- Recall, for $P \in D(Q)$, parameterised by z,

$$
\rho_{P_{0}}(z)=\left(42+O\left(7^{2}\right)\right) z+\left(6 \cdot 7^{3}+O\left(7^{4}\right)\right) z^{2}+\left(62 \cdot 7^{3}+O\left(7^{6}\right)\right) z^{3}+O\left((7 z)^{4}\right) .
$$

- Strassmann's theorem $\Longrightarrow D(Q) \cap X(\mathbb{Z})=\{Q\}$.
- Similarly in all affine residue discs $\Longrightarrow X(\mathbb{Z})=S=X(\mathbb{Z})_{\text {known }}$.

LQC for integral points - algorithm + example + theorem

(5) For each $u \in T, p$-adically locate the solutions of $\rho_{P_{0}}(z)=u$ in all affine residue discs. Obtain a finite set $S: X(\mathbb{Z}) \subseteq S \subseteq X\left(\mathbb{Q}_{p}\right)$.

- Recall, for $P \in D(Q)$, parameterised by z,

$$
\rho_{P_{0}}(z)=\left(42+O\left(7^{2}\right)\right) z+\left(6 \cdot 7^{3}+O\left(7^{4}\right)\right) z^{2}+\left(62 \cdot 7^{3}+O\left(7^{6}\right)\right) z^{3}+O\left((7 z)^{4}\right) .
$$

- Strassmann's theorem $\Longrightarrow D(Q) \cap X(\mathbb{Z})=\{Q\}$.
- Similarly in all affine residue discs $\Longrightarrow X(\mathbb{Z})=S=X(\mathbb{Z})_{\text {known }}$.
(6) If necessary, use the Mordell-Weil sieve to determine $S \backslash X(\mathbb{Q})$.

LQC for integral points - algorithm + example + theorem

(5) For each $u \in T$, p-adically locate the solutions of $\rho_{P_{0}}(z)=u$ in all affine residue discs. Obtain a finite set $S: X(\mathbb{Z}) \subseteq S \subseteq X\left(\mathbb{Q}_{p}\right)$.

- Recall, for $P \in D(Q)$, parameterised by z,

$$
\rho_{P_{0}}(z)=\left(42+O\left(7^{2}\right)\right) z+\left(6 \cdot 7^{3}+O\left(7^{4}\right)\right) z^{2}+\left(62 \cdot 7^{3}+O\left(7^{6}\right)\right) z^{3}+O\left((7 z)^{4}\right)
$$

- Strassmann's theorem $\Longrightarrow D(Q) \cap X(\mathbb{Z})=\{Q\}$.
- Similarly in all affine residue discs $\Longrightarrow X(\mathbb{Z})=S=X(\mathbb{Z})_{\text {known }}$.
(6) If necessary, use the Mordell-Weil sieve to determine $S \backslash X(\mathbb{Q})$.

Theorem (G.-Müller, 2022)

- $X / \mathbb{Q}: y^{2}=f(x)$ nice, with $f \in \mathbb{Z}[x]$ monic, $\operatorname{deg}(f)=2 g+2$ with $r=g$. There is a locally analytic function $\rho: X\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}$, and a finite and computable set T, such that $\rho(X(\mathbb{Z})) \in T$.

LQC for integral points - algorithm + example + theorem

(5) For each $u \in T$, p-adically locate the solutions of $\rho_{P_{0}}(z)=u$ in all affine residue discs. Obtain a finite set $S: X(\mathbb{Z}) \subseteq S \subseteq X\left(\mathbb{Q}_{p}\right)$.

- Recall, for $P \in D(Q)$, parameterised by z,

$$
\rho_{P_{0}}(z)=\left(42+O\left(7^{2}\right)\right) z+\left(6 \cdot 7^{3}+O\left(7^{4}\right)\right) z^{2}+\left(62 \cdot 7^{3}+O\left(7^{6}\right)\right) z^{3}+O\left((7 z)^{4}\right)
$$

- Strassmann's theorem $\Longrightarrow D(Q) \cap X(\mathbb{Z})=\{Q\}$.
- Similarly in all affine residue discs $\Longrightarrow X(\mathbb{Z})=S=X(\mathbb{Z})_{\text {known }}$.
(6) If necessary, use the Mordell-Weil sieve to determine $S \backslash X(\mathbb{Q})$.

Theorem (G.-Müller, 2022)

- $X / \mathbb{Q}: y^{2}=f(x)$ nice, with $f \in \mathbb{Z}[x]$ monic, $\operatorname{deg}(f)=2 g+2$ with $r=g$. There is a locally analytic function $\rho: X\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}$, and a finite and computable set T, such that $\rho(X(\mathbb{Z})) \in T$.
- Extended to number fields with an appropriate rank condition.

The end

Thank you for your attention!

Question

Any questions?

