
Bringing Back The Sound Chip

Thomas J. Webb November 2021

The Case For Using Real-Time Synthesizers in Game Soundtracks

What do I Mean by Real-Time Synthesizers?

Software synthesizers as part of the game’s
audio engine, generating audio tracks for
the soundtrack.

What is “Bringing Back the Sound Chip?”

• An homage to a time when games used sound chips built in to the
systems they ran on

• A history we can learn lessons from

• A metaphor

What This Talk Isn’t About

• Already common dynamic music techniques

• Synthesizers used for sound effects/non-musical audio

• Synthesizers used in the content creation

• Using track and bus effects to create dynamism

Overview

1. History of Sound Chips

2. Why Don’t Modern Games Use Real-Time Synthesizers in Music?

3. Why You Should Consider it

4. Implementation Considerations

5. Conclusions

History of Sound Chips

• Programmable Sound
Generators (PSGs)

• Subtractive (MOS SID chip)

• Frequency Modulation (FM)

• Wavetable

• Sample-Based

• CD-ROM and PCM

History of Sound Chips

• There were ways to get
arbitrary audio on old chips
such as the SID

• Some systems (Game Boy,
Famicon) had analog input

Why Don’t Modern Games Use Synthesizers?

• Delivering PCM means you can use any techniques in recording or composing
you wish with no performance considerations

• No one is doing it so it doesn’t occur to most people and there is little in the way
of literature or frameworks

• Game engines often lack flexibility needed for real-time audio

• Heavy on the CPU

• Risk of underruns/pops and clicks

• Headlocked vs. environmental split

• Possible to get sufficient flexibility with existing PCM-based techniques

Why You Should Consider it Anyway

• Can make even short music loops more interesting

• Music can be directly responsive to game events and user input

• GPUs free up CPUs to do interesting things

• You can let the game and the gamer do some of the composition for you

• Consider analogy to cutscenes - they are now generally done in-engine

• Can add realism to in-universe (diegetic) music

Implementation Considerations

Real-Time vs. Offline

Real-Time

• Instant feedback to environment -
next audio callback

Offline

• Simpler performance concerns

• Easy integration with existing
engines and pipelines

• Doesn’t require as much audio
programming-specific skills

Game Engine Audio vs. General Audio

Game Engine Audio API

• Environmental/3D audio problems
already solved for you

• Default way to use game engines

• Cross-platform issues already dealt
with for you

• No need for specialized audio
software engineers

General Audio API

• More control over audio settings

• More control over how sound is
mixed

• Access to sound cards’ pro audio
features

• Low latency

To Synthesize Everything or Not
Should You Ship Your DAW Project?

Instrument 1

Instrument 1 fx

Instrument 2

Instrument 2 fx

Instrument 3

Instrument 3 fx

Instrument 4

Instrument 4 fx

Master Bus fx

To Synthesize Everything or Not
A Hybrid Approach

Backing
Mixdown Instrument

Instrument fx

Master Bus fx

Synthesis Techniques
A Few Ideas

• FM/PM Synthesis

• Wavetable and Sample-based

• Subtractive

• Phase distortion and wave folding

• Analog modeling

• Physical modeling

Free Synthesizer Code
Where to Get Started

• libpd/puredata (C) and Heavy (C++)

• libfmsynth (C)

• TinySoundFont (C)

• webaudio and pizzicato.js (js)

• grig.synth (haxe)

• …countless free example code

Modern Games That Use Synths

• Fract OSC

• Zya/Song Battles

• …that’s it (as far as I know)

Conclusions
Some Closing Thoughts & Recommendations

• Worth considering, whatever the game genre

• Various intermediate options exist

• If more people do this, it gets easier

• Weigh the risks

Thanks!

https://linktr.ee/thomasjwebb

