# Load necessary libraries library(caret) library(Metrics) # Sample data x <- c(1, 2, 3, 4, 5) y <- c(1.2, 1.9, 3.1, 4.5, 6.8) data <- data.frame(x, y) # Define polynomial degree degree <- 2 # Create polynomial features data$poly_x <- poly(data$x, degree, raw = TRUE) # Fit the model model <- lm(y ~ poly_x, data = data) # Make predictions y_pred <- predict(model, data) # Calculate Mean Squared Error mse <- mse(y, y_pred) # Calculate R^2 Score r2 <- summary(model)$r.squared print(paste("Mean Squared Error:", mse)) print(paste("R^2 Score:", r2))