from sktime.pipeline import make_pipeline from sktime.transformations.series.adapt import TabularToSeriesAdaptor from sktime.forecasting.arima import ARIMA from sktime.datasets import load_airline from sklearn.preprocessing import StandardScaler # Load sample dataset y = load_airline() # Define the scaler (wrapped to adapt to time series) scaler = TabularToSeriesAdaptor(StandardScaler()) # Define the forecaster forecaster = ARIMA(order=(1, 1, 1)) # Create the pipeline using make_pipeline pipeline = make_pipeline(scaler, forecaster) # Fit the pipeline pipeline.fit(y) # Forecast for 12 steps ahead y_pred = pipeline.predict(fh=12) print(y_pred)