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p-adic heights

* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree
hyperelliptic curves.

Goals today:

@ Introduce p-adic heights on Jacobians of curves.
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p-adic heights

* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree
hyperelliptic curves.

Goals today:

@ Introduce p-adic heights on Jacobians of curves.

@ Briefly mention local p-adic heights away from p.

@ Present an algorithm to compute local p-adic heights above p on
hyperelliptic curves.

@ Distinguish two important cases on even degree hyperelliptic curves.

Application discussed today:

Linear quadratic Chabauty for integral points on even degree hyperelliptic
curves.

Other applications:

@ Quadratic Chabauty for rational points on hyperelliptic curves.
@ Numerically test p-adic BSD.
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Introduction to p-adic heights

@ Bilinear pairing (or quadratic form) defined on abelian varieties.
@ First constructions: Schneider, Mazur-Tate.
@ More general: Nekovar.

@ X/Q = nice curve of genus g > 0, with good reduction at p, and
J(X) = J = its Jacobian.

e Works also for number fields K/Q.

Coleman-Gross: p-adic heights on J.

15/02/2024
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Comparison with the real (Néron-Tate) heights

Real heights

p-adic heights

h:= Zv non-arch hy + Zv\oo hy

h:= Zq;ﬁp finite prime hq + hP

sum of local heights over all places

sum of local heights over all non-
archimedean places

distinguish non-archimedean and
archimedean places

distinguish primes not diving and
diving p
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Real heights

p-adic heights

h:= Zv non-arch Av + Zvloo hy
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ing intersection theory multiplied
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q # p: hg defined using intersec-
tion theory multiplied by a log fac-
tor

v archimedean: h, = integral of a
certain differential of the third kind

h, = Coleman integral of a certain
differential of the third kind

@ Log factor and a hidden term in h, come from a continuous idéle
class character A@/@* — Qp with some conditions, which we fix.
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Comparison with the real (Néron-Tate) heights

Real heights

p-adic heights

h:= Ev non-arch Av + Zvloo hy

h:= Zq;ﬁp finite prime hq + hP

sum of local heights over all places

sum of local heights over all non-
archimedean places

distinguish non-archimedean and
archimedean places

distinguish primes not diving and
diving p

v non-archimedean: h, defined us-
ing intersection theory multiplied
by a log factor

q # p: hg defined using intersec-
tion theory multiplied by a log fac-
tor

v archimedean: h, = integral of a
certain differential of the third kind

h, = Coleman integral of a certain
differential of the third kind

@ Log factor and a hidden term in h, come from a continuous idéle
class character A("@/Q* — Qp with some conditions, which we fix.

@ There is an ambiguity in the choice of the differentials when
computing h, - so we need another input to fix the desired one.
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Coleman-Gross (CG) p-adic heights

@ p-adic height: bilinear map

h:i=" > hg:J(Q)x JQ) = Qp.

q finite prime
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Coleman-Gross (CG) p-adic heights

@ p-adic height: bilinear map
h:i=" > hg:J(Q)x JQ) = Qp.
q finite prime
e For a prime number g, denote X, := X ® Qq.

@ For each prime g € Z, define local heights

hq(Dy, Dy), for Dy, Dy € DivP(X,) with disjoint support.
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Coleman-Gross (CG) p-adic heights

@ p-adic height: bilinear map
h:i=" > hg:J(Q)x JQ) = Qp.

q finite prime

e For a prime number g, denote X, := X ® Qq.

For each prime g € Z, define local heights

hq(Dy, Dy), for Dy, Dy € DivP(X,) with disjoint support.

Distinguish hg for g # p and hp, ().

hq for q # p: intersection multiplicities.

@ hy,: Coleman integral of a non-holomorphic differential with only
simple poles.
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Heights away from p

Theorem (Local heights for g # p)

o There exists a unique function hq(D1, D>) taking values in Qp:
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Theorem (Local heights for g # p)

o There exists a unique function hq(D1, D>) taking values in Qp:

(1) defined for all D1, Dy € DivP(X,) with disjoint support;
(2) bi-additive, continuous, and symmetric;
(3) Vf € Qp(Xq)* (if defined): hq(div(f), D2) = —log,(q) ordq(f(D2)).
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Theorem (Local heights for g # p)

o There exists a unique function hq(D1, D>) taking values in Qp:
(1) defined for all D1, Dy € DivP(X,) with disjoint support;
(2) bi-additive, continuous, and symmetric;
3)

(3) Vf € Qp(Xq)* (if defined): hq(div(f), D2) = —log,(q) ordq(f(D2)).

o X,/Qq = regular model of X, with (— - —) = (Q-valued) intersection
multiplicity on AXj.

e Dy, Dy = extensions of Dy, D> to X such that (D; - V') = 0 for all
vertical divisors V on A.
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Heights away from p

Theorem (Local heights for g # p)

o There exists a unique function hq(D1, D>) taking values in Qp:
(1) defined for all D1, Dy € DivP(X,) with disjoint support;
(2) bi-additive, continuous, and symmetric;
)

(3) Vf € Qp(Xq)* (if defined): hq(div(f), D2) = —log,(q) ordq(f(D2)).

o X,/Qq = regular model of X, with (— - —) = (Q-valued) intersection
multiplicity on AXj.

e Dy, Dy = extensions of Dy, D> to X such that (D; - V') = 0 for all
vertical divisors V on A.

Construction of h,

hq(D1, D2) = —log,(q) - (D1 - Da).

@ van Bommel-Holmes-Miiller's algorithm: Compute hq.
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Introduction to local p-adic heights at p

Construction of h,

@ The local height hy(D1, D>) is a Coleman integral [p, wp,:

@ wp, : differential with only simple poles, and for which the residue at
every pole is an integer. The points in support of D; are exactly the
poles of wp,, with multiplicities given by their residues.

@ Since holomorphic differentials have no singularities, wp, apriori is not
determined uniquely, so we need another input to define h, properly.

v
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Third and second kind meromorphic differentials

@ w is of the third kind if it is holomorphic except possibly at finitely
many points and it has at most simple poles with residues in Z.
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Introduction to local p-adic heights at p

Construction of h,

@ The local height hy(D1, D>) is a Coleman integral [p, wp,:

@ wp, : differential with only simple poles, and for which the residue at
every pole is an integer. The points in support of D; are exactly the
poles of wp,, with multiplicities given by their residues.

@ Since holomorphic differentials have no singularities, wp, apriori is not
determined uniquely, so we need another input to define h, properly.

v

Third and second kind meromorphic differentials

@ w is of the third kind if it is holomorphic except possibly at finitely
many points and it has at most simple poles with residues in Z.
@ w is of the second kind if all of its residues are 0.

o {third kind} N {second kind} = {holomorphic}.
o Hir(X,/Qp) ~ {differentials of the second kind}/{df : f € Qp(X)*}.
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Introduction to local p-adic heights at p

@ The residue divisor homomorphism is

Res: {third kind on X,} — Div%(X,), Res(w) = Y Resp(w
PEX,

@ Res surjective, but not injective (Res({holomorphic}) = 0).

e Want wp, to be such that Res(wp,) = Di. This choice is not unique!
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Introduction to local p-adic heights at p

@ The residue divisor homomorphism is

Res: {third kind on X,} — Div%(X,), Res(w) = Y Resp(w
PEX,

Res surjective, but not injective (Res({holomorphic}) = 0).

Want wp, to be such that Res(wp,) = D;. This choice is not unique!
@ 3 homomorphism “projection” v (with many useful properties):
¢ : {meromorphic differentials on X,} — Hir(X,/Qp).

Input for hy: A choice of a subspace W, C Hiz(X,/Q))
complementary to the space of holomorphic forms Hcljig(Xp/Qp).

HcliR(Xp/Qp) = Héig(xp/@p) © Wp.
= D € DiV%(X,) ~ unique wp of the third kind such that
Res(wp) = D and ¢(wp) € W,.
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Introduction to local p-adic heights at p

Definition of h,

Let Dy, D, € DivO(Xp) with disjoint support. The local p-adic height
pairing at p is given by hy(D1, D2) := [p, wp,-
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Introduction to local p-adic heights at p

Definition of h,

Let Dy, D, € DivO(Xp) with disjoint support. The local p-adic height
pairing at p is given by hy(D1, D2) := [p, wp,-

@ Properties of hp:

* hp(D1, Do) is continuous and bi-additive.

* hp(div(f), D2) = log,(f(D2)).

* hp is symmetric if and only if W, C Hlz(X,/Qp) is isotropic with
respect to the cup product pairing.

* When X, has good ordinary reduction, we can take
W, := the unit root subspace (necessary for p-adic BSD).
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Introduction to local p-adic heights at p

Definition of h,

Let Dy, D, € DivO(Xp) with disjoint support. The local p-adic height
pairing at p is given by hy(D1, D2) := [p, wp,-

@ Properties of hp:

* hp(D1, Do) is continuous and bi-additive.

* hp(div(f), D2) = log,(f(D2)).

* hp is symmetric if and only if W, C Hlz(X,/Qp) is isotropic with
respect to the cup product pairing.

* When X, has good ordinary reduction, we can take
W, := the unit root subspace (necessary for p-adic BSD).

* Independent of a model of X, under reasonable technical conditions:
T: Xp — XI/J — hp(T*(Dl),T*(Dz))On X", = hp(Dl, Dz)on Xp -
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Coleman integration in Sage

@ Sage implementation - Balakrishnan: Hyperelliptic curves
C:y? = f(x)/Q, (WARNING: Sage sees only one point at infinity!):
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Coleman integration in Sage

@ Sage implementation - Balakrishnan: Hyperelliptic curves
C:y? = f(x)/Q, (WARNING: Sage sees only one point at infinity!):

@ Monsky-Washnitzer basis differentials w; := X’% for

0 < i< deg(f) — 2 ~ can compute [&w;.

@ In particular: Coleman integrals of holomorphic differentials.
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Coleman integration in Sage

@ Sage implementation - Balakrishnan: Hyperelliptic curves
C:y? = f(x)/Q, (WARNING: Sage sees only one point at infinity!):

@ Monsky-Washnitzer basis differentials w; := X’% for
0 < i < deg(f) — 2 ~> can compute fSRw,-.
@ In particular: Coleman integrals of holomorphic differentials.

e Tiny integrals f_f w, where S = R (mod p).
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Local heights h,(D1, Dy) setup

o Assume that Dy, D, € Div?(C) are pointwise Q,-rational.

e Compute hp(Dq, Do) ~» compute hy(P — Q, R — S) for fixed distinct
points P, Q,R,S € C(Qp).
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good reduction. Denote by t: C — C the hyperelliptic involution.
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Local heights h,(D1, Dy) setup

o Assume that Dy, D, € Div?(C) are pointwise Q,-rational.

e Compute hp(Dq, Do) ~» compute hy(P — Q, R — S) for fixed distinct
points P, Q,R,S € C(Qp).

@ Assume from now on that C: y? = f(x), with f € Z,[x] monic has
good reduction. Denote by t: C — C the hyperelliptic involution.

@ Recall: Balakrishnan and Besser [BB] compute h,(P — Q,R — S)
when deg(f) odd.

o Gajovi¢-Miiller [GM]: Compute hy(P — Q, R — S) for all hyperelliptic
curves over Q, with good reduction.
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Local heights h,(D1, Dy) setup

o Assume that Dy, D, € Div?(C) are pointwise Q,-rational.

e Compute hp(Dq, Do) ~» compute hy(P — Q, R — S) for fixed distinct
points P, Q,R,S € C(Qp).

@ Assume from now on that C: y? = f(x), with f € Z,[x] monic has
good reduction. Denote by t: C — C the hyperelliptic involution.

@ Recall: Balakrishnan and Besser [BB] compute h,(P — Q,R — S)
when deg(f) odd.

o Gajovi¢-Miiller [GM]: Compute hy(P — Q, R — S) for all hyperelliptic
curves over Q, with good reduction.

@ For even degree, one more case - when {P, Q} = {oco_, 004 }. [GM]
depends on the points - if they are all affine or {P, Q} = {co_, 004 }.
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Local heights h,(D1, Dy) setup

o Assume that Dy, D, € Div?(C) are pointwise Q,-rational.

e Compute hp(Dq, Do) ~» compute hy(P — Q, R — S) for fixed distinct
points P, Q,R,S € C(Qp).

@ Assume from now on that C: y? = f(x), with f € Z,[x] monic has
good reduction. Denote by t: C — C the hyperelliptic involution.

@ Recall: Balakrishnan and Besser [BB] compute h,(P — Q,R — S)
when deg(f) odd.

o Gajovi¢-Miiller [GM]: Compute hy(P — Q, R — S) for all hyperelliptic
curves over Q, with good reduction.

@ For even degree, one more case - when {P, Q} = {oco_, 004 }. [GM]
depends on the points - if they are all affine or {P, Q} = {co_, 004 }.

@ We now recall [BB] algorithm. [GM] follows the key steps of [BB],
but computes some of them differently.
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[BB] algorithm - key steps

(1) Reduce to computing hy(P — ¢(P),R —S).
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[BB] algorithm - key steps

(1) Reduce to computing hy(P — ¢(P),R —S).

(2) Find one differential w’ such that Res(w’) = P — «(P).

(3) Compute ¥(w') in Hiz(C/Qp)-basis.

(4) Obtain a holomorphic differential wy, such that ¢ (w — wp) € W,
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[BB] algorithm - key steps

(1) Reduce to computing hy(P — ¢(P),R —S).

(2) Find one differential w’ such that Res(w’) = P — «(P).

(3) Compute ¥(w') in Hiz(C/Qp)-basis.

(4) Obtain a holomorphic differential wy, such that ¢ (w — wp) € W,
(5)

5) Compute the Coleman integral of the third kind differential f_f W'
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[BB] algorithm - key steps

1) Reduce to computing hy(P — ¢(P),R —S).
2) Find one differential w’ such that Res(w’) = P — «(P).
3) Compute 9(w’) in Hir(C/Qp)-basis.

(1)
(2)
(3)
(4) Obtain a holomorphic differential wy, such that ¢ (w — wp) € W,
(5) Compute the Coleman integral of the third kind differential f_f W'
(6)

6) Compute hy(P — «(P),R—S) = st w' — st Wh-

Stevan Gajovié 15/02/2024 12/27



Computations depending only on C

o Let C/Qp be a hyperelliptic curve of genus g.

@ We need to compute some quantities related only to C:
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Computations depending only on C

o Let C/Qp be a hyperelliptic curve of genus g.
@ We need to compute some quantities related only to C:

(i) Extend the basis {wo,...,wg_1} of Hz’F?(C/(@p) to a basis By of
Hi:(C/Qp) using Monsky-Washnitzer basis differentials.

Stevan Gajovié 15/02/2024 13 /27



Computations depending only on C

o Let C/Qp be a hyperelliptic curve of genus g.
@ We need to compute some quantities related only to C:
(i) Extend the basis {wo,...,wg_1} of Hz’F?(C/(@p) to a basis By of
Hi:(C/Qp) using Monsky-Washnitzer basis differentials.

(i) A basis By, of Hig(C/Qp) corresponding to the decomposition
Hir(C/Qp) = H3(C/Q,) ® W, for the fixed complement W,
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o Let C/Qp be a hyperelliptic curve of genus g.
@ We need to compute some quantities related only to C:

(i) Extend the basis {wo,...,wg_1} of Hé’F?(C/(@p) to a basis By of
Hi:(C/Qp) using Monsky-Washnitzer basis differentials.

(i) A basis By, of Hig(C/Qp) corresponding to the decomposition
Hir(C/Qp) = H3(C/Q,) ® W, for the fixed complement W,

(iii) Cup product matrix CPM.
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Computations depending only on C

o Let C/Qp be a hyperelliptic curve of genus g.
@ We need to compute some quantities related only to C:

(i) Extend the basis {wo,...,wg_1} of Hé’F?(C/(@p) to a basis By of
Hi:(C/Qp) using Monsky-Washnitzer basis differentials.

(i) A basis By, of Hig(C/Qp) corresponding to the decomposition
Hir(C/Qp) = H3(C/Q,) ® W, for the fixed complement W,

(iii) Cup product matrix CPM.
(iv) Action of Frobenius ¢ : C — C (given by x — xP) on Hiz(C/Qp).

15/02/2024 1327
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Computation of hp(co_ — ooy, R —S)

o We first consider {P, Q} = {co_, 004 }.
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Computation of hp(co_ — ooy, R —S)

o We first consider {P, Q} = {co_, 004 }.

(v) (NEW) Find one differential w’ such that Res(w’) = co_ — oo

x8dx

* We can take w' = w, = S
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Computation of hp(co_ — ooy, R —S)

o We first consider {P, Q} = {co_, 004 }.

(v) (NEW) Find one differential w’ such that Res(w’) = co_ — oo

x8dx

* We can take w' = w, = S

(vi) (NEW) Compute 1 (w’) in Hiz(C/Q,)-basis I

* Only in terms of the Frobenius map and the reduction in cohomology
(trick: ¢*(w') — pw' is of second kind).
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Computation of hp(co_ — ooy, R —S)

(vii) Find holomorphic wy, such that ¥ (w' — wp) € Wp.
* Base change from BHiR to By, ~» compute up, ..., ug—1 € Qp such
that wy, = Zlgz_ol ujwi.

* Recall hp(co_ — oo, R—S) = [Ewforw:=w — Y8 uw;.
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Computation of hp(co_ — ooy, R —S)

(vii) Find holomorphic wy, such that ¥ (w' — wp) € Wp.
* Base change from BHiR to By, ~» compute up, ..., ug—1 € Qp such
that wy, = Z,gz_ol ujwi.
* Recall hp(co_ — oo, R—S) = [Ewforw:=w — Y8 uw;.
(viii) Compute the third kind integral fSR w’ and holomorphic integrals.

* Using Balakrishnan's algorithm for Coleman integration, we compute
R R R
Js wg. o [§ wo A+ + g1 [ we-1.
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Computation of h,(P — Q, R — S) - affine points

@ Now, P and Q are affine points.
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Computation of h,(P — Q, R — S) - affine points

@ Now, P and Q are affine points.

_(x—=x(P)\ _ (PO,
e Note div (x——x(Q)> =P+ P)—Q— Q).

@ Rewrite P— Q = %div (i:iég;) +

principal + antisymmetric divisors.
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Computation of h,(P — Q, R — S) - affine points

@ Now, P and Q are affine points.

_(x—=x(P)\ _ o0,
e Note div (x——x(Q)> =P+uP)—Q—(Q).
@ Rewrite P— Q = %div (i:—j:ECP);) + %(P —(P)) — %(Q —-uQ)) =

principal + antisymmetric divisors.

o Recall hy(div(f), D2) = log,(f(D2)) ~ enough to compute
antisymmetric heights hy(P — «(P), R — S).
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Computation of h,(P — ¢(P), R — S) - affine points

(v) Find one differential w’ such that Res(w’) = P — «(P).

P) d
v(P) X we have Res(w') = P — «(P).

Foro — )
@ For w X—X(P)y
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Computation of h,(P — ¢(P), R — S) - affine points

(v) Find one differential w’ such that Res(w’) = P — «(P).

Xi(f()/a)dyx' we have Res(w’) = P —«(P).

(vi) Compute 9(w') in Hiz(C/Qp)-basis By -

e For ' =

* [BB] express it in terms of CPM, some Coleman integrals and certain
residues of differentials.
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Computation of h,(P — ¢(P), R — S) - affine points

(v) Find one differential w’ such that Res(w’) = P — «(P).

Xi(f()/a)dyx' we have Res(w’) = P —«(P).

(vi) Compute 9(w') in Hiz(C/Qp)-basis By -

e For ' =

* [BB] express it in terms of CPM, some Coleman integrals and certain
residues of differentials.

* (NEW) [GM] All these residues are 0 - computational improvement.
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Computation of h,(P — ¢(P), R — S) - affine points

(v) Find one differential w’ such that Res(w’) = P — «(P).

Xi(f()/a)dyx' we have Res(w’) = P —«(P).

(vi) Compute 9(w') in Hiz(C/Qp)-basis By -

e For ' =

* [BB] express it in terms of CPM, some Coleman integrals and certain
residues of differentials.

* (NEW) [GM] All these residues are 0 - computational improvement.

(vii) Find holomorphic wy such that (w’ — wp) € W, - as before.
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Computation of h,(P — t(P), R — S) - key step

(viii) (NEW) Compute

Le=[ s K(Z)P) o
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Computation of h,(P — t(P), R — S) - key step

(viii) (NEW) Compute
/ " _/ P) dx
s x—x(

* [BB] compute it using a clever but complicated formula that involves
computing residues over Weierstrass points which are defined over
extensions of Q.

@ Use a change of variables 7: C — C’ that maps P, (P) € C to
oo_,004 € C', we have

(/R y(P) dx> (/T(R) xgdx>
ﬁ —_—_— = .
s X X(P) Y onC (5) y onC’
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Computation of h,(P — t(P), R — S) - key step

(viii) (NEW) Compute
/ " _/ P) dx
s x—x(

* [BB] compute it using a clever but complicated formula that involves
computing residues over Weierstrass points which are defined over
extensions of Q.

@ Use a change of variables 7: C — C’ that maps P, (P) € C to
oo_,004 € C', we have

(/R y(P) dx> (/T(R) xgdx>
ﬁ —_—_— = .
s X X(P) Y onC (5) y onC’

° ngﬂ is a basis MW-differential on ¢’ — :((SR;) Xé;,ﬂ computed

directly (and quickly) by Balakrishnan's algorithm.
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Importance of the infinity case

@ Recall: change of variables 7: C — C’ maps P, ((P) € C to
oo_,004 € C’

@ By the independence of a model of local heights, we have
ho(P — U(P), R — S) = hy(00_ — o0, 7(R) — 7(S)).

e — It suffices to compute heights of the type hy(co— — ooy, R —S)!

Stevan Gajovié 15/02/2024 19 /27



Importance of the infinity case

@ Recall: change of variables 7: C — C’ maps P, ((P) € C to
oo_,004 € C’

@ By the independence of a model of local heights, we have

he(P — «(P). R = S) = hy(co_ — 004, 7(R) — (S)).
e — It suffices to compute heights of the type hy(co— — ooy, R —S)!
e (NEW - work in progress) Our approach generalises to superelliptic

curves. Further goal: more general curves using divisors of degree
zero supported at infinity.
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Quickly recall the algorithm

o Let C/Qp be a hyperelliptic curve and P, Q, R, S € C(Qp). Want to
compute hy(P — Q,R — S).
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Quickly recall the algorithm

o Let C/Qp be a hyperelliptic curve and P, Q, R, S € C(Qp). Want to
compute hy(P — Q,R — S).

@ Precompute all quantities related to C only.
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Quickly recall the algorithm

o Let C/Qp be a hyperelliptic curve and P, Q, R, S € C(Qp). Want to
compute hy(P — Q,R — S).

@ Precompute all quantities related to C only.

o hy(P—QR—S)=
computed +1 (hp(P — 1(P), R — S) — hp(Q — (Q), R — 5)).
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Quickly recall the algorithm

o Let C/Qp be a hyperelliptic curve and P, Q, R, S € C(Qp). Want to
compute hy(P — Q,R — S).

@ Precompute all quantities related to C only.

o hy(P—QR—S)=
computed +1 (hp(P — 1(P), R — S) — hp(Q — (Q), R — 5)).

e We can compute hy(P — ¢(P),R — S) as hp(co— —oo4, R — S') on
some other hyperelliptic curve C'/Q,, but prefer directly.
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Quickly recall the algorithm

o Let C/Qp be a hyperelliptic curve and P, Q, R, S € C(Qp). Want to
compute hy(P — Q,R — S).

@ Precompute all quantities related to C only.

° h(P-—Q,R-S)=
computed +1 (hp(P — 1(P), R — S) — hp(Q — (Q), R — 5)).

e We can compute hy(P — ¢(P),R — S) as hp(co— —oo4, R — S') on
some other hyperelliptic curve C'/Q,, but prefer directly.

P) d
e Foruw' = x{(—x()P)7X we have Res(w') = P — «(P).

We compute 1(w’) and find the correct one wp = w’ — holomorphic.

Stevan Gajovié 15/02/2024 20/27



Quickly recall the algorithm

Let C/Qp be a hyperelliptic curve and P, Q, R, S € C(Qp). Want to
compute h,(P — Q,R —S).

Precompute all quantities related to C only.

hpo(P—Q,R—S) =

computed +1 (hp(P — 1(P), R — S) — hp(Q — (Q), R — 5)).

We can compute hp(P — ¢(P), R — S) as hp(co— — ooy, R" —5') on
some other hyperelliptic curve C'/Q,, but prefer directly.

P) d
For w' = L—X we have Res(w') = P — (P).
x—x(P) y
We compute 1(w’) and find the correct one wp = w’ — holomorphic.

Compute hp(P —¢(P),R—-5) = fSR w = fSR holomorphic =

_ R x8dx

=g 57— f_f holomorphic.
Similarly, compute h,(Q — ¢(Q), R — S), hence, h,(P — Q,R — S).
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Summary for the local p-adic height above p

@ The main difference between [BB] and our algorithm is in computing
Coleman integrals of differentials of the third kind and residues.

@ Our algorithm is simpler and faster than [BB], and works for both odd
and even degree models.
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Summary for the local p-adic height above p

@ The main difference between [BB] and our algorithm is in computing
Coleman integrals of differentials of the third kind and residues.

@ Our algorithm is simpler and faster than [BB], and works for both odd
and even degree models.

@ We compare the timings and success of our and [BB] algorithm in
several examples.

Genus | p | Precision | Our time | [BB] time
2 7 10 2s 7s
2 7 300 11m 7>1week
2 503 10 4m 19h
3 11 10 6s 28s
4 23 20 2m 46m
17 11 7 14m 7>1week

Stevan Gajovié
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Linear Quadratic Chabauty for integral points

@ X/Q = nice curve of genus g > 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g.

o Assume that [jwo,..., [pwg—1: J(Q) ® Qp — Q, form a basis of
(J(Q) ® Qp)Y ~~ we want to use quadratic Chabauty.
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Linear Quadratic Chabauty for integral points

@ X/Q = nice curve of genus g > 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g.

o Assume that [jwo,..., [pwg—1: J(Q) ® Qp — Q, form a basis of
(J(Q) ® Qp)Y ~~ we want to use quadratic Chabauty.

o Let X/Q: y? = f(x), with f € Z[x] monic, deg(f) = 2g + 2.

@ Then oot € X(Q). Let Doy == [00_ — 004].
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Linear Quadratic Chabauty for integral points

@ X/Q = nice curve of genus g > 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g.

o Assume that [jwo,..., [pwg—1: J(Q) ® Qp — Q, form a basis of
(J(Q) ® Qp)Y ~~ we want to use quadratic Chabauty.

o Let X/Q: y? = f(x), with f € Z[x] monic, deg(f) = 2g + 2.
@ Then oot € X(Q). Let Doy == [00_ — 004].
@ Denote X(Z) := integral points on X. Goal today: Compute X(Z).
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Linear Quadratic Chabauty for integral points

@ X/Q = nice curve of genus g > 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g.

o Assume that [jwo,..., [pwg—1: J(Q) ® Qp — Q, form a basis of
(J(Q) ® Qp)Y ~~ we want to use quadratic Chabauty.

Let X/Q: y? = f(x), with f € Z[x] monic, deg(f) = 2g + 2.
Then oot € X(Q). Let Dy = [00— — 0c04].

Denote X(Z) = integral points on X. Goal today: Compute X(Z).
Recall: h: J(Q) x J(Q) — Qp is a bilinear pairing.
Then A(D) := h(Dw, D) is a linear map J(Q) — Qp.

@ ~» We can write h(Dx, D) = 2,5;01 a; [pwi, for some a; € Qp.
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Linear Quadratic Chabauty for integral points

e Assume Py € X(Z). Consider pp,: X(Qp) — Qp

P
pro (P Za,/ wi = hp(Doo, P — Po) = Za,/ wi—/ WD, -
Po

Stevan Gajovié 15/02/2024 23 /27



Linear Quadratic Chabauty for integral points

e Assume Py € X(Z). Consider pp,: X(Qp) — Qp

P
pro (P Za,/ wi = hp(Doo, P — Po) = Za,/ wi—/ WD, -
Po

@ pq is a locally analytic function.

o If Pe X(Q)! pPo(P) =h— hp = Zq;ﬁp hq(Doo, P— Po)
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Linear Quadratic Chabauty for integral points

e Assume Py € X(Z). Consider pp,: X(Qp) — Qp

P
pro (P Za,/ wi = hp(Doo, P — Po) = Za,/ wi—/ WD, -
Po

@ pq is a locally analytic function.
o If P e X(Q), ppy(P) = h—hp =3 g5 hg(Doo; P = Po).

e We prove Vq # p, VP, Q € X(Zg):
(1) hg(Dso, P — Q) € finite and computable Tg;
(2) T4 = {0} for almost all (including good) primes.

o = pp,(X(Z)) C T for a finite and computable set T.
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Linear Quadratic Chabauty for integral points

e Assume Py € X(Z). Consider pp,: X(Qp) — Qp

P
pro (P Za,/ wi = hp(Doo, P — Po) = Za,/ wi—/ WD, -
Po

@ pq is a locally analytic function.
o If P e X(Q), ppy(P) = h—hp =3 g5 hg(Doo; P = Po).

e We prove Vq # p, VP, Q € X(Zg):
(1) hg(Dso, P — Q) € finite and computable Tg;
(2) T4 = {0} for almost all (including good) primes.

o = pp,(X(Z)) C T for a finite and computable set T.

o We can compute S := pp; 1(T) ~» X(Z) C S for some finite and
computable S C X(Qp). If necessary + Mordell-Weil sieve ~ X(Z).
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LQC for integral points - algorithm + example r = g = 2

o Let X/Q:y? = f(x) = x® 4+ 2x> — 7x* — 18x3 + 2x% + 20x + 0.
© X(Z)known == {(0,£3),(1,£3), (-1, £1),(—2,+£3), (—4,+£37)}.
e Goal: Prove X(Z) = X(Z)known- Use p =T.
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LQC for integral points - algorithm + example r = g = 2

o Let X/Q:y? = f(x) =x®+2x% — 7x* — 18x3 4+ 2x? + 20x + 9.
© X(Z)known == {(0,£3),(1,£3), (-1, £1),(—2,+£3), (—4,+£37)}.
e Goal: Prove X(Z) = X(Z)known- Use p =T.
(1) Compute the finite set T := {372, hg(Doo, P — Q): P, Q € X(Zq)}.
o For P,Q € X(Zq) and all g # 7: hg(Doo, P — Q) =0 = T = {0}.
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LQC for integral points - algorithm + example r = g = 2

o Let X/Q:y? = f(x) =x®+2x% — 7x* — 18x3 4+ 2x? + 20x + 9.
® X(Z)known := {(0,£3),(1,£3), (-1, £1), (-2, £3), (—4, £37)}.
e Goal: Prove X(Z) = X(Z)known- Use p =T.
(1) Compute the finite set T := {372, hg(Doo, P — Q): P, Q € X(Zq)}.
o For P,Q € X(Zq) and all g # 7: hg(Doo, P — Q) =0 = T = {0}.
(2) Represent h(Dso, D) = o [pwo + -+ + ag—1 [pwg—1.

e Find Dy, Dy such that [J(Q) : (Dy, D1)] < co. Solve the system of
equations for i = 0,1 to compute «g, a1

h(Doo,D,-):ao/ wo+a1/ wi.
D; D;

— ap=5+4-74+6-72+0(7%), a1 =6+3-7+5-7> 4+ O(73).
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LQC for integral points - algorithm + example r = g = 2

(3) Assume Py € X(Z). Define pp,: X(Qp) — Qp

P P

pro(P) = 0‘0/ wo £+ %J/,, weg—1— hp(Doc, P — Po).
0

Po
e Set Py = (0,3). Define pp,(P): X(Qp) — Qp
P P
ppO(P) = ao/ wo + al/ w1 — hp(Doo, P — Po).
Po Po

o = pp(X(2)) = {0}.
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LQC for integral points - algorithm + example r = g = 2

(3) Assume Py € X(Z). Define pp,: X(Qp) — Qp

P P

pro(P) = 0‘0/ wo £+ %J/,, weg—1— hp(Doc, P — Po).
0

Po

e Set Py = (0,3). Define pp,(P): X(Qp) — Qp

P P
ppO(P):ao/ wo—l—al/ w1 —hp(Doo,P—Po).
Po Po

o — pr(X(Z)) = {0},
(4) In each affine D(Q), for P € D(Q), compute p(P) € Q,[z].
e Consider Q = Py = (0,3) and P = (7z,-) € D(Py) for some z € Z:

ppy(2) = (42+0(72))z+(6 T3+ 0(74)) 2+ (62 73+ 0(70)) 23+ 0((72)%).
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LQC for integral points - algorithm + example + theorem

(5) For each u € T, p-adically locate the solutions of pp,(z) = u in all
affine residue discs. Obtain a finite set S: X(Z) C S C X(Qp).
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LQC for integral points - algorithm + example + theorem

(5) For each u € T, p-adically locate the solutions of pp,(z) = u in all
affine residue discs. Obtain a finite set S: X(Z) C S C X(Qp).

o Recall, for P € D(Q), parameterised by z,
ppy(2) = (424+0(7%))z+(6-724+-0(7%)) 22 +(62. 73+ 0(7°)) 22+ O((72)*).

e Strassmann's theorem = D(Q) N X(Z) = {Q}.
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LQC for integral points - algorithm + example + theorem

(5) For each u € T, p-adically locate the solutions of pp,(z) = u in all
affine residue discs. Obtain a finite set S: X(Z) C S C X(Qp).

o Recall, for P € D(Q), parameterised by z,

ppy(2) = (424+0(7%))z+(6-724+-0(7%)) 22 +(62. 73+ 0(7°)) 22+ O((72)*).
e Strassmann's theorem = D(Q) N X(Z) = {Q}.
e Similarly in all affine residue discs = X(Z) = S = X(Z)known-

(6) If necessary, use the Mordell-Weil sieve to determine S\ X(Q).
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LQC for integral points - algorithm + example + theorem

(5) For each u € T, p-adically locate the solutions of pp,(z) = u in all
affine residue discs. Obtain a finite set S: X(Z) € S C X(Qp).

o Recall, for P € D(Q), parameterised by z,
ppy(2) = (424+0(7%))z+(6-724+-0(7%)) 22 +(62. 73+ 0(7°)) 22+ O((72)*).
e Strassmann's theorem = D(Q) N X(Z) = {Q}.

e Similarly in all affine residue discs = X(Z) = S = X(Z)known-

(6) If necessary, use the Mordell-Weil sieve to determine S\ X(Q).

Theorem (G.-Miller, 2022)

o X/Q: y? = f(x) nice, with f € Z[x] monic, deg(f) = 2g + 2 with
r =g. There is a locally analytic function p : X(Qp) — Qp, and a
finite and computable set T, such that p(X(Z)) € T.
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LQC for integral points - algorithm + example + theorem

(5) For each u € T, p-adically locate the solutions of pp,(z) = u in all
affine residue discs. Obtain a finite set S: X(Z) € S C X(Qp).

o Recall, for P € D(Q), parameterised by z,
ppy(2) = (424+0(7%))z+(6-724+-0(7%)) 22 +(62. 73+ 0(7°)) 22+ O((72)*).
e Strassmann's theorem = D(Q) N X(Z) = {Q}.

o Similarly in all affine residue discs = X(Z) = S = X(Z)known-

(6) If necessary, use the Mordell-Weil sieve to determine S\ X(Q).

Theorem (G.-Miller, 2022)

o X/Q: y? = f(x) nice, with f € Z[x] monic, deg(f) = 2g + 2 with
r =g. There is a locally analytic function p : X(Qp) — Qp, and a
finite and computable set T, such that p(X(Z)) € T.

o Extended to number fields with an appropriate rank condition.
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Thank you for your attention! J

Any questions? l
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