Computing *p*-adic heights on hyperelliptic curves and linear quadratic Chabauty

Stevan Gajović (Charles University Prague/MI SASA) Joint work with Steffen Müller (University of Groningen)

> Winter Workshop Chabauty-Kim 2024, Heidelberg University, 15/02/2024

* Balakrishnan and Besser [BB]: compute *p*-adic heights on odd-degree hyperelliptic curves.

Goals today:

• Introduce *p*-adic heights on Jacobians of curves.

* Balakrishnan and Besser [BB]: compute *p*-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.

* Balakrishnan and Besser [BB]: compute *p*-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.

* Balakrishnan and Besser [BB]: compute *p*-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.

* Balakrishnan and Besser [BB]: compute *p*-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.

Application discussed today:

Linear quadratic Chabauty for integral points on even degree hyperelliptic curves.

* Balakrishnan and Besser [BB]: compute *p*-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.

Application discussed today:

Linear quadratic Chabauty for integral points on even degree hyperelliptic curves.

Other applications:

• Quadratic Chabauty for rational points on hyperelliptic curves.

* Balakrishnan and Besser [BB]: compute *p*-adic heights on odd-degree hyperelliptic curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.

Application discussed today:

Linear quadratic Chabauty for integral points on even degree hyperelliptic curves.

Other applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.
- Numerically test *p*-adic BSD.

Introduction to *p*-adic heights

• Bilinear pairing (or quadratic form) defined on abelian varieties.

Introduction to *p*-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.
- First constructions: Schneider, Mazur-Tate.
- More general: Nekovář.

Introduction to *p*-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.
- First constructions: Schneider, Mazur-Tate.
- More general: Nekovář.
- X/\mathbb{Q} = nice curve of genus g > 0, with good reduction at p, and J(X) = J = its Jacobian.
- Works also for number fields K/\mathbb{Q} .
- Coleman-Gross: *p*-adic heights on *J*.

Real heights	<i>p</i> -adic heights
$h := \sum_{v \text{ non-arch}} h_v + \sum_{v \mid \infty} h_v$	$h := \sum_{q eq p ext{ finite prime }} h_q + h_p$
sum of local heights over all places	sum of local heights over all non- archimedean places
distinguish non-archimedean and	distinguish primes not diving and
archimedean places	diving p

<i>p</i> -adic heights
$h := \sum_{q eq p \text{ finite prime}} h_q + h_p$
sum of local heights over all non-
archimedean places
distinguish primes not diving and
diving p
$q \neq p$: h_q defined using intersec-
tion theory multiplied by a log fac-
tor

Real heights	<i>p</i> -adic heights
$h := \sum_{v \text{ non-arch}} h_v + \sum_{v \mid \infty} h_v$	$h \mathrel{\mathop:}= \sum_{q eq p ext{ finite prime }} h_q + h_p$
sum of local heights over all places	sum of local heights over all non-
	archimedean places
distinguish non-archimedean and	distinguish primes not diving and
archimedean places	diving p
v non-archimedean: h_v defined us-	$q \neq p$: h_q defined using intersec-
ing intersection theory multiplied	tion theory multiplied by a log fac-
by a log factor	tor
v archimedean: $h_v =$ integral of a	$h_p = $ Coleman integral of a certain
certain differential of the third kind	differential of the third kind

Real heights	<i>p</i> -adic heights
$h := \sum_{v \text{ non-arch}} h_v + \sum_{v \mid \infty} h_v$	$h := \sum_{q eq p ext{ finite prime}} h_q + h_p$
sum of local heights over all places	sum of local heights over all non-
	archimedean places
distinguish non-archimedean and	distinguish primes not diving and
archimedean places	diving p
v non-archimedean: h_v defined us-	$q \neq p$: h_q defined using intersec-
ing intersection theory multiplied	tion theory multiplied by a log fac-
by a log factor	tor
v archimedean: $h_v =$ integral of a	$h_p = $ Coleman integral of a certain
certain differential of the third kind	differential of the third kind

 Log factor and a hidden term in h_p come from a continuous idèle class character A^{*}_∞/Q^{*} → Q_p with some conditions, which we fix.

Real heights	<i>p</i> -adic heights
$h := \sum_{v \text{ non-arch}} h_v + \sum_{v \mid \infty} h_v$	$h \coloneqq \sum_{q eq p ext{ finite prime}} h_q + h_p$
sum of local heights over all places	sum of local heights over all non-
	archimedean places
distinguish non-archimedean and	distinguish primes not diving and
archimedean places	diving p
v non-archimedean: h_v defined us-	$q \neq p$: h_q defined using intersec-
ing intersection theory multiplied	tion theory multiplied by a log fac-
by a log factor	tor
v archimedean: $h_v =$ integral of a	$h_p = $ Coleman integral of a certain
certain differential of the third kind	differential of the third kind

- Log factor and a hidden term in h_p come from a continuous idèle class character A^{*}_ℚ/Q^{*} → Q_p with some conditions, which we fix.
- There is an ambiguity in the choice of the differentials when computing h_p - so we need another input to fix the desired one.

Stevan Gajović

Coleman-Gross (CG) *p*-adic heights

• *p*-adic height: bilinear map

$$h:=\sum_{q \text{ finite prime}} h_q: J(\mathbb{Q}) imes J(\mathbb{Q}) o \mathbb{Q}_p.$$

Coleman-Gross (CG) p-adic heights

• *p*-adic height: bilinear map

$$h:=\sum_{q ext{ finite prime}} h_q: J(\mathbb{Q}) imes J(\mathbb{Q}) o \mathbb{Q}_p.$$

- For a prime number q, denote $X_q := X \otimes \mathbb{Q}_q$.
- For each prime $q \in \mathbb{Z}$, define local heights

 $h_q(D_1, D_2)$, for $D_1, D_2 \in \mathsf{Div}^0(X_q)$ with disjoint support.

Coleman-Gross (CG) p-adic heights

• *p*-adic height: bilinear map

$$h:=\sum_{q ext{ finite prime}} h_q: J(\mathbb{Q}) imes J(\mathbb{Q}) o \mathbb{Q}_p.$$

- For a prime number q, denote $X_q := X \otimes \mathbb{Q}_q$.
- For each prime $q \in \mathbb{Z}$, define local heights

 $h_q(D_1, D_2)$, for $D_1, D_2 \in \mathsf{Div}^0(X_q)$ with disjoint support.

- Distinguish h_q for $q \neq p$ and h_p (*).
- h_q for $q \neq p$: intersection multiplicities.
- *h_p*: Coleman integral of a non-holomorphic differential with only simple poles.

Stevan Gajović

Theorem (Local heights for $q \neq p$)

• There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :

Theorem (Local heights for $q \neq p$)

• There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p : (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :
- (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;
- (2) bi-additive, continuous, and symmetric;

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :
- (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;
- (2) bi-additive, continuous, and symmetric;
- (3) $\forall f \in \mathbb{Q}_p(X_q)^*$ (if defined): $h_q(\operatorname{div}(f), D_2) = -\log_p(q) \operatorname{ord}_q(f(D_2))$.

Theorem (Local heights for q eq p)

- There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :
- (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;
- (2) bi-additive, continuous, and symmetric;
- (3) $\forall f \in \mathbb{Q}_p(X_q)^*$ (if defined): $h_q(\operatorname{div}(f), D_2) = -\log_p(q) \operatorname{ord}_q(f(D_2))$.
 - $\mathcal{X}_q/\mathbb{Q}_q$ = regular model of X_q with $(-\cdot -) = (\mathbb{Q}$ -valued) intersection multiplicity on \mathcal{X}_q .
 - $\mathcal{D}_1, \mathcal{D}_2 = \text{extensions of } D_1, D_2 \text{ to } \mathcal{X}_q \text{ such that } (\mathcal{D}_i \cdot V) = 0 \text{ for all vertical divisors } V \text{ on } \mathcal{X}_q.$

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :
- (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;
- (2) bi-additive, continuous, and symmetric;
- (3) $\forall f \in \mathbb{Q}_p(X_q)^*$ (if defined): $h_q(\operatorname{div}(f), D_2) = -\log_p(q) \operatorname{ord}_q(f(D_2))$.
 - $\mathcal{X}_q/\mathbb{Q}_q$ = regular model of X_q with $(-\cdot -) = (\mathbb{Q}$ -valued) intersection multiplicity on \mathcal{X}_q .
 - $\mathcal{D}_1, \mathcal{D}_2 = \text{extensions of } D_1, D_2 \text{ to } \mathcal{X}_q \text{ such that } (\mathcal{D}_i \cdot V) = 0 \text{ for all vertical divisors } V \text{ on } \mathcal{X}_q.$

Construction of h_q

$$h_q(D_1, D_2) = -\log_p(q) \cdot (\mathcal{D}_1 \cdot \mathcal{D}_2).$$

• van Bommel-Holmes-Müller's algorithm: Compute h_q.

Stevan Gajović

Construction of h_p

- The local height $h_p(D_1, D_2)$ is a Coleman integral $\int_{D_2} \omega_{D_1}$:
- ω_{D_1} : differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_1 are exactly the poles of ω_{D_1} , with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, ω_{D1} apriori is not determined uniquely, so we need another input to define h_p properly.

Construction of h_p

- The local height $h_p(D_1, D_2)$ is a Coleman integral $\int_{D_2} \omega_{D_1}$:
- ω_{D_1} : differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_1 are exactly the poles of ω_{D_1} , with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, ω_{D1} apriori is not determined uniquely, so we need another input to define h_p properly.

Third and second kind meromorphic differentials

 ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in Z.

Construction of h_p

- The local height $h_p(D_1, D_2)$ is a Coleman integral $\int_{D_2} \omega_{D_1}$:
- ω_{D_1} : differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_1 are exactly the poles of ω_{D_1} , with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, ω_{D1} apriori is not determined uniquely, so we need another input to define h_p properly.

Third and second kind meromorphic differentials

- ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z} .
- ω is of the second kind if all of its residues are 0.

Construction of h_p

- The local height $h_p(D_1, D_2)$ is a Coleman integral $\int_{D_2} \omega_{D_1}$:
- ω_{D_1} : differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_1 are exactly the poles of ω_{D_1} , with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, ω_{D1} apriori is not determined uniquely, so we need another input to define h_p properly.

Third and second kind meromorphic differentials

- ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z} .
- ω is of the second kind if all of its residues are 0.
- {third kind} \cap {second kind} = {holomorphic}.

Construction of h_p

- The local height $h_p(D_1, D_2)$ is a Coleman integral $\int_{D_2} \omega_{D_1}$:
- ω_{D_1} : differential with only simple poles, and for which the residue at every pole is an integer. The points in support of D_1 are exactly the poles of ω_{D_1} , with multiplicities given by their residues.
- Since holomorphic differentials have no singularities, ω_{D1} apriori is not determined uniquely, so we need another input to define h_p properly.

Third and second kind meromorphic differentials

- ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z} .
- ω is of the second kind if all of its residues are 0.
- {third kind} \cap {second kind} = {holomorphic}.

• $\mathrm{H}^{1}_{\mathrm{dR}}(X_{p}/\mathbb{Q}_{p}) \simeq \{ \text{differentials of the second kind} \} / \{ df : f \in \mathbb{Q}_{p}(X)^{\times} \}.$ Stevan Gajović 15/02/2024 7/27

• The residue divisor homomorphism is

Res: {third kind on X_p } \longrightarrow Div⁰(X_p), Res(ω) = $\sum_{P \in X_p} \text{Res}_P(\omega)P$.

- Res surjective, but not injective $(\text{Res}(\{\text{holomorphic}\}) = 0)$.
- Want ω_{D_1} to be such that $\operatorname{Res}(\omega_{D_1}) = D_1$. This choice is not unique!

• The residue divisor homomorphism is

Res: {third kind on X_p } \longrightarrow Div⁰(X_p), Res(ω) = $\sum_{P \in X_p} \text{Res}_P(\omega)P$.

- Res surjective, but not injective (Res({holomorphic}) = 0).
- Want ω_{D_1} to be such that $\text{Res}(\omega_{D_1}) = D_1$. This choice is not unique!
- \exists homomorphism "projection" ψ (with many useful properties):

 $\psi : \{\text{meromorphic differentials on } X_{\rho}\} \longrightarrow H^1_{dR}(X_{\rho}/\mathbb{Q}_{\rho}).$

• The residue divisor homomorphism is

Res: {third kind on X_p } \longrightarrow Div⁰(X_p), Res(ω) = $\sum_{P \in X_p} \text{Res}_P(\omega)P$.

- Res surjective, but not injective (Res({holomorphic}) = 0).
- Want ω_{D_1} to be such that $\text{Res}(\omega_{D_1}) = D_1$. This choice is not unique!
- \exists homomorphism "projection" ψ (with many useful properties): $\psi : \{ \text{meromorphic differentials on } X_p \} \longrightarrow H^1_{dB}(X_p/\mathbb{O}_p).$
- Input for h_p: A choice of a subspace W_p ⊆ H¹_{dR}(X_p/Q_p) complementary to the space of holomorphic forms H^{1,0}_{dR}(X_p/Q_p).
 H¹_{dR}(X_p/Q_p) = H^{1,0}_{dR}(X_p/Q_p) ⊕ W_p.

• $\implies D \in \text{Div}^0(X_p) \rightsquigarrow \text{unique } \omega_D \text{ of the third kind such that}$ $\text{Res}(\omega_D) = D \text{ and } \psi(\omega_D) \in W_p.$

Definition of h_p

Let $D_1, D_2 \in \text{Div}^0(X_p)$ with disjoint support. The local *p*-adic height pairing at *p* is given by $h_p(D_1, D_2) := \int_{D_2} \omega_{D_1}$.

Definition of h_p

Let $D_1, D_2 \in \text{Div}^0(X_p)$ with disjoint support. The local *p*-adic height pairing at *p* is given by $h_p(D_1, D_2) := \int_{D_2} \omega_{D_1}$.

• Properties of h_p :

Definition of h_p

Let $D_1, D_2 \in \text{Div}^0(X_p)$ with disjoint support. The local *p*-adic height pairing at *p* is given by $h_p(D_1, D_2) := \int_{D_2} \omega_{D_1}$.

- Properties of *h_p*:
- * $h_p(D_1, D_2)$ is continuous and bi-additive.
Introduction to local *p*-adic heights at *p*

Definition of h_p

Let $D_1, D_2 \in \text{Div}^0(X_p)$ with disjoint support. The local *p*-adic height pairing at *p* is given by $h_p(D_1, D_2) := \int_{D_2} \omega_{D_1}$.

- Properties of *h_p*:
- * $h_p(D_1, D_2)$ is continuous and bi-additive.
- * $h_p(\operatorname{div}(f), D_2) = \log_p(f(D_2)).$

Introduction to local *p*-adic heights at *p*

Definition of h_p

Let $D_1, D_2 \in \text{Div}^0(X_p)$ with disjoint support. The local *p*-adic height pairing at *p* is given by $h_p(D_1, D_2) := \int_{D_2} \omega_{D_1}$.

- Properties of *h_p*:
- * $h_p(D_1, D_2)$ is continuous and bi-additive.
- * $h_p(\operatorname{div}(f), D_2) = \log_p(f(D_2)).$
- * h_p is symmetric if and only if $W_p \subseteq H^1_{dR}(X_p/\mathbb{Q}_p)$ is isotropic with respect to the cup product pairing.
- When X_p has good ordinary reduction, we can take
 W_p := the unit root subspace (necessary for p-adic BSD).

Introduction to local *p*-adic heights at *p*

Definition of h_p

Let $D_1, D_2 \in \text{Div}^0(X_p)$ with disjoint support. The local *p*-adic height pairing at *p* is given by $h_p(D_1, D_2) := \int_{D_2} \omega_{D_1}$.

- Properties of h_p :
- * $h_p(D_1, D_2)$ is continuous and bi-additive.
- * $h_p(\operatorname{div}(f), D_2) = \log_p(f(D_2)).$
- * h_p is symmetric if and only if $W_p \subseteq H^1_{dR}(X_p/\mathbb{Q}_p)$ is isotropic with respect to the cup product pairing.
- When X_p has good ordinary reduction, we can take
 W_p := the unit root subspace (necessary for p-adic BSD).
- * Independent of a model of X_p under reasonable technical conditions: $\tau \colon X_p \to X'_p \implies h_p(\tau_*(D_1), \tau_*(D_2))_{\text{on } X'_p} = h_p(D_1, D_2)_{\text{on } X_p}$.

Coleman integration in Sage

• Sage implementation - Balakrishnan: Hyperelliptic curves $C: y^2 = f(x)/\mathbb{Q}_p$ (WARNING: Sage sees only one point at infinity!):

Coleman integration in Sage

- Sage implementation Balakrishnan: Hyperelliptic curves $C: y^2 = f(x)/\mathbb{Q}_p$ (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_i := \frac{x^i dx}{y}$ for $0 \le i \le \deg(f) 2 \rightsquigarrow$ can compute $\int_S^R \omega_i$.
- In particular: Coleman integrals of holomorphic differentials.

Coleman integration in Sage

- Sage implementation Balakrishnan: Hyperelliptic curves
 C: y² = f(x)/Q_p (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_i := \frac{x^i dx}{y}$ for $0 \le i \le \deg(f) 2 \rightsquigarrow$ can compute $\int_S^R \omega_i$.
- In particular: Coleman integrals of holomorphic differentials.
- Tiny integrals $\int_{S}^{R} \omega$, where $S \equiv R \pmod{p}$.

- Assume that $D_1, D_2 \in \text{Div}^0(C)$ are pointwise \mathbb{Q}_p -rational.
- Compute h_p(D₁, D₂) → compute h_p(P Q, R S) for fixed distinct points P, Q, R, S ∈ C(Q_p).

- Assume that $D_1, D_2 \in \text{Div}^0(C)$ are pointwise \mathbb{Q}_p -rational.
- Compute h_p(D₁, D₂) → compute h_p(P Q, R S) for fixed distinct points P, Q, R, S ∈ C(Q_p).
- Assume from now on that $C: y^2 = f(x)$, with $f \in \mathbb{Z}_p[x]$ monic has good reduction. Denote by $\iota: C \to C$ the hyperelliptic involution.

- Assume that $D_1, D_2 \in \text{Div}^0(C)$ are pointwise \mathbb{Q}_p -rational.
- Compute h_p(D₁, D₂) → compute h_p(P Q, R S) for fixed distinct points P, Q, R, S ∈ C(Q_p).
- Assume from now on that $C: y^2 = f(x)$, with $f \in \mathbb{Z}_p[x]$ monic has good reduction. Denote by $\iota: C \to C$ the hyperelliptic involution.
- Recall: Balakrishnan and Besser [BB] compute $h_p(P-Q, R-S)$ when deg(f) odd.
- Gajović-Müller [GM]: Compute h_p(P − Q, R − S) for all hyperelliptic curves over Q_p with good reduction.

- Assume that $D_1, D_2 \in \text{Div}^0(C)$ are pointwise \mathbb{Q}_p -rational.
- Compute h_p(D₁, D₂) → compute h_p(P Q, R S) for fixed distinct points P, Q, R, S ∈ C(Q_p).
- Assume from now on that $C: y^2 = f(x)$, with $f \in \mathbb{Z}_p[x]$ monic has good reduction. Denote by $\iota: C \to C$ the hyperelliptic involution.
- Recall: Balakrishnan and Besser [BB] compute $h_p(P-Q, R-S)$ when deg(f) odd.
- Gajović-Müller [GM]: Compute h_p(P − Q, R − S) for all hyperelliptic curves over Q_p with good reduction.
- For even degree, one more case when {P, Q} = {∞_-,∞_+}. [GM] depends on the points if they are all affine or {P, Q} = {∞_-,∞_+}.

- Assume that $D_1, D_2 \in \text{Div}^0(C)$ are pointwise \mathbb{Q}_p -rational.
- Compute h_p(D₁, D₂) → compute h_p(P Q, R S) for fixed distinct points P, Q, R, S ∈ C(Q_p).
- Assume from now on that $C: y^2 = f(x)$, with $f \in \mathbb{Z}_p[x]$ monic has good reduction. Denote by $\iota: C \to C$ the hyperelliptic involution.
- Recall: Balakrishnan and Besser [BB] compute $h_p(P-Q, R-S)$ when deg(f) odd.
- Gajović-Müller [GM]: Compute h_p(P − Q, R − S) for all hyperelliptic curves over Q_p with good reduction.
- For even degree, one more case when {P, Q} = {∞_-,∞_+}. [GM] depends on the points if they are all affine or {P, Q} = {∞_-,∞_+}.
- We now recall [BB] algorithm. [GM] follows the key steps of [BB], but computes some of them differently.

(1) Reduce to computing $h_p(P - \iota(P), R - S)$.

(1) Reduce to computing $h_p(P - \iota(P), R - S)$.

(2) Find one differential ω' such that $\operatorname{Res}(\omega') = P - \iota(P)$.

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.
- (4) Obtain a holomorphic differential ω_h such that $\psi(\omega' \omega_h) \in W_p$.

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.
- (4) Obtain a holomorphic differential ω_h such that $\psi(\omega' \omega_h) \in W_p$.
- (5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega'$.

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.
- (4) Obtain a holomorphic differential ω_h such that $\psi(\omega' \omega_h) \in W_p$.
- (5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega'$.
- (6) Compute $h_p(P \iota(P), R S) = \int_S^R \omega' \int_S^R \omega_h$.

- Let C/\mathbb{Q}_p be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C:

- Let C/\mathbb{Q}_p be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C:
- (i) Extend the basis $\{\omega_0, \ldots, \omega_{g-1}\}$ of $H^{1,0}_{dR}(C/\mathbb{Q}_p)$ to a basis $B_{H^1_{dR}}$ of $H^1_{dR}(C/\mathbb{Q}_p)$ using Monsky-Washnitzer basis differentials.

- Let C/\mathbb{Q}_p be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C:
- (i) Extend the basis $\{\omega_0, \ldots, \omega_{g-1}\}$ of $H^{1,0}_{dR}(C/\mathbb{Q}_p)$ to a basis $B_{H^1_{dR}}$ of $H^1_{dR}(C/\mathbb{Q}_p)$ using Monsky-Washnitzer basis differentials.
- (ii) A basis B_{W_p} of $H^1_{dR}(C/\mathbb{Q}_p)$ corresponding to the decomposition $H^1_{dR}(C/\mathbb{Q}_p) = H^{1,0}_{dR}(C/\mathbb{Q}_p) \oplus W_p$ for the fixed complement W_p .

- Let C/\mathbb{Q}_p be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C:
- (i) Extend the basis $\{\omega_0, \ldots, \omega_{g-1}\}$ of $H^{1,0}_{dR}(C/\mathbb{Q}_p)$ to a basis $B_{H^1_{dR}}$ of $H^1_{dR}(C/\mathbb{Q}_p)$ using Monsky-Washnitzer basis differentials.
- (ii) A basis B_{W_p} of $H^1_{dR}(C/\mathbb{Q}_p)$ corresponding to the decomposition $H^1_{dR}(C/\mathbb{Q}_p) = H^{1,0}_{dR}(C/\mathbb{Q}_p) \oplus W_p$ for the fixed complement W_p .
- (iii) Cup product matrix CPM.

- Let C/\mathbb{Q}_p be a hyperelliptic curve of genus g.
- We need to compute some quantities related only to C:
- (i) Extend the basis $\{\omega_0, \ldots, \omega_{g-1}\}$ of $H^{1,0}_{dR}(C/\mathbb{Q}_p)$ to a basis $B_{H^1_{dR}}$ of $H^1_{dR}(C/\mathbb{Q}_p)$ using Monsky-Washnitzer basis differentials.
- (ii) A basis B_{W_p} of $H^1_{dR}(C/\mathbb{Q}_p)$ corresponding to the decomposition $H^1_{dR}(C/\mathbb{Q}_p) = H^{1,0}_{dR}(C/\mathbb{Q}_p) \oplus W_p$ for the fixed complement W_p .
- (iii) Cup product matrix CPM.
- (iv) Action of Frobenius $\phi: C \longrightarrow C$ (given by $x \mapsto x^p$) on $H^1_{dR}(C/\mathbb{Q}_p)$.

• We first consider $\{P, Q\} = \{\infty_{-}, \infty_{+}\}.$

• We first consider $\{P, Q\} = \{\infty_{-}, \infty_{+}\}.$

(v) (NEW) Find one differential ω' such that $\operatorname{Res}(\omega') = \infty_{-} - \infty_{+}$.

* We can take $\omega' = \omega_g = \frac{x^g dx}{y}$.

• We first consider $\{P, Q\} = \{\infty_{-}, \infty_{+}\}.$

(v) (NEW) Find one differential ω' such that $\operatorname{Res}(\omega') = \infty_{-} - \infty_{+}$.

- * We can take $\omega' = \omega_g = \frac{x^g dx}{y}$.
- (vi) (NEW) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis $B_{H^1_{dR}}$.
 - * Only in terms of the Frobenius map and the reduction in cohomology (trick: $\phi^*(\omega') p\omega'$ is of second kind).

- (vii) Find holomorphic ω_h such that $\psi(\omega' \omega_h) \in W_p$.
 - * Base change from $B_{H^1_{dR}}$ to $B_{W_p} \rightsquigarrow$ compute $u_0, \ldots, u_{g-1} \in \mathbb{Q}_p$ such that $\omega_h = \sum_{i=0}^{g-1} u_i \omega_i$.
 - * Recall $h_p(\infty_- \infty_+, R S) = \int_S^R \omega$ for $\omega := \omega' \sum_{i=0}^{g-1} u_i \omega_i$.

- (vii) Find holomorphic ω_h such that $\psi(\omega' \omega_h) \in W_p$.
 - * Base change from $B_{H^1_{dR}}$ to $B_{W_p} \rightsquigarrow$ compute $u_0, \ldots, u_{g-1} \in \mathbb{Q}_p$ such that $\omega_h = \sum_{i=0}^{g-1} u_i \omega_i$.
 - * Recall $h_p(\infty_- \infty_+, R S) = \int_S^R \omega$ for $\omega := \omega' \sum_{i=0}^{g-1} u_i \omega_i$.
- (viii) Compute the third kind integral $\int_{S}^{R} \omega'$ and holomorphic integrals.
 - * Using Balakrishnan's algorithm for Coleman integration, we compute $\int_{S}^{R} \omega_{g}$, $u_{0} \int_{S}^{R} \omega_{0} + \cdots + u_{g-1} \int_{S}^{R} \omega_{g-1}$.

Computation of $h_p(P-Q, R-S)$ - affine points

• Now, *P* and *Q* are affine points.

Computation of $h_p(P-Q, R-S)$ - affine points

• Now, *P* and *Q* are affine points.

• Note div
$$\left(\frac{x-x(P)}{x-x(Q)}\right) = P + \iota(P) - Q - \iota(Q).$$

• Rewrite
$$P - Q = \frac{1}{2} \operatorname{div} \left(\frac{x - x(P)}{x - x(Q)} \right) + \frac{1}{2} (P - \iota(P)) - \frac{1}{2} (Q - \iota(Q)) =$$

principal + antisymmetric divisors.

Computation of $h_{\rho}(P-Q, R-S)$ - affine points

• Now, P and Q are affine points.

• Note div
$$\left(\frac{x-x(P)}{x-x(Q)}\right) = P + \iota(P) - Q - \iota(Q).$$

- Rewrite $P Q = \frac{1}{2} \operatorname{div} \left(\frac{x x(P)}{x x(Q)} \right) + \frac{1}{2} (P \iota(P)) \frac{1}{2} (Q \iota(Q)) =$ principal + antisymmetric divisors.
- Recall h_p(div(f), D₂) = log_p(f(D₂)) → enough to compute antisymmetric heights h_p(P − ι(P), R − S).

(v) Find one differential ω' such that $\operatorname{Res}(\omega') = P - \iota(P)$.

• For $\omega' = \frac{y(P)}{x - x(P)} \frac{dx}{y}$, we have $\operatorname{Res}(\omega') = P - \iota(P)$.

(v) Find one differential ω' such that $\operatorname{Res}(\omega') = P - \iota(P)$.

• For
$$\omega' = \frac{y(P)}{x - x(P)} \frac{dx}{y}$$
, we have $\operatorname{Res}(\omega') = P - \iota(P)$.

(vi) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis $B_{H^1_{dR}}$.

* [BB] express it in terms of *CPM*, some Coleman integrals and certain residues of differentials.

(v) Find one differential ω' such that $\operatorname{Res}(\omega') = P - \iota(P)$.

• For
$$\omega' = \frac{y(P)}{x - x(P)} \frac{dx}{y}$$
, we have $\operatorname{Res}(\omega') = P - \iota(P)$.

(vi) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis $B_{H^1_{dR}}$.

- * [BB] express it in terms of *CPM*, some Coleman integrals and certain residues of differentials.
- * (NEW) [GM] All these residues are 0 computational improvement.

(v) Find one differential ω' such that $\operatorname{Res}(\omega') = P - \iota(P)$.

• For
$$\omega' = \frac{y(P)}{x - x(P)} \frac{dx}{y}$$
, we have $\operatorname{Res}(\omega') = P - \iota(P)$.

(vi) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis $B_{H^1_{dR}}$.

- * [BB] express it in terms of *CPM*, some Coleman integrals and certain residues of differentials.
- * (NEW) [GM] All these residues are 0 computational improvement.
- (vii) Find holomorphic ω_h such that $\psi(\omega' \omega_h) \in W_p$ as before.

Computation of $h_p(P - \iota(P), R - S)$ - key step

(viii) (NEW) Compute

$$\int_{S}^{R} \omega' = \int_{S}^{R} \frac{y(P)}{x - x(P)} \frac{dx}{y}.$$

Computation of $h_p(P - \iota(P), R - S)$ - key step

(viii) (NEW) Compute

$$\int_{S}^{R} \omega' = \int_{S}^{R} \frac{y(P)}{x - x(P)} \frac{dx}{y}.$$

- * [BB] compute it using a clever but complicated formula that involves computing residues over Weierstrass points which are defined over extensions of \mathbb{Q}_p .
- Use a change of variables $\tau \colon C \to C'$ that maps $P, \iota(P) \in C$ to $\infty_{-}, \infty_{+} \in C'$, we have

$$\implies \left(\int_{S}^{R} \frac{y(P)}{x - x(P)} \frac{dx}{y}\right)_{\text{on}C} = \left(\int_{\tau(S)}^{\tau(R)} \frac{x^{g} dx}{y}\right)_{\text{on}C'}$$
Computation of $h_p(P - \iota(P), R - S)$ - key step

(viii) (NEW) Compute

$$\int_{S}^{R} \omega' = \int_{S}^{R} \frac{y(P)}{x - x(P)} \frac{dx}{y}.$$

- [BB] compute it using a clever but complicated formula that involves computing residues over Weierstrass points which are defined over extensions of Q_p.
- Use a change of variables $\tau \colon C \to C'$ that maps $P, \iota(P) \in C$ to $\infty_{-}, \infty_{+} \in C'$, we have

$$\implies \left(\int_{S}^{R} \frac{y(P)}{x - x(P)} \frac{dx}{y}\right)_{\text{on}C} = \left(\int_{\tau(S)}^{\tau(R)} \frac{x^{g} dx}{y}\right)_{\text{on}C'}$$

• $\frac{x^{\underline{s}}dx}{y}$ is a basis MW-differential on $C' \implies \int_{\tau(S)}^{\tau(R)} \frac{x^{\underline{s}}dx}{y}$ computed directly (and quickly) by Balakrishnan's algorithm.

Stevan Gajović

Importance of the infinity case

- Recall: change of variables $\tau \colon C \to C'$ maps $P, \iota(P) \in C$ to $\infty_{-}, \infty_{+} \in C'$
- By the independence of a model of local heights, we have $h_p(P \iota(P), R S) = h_p(\infty_- \infty_+, \tau(R) \tau(S)).$
- \implies It suffices to compute heights of the type $h_p(\infty_- \infty_+, R S)!$

Importance of the infinity case

- Recall: change of variables $\tau \colon C \to C'$ maps $P, \iota(P) \in C$ to $\infty_{-}, \infty_{+} \in C'$
- By the independence of a model of local heights, we have $h_p(P \iota(P), R S) = h_p(\infty_- \infty_+, \tau(R) \tau(S)).$
- \implies It suffices to compute heights of the type $h_p(\infty_- \infty_+, R S)!$
- (NEW work in progress) Our approach generalises to superelliptic curves. Further goal: more general curves using divisors of degree zero supported at infinity.

Let C/Q_p be a hyperelliptic curve and P, Q, R, S ∈ C(Q_p). Want to compute h_p(P − Q, R − S).

- Let C/Q_p be a hyperelliptic curve and P, Q, R, S ∈ C(Q_p). Want to compute h_p(P − Q, R − S).
- Precompute all quantities related to C only.

- Let C/Q_p be a hyperelliptic curve and P, Q, R, S ∈ C(Q_p). Want to compute h_p(P − Q, R − S).
- Precompute all quantities related to C only.
- $h_p(P-Q, R-S) =$ computed $+\frac{1}{2}(h_p(P-\iota(P), R-S) - h_p(Q-\iota(Q), R-S)).$

- Let C/Q_p be a hyperelliptic curve and P, Q, R, S ∈ C(Q_p). Want to compute h_p(P − Q, R − S).
- Precompute all quantities related to C only.
- $h_p(P-Q, R-S) =$ computed $+\frac{1}{2}(h_p(P-\iota(P), R-S) - h_p(Q-\iota(Q), R-S)).$
- We can compute $h_p(P \iota(P), R S)$ as $h_p(\infty_- \infty_+, R' S')$ on some other hyperelliptic curve C'/\mathbb{Q}_p , but prefer directly.

- Let C/Q_p be a hyperelliptic curve and P, Q, R, S ∈ C(Q_p). Want to compute h_p(P − Q, R − S).
- Precompute all quantities related to C only.
- $h_p(P-Q, R-S) =$ computed $+\frac{1}{2}(h_p(P-\iota(P), R-S) - h_p(Q-\iota(Q), R-S)).$
- We can compute $h_p(P \iota(P), R S)$ as $h_p(\infty_- \infty_+, R' S')$ on some other hyperelliptic curve C'/\mathbb{Q}_p , but prefer directly.

• For
$$\omega' = \frac{y(P)}{x - x(P)} \frac{dx}{y}$$
, we have $\operatorname{Res}(\omega') = P - \iota(P)$.

• We compute $\psi(\omega')$ and find the correct one $\omega_P = \omega' - holomorphic$.

- Let C/Q_p be a hyperelliptic curve and P, Q, R, S ∈ C(Q_p). Want to compute h_p(P − Q, R − S).
- Precompute all quantities related to C only.
- $h_p(P-Q, R-S) =$ computed $+\frac{1}{2}(h_p(P-\iota(P), R-S) - h_p(Q-\iota(Q), R-S)).$
- We can compute $h_p(P \iota(P), R S)$ as $h_p(\infty_- \infty_+, R' S')$ on some other hyperelliptic curve C'/\mathbb{Q}_p , but prefer directly.

• For
$$\omega' = \frac{y(P)}{x - x(P)} \frac{dx}{y}$$
, we have $\operatorname{Res}(\omega') = P - \iota(P)$.

• We compute $\psi(\omega')$ and find the correct one $\omega_P = \omega' - holomorphic$.

• Compute
$$h_p(P - \iota(P), R - S) = \int_S^R \omega' - \int_S^R holomorphic = \int_{S'}^{R'} \frac{x^g dx}{y} - \int_S^R holomorphic$$
.

• Similarly, compute $h_p(Q - \iota(Q), R - S)$, hence, $h_p(P - Q, R - S)$. Stevan Gajović 15/02/2024 20/27

Summary for the local p-adic height above p

- The main difference between [BB] and our algorithm is in computing Coleman integrals of differentials of the third kind and residues.
- Our algorithm is simpler and faster than [BB], and works for both odd and even degree models.

Summary for the local p-adic height above p

- The main difference between [BB] and our algorithm is in computing Coleman integrals of differentials of the third kind and residues.
- Our algorithm is simpler and faster than [BB], and works for both odd and even degree models.
- We compare the timings and success of our and [BB] algorithm in several examples.

Genus	р	Precision	Our time	[BB] time
2	7	10	2s	7s
2	7	300	11m	?>1week
2	503	10	4m	19h
3	11	10	6s	28s
4	23	20	2m	46m
17	11	7	14m	?>1week

- X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its Jacobian whose rank over Q is r = g.
- Assume that $\int_D \omega_0, \ldots, \int_D \omega_{g-1} \colon J(\mathbb{Q}) \otimes \mathbb{Q}_p \longrightarrow \mathbb{Q}_p$ form a basis of $(J(\mathbb{Q}) \otimes \mathbb{Q}_p)^{\vee} \rightsquigarrow$ we want to use quadratic Chabauty.

- X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its Jacobian whose rank over Q is r = g.
- Assume that ∫_D ω₀,..., ∫_D ω_{g-1}: J(ℚ) ⊗ ℚ_p → ℚ_p form a basis of (J(ℚ) ⊗ ℚ_p)[∨] → we want to use quadratic Chabauty.
- Let X/\mathbb{Q} : $y^2 = f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\deg(f) = 2g + 2$.
- Then $\infty_{\pm} \in X(\mathbb{Q})$. Let $D_{\infty} \coloneqq [\infty_{-} \infty_{+}]$.

- X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its Jacobian whose rank over Q is r = g.
- Assume that $\int_D \omega_0, \ldots, \int_D \omega_{g-1} \colon J(\mathbb{Q}) \otimes \mathbb{Q}_p \longrightarrow \mathbb{Q}_p$ form a basis of $(J(\mathbb{Q}) \otimes \mathbb{Q}_p)^{\vee} \rightsquigarrow$ we want to use quadratic Chabauty.
- Let X/\mathbb{Q} : $y^2 = f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\deg(f) = 2g + 2$.
- Then $\infty_{\pm} \in X(\mathbb{Q})$. Let $D_{\infty} \coloneqq [\infty_{-} \infty_{+}]$.
- Denote $X(\mathbb{Z}) :=$ integral points on X. Goal today: Compute $X(\mathbb{Z})$.

- X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its Jacobian whose rank over Q is r = g.
- Assume that $\int_D \omega_0, \ldots, \int_D \omega_{g-1} \colon J(\mathbb{Q}) \otimes \mathbb{Q}_p \longrightarrow \mathbb{Q}_p$ form a basis of $(J(\mathbb{Q}) \otimes \mathbb{Q}_p)^{\vee} \rightsquigarrow$ we want to use quadratic Chabauty.
- Let X/\mathbb{Q} : $y^2 = f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\deg(f) = 2g + 2$.
- Then $\infty_{\pm} \in X(\mathbb{Q})$. Let $D_{\infty} \coloneqq [\infty_{-} \infty_{+}]$.
- Denote $X(\mathbb{Z}) :=$ integral points on X. Goal today: Compute $X(\mathbb{Z})$.
- Recall: $h: J(\mathbb{Q}) \times J(\mathbb{Q}) \longrightarrow \mathbb{Q}_p$ is a bilinear pairing.
- Then $\lambda(D) \coloneqq h(D_{\infty}, D)$ is a linear map $J(\mathbb{Q}) \longrightarrow \mathbb{Q}_{p}$.
- \rightsquigarrow We can write $h(D_{\infty}, D) = \sum_{i=0}^{g-1} \alpha_i \int_D \omega_i$, for some $\alpha_i \in \mathbb{Q}_p$.

• Assume $P_0 \in X(\mathbb{Z})$. Consider $\rho_{P_0} \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$

$$\rho_{P_0}(P) := \sum_{i=0}^{g-1} \alpha_i \int_{P_0}^P \omega_i - h_p(D_\infty, P - P_0) = \sum_{i=0}^{g-1} \alpha_i \int_{P_0}^P \omega_i - \int_{P_0}^P \omega_{D_\infty}$$

• Assume $P_0 \in X(\mathbb{Z})$. Consider $\rho_{P_0} \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$

$$\rho_{P_0}(P) := \sum_{i=0}^{g-1} \alpha_i \int_{P_0}^P \omega_i - h_p(D_\infty, P - P_0) = \sum_{i=0}^{g-1} \alpha_i \int_{P_0}^P \omega_i - \int_{P_0}^P \omega_{D_\infty}.$$

- ρ_Q is a locally analytic function.
- If $P \in X(\mathbb{Q})$, $\rho_{P_0}(P) = h h_p = \sum_{q \neq p} h_q(D_{\infty}, P P_0)$.

• Assume $P_0 \in X(\mathbb{Z})$. Consider $\rho_{P_0} \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$

$$\rho_{P_0}(P) := \sum_{i=0}^{g-1} \alpha_i \int_{P_0}^P \omega_i - h_p(D_\infty, P - P_0) = \sum_{i=0}^{g-1} \alpha_i \int_{P_0}^P \omega_i - \int_{P_0}^P \omega_{D_\infty}.$$

• ρ_Q is a locally analytic function.

• If
$$P \in X(\mathbb{Q})$$
, $\rho_{P_0}(P) = h - h_p = \sum_{q \neq p} h_q(D_{\infty}, P - P_0)$.

• $\implies \rho_{P_0}(X(\mathbb{Z})) \subseteq T$ for a finite and computable set T.

• Assume $P_0 \in X(\mathbb{Z})$. Consider $\rho_{P_0} \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$

$$\rho_{P_0}(P) := \sum_{i=0}^{g-1} \alpha_i \int_{P_0}^P \omega_i - h_p(D_\infty, P - P_0) = \sum_{i=0}^{g-1} \alpha_i \int_{P_0}^P \omega_i - \int_{P_0}^P \omega_{D_\infty}.$$

• ρ_Q is a locally analytic function.

• If
$$P \in X(\mathbb{Q})$$
, $\rho_{P_0}(P) = h - h_p = \sum_{q \neq p} h_q(D_\infty, P - P_0)$.

- $\implies \rho_{P_0}(X(\mathbb{Z})) \subseteq T$ for a finite and computable set T.
- We can compute S := ρ_{P0}⁻¹(T) → X(ℤ) ⊆ S for some finite and computable S ⊆ X(ℚ_p). If necessary + Mordell-Weil sieve → X(ℤ).

- Let X/\mathbb{Q} : $y^2 = f(x) = x^6 + 2x^5 7x^4 18x^3 + 2x^2 + 20x + 9$.
- $X(\mathbb{Z})_{known} := \{(0,\pm 3), (1,\pm 3), (-1,\pm 1), (-2,\pm 3), (-4,\pm 37)\}.$
- Goal: Prove $X(\mathbb{Z}) = X(\mathbb{Z})_{known}$. Use p = 7.

- Let X/\mathbb{Q} : $y^2 = f(x) = x^6 + 2x^5 7x^4 18x^3 + 2x^2 + 20x + 9$.
- $X(\mathbb{Z})_{known} := \{(0,\pm 3), (1,\pm 3), (-1,\pm 1), (-2,\pm 3), (-4,\pm 37)\}.$
- Goal: Prove $X(\mathbb{Z}) = X(\mathbb{Z})_{known}$. Use p = 7.
- (1) Compute the finite set $T := \{\sum_{q \neq p} h_q(D_\infty, P Q) \colon P, Q \in X(\mathbb{Z}_q)\}.$
 - For $P, Q \in X(\mathbb{Z}_q)$ and all $q \neq 7$: $h_q(D_\infty, P Q) = 0 \implies T = \{0\}$.

- Let X/\mathbb{Q} : $y^2 = f(x) = x^6 + 2x^5 7x^4 18x^3 + 2x^2 + 20x + 9$.
- $X(\mathbb{Z})_{known} := \{(0, \pm 3), (1, \pm 3), (-1, \pm 1), (-2, \pm 3), (-4, \pm 37)\}.$
- Goal: Prove $X(\mathbb{Z}) = X(\mathbb{Z})_{known}$. Use p = 7.
- (1) Compute the finite set $T := \{\sum_{q \neq p} h_q(D_\infty, P Q) \colon P, Q \in X(\mathbb{Z}_q)\}.$
 - For $P, Q \in X(\mathbb{Z}_q)$ and all $q \neq 7$: $h_q(D_\infty, P Q) = 0 \implies T = \{0\}$.
- (2) Represent $h(D_{\infty}, D) = \alpha_0 \int_D \omega_0 + \cdots + \alpha_{g-1} \int_D \omega_{g-1}$.
 - Find D₀, D₁ such that [J(Q): ⟨D₀, D₁⟩] < ∞. Solve the system of equations for i = 0, 1 to compute α₀, α₁

$$h(D_{\infty}, D_i) = \alpha_0 \int_{D_i} \omega_0 + \alpha_1 \int_{D_i} \omega_1.$$

 $\implies \alpha_0 = 5 + 4 \cdot 7 + 6 \cdot 7^2 + O(7^3), \ \alpha_1 = 6 + 3 \cdot 7 + 5 \cdot 7^2 + O(7^3).$

(3) Assume $P_0 \in X(\mathbb{Z})$. Define $\rho_{P_0} \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$

$$\rho_{P_0}(P) = \alpha_0 \int_{P_0}^P \omega_0 + \cdots + \alpha_{g-1} \int_{P_0}^P \omega_{g-1} - h_p(D_\infty, P - P_0).$$

• Set
$$P_0 = (0,3)$$
. Define $\rho_{P_0}(P) \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$
 $\rho_{P_0}(P) = \alpha_0 \int_{P_0}^P \omega_0 + \alpha_1 \int_{P_0}^P \omega_1 - h_p(D_\infty, P - P_0).$

• $\implies \rho_{P_0}(X(\mathbb{Z})) = \{0\}.$

(3) Assume
$$P_0 \in X(\mathbb{Z})$$
. Define $\rho_{P_0} \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$

$$\rho_{P_0}(P) = \alpha_0 \int_{P_0}^P \omega_0 + \cdots + \alpha_{g-1} \int_{P_0}^P \omega_{g-1} - h_p(D_\infty, P - P_0).$$

• Set
$$P_0 = (0,3)$$
. Define $\rho_{P_0}(P) \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$
 $\rho_{P_0}(P) = \alpha_0 \int_{P_0}^P \omega_0 + \alpha_1 \int_{P_0}^P \omega_1 - h_p(D_\infty, P - P_0).$

• $\implies \rho_{P_0}(X(\mathbb{Z})) = \{0\}.$

(4) In each affine D(Q), for $P \in D(Q)$, compute $\rho(P) \in \mathbb{Q}_{\rho}[\![z]\!]$.

• Consider $Q = P_0 = (0,3)$ and $P = (7z, \cdot) \in D(P_0)$ for some $z \in \mathbb{Z}_7$:

 $\rho_{P_0}(z) = (42 + O(7^2))z + (6 \cdot 7^3 + O(7^4))z^2 + (62 \cdot 7^3 + O(7^6))z^3 + O((7z)^4).$

(5) For each u ∈ T, p-adically locate the solutions of ρ_{P0}(z) = u in all affine residue discs. Obtain a finite set S: X(ℤ) ⊆ S ⊆ X(ℚ_p).

- (5) For each u ∈ T, p-adically locate the solutions of ρ_{P0}(z) = u in all affine residue discs. Obtain a finite set S: X(ℤ) ⊆ S ⊆ X(ℚ_p).
 - Recall, for $P \in D(Q)$, parameterised by z,

$$o_{P_0}(z) = (42 + O(7^2))z + (6 \cdot 7^3 + O(7^4))z^2 + (62 \cdot 7^3 + O(7^6))z^3 + O((7z)^4).$$

• Strassmann's theorem $\implies D(Q) \cap X(\mathbb{Z}) = \{Q\}.$

- (5) For each u ∈ T, p-adically locate the solutions of ρ_{P0}(z) = u in all affine residue discs. Obtain a finite set S: X(ℤ) ⊆ S ⊆ X(ℚ_p).
 - Recall, for $P \in D(Q)$, parameterised by z,

 $\rho_{P_0}(z) = (42 + O(7^2))z + (6 \cdot 7^3 + O(7^4))z^2 + (62 \cdot 7^3 + O(7^6))z^3 + O((7z)^4).$

- Strassmann's theorem $\implies D(Q) \cap X(\mathbb{Z}) = \{Q\}.$
- Similarly in all affine residue discs $\implies X(\mathbb{Z}) = S = X(\mathbb{Z})_{known}$.

- (5) For each u ∈ T, p-adically locate the solutions of ρ_{P0}(z) = u in all affine residue discs. Obtain a finite set S: X(ℤ) ⊆ S ⊆ X(ℚ_p).
 - Recall, for $P \in D(Q)$, parameterised by z,

 $\rho_{P_0}(z) = (42 + O(7^2))z + (6 \cdot 7^3 + O(7^4))z^2 + (62 \cdot 7^3 + O(7^6))z^3 + O((7z)^4).$

- Strassmann's theorem $\implies D(Q) \cap X(\mathbb{Z}) = \{Q\}.$
- Similarly in all affine residue discs $\implies X(\mathbb{Z}) = S = X(\mathbb{Z})_{known}$.
- (6) If necessary, use the Mordell-Weil sieve to determine $S \setminus X(\mathbb{Q})$.

- (5) For each u ∈ T, p-adically locate the solutions of ρ_{P0}(z) = u in all affine residue discs. Obtain a finite set S: X(ℤ) ⊆ S ⊆ X(ℚ_p).
 - Recall, for $P \in D(Q)$, parameterised by z,

 $\rho_{P_0}(z) = (42 + O(7^2))z + (6 \cdot 7^3 + O(7^4))z^2 + (62 \cdot 7^3 + O(7^6))z^3 + O((7z)^4).$

- Strassmann's theorem $\implies D(Q) \cap X(\mathbb{Z}) = \{Q\}.$
- Similarly in all affine residue discs $\implies X(\mathbb{Z}) = S = X(\mathbb{Z})_{known}$.
- (6) If necessary, use the Mordell-Weil sieve to determine $S \setminus X(\mathbb{Q})$.

Theorem (G.-Müller, 2022)

• X/\mathbb{Q} : $y^2 = f(x)$ nice, with $f \in \mathbb{Z}[x]$ monic, $\deg(f) = 2g + 2$ with r = g. There is a locally analytic function $\rho : X(\mathbb{Q}_p) \to \mathbb{Q}_p$, and a finite and computable set T, such that $\rho(X(\mathbb{Z})) \in T$.

- (5) For each u ∈ T, p-adically locate the solutions of ρ_{P0}(z) = u in all affine residue discs. Obtain a finite set S: X(ℤ) ⊆ S ⊆ X(ℚ_p).
 - Recall, for $P \in D(Q)$, parameterised by z,

 $\rho_{P_0}(z) = (42 + O(7^2))z + (6 \cdot 7^3 + O(7^4))z^2 + (62 \cdot 7^3 + O(7^6))z^3 + O((7z)^4).$

- Strassmann's theorem $\implies D(Q) \cap X(\mathbb{Z}) = \{Q\}.$
- Similarly in all affine residue discs $\implies X(\mathbb{Z}) = S = X(\mathbb{Z})_{known}$.
- (6) If necessary, use the Mordell-Weil sieve to determine $S \setminus X(\mathbb{Q})$.

Theorem (G.-Müller, 2022)

- X/\mathbb{Q} : $y^2 = f(x)$ nice, with $f \in \mathbb{Z}[x]$ monic, $\deg(f) = 2g + 2$ with r = g. There is a locally analytic function $\rho : X(\mathbb{Q}_p) \to \mathbb{Q}_p$, and a finite and computable set T, such that $\rho(X(\mathbb{Z})) \in T$.
- Extended to number fields with an appropriate rank condition.

The end

Thank you for your attention!

Question

Any questions?