
Audit Report
Produced by CertiK

for

April 20th, 2020

DISCLAIMER

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Verification Services Agreement between CertiK
and THORChain (the “Company”), or the scope of services/verification, and terms and conditions provided to the
Company in connection with the verification (collectively, the “Agreement”). This report provided in connection with
the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the
terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or
relied upon by any person for any purposes without CertiK’s prior written consent.

As there have been numerous interactions with the Company throughout the entire duration of this audit, and as
the codebase target for the audit has evolved over said duration, not all of CertiK’s opinions or comments have
necessarily made it into this final culmination.

ABOUT CERTIK

CertiK is a technology-led blockchain security company founded by Computer Science professors from Yale
University and Columbia University built to prove the security and correctness of smart contracts and blockchain
protocols.

CertiK, in partnership with grants from IBM and the Ethereum Foundation, CertiK’s mission of every audit is to
apply different approaches and detection methods, ranging from manual, static, and dynamic analysis, to ensure
that project is checked against known attacks and potential vulnerabilities. CertiK leverages a team of seasoned
engineers and security auditors to apply testing methodologies and verifications on the project, in turn creating a
more secure and robust software system.

CertiK has served more than 100 clients with high quality auditing and consulting services, ranging from
stablecoins such as Binance’s BGBP and Paxos Gold to decentralized oracles such as Band Protocol and Tellor.
CertiK customizes its engineering tool kits, while applying cutting-edge research on smart contracts, for each client
on its project to offer a high quality a delivery. As utilizes technologies from blockchain and smart contracts, CertiK
team will continue to support the project as a service provider and collaborator.

For more information, visit https://certik.org.

April 20th, 2020 Page of 1 30

https://certik.org/

EXECUTIVE SUMMARY

ENGAGEMENT OBJECTIVES

Verify the soundness of the implementation, while ensuring its logic meets the specifications and intentions of our
client, underlying the linkage between RUNE’s utility as a token within THORChain’s revenue-generating business
model for asynchronous inter-blockchain asset exchange — which is designed to give RUNE intrinsic value in the
immediate term while serving the long term sanctity of THORNodes’ vaults via a tightly coupled liquidity/security
mechanism — in order to:

• provide an estimate of the overall security posture of the system;
• evaluate the difficulty of system compromise from an attacker;
• identify design-level risks to the security of the system;

• identify implementation flaws that illustrate systemic and extrinsic risks;
• provide recommendations for best practices that could improve THORChains’ security posture;

Application Summary

Name THORNode

Commit SHA 423b336ea63a6db2425a1e46f67aac0f38fdc30e

Type Automated Market Maker Liquidty Network

Platforms Cosmos SDK v0.38

Engagement Summary

Dates 01/21/2020 — 03/03/2020

Method Whitebox Analysis

Consultants Engaged 6

Level of Effort 6 calendar weeks

Vulnerability Summary

Total Addressed Issues 34

April 20th, 2020 Page of 2 30

• document architectural risks to the system in the form of a threat model and data-flow analysis of the prioritized
system components;

• provide a reference architecture that the community may use to evaluate the coverage of the security
assessment, and to begin building a baseline of security relevant settings and considerations for the system.

AUDIT METHODOLOGY

The key to building and maintaining highly secure and reliable systems is simplicity — a good system will have
nothing to take away, rather than nothing to add. Each component requires securing, updating and debugging in
perpetuity, which is an order of magnitude more complicated than building it in the first place. There’s a common
saying that if you engineer the most clever system you can imagine, you’re by definition unqualified to maintain it.
Like open source projects which reject code not because it’s bad, but because it may not be worth maintaining,
the CertiK team carefully examined each piece of technology in the THORChain stack while weighing its benefits
against the extra complexity it introduces.

We began by studying THORChain’s most recent white papers in order to synthesize its full scope of features,
validate their correctness from an economic perspective by reasoning mathematically about their underlying
theoretical clauses, and qualify — according to the functional categories listed below — the model’s robustness
against market manipulations, front-running, and other potential attack vectors plaguing the automated market
marker design space that THORChain aims to successfully disrupt:

• Prevention - properly hardening systems with guardrails (such as THOR’s Ragnarok) to prevent incidents from
happening in the first place, just like sturdy walls and secure locks are the best defense against burglary;

• Detection - like with a good home alarm system detecting an incident is the next best thing after preventing it,
especially in areas performing validation, decoding, type conversion, or where assumptions are being made;

• Response - since error is only a type in Go, when it is returned it does not change a program’s execution
flow on it’s own like a panic statement would, so properly responding to security incidents if/when they arise
through system rollback/lockdown is crucial;

• Monitoring - implementation of a perceptive transaction lifecycle monitoring cache to encourage prevention
and detection as described above.

CertiK found THORChain’s theoretical model, as well as its master-branch Cosmos SDK implementation, to be
well-designed and executed cleanly, demonstrating a good command over relevant best practices. While CertiK
cannot comment on the final mainnet performance of our clients' end-products, the modeling and mathematical
reasoning were determined to be sound overall.

April 20th, 2020 Page of 3 30

SYSTEM OVERVIEW
Tendermint enables the network to handle 1/3 malicious nodes and still maintain byzantine fault tolerance. This is
because validators are required to bond (lock up RUNE, the native currency of THORChain and can have their
stake slashed for bad behavior (for example proposing bad blocks). The validators take care of messaging
(observation, ordering, and transport) and authentication replicating state on external blockchains via:

• A Client —> validator runs this for verifying consensus transcripts;
• its Connections —> driven by the Keeper to track associated state between chains;
• their Channels —> Pools act as pipes for RUNE to facilitate the flow of assets between vaults.

ARCHITECTURE

NETWORKING LAYER
This layer, handled by the Tendermint library, propagates transactions that happen on one localized state machine
across all other state machines (nodes) in the network to be processed in the consensus layer.

CONSENSUS LAYER
This layer comprises the algorithm which is responsible for ensuring that state stored on every state machine is the
same after a transaction happens (i.e., machines can’t fake transactions that never existed).

INCENTIVE LAYER
This layer drives consensus, and is liable to suffer from Censorship attacks and transaction withholding (resulting in
reduction of perceived uptime, reduction of rewards from transaction feeds).

April 20th, 2020 Page of 4 30

APPLICATION LAYER
Together the consensus and incentive layer govern this layer, which is responsible for defining the possible state
transitions and updating the state of a state machine after a transaction occurs.

BUSINESS LOGIC EVALUATION

April 20th, 2020 Page of 5 30

RESERVE

Application/Consensus Layer

Incentive Layer

WORKFLOW ANALYSIS

We stepped line-by-line through the remaining files, picturing the entire application layer’s workflow through the
lens of hypothetical scenario-based attacks, while heeding attention toward community-established Cosmos SDK-
based best practices. General software best practices around the Go programming language were taken into
consideration too.

From a completeness perspective, our expectations were met in seeing a handler for every message type
registered, and a test file for every handler. In addition, every chain has an accommodating struct for tracking
transactions on it regardless of the nature of the native data structures of that chain. Instrumenting the transaction
lifecycle to collect as many useful metrics and metadata as possible is invaluable for debugging, incident response
and performance analysis, and generating on-call alerts for when a production system breaks and or throws one-
time events that need fixing. From the perspectives of consistency and compatibility, events are fired related to all
“movement” within the logical machinery of THORNode. If someone were to replay the events in order, they would
arrive at the exact state of THORChain at that historical reference point. Versioning is consistent among all major
logical components, and microservices-style wrappers are employed to ensure the provision of backwards-
compatible logic. They serve as connectors for versioned (currently all v1) sub-components of system-level
components such as:
	 tx_out_store.go, validator_manager.go, and versioned_vault_manager.go.

Safely assuming their lack of mission-critical code, we paid less attention to the /x/client and /x/query directories.
The default genesis state contains no Pools, NodeAccounts, TxOuts, PoolStakers, StakerPools, Events, Vaults, or
ObservedTxVoters. Valid application state throughout the following lifecycle requires the following invariants are
satisfied:
• All staking pools have a specified RuneAddress; all pool units of each staking pool have associated with them a

valid asset type and non-empty request details.
• All observed Tx votes and OutTx’s have a valid TxID; each Tx’s BlockHeight and ObservedPubKey are valid;
• Each NodeAccount (Validator) has a non-empty NodeAddress and a non-empty BondAddress.
• Each Vault (primary, secondary, or Yggdrasil) has a non-empty PubKey.

We included some of the major logic flows in the application layer below. The flows are separated according to the
different roles of the system:
• Protocol: The protocol mechanism itself as a special type of role.
• Bonder/Validator/Observer: Supporter of the THORChain protocol infrastructure. Observer of transactions.
• Staker: User who provides liquidity to the pool in exchange of liquidity fee share.
• Swapper: User who wants to do asset swap through the THORChain protocol. 

April 20th, 2020 Page of 6 30

PROTOCOL

GENESIS
• An initial set of validators will be set by the InitChainer genesis.
• A new validator manager is created (in BeginBlock), triggering the one-off setupValidatorNodes procedure to set

up a fixed number of active validators.
• A DesireValidatorSet amount of validators with the highest RUNE balances bonded will be the active

validator set, and this is recalibrated every rotatePerBlockHeight blocks.
• The standby set off validators who are not the top DesireValidatorSet are still bonded to the reserve.
• The validator manager creates a new vault manager as well as a TxOutStorage for managing all outgoing

transactions.
• An Asgard vault (a TSS vault for asset custody) is generated (in EndBlock) for the new active validator set.

• Each time a new active node set is generated, there comes an associated Asgard vault. But active node set
may generate multiple TSS Keygen and multiple Asgard vaults.

VERSIONING
• THORChain attempts to retrieve the lowest version of the active validators as the main running version for each

block. Nodes run backwards-compatible node software, but cannot run software that is lower in version than
what 2/3 of the nodes in the active validator set are currently running.

• The version handler allows a node to select the version it wants to run.
• The version follows semantic versioning. The backward-compatible feature of semantic versioning is used for

finding new nodes that are ready to be included in the next active node set.
• Each determined version has an associated constant set that determines the behavior of the chain. The

protocol achieves chain evolution through the adoption of the dynamic version determination process.

BEGINBLOCK: NODE ROTATION
The BeginBlock procedure is run at the beginning of each block in THORChain. The procedure mainly churns out
misbehaving active nodes and churns in new nodes to create a new active node set for transaction observation &
processing.

• The protocol determines the version and parameter set to use according to the current active node set.
• Validator manager checks if the chain’s Ragnarok (end of the chain) is in progress. If Ragnarok is in progress, no

node rotation is needed and the procedure ends.

April 20th, 2020 Page of 7 30

• If the chain is not under Ragnarok, the protocol checks if the current active nodes satisfies the minimum
Byzantine Fault-Tolerance requirement. If the minimum BFT requirement is satisfied, the protocol initiates node
rotation process by finding “bad” nodes and “old” nodes.
• If the current block reaches the BadValidatorRate scan cycle, the protocol finds “bad” nodes which have the

highest rate of being slashed (gaining slashpoint through misbehavior during transaction processing) and
marks them.

• If the current block reaches the OldValidatorRate scan cycle, the protocol finds “old” nodes that have been in
active mode for the longest time and marks them.

• The protocol scans through all active Asgard vaults (a primary TSS vault for asset custody) to find the last time
the node rotation happens.
• Then it checks if a new rotatePerBlockHeight cycle has been reached for a new node rotation. If the
rotatePerBlockHeight cycle is reached, node rotation procedure is initiated.

• The protocol first checks if there are any retiring Asgard vaults. If there is an Asgard vault currently in retiring
status, node rotation stops as retiring has higher priority.

• Providing that there is no retiring Asgard vault, the protocol removes “bad” nodes and “old” nodes from the
active node set, as well as nodes that request to leave from the active node set (often set in EndBlock as
illustrated in the next section), and adds new nodes which are in ready state, as evidenced in the
nextVaultNodeAccounts function. This completes the next validator node set.

• The next validator node set is ensured to satisfy the safe BFT requirement.
• The new validator node set is used by the protocol’s vault manager to generate (using the public key of each

member) a new TSS Keygen for the block.
• The TSS Keygen is later used for creating a new Asgard vault (or Yggdrasil vault in the future).

• Note that members of the next validator node set haven’t had their status updated yet. The update is done in
the EndBlock procedure described below.

ENDBLOCK: SLASHING, REWARDING, FUNDING, AND NODE UPDATE
The EndBlock procedure is run at the end of each block in THORChain. The procedure mainly slashes active
nodes for bad behaviors, distributes awards among bonders (supporter of the THORChain protocol infrastructure)
and stakers (supporters of the liquidity pools), enables a new liquidity pool (with highest pool depth), and migrates
assets between vaults.
• The protocol determines the version and parameter set to use according to the current active node set.
• The protocol slashes active nodes that haven’t successfully observe a single inbound transaction (made an

observation that reaches super majority consensus) with LackOfObservationPenalty slashpoints,
achieved through the LackObserving function.

• The protocol slashes active nodes that didn’t manage to sign the outbound transaction in time by (2 *
SigningTransactionPeriod) of the slashpoints.

April 20th, 2020 Page of 8 30

• The finding of nodes that failed to sign outbound transactions in time is done through scanning all pending
events that have passed the transaction signing period, and extracting the node account associated with the
outbound transaction within the pending event.

• For the missed transaction, the protocol removes it from the original outbound transaction queue, and resets
its vault to be a current Active Asgard vault that has the least amount of that asset. The outbound transaction
is then re-added to the queue to be sent by the Asgard vault.

• If the current block reaches the NewPoolCycle, the protocol enables a new pool that is in the
PoolBootstrap status and is with the most sufficient amount of RUNE and the asset.

• The protocol fills up the Yggdrasil vaults with the active nodes’ bonds.
• The protocol picks an active node in a round-robin way and gets the Yggdrasil vault the active node is

associated with (creates a new Yggdrasil vault if no vault exists).
• Iterates through each pool to calculate the amount of coin (targeting bond / 2) of each pool the Yggdrasil

vault should have.
• For each of the assets that the Yggdrasil vault doesn’t have a sufficient amount of (“sufficient amount" refers

50% of the calculated coin amount), the protocol creates an outbound transaction of type YggdrasilFund
which sends the asset coin to this Yggdrasil vault.

• The protocol calculates and distributes rewards for the bonders and the stakers. The reward pendulum is
illustrated in the following section.
• For current block, the reward is coming from the protocol reserve allocation + liquidity pool’s transaction fee.
• The ratio for distributing between bonders and stakers are determined by the pool share factor formula

illustrated in the next section as well.
• The protocol initiates the vault manager’s EndBlock procedure, which mainly migrates assets from retiring

Asgard vaults to active Asgard vaults (as in BeginBlock if there is any retiring Asgard vault to migrate, node
rotation is passed).
• If the current block reaches the FundMigrationInternal, fund migration procedure is initiated by the

protocol. The protocol gets all retiring Asgard vaults and all active Asgard vaults.
• For each retiring Asgard vault with funds, the protocol checks each asset coin in the Asgard vault.
• For each asset coin, the protocol finds the active Asgard vault with the largest amount of that coin, and

migrates 20% of the coin amount each time from the retiring Asgard vault to the active Asgard vault.
• So it takes the protocol 5 times to complete the migration of a retiring Asgard vault.

• The protocol initiates the validator manager’s EndBlock procedure, which checks if the new active node set
reaches the minimum BFT requirement. If the new set fails to reach the BFT limit, the protocol initiates
Ragnarok. Otherwise, the protocol updates the status of the nodes and sends the removed nodes’ bonds back.
• For the case where the new active node set meets the minimum BFT requirement, related nodes’ status are

updated.
• The new active node is located by checking if it is a member of any active Asgard vault.
• If the node is not a member of any active Asgard vault, the node must not be a new active node.

April 20th, 2020 Page of 9 30

• The protocol initiates the retiring node’s “request to leave” procedure, which will be handled in the next
block’s BeginBlock (as illustrated in previous section).

• The new active node set is then to be participating in the THORChain consensus.

April 20th, 2020 Page of 10 30

REWARD DISTRIBUTION VARIABILITY (INCENTIVE PENDULUM)
Rewards are the system income gained from the protocol’s reserve + liquidity pool’s fee. It is distributed between
bonders (supporters of the THORChain infrastructure) and stakers (supporters of the THORChain liquidity pools).
• The protocol has 220m RUNE in reserves in order to incentivize security and liquidity. The protocol will emit

1/3rd of the remaining reserves every 12 months, targeting a split of 2/3rds : 1/3rds between THORNodes and
Liquidity Providers. The total emission is variable in itself, and also split unequally between incentivizing bonded
validators and liquidity providers, potentially increasing the pressure for liquidity providers to withdraw their stake
as it becomes less profitable for them not to do so.
• Increasing the rate of inflation of the staked tokens increases the incentives to bond tokens to validator

stakes (directly or via pools).
• Inflation pivots between a floor of 7% and a ceiling of 20% to drive holders to bond tokens at a desired bond

state of ⅔ of the entire circulating supply. The system seeks to emit the Protocol Reserve to participants
targeting a 2% annual inflation after 10 years, emitting 1/6th the remaining Protocol Reserves each year.

• To do this, it expects an average block time of 5 seconds, giving a total of 6,311,390 blocks per year. Thus at
any given block, the equation for the block reward is protocolReserve / (6 * blocksPerYear).

• There is more discrepancy between the target and the actual incentives garnered between the two stakeholder
categories, the more/less they will be respectively rewarded from the protocol emission.
• This is also reflected by the percentage discrepancy between assets staked and assets bonded is measured

according to the pool share factor formula (B-S)/(B+S), where B is total RUNE bonded by validators and S is
total RUNE staked in liquidity pools. Reserves are transformed into bonding rewards for validators and
liquidity providers in the function UpdateVaultData().

April 20th, 2020 Page of 11 30

RAGNARÖK
Ragnarök is for chain ending, where active nodes are paid back with the bond reward, protocol reserve
contributors are refunded, all pools are cleared, and all stakers are refunded.

With ⅔ bonded, the network is optimally secure and resistant to cartels and plutocracy. In the event the network is
close to approaching this state, an emergency "escape" hatch procedure called Ragnarok is executed booting out
all validators (active and standby set) and liquidity providers, refunding their bonds / stakes to them respectively.

In current Tendermint code, the block proposer decides transaction ordering (irrespective of gas prices). Front
running may occur with malicious validators.

The current Ragnarök implementation of the protocol are split into two stages, with the first stage clearing
Yggdrasil vaults and paying back active nodes’ bond reward, and the second stage refunding the bond, stake,
and the reserve.

• Stage 1: Transferring Remaining Yggdrasil Assets + Distributing Bonder Reward
• For each active nodes, the recallYggFunds procedure is invoked to request Yggdrasil vault return.

• The protocol obtains the Yggdrasil vault of the active node and picks the active Asgard vault with the
minimum RUNE.

• For each chain managed by the Asgard vault, the protocol creates a new outbound YggdrasilReturn
transaction that sends the Yggdrasil’s fund to to the Asgard vault.

• For each active node, calculates the node’s bond units (the amount of time it has been active).
• The node’s bond reward is calculated as the protocol’s total bond reward (in Rune) * (node’s bond units /

total bond units). The bond reward is added to the node’s bond directly.

• Stage 2: Refunding Bonders & Reserve Contributors & Stakers
• For each active node with bond, the protocol creates a new outbound transaction that sends out 10% of the

bond.
• For each reserve contributor, the contributor’s share is calculated by protocol reserve x (contributor share x

10% / total share)
• The protocol creates an outbound transaction that sends out 10% of the contributor’s reserve.

• The protocol triggers the unstake handling procedure for each staker of each pool. After the pools are
cleared, the protocol resets pool status back to Bootstrap mode.

April 20th, 2020 Page of 12 30

BONDER/VALIDATOR/OBSERVER

The primary round-robin in the system is involved in selecting the validator leader for creating blocks, which is on
the consensus level handled by Tendermint. The selection of the validator nodes are done in EndBlock of
THORChain, but the leader to generate the block is chosen by Tendermint. If that leader doesn’t produce a block
then other nodes in the newly selected active nodes set will become the leader and produce the block instead.

Outbound transaction and voting related interfaces are briefly demonstrated below for illustration:
• Coin: the measurement of an asset
• Tx: representation of the protocol transaction, where the asset, source address, and target address are

specified.
• TxOutItem: representation of an outbound transaction “task” / “action” to be done.
• ObservedTxVoter: records the voting / observation record toward an inbound / outbound transaction; used for

both inbound & outbound transactions.
• ObservedTx: observation wrapper around a transaction; used for both inbound & outbound transactions
• MsgObservedTxIn/Out: The message fired for inbound/outbound transaction observation.

April 20th, 2020 Page of 13 30

BOND
• Validators create one or more transactions on Binance Chain using their RUNE token balance and the

corresponding memo indicating their intent to register as a validator candidate (to be whitelisted) on
THORChain. This is done by invoking the transaction as a transfer of its balance to the address of the RUNE
protocol vault, where the transfer stays as a security deposit.

• Node that bonds more than the minimumBondInRune is whitelisted. The bonding record is updated.
• The protocol mints WhiteListGasAsset of gas coins to be sent to the newly bonded node.

LEAVE
• A validator wishing to leave the set could send out a leave request.
• Upon receiving the leave request, if the validator is in the active validator set, the protocol sets the node’s

RequestedToLeave.
• In THORChain BeginBlock, every rotatePerBlockHeight the protocol scans for nodes that

RequestedToLeave, and gives permission to some of them (according to current BFT status).
• In THORChain EndBlock, if the validator’s leave request is permitted as of being picked, its bond reward is paid

back its bond.

OBSERVE INBOUND TRANSACTION
• When the Bifröst module (which was out of the scope of our investigation) observes a transaction on a

supported chain, the handler_observed_txin.go tallies the observation as a vote of approval if another
validator had previously observed it and otherwise initiates the vote.
• After being initially observed, the inbound transaction has a time limit for reaching finality. If it passes the time

limit without reaching consensus, the observation is considered invalid and the observer is slashed, as
illustrated in EndBlock. The “vote” for an inbound transaction is implicitly achieved through observation.

• Each Tx in the inbound transaction is processed individually as follows:
• The current handler / observer of the transaction gets added to the inbound Tx’s ObservedTxVoter record.

Each bonded validator has equal rights/weight on observations — one node, one vote.
• When the inbound Tx gets enough votes (super majority, when 2/3 of the active validator set confirms the

observed state), the consensus-ed inbound Tx’s coin is added to the inbound Tx’s target vault.
• If the inbound Tx’s target vault doesn’t exist, the refundTx procedure is triggered, where a refund outbound

transaction is added to the outbound transaction queue for processing.
• The protocol keeps extracting the inbound Tx’s msg type and continues processing the transaction.

• If the transaction processing fails, the refundTx procedure is triggered, where a refund outbound
transaction is added to the outbound transaction queue for processing.

April 20th, 2020 Page of 14 30

April 20th, 2020 Page of 15 30

• The protocol updates the inbound transaction’s observation history for slashing later in EndBlock
procedure.

• Although the mechanism for this has not yet been implemented, the only transactions to be accepted as valid
observations on THORChain are those which have already reached finality on their origin chains (~ 6
confirmations on Bitcoin) or transactions whose value does not exceed that of one block’s emission reward.

OBSERVE OUTBOUND TRANSACTION
For each observed outbound transaction, each of its Tx contained in the transaction msg is checked.
• The protocol first ensures that the source vault of the outbound Tx exists.
• The protocol gets the voting status ObservedTxVoter of the outbound Tx, adds the current observer to the

ObservedTxVoter to update the voting status.
• If the outbound Tx reaches consensus (super majority, same as the case in observing inbound transaction), then

the protocol parses the outbound Tx’s memo field for further processing.
• If the transaction processing fails, the refundTx procedure is triggered, where a refund outbound transaction

is added to the outbound transaction queue for processing.
• The outbound Tx’s Gas is extracted from the outbound Tx’s source vault (and the corresponding pool), and

added to the protocol vault.  

The protocol updates the inbound transaction’s observation history for slashing in the EndBlock procedure later.
While facilitating OUTGOING transactions, signers’ misbehavior may be double-signing blocks, being offline or not
participating in threshold signatures for a consecutive 100 blocks. The amount that a validator is slashed for this
depends on the severity of the incident and will likely be finalized with on-chain voting prior to mainnet (though this
feature is not yet implemented).

HANDLE OUTBOUND TRANSACTION
The observation of an outbound transaction and the handling of an outbound transaction are separate
procedures. An outbound transaction currently is triggered either through swap, or asset refund by unstake.
The handling of these two scenarios has been generalized into handler_common_outbound: 

• The protocol obtains the ObservedTxVoter (voting record) for the original observed transaction and checks if
voting is done (consensus reached).
• If consensus is reached, this means the outbound transaction has already been processed. The protocol then

slashes the current node which “attempts” to send out the extra asset by 1.5x the sent amount from the
node’s bond as evidence in slashNodeAccount procedure.

• If consensus is not reached, add the current active node to the ObservedTxVoter’s voting record.

April 20th, 2020 Page of 16 30

• The protocol iterates through the outbound transaction queue, and set the TxOutItem’s OutHashes to
indicate finish.

• The protocol re-examines the coin being sent. If more coins are sent than what’s specified in the original
outbound transaction, then slashes the node by taking 1.5x of the amount from its bond as evidenced in
slashNodeAccount procedure.

As mentioned above, slashNodeAccount handles the situation where a validator attempts to disburse more
than the appropriate amount as designated by the protocol, as represented by a “double vote” (more outbound
transactions than Actions), and must be penalized for doing so. Additionally, if a node sent some funds with a bad
memo, its slashing invocation will be handled through refundTx.

The “Actions” field of the ObservedTxVoter indicates the outbound transaction to process. Once processed,
the outHashes of the Action item is set, and the action is removed from the Actions set to the OutTxs set to
indicate it is finished. The interfaces is demonstrated above at the beginning of the section. The actions stored in
the ObservedTxVoter corresponds to the outbound transaction to be processed in the global outbound
transaction storage queue.

VAULT TYPES
• Vault custodians (bonded validators) for the largest vault of the underlying asset in the pool need to execute TSS

on sending the asset being withdrawn to the original depositor's address on the underlying asset's blockchain.
Asgards are sharded into sub-asgards to ensure that their size will never exceed 2x the amount bonded by the
custodians (TSS-signing validators) securing the vault.
• While multiple Asgard vaults are supported, the OutBound transactions should percolate through the Asgards

with the highest amounts of coins to ensure the least amount of underlying chain transactions necessary to
clear the balance.

• The TSS threshold is higher — with an upper bound for both the number of signers and the proportion of total
assets custodied by the network — on (primary, "Asgard") vaults that hold custody of assets, with the lowest
possible threshold on (secondary, "Yggdrasil") vaults that are in charge of releasing the proceeds from swaps on
outgoing transactions.

• The churn schedule for liveness, voluntary departure from the validator set, and good behavior frequently
invokes the closing of both types of vaults with an immediate re-opening of replacement vaults having a fresh
set of signers.
• This will get immediately invoked if even just a single signer for a vault is triggered in the current block to be a

candidate for being eventually churned out.
• The migration of funds from closing primary vaults to their replacements is done each consecutive block in

increments of 20% over an hour.

April 20th, 2020 Page of 17 30

• When the transaction is finding the Yggdrasil pool that has sufficient funding, there is a tx.HasSigned(addr)
check for checking that the vault has signed the transaction: “if the ygg pool didn’t observe the TxIn, and didn’t
sign the TxIn, THORNode is not going to choose them to send out funds, because they might be offline.”
• There is a mutex lock to ensure a new outbound transaction is non-concurrently appended to the tail of the

queue without simultaneously dropping items from the queue.
• The actual process happens in the handle function of handler_common_outbound, where all observed

PubKeys are slashed.
• In txout_store.go, when there's a transaction going out, there will be a fee charged as reserve. It's the

instantaneous equivalent. Ie, if 1 Bolt is paid in fees, and 1 Bolt = 1 Rune, then 1 Rune is then sent to the
reserve. This ensures the dues are paid. It is paid by deducting 1 Rune and adding it to the RUNE protocol
reserve balance (both of which are virtual).
• We can find related code in the function handleV1 in file handler_reserve_contrib.go:
vault.TotalReserve = vault.TotalReserve.Add(msg.Contributor.Amount)

• The amount of gas paid for processing the outbound transaction on the underlying chain is recorded, the gas
fee is handled in AddGasFee of helpers.go
• For instance if the chain was Ethereum, we take RUNE from the reserve and reimburse ETH pool for gas,

causing it to be RUNE heavy. The community will send in ETH and get back a little extra RUNE, ensuring
that gas is always reimbursed because it’s economically incentivized to.

A brief illustration on the general relationships between nodes, pools, and vaults are shown as above.

April 20th, 2020 Page of 18 30

A detailed illustration follows where the status of the nodes, pools, and vaults are expanded below and in the appendix (link).

NEW CHAIN REQUEST
• Anyone in the active validator set may submit a transaction which indicates they are currently observing a chain

and are willing to support it.
• The feature is not yet implemented, but similar to the consensus about software versioning, as long as 2/3 of

the active validator set is observing a chain it is permanently supported until 100% of the validators indicate their
intent to not support it via a special transaction. In this case, prior to being delisted, the chain question is
subject to a Ragnarok procedure.

STAKER

POOL CREATION
• When someone creates a pool it’s in "bootstrap" mode which means people can stake and unstake but not

swap.
• Every three days the network elects a bootstrap pool to become "enabled" based on the amount of rune

staked in the pool.
• The pool's underlying asset's symbol must be recognized by a supported chain.

April 20th, 2020 Page of 19 30

https://mermaid-js.github.io/mermaid-live-editor/#/view/eyJjb2RlIjoiXG5ncmFwaCBMUlxuICAgICUlIC0tLS0tICUlXG4gICAgJSUgVHlwZXMgJSVcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIE5vZGVzICUlXG4gICAgc3ViZ3JhcGggTm9kZVtcIiBcIl1cbiAgICAgICAgKk5vZGVbTm9kZV1cbiAgICAgICAgQWN0aXZlTm9kZVtBY3RpdmUgTm9kZV1cbiAgICAgICAgUmVhZHlOb2RlW1JlYWR5IE5vZGVdXG4gICAgICAgIFN0YW5kYnlOb2RlW1N0YW5kYnkgTm9kZV1cbiAgICAgICAgV2hpdGVMaXN0ZWROb2RlW1doaXRlLUxpc3RlZCBOb2RlXVxuICAgICAgICBEaXNhYmxlZE5vZGVbRGlzYWJsZWQgTm9kZV1cbiAgICAgICAgVW5rbm93bk5vZGVbVW5rbm93biBOb2RlXVxuICAgIGVuZFxuICAgIHN0eWxlICpOb2RlIHN0cm9rZS1kYXNoYXJyYXk6IDYsIDYsZmlsbDojMGZhXG4gICAgQWN0aXZlTm9kZXNbQWN0aXZlIE5vZGVzIFNldF1cbiAgICBzdHlsZSBBY3RpdmVOb2RlcyBmaWxsOiMzZmFcbiAgICBzdHlsZSBBY3RpdmVOb2RlIHN0cm9rZS1kYXNoYXJyYXk6IDYsIDYsZmlsbDojM2ZhXG4gICAgc3R5bGUgUmVhZHlOb2RlIHN0cm9rZS1kYXNoYXJyYXk6IDYsIDYsZmlsbDojNmZhXG4gICAgc3R5bGUgU3RhbmRieU5vZGUgc3Ryb2tlLWRhc2hhcnJheTogNiwgNixmaWxsOiM5ZmFcbiAgICBzdHlsZSBXaGl0ZUxpc3RlZE5vZGUgc3Ryb2tlLWRhc2hhcnJheTogNiwgNixmaWxsOiNhZmFcbiAgICBzdHlsZSBEaXNhYmxlZE5vZGUgc3Ryb2tlLWRhc2hhcnJheTogNiwgNixmaWxsOiM4YzhcbiAgICBzdHlsZSBVbmtub3duTm9kZSBzdHJva2UtZGFzaGFycmF5OiA2LCA2LGZpbGw6IzhhOFxuICAgICpOb2RlIC0uLT58c3RhdHVzfCBBY3RpdmVOb2RlICYgUmVhZHlOb2RlICYgU3RhbmRieU5vZGUgJiBXaGl0ZUxpc3RlZE5vZGUgJiBEaXNhYmxlZE5vZGUgJiBVbmtub3duTm9kZVxuICAgIFxuICAgICUlIC0tLS0tICUlXG4gICAgXG4gICAgJSUgUHJvdG9jb2wgJSVcbiAgICBzdWJncmFwaCBQcm90b2NvbCBbXCIgXCJdXG4gICAgICAgIFByb3RvY29sUmVzZXJ2ZVxuICAgICAgICBQcm90b2NvbEdhc1xuICAgICAgICBQcm90b2NvbEJvbmRSZXdhcmRcbiAgICAgICAgUHJvdG9jb2xCb25kVW5pdHNcbiAgICBlbmRcbiAgICBzdHlsZSBQcm90b2NvbFJlc2VydmUgZmlsbDojOGYwXG4gICAgc3R5bGUgUHJvdG9jb2xHYXMgZmlsbDojOWZhXG4gICAgc3R5bGUgUHJvdG9jb2xCb25kUmV3YXJkIGZpbGw6IzhmY1xuICAgIHN0eWxlIFByb3RvY29sQm9uZFVuaXRzIGZpbGw6IzhmYVxuICAgIFxuICAgICUlIC0tLS0tICUlXG5cbiAgICAlJSBBc2dhcmQgVmF1bHQgJSVcbiAgICBzdWJncmFwaCBBc2dhcmRWYXVsdCBbXCIgXCJdXG4gICAgICAgICpBc2dhcmRbQXNnYXJkIFZhdWx0XVxuICAgICAgICBBY3RpdmVBc2dhcmRbQWN0aXZlIEFzZ2FyZCBWYXVsdF1cbiAgICAgICAgSW5hY3RpdmVBc2dhcmRbSW5hY3RpdmUgQXNnYXJkIFZhdWx0XVxuICAgICAgICBSZXRpcmluZ0FzZ2FyZFtSZXRpcmluZyBBc2dhcmQgVmF1bHRdXG4gICAgZW5kXG4gICAgc3R5bGUgKkFzZ2FyZCBzdHJva2UtZGFzaGFycmF5OiA2LCA2LGZpbGw6I2Y2MFxuICAgIHN0eWxlIEFjdGl2ZUFzZ2FyZCBzdHJva2UtZGFzaGFycmF5OiA2LCA2LGZpbGw6I2Y4MFxuICAgIHN0eWxlIEluYWN0aXZlQXNnYXJkIHN0cm9rZS1kYXNoYXJyYXk6IDYsIDYsZmlsbDojZmEwXG4gICAgc3R5bGUgUmV0aXJpbmdBc2dhcmQgc3Ryb2tlLWRhc2hhcnJheTogNiwgNixmaWxsOiNmYzBcbiAgICAqQXNnYXJkIC0uLT58c3RhdHVzfCBBY3RpdmVBc2dhcmQgJiBJbmFjdGl2ZUFzZ2FyZCAmIFJldGlyaW5nQXNnYXJkXG4gICAgXG4gICAgJSUgLS0tLS0gJSVcblxuICAgICUlIFlnZ2RyYXNpbCBWYXVsdCAlJVxuICAgIHN1YmdyYXBoIFlnZ2RyYXNpbFZhdWx0IFtcIiBcIl1cbiAgICAgICAgKllnZ2RyYXNpbFtZZ2dkcmFzaWwgVmF1bHRdXG4gICAgICAgIEFjdGl2ZVlnZ2RyYXNpbFtBY3RpdmUgWWdnZHJhc2lsIFZhdWx0XVxuICAgICAgICBJbmFjdGl2ZVlnZ2RyYXNpbFtJbmFjdGl2ZSBZZ2dkcmFzaWwgVmF1bHRdXG4gICAgICAgIFJldGlyaW5nWWdnZHJhc2lsW1JldGlyaW5nIFlnZ2RyYXNpbCBWYXVsdF1cbiAgICBlbmRcbiAgICBzdHlsZSAqWWdnZHJhc2lsIHN0cm9rZS1kYXNoYXJyYXk6IDYsIDYsZmlsbDojZjZmLGZvbnQtc2l6ZToxNnB0XG4gICAgc3R5bGUgQWN0aXZlWWdnZHJhc2lsIHN0cm9rZS1kYXNoYXJyYXk6IDYsIDYsZmlsbDojZjhmXG4gICAgc3R5bGUgSW5hY3RpdmVZZ2dkcmFzaWwgc3Ryb2tlLWRhc2hhcnJheTogNiwgNixmaWxsOiNmYmZcbiAgICBzdHlsZSBSZXRpcmluZ1lnZ2RyYXNpbCBzdHJva2UtZGFzaGFycmF5OiA2LCA2LGZpbGw6I2ZlZlxuICAgICpZZ2dkcmFzaWwgLS4tPnxzdGF0dXN8IEFjdGl2ZVlnZ2RyYXNpbCAmIEluYWN0aXZlWWdnZHJhc2lsICYgUmV0aXJpbmdZZ2dkcmFzaWxcbiAgICBcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIFBvb2wgJSVcbiAgICBzdWJncmFwaCBQb29sW1wiIFwiXVxuICAgICAgICAqUG9vbFtQb29sL0Fzc2V0L0NoYWluXVxuICAgICAgICBFbmFibGVkUG9vbFtFbmFibGVkIFBvb2wvQXNzZXQvQ2hhaW5dXG4gICAgICAgIEJvb3N0cmFwUG9vbFtCb29zdHJhcCBQb29sL0Fzc2V0L0NoYWluXVxuICAgICAgICBTdXNwZW5kZWRQb29sW1N1c3BlbmRlZCBQb29sL0Fzc2V0L0NoYWluXVxuICAgIGVuZFxuICAgIHN0eWxlICpQb29sIHN0cm9rZS1kYXNoYXJyYXk6IDYsIDYsZmlsbDojOWZmXG4gICAgc3R5bGUgRW5hYmxlZFBvb2wgc3Ryb2tlLWRhc2hhcnJheTogNiwgNixmaWxsOiNhZmZcbiAgICBzdHlsZSBCb29zdHJhcFBvb2wgc3Ryb2tlLWRhc2hhcnJheTogNiwgNixmaWxsOiNjZmZcbiAgICBzdHlsZSBTdXNwZW5kZWRQb29sIHN0cm9rZS1kYXNoYXJyYXk6IDYsIDYsZmlsbDojZWZmXG4gICAgKlBvb2wgLS4tPnxzdGF0dXN8IEVuYWJsZWRQb29sICYgQm9vc3RyYXBQb29sICYgU3VzcGVuZGVkUG9vbFxuICAgIFxuICAgICUlIC0tLS0tICUlXG4gICAgJSUgTGlua3MgJSVcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIE5vZGUgPC0-IE5vZGUgJSVcbiAgICBBY3RpdmVOb2RlIC0uLT58TWVtYmVyIE9mfCBBY3RpdmVOb2Rlc1xuICAgIFVua25vd25Ob2RlIC0tPnxNc2dCb25kfCBXaGl0ZUxpc3RlZE5vZGVcbiAgICBcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIE5vZGUgLT4gQXNnYXJkICUlXG4gICAgQWN0aXZlTm9kZXMgLS0-fEdlbmVyYXRlc3wgQWN0aXZlQXNnYXJkXG4gICAgQWN0aXZlTm9kZSAtLi0-fE1lbWJlciBPZnwgQWN0aXZlQXNnYXJkXG4gICAgXG4gICAgJSUgQXNnYXJkIC0-IE5vZGUgJSVcbiAgICBBY3RpdmVBc2dhcmQgLS0-fFJlZnVuZHN8IEFjdGl2ZU5vZGVcbiAgICBcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIE5vZGUgLT4gWWdnZHJhc2lsICUlXG4gICAgKk5vZGUgLS4tPnxIYXMgQW58ICpZZ2dkcmFzaWxcbiAgICBBY3RpdmVOb2RlIC0tPnxGdW5kfCAqWWdnZHJhc2lsXG4gICAgXG4gICAgJSUgWWdnZHJhc2lsIC0-IE5vZGUgJSVcbiAgICBcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIEFzZ2FyZCA8LT4gQXNnYXJkICUlXG4gICAgQWN0aXZlQXNnYXJkIC0tPnxSb3RhdGVWYXVsdHwgUmV0aXJpbmdBc2dhcmRcbiAgICBBY3RpdmVBc2dhcmQgLS0-fEVuZEJsb2NrfCBJbmFjdGl2ZUFzZ2FyZFxuICAgIFJldGlyaW5nQXNnYXJkIC0tPnxNaWdyYXRlIEFzc2V0IFRvfCBBY3RpdmVBc2dhcmRcbiAgICBcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIEFzZ2FyZCAtPiBQcm90b2NvbCAlJVxuICAgICpBc2dhcmQgLS0-fEFkZEdhc0ZlZXN8IFByb3RvY29sR2FzXG4gICAgXG4gICAgJSUgUHJvdG9jb2xSZXNlcnZlIC0-IEFzZ2FyZCAlJVxuICAgIFxuICAgICUlIC0tLS0tICUlXG4gICAgXG4gICAgJSUgQXNnYXJkIC0-IFlnZ2RyYXNpbCAlJVxuICAgIEFjdGl2ZUFzZ2FyZCAmIFJldGlyaW5nQXNnYXJkIC0tPnxZZ2dkcmFzaWxGdW5kfCAqWWdnZHJhc2lsXG4gICAgXG4gICAgJSUgWWdnZHJhc2lsIC0-IEFzZ2FyZCAlJVxuICAgIEFjdGl2ZVlnZ2RyYXNpbCAtLT58WWdnZHJhc2lsUmV0dXJufCBBY3RpdmVBc2dhcmRcbiAgICBcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIFlnZ2RyYXNpbCA8LT4gWWdnZHJhc2lsICUlXG4gICAgXG4gICAgJSUgLS0tLS0gJSVcbiAgICBcbiAgICAlJSBQcm90b2NvbFJlc2VydmUgLT4gWWdnZHJhc2lsICUlXG4gICAgXG4gICAgJSUgWWdnZHJhc2lsIC0-IFByb3RvY29sICUlXG4gICAgKllnZ2RyYXNpbCAtLT58QWRkR2FzRmVlc3wgUHJvdG9jb2xHYXNcbiAgICBcbiAgICAlJSAtLS0tLSAlJVxuICAgICAgICBcbiAgICAlJSBBc2dhcmQgLT4gUG9vbCAlJVxuICAgICpBc2dhcmQgLS4tPnxcIkhhcyBBZGRyZXMgRm9yXCJ8ICpQb29sXG4gICAgXG4gICAgJSUgUG9vbCAtPiBBc2dhcmQgJSVcbiAgICBcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIFlnZ2RyYXNpbCAtPiBQb29sICUlXG4gICAgKllnZ2RyYXNpbCAtLi0-fFwiSGFzIEFkZHJlcyBGb3JcInwgKlBvb2xcbiAgICBcbiAgICAlJSBQb29sIC0-IFlnZ2RyYXNpbCAlJVxuICAgIFxuICAgICUlIC0tLS0tICUlXG4gICAgXG4gICAgJSUgUG9vbCAtPiBOb2RlICUlXG4gICAgXG4gICAgJSUgTm9kZSAtPiBQb29sICUlXG4gICAgKk5vZGUgLS0-fHNsYXNoTm9kZUFjY291bnR8IEVuYWJsZWRQb29sXG4gICAgQWN0aXZlTm9kZSAtLT58VXBkYXRlVmF1bHQvQm9uZFVuaXRzfCBQcm90b2NvbEJvbmRVbml0c1xuICAgIFxuICAgICUlIC0tLS0tICUlXG4gICAgXG4gICAgJSUgTm9kZSAtPiBQcm90b2NvbCAlJVxuICAgICpOb2RlIC0tPnxcIkxlYXZlL3JlZnVuZEJvbmQvVHJhbnNhY3Rpb25GZWVcInwgUHJvdG9jb2xSZXNlcnZlXG4gICAgKk5vZGUgLS0-fFwic2xhc2hOb2RlQWNjb3VudFwifCBQcm90b2NvbFJlc2VydmVcbiAgICBcbiAgICAlJSBQcm90b2NvbCAtPiBOb2RlICUlXG4gICAgUHJvdG9jb2xCb25kUmV3YXJkIC0tPnxVcGRhdGVWYXVsdERhdGEvcGF5Tm9kZUFjY291bnRCb25kQXdhcmQ6Qm9uZFJld2FyZHN8IEFjdGl2ZU5vZGVcbiAgICBcbiAgICAlJSAtLS0tLSAlJVxuICAgIFxuICAgICUlIFBvb2wgLT4gUHJvdG9jb2wgJSVcbiAgICBFbmFibGVkUG9vbCAtLT58VXBkYXRlVmF1bHQvUG9vbERlZmljaXR8IFByb3RvY29sQm9uZFJld2FyZFxuICAgIFxuICAgICUlIFByb3RvY28gLT4gUG9vbCAlJVxuICAgIFByb3RvY29sUmVzZXJ2ZSAtLT58VXBkYXRlVmF1bHQvc3VidHJhY3RHYXNUb3wgKlBvb2xcbiAgICBQcm90b2NvbFJlc2VydmUgLS0-fFVwZGF0ZVZhdWx0L1Bvb2xSZXdhcmR8ICpQb29sXG4gICAgXG4gICAgJSUgLS0tLS0gJSVcbiAgICBcbiAgICAlJSBQcm90b2NvbCA8LT4gUHJvdG9jb2wgJSVcbiAgICBQcm90b2NvbEdhcyAtLT58VXBkYXRlVmF1bHQvc3VidHJhY3RHYXNDYWxjdWxhdGlvbnwgUHJvdG9jb2xSZXNlcnZlXG4gICAgUHJvdG9jb2xSZXNlcnZlIC0tPnxVcGRhdGVWYXVsdERhdGEvQm9uZFJld2FyZHwgUHJvdG9jb2xCb25kUmV3YXJkIiwibWVybWFpZCI6eyJ0aGVtZSI6Im5ldXRyYWwiLCJmbG93Y2hhcnQiOnsiY3VydmUiOiJsaW5lYXIiLCJodG1sTGFiZWxzIjpmYWxzZSwidXNlTWF4V2lkdGgiOmZhbHNlLCJub2RlU3BhY2luZyI6MTAsInJhbmtTcGFjaW5nIjoxMCwiZm9udFNpemUiOjE2fX19

STAKE
Stake lets stakers provide liquidity to a certain pool and earn liquidity fees in return. When a liquidity provider
deposits only one asset of a pool (RUNE or the underlying), then it’s expected that arbitrageurs will exploit the
situation to yield a result identical to the corresponding opposite asset being immediately bought in exchange for
an equivalent value in the asset being deposited.
• The protocol initially checks that the total staked RUNE will not exceed the MaximumStake. It also ensures that

the total stake RUNE will not exceed the total bond of the active nodes to maintain the bonder-staker security
and avoid collusion.

• If the staker’s stake satisfies the condition, then the corresponding pool is found / created by the protocol for
adding the asset.

• The protocol updates the staker’s pool ownership according to the pool ownership formula (implemented by the
calculatePoolUnits) procedure and denoted by a pool unit quantity.

• Finally, the staked asset is added to the pool.

UNSTAKE
Unstake lets staker to retrieve its liquidity fee share and get the stake back. The share's worth is much appreciated
by the non-share value in the pool — liquidity fees collected on every swap since the time they deposited.
• Liquidity providers may withdraw the liquidity contributed from the pool they contributed.
• The amount to withdraw is specified in terms of basis point of its pool units.
• The actual withdrew amounts is calculated by the calculateUnstake procedure.

• The claimed units is computed as: (withdraw basis point / 10000) * (staker’s pool units).
• The withdrawn RUNE amount is thus: (pool’s RUNE balance) * (claimed units / pool’s total units).
• The withdrawn RUNE amount is then: (pool’s Asset balance) * (claimed units / pool’s total units).
• The proportion of the two assets of the pool remains invariant after the withdraw.

Finally, the RUNE and Asset amount is deducted from the pool, and the pool units and the staker’s units get
updated.

• The protocol creates a new outbound transaction to be appended to the outbound Tx queue.
• The distribution of the fee is done in the UpdateVaultData procedure triggered during THORChain's

EndBlock. The depth determines the reward size in the calcPoolReward procedure where the contributed
part is compared against the total amount to get this “depth”. Note that when liquidity fee exceeds block
reward, it’s safe-subtracted to keep the desired equilibrium. The liquidity fee is added to the pool liquidity fee
storage directly in the AddToLiquidityFees procedure.

April 20th, 2020 Page of 20 30

• There is an artificial delay of 24hr (17280 blocks) wait on withdrawals to prevent double-spend attacks on PoW
chains. It requires two transactions to be created, and there is a standard 1 RUNE "network fee” charged on
any outgoing RUNE transaction and put into the protocol reserve.

ENDPOOL
• In the EndPool scenario, the protocol triggers “unstake” for each staker of a pool, and the pool gets reset to

Bootstrap phase again.

For the sake of visual aid prior to the following section examining the mathematics behind the swap mechanism,
we provide a simulation where the y-axis is price and the x-axis is quantity (as in any standard economics graph),
for two curves each representing the behavior of one asset in a pool, and display their relationship to each other as
governed by the mechanics of the pool: 

April 20th, 2020 Page of 21 30

SWAPPER

According to the CLP formula, here is the expected amount to be received in exchange for , where and
indicate the depth of each asset in the pool:

The new price of :

Let there be a transaction that yields a token output

Let there be a transaction that yields a token output

Therefore:	 	  

Since , it follows that .

Therefore: larger transactions are more expensive and have higher slippage than smaller transactions

SWAP & DOUBLE SWAP
Swaps are handled by the XYK formula with a custom fee calculation that is proportional to the slippage caused
by the swap. Due to the swap-based fees it is not necessary to limit swap transactions to some flexible portion of
total available liquidity in the pool (which, anyway, would have no net effect on usability, since transactions can be
broken up) in order to discourage the possibility of a severe sandwich attack — it simply becomes sufficient cost-
prohibitive.

• General user / swapper indicates the types and addresses of the assets they want to swap through the
transaction memo field and sends the transaction to THORChain for swap.

• The emitted amount, liquidity fee of a swap is calculated as indicated by the CLP formula in the THORChain
white-paper. The price is determined internally based on the balances of the assets in the pool.
• A slippage based liquidity fee is deduced based on pool depth and how much the transaction size affected it.

• There is a fixed amount of TransactionFee used for validating the swap. If the swapped output is not enough to
pay for the transaction fee, the swap is cancelled.

• Double swap, as denoted by A → B, is achieved by two consecutive single swaps, denoted by A → RUNE +
RUNE → B.
• The liquidity fee is charged twice for double swap. 

y x X Y

y = xY X
(x + X)2

y

Py
new = x

y
= (x + X)2

Y X
x0 y0
x1 > x0 y1

Py
new0 = (x0 + X)2

Y X
Py

new1 = (x1 + X)2

Y X
x1 > x0 Py

new1 > Py
new0

April 20th, 2020 Page of 22 30

FINDINGS & RECOMMENDATIONS

ADDRESSED (COMMITS)

• https://gitlab.com/THORChain/thornode/-/merge_requests/663/diffs
• validator_mgr_v1.go/ragnarokReserve

• The order of totalReserve and totalContributions needs to be swapped.

• https://gitlab.com/THORChain/thornode/-/merge_requests/664/diffs
• handler_tss.go/handleV1

• When voter.PoolPubKey is empty, it is reset, but why voter.PubKeys is reset as well? Should there
be an independent check to see if voter.PubKeys exists?
• [THORChain] when PoolPubKey is empty , which means TssVoter with id(msg.ID) doesn't exist

before, this is the first time to create it and thus set the PoolPubKey to the one in msg. There is no
reason voter.PubKeys have anything in it either, thus override it with msg.PubKeys as well.

• types/querier.go
• var result []string: result should be preallocated.

• yggdrasil.go/calculateTargetYggCoins
• In the pool iteration section (to ensure no extra amount will be sent to Yggdrasil), the runeAmt is added

to the counter to indicate the amount of the asset with the comment “add rune amt (not asset since the
two are considered to be equal)”. The comment should clarify why the amounts considered equal,
otherwise this is liable to be a functional flaw.
• [THORChain] In a single pool X, the value of 1% asset X in RUNE ,equals the 1% RUNE in the same

pool. 

• https://gitlab.com/THORChain/thornode/-/merge_requests/671/diffs

• handler.go/getMsgStakeFromMemo
• For if !runeAddr.IsChain(common.BNBChain), it would be helpful to have more comments about

multi-chain interaction logic.
• handler_common_outbound.go/handle

• Redundant tx.Tx.Coins.Contains(txOutItem.Coin) check when setting the outHash. 

• https://gitlab.com/THORChain/thornode/-/merge_requests/675/diffs
• validator_mgr_v1.go/findBadActors

• var tracker []badTracker: tracker should be preallocated.

• types/type_event_status.go

April 20th, 2020 Page of 23 30

https://gitlab.com/thorchain/thornode/-/merge_requests/663/diffs
https://gitlab.com/thorchain/thornode/-/merge_requests/664/diffs
https://gitlab.com/thorchain/thornode/-/merge_requests/671/diffs
https://gitlab.com/thorchain/thornode/-/merge_requests/675/diffs

• var result EventStatuses: result should be preallocated.
• handler_stake.go/processStakeEvent

• The if eventStatus == EventFail can be removed as the function is always invoked
with eventStatus set as EventSuccess, unless it’s deliberately left here for future usage.

• validator_mgr_v1.go/ragnarokProtocolStage2
• Failing test case for HandlerEndPoolSuite.TestHandle:

• obtained types.PoolStatus = 1 (“Bootstrap”)
• expected types.PoolStatus = 0 ("Enabled")

• handler_observed_txin.go/validateV1
• Line 63 loops through all signers of the message. Is it guaranteed that there’s exactly one signer? If so we

should probably check that and avoid the loop? If not, the validation will succeed if the first signer is
authorized but the second is not. Not all of their states are updated.  

• https://gitlab.com/THORChain/thornode/-/merge_requests/680/diffs
• vault_data.go/calcBlockRewards

• var amts []sdk.Uint: amts should be preallocated.
• Typo “blocksOerYear” should be changed to “blocksPerYear”.

• unstake.go/unstake
• The lock up block number 17280 should be moved into constants.go.

• unstake.go/validateUnstake
• The check msg.UnstakeBasisPoints.GT(sdk.ZeroUint()) &&
msg.UnstakeBasisPoints.GT(…) can be reformatted as !
msg.UnstakeBasisPoints.GT(sdk.ZeroUint()) || msg.UnstakeBasisPoints.GT(…) 

• https://gitlab.com/THORChain/thornode/-/issues/398
• The if emitAssets.GT(Y) could be if emitAssets.GTE(Y) for supporting “just-enough” swap that

would round down the pool into bootstrap mode if desired. 

• https://gitlab.com/THORChain/thornode/-/issues/397
• handler_tss_keysign_fail.go

• This handler could be merged with the more generalized handler_tss_keysign. 

• https://gitlab.com/THORChain/thornode/-/issues/396
• handler_pool_data

• Recommend double check the usage of this handler for production code at later stage.  

April 20th, 2020 Page of 24 30

https://gitlab.com/thorchain/thornode/-/merge_requests/680/diffs
https://gitlab.com/thorchain/thornode/-/issues/398
https://gitlab.com/thorchain/thornode/-/issues/397
https://gitlab.com/thorchain/thornode/-/issues/396

• https://gitlab.com/THORChain/thornode/-/issues/395  
https://gitlab.com/thorchain/thornode/-/merge_requests/753/diffs  
https://gitlab.com/thorchain/thornode/-/merge_requests/756/diffs
• keeper_vault_data.go/UpdateVaultData

• There were multiple gas subtraction operations after the gas is subtracted from the total reserve. The
conditional check vault.TotalReserve.LT(totalPoolRewards) was slightly confusing, as the
totalPoolRewards came from the total liquidity fee, though the gas had already been subtracted from the
total liquidity fee earlier. Since this logical flow was intended to be a failsafe that by definition will not
happen, and given the amount of complexity that it involves, it was removed.

• If there are no fees in a block, block rewards are paid out based on historical fees (not poolDepths), while
retaining logic around systemIncome and poolDeficit. The new, simplified business logic flow is below: 

April 20th, 2020 Page of 25 30

https://gitlab.com/thorchain/thornode/-/issues/395
https://gitlab.com/thorchain/thornode/-/merge_requests/753/diffs
https://gitlab.com/thorchain/thornode/-/merge_requests/756/diffs

• https://gitlab.com/THORChain/thornode/-/issues/394
• swap.go/swapOne

• The passed-in argument pool is unused. Recommend removing the argument.  

• https://gitlab.com/THORChain/thornode/-/issues/392
• handler_observed_txin.go/validateV1

• New observers are marked as active in validateV1 of handler_observed_txin.go but are not
validateV1 of handler_observed_txout.go. Should the behaviors of the two functions be unified?

ADDRESSED (DISCUSSIONS)

• slashing.go/slashNodeAccount.
• When the asset is RUNE, 1.5x of the slashed amount is deducted from the node account, with 0.5x of the

slashed amount added back to the protocol reserve. But the other 1.0x seems just being burnt without being
transferred to anywhere else.
• [THORChain] We take 0.5x and put it into the reserve, then just leave the pool balances the same, and

therefore the 1.0x stays in the pools (never actually leaves).

• vault_manager.go/EndBlock
• Should bad actors have precedence in the churn out queue over well-behaved nodes exercising their right to

leave voluntarily, in order to prevent the possibility of both occurring at a sufficient magnitude to unnecessarily
spur a Ragnarok? Or should there be a check to see that there are sufficient Ready standby nodes who will
immediately take their place prior to allowing well-behaved nodes into the churn out queue at all?
• [THORChain] In our mind, the priority is

• 1) people who want to leave
• 2) people who don't want to leave

• [THORChain] We cannot prioritize bad actors vs good actors, because good actors may stay in the
network too long which may block our ability to upgrade the network. 

• validator_mgr_v1.go/ragnarokProtocolStage2
• The pool cleanup in Ragnarok stage II could be restructured to invoke EndPool instead of issuing numerous

individual unstake messages.
• [THORChain] No, because Ragnarok will unstake stakers in 10 rounds, it is different as EndPool will

unstake the full amount in one go.  
 

April 20th, 2020 Page of 26 30

https://gitlab.com/thorchain/thornode/-/issues/394
https://gitlab.com/thorchain/thornode/-/issues/392

• vault_manager.go/EndBlock
• The migration of retiring vaults in EndBlock shares a similar pattern with ragnarokBond in
validator_mgr_v1.go. However, in ragnarokBond the nth limit the amount is deducted directly from
the bond, and the created TxOutItem is using the amount to be migrated, instead of the total expected
amount used by the migrate transaction. Should the implementation of the migration in these two functions
be unified?
• [THORChain] The reason why they are different is because the gas requirements are different. Migration

will only have 1 transaction per coin, per round. A Ragnarok may have 100's or 1,000's of transaction per
coin, per round. We wanted to make sure that in a Ragnarok scenario, if we somehow don't have enough
gas, the last round is only 0.003% of each person's holdings. This isn't a concern for migration, and if it
is... its easy for anyone in the world to throw $1 of BNB at the vault and it will recover. For Ragnarok, they
nodes may no longer be able to sign the transaction.

• swap.go
• Limiting swap transactions to some flexible portion of total available liquidity in the pool may have no net

effect on usability, since transactions can be broken up anyway, but discourage the possibility of a severe
sandwich attack. Otherwise, it could be useful to overlaying onto the end-user swap UX an exponential
moving-average for prices (provided Midgard can retrieve an accurate historical record) with users choosing
how long of a moving average they want for the transaction.
• [THORChain] We used to have a global slip limit of 30% of the pool. But it was removed because it

created a limitation without purpose. Its perfectly ok if someone wants to make a massive swap. It won't
"sandwich attack" the pool because the fees would be too high.Recommend double check the usage of
this handler for production code at later stage. 

• handler_add
• Recommend double check the usage of this handler for production code at later stage. in the event of losing

funds.
• [THORChain] handler_add is used to top the asset in a pool without affecting existing staker’s stake unit,

it could be used to reimburse stakers  

• handler_observed_txin.go/handleV1
• The check for tx.Tx.Chain.IsEmpty() can be moved upstream into validate functions instead of

coupling it in the handleV1 with unnecessary memo parsing if the prerequisite is not satisfied.
• [THORChain] We should not do it in the Validate function: potentially there might have multiple

transactions getting bundled into one MsgObservedTxIn, if one transaction's chain is empty, we still need
to process the rest, thus tx.Tx.Chain.IsEmpty check in handleV1 is fine, also we should have ⅔ majority

April 20th, 2020 Page of 27 30

observed the tx before we refund it, thus the check is in the right place. 

• handler_observed_txout.go/handleV1
• vault.SubFunds(tx.Tx.Coins) happens both in handleV1 and AddGasFees. Is the fund doubly

charged?
• [THORChain] No, vault.SubFunds(tx.Tx.Coins) is to take the actual coins out of vault, while the one in

AddGasFees is take out the gas spent in the transaction from vault, these two are different fields for
different purposes, it is not double spending. 

• Yggdrasil
• Though it may be considered somewhat redundant or labeled as a mere sanity check, there should be a

check to ensure a Yggdrasil is never permitted to process an outgoing transaction where 1.5x the value of
the transaction ≥ the amount bonded by the signing node. THORChain should always ensure provisioning
for a potential slash, and guarantee that there is a large enough balance in a validator’s bond relative to the
size of any outbound transaction which may pass through the validator’s Yggdrasil.
• [THORChain] Yggdrasil pool will only be funded with half of the value of their bond, and when we

choose which Yggdrasil to send out transaction, it always ensures the Yggdrasil pool has enough
balance to process the transaction. 

• handler_observed_txin.go
• There could be a sanity check for whether the RUNE value of incoming transactions would exceed the value

of bonded Rune by all validators.
• [THORChain] We already have protection for staking scenario, swap is not practical, because you will

lose money.

• keeper_events.go/UpsertEvent
• There is no check for if the event ID matches with the transaction hash for an event ID which already exists.

Recommend adding the else branch check for if event.ID == 0.
• [THORChain] I don’t think we should do that as some of the events are generated by THORChain

itself, for example migration, Yggdrasil fund -- the transaction hash will be the same because there is no
inbound transaction.

BOOTSTRAPPING POOLS
• Since only one of the pools will be selected once every three days, the opportunity cost of staking to a pool that

consistently doesn’t get selected can become an unnecessarily deterring factor. Instead of allowing this
occurrence, we propose to borrow a solution from the Cosmos SDK called commitment tokens.

April 20th, 2020 Page of 28 30

• The Tendermint problem addressed by this solution was related to vanquishing staking rewards from active
validators by needing to delegate to standby validators. A similar mechanism can be created for the liquidity
pools, allowing people to issue commitments that will automatically switch their liquidity over to the new pool
once it receives enough commitments.
• [THORChain] Its an interesting concept. Our first thought is that I like the simplicity of the current design. It

doesn't anyone to learn any new "concepts" and its completely clear and transparent system. We would be a
bit nervous about adding more complexity to the system when we have a via solution that feels pretty
intuitive.

• When staking RUNE there is a check to make sure the bonded RUNE is not exceeded, but it doesn't happen
when staking non-RUNE. From first appearance this would be a beneficial situation because it is guaranteed to
create a temporary arbitrage opportunity and increase the demand for RUNE (potentially the price of RUNE
also). This is concerning because a price fluctuation of the non-RUNE asset could temporarily put the total value
of the staked assets higher than the value of RUNE bonded.
• [THORChain] Assumptions: no 24hr limit on withdrawals, starting pools: 0

Alice: 1000 Rune & 100 BNB,  
Malice: 1000 Rune & 100 BNB 
Real world price is 10, Alice & Malice both have 200 BNB total value

April 20th, 2020 Page of 29 30

Alice stakes: 1000:100 (price is 10) --> pool ownership 100%
Malice stakes: 0:100 --> pool ownership 21% (alice has 79%)
Pool: 1000:200 (price is 5)
 
Malice swaps 1000 RUNE into 50 BNB (price of 20)
Pool: 2000:150
 
Alice withdraws: 1571 RUNE & 117 BNB
Malice withdraws: 428 RUNE & 32 BNB (+50 BNB from her swap)
 
Assuming real market price of 10:
Alice has 275 BNB value,  
Malice has 125 BNB value 

Even if you allowed an arb to step in prior to withdrawing:
 
Pool: 2000:150 (price is 13)
Arb swaps 23 BNB for 268 RUNE
Pool: 1732:173 (price of 10)
 
Alice withdraws: 1360 RUNE & 136 BNB
Malice withdraws: 371 RUNE & 37 BNB (plus 50 BNB from her swap)
 
Alice Total: 272 BNB Value
Malice Total: 124 BNB value

April 20th, 2020 Page of 30 30

	Disclaimer
	About certik
	Executive summary
	Engagement Objectives
	Audit Methodology

	System Overview
	Architecture
	Networking layer
	Consensus Layer
	Incentive Layer
	Application layer

	Business logic EvaluatioN

	Workflow analysis
	Protocol
	Genesis
	Versioning
	BeginBlock: Node Rotation
	EndBlock: Slashing, Rewarding, Funding, and Node Update
	Reward Distribution Variability (Incentive Pendulum)
	Ragnarök

	Bonder/Validator/Observer
	Bond
	Leave
	Observe Inbound Transaction
	Observe Outbound Transaction
	Handle Outbound Transaction
	Vault Types
	New Chain Request

	Staker
	Pool Creation
	STAKE
	Unstake
	EndPool

	Swapper
	Swap & Double Swap

	Findings & Recommendations
	Addressed (Commits)
	Addressed (Discussions)
	Bootstrapping Pools

