import matplotlib.pyplot as plt from sktime.datasets import load_airline from sktime.forecasting.arima import ARIMA import numpy as np # Load data y = load_airline() # Initialize ARIMA forecaster forecaster = ARIMA( order=(1, 1, 0), seasonal_order=(0, 1, 0, 12), suppress_warnings=True ) # Fit the model forecaster.fit(y) # Generate predictions y_pred = forecaster.predict(fh=np.arange(20)) # Plot the predictions plt.figure(figsize=(10, 5)) plt.plot(y.to_timestamp(), label='Actual') plt.plot(y_pred, label='Forecast', color='red') plt.title('ARIMA Model Forecast - airline dataset') plt.legend() plt.savefig('airline.jpg') plt.show()