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Definition of X0(N)

Definition
For N ∈ Z≥1, we have the moduli space/modular curve over C

Y0(N) := {isomorphism classes (E , ι)| ι : E → E ′, ker(ι) ∼= Z/NZ}.

X0(N) := Y0(N) ∪ {cusps}.

The curve X0(N) is defined over Z
[ 1
N

]
, so one may consider the

set X0(N)(Q).
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Revisiting X0(N)

H := {x + iy|x, y ∈ R, y > 0}, H∗ := {x + iy|x, y ∈ R, y > 0} ∪ Q ∪ {i∞}.

fundamental domain for SL2(Z)

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ (
a b
c d

)
≡

(
∗ ∗
0 ∗

)
mod N

}
.

Möbius transformation
(
a b
c d

)
(z) =

az + b

cz + d
, ∀z ∈ H∗.
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Revisiting X0(N)

H := {x + iy|x, y ∈ R, y > 0}, H∗ := {x + iy|x, y ∈ R, y > 0} ∪ Q ∪ {i∞}.

fundamental domain for SL2(Z)

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ (
a b
c d

)
≡

(
∗ ∗
0 ∗

)
mod N

}
.

Y0(N)(C) ≃ Γ0(N)\H, X0(N)(C) ≃ Γ0(N)\H∗.
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Atkin–Lehner involutions

We say that d |N is a Hall divisor if gcd(d ,N/d) = 1, which we
denote by d ∥ N.

Definition
For each Hall divisor d ∥ N, consider the matrices of the form(

dx y
Nz dw

)
, with x , y , z ,w ∈ Z and determinant d .

Then each of these matrices define a unique involution of X0(N),
which is called the Atkin–Lehner involution and is denoted by wd .
In particular, if d = N, then wN is called the Fricke involution.
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Quotients of X0(N)

Let d ∥ N be a Hall divisor of N.
The action of the Atkin–Lehner involution wd on Y0(N) is given by

wd : (E ,CN) 7→ (E/Cd , (CN + E [d ])/Cd).

This extends uniquely to X0(N) by the valuative criterion for
properness.

We will consider the following quotients:

X0(N)+ := X0(N)/⟨wN⟩,
X0(N)∗ := X0(N)/⟨wd : d ∥ N⟩.
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Moduli space of Q-curves

The quotient
X0(N)∗ := X0(N)/W0(N)

is itself a moduli space. For N squarefree, the lifts in X0(N) of
every non-cuspidal point in X0(N)∗(Q) correspond to Q-curves
defined over multi-quadratic extensions of Q.

A Q-curve is an elliptic curve defined over a Galois extension K/Q
which is isogenous to all of its Galois conjugates.

We say that a point in X0(N)∗(Q) is exceptional if it is neither a
cusp, nor a CM point.
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The star quotient X0(N)∗

Determining rational points on X0(N)∗ may help solve some
interesting problems in number theory, for example Balakrishnan,
Dogra, Müller, Tuitman, and Vonk computed X0(132)∗(Q) and
thus solved a case of Serre’s uniformity conjecture for Galois images
of elliptic curves.

We are interested in provably computing all the rational points on
X0(N)∗.

Elkies’ conjecture: For N ≫ 0, X0(N)∗(Q) consists only of cusps
and CM points.
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Hyperelliptic X0(N)∗

We start with the case of hyperelliptic curves.

Theorem (Hasegawa)

There are 64 values of N for which X0(N)∗ is hyperelliptic. Of
these, there are only 7 of genus g ≥ 3, namely N = 136, 171, 207,
252, 315 (g = 3), 176 (g = 4), and 279 (g = 5).
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Computing rational points: the Chabauty–Coleman method

Use a basepoint b ∈ X (Q) to embed X ↪→ J, x 7→ [x − b].
If

r < g ,

we use the classical Chabauty–Coleman method: There exists
an 0 ̸= ω ∈ H0(JQp ,Ω

1) such that

X (Q) ⊆ X (Qp)1 :=

{
x ∈ X (Qp) :

∫ x

b
ω = 0

}
⊆ X (Qp).

Choose ω to be a linear combination of a basis of H0(X ,Ω1),
which annihilates a finite index subgroup G of J(Q).
The set X (Qp)1 is finite and computable if we know a finite
index subgroup G of J(Q).
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Computing rational points: the quadratic Chabauty method

There have been developments in extending the range of
applicability of the Chabauty–Coleman method.

One of the most successful extensions is the quadratic Chabauty
method, which works under the condition

r < g + ρ(J)− 1,

where ρ(J) is the rank of the Néron–Severi group of J over Q.
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Overview: the Quadratic Chabauty method

Range of applicability:

bielliptic quadratic Chabauty: Balakrishnan and Dogra made
one level of Kim’s program explicit for genus 2 curves X for
which J(Q) is isogenous to a product of elliptic curves E1 × E2
with rk(E1(Q)) = rk(E2(Q)) = 1;
quadratic Chabauty for modular curves: Balakrishnan, Dogra,
Müller, Tuitman, and Vonk developed quadratic Chabauty
explictly to compute X0(132)+(Q).
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The Quadratic Chabauty Method

Same setup as Chabauty–Coleman, but

���r < g , r < g + ρ(J)− 1.

There is a global p-adic height h : X (Qp) → Qp, which
decomposes into local heights

h = hp +
∑
ℓ̸=p

hℓ.

hp is locally analytic, and the hℓ have finite image on X (Q)
depending on the reduction at ℓ.
If r = g and the Néron-Severi rank of Jac(X ) is > 1, we use
the quadratic Chabauty method (depending on modularity):

X (Q) ⊆ X (Qp)2 :=
{
x ∈ X (Qp) : h(x)−hp(x) ∈ Ω

}
⊆ X (Qp),

where Ω = {0} if hℓ ≡ 0 for all ℓ ̸= p.
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Back to Hasegawa’s classification

Recall that Hasegawa classified the levels N for which X0(N)∗ is
hyperelliptic. The hardest case is determining the set of rational
points in the genus 2 case, as the higher genus cases can be tackled
using the Chabauty–Coleman method.

The curve X0(N)∗ has genus 2 for the following levels N:

67, 73, 85, 88, 93, 103, 104, 106, 107, 112,
115, 116, 117, 121, 122, 125, 129, 133, 134, 135,
146, 147, 153, 154, 158, 161, 165, 166, 167, 168,
170, 177, 180, 184, 186, 191, 198, 204, 205, 206,
209, 213, 215, 221, 230, 255, 266, 276, 284, 285,
286, 287, 299, 330, 357, 380, 390.
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Genus 2 levels

67, 73, 85, 88, 93, 103, 104, 106, 107, 112,
115, 116, 117, 121, 122, 125, 129, 133, 134, 135,
146, 147, 153, 154, 158, 161, 165, 166, 167, 168,
170, 177, 180, 184, 186, 191, 198, 204, 205, 206,
209, 213, 215, 221, 230, 255, 266, 276, 284, 285,
286, 287, 299, 330, 357, 380, 390.

Rank is 0 or 1, we can use classical Chabauty–Coleman

Balakrishnan–Dogra–Müller–Tuitman–Vonk using quadratic
Chabauty

Arul–Müller using quadratic Chabauty

Bars–González–Xarles using elliptic curve Chabauty

There are 15 remaining levels, which we address in our papers.
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Filling the gap

Theorem (Adžaga-Chidambaram-Keller-P.)

Let N be one of the following integers:

{133, 134, 146, 147, 166, 177, 205, 206, 213, 221, 255, 266, 287, 299, 330}.

Then X0(N)∗(Q) only consists of the known points of small height.
Moreover, we classify the rational points into cusps, CM points and
exceptional points.
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Exceptional isomorphisms

If

N ∈ {134, 146, 206},

the curves can be addressed using the following observation

X0(2p)∗ ∼= X0(p)
∗ = X0(p)

+, for p ∈ {67, 73, 103}.

Note that
X0(266)∗ ∼= X0(133)∗,

thus the persisting cases are

N ∈ {133, 147, 166, 177, 205, 213, 221, 255, 287, 299, 330}.
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Quadratic Chabauty: computation of local heights

Type I1-1-0 of Namikawa–Ueno

genus2reduction shows: The special fibers of a regular
semistable model are irreducible.
So its dual graph has exactly one vertex.
The local heights hℓ for ℓ ̸= p factor through the vertices of
the dual graph (Betts–Dogra). So they are trivial,
and we need to solve h(x)− hp(x) = 0 on X (Qp).
So we can treat the cases in red using quadratic Chabauty
because they satisfy r = g and have Néron-Severi rank
ρ(J) > 1:

N ∈ {133, 147, 166, 177, 205, 213, 221, 255, 287, 299, 330}.
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X0(N)∗ of genus at least 3

There are only 7 values of N for which X0(N)∗ is hyperelliptic with
genus g ≥ 3, namely

136, 171, 207, 252, 315 (g = 3),
176 (g = 4),
279 (g = 5).

In all of these cases we have that g > rk(Jac(X0(N)∗(Q))), and we
were able to apply the classical Chabauty–Coleman method.
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Bielliptic curves

Definition
We say that a curve X/Q is bielliptic over Q if there exists a degree
two map X → E defined over Q to an elliptic curve E/Q.

If X is bielliptic and has genus 2, then it admits a model of the form

X : y2 = a6x
6 + a4x

4 + a2x
2 + a0.

Furthermore, Jac(X ) ∼ E1 × E2, where E1 and E2 are elliptic
curves given by the following Weierstrass equations:

E1 : y
2 = x3 + a4x

2 + a2a6x + a0a
2
6,

E2 : y
2 = x3 + a2x

2 + a4a0x + a6a
2
0.

There are degree 2 maps φi : X → Ei given on affine points by

φ1(x , y) = (a6x
2, a6y), φ2(x , y) = (a0x

−2, a0yx
−3).
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Methods to compute X (Q)

Let X/Q be a genus 2 curve which is bielliptic over Q. Then

Faltings’ theorem: X (Q) is finite.

If rkE1(Q) = 0 or rkE2(Q) = 0, then we can easily compute
X (Q).

If rkEi (Q) ≥ 1 for i ∈ {1, 2}, then to provably compute X (Q)
we can consider methods such as local obstructions, two-cover
descent, elliptic curve Chabauty.

If rkEi (Q) = 1 for i ∈ {1, 2}, then the bielliptic quadratic
Chabauty method may be applied.
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Bielliptic quadratic Chabauty

Consider X/Q a bielliptic genus 2 curve

X : y2 = x6 + a4x
4 + a2x

2 + a0.

Let p is a prime of good ordinary reduction for X .

Theorem (Balakrishnan–Dogra)

Define Qi ∈ Ei (Q) by Q1 = (0,
√
a0) and Q2 = (0, a0). Suppose

rkE1(Q) = rkE2(Q) = 1. Then the sets Ω1,Ω2 are finite, where:

Ωi = {
∑
ℓ ̸=p

(hEi

ℓ (φi (zℓ) + Qi ) + hEi

ℓ (φi (zℓ)− Qi )− 2hE3−i

ℓ (φ3−i (zℓ))) :

(zℓ) ∈
∏
ℓ ̸=p

X (Qℓ)\{φ−1
i (±Qi )}}.
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Bielliptic quadratic Chabauty revisited

Theorem (Bianchi–P.)

One can replace the computation of Ω1, Ω2 with the computation
of a single set Ω. Moreover, this new set Ω does not depend on
Q1 = (0,

√
a0) ∈ E1(Q) and Q2 = (0, a0) ∈ E1(Q).

We provide a precision analysis to guarantee correctness of the
results.
We used bielliptic quadratic Chabauty in conjuction with the
Mordell-Weil sieve on more than 300 bielliptic genus 2 curves
from the LMFDB.
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X0(166)∗

A priori, we know the curve X0(166)∗ has minimal model

y2 + (−x3 − 1)y = −x4 + 2x3 − x2,

which has 2 and 83 as primes of bad reduction. The reduction type
leads to trivial height contribution from ℓ = 83, but we might
obtain a nonzero contribution from ℓ = 2.

But, surprisingly, X0(166)∗ is a bielliptic curve

X0(166)∗ : y2 = x6 + 2x4 + 17x2 − 4.

Thus one may apply bielliptic quadratic Chabauty.
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Sieving: bielliptic case

Let X/Q be a bielliptic genus 2 curve with

Jac(X )(Q) ∼ E1(Q)× E2(Q)

with rk(E1(Q)) = rk(E2(Q)) = 1.

X (Q) E1(Q)× E2(Q) Z× Z

X (Fp) E1(Fp)× E2(Fp)

φ

redp redp

η

µ

φ
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Sieving: bielliptic case

X (Q) E1(Q)× E2(Q) Z× Z

X (Fp) E1(Fp)× E2(Fp),

φ

redp redp

η

µ

φ

where φ = (φ1, φ2), η(m, n) = (mP1, nP2), where P1,P2 are
generators for E1(Q),E2(Q) respectively, and µ = redp ◦η.

Since
(redp ◦φ)(X (Q)) ⊆ φ(X (Fp)) ∩ µ(Z× Z),

to prove that X (Q) = ∅, it is enough to show that
φ(X (Fp)) ∩ µ(Z× Z) = ∅.
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The Mordell–Weil Sieve: general case

Assume that one can compute generators for (a finite index
subgroup of) J(Q).

For a finite set S of good primes and an integer M > 1,
consider the commutative diagram:

X (Q) J(Q)/MJ(Q)

∏
ℓ∈S

X (Fℓ)
∏
ℓ∈S

J(Fℓ)/MJ(Fℓ)

α

β

Conjecturally, one can always choose an integer M and a set of
primes S such that the Mordell-Weil sieve eliminates all p-adic
points resulted from Chabauty methods which do not come from
Q-rational points.
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