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Introduction

F - a number field
A - an abelian variety over F

Ã - the dual of A

The Néron–Tate height pairing

A(F )× Ã(F ) → R

is well known. It’s determinant is one of the invariants that appear in the
Birch and Swinnerton-Dyer conjecture.

For a prime number p, a p-adic height pairing is a function

A(F )× Ã(F ) → Qp

which can be regarded as a p-adic analogue of the Néron–Tate height
pairing.
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Introduction

In the literature, there are several p-adic height pairings. Some of them
were constructed by Coleman–Gross, Schneider, Mazur–Tate and Neková̌r.

Algorithms for computing p-adic heights

play a crucial role in carrying out the quadratic Chabauty method to
determine rational points on curves of genus at least two.

The p-adic height pairing constructed by Schneider is particularly
important because

the corresponding p-adic regulator fits into p-adic versions of Birch
and Swinnerton-Dyer conjecture.

Main goal

Present an algorithm to compute the Schneider p-adic height pairing on
(Jacobians of) hyperelliptic Mumford curves.
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But EXTENDED Coleman–Gross height first...

Let C be a nice curve over Q (with not necessarily good reduction at p).
The pairing

⟨·, ·⟩CG : Div0(C )× Div0(C ) → Qp

is defined as

⟨·, ·⟩CG =
∑

q∈{prime numbers}

⟨·, ·⟩q = ⟨·, ·⟩p +
∑
q ̸=p

⟨·, ·⟩q.

The local components away from p are described using “arithmetic
intersection theory”, and

⟨D,E ⟩p :=
Vol∫

E
ωD

where

ωD is a “canonical” differential form attached to D, and
Vol∫

is the Vologodsky integration.
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p-adic integration theories

Fix a smooth curve X over Qp.

Let ω be a differential form on X , let
P,Q ∈ X (Qp). To this data, Vologodsky associated an integral

Vol∫ Q

P
ω ∈ Qp

which satisfy the expected properties. We call this integral the
Vologodsky integral.

To X , one can associate a Berkovich space X an. Pick a path γ in X an

from P to Q. To this data, Berkovich associated an integral

BC∫
γ
ω ∈ Cp

which satisfy the expected properties. We call this integral the
Berkovich–Coleman integral.
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p-adic integration theories

Example: Consider the hyperelliptic curve X/Q5 given by

y2 = (x2 − x − 1)(x4 + x3 − 6x2 + 5x − 5).

p = 5 is a prime of bad reduction for X , and X mod F5 is as follows:

(0, 0) (2, 0) (3, 0)
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p-adic integration theories

Remarks

If X has good reduction, then
Vol∫ y

x ω =
BC∫

γ ω.

The Berkovich–Coleman integral is local, i.e., if U ⊂ X an is a
subdomain containing γ, then the integral

BC∫
γ ω can be computed

from U, ω|U and γ.

BC∫
γ
ω : BC-integral on X an

=
BC∫

γ
ω|U : BC-integral on U
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p-adic integration theories

BC∫
is generally path-dependent and hence disagrees with

Vol∫
.

What is
the difference?

Theorem (Katz–K, K.)

We have
Vol∫ Q

P
ω =

BC∫
γ
ω −

∑
i

(
ci ·

BC∫
γi

ω

)
where

γi ’s are the “loops” in X an, and

ci ’s are certain “tropical” integrals.

Algorithm (Katz–K, K.)

Compute Vologodsky integrals on hyperelliptic curves using this formula
and the fact that the Berkovich–Coleman integral is local.
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Come back to the main goal... Overview

1 Schneider p-adic heights

2 Mumford curves and their Jacobians
Mumford curves
Hyperelliptic Mumford curves
Jacobians of Mumford curves

3 Schneider heights on Mumford curves
Theta functions
Werner’s formula

4 Computing Schneider heights on hyperelliptic Mumford curves
Setting
An algorithm for local components at p

5 Numerical example
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§1. Schneider p-adic heights

F - a number field
C - a projective, geometrically connected and smooth

curve over F of genus g ≥ 1

Schneider’s p-adic height pairing on C is denoted by

(·, ·)Sch : Div0(C )× Div0(C ) → Qp.

It decomposes into local factors.

For a finite prime p of F that lies over p, a formula for

(·, ·)p

was given by Werner in the case where C is a Mumford curve at p.
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§2.1. Mumford curves

K - a finite extension of Qp

| · | - absolute value on K

Definition: A (p-adic) Schottky group is a discrete, finitely generated,
torsion-free subgroup of PGL2(K ).

Fact: A Schottky group is a free group of finite rank.

Any subgroup Γ of PGL2(K ) acts on P1(Cp). Set

LΓ := the set of limit points of Γ,

ΩΓ := P1(Cp) \ LΓ : the set of ordinary points of Γ.

Then ΩΓ is the largest subset of P1(Cp) on which Γ acts discontinuously.

Question: What is ΩΓ/Γ?
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§2.1. Mumford curves

Theorem (Mumford): Let Γ be a Schottky group of rank g . Then there
exists a smooth projective curve XΓ over K of genus g such that

XΓ ≃ ΩΓ/Γ.

Example: Take q ∈ K× with |q| < 1, and let Γ be the cyclic subgroup of

PGL2(K ) generated by

(
q 0
0 1

)
. In this case, XΓ ≃ Eq (Tate elliptic

curve).

Remark: For any Schottky group Γ, XΓ has split degenerate reduction: it
has a semistable OK -model X such that

all irreducible components of Xk are isomorphic to P1
k , and

all double points are k-rational with two k-rational branches,

where k is the residue field.
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§2.1. Mumford curves

Example 1: If XΓ has genus 1, then

split degenerate reduction = split multiplicative reduction.

Example 2: There are precisely 7 stable curves of genus 2 (over an
algebraically closed field):

A genus 2 curve has split degenerate reduction precisely when the special
fiber of its stable model is one of the three pictures at the bottom (picture

taken from Liu’s Algebraic Geometry and Arithmetic Curves book).
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§2.1. Mumford curves

Theorem (Mumford): The map Γ 7→ XΓ induces a bijection{
conjugacy classes of Schottky

groups in PGL2(K )

}
→

{
isomorphism classes of curves over

K with split degenerate reduction

}
.

Definition: A curve X over K is called a Mumford curve if

X ≃ XΓ

for some Schottky group Γ in PGL2(K ).

Remark: Mumford curves = curves with split degenerate reduction.
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§2.2. Hyperelliptic Mumford curves

A matrix γ ∈ PGL2(K ) is called elliptic if its eigenvalues are different but
have the same absolute value.

Consider elliptic matrices s0, . . . , sg in
PGL2(K ) of order 2 such that the group Γ

′
:= ⟨s0, . . . , sg ⟩ is

discrete, and

the free product ⟨s0⟩ ∗ · · · ∗ ⟨sg ⟩.
Note that Γ

′
is not a Schottky group.

Consider the homomorphism

Φ : Γ
′ → {±1}, si 7→ −1 for all i ,

and set
Γ := ker(Φ).

Then
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§2.2. Hyperelliptic Mumford curves

Γ is an index 2 subgroup of Γ
′
.

Γ is a Schottky group, freely generated by γi := si s0, i = 1, . . . , g .

Γ and Γ
′
have the same set of ordinary points, call it Ω.

The following map has degree 2:

Ω/Γ → Ω/Γ
′
, aΓ 7→ aΓ

′
;

so the Mumford curve XΓ = Ω/Γ is a double cover of Ω/Γ
′
.

Question: What is Ω/Γ
′
?

For suitably chosen a, b ∈ Ω, the (theta) function

F (z) := Fa,b(z) :=
∏
γ∈Γ′

z − γ(a)

z − γ(b)
, z ∈ Ω

is Γ
′
-invariant and induces an isomorphism Ω/Γ

′ ≃ P1.
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§2.2. Hyperelliptic Mumford curves

Result: The Mumford curve XΓ = Ω/Γ is actually a hyperelliptic Mumford
curve.

Question: Can we be more precise?

Theorem (van der Put): Write the fixed points of si as {ai , bi}. Then
ai , bi ∈ Ω, and an equation of XΓ is given by

y2 =

g∏
i=0

(x − F (ai ))(x − F (bi )).

Remarks:

The group Γ is called a (p-adic) Whittaker group.

Every hyperelliptic Mumford curve can be parametrized by a
Whittaker group in this way.
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§2.3. Jacobians of Mumford curves

Now let A be an abelian variety over K of dimension g .

We say A is
uniformizable if

A(K ) ≃ (K×)g/Λ

for some lattice Λ. Not every abelian variety is uniformizable.

Question: Which abelian varieties are uniformizable?

Theorem (Mumford): If A is the Jacobian variety of a Mumford curve
over K , then it is uniformizable.

Result: Not only Mumford curves, but also their Jacobians have nice
reduction types.
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§3.1. Theta functions

K - Fp; a finite extension of Qp

X - C ⊗ K ; a curve over K of genus g

Assume X is a Mumford curve. Let Γ be a Schottky group s.t. X ≃ Ω/Γ.

Fix two parameters a, b ∈ Ω, and define the theta function on Ω:

Θ(a, b; z) :=
∏
γ∈Γ

z − γ(a)

z − γ(b)
, z ∈ Ω.

It’s an automorphic form with constant factors of automorphy: for all
γ ∈ Γ and all z ∈ Ω,

Θ(a, b; z) = c(a, b, γ) ·Θ(a, b; γ(z))

for some c(a, b, γ) ∈ K×.
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§3.2. Werner’s formula for (·, ·)p

Now let ρ : K× → Qp be a non-trivial continuous homomorphism. In
practice, it will be logp ◦NK/Qp

where logp is the branch of the p-adic
logarithm that sends p to 0.

Take D,E ∈ Div0(X ). Since the pairing (·, ·)p is additive in both
arguments, we can assume that

D = (x)− (y) and E = (z)− (w)

for some x , y , z ,w ∈ X = Ω/Γ.

Theorem (Werner): Choose preimages x ′, y ′, z ′,w ′ in Ω. We then have

(D,E )p = ρ

(
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§4.1. Setting

F - a number field
C - a hyperell. curve over F of genus g ≥ 1 s.t. for every

finite prime p of F above p, C is a Mumford curve at p.

Take D,E ∈ Div0(C ), and fix a finite prime p of F above p. We’ll use
Werner’s formula to compute (D,E )p. There are three main steps:

Θ: computing theta functions Θ,

Γ: determining the Schottky group Γ,

Ω: lifting points from the curve to Ω.

Set K = Fp and X = C ⊗ K . Since X is a hyperelliptic Mumford curve of
genus g , we have

Γ: Whittaker group such that X ≃ Ω/Γ with gens γ1, . . . , γg ,

Γ
′
: discrete and free group containing Γ with gens s0, . . . , sg ,

ai , bi : fixed points of si .
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§4.2. Θ: computing theta functions

Recall that Γ is free.

Then every element γ in Γ can be written as a unique
shortest product

γ = h1 . . . hℓ, hi ∈ {γ±1 , . . . , γ
±
g }.

The length of γ is ℓ. For m ∈ Z≥0, set

Γm := the set of elements of Γ with length m,

Θm(a, b; z) :=
∏
γ∈Γm

z − γ(a)

z − γ(b)
.

Then Θm(a, b; z) is a finite product and

Θ(a, b; z) =
∞∏

m=0

Θm(a, b; z).

Remark: Another method due to Masdeu–Xarles allows us to compute
this function in a comparatively faster way.
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§4.2. Γ: determining the Schottky group Γ

To find Γ, it suffices to compute

S := {a0, b0, a1, b1, . . . , ag−1, bg−1, ag , bg}.

Set
R := {roots of the defining polynomial of X}.

Recall that

S = F−1(R), F (z) = Fa,b(z) =
∏
γ∈Γ′

z − γ(a)

z − γ(b)
for suitable a, b ∈ Ω.

So it suffices to compute the inverse image of R under F . But F is defined
in terms of Γ

′
, which we don’t know yet.

Question: Can we invert a function we don’t know?

Answer: Of course not. But, thanks to Kadziela’s approximation theorem,
we can simultaneously approximate both S and F such that

F (S) = R.
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§4.2. Γ: determining the Schottky group Γ

We may assume that S = {0, b0, a1, b1, . . . , ag−1, bg−1, 1,∞}. Then the
parameters a = 0 and b = 1 are suitable.

The following is a generalization of Kadziela’s main approximation
theorem:

Theorem (K.–Masdeu–Müller–van der Put)

F (0) = 0, F (1) = ∞, and F (∞) = 1.

For z ∈ S \ {0, 1,∞}, we have

F (z) ≡ 0 mod π,

F (z) ≡

−4b0
∏g−1

i=1

(
1−

(
ai−bi
ai+bi

)2
)

mod π2 if z = b0,

−2z
∏g−1

i=1

(
1 + (ai−bi )

2

(ai+bi )(2z−ai−bi )

)
mod π2 otherwise,

F (z) mod πt =
∏t−2

m=0 Fm(z mod πt) for t ≥ 3,

where π is a uniformizer in K .
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F (0) = 0, F (1) = ∞, and F (∞) = 1.

For z ∈ S \ {0, 1,∞}, we have

F (z) ≡ 0 mod π,

F (z) ≡

−4b0
∏g−1

i=1

(
1−

(
ai−bi
ai+bi

)2
)

mod π2 if z = b0,

−2z
∏g−1

i=1

(
1 + (ai−bi )

2

(ai+bi )(2z−ai−bi )

)
mod π2 otherwise,

F (z) mod πt =
∏t−2

m=0 Fm(z mod πt) for t ≥ 3,

where π is a uniformizer in K .
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§4.2. Γ: determining the Schottky group Γ

Recall that R consists the roots of the defining polynomial of X . We may
assume that

R = {0, r0, r1, . . . , r2g−2, 1,∞}.

If we know correctly the elements z in S \ {0, 1,∞} mod πt , and use them
to approximate

the elliptic matrices si ,

the group Γ
′
,

the theta function F (z),

then the images F (z) will also correctly approximate the roots points in R
mod πt .

In other words, we guess the elements in S digit by digit using the
approximation theorem. This algorithm is a brute force algorithm but
works quite well when g and p are small.
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§4.2. Ω: lifting points from the curve to Ω

Take P = (x , y) in X = Ω/Γ. Our goal is to compute a lift z of P in Ω.

Consider the commutative diagram

Ω
↓ ↘

Ω/Γ → Ω/Γ
′

↓ ↓
X → P1

where the isomorphism Ω/Γ
′ ≃ P1 is induced by F = Fa,b : Ω → P1 for

parameters a, b ∈ Ω.

Using Newton iteration, we can find a z ∈ Ω such that F (z) = x . Then,

the image of z in X ∈ {(x , y), (x ,−y)}.

Question: But... How do we distinguish?
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§4.2. Ω: lifting points from the curve to Ω

Theorem (K.–Masdeu–Müller–van der Put)

Set γ := γ1 · · · γg , and

H(z) := Θ(a, γ(a); z) ·
∏g

i=0Θ(ai , b; z) ·Θ(bi , s0(b); z), z ∈ Ω.

Then

The function H is Γ-invariant, but not Γ
′
-invariant.

Let H also denote the induced element in the function field of
X = Ω/Γ. Then

H2 =
∏g

i=0(x − F (ai ))(x − F (bi )).

The curve X = Ω/Γ is parametrized by z ∈ Ω 7→ (F (z),H(z)).

Corollary: If H(z) = y , then z is a lift of P. Else s0(z) is a lift of P.
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§5. Numerical example

Consider the hyperelliptic curve C/Q given by

y2 = x5 − 326x4 + 1052 · 52x3 − 5914 · 52x2 + 39 · 55x .

The prime p = 5 is a prime of bad reduction. Moreover, the corresponding
(stable) reduction is a projective line with two ordinary double points:

Set D = (x)− (y) and E = (z)− (w), where

x =(7, 1+3·5+4·52+55+56+O(57)), y =(12, 1+2·5+3·52+55+4·56+O(57)),

z =(−3, 1+2·52+4·54+2·55+56+O(57)), w =(−18, 1+3·5+2·53+54+55+2·56+O(57).

Goal

Compute the local height (D,E )p.
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§5. Numerical example

We have:

a0 = 0, b0 = 3 · 53 + 3 · 54 + 3 · 55 + 3 · 56 + O(57),

a2 = 1, a1 = 5 + 2 · 52 + 2 · 53 + 3 · 54 + 56 + O(57),

b2 = ∞, b1 = 3 · 5 + 2 · 52 + 2 · 53 + 54 + 4 · 55 + 3 · 56 + O(57),

γ1 =

(
−375001 · 5 938432 · 5

2 78116

)
, γ2 =

(
928593 · 53 95939 · 53

2 839746

)
,

(D,E )5 = 3 · 5 + 2 · 52 + 4 · 53 + 2 · 55 + O(56).

Question: How do we know that this is correct?

The function (·, ·)p is symmetric, and we have

(E ,D)5 = 3 · 5 + 2 · 52 + 4 · 53 + 2 · 55 + O(56). : −)
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From Marc’s talk...
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Danke Schön!

Basic Notions of Rigid Analytic Geometry - Schneider

Non-archimedean Uniformization and Monodromy Pairing - Papikian

Schottky Groups and Mumford Curves - Gerritzen–van der Put

Rigid Geometry of Curves and Their Jacobians - Lütkebbohmert

p-adic Height Pairings I - Schneider

Local Heights on Mumford Curves - Werner

Algorithms for Mumford Curves - Morrison–Ren

Rigid Analytic Uniformization of Hyperelliptic Curves - Kadziela

Algorithms for Heights On Mumford Curves (to be modified) -
K.–Masdeu–Müller–van der Put
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