from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline from sklearn.metrics import mean_squared_error, r2_score import numpy as np # Sample data x = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) y = np.array([1.2, 1.9, 3.1, 4.5, 6.8]) # Define polynomial degree degree = 2 # Create a pipeline to perform polynomial regression model = Pipeline([ ("poly_features", PolynomialFeatures(degree=degree, include_bias=False)), ("lin_reg", LinearRegression()) ]) # Fit model model.fit(x, y) # Make predictions y_pred = model.predict(x) # Evaluate the model mse = mean_squared_error(y, y_pred) r2 = r2_score(y, y_pred) print("Mean Squared Error:", mse) print("R^2 Score:", r2)