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Chapter 1

Introduction

What is this? These pages are a guide to tensors, using the visual language of “ensor
diagrams”. For illustrating the generality of the approach, I’ve tried to closely follow the
legendary “Matrix Cookbook”. As such, most of the presentation is a collection of facts
(identities, approximations, inequalities, relations, ...) about tensors and matters relating
to them. You won’t find many results not in the original cookbook, but hopefully the
diagrams will give you a new way to understand and appreciate them.

It’s ongoing: The Matrix Cookbook is a long book, and not all the sections are equally
amendable to diagrams. Hence I’ve opted to skip certain sections and shorten others.
Perhaps in the future, I, or others, will expand the coverage further.

For example, while we cover all of the results on Expectation of Linear Combinations
and Gaussian moments, we skip the section on general multi-variate distributions. I have
also had to rearrange the material a bit, to avoid having to introduce all the notation up
front.

Complex Matrices and Covariance Tensor diagrams (or networks) are currently
most often seen in Quantum Physics. Here most values are complex numbers, which
introduce some extra complexity. In particular transposing a matrix now involves taking
the conjugate (flipping the sign of the imaginary part), which introduces the need for co-
and contra-variant tensors. None of this complexity is present with standard real valued
matrices, as is common e.g. in Machine Learning applications. For simplicity I have
decided to not include these complexities.

Tensorgrad The symbolic nature of tensor diagrams make the well suited for symbolic
computation.

Advantages of Tensor Diagram Notation: Tensor diagram notation has many ben-
efits compared to other notations:

Various operations, such as a trace, tensor product, or tensor contraction can be
expressed simply without extra notation. Names of indices and tensors can often be
omitted. This saves time and lightens the notation, and is especially useful for internal
indices which exist mainly to be summed over. The order of the tensor resulting from
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a complicated network of contractions can be determined by inspection: it is just the
number of unpaired lines. For example, a tensor network with all lines joined, no matter
how complicated, must result in a scalar.

Etymology The term "tensor" is rooted in the Latin word tensio, meaning “tension” or
“stretching,” derived from the verb tendere, which means “to stretch” or “to extend.” It was
first introduced in the context of mathematics in the mid-19th century by William Rowan
Hamilton in his work on quaternions, where it referred to the magnitude of a quaternion.
The modern usage of "tensor" was later established by Gregorio Ricci-Curbastro and
Tullio Levi-Civita in their development of tensor calculus, a framework that generalizes
the concept of scalars, vectors, and matrices to more complex, multidimensional enti-
ties. [1, 3].
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1.1 Notation and Nomenclature

[P ] =

{
1 if P
0 otherwise

.

1.2 Tensor Diagrams
Tensor diagrams are simple graphs (or “networks”) where nodes represent variables (e.g.
vectors or matrices) and edges represent contractions (e.g. matrix multiplication or inner
products.) The follow table shows how some basic operations can be written with tensor
diagrams:

Dot product a b y =
∑

i aibi [ · · · · ]

[ ·
·
·
·

]
= y

Outer product a b Yi,j = aibj

[ ·
·
·
·

]
[ · · · · ] = Y

Matrix-Vector A b yi =
∑

j Ai,jbj

[ · · · ·
· · · ·
· · · ·
· · · ·

][ ·
·
·
·

]
= y

Matrix-Matrix A B Yi,k =
∑

j Ai,jBj,k

[ · · · ·
· · · ·
· · · ·
· · · ·

][ · · · ·
· · · ·
· · · ·
· · · ·

]
= Y

We think of vectors and matrices as tensors of order 1 and 2. The order corresponds
to the number of dimensions in their [· · · ] visualization above, e.g. a vector is a 1-
dimensional list of numbers, while a matrix is a 2-dimensional grid of numbers. The order
also determines the degree of the node representing the variable in the tensor graph.

Diagram notation becomes more interesting when you have tensors of order 3 and
higher. An order 3 tensor is a cube or numbers, or stack of matrices. E.g. we can write
this as T ∈ Rn×m×k, so Ti ∈ Rm×k is a matrix for i = 1 . . . n. Of course we could slice T
along the other axes too, so T:,j ∈ Rn×k and T:,:,ℓ ∈ Rn×m are matrices too.

A matrix having two outgoing edges means there are two ways you can multiply a
vector onto it, either on the left: xTM , or on the right: Mx. In graph notation we just
write x−M− and −M−x. An order 3 tensor has three edges, so we can multiply it with
a vector in three ways:

T
x

and T
x

and T

x

To be perfectly precise about what each one means, we should give the edges labels. For
example we would write T

x
i to specify the matrix

∑
i Tixi. However, often the edge

in question will be clear from the context, which is part of what makes tensor diagram
notation cleaner than, say, Einstein sum notation.
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Yi,j =
∑

k,l,m,n,o

Ai,kBl,n,oCj,k,l,mDm,nEo ⇔ Y
A

C

B

D
E

i

j
k l

m
n

oi
j

The key principle of tensor diagrams is that edge contraction is associative. This
means you can contract any edge in any order you prefer. This can be seen from the sum
representation above, which can be reordered to sum over k, l,m, n in any order.

The computational price for different contraction orders can be widely different. Un-
fortunately it’s not computationally easy to find the optimal order. See section 11.1 for
algorithms to find the best contraction order, and approximate contraction methods.

Note that tensor graphs are not always connected. We already saw that the outer
product of two vectors can be written a b . This is natural from the sum represen-
tation: No edges simply means no sums. So here yi,j = aibj , which is exactly the outer
product y = a⊗ b.

1.3 The Copy Tensor
A particularly important tensor is the “copy” tensor, also known as the “diagonal”, “kro-
necker delta” or “spider” tensor. The simplest version is the all-ones vector, which we
write as −. That is i = 1. The general order-n tensor is 1 on the diagonal, 0 everywhere
else:

i,j,k,... =

{
1 if i = j = k = . . .

0 otherwise

Or, using Iversonian notation, i,j,k,... = [i = j = k = . . . ]. We see the order-2 copy-
tensor, − − = I, is just the identity matrix, so we can simply remove it from graphs like
this:

−A− −B− = −A−B−

Higher order copy-tensors are very useful, because they let us turn the simple tensor
graphs into hyper-graphs. A simple example of how we can use this is the diagonal matrix
Da, which has a on the diagonal and 0 elsewhere. We can write this as

Da =
a

Why? Because (Da)i,j =
∑

k i,j,kak =
∑

k[i = j = k]ak = [i = j]ai. Similarly the
Hadamard product, (a ◦ b)i = aibi, can be written

a ◦ b =
a b

Now, let’s see why everyone loves copy tensors by using it to prove the identity DaDb =
Da◦b by “copy tensor manipulation”:

DaDb =
a b

=
a b

=
a b

= Da◦b.
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You can verify this using the sum representation.
The general rule at play is that any connected sub-graph of copy-tensors can be

combined into a single one. Sometimes we are even lucky enough that this simplification
leaves us with an identity matrix we can remove too:

S

T S T
S T

.

The only time you have to be a bit careful is when the resulting tensor has order 0.
Depending on how you define the order-0 copy tensor, , you may or may not have the
identity − = .

Lots of other constructions that require special notation (like diagonal matrices or
Hadamard products) with normal vector notation can be unified using the copy tensor.
In the Matrix Cookbook they define the order-4 tensor J , which satisfies Ji,j,k,l = [i =
k][j = l] and which we’d write as J = , and satisfies, for example, dX

dX = J . Using
“tensor products” you could write J = I ⊗ I. Note that J is different from the order-4
copy-tensor, .

1.4 Sums of Tensors
Tensor products can express any linear function. That is f such that f(ax, by) = abf(x, y).
Unfortunately not all operations on tensors are linear. Even something as simple as a
sum of two vectors, x + y, can not be displayed with a simple contraction graph. (Note
that this is not linear because ax+ by ̸= ab(x+ y).)

To handle this important operation, Penrose suggesting simply writing the two graphs
with a plus sign between them, such as −x+−y. Note that this is itself an order-1 tensor,
even though it may look like there are two free edges. If we want to multiply the sum
with another tensor, we can use parentheses like −M−(−x+−y).

It can be helpful to use named edges when dealing with sums, to make it clear how
the edges are matched up. Sums and tensor products interact nicely, with a general form
of the distributive law:

M
T

VR
U

M
T

VRU

R

U
.

When adding tensors that don’t have the same number of edges, or have edges with
different names, we can use “broadcasting”. Say we want to add a matrix M and a vector

x. What does it even mean? If we want to add x to every row of M , we write M
i

j
+

i

xj
.

This is because
i

xj
is an outer product between x and the all one vector, which is a

matrix in which every row is the same. Similarly, if we want to add x to every column,
we could use the matrix

j

xi

.
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Note that we typically don’t talk about “rows” or “columns” when dealing with tensors,
but simply use the name edge (sometimes axis) of the tensor. When using named edges,
operations from classical vector notation like “transpose” can also be removed. The matrix
XT is simply X where the left and right edge have been swapped. But if the edges are
named, we don’t have to keep track on “where the edge is” at all.

1.5 Transposition
TODO: This section is not yet complete.

In classical matrix notation, transposition is denoted by a superscript T, as in AT .
This operation flips the indices of a matrix, so that (AT )ij = Aji. In tensor diagram
notation, we can represent transposition simply by swapping the positions of the edges:

AT = Aj i

When using named edges, the concept of transposition becomes less relevant, as we
can simply refer to the edges by their names regardless of their position. This allows for
more flexible and intuitive manipulation of tensor expressions.

Let’s examine some properties of transposition using tensor diagrams:

(AT )T = A Aj i = Ai j

(AB)T = BTAT A Bk i
T
= B Ai k

(A+B)T = AT +BT ( Ai j + Bi j )
T
= Aj i + Bj i

For higher-order tensors, transposition can be generalized to permutation of indices.
For example, for a 3rd-order tensor Tijk, we might consider Tjik or Tkji. In tensor diagram
notation, this simply corresponds to rearranging the edges:

Tijk = T

ij

k

Tjik = T

ji

k

Tkji = T

kj

i

This flexibility in representing transposition and index permutation is one of the ad-
vantages of tensor diagram notation, as it allows for clear visualization of these operations
without the need for additional notation or symbols.

1.6 Trace
The “trace” of a square matrix is defined Tr(A) =

∑
i Ai,i. In tensor diagram notation,

that corresponds to a self-edge: A . The Matrix Cookbook has a list of identities
using traces. Let’s reproduce them with tensor diagrams:

n∑
i=1

Aii = Tr(A) = Tr(AI) A = A (11)

Tr(A) = Tr(AT ) A = A (13)
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Tr(AB) = Tr(BA) A B = B A (14)

Tr(A+B) = Tr(A) + Tr(B) (A+B) = A (15)

+ B

Tr(ABC) = Tr(BCA) A B C = B C A (16)

= Tr(CAB) = C A B

aTa = Tr(aaT ) a a = Tr( a a ) (17)

= a a

1.7 Eigenvalues
Eigenvalues and eigenvectors are fundamental concepts in linear algebra that have impor-
tant applications in tensor network theory. In tensor diagram notation, we can represent
these concepts in a visually intuitive way.

For a matrix A, if there exists a non-zero vector v and a scalar λ such that Av = λv,
then λ is called an eigenvalue of A, and v is the corresponding eigenvector. In tensor
diagram notation It’s convenient to write its eigendecomposition as A = QΛQ−1, where
Q is a matrix whose columns are the eigenvectors of A, and Λ is a diagonal matrix of the
eigenvalues. Thus:

A = Q
λ

Q−1

The trace of a matrix is equal to the sum of its eigenvalues. We can represent this
relationship using tensor diagrams:

Tr(A) = A = Q
λ

Q−1 =
λ

=
λ
=
∑
i

λi (12)

1.8 Exercises
Exercise 1. Given a sequence of matrices A1, A2, . . . , An ∈ Rn×n, and vectors v1, v2, . . . , vn ∈
Rn, draw, using tensor diagrams, the matrix made of vectors A1v1, A2v2, . . . , Anvn.
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Simple Derivatives

A derivative with respect to a tensor is simply the collection of derivatives with respect
to each element of this tensor. We can keep track of dT

dU by making a tensor of shape
shape(T ) ∪ shape(U). For example, if T is an order-3 tensor and U is an order-2 tensor,
we draw dT/dU as

dT

dU
= T

This notation follows Penrose. The two extra lines coming from the black dot on the
circle makes the derivative an order-5 tensor. That the order of derivatives grows this
way, is one of the main reasons we’ll encounter for tensors to show up in the first place.

When there are not too many edges, we will use a simple inline notation like this:

(T )

The Matrix Cookbook defines the single-entry matrix J i,j ∈ Rn×n as the matrix which
is zero everywhere except in the entry (i, j) in which it is 1. Alternatively we could write
J i,j
n,m = [i = n][j = m].

2.1 Derivatives of Matrices, Vectors and Scalar Forms

2.1.1 First Order
The following first order derivatives show the basic linearity properties of the derivative
operator.

∂xTa

∂x
=

∂aTx

∂x
= a (x a) = (x) a = a (69)

∂aTXb

∂X
= abT (a X b) = a (X) b = a b (70)

∂X

∂Xi,j
= J i,j ( X )

i
j = i

j
(73)

11
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∂(XA)i,j
∂Xm,n

= (Jm,nA)i,j ( X A )i
j

m
n = (X) A (74)

= Ai
j

m

n

2.1.2 Second Order
The second order derivatives are follow from the product rule:

T U T U T U= +

Note that this rule holds independently of how many edges are between T and U , even if
there are none.

∂

∂Xi,j

∑
k,l,m,n

Xk,lXm,n = (
∑
k,l

Xk,l)
2

X

X
( )i

j
=

(X)

X
+

X

(X)
(76)

= 2
∑
k,l

Xk,l = 2
X
i

j

∂bTXTXc

∂X
= X(bcT + cbT ) (b XT X c) = b XT (X) c (77)

+ b (XT ) X c

= b XT c

+ b X c

= X ( b c + c b )

∂

∂Xi,j
(XTBX)k,l = δl,j(X

TB)k,i ( XT B X )k
l

i
j = XT Bk

l

i

j
(79)

+ δk,j(BX)i,l + B Xk
l

j

i

∂

∂Xi,j
XTBX = XTBJ i,j + Jj,iBX (same as above) (80)

∂

∂x
xTBx = (B +BT )x (x B x)

i
j = B x + x B (81)

=
Bi j

B
j i

( )
+x i

TODO: Assume W is symmetric, then... (84) - (88)

2.1.3 Higher Order
Integer powers of matrices, like Xn, are easy to handle by writing out the product and
using the product rule. The Matrix Cookbook includes a few derivatives we can handle
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this way.

∂ (Xn)kl
∂Xij

=

n−1∑
r=0

(
XrJijXn−1−r

)
kl

(X X X . . . X)k
l

i
j

= (X) X X . . . Xk
l

i
j

+ . . .

+ X X X . . . (X)k
l

i
j

=

n−1∑
r=0

Xr Xn−r−1k i

lj

∂

∂X
aTXnb =

n−1∑
r=0

(Xr)
T
abT

(
Xn−1−r

)T
(a−X . . . X − b)

=

n−1∑
r=0

a−Xr Xn−r−1 − b

=

n−1∑
r=0

−(Xr)T − a b− (Xn−r−1)T−

2.2 Derivatives of Traces
The Matrix Cookbook contains a lot of derivatives for traces. These can be elegant in
classical notation, since traces are scalar, so the derivatives are low order.

2.2.1 First Order

∂

∂X
Tr(X) = I ( X ) = (X) (99)

=

=

∂

∂X
Tr(XA) = AT ( X A ) = (X) A (100)

= A

= AT

∂

∂X
Tr(AXB) = ATBT ( A X B ) = A (X) B (101)

= A B

= AT BT
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Continues for (102-105). The last one uses the Kronecker product, which we may have
to introduce first.

2.2.2 Second Order

∂

∂X
Tr(X2) = 2XT ( X X ) = (X) X + X (X)

= X + X

= 2 XT

∂

∂X
Tr(X2B) = (XB +BX)T ( X X B ) = (X) X B + X (X) B

= X B + X B

= BT XT + XT BT

∂

∂X
Tr(XTBX) =

∂

∂X
Tr(XXTB) ( XT B X ) = (XT ) B X + XT B (X)

=
∂

∂X
Tr(BXXT ) = B X + XT B

= (B +BT )X = B X + BT X

∂

∂X
Tr(XBXT ) =

∂

∂X
Tr(XTXB) ( X B XT ) = (X) B XT + X B (XT )

=
∂

∂X
Tr(BXTX) = B XT + X B

= X(BT +B) = X BT + X B

The last equation is a bit surprising, since we might assume we could simply substitute
X for XT in the previous equation and conclude

(B +BT )X =
∂

∂X
Tr(XBXT ) =

∂

∂X
Tr(XTBX) = X(BT +B).

However that is clearly not that case. Such substitution would only work for a linear
function, not a quadratic. In general it is the case that ∂

∂X f(X)T ̸= ∂
∂X f(XT ).

2.2.3 Higher Order

∂

∂X
Tr(Xn) = n(Xn−1)T (X X X . . . X)

=

n−1∑
r=0

Xr Xn−r−1
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= n(XT )n−1

∂

∂X
Tr(AXn) =

n−1∑
r=0

(XrAXn−1−r)T (A X X . . . X)

=

n−1∑
r=0

A Xr Xn−r−1

=

n−1∑
r=0

(Xr)T AT (Xn−r−1)T

2.3 Exercises
Exercise 2. Find the derivative of

xTATxxTAx

with respect to x.
Exercise 3. Find the derivative of

XTAX

with respect to X.
Exercise 4. Show the derivatives:

∂

∂x
(Bx+ b)TC(Dx+ d) = BTC(Dx+ d) +DTCT (Bx+ b) (78)

∂

∂X
bTXTDXc = DTXbcT +DXcbT (82)

∂

∂X
(Xb+ c)TD(Xb+ c) = (D +DT )(Xb+ c)bT (83)

Exercise 5. Show the remaining second order trace derivatives from the Matrix Cook-
book:

∂

∂X
Tr(AXBX) = ATXTBT +BTXTAT

∂

∂X
Tr
(
XTX

)
=

∂

∂X
Tr
(
XXT

)
= 2X

∂

∂X
Tr
(
BTXTCXB

)
= CTXBBT +CXBBT

∂

∂X
Tr
[
XTBXC

]
= BXC+BTXCT

∂

∂X
Tr
(
AXBXTC

)
= ATCTXBT +CAXB

∂

∂X
Tr
[
(AXB+C)(AXB+C)T

]
= 2AT (AXB+C)BT
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Exercise 6. Show the derivative of the fourth order trace from the Matrix Cookbook:

∂

∂X
Tr
[
BTXTCXXTCXB

]
= CXXTCXBBT

+CTXBBBTXTCTX

+CXBBTXTCX

+CTXXTCTXBB
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Kronecker and Vec Operator

3.1 Flattening
Flattening is a common operation for programmers. In the language of numpy, we may
write np.ones((2,3,4)).reshape(2, 12) to flatten a shape (2,3,4) tensor into a shape
(2,12) matrix. Similarly, in mathematical notation, vec(X) is commonly used to denote
the flattening of a matrix into a vector.

Typically the main reason to do this is as a cludge for dealing with bad general notation
for tensors. Hence, with tensor diagrams, we can avoid this operation entirely. However,
it is still interesting to see how tensor diagrams can make a lot of properties of flattening
much more transparent.

To begin with we note that flattening is a linear operation, and hence can be repre-
sented as a simple tensor. We’ll use a triangle to denote this:

▷i,j,k =

i

j
k
= [i+ jn = k].

Here n is the dimension of the i edge. Note we use a double line to denote the output of
the flattening operation. This is simply a syntactic choice to remind ourselves that the
output is a bundle of two edges.

Using this notation we can write

vec(X)k =
∑
i,j

▷i,j,kXi,j = X
k
.

The basic property of ▷ is that opposing triangles cancel:

= (3.1)

and = . (3.2)

It’s also easy to convince oneself of the following “mixed” property:

= (3.3)

17
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3.2 The Kronecker Product
The Kronecker product of an m × n matrix A and an r × q matrix B, is an mr × nq
matrix, A⊗B defined as

A⊗B =


A1,1B A1,2B · · · A1,nB

A2,1B A2,2B · · · A2,nB
...

...
. . .

...
Am,1B Am,2B · · · Am,nB

 .

Using index notation we can also write this as (A ⊗ B)p(r−1)+v,q(s−1)+w = ArsBvw, but
it’s pretty hard to read.

In tensor notation the Kronecker Product is simply the outer product of two matrices,

flattened “on both sides”: A⊗B =
A
B

.

The Kronecker product has the following properties:

A⊗ (B + C) = A⊗B +A⊗ C
A

(B+C)
=

A
B

(506)

+
A
C

A⊗ (B ⊗ C) = (A⊗B)⊗ C
A
B
C

=
A
B
C

(508)

=
A
B
C

aA⊗ bB = ab(A⊗B)
a A
b B

=
ab A

B
(509)

(A⊗B)T = AT ⊗BT A
B

=
A
B

(510)

(A⊗B)(C ⊗D) = AC ⊗BD
A
B

C
D

=
A
B

C
D

(511)

(A⊗ I)(I ⊗B) = A⊗B
A

B
=

A
B

(511b)

Tr(A⊗B) = Tr(A)Tr(B)
A
B

= A
B

(515)
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= A B

eig(A⊗B) = eig(A)eig(B)
Q1

Q2

Q−1
1

Q−1
2

λ1

λ2

=
Q1

Q2

Q−1
1

Q−1
2

λ1

λ2

(519)

=
Q1

Q2

Q−1
1

Q−1
2

λ1 λ2

Here the last equation shows an interesting general property of ▷:

M

=

M

. (3.4)

This is easier to see when we consider that V =
M

represents the tensor where

Vi,j,i,j = Mi,j and 0 otherwise. So flattening V on both sides is the same as diag(vec(M)),
which is the rhs of (3.4).

3.3 The Vec Operator
The vec-operator applied on a matrix A stacks the columns into a vector, i.e. for a 2× 2
matrix

A =

[
A11 A12

A21 A22

]
vec(A) =


A11

A21

A12

A22


At the start of the chapter we showed how to represent the vec-operator using the

flattening tensor: vec(X) = X . The Matrix Cookbook gives the following prop-
erties of the vec-operator:

vec(ATXB) = vec(X)T (A⊗B) X
A

B
= X

A

B
(520)

Tr(ATB) = vec(A)Tvec(B) A B = A B (521)

vec(A+B) = vec(A) + vec(B) (A+B) = A + B (522)
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vec(aA) = a vec(A) aA = a A (523)

aTXBXT c = vec(X)T (B ⊗ caT )vec(X) a X B X c = X
B

a b
X (524)

= X
B

a b
X

3.4 General Matrification
The last equation is an example of a general idea: Any tensor network can be transformed
into a series of matrix multiplications by applying the vec-operator to all tensors and the
flattening tensor to all edges. For example, the following complicated graph:

a B

C
D

E

g

H

f

a

B

C
D

E

g

H

f

Can be written as a simple vector-matrix-matrix-vector product, aM1M2b, where M1 =
vec(B)⊗C ′, M2 = E′ ⊗D′ ⊗ I and b = f ⊗ g ⊗ vec(H), where C ′, D′ and E′ are rank 3
tensors flattened on one side, and vec(B) is interpreted as a matrix with a single column.

3.4.1 The Lyapunov Equation
A nice application of Kronecker product rewritings is to solve equations like

AX +XB = C. (272)

We use the rewriting vec(AX +XB) = (I ⊗A+BT ⊗ I)vec(X), which follows from the
tensor diagram massaging:(

+
A X
X B

)
= X

A
+ X

B
= X

(
+

A

B

)
after which we can take the normal matrix inverse to get

vec(X) = (I ⊗A+BT ⊗ I)−1vec(C). (273)

3.4.2 Encapsulating Sum
This is a generalization of the previous equation.∑

n

AnXBn = C (274)

vec(X) = (
∑
n

BT
n ⊗An)

−1vec(C) (275)
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3.5 The Hadamard Product
The Hadamard product, also known as element-wise multiplication, is not described in the
Matrix Cookbook. Yet, it is a very useful operation, and has some interesting properties
in connection with the Kronecker product.

We define the Hadamard product of two 2× 2 matrices A and B as

A ◦B =

[
A11 A12

A21 A22

]
◦

[
B11 B12

B21 B22

]
=

[
A11B11 A12B12

A21B21 A22B22

]
.

In tensor notation, the Hadamard product can be represented using two rank-3 copy

tensors: A
B

. Some properties of the Hadamard product are:

xT (A ◦B)y = tr(ATDxBDy)
A
B

x y = AT B
x y

(A⊗B) ◦ (C ⊗D) = (A ◦ C)⊗ (B ◦D)

A
B
C
D

=

A
B
C
D

The first equation is simply massaging the tensor diagram. The second follows from
(3.3). Alternatively, it suffices to follow the double lines to see that A and C both use
the “upper” part of the double edge, while B and D use the lower part.

3.6 Khatri–Rao product
Also known as the column-wise Kronecker, row-wise Kronecker or “Face-splitting Prod-
uct”. We use the symbols ∗ and • for the column and row-wise Kronecker products,
respectively.

A ∗B =

[
A11 A12

A21 A22

]
∗

[
B11 B12

B21 B22

]
=


A11B11 A12B12

A11B21 A22B22

A21B11 A22B12

A21B21 A22B22


A •B = . . . =

[
A11B11 A11B12 A12B11 A12B12

A21B21 A21B22 A22B21 A22B22

]

In terms of tensor diagrams, these products correspond simply to flattening the prod-
uct on one side, and using a copy tensor on the other:

A ∗B =
A
B
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A •B =
A
B

Clearly the two are identical up to transpose. Indeed, (A∗B)T = BT •AT and (A•B)T =
BT ∗AT .

There are multiple “mixed product” identities:

(A •B)(C ⊗D) = (AC) • (BD)
A
B

C
D

=
A
B

C
D

(Ax) ◦ (By) = (A • C)(x⊗ y)
A
B

x
y =

A
B

x
y

3.6.1 Stacking
Can be part of Kronecker section

From Josh: Proposition 2.5. For any field F, integers d1, d2, d3, d4 and matrices X1 ∈
Fd1×d2 , X2 ∈ Fd2×d3 , X3 ∈ Fd1×d4 , and X4 ∈ Fd4×d3 , we have

X1 ×X2 +X3 ×X4 = (X1 | X3)×
(
X2

X4

)
,

where we are writing ’|’to denote matrix concatenation.
With tensor diagrams we can write stacking along a new axis i as

stacki(X,Y ) =
e(0)

i

X +
e(1)

i

Y

where e
(i)
i = 1 and 0 elsewhere.

Fro this we easily get the identity

(A | C)

(
B

D

)
= stacki(A,C) stacki(B,D) (3.5)

=

(
e(0)

i

Ak j
+

e(1)
i

Ck j

)(
e(0)

i

Bj m
+

e(1)
i

Dj m

)
(3.6)

=
e(0)

Ak

e(0)

B m
+

e(1)

Ck

e(1)

D m
(3.7)

= AB + CD (3.8)

TODO: Relation to direct sum, which is basically stacking + flattening. Or maybe
it’s nicer to do it by hadamard producting with the ei vector. Also notice that this is
what quantum comp people call “controlling”.

Also have a bunch of properties like A⊗ (B ⊕ C) = A⊗B ⊕A⊗ C.

3.7 Exercises
Exercise 7. Let J = Tr[(IN ⊗F )TA(IN ⊗F )B] where F ∈ RN×Nn, A ∈ RN2×N2

, B ∈
RN2n×N2n. Find the derivative of J with respect to F .
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Exercise 8. Consider J = ∥G − (B ⊗X)∥2F , where G and B are matrices, and ∥ · ∥F is
the Frobenius norm. Find the derivative with respect to X

Exercise 9. Prove the equation [2]:

vec(A diag(b)C) = ((CT ⊗ 1) ◦ (1⊗A))b.

Here diag(b) is a diagonal matrix with the vector b on the diagonal, 1 is a vector of ones
of the right size, and b⊗ A, the Kronecker product for a vector and a matrix, is defined
by

A
b , that is, you just flatten on one side.

Exercise 10. Let a and b be two vectors and let D and X be two matrices. Minimize
the following cost function with respect to X:

E = ∥a−DXb∥22.

Exercise 11. Prove using diagrams that Tr(ATB) = 1Tvec(A ◦ B), where 1 is a vector
of the appropriate size.
Exercise 12. Find the derivative of

Tr(G(A⊗X))

with respect to X.
Exercise 13.

∂

∂X
Tr(X⊗X) =

∂

∂X
Tr(X) Tr(X) = 2Tr(X)I
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Functions

Function to scalar f : Rn → R f(x) ∈ R {f ← x}

Function to vector g : Rn → Rm g(x) ∈ Rm {g ← x}

Element-wise function h : Rn → R h(x) ∈ Rm {h x}

Vector times vector function u : Rn → Rm, v ∈ Rm vTu(x) ∈ R v {u← x}

Vector times matrix function A : Rn → Rm×n, v ∈ Rn A(x)v ∈ Rm {A← x} v

m

Batch function application f : Rd → R, X ∈ Rb×d f(X) ∈ Rb {f ← X}
b

As an example of a more complicated function, let exp : R → R be the element-wise
exponential function, and pow−1 : R → R be the element-wise inverse power function.
Then we can write softmax : Rd → Rd as the tensor diagram:

softmax(x) = {exp x} {pow−1 {exp x} } .

Note in particular how {exp x} is the diagram way of writing
∑

i exp(xi). Alter-
natively we could have used a function sum : Rn → R, but the more we can express in
terms of tensor diagrams, the more we can use the powerful tensor diagram calculus.

Stuff about analytical matrix functions. Such as Exponential Matrix Function. I’d
rather talk about my general function notation. And maybe about taylor series?

24
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4.1 The Chain Rule
Sometimes the objective is to find the derivative of a matrix which is a function of another
matrix.

E.g. f : Rn− > Rn

Standard chain rule. Here we let f ∈ Rd → R be a scalar function, and v ∈ Rd → Rd

be a vector function as used in backprop.
Visualization of the Chain Rule: Jf◦v(x) = ∇f (v(x))Jv(x).

( { f { v x }} ) = { f { v x }} { v x }

4.1.1 The Chain Rule
Let f ∈ Rd → R be a scalar function, and v ∈ Rd → Rd be a vector function, as used in
backprop. Then we can write the chain rule as:

f

v

x

=
f

v

x

v

x

Using standard notation: Jf◦v(x) = ∇f (v(x))Jv(x).

The second derivative, (or Hessian Chain rule):

f

v

x

=
f

v

x

v

x
=

f

v

x

v

x
+

f

v

x

v

x
=

f

v

x

v

x

v

x
+

f

v

x

v

x

Using standard notation: Hf◦v(x) = Dv(x)T ·D2f(v(x))·Dv(x)+
∑d

k=1
∂f
∂uk

(v(x)) ∂2vk
∂x∂xT (x).

∂A(x)x

∂x
= (xT ⊗ I)

∂

∂x
vec[A(x)] +A(x) ( x { A x }) = x ({ A x }) + ( x ) { A x }

= x { A x } + { A x }

A

x

x
=

A

x

x
+

A

x

x
=

A

x

x
+

A

x

are common. All pixel-adaptive filters like non-local means, bilateral, etc, and the
so-called attention mechanism in transformers can be written this way

Gradient of this f(x) is important & has a form worth remembering. . .
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Trace identity

Assume F(X) to be a differentiable function of each of the elements of X. It then holds
that

dTr(F (x))

dX
= f(X)T ,

where f(·) is the scalar derivative of F (·).
TODO: To show this with tensor diagrams, we first need to introduce our notation

for functions.
For example

∂ Tr(sin(X))

∂X
= cos(X)T

Pseudo-linear form

Maybe this should just be an example in a table?
Derivation of Peyman Milanfar’s gradient

d[f(x)] = d[A(x)x]

= d[A(x)]x+A(x)dx

= vec{d[A(x)]x}+A(x)dx

= vec{Id[A(x)]x}+A(x)dx

=
(
xT ⊗ I

)
vec{d[A(x)]}+A(x)dx

=
(
xT ⊗ I

)
Dvec[A(x)]dx+A(x)dx

=
[(
xT ⊗ I

)
Dvec[A(x)] +A(x)

]
dx

4.1.2 Taylor
For an n-times differentiable function v : Rd → Rd we can write the Taylor expansion:

v(x+ ε) ≈ v(x) +

[
∂

∂x
v(x)

]
ε+

1

2

[
∂

∂x

[
∂

∂x
v(x)

]
ε

]
ε+

1

6

[
∂

∂x

[
∂

∂x

[
∂

∂x
v(x)

]
ε

]
ε

]
ε+ . . .

= v(x) +

[
∂

∂x
v(x)

]
ε+

1

2
(I ⊗ ε)

[
∂vec

∂x

[
∂v(x)

∂x

]]
ε+

1

6
(I ⊗ ε⊗ ε)

[
∂vec

∂x

[
∂vec

∂x

[
∂v(x)

∂x

]]]
ε+ . . .

Or with indices:

vi(x+ ε) ≈ vi(x) +
∑
j

∂vi(x)

∂xj
εj +

1

2

∑
j,k

∂vi(x)

∂xj∂xk
εjεk +

1

6

∑
j,k,ℓ

∂vi(x)

∂xj∂xk∂xℓ
εjεkεℓ

Or diagrams:

v

(x+ ε)
≈

v

x
+

v

x

ε
+

1

2

v

x

ε
ε +

1

6

v

x

ε
ε

ε

+ . . .

TODO: Examples based on idempotent matrices etc.
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Statistics and Probability

5.1 Definition of Moments
Let x ∈ Rn is a random variable. We write m = E[x] ∈ Rn for the expectation and
M = Var[x] = E[(x−m)(x−m)T ] for the covariance (when these quantities are defined.)

In tensor diagrams, we will use square brackets:

m = [ x] and M = [ (x⊖m) (x⊖m) ]

We will use the circled minus, ⊖, to distinguish the operation from contraction edges.
We can also define the third and fourth centralized moment tensors

M3 =


(x⊖m)

(x⊖m)

(x⊖m)

 and M4 =


(x⊖m)

(x⊖m)

(x⊖m)

(x⊖m)

 .

These are less common in introductory causes, even though the scalar third and fourth
moment are common. This is presumably because they require higher order tensors.

If the entries of x are independent, the non-diagonal entries disappear, so we get

M =

[
(x⊖m)

(x⊖m)

]
and M3 =


(x⊖m)

(x⊖m)

(x⊖m)

 and so on.

If the entries are also identically distributed, we simply have

M = σ2 and M3 = E[(x0 −m0)
3] .
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5.2 Expectation of Linear Combinations
General principle: The “linearity of expectation” lets you pull out all parts of the graph
not involving X.

D EX

CBA X

X D EX

CBA X

X E

CBA
M3= =

D

where M3 is the expectation
[
x x x

]
, which is an order-9 tensor with no dependence on

the constants A, B, C and D. In practice you would want to name the edges to keep
track of what gets multiplied with what.

5.2.1 Linear Forms
The Matrix Cookbook gives the following simple expectations:

E[AXB + C] = AE[X]B + C

[
A X B

+ C

]
=

A [X] B

+ C
(312)

Var[Ax] = AVar[x]AT

[
A x ⊖ [A x ]

A x ⊖ [A x ]

]
=

[
A (x⊖m)

A (x⊖m)

]
(313)

=
A (x⊖m)

A (x⊖m)
[ ]

= A M2 A

5.2.2 Quadratic Forms
We often prefer to write expectations in terms of the simple centered moments, which we
can do by pulling out the mean:[

x−
x−

]
=

[
(x⊖m)−
(x⊖m)−

]
+

m−
m−

This makes it easy to handle the quadratic forms from the Matrix Cookbook:

E[xTAx] = Tr(AΣ) +mTAm [x A x ] =

([
(x⊖m)−
(x⊖m)−

]
+

m−
m−

)
A

=
(x⊖m)

(x⊖m)
[ ]

A + A
m
m

= Σ A + m A m

E[xTAx] = Tr(AM) +mTAm (318)
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Note, the later is really a quartic form.
Also, assume x to be a stochastic vector with mean m, and covariance M. Then

Var[xTAx] = 2µ2
2Tr(A2) + 4µ2c

TA2c+ 4µ3c
TAa+ (µ4 − 3µ2

2)a
Ta (319)

E[(Ax+ a)(Bx+ b)T ] = AMBT + (Am+ a)(Bm+ b)T (320)

E[xxT ] = M +mmT (321)

E[xaTx] = (M +mmT )a (322)

E[xTaxT ] = aT (M +mmT ) (323)

E[(Ax)(Ax)T ] = A(M +mmT )AT (324)

E[(x+ a)(x+ a)T ] = M + (m+ a)(m+ a)T (325)

E[(Ax+ a)T (Bx+ b)] = Tr(AMBT ) + (Am+ a)T (Bm+ b) (326)

E[xTx] = Tr(M) +mTm (327)

E[xTAx] = Tr(AM) +mTAm (328)

E[(Ax)T (Ax)] = Tr(AMAT ) + (Am)T (Am) (329)

E[(x+ a)T (x+ a)] = Tr(M) + (m+ a)T (m+ a) (330)

5.2.3 Cubic Forms
When x is a stochastic vector with mean vector m, it can be convenient to expand the
raw third moment in terms of the central moments:x−x−

x−

 =

(x⊖m)−
(x⊖m)−
(x⊖m)−

+ 3

[
(x⊖m)−

][
m−
m−

]
+ 3

[
m−

][
(x⊖m)−
(x⊖m)−

]
+

[
m−

][
m−

][
m−

]
= M3 + 3

m−
−M−+

m−
m−
m−

TODO: The edges from the m,M term needs to be symmetrized.
Assume x to be a stochastic vector with independent coordinates, mean m, covariance

M and central moments v3 = E[(x−m)3]. Then (see [7])

E[(Ax+ a)(Bx+ b)T (Cx+ c)]

= Adiag(BTC)v3

+Tr(BMCT )(Am+ a)

+AMCT (Bm+ b)

+ (AMBT + (Am+ a))(Bm+ b)T (Cm+ c)

E[xxTx]

= v3

+ 2Mm

+ (Tr(M) +mTm)m
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5.3 Weighted Scalar Variable
Let y = wTx, and let m = E[y], then

E[y] = m = wTµ

E[(y ⊖m)2] = w M2 w

E[(y ⊖m)3] = M3

w
ww

E[(y ⊖m)4] = M4

w
w

w
w

For specific distributions, like x Gaussian, we can often reduce the moment tensors further.
Khintchine’s inequality also gives a way to bound all of these in terms of E[(y −m)2].

5.4 Gaussian Moments

5.4.1 Gaussian Integration by Parts
If X is a tensor with Gaussian entries, zero mean, and some covariance, Stein’s lemma
gives the following very general equation, for any differentiable function f :

X f(X)
X

f(X)
X

=

Combined with the tensor chain rule from chapter 4, this can be a very powerful way to
evaluate many hard expectations.

5.4.2 Mean and covariance of linear forms
TODO

5.4.3 Mean and variance of square forms
TODO

5.4.4 Cubic forms
TODO

5.4.5 Mean of Quartic Forms
TODO
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5.4.6 Micture of Gaussians

5.4.7 Derivatives

5.5 Exercises
Exercise 14.

E[(Ax+ a)(Ax+ a)T (Ax+ a)] = Adiag(ATA)v3

+[2AMAT + (Ax+ a)(Ax+ a)T ](Am+ a)

+Tr(AMAT )(Am+ a)

E[(Ax+ a)bT (Cx+ c)(Dx+ d)T ] = (Ax+ a)bT (CMDT + (Cm+ c)(Dm+ d)T )

+(AMCT + (Am+ a)(Cm+ c)T )b(Dm+ d)T

+bT (Cm+ c)(AMDT − (Am+ a)(Dm+ d)T )

Exercise 15. Find more identities in the Matrix Reference Manual. http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/expect.html
And try to prove them. Also try to verify your derivations using tensorgrad.
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Determinant and Inverses

6.1 Determinant
It’s convenient to write the determinant in tensor notation as

det(A) =
1

n!
A · · · A

where i1 i2 . . . in = εi1,...,in is the rank-n Levi-Civita tensor defined by

εi1,...,in =

{
sign(σ) σ = (i1, . . . , in) is a permutation
0 otherwise.

To see that the definition makes sense, let’s first consider

det(I) =
1

n!
. . . =

1

n!

∑
i1,...,in,j1,...,jn

εi1,...,inεj1,...,jn [i = j] =
1

n!

∑
i1,...,in

ε2i1,...,in = 1.

In general we get from the permutation definition of the determinant:

A · · · A =
∑

i1,...,in,j1,...,jn

εi1,...,inεj1,...,jnAi1,j1 · · ·Ain,jn

=
∑
σ,τ

sign(σ)sign(τ)Aσ1,τ1 · · ·Aσn,τn

=
∑
σ

sign(σ)
∑
τ

sign(τ)Aσ1,τ1 · · ·Aσn,τn

=
∑
σ

sign(σ)2det(A)

= n!det(A).

The definition generalizes to Cayley’s “hyper determinants” by . . . .

32
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A curious property is that

A · · · A = A · · · A

· · ·

(18) det(A) =
∏

i λi . . .

(19) det(cA) = cndet(A) cA · · · cA = cn A · · · A

(20) det(A) = det(AT ) . . .

(21) det(AB) = det(A)det(B) B · · · B

A · · · A

= B · · · B

A · · · A

(22) det(A−1) = 1/det(A) . . .

(23) det(An) = det(A)n . . .

(24) det(I + uvT ) = 1 + uT v . . .

6.2 Inverses
Might be reduced, unless cofactor matrices have a nice representation?
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Advanced Derivatives

7.1 Derivatives of vector norms

7.1.1 Two-norm

d

dx
∥x− a∥2 =

x− a

∥x− a∥2
(7.1)

d

dx

x− a

∥x− a∥2
=

I

∥x− a∥2
− (x− a)(x− a)T

∥x− a∥32
(7.2)

d

dx
∥x∥22 =

d

dx
∥xTx∥2 = 2x (7.3)

34
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7.2 Derivatives of matrix norms

7.3 Derivatives of Structured Matrices

7.3.1 Symmetric

7.3.2 Diagonal

7.3.3 Toeplitz

7.4 Derivatives of a Determinant

7.5 General forms

7.6 Linear forms

7.7 Square forms

7.8 From Stack Exchange
Let F (t) = |1 + tA| then F ′(t) = Tr(A) and F ′′(t) = Tr(A)2 − Tr(A2).

7.9 Derivatives of an Inverse

7.9.1 Trace Identities
∂

∂X
Tr
(
AX−1B

)
= −

(
X−1BAX−1

)T
= −X−TATBTX−T

Assume B and C to be symmetric, then

∂

∂X
Tr
[(
XTCX

)−1
A
]
= −

(
CX

(
XTCX

)−1
) (

A+AT
) (

XTCX
)−1

∂

∂X
Tr
[(
XTCX

)−1 (
XTBX

)]
= −2CX

(
XTCX

)−1
XTBX

(
XTCX

)−1

∂

∂X
Tr
[(
A+XTCX

)−1 (
XTBX

)]
= −2BX

(
XTCX

)−1

− 2CX
(
A+XTCX

)−1
XTBX

(
A+XTCX

)−1

+ 2BX
(
A+XTCX

)−1
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7.10 Derivatives of Eigenvalues

7.11 Exercises
Exercise 16. Find the derivative of

f(x,Σ, µ) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
with respect to Σ.
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Special Matrices

8.0.1 Block matrices
Stuff like Schur complements is interesting. But can we say anything useful using tensor
diagrams?

8.0.2 The Discrete Fourier Transform Matrix
I think FFT can be nicely described with diagrams

Let’s start with the Hadamard matrix: Hn =
[
1 1
1 −1

]⊗n. Hm. It’s just a bunch of
matrices below each other, kinda boring.

What about the FFT? Does that require a bit more?

8.0.3 Fast Kronecker Multiplication
Say we want to compute (A1⊗A2 · · ·An)x, where Ai is a ai×ai matrix, and x ∈ Ra1a2···an .
If we first compute the Kronecker product, and then the matrix-vector multiplication, this
would take (a1 · · · an)2 time.

Instead we can reshape x into a a1 × · · · an tensor and perform the multiplication

A1

A2
...

An

X

a1

a2

an

a1

an

by contracting the ai edges one by one. This takes time

a21(a2 · · · an) + a22(a1a3 · · · an) + · · ·+ a2n(a1 · · · an−1) = (a1 + · · ·+ an)(a1 · · · an),

which is the basis of many fast algorithm as we will see.
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Hadamard

The Hadamard matrix is defined as H2n = H⊗n
2 = H2 ⊗ · · · ⊗ H2 where H2 =

[
1 1
1 −1

]
.

For example

H4 = H2 ⊗H2 =

[
H2 H2

H2 −H2

]
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

This gives a very simple tensor diagram representation as:

H2n =

H2
...

H2

.

The Fast Hadamard Transform (FHT) transform is usually described recursively by:

H2nx =

[
H2n−1 H2n−1

H2n−1 −H2n−1

][
x(1)

x(2)

]
,

where
[
x(1)

x(2)

]
is the first and second half of x. Because of the redundancy in the matrix

multiplication (it only depends on H2n−1x(1) and H2n−1x(2), the algorithm computes HNx
in O(N logN) time.

Alternatively we could just use the general fact, as described above, where ai = 2 for
all i. Then the “fast Kronecker multiplication” method takes time (a1a2 · · · an)(a1 + a2 +
· · · an) = 2n log2 n.

Fourier

The Discrete Fourier Matrix is defined by (FN )i,j = ωij , where ω = e−2πi/N :

FN =



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)


.

=

{
exp 2πi/N

arange(N)

arange(N)

}

TODO: Show how the matrix can be written with the function notation.
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The Good-Thomas Fast Fourier Transformer (FFT) uses a decomposition based on
the Chinese Remainder Theorem:

FN = P1

F
p
i1
1

P2

F
p
i2
2

...
Fpin

n

,

where N = pi11 pi22 · · · pinn is the prime factorisation of N , and P1 and P2 are some permu-
tation matrices.

Using fast Kronecker multiplication, the algorithm this takes (pi11 + · · ·+ pinn )N time.
By padding x with zeros, we can increase N by a constant factor to get a string of
n = O(log(N)/ log log(N)) primes, the sum of which is ∼ n2/ log n = O(log(N)2). The
complete algorithm thus takes time O(N log(N)2). Next we will see how to reduce this
to O(N logN).

The classical Cooley-Tukey FFT algorithm uses a recursion:

FN =

[
I I

I −I

][
I 0

0 DN/2

][
FN/2 0

0 FN/2

][
even-odd

permutation

]
,

where DN = [1, wN , w2N , . . . ]. The even-odd permutation moves all the even values to
the start. If we reshape I2n as I2⊗· · ·⊗I2, this permutation is just PN = , or in pytorch:

x.permute([3,0,1,2]). Also note that
[
I I
I −I

]
= H2 ⊗ I and

[
FN/2 0

0 FN/2

]
= I2 ⊗ FN/2.

So we can write in tensor diagram notation:

FN =

H2

DN

FN/2 =

H2
H2

H2
H2

DN/20 DN/21 DN/22

.

Since one can multiply with the permutation and diagonal matrices in linear time, the
O(n log n) time complexity follows from the same argument as for Hadamard.

Note there are a bunch of symmetries, such as by transposing (horizontal flip), since
the matrix is symmetric. Or by pushing the permutation to the left side.

We don’t have to split the matrix in half, we can also split it in thirds, fourths, etc.
With this generalized Cooley-Tukey algorithm, we get the following diagram:

FN =

Fn0

Fn1

Fn2

Fn3

F (n0,n1n2n3)F (n1,n2n3)F (n2,n3)

,

where n0n1n2n3 = N . Here we replaced the DN matrix with the “generalized” Fourier
matrix F (a,b) matrix, which is defined as F

(a,b)
j,k = e−2πijk/(ab), and we reshaped as nec-

essary. In the simple case of where we split in just two parts of roughly n1 = n2 =
√
N ,

this is also called “Four step FFT” or Bailey’s FFT algorithm.
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We can use the property Fa,bc = Fa,b • F 1/b
a,c to simplify the diagram further:

FN =

Fn0

Fn1

Fn2

Fn3

Fn0,n1

Fn0,n2

Fn0,n3

Fn1,n2

Fn1,n3 Fn2,n3

.

In the simple case where we split in 2 every time, this is also called the “Quantum FFT”
algorithm.

We hid some stuff above, namely that the matrices should be divided by different Ns.
Note that this figure may look different from some FFT diagrams you have seen.

These typically look like this:

N
2 -point DFT

N
2 -point DFT

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

E[0]

E[1]

E[2]

E[3]

O[0]

O[1]

O[2]

O[3]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

and have 2n rows. The tensor diagram only has n rows (or log2 N).

Multi-dimensional Fourier Transform

This is just taking the Fourier transform along each axis.
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8.0.4 Hermitian Matrices and skew-Hermitian
Complex. Skip

8.0.5 Idempotent Matrices
Skip

8.0.6 Orthogonal matrices
Skip

8.0.7 Positive Definite and Semi-definite Matrices
Skip

8.0.8 Singleentry Matrix, The
Describes the matrix J . All of this is trivial with diagrams.

8.0.9 Symmetric, Skew-symmetric/Antisymmetric
Could introduce Penrose’s symmetric tensors here?

8.0.10 Toeplitz Matrices
Could talk about the convolution tensor here...

8.0.11 Units, Permutation and Shift
Not that interesting...

8.0.12 Vandermonde Matrices
Does this have a nice description? Not a lot of properties are given in the Cookbook.
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Decompositions

9.1 Higher-order singular value decomposition
Say we have an order n tensor A. We “unfold” A along each dimension. This means
pulling the edge i to the left, and flattening the rest to the right. Then we compute the
SVD, USV . Here U is a square matrix, which we keep. We multiply the ith edge of A by
UT (which is also the inverse of U). The result is a “core” tensor as well as a sequence of
U tensors. If we want a more compact SVD, we can make each U low rank, like normal
SVD. There is also the “Interlacing computation“ where we multiply the UT s onto A as
we go along.

For order 3 tensors, this method is called a “Tucker decomposition”.
If the “core matrix” is diagonal, this is called tensor rank decomposition. If we were

good at that, we could use it to factor I⊗3 to get better matrix multiplication algorithms.
Unfortunately tensor rank decomposition is NP hard.

I guess HOSVD gives a rank decomposition if we diagonalize the core tensor. It just
won’t be an efficient one.

9.2 Rank Decomposition

9.2.1 Border Rank
The border rank of a tensor is the smallest rank of a tensor that is close to it. TODO:
Example where the border rank is much smaller than the rank.

9.3 Fast Matrix Multiplication
Strassen defines 3 tensors of shape 7× 2× 2:

SA =

[
[ 1 0
0 1 ] , [ 0 0

1 1 ] , [ 1 0
0 0 ] , [ 0 0

0 1 ] , [ 1 1
0 0 ] ,

[−1 0
1 0

]
,
[
0 1
0 −1

]]
SB =

[
[ 1 0
0 1 ] , [ 1 0

0 0 ] ,
[
0 1
0 −1

]
,
[−1 0

1 0

]
, [ 0 0

0 1 ] , [ 1 1
0 0 ] , [ 0 0

1 1 ]

]

42
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W =

[
[ 1 0
0 1 ] ,

[
0 1
0 −1

]
, [ 0 0

1 1 ] , [ 1 1
0 0 ] ,

[−1 0
1 0

]
, [ 0 0

0 1 ] , [ 1 0
0 0 ]

]
These tensors have the neat property that they factor I2 ⊗ I2 ⊗ I2:

W

SBSA

= .

To multiply two matrices, A and B, faster than the normal n3 time, we reshape them as
block matrices, shape (2, n

2 , 2,
n
2 ) and use Strassen’s tensor:

A B =
A B

=
W

SBSA

A B

.

Contracting the edges in the right order, uses only 7/8n3 +O(n2) operations.
If we instead reshape to (2, 2, . . . , 2),

AB = A B ,

and using Strassen’s tensor along each axis reduces the work by (7/8)log2(n), giving us
matrix multiplication in time n3+log2(7/8) = n2.80735.
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Contracting the double edges, SA −A and SB −B, is both O(n2) time.
It remains to verify that this is actually faster than the naive matrix multiplication:

Contracting SA−A takes 7 · 22(n/2)2 operations, and likewise SB −B. Next we contract
SAA − SBB which takes 7(n/2)3 time. And finally we contract the edge with W which
takes 22·7(n/2)2. The important term is the cubic 7/8n3, which if instead done recursively,
leads to the classical O(nlog2 7) algorithm.

FIXME: What “edge with W ”? I think we have to/want to contract the hyperedge
with W immediately?

Other

If we instead wrote A and B using (n,m) and (m, p) shaped blocks, we could factor
In ⊗ Im ⊗ Ip and get a matrix multiplication algorithm using the same approach as the
Strassen (2, 2, 2) tensors above. Lots of papers have investigated this problem, which has
led to the best algorithms by Josh Alman and others. For example, Deep Mind found a
rank 47 factorization of I3 ⊗ I4 ⊗ I5.

Maybe a more interesting example is the (4, 4, 4) tensor, for which they find a rank
47 factorization. This an easy way to create a rank 49 is to take Strassen and double
it. Would this be a nice thing to show? Maybe too messy? Well, actually their rank 47
construction only works in the “modular” case. Then (3, 4, 5) is general.
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Machine Learning Applications

10.1 Least Squares

10.2 Hessian of Cross Entropy Loss

10.3 Convolutional Neural Networks

10.4 Transformers / Attention

10.5 Tensor Sketch

45
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Tensor Algorithms

11.1 Optimal Contractions

46
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Tensorgrad

Implementation details

12.1 Isomorphisms
There is actually a concept of “tensor isomorphism”, but it’s basically just the same as
graph isomorphism.

We need to understand isomorphisms in many different parts of the code.

12.1.1 In Products
- Cancelling / combining equal parts of a product This is actually extra hard, because
you have to collect a subset of nodes that constitute isomorphic subgraphs. Right now
we hack this a bit by just considering separate components of the product.

T
S

T S
T

S pow(2)

T

S

T

S S

T

pow(2)

T

S

T

S
S

T

pow(2)
U

U

GG

U

V
G

U
S

S

V
pow(2)

Figure 12.1: Combining equal parts of a product

Basically the problem is:
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1. You are given a multigraph G with nodes V and edges E.

2. Nodes and edges are all labeled.

3. You are to find two disjoint subsets V1 and V2 of V such that the subgraphs G1 and
G2 induced by V1 and V2 are isomorphic. Also, under the isomorphism, the labels
of the nodes and edges in G1 and G2 are the same.

The problem is probably NP-hard, but it might still have an algorithm that’s faster
than 2n trying all subsets. In particular, we might modify the VF2 algorithm, which
iteratively tries to match nodes in G1 and G2. The NetworkX library already has a
GraphMatcher, which searches for isomoprhic subgraphs. It might be extendable to our
problem... But honestly I don’t know if we even want to solve this problem in the most
general, since it corresponds a bit to factoring the graph. And we don’t do factoring, just
as we don’t do inverse distribution.

In either case, it’s clear that we need to be able to compare nodes and edges for
isomorphism.

Also, the basic usecase of isomorphism canonaization in products is simply to compute
the canonical product itself from its parts. Part of our approach here is taking the outer
edges and turning them into nodes, so they can be colored.

12.1.2 In Sums
When deciding whether A+B is equal to 2A we need to check if A and B are isomorphic.
But we also need to do this under the current renaming of the edges. That’s why you
can’t just transform A+AT = 2A.

The way it actually works in my code is

1 def key_fn(t: Tensor):
2 # Align tensor edges to have the same order , using Sum’s order as

reference.
3 canons = [t.canonical_edge_names[t.edges.index(e)] for e in self.edges]
4 return hash((t.canon ,) + tuple(canons))
5

6 ws_tensors = TensorDict(key_fn=key_fn , default_fn=int)
7 for w, t in zip(weights , tensors):
8 ws_tensors[t] += w
9 ws_tensors = [(w, t) for t, w in ws_tensors.items()]

which says that I’m using for a hash, the canonical form of the tensor, plus the canonical
form of the edges in the order of the edges in the sum. These are basically the orbits,
meaning that if the summed tensor has a symmetry, we are allowed to "flip" it to make
the summands isomorphic.

In the “compute canonical” method, we do more or less the same, but we also include
the weights.

1 def _compute_canonical(self):
2 hashes = []
3 for e in self.edges:
4 canons = [t.canonical_edge_names[t.edges.index(e)] for t in self.

tensors]
5 hashes.append(hash(("Sum",) + tuple(sorted(zip(self.weights , canons

)))))
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6 base = hash(("Sum", len(self.tensors)))
7 hashes = [hash((base , h)) for h in hashes]
8 return base , hashes

In the future we want to use symmetry groups instead. What would be the symmetry
group of a sum? It’s the diagonal of the product of the symmetry groups of the summands.
How can we find the generators of this group? Maybe we should just construct some joint
graph and then find the automorphisms of that graph.

Alternatively we can use sympy. It is not known whether this problem is solvable
in polynomial time. I think Babai proved that it is quasi-polynomial but not with a
practical algorithm. Incidentally the problems of intersections of subgroups, centralizers
of elements, and stabilizers of subsets of {1, . . . , n} have been proved (by Eugene Luks)
to be polynomially equivalent.

Actually making a graph and using nauty is a really good idea, since it would be able
to detect that A + AT is symmetric. Just taking the intersection of the automorphism
groups of the summands would not find that.

Another option is to convert the sum to a function... But no, that’s weird. That
would require me to support functions with arbitrary numbers of inputs, which is not
currently the case.

12.1.3 In Evaluation
When evaluating a tensor, we can look at the graph of the tensor and see if it’s isomorphic
to a previously evaluated tensor. This is an example where we don’t really need a canonical
form, but an approximate hash plus vf2 would be fine. Also note that in this case we
don’t care about the edge renaming, because we can just rename the edges before we
return the tensor. E.g. if we have already evaluated A, we can use that to get AT easily.

12.1.4 In Variables
In variables we include the name of the variable in the hash. Basically we assume that
variables named the same refer to the same data.

1 base = hash(("Variable", self.name))
2 return base , [hash((base , e)) for e in self.original_edges]

For the original canonical edge names, we use the edge names before renaming. This
means, in the case of AT that will have the same hash as A. But because it’s renamed,
the t.index call in the Sum will flip the edges.

We could imagine variables taking an automorphism group as an argument, which
would allow us to define variables with different symmetries. Such as a symmetric matrix
A where A+AT is actually 2A.

12.1.5 In Constants
When computing the canonical form of a constant, like Zero or Copy we don’t care about
the edge names. I guess because the constants we use are all maximally symmetric? We
currently include the constants tag, which is the hash of the variable that it came from,
if any.
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12.1.6 In Functions
One issue is that while the original names are usually part of the function definition,
the new edges added by differentiation are often automatically generated based on the
context, so they shouldn’t really be part of the canonical form.

In contrast to Sum, we don’t sort the canons here, since the order of the inputs
matters.

Maybe functions should be allowed to transform the symmetry group? E.g. if we have
a function that takes a symmetric matrix and returns a symmetric matrix, we should be
able to use the symmetry group of the input to simplify the output.

12.1.7 In Derivatives
All we do is hashing the tensor and the wrt. And then add new edges for the derivative.

12.1.8 Other
For some tensors there might be edge dimension relations that aren’t equivalences. For
example, a flatten tensor would have the “out” edge dimension equal to the product of
the “in” edge dimensions.

In a previous version I had every tensor register a “callback” function. Whenever
an edge dimension “became available”, the tensor would get a chance to emit new edge
dimensions. However, this was a lot more work for each tensor to implement, and not
needed for any of the existing tensors.

12.2 Renaming
This is an important part of the code.

12.3 Evaluation
An important part of evaluation is determining the dimension of each edge. To do this, I’m
basically creating a full graph of the tensor, using a function called edge_equivalences
which a list of tuples ((t1, e1), (t2, e2)), indicating that edge e1 of tensor t1 is equivalent
to edge e2 of tensor t2. Note that the same edge name can appear multiple times in the
graph, so we need to keep track of the tensor as well.

For variables, since the user gives edge dimensions in terms of variables, it’s important
to keep track of renamed edge names:

1 for e1, e2 in zip(self.original_edges , self.edges):
2 yield (self , e1), (self , e2)

For constants, there might be some equivalences based on tensors that the constant
was derived from.

1 def edge_equivalences(self):
2 if self.link is not None:
3 yield from self.link.edge_equivalences ()
4 for e in self.link.edges:
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5 if e in self.edges:
6 yield (self , e), (self.link , e)

For the copy tensor, everything is equivalent:

1 def edge_equivalences(self):
2 yield from super ().edge_equivalences ()
3 for e in self.edges [1:]:
4 yield (self , self.edges [0]), (self , e)

For functions we can’t really say anything about the edges of the function itself
(self.edges_out), but at least we can say something about the broadcasted edges.

1 for t, *inner_edges in self.inputs:
2 yield from t.edge_equivalences ()
3 for e in t.edges:
4 if e not in inner_edges:
5 yield (t, e), (self , e)

We could maybe also say that input edges with the same name are equivalent?
For products, we look at each edge (t1, e, t2) and yield (t1, e), (t2, e). However for the

free edges, (t, e), we match them with ourselves, (t, e), (self, e).

1 def edge_equivalences(self):
2 pairs = defaultdict(list)
3 for t in self.tensors:
4 yield from t.edge_equivalences ()
5 for e in t.edges:
6 pairs[e]. append(t)
7 for e, ts in pairs.items ():
8 if len(ts) == 1:
9 yield (self , e), (ts[0], e)

10 else:
11 t1 , t2 = ts
12 yield (t1, e), (t2, e)

Similarly, for sums, everything is just matched with ourselves:

1 def edge_equivalences(self):
2 for t in self.tensors:
3 yield from t.edge_equivalences ()
4 for e in t.edges:
5 yield (t, e), (self , e)

Finally, we use BFS to propagate the edge dimensions from the variables (which are
given by the user) to the rest of the graph.

Why is it even necessary for non-variables to know the edge dimensions? Mostly
because of copy tensors, which we use for hyper edges, and have to construct. Could we
get rid of this if we computed hyper-edges more efficiently without copy’s? There are also
sometimes "detached" copies...

Also, an alternative idea would be to actually construct the full graph. I originally
didn’t think this would be possible because of the Sum’s which aren’t really graphs. But
maybe with the new approach of using nauty, we could actually do this.

12.3.1 Products
We simply evaluate the tensors in the product and give them to einsum.
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12.4 Simplification Rules
There are a bunch of these.

Mostly we can do everything in a single depth-first pass, but a few times we need to
do multiple passes. That can be done with the full-simplify method, which repeatedly
calls simplify until nothing changes.
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Chapter 13

Appendix

Contains some proofs, such as of equation 524 or 571. They are pretty long and could be
useful for contrasting with the diagram proofs.
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