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p-adic heights
* Balakrishnan and Besser [BB]: compute p-adic heights on odd-degree
hyperelliptic curves.

Goals today:
Introduce p-adic heights on Jacobians of curves.

Briefly mention local p-adic heights away from p.
Present an algorithm to compute local p-adic heights above p on
hyperelliptic curves.
Distinguish two important cases on even degree hyperelliptic curves.

Application discussed today:
Linear quadratic Chabauty for integral points on even degree hyperelliptic
curves.

Other applications:
Quadratic Chabauty for rational points on hyperelliptic curves.
Numerically test p-adic BSD.
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Introduction to p-adic heights

Bilinear pairing (or quadratic form) defined on abelian varieties.

First constructions: Schneider, Mazur-Tate.

More general: Nekovář.

X/Q = nice curve of genus g > 0, with good reduction at p, and
J(X ) = J = its Jacobian.

Works also for number fields K/Q.

Coleman-Gross: p-adic heights on J .
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Comparison with the real (Néron-Tate) heights

Real heights p-adic heights
h :=

∑
v non-arch hv +

∑
v |∞ hv h :=

∑
q 6=p finite prime hq + hp

sum of local heights over all places sum of local heights over all non-
archimedean places

distinguish non-archimedean and
archimedean places

distinguish primes not diving and
diving p

v non-archimedean: hv defined us-
ing intersection theory multiplied
by a log factor

q 6= p: hq defined using intersec-
tion theory multiplied by a log fac-
tor

v archimedean: hv = integral of a
certain differential of the third kind

hp = Coleman integral of a certain
differential of the third kind

Log factor and a hidden term in hp come from a continuous idèle
class character A∗Q/Q∗ −→ Qp with some conditions, which we fix.

There is an ambiguity in the choice of the differentials when
computing hp - so we need another input to fix the desired one.
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Coleman-Gross (CG) p-adic heights

p-adic height: bilinear map

h :=
∑

q finite prime
hq : J(Q)× J(Q)→ Qp.

For a prime number q, denote Xq := X ⊗Qq.

For each prime q ∈ Z, define local heights

hq(D1,D2), for D1,D2 ∈ Div0(Xq) with disjoint support.

Distinguish hq for q 6= p and hp (∗).

hq for q 6= p: intersection multiplicities.

hp: Coleman integral of a non-holomorphic differential with only
simple poles.
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Heights away from p
Theorem (Local heights for q 6= p)

There exists a unique function hq(D1,D2) taking values in Qp:

(1) defined for all D1,D2 ∈ Div0(Xq) with disjoint support;
(2) bi-additive, continuous, and symmetric;
(3) ∀f ∈ Qp(Xq)∗ (if defined): hq(div(f ),D2) = − logp(q) ordq(f (D2)).

Xq/Qq = regular model of Xq with (− · −) = (Q-valued) intersection
multiplicity on Xq.

D1,D2 = extensions of D1,D2 to Xq such that (Di · V ) = 0 for all
vertical divisors V on Xq.

Construction of hq

hq(D1,D2) = − logp(q) · (D1 · D2).

van Bommel-Holmes-Müller’s algorithm: Compute hq.
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Introduction to local p-adic heights at p

Construction of hp

The local height hp(D1,D2) is a Coleman integral
∫

D2
ωD1 :

ωD1 : differential with only simple poles, and for which the residue at
every pole is an integer. The points in support of D1 are exactly the
poles of ωD1 , with multiplicities given by their residues.
Since holomorphic differentials have no singularities, ωD1 apriori is not
determined uniquely, so we need another input to define hp properly.

Third and second kind meromorphic differentials
ω is of the third kind if it is holomorphic except possibly at finitely
many points and it has at most simple poles with residues in Z.
ω is of the second kind if all of its residues are 0.

{third kind} ∩ {second kind} = {holomorphic}.

H1
dR(Xp/Qp) ' {differentials of the second kind}/{df : f ∈ Qp(X )×}.
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Introduction to local p-adic heights at p

The residue divisor homomorphism is
Res : {third kind on Xp} −→ Div0(Xp), Res(ω) =

∑
P∈Xp

ResP(ω)P.

Res surjective, but not injective (Res({holomorphic}) = 0).

Want ωD1 to be such that Res(ωD1) = D1. This choice is not unique!

∃ homomorphism “projection” ψ (with many useful properties):
ψ : {meromorphic differentials on Xp} −→ H1

dR(Xp/Qp).

Input for hp: A choice of a subspace Wp ⊆ H1
dR(Xp/Qp)

complementary to the space of holomorphic forms H1,0
dR (Xp/Qp).

H1
dR(Xp/Qp) = H1,0

dR (Xp/Qp)⊕Wp.

=⇒ D ∈ Div0(Xp)  unique ωD of the third kind such that
Res(ωD) = D and ψ(ωD) ∈Wp.
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Introduction to local p-adic heights at p

Definition of hp

Let D1,D2 ∈ Div0(Xp) with disjoint support. The local p-adic height
pairing at p is given by hp(D1,D2) :=

∫
D2
ωD1 .

Properties of hp:

* hp(D1,D2) is continuous and bi-additive.

* hp(div(f ),D2) = logp(f (D2)).

* hp is symmetric if and only if Wp ⊆ H1
dR(Xp/Qp) is isotropic with

respect to the cup product pairing.

* When Xp has good ordinary reduction, we can take
Wp := the unit root subspace (necessary for p-adic BSD).

* Independent of a model of Xp under reasonable technical conditions:
τ : Xp → X ′p =⇒ hp(τ∗(D1), τ∗(D2))on X ′

p = hp(D1,D2)on Xp .
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Coleman integration in Sage

Sage implementation - Balakrishnan: Hyperelliptic curves
C : y2 = f (x)/Qp (WARNING: Sage sees only one point at infinity!):

Monsky-Washnitzer basis differentials ωi := x i dx
y for

0 ≤ i ≤ deg(f )− 2  can compute
∫ R

S ωi .

In particular: Coleman integrals of holomorphic differentials.

Tiny integrals
∫ R

S ω, where S ≡ R (mod p).

Stevan Gajović 15/02/2024 10 / 27



Coleman integration in Sage

Sage implementation - Balakrishnan: Hyperelliptic curves
C : y2 = f (x)/Qp (WARNING: Sage sees only one point at infinity!):

Monsky-Washnitzer basis differentials ωi := x i dx
y for

0 ≤ i ≤ deg(f )− 2  can compute
∫ R

S ωi .

In particular: Coleman integrals of holomorphic differentials.

Tiny integrals
∫ R

S ω, where S ≡ R (mod p).

Stevan Gajović 15/02/2024 10 / 27



Coleman integration in Sage

Sage implementation - Balakrishnan: Hyperelliptic curves
C : y2 = f (x)/Qp (WARNING: Sage sees only one point at infinity!):

Monsky-Washnitzer basis differentials ωi := x i dx
y for

0 ≤ i ≤ deg(f )− 2  can compute
∫ R

S ωi .

In particular: Coleman integrals of holomorphic differentials.

Tiny integrals
∫ R

S ω, where S ≡ R (mod p).

Stevan Gajović 15/02/2024 10 / 27



Local heights hp(D1,D2) setup

Assume that D1,D2 ∈ Div0(C) are pointwise Qp-rational.

Compute hp(D1,D2)  compute hp(P − Q,R − S) for fixed distinct
points P,Q,R,S ∈ C(Qp).

Assume from now on that C : y2 = f (x), with f ∈ Zp[x ] monic has
good reduction. Denote by ι : C → C the hyperelliptic involution.

Recall: Balakrishnan and Besser [BB] compute hp(P − Q,R − S)
when deg(f ) odd.

Gajović-Müller [GM]: Compute hp(P − Q,R − S) for all hyperelliptic
curves over Qp with good reduction.

For even degree, one more case - when {P,Q} = {∞−,∞+}. [GM]
depends on the points - if they are all affine or {P,Q} = {∞−,∞+}.

We now recall [BB] algorithm. [GM] follows the key steps of [BB],
but computes some of them differently.
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[BB] algorithm - key steps

(1) Reduce to computing hp(P − ι(P),R − S).

(2) Find one differential ω′ such that Res(ω′) = P − ι(P).

(3) Compute ψ(ω′) in H1
dR(C/Qp)-basis.

(4) Obtain a holomorphic differential ωh such that ψ(ω′ − ωh) ∈Wp.

(5) Compute the Coleman integral of the third kind differential
∫ R

S ω′.

(6) Compute hp(P − ι(P),R − S) =
∫ R

S ω′ −
∫ R

S ωh.
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Computations depending only on C

Let C/Qp be a hyperelliptic curve of genus g .

We need to compute some quantities related only to C:

(i) Extend the basis {ω0, . . . , ωg−1} of H1,0
dR (C/Qp) to a basis BH1

dR
of

H1
dR(C/Qp) using Monsky-Washnitzer basis differentials.

(ii) A basis BWp of H1
dR(C/Qp) corresponding to the decomposition

H1
dR(C/Qp) = H1,0

dR (C/Qp)⊕Wp for the fixed complement Wp.

(iii) Cup product matrix CPM.

(iv) Action of Frobenius φ : C −→ C (given by x 7→ xp) on H1
dR(C/Qp).
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Computation of hp(∞− −∞+,R − S)

We first consider {P,Q} = {∞−,∞+}.

(v) (NEW) Find one differential ω′ such that Res(ω′) =∞− −∞+.

* We can take ω′ = ωg = xg dx
y .

(vi) (NEW) Compute ψ(ω′) in H1
dR(C/Qp)-basis BH1

dR
.

* Only in terms of the Frobenius map and the reduction in cohomology
(trick: φ∗(ω′)− pω′ is of second kind).
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Computation of hp(∞− −∞+,R − S)

(vii) Find holomorphic ωh such that ψ(ω′ − ωh) ∈Wp.

* Base change from BH1
dR

to BWp  compute u0, . . . , ug−1 ∈ Qp such
that ωh =

∑g−1
i=0 uiωi .

* Recall hp(∞− −∞+,R − S) =
∫ R

S ω for ω := ω′ −
∑g−1

i=0 uiωi .

(viii) Compute the third kind integral
∫ R

S ω′ and holomorphic integrals.

* Using Balakrishnan’s algorithm for Coleman integration, we compute∫ R
S ωg , u0

∫ R
S ω0 + · · ·+ ug−1

∫ R
S ωg−1.
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Computation of hp(P − Q,R − S) - affine points

Now, P and Q are affine points.

Note div
( x − x(P)
x − x(Q)

)
= P + ι(P)− Q − ι(Q).

Rewrite P −Q = 1
2 div

( x − x(P)
x − x(Q)

)
+ 1

2(P − ι(P))− 1
2(Q − ι(Q)) =

principal + antisymmetric divisors.

Recall hp(div(f ),D2) = logp(f (D2))  enough to compute
antisymmetric heights hp(P − ι(P),R − S).
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Computation of hp(P − ι(P),R − S) - affine points

(v) Find one differential ω′ such that Res(ω′) = P − ι(P).

For ω′ = y(P)
x − x(P)

dx
y , we have Res(ω′) = P − ι(P).

(vi) Compute ψ(ω′) in H1
dR(C/Qp)-basis BH1

dR
.

* [BB] express it in terms of CPM, some Coleman integrals and certain
residues of differentials.

* (NEW) [GM] All these residues are 0 - computational improvement.

(vii) Find holomorphic ωh such that ψ(ω′ − ωh) ∈Wp - as before.
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Computation of hp(P − ι(P),R − S) - key step

(viii) (NEW) Compute ∫ R

S
ω′ =

∫ R

S

y(P)
x − x(P)

dx
y .

* [BB] compute it using a clever but complicated formula that involves
computing residues over Weierstrass points which are defined over
extensions of Qp.

Use a change of variables τ : C → C ′ that maps P, ι(P) ∈ C to
∞−,∞+ ∈ C ′, we have

=⇒
(∫ R

S

y(P)
x − x(P)

dx
y

)
onC

=
(∫ τ(R)

τ(S)

xgdx
y

)
onC ′

.

xg dx
y is a basis MW-differential on C ′ =⇒

∫ τ(R)
τ(S)

xg dx
y computed

directly (and quickly) by Balakrishnan’s algorithm.
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Importance of the infinity case

Recall: change of variables τ : C → C ′ maps P, ι(P) ∈ C to
∞−,∞+ ∈ C ′

By the independence of a model of local heights, we have
hp(P − ι(P),R − S) = hp(∞− −∞+, τ(R)− τ(S)).

=⇒ It suffices to compute heights of the type hp(∞−−∞+,R −S)!

(NEW - work in progress) Our approach generalises to superelliptic
curves. Further goal: more general curves using divisors of degree
zero supported at infinity.
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Quickly recall the algorithm

Let C/Qp be a hyperelliptic curve and P,Q,R, S ∈ C(Qp). Want to
compute hp(P − Q,R − S).

Precompute all quantities related to C only.

hp(P − Q,R − S) =
computed +1

2(hp(P − ι(P),R − S)− hp(Q − ι(Q),R − S)).

We can compute hp(P − ι(P),R − S) as hp(∞− −∞+,R ′ − S ′) on
some other hyperelliptic curve C ′/Qp, but prefer directly.

For ω′ = y(P)
x − x(P)

dx
y , we have Res(ω′) = P − ι(P).

We compute ψ(ω′) and find the correct one ωP = ω′ − holomorphic.

Compute hp(P − ι(P),R − S) =
∫ R

S ω′ −
∫ R

S holomorphic =
=
∫ R′

S′
xg dx

y −
∫ R

S holomorphic .

Similarly, compute hp(Q − ι(Q),R − S), hence, hp(P − Q,R − S).
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Summary for the local p-adic height above p

The main difference between [BB] and our algorithm is in computing
Coleman integrals of differentials of the third kind and residues.

Our algorithm is simpler and faster than [BB], and works for both odd
and even degree models.

We compare the timings and success of our and [BB] algorithm in
several examples.

Genus p Precision Our time [BB] time
2 7 10 2s 7s
2 7 300 11m ?>1week
2 503 10 4m 19h
3 11 10 6s 28s
4 23 20 2m 46m
17 11 7 14m ?>1week
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Linear Quadratic Chabauty for integral points

X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g .

Assume that
∫

D ω0, . . . ,
∫

D ωg−1 : J(Q)⊗Qp −→ Qp form a basis of
(J(Q)⊗Qp)∨  we want to use quadratic Chabauty.

Let X/Q : y2 = f (x), with f ∈ Z[x ] monic, deg(f ) = 2g + 2.

Then ∞± ∈ X (Q). Let D∞ := [∞− −∞+].

Denote X (Z) := integral points on X . Goal today: Compute X (Z).

Recall: h : J(Q)× J(Q) −→ Qp is a bilinear pairing.

Then λ(D) := h(D∞,D) is a linear map J(Q) −→ Qp.

 We can write h(D∞,D) =
∑g−1

i=0 αi
∫

D ωi , for some αi ∈ Qp.
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Linear Quadratic Chabauty for integral points

Assume P0 ∈ X (Z). Consider ρP0 : X (Qp) −→ Qp

ρP0(P) :=
g−1∑
i=0

αi

∫ P

P0
ωi − hp(D∞,P −P0) =

g−1∑
i=0

αi

∫ P

P0
ωi −

∫ P

P0
ωD∞ .

ρQ is a locally analytic function.

If P ∈ X (Q), ρP0(P) = h − hp =
∑

q 6=p hq(D∞,P − P0).

We prove ∀q 6= p,∀P,Q ∈ X (Zq):
(1) hq(D∞,P − Q) ∈ finite and computable Tq;
(2) Tq = {0} for almost all (including good) primes.

=⇒ ρP0(X (Z)) ⊆ T for a finite and computable set T .

We can compute S := ρ−1P0
(T )  X (Z) ⊆ S for some finite and

computable S ⊆ X (Qp). If necessary + Mordell-Weil sieve  X (Z).
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LQC for integral points - algorithm + example r = g = 2

Let X/Q : y2 = f (x) = x6 + 2x5 − 7x4 − 18x3 + 2x2 + 20x + 9.

X (Z)known := {(0,±3), (1,±3), (−1,±1), (−2,±3), (−4,±37)}.

Goal: Prove X (Z) = X (Z)known. Use p = 7.

(1) Compute the finite set T := {
∑

q 6=p hq(D∞,P − Q) : P,Q ∈ X (Zq)}.

For P,Q ∈ X (Zq) and all q 6= 7: hq(D∞,P − Q) = 0 =⇒ T = {0}.

(2) Represent h(D∞,D) = α0
∫

D ω0 + · · ·+ αg−1
∫

D ωg−1.

Find D0,D1 such that [J(Q) : 〈D0,D1〉] <∞. Solve the system of
equations for i = 0, 1 to compute α0, α1

h(D∞,Di) = α0

∫
Di
ω0 + α1

∫
Di
ω1.

=⇒ α0 = 5 + 4 · 7 + 6 · 72 + O(73), α1 = 6 + 3 · 7 + 5 · 72 + O(73).
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LQC for integral points - algorithm + example r = g = 2

(3) Assume P0 ∈ X (Z). Define ρP0 : X (Qp) −→ Qp

ρP0(P) = α0

∫ P

P0
ω0 + · · ·+ αg−1

∫ P

P0
ωg−1 − hp(D∞,P − P0).

Set P0 = (0, 3). Define ρP0(P) : X (Qp) −→ Qp

ρP0(P) = α0

∫ P

P0
ω0 + α1

∫ P

P0
ω1 − hp(D∞,P − P0).

=⇒ ρP0(X (Z)) = {0}.

(4) In each affine D(Q), for P ∈ D(Q), compute ρ(P) ∈ QpJzK.

Consider Q = P0 = (0, 3) and P = (7z , ·) ∈ D(P0) for some z ∈ Z7:

ρP0(z) = (42+O(72))z+(6·73+O(74))z2+(62·73+O(76))z3+O((7z)4).
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(4) In each affine D(Q), for P ∈ D(Q), compute ρ(P) ∈ QpJzK.

Consider Q = P0 = (0, 3) and P = (7z , ·) ∈ D(P0) for some z ∈ Z7:

ρP0(z) = (42+O(72))z+(6·73+O(74))z2+(62·73+O(76))z3+O((7z)4).
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LQC for integral points - algorithm + example + theorem

(5) For each u ∈ T , p-adically locate the solutions of ρP0(z) = u in all
affine residue discs. Obtain a finite set S: X (Z) ⊆ S ⊆ X (Qp).

Recall, for P ∈ D(Q), parameterised by z ,

ρP0(z) = (42+O(72))z+(6·73+O(74))z2+(62·73+O(76))z3+O((7z)4).

Strassmann’s theorem =⇒ D(Q) ∩ X (Z) = {Q}.

Similarly in all affine residue discs =⇒ X (Z) = S = X (Z)known.

(6) If necessary, use the Mordell-Weil sieve to determine S\X (Q).

Theorem (G.-Müller, 2022)
X/Q : y2 = f (x) nice, with f ∈ Z[x ] monic, deg(f ) = 2g + 2 with
r = g. There is a locally analytic function ρ : X (Qp)→ Qp, and a
finite and computable set T , such that ρ(X (Z)) ∈ T.
Extended to number fields with an appropriate rank condition.
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The end

Thank you for your attention!

Question
Any questions?

Stevan Gajović 15/02/2024 27 / 27


