
Version 1.31 3/8/2013 i

Signing UEFI Applications
and Drivers for UEFI Secure
Boot

February 27, 2013

Revision 1.31

Revision History
Revision Revision History Date

0.1

0.2

0.21

0.22

0.23

0.55

0.56

0.57

0.58

0.59

1.0

1.1

1.2

1.3

Initial draft without OVMF

Cleanup & reorganize

Tech writer cleanup. Add reference to App. A of the shell book

Update Custom Mode Diagram
Add OVMF section. Update Using Custom Mode section

Reviewed by Psi Security Subteam

Update OVMF details

Add Nt32Pkg details, Update where to get signing tools, Add
Custom Mode Setup Screen shots.

Add review comments from architects.

Tech writer review

Add section: Image Verification Rules, Add nt32Pkg checkin rev.

Remove ImageVerification PCD description since it does not apply
to images signed by X509 certificates. Add link to the Signing
tools tab on the Secure Boot page on tianocore for the latest info
on Linux signing tools.

Add description and reference to of the certificate file format. Add
section on images with multiple signatures and link to more info on
tianocore. Add that some tools require admin prvileges. Add details
about the KEK & DB GUIDs. Update image verification flow
description with diagram. Add additional screen shots of custom
mode. EDK2 to EDK II.

Updates and clarifications related to UEFI Spec conformance
regarding KEK and DB usage

2/1/2012

2/2/2012

2/7/2012

2/8/2012

2/9/2012

2/14/2012

3/5/2012

3/28/2012

4/2/2012

4/3/2012

4/11/2012

5/7/2012

7/13/2012

12/12/2012

1.4 Add reference to the Secure Boot Dual Boot videos on YouTube. 2/27/2013

 Add commands for generating PK with openssl. Reference the
UEFI CA KEK and DB certificates at Microsoft.com

Version 1.31 3/8/2013 3

Contents
Revision History .. ii

Contents 3

1 Secure Booting UEFI Drivers and Applications ... 5
1.1 UEFI Secure Boot Overview .. 5

1.1.1 Image Formats .. 5
1.1.2 UEFI Secure Boot Policy ... 6
1.1.3 Additional Information .. 6
1.1.4 Document Precedence .. 6

1.2 UEFI Secure Boot’s Authenticated Variables ... 7
1.2.1 Overview of Authenticated Variables .. 7
1.2.2 Types of Authenticated Variables ... 8
1.2.3 Secure Boot’s Authenticated Variable Descriptions 8

1.3 Image Authorization Flow .. 9
1.4 Signing UEFI Images For Production and Release 11
1.5 Signing UEFI Images For Development and Test .. 12

1.5.1 Microsoft Windows * Hosted Signing Tools 12
1.5.2 Dual Booting Windows 8 * and Ubuntu Linux 18
1.5.3 Linux Hosted Signing Tools .. 19
1.5.4 Images with Multiple Signatures ... 19
1.5.5 Image Verification Rules .. 19

1.6 Convert the Signed Driver to a .rom File ... 20
1.7 Install the Signed Driver ... 20
1.8 Adding a Signed Driver to the Boot Sequence .. 21
1.9 Deploying Secure Boot Image and Certificate Policy 21

1.9.1 Secure Boot Setup & User Mode ... 21
1.9.2 Secure Boot Setup Standard and Custom Mode 22
1.9.3 Using Secure Boot Custom Mode .. 23
1.9.4 Secure Boot Custom ModeSetup Screens 23

1.10 UEFI Secure Boot Scenarios .. 40
1.10.1 A signed UEFI image whose signing certificate or signature is enrolled.

 .. 40
1.10.2 An unsigned image whose signature is not enrolled. 41
1.10.3 A signed driver whose signature is enrolled and an unsigned driver

whose signature is not enrolled. ... 41
1.10.4 Booting an OS using a signed & enrolled driver. 42

1.11 Using OVMF with UEFI Secure Boot .. 42
1.11.1 Overview ... 42
1.11.2 Getting QEMU .. 42
1.11.3 Building OVMF .. 43
1.11.4 CryptoPkg OpenSslLib Dependency ... 43
1.11.5 Enabling UEFI Secure Boot in OVMF .. 43
1.11.6 Source Level Debugger ... 44
1.11.7 Running OVMF with QEMU ... 44
1.11.8 Enabling or Modifying UEFI Secure Boot in OVMF 46
1.11.9 QEMU Notes ... 46

1.12 Using Nt32PKG with UEFI Secure Boot .. 47

1.12.1 Overview ... 47
1.12.2 Building Nt32Pkg .. 47
1.12.3 CryptoPkg OpenSslLib Dependency ... 47
1.12.4 Enabling UEFI Secure Boot in Nt32Pkg .. 47
1.12.5 Running Nt32Pkg .. 48
1.12.6 Enabling or Modifying UEFI Secure Boot in Nt32Pkg 49

Figures

Figure 1 Authenticated Variable Layout... 8
Figure 2 Image Authorization Flow .. 11
Figure 3 Image Authentication Failed .. 11
Figure 4 Setup password for TestRoot.pvk ... 15
Figure 5 Setup password for TestSub.pvk .. 16
Figure 6 Input password of TestRoot.pvk to sign TestSub.cer 17
Figure 7 Checking the Value of the SetupMode Architectural Variable 22
Figure 8 Standard Mode Screen .. 24
Figure 9 Secure Boot Configuration - Disabled .. 25
Figure 10 Secure Boot Configuration - Enabled ... 26
Figure 11 Disable Secure Boot Screen ... 27
Figure 12 Custom Secure Boot Mode Options Screen ... 28
Figure 13 PK Options Screen .. 29
Figure 14 Enroll PK Screen ... 30
Figure 15 - Enroll PK Screen File Explorer .. 31
Figure 16 - Enroll PK file TestRoot.cer ... 32
Figure 17 – Commit to changes .. 33
Figure 18 KEK Options Screen .. 34
Figure 19 Enroll KEK Screen ... 35
Figure 20 Delete KEK Screen .. 36
Figure 21 DB Options Screen .. 37
Figure 22 Enroll Signature Screen ... 38
Figure 23 Delete Signature Screen .. 39
Figure 24 DBX Options Screen .. 40
Figure 25 Image Authorization Success ... 41
Figure 26 Unsigned Image Not Executed ... 41
Figure 27 Loading Signed and Unsigned Drivers .. 42
Figure 28 QEMU Running OVMF .. 45
Figure 29 – QEMU with .cer Files. ... 46
Figure 30 Nt32Pkg Running .. 48
Figure 31 Nt32Pkg with.cer files ... 49

 Draft for Review

1 Secure Booting UEFI Drivers and
Applications

This document describes how to sign UEFI images for the development and test of UEFI
Secure Boot using the UDK2010.SR1 or UDK2010.SR1.UP1 releases. (Exceptions are
noted.)

The primary audience is devlopers who need to sign UEFI images for development and
test, such as Operating System Vendors (OSV’s) and Independent Hardware Vendors
(IHV’s). However some additional additional information of interest to BIOS vendors,
Original Equipment Manufacturers and open source developers is also included.

To that end, it:

• Provides an overview of UEFI Secure Boot,

• Details the steps to sign an UEFI image for development and test,

• Describes the UEFI Secure Boot policies

• Describes the steps required to set specific UEFI Secure Boot policies

• Describes the image authorization flow when UEFI Secure Boot is enabled

• Decribes how to use OVMF and NT32Pkg as UEFI Secure Boot reference
platforms.

• Demonstrates several UEFI Secure Boot scenarios using OVMF.

Signing UEFI images for production and release is not included.

UEFI Secure Boot Policies include which images and signing certificates are white and
black listed, which images are verified and the action taken when image verification
fails.

1.1 UEFI Secure Boot Overview
UEFI Secure Boot defines how a platform’s firmware can authenticate a digitally signed UEFI
image, such as an operating system loader or a UEFI driver stored in an option ROM thus
providing the capability to ensure that those UEFI images are only loaded in an owner-
authorized fashion and providing a common means to ensure platforms security and
integrity over systems running UEFI-based firmware.

A more detailed overview is provided by the Intel Technology Journal issue refenced in
section 1.1.3 below.

1.1.1 Image Formats
UEFI images use the PE/COFF format and are signed as defined in the Microsoft *
Authenticode Specification. See the following specifications:

• Microsoft Portable Executable and Common Object File Format Specification,

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

• Windows Authenticode Portable Executable Signature Format,
http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx

1.1.2 UEFI Secure Boot Policy

UEFI Secure Boot was designed with the following goals:
• Allow the platform owner to check the integrity and security of a given UEFI image

ensuring that the image is only loaded in an approved manner.
• Allow the platform owner to manage the platform’s security policy as defined by the

UEFI Secure Boot authenticated variables described below.

UEFI Secure Boot is controlled by a set of UEFI Authenticated Variables which specify the
UEFI Secure Boot Policy. This policy includes which images and certificates are contained in
the white list (a.k.a the authorized signature database) and the black list (a.k.a the
forbidden signature database). UEFI Authenticated Variables are defined in the UEFI 2.3.1C
Specification and described in section 1.2 below.

1.1.3 Additional Information
Additional information on UEFI Secure Boot and Authenticated Variables can be found in the
following documents:

• Intel Technology Journal, Volume 15, Issue 1, 201, UEFI Today: Bootstrapping the
Continuum, UEFI Networking and Pre-OS Security, page 80 at
http://www.intel.com/technology/itj/2011/v15i1/pdfs/Intel-Technology-Journal-
Volume-15-Issue-1-2011.pdf.

• UEFI 2.3.1C Specification : Sections 7.2 (Variable Services) and Sections 27.2
through 27.8 (Secure Boot) of the at www.uefi.org.

Please note that the use of the “Secure Boot” in Section 27.1 is an overloaded
usage that is unrelated to “Secure Boot” as used in this document.

• Beyond BIOS: Developing with the Unified Extensible Firmware Interface, 2nd
Edition, Vincent Zimmer, ISBN 13 978-1-934053-29-4, Chapter 10 – Platform
Security and Trust, www.intel.com/intelpress.

• Harnessing the UEFI Shell, Moving the platform beyond DOS, Michael Rothman
www.intel.com/intelpress. Appendix A - Security Considerations.

• Windows Hardware Certification Requirements December, 2011.
http://msdn.microsoft.com/library/windows/hardware/hh748188

1.1.4 Document Precedence

Should any information provided in this document conflict with information contained in
the UEFI 2.3.1C Specification , the UEFI 2.3.1C Specification takes precedence unless
explicitly noted.

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx
http://www.intel.com/technology/itj/2011/v15i1/pdfs/Intel-Technology-Journal-Volume-15-Issue-1-2011.pdf
http://www.intel.com/technology/itj/2011/v15i1/pdfs/Intel-Technology-Journal-Volume-15-Issue-1-2011.pdf
http://www.uefi.org/
http://www.intel.com/intelpress
http://www.intel.com/intelpress
http://msdn.microsoft.com/library/windows/hardware/hh748188

 Draft for Review

1.2 UEFI Secure Boot’s Authenticated
Variables

1.2.1 Overview of Authenticated Variables

The UEFI Authenticated Variable Service is defined as an enhancement to the UEFI Variable
Serice. It provides a means to ensure the integrity of specified variables by prepending
authentication data, shown as EFI_VARIABLE_AUTHENTICATION in the figure below. This
authentication data is defined in chapter 3 of the UEFI 2.3.1C Specification .

If a variable’s EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS bit is set when the SetVariable
function is called, both the identity of the operator and integrity of data will be
authenticated before the variable is written into storage.

Since confidentiality was not a design goal, there is no verification of data that is
subsequently read using the GetVariable function. Therefore anyone can read authenticated
variables, but only parties possessing the correct key-pair can write or update
authenticated variables.

The layout of the authenticated variable data is shown below:

Figure 1 Authenticated Variable Layout

1.2.2 Types of Authenticated Variables

Section 7.2 of the UEFI 2.3.1C Specification defines two types of Authenticated
Variables: Counter Based and Time Based.

In order to prevent replay attacks, Counter Based variables include a monotonic count
within the EFI_VARIABLE_AUTHENTICATION section, while Time Based variables include
a timestamp for that purpose.

Each method requires different scenarios to deploy the corresponding secure boot
policy. However, as the UEFI Specification states that the time based method is
preferred, counter based deployment scenarios are not described in this document.

1.2.3 Secure Boot’s Authenticated Variable
Descriptions

UEFI Secure Boot’s image and certificate policies are controlled by the following UEFI
authenticated variables, which are defined in section 3.2 of UEFI Specificiation 2.3.1:

Variable Data

EFI_VARIABLE_AUTHENTICATION

DataSize

*Data Authentication

Data

Variable Data
payload written

in storage

 Draft for Review

• Platform Key (PK) - The platform key establishes a trust relationship between the
platform owner and the platform firmware. The platform owner enrolls the public
half of the key (PKpub) into the platform firmware. The platform owner can later use
the private half of the key (PKpriv) to change platform ownership or to enroll a Key
Exchange Key. Enrolling a PK enables UEFI Secure Boot and deleting the PK disables
it. For UEFI 2.3.1, the recommended Platform Key format is RSA-2048.

• Key Exchange Key (KEK) - The Key exchange keys establish a trust relationship
between the operating system and the platform firmware. The KEK determines who
is authorized to update the DB and DBX described below. The public part of the key
(KEKpub) is enrolled into the platform firmware. Each operating system (and
potentially, each third party application which need to communicate with platform
firmware) can later use the private half of the key (KEKpriv) to communication with
firmware in trusted manner. For UEFI 2.3.1, the recommended Key Exchange Key
format is RSA-2048.

• Authorized Signature Database (DB) - This database contains authorized signing
certificates and digital signatures. An image signed with a certificate enrolled in DB
(or KEK) or whose digital signature is enrolled in DB is authorized to execute. DB is
the white list.

• Forbidden Signature Database (DBX) - This database contains forbidden
certificates and digital signatures. An image signed with a certificate enrolled in DBX
or whose digital signature is enrolled in DBX, is never allowed to run. DBX is the
black list.

• Setup Mode - When Setup Mode is null, no Platform Key is enrolled and the
platform is said to be operating in setup mode. While in setup mode, the platform
firmware does not authenticate images and secure boot policy can be configured by
writing the PK, KEK, DB and DBX variables. When Setup Mode is not null, a
Platform Key is enrolled and the platform is operating in User Mode. User Mode
requires that all executables be authenticated before they are permitted to run.

• SecureBoot – When set (1), the platform is operating in secure boot mode
and performs image verification based on the data stored in KEK, DB and DBX.

1.3 Image Authorization Flow
The authorization process by which an unknown UEFI image might be authorized to run
during LoadImage is described below. For more information, see Section 27.7 of the UEFI
specification.

During initialization of an UEFI executable based on the secure boot policy, the Boot
Manager decides whether the UEFI executable should be initialized and run. Verification
success means the executable passed authentication which means that either its signing
certificate or signature was found in the authorized signature database and was not found in
the forbidden signature database. Otherwise, verification fails.

The verification steps for both unsigned images and images signed as described in section
1.4 are described below using the following definitions:

• Signature – is the SHA256 hash of the PE/COFF image.

• Certificate – is the image’s Authenticode certificate containing the public key used
to sign the image.

• Certificate Authorized

o In UDK2010.SR1.UP1 and earlier implementations, an image’s certificate is
authorized if it matches or chains to a KEK or DB entry, (or both).

o However, the UEFI 231C specification now states on page 227 that an
certificate in DB can match or chain to certificates in KEK, or PK.

Since certificates in KEK must chain to certificates in PK, this clarification
implies that a certificate in DB is authorized if it chains to a certificate in PK.

I.e. during SetVariable, KEK is used to authorize DB (and DBX) variable
entries and PK is used to authorized KEK entries. However KEK is not used
to authorize an image to be run during LoadImage.

Implementations complying with this updated interpretation authorize an
image’s certificate if it matches or chains to only a DB entry.

1. Authenticate the image’s format and structure.

2. If the image is unsigned: If its signature in in the authorized database (DB) and is not in
the forbidden database (DBX), run the image, otherwise deny.

3. If the image is signed, check if its certificate has been authorized (i.e. the image’s
certificate is found in the KEK or the authorized database (DB), and is not in the
forbidden database (DBX)).

• If the image’s certificate is authorized, then unless the image’s signature is in
the forbidden database (DBX), run the image

• If the image’s certificate has not been authorized, then check its signature. If
its signature is in the authorized database (DB) and is not in the forbidden
database (DBX), run the image, otherwise deny running the image as shown in
Figure 3 below.

 Draft for Review

Figure 2 Image Authorization Flow

Note: This figure show an a screen shot from the UDK2010.SR1.UP1 release. The
actual output seen on other implementations may vary.

Figure 3 Image Authentication Failed

1.4 Signing UEFI Images For Production and
Release

Microsoft maintains a UEFI Certificate Authority (CA) that can be used by the UEFI
Community for signing images for production and release using Microsoft Windows 8
certificates. Please see MSDN at this link for more information: UEFI Firmware Signing.

http://msdn.microsoft.com/en-us/library/windows/hardware/a39f65c3-9b0b-43ca-9831-ec420fb4cdca

1.5 Signing UEFI Images For Development
and Test

This section provides details on how to sign UEFI images for development and test using
Microsoft Windows * hosted Tools (Section 1.5.1) or Linux Hosted Tools (Section 1.5.3) as
well as how to set up a system to dual boot Microsoft Windows 8 * and Linux using a PK
generated with openssl and “off the shelf” KEK & DB certificates (Section 1.5.2).

For background information about signing a UEFI executable per the Microsoft Authenticode
Specification, please refer to:

• http://msdn.microsoft.com/en-us/library/ms537359.aspx

• Harnessing the UEFI Shell, Moving the platform beyond DOS, Michael Rothman
www.intel.com/intelpress. See Appendix A - Security Considerations.

• The PE/COFF and Authenticode Specifications referenced in section 1.1.1.

See the "Practical UEFI Secure Boot" video series on the Intel YouTube channel, which
shows how to setup a system to dual boot Microsoft Windows 8* & Ubuntu* Linux with UEFI
Secure Boot enabled.

1.5.1 Microsoft Windows * Hosted Signing Tools

This section:

• Lists a set of Microsoft Windows* tools that can be used to sign UEFI images

• Lists where to obtain the tools.

• Describes how to generate the required keys and certificates.

• Details how to use those keys and certificates to sign an image.

When signing executables using the Microsoft* Authenticode Sign Tool, the digital signature
is generated with the certificate type WIN_CERT_TYPE_PKCS_SIGNED_DATA which is defined in
the UEFI 2.3.1C Specification .

http://msdn.microsoft.com/en-us/library/ms537359.aspx
http://www.intel.com/intelpress
http://www.youtube.com/playlist?list=PLk2sjg_-F-McRbCBoVRkP1sYMbmDf6zJM

 Draft for Review

1.5.1.1 Required Tools

This section lists one set of the tools that satisfy the signing scenario detailed in
sections 1.4.1.5 and 1.4.1.6.

The following tools are required by this scenario:

• Microsoft* MakeCert – creates private keys (.pvk files) and X509 certificates
(.cer files).

• Microsoft* Pvk2Pfx – converts .pvk files to.pfx files

• Microsoft* SignTool – signs a PE/COFF image such as a .efi file using the keys
and certificates created with the makecert and pvk2pfx tools.

Additional usage information for Micrsoft tools can be found on MSDN
(www.msdn.microsoft.com).

Note: The pfx, pvk file formats are described in 1.4.1.3 below.

Note: These tools may require administrator privileges.

1.5.1.2 Getting the Tools

At this time, the most current version of these three tools are all provided in the
Windows 8 Consumer Preview SDK available at: http://msdn.microsoft.com/en-
us/windows/hardware/hh852363 in the C:\Program Files (x86)\Windows
Kits\8.0\bin\... directory.

Note: These tools must be run from their location in the SDK as they require
additional DLL and manifest files from that location. I.e. the .exe’s should
not be copied to and run from another location.

Note: Older versions should be avoided.

1.5.1.3 File Format Details

This section provides details on the file formats used above:

• .pvk is a Microsoft private key file format.

• .cer is a X509 certificate format using ASN.1 DER encoding.

• .pfx format is defined by the PKCS#12 standard
(http://www.rsa.com/rsalabs/node.asp?id=2138)

1.5.1.4 Files Used in this Document

The scenario used in subsequent sections references the following files.

• Driver being signed - MyDriver.efi

• Root Certificate. Use for development and test only.

http://www.msdn.microsoft.com/
http://msdn.microsoft.com/en-us/windows/hardware/hh852363
http://msdn.microsoft.com/en-us/windows/hardware/hh852363
http://www.rsa.com/rsalabs/node.asp?id=2138

• TestRoot.cer - Root certificate in X509 format.

• TestRoot.pvk - The Root Certificate’s private key in Microsoft PVK
format. Has a password.

• TestRoot.pfx - Root Certificate’s private key in PKCS#12 format.

• Sub-Certificate. Signed by the root certificate. Used to sign the driver. Will be
enrolled in the KEK variable.

• TestSub.cer – Sub-certificate in X509 format. Will be enrolled as KEK.

• TestSub.pvk - Sub-Certificate’s private key in Microsoft PVK format.
Has a password.

• TestSub.pfx - Sub-Certificate’s private key in PKCS#12 format.

1.5.1.5 Creating Keys and Certificates for
Development and Test

This section describes how to create the keys and certificates required to sign a
PE/COFF image for development and test purposes using the Microsoft* SignTool. It
may also be possible to sign development and test images using other signing tools or
a Certificate Authority (CA) provided by an OSV or trusted third party.

Note: These self generated keys and self signed certificates are intended for
temporary use during development and test only and not for production use.

Note: The signing of production images requires advanced key management practices
to ensure the security of the private keys and is beyond the scope of this
document.

Note: The example commands below show x64 executables from the default install
path of the Windows 8 Consumer Preview SDK.

Note: The following Command Line Prompt instructions must be run in
Administrator mode under Windows 7*.

The example detailed in this document uses a two level certificate chain

The steps are:

1. Generate a self signed certificate as the Root Certificate.

2. Use the Root Certificate to sign a Sub-Certificate (a.k.a. child certificate)

1. Generate a self-signed certificate. The certificate is used as the Root Certificate and

is named TestRoot.cer. It is un-trusted, and intended only for development and test
use. Its related private key file is TestRoot.pvk.

The Command line under DOS environment is:

 Draft for Review

> "C:\Program Files (x86)\Windows Kits\8.0\bin\x64"\ makecert -n "CN=
TestRoot " -r -sv TestRoot.pvk TestRoot.cer

Figure 4 Setup password for TestRoot.pvk

You are prompted to set up password for TestRoot.pvk file. Please record the password
for later use. Then input this password to sign TestRoot.cer. Refer to Figure 3.

2. Use TestRoot.cer to sign a sub-certificate whose name is TestSub.cer. Its related

private key file is TestSub.pvk.

Command line under DOS environment is:
> "C:\Program Files (x86)\Windows Kits\8.0\bin\x64"\ makecert -n "CN=
TestSub " -iv TestRoot.pvk -ic TestRoot.cer -sv TestSub.pvk TestSub.cer

Figure 5 Setup password for TestSub.pvk

You are prompted to set up password for TestSub.pvk file, refer to Figure 4. Please
record the password for later use. Then input the password of TestRoot.pvk to sign
TestSub.cer. Refer to Figure 5.

 Draft for Review

Figure 6 Input password of TestRoot.pvk to sign TestSub.cer

Note: We can use this method to create any level of child certificates; here we just
demonstrate a two level sub-certificate chain.

1.5.1.6 Signing a UEFI Image

The following steps are required to sign a PE/COFF image:

• Convert the PVK file to PFX format (PKCS#12).

The command line under DOS environment is (xxx stands for SubIssuer.pvk
password):

> "C:\Program Files (x86)\Windows Kits\8.0\bin\x64"\ pvk2pfx.exe –
pvk TestSub.pvk –pi xxx –spc TestSub.cer –pfx TestSub.pfx –f

(xxx stands for TestSub.pvk password)

Note: Do not copy/paste this command line from this document into pvk2pfx. The
tool does not handle the unicode characters that result from copy/paste
operations.

• Sign MyDriver.efi using SHA-256.

Note: signtool modifies the unsigned driver by adding the signature. If you wish to
maintain a copy of the unsigned driver, first copy it to another name.

The command line under DOS environment is:

> "C:\Program Files (x86)\Windows Kits\8.0\bin\x64"\ SignTool.exe
sign /ac TestSub.cer /f TestSub.pfx /p xxx /fd sha256 MyDriver.efi

(xxx stands for TestSub.pvk password)

Note: All images that execute once Secure Boot is enabled must be signed (i.e. once
PK has been enrolled and the platform is in User Mode as shown in Error!
Reference source not found.Figure 6 Error! Reference source not
found.below.

1.5.2 Dual Booting Windows 8 * and Ubuntu Linux

An alternative to the steps detailed above is to generate a PK using OpenSSL. This PK
can then be used with the Microsoft KEK, Windows DB and UEFI DB to dual boot
Microsoft Windows 8 * and various Linux distributions.

The "Practical UEFI Secure Boot" video series on the Intel YouTube channel, shows how
to setup a system to dual boot Microsoft Windows 8* & Ubuntu* Linux with UEFI
Secure Boot enabled using this PK.

1.5.2.1 Generating PK with Openssl

The openssl commands to generate a PK and convert it into the required format are:

openssl req -new -x509 -newkey rsa:2048 -keyout PK.key -out PK.crt

openssl x509 -in PK.crt -out PK.cer -outform DER

1.5.2.2 KEK and DB Certificates for Secure Booting
Microsoft Windows 8 * and various Linux
Distributions

The KEK and DB certificates needed to secure boot Microsoft Windows 8 * and various
Linux distributions are:

• Key Exchange Key (KEK)

http://www.microsoft.com/pkiops/certs/MicCorKEKCA2011_2011-06-24.crt

There are two DB entries - one for Windows and one for the UEFI Certificate

Authority (CA).

• Windows DB http://www.microsoft.com/pkiops/certs/MicWinProPCA2011_2011-10-

19.crt

http://www.youtube.com/playlist?list=PLk2sjg_-F-McRbCBoVRkP1sYMbmDf6zJM
http://www.microsoft.com/pkiops/certs/MicCorKEKCA2011_2011-06-24.crt
http://www.microsoft.com/pkiops/certs/MicWinProPCA2011_2011-10-19.crt
http://www.microsoft.com/pkiops/certs/MicWinProPCA2011_2011-10-19.crt

 Draft for Review

• UEFI DB http://www.microsoft.com/pkiops/certs/MicCorUEFCA2011_2011-06-

27.crt

The UEFI DB entry allows binaries signed against the UEFI certificate authority to run
when secure boot is enabled. This includes UEFI drivers, option ROMs and various
Linux bootloaders. The Microsoft DB entries are specific to Microsoft Windows 8.

The GUID associated with these certificates is 77fa9abd-0359-4d32-bd60-
28f4e78f784b.

1.5.3 Linux Hosted Signing Tools

Linux hosted signing tools are currently being developed. For the latest information,
please see:
https://sourceforge.net/apps/mediawiki/tianocore/index.php?title=SecurityPkg#Signin
g_Tools.

1.5.4 Images with Multiple Signatures

Microsoft* SignTool and the image verification algorithm in UDK2010.SR1.UP1 only
support images containing one certificate. However the Authenticode and the UEFI
2.3.1C Specifications do not preclude images containing a list of signatures. Other
SignTools are emerging that can create images with multiple signatures.

For the latest information, please see:
https://sourceforge.net/apps/mediawiki/tianocore/index.php?title=SecurityPkg#Image
s with Multiple Signatures .

1.5.5 Image Verification Rules

All signing tools must comply with the Microsoft* Authenticode and PE/COFF
Specifications referenced above.

A summary of the rules detailed in those specifications is:

• The image’s PE/COFF sections must be ordered. That is each section’s
PointerToRawData should be larger than the previous section’s
PointerToRawData.

• The image’s PE/COFF sections must be adjacent. That is there should be no
gaps when the sections are loaded into memory per their VirtualSize and
VirtualAddress parameters and padded as defined in the PE/COFF Specification.

• The size of the unsigned .efi image file must comply with the Autheticode
hashing algorithm. This can be summarized as follows:

a. The actual size of the unsigned .efi image file, as obtained by the dir
or ls commands or file properties, should equal

b. The sum of:

1. The PE/COFF OptionalHeader.SizeOfHeaders

http://www.microsoft.com/pkiops/certs/MicCorUEFCA2011_2011-06-27.crt
http://www.microsoft.com/pkiops/certs/MicCorUEFCA2011_2011-06-27.crt
https://sourceforge.net/apps/mediawiki/tianocore/index.php?title=SecurityPkg#Signing_Tools
https://sourceforge.net/apps/mediawiki/tianocore/index.php?title=SecurityPkg#Signing_Tools
https://sourceforge.net/apps/mediawiki/tianocore/index.php?title=SecurityPkg#Images
https://sourceforge.net/apps/mediawiki/tianocore/index.php?title=SecurityPkg#Images

2. The sum of each section’s SizeOfRawData.

Note: The value of the PE/COFF OptionalHeader.SizeOfImage field may be different
from the file size with some tool chains.

The presence of any other data in the .efi file will cause the image to fail Authenticode
verification.

On Micrsoft Windows * systems, these values can be obtained using:
link –dump –headers file.efi

On Linux systems,
objdump –x file.efi

shows the section’s VirtualSize but not the section’s SizeOfRawData, which is required
for this calculation.

1.6 Convert the Signed Driver to a .rom File
Chapter 32 of the Drivers Writers Guide for UEFI 2.3 (DWG) describes ways to
distribute UEFI drivers. If the signed driver will be installed in a PCI card option rom, it
must be converted from an .efi file to a .rom file.

The UEFI DWG describes multiple methods to do this conversion. However, the EfiRom
utility will lilely be the most common method used for signed images because the
signing needs to occur after the EDK II build and before packaging into an Option ROM.
The EDK II build system does not have the ability to automatically sign UEFI Drivers
before packaging them into an Option ROM. This process is described in section 18.7.1
of the DWG.

The EfiRom utility binary can be found in the BaseTools/Bin/Win32 directory in the EDK
II workspace.

This example creates MyDriver.bin from the MyDriver.efi that was just signed:

>EfiRom -f 0x1013 -i 0x00b8 -e MyDriver.efi

Where –f is the VendorId and –I is the DeviceId.

The Example shows the values for the Cirrus Logic 5446 device included in the
OvmfPkg.

1.7 Install the Signed Driver
If the signed driver will be installed in a PCI card option rom, next flash the PCI card
as described by the card vendor.

If the signed driver will be dristributed in the EFI System Partition, it is ready for
deployment.

 Draft for Review

1.8 Adding a Signed Driver to the Boot
Sequence

The signed driver is added to the boot sequence in setup’s Boot Maintenance Manager
by selecting Driver Options and then Add Driver Option Using File.

1.9 Deploying Secure Boot Image and
Certificate Policy

This section describes how to deploy Secure Boot Image and Certificate Policy using
the Secure Boot Custom Mode Setup feature.

Note: This feature was not contained in UDK2010.SR1 release but was added in EDK
II check in r13146 and will be available in future UDK releases. The current
UDK2010.SR1.UP1 contains this feature.

Other methods to deply Secure Boot Policy using bios vendor or operating system
vendor specific tools are not discussed in this document.

It should be noted that Secure Boot Custom Mode Setup is not required by the UEFI
2.3.1C Specification but is required by the Windows Hardware Certification
Requirements December, 2011.
http://msdn.microsoft.com/library/windows/hardware/hh748188

The Secure Boot Image and Certificate Policy is specified by specifying the PK and KEK
and adding authorized certificates and image signatures to the Authorized Signature
Database variable (DB) and forbidden certificates and image signatures to the
Forbidden Signature Database variable (DBX). Secure Boot Custom Mode provides
setup screens for this purpose

1.9.1 Secure Boot Setup & User Mode

Section 27.5 of the UEFI 2.3.1C Specification defines Setup and User mode.

• Setup Mode - occurs when no Platform Key (PK) is enrolled. In this mode, the
PK, KEK, DB and DBX variables can be written without authorization.

• User Mode - occurs after a PK is enrolled and continues until the PK is cleared.
While in User Mode, the Secure Boot Policy is enforced.

The current mode can be obtained by reading the SetupMode variable as described in
UEFI 2.3.1C Section 3.2 where a value of 1 indicates SetupMode and a value of 0
indicates User Mode.

The code fragment below shows an example that checks the value of SetupMode using
the GetEfiGlobalVariable() library function which uses the EFI_GLOBAL_VARIABLE
GUID. This function is provided in MdePkg\Library\UefiLib\UefiLib.c.

#include <Uefi.h>
#include <Library/UefiLib.h>

http://msdn.microsoft.com/library/windows/hardware/hh748188

UINT8 *SetupMode;

SetupMode = GetEfiGlobalVariable (L”SetupMode”);
If (SetupMode == NULL) {

//
// Null SetupMode means no Authenticated Variable
// driver was dispatched. Secure Boot is not supported.
//
 …

} else if (*SetupMode == 1) {
 // platform is in SETUP MODE
 …

} else if (*SetupMode == 0) {

 // platform is in USER MODE
 …

} else {
 // handle undefined value
 …

}

Figure 7 Checking the Value of the SetupMode Architectural Variable

1.9.2 Secure Boot Setup Standard and Custom Mode

The Secure Boot Custom Mode Setup feature allows a physically present user to modify
the PK, KEK, DB and DBX variables. This feature was defined in the Windows Hardware
Certification Requirements December, 2011:
System.Fundamentals.Firmware.UEFISecureBoot, and was implemented in EDK II
r13146. It extends User Mode with two additional modes: Standard Mode and Custom
Mode.

• Standard Mode - The Standard Mode setup screen is shown in Figure 8. If a
physically present user is detected, then a transition to Custom Mode is
enabled. Nt32Pkg and OvmfPkg, always allow Custom Mode to be entered from
Standard Mode. Other platforms detect physical presence by platform specific
methods, such as the presence of a jumper.

• Custom Mode –In this mode the PK, KEK, DB and DBX variables can be
updated. The Custom Mode setup screens are shown in Figure 9 to Figure 24
below.

This means that a physically present user can perform the following actions:

• Disable Secure Boot by deleting the PK.

• Update PK to enable Secure Boot.

• Enroll KEK’s.

• Delete KEK’s.

• Add certificates or image signatures to DB or DBX.

• Delete certificates or image signatures from DB or DBX.

 Draft for Review

These actions are performed using the setup screens shown in 1.8.4 below.

1.9.3 Using Secure Boot Custom Mode

Before enabling UEFI Secure Boot (by setting the PK) the white and black lists DB &
DBX must be set up with authorized and forbidden certificates and signatures.

Recall that DB contains authorized signing certificates and images while DBX contains
blocked signing certificates and images. KEK specifies who is authorized to update DB
and DBX outside of custom mode setup and so is not required for the development and
test signing scenarios described in this document.

For certificates, .cer and .der file formats are supported. These are defined in
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf.

1. Configure the authorized signing certificates and image signatures. There are
two ways to authorize images to execute when UEFI Secure Boot is enabled:

• All images signed by a signing certificate can be authorized by enrolling
the signing certificate: (which is TestSub.cer in this example) in DB.

• Individual images signed by another signing certificate can be
authorized without enrolling that signing certificate by enrolling each
image’s signature in DB. Unsigned images can be authorized in the
same way. (See Figure 21 and Figure 22.)

2. Next configure forbidden signing certificates and image signatures.

• If specific signing certificates or image signatures are to be blacklisted,
enroll them in DBX. (See Figure 24.)

3. Finally, enroll PK (TestRoot.cer in this example) to re-enable Secure Boot
(See Figure 14).

1.9.4 Secure Boot Custom ModeSetup Screens

This section shows the capabilities provided by the implementation of Secure Boot
Custom Mode in EDK II r13146. Other implementations may use different menus.

1.9.4.1 Standard Mode – Secure Boot Configuration

Secure Boot is configured from setup by selecting Device Manager and then Secure
Boot Configuration from the Devices List.

This presents the Secure Boot Configuration screen, shown in Figure 8, showing that
the system is in Standard Mode (as described in section 0) and that Attempt Secure
Boot is enabled .

Note: The “Attempt Secure Boot” entry shows the current state of the SecureBoot
UEFI variable and is not related to the Secure Boot Configuration mode. I.e.
SecureBoot can be enabled or disabled in either the Standard Secure Boot
Configuration Mode or Custom Secure Boot Configuration Mode.

http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf

Figure 8 Standard Mode Screen

1.9.4.2 Custom Mode – Secure Boot Configuration

If a physically present user is detected, (which is always the case with OVMF or
Nt32Pkg) selecting the Secure Boot Mode field allows Custom Mode to be selected,
which presents the Custom Mode screen shown in Figure 9, which allows the Secure
Boot image and signature policy to be changed (see Figure 12 Custom Secure Boot
Mode Options Screen).

 Draft for Review

Figure 9 Secure Boot Configuration - Disabled

In this case, Attempt Secure Boot is blank since secure boot mode has not been
enabled.

1.9.4.3 Enabling Secure Boot

To enable Secure Boot using the custom mode setup screens, follow these steps:

• Optionally, Configure KEK. See Figure 18.

• Configure DB. See Figure 21.

• Optionally, configure DBX. See Figure 24.

• Configure PK to enable secure boot. See Figure 14.

An example of a Secure Boot Configuration screen after following these steps is shown
in Figure 10.

Figure 10 Secure Boot Configuration - Enabled

In this case, Attempt Secure Boot is enabled (X) since secure boot mode has not been
configured.

1.9.4.4 Disabling Secure Boot

Secure Boot is disabled by deleting PK as shown in Figure 11, which causes the
Attempt Secure Boot field to revert to blank as shown in Figure 9.

 Draft for Review

Figure 11 Disable Secure Boot Screen

1.9.4.5 Custom Secure Boot Mode Options

The Custom Secure Boot Mode Options Screen shown in Figure 12 Figure 12 Custom
Secure Boot Mode Options Screen provides access to screens that:

• Enroll or delete PK (See Figure 13),

• Enroll or delete KEK keys and certificates (See Figure 18),

• Enroll or delete DB certificates and signatures (See Figure 21) and

• Enroll or delete DBX certificates and signatures (See Figure 24).

Figure 12 Custom Secure Boot Mode Options Screen

1.9.4.6 PK Options

The PK Options entry links to Figure 13 PK Options Screen which allows PK to be
enrolled (see Figure 14) or deleted.

 Draft for Review

Figure 13 PK Options Screen

1.9.4.7 Enroll PK Using File

Figure 14 Enroll PK Screen allows PK to be loaded from a file, for example from a flash
drive.

Figure 14 Enroll PK Screen

 Draft for Review

Figure 15 - Enroll PK Screen File Explorer

Figure 16 - Enroll PK file TestRoot.cer

 Draft for Review

Figure 17 – Commit to changes

1.9.4.8 KEK Options

Figure 18 KEK Options Screen links to the Enroll KEK screen (Figure 19) or the Delete
KEK screen (Figure 20).

Figure 18 KEK Options Screen

1.9.4.9 Enroll KEK

Figure 19 Enroll KEK Screen allows KEK to be loaded from a file, for example from a
flash drive.

 Draft for Review

Figure 19 Enroll KEK Screen

Select Enroll KEK using File and navigate to the KEK file.

Select Signature GUID and enter the GUID corresponding to the KEK.

KEK GUID is a GUID value that identifies the KEK. This value must be in the form:
11111111-2222-3333-4444-1234567890ab.

If no value is entered, a GUID of 00000000-0000-0000-0000-000000000000 will be
created. The GUID is used to identify KEK entries when they are deleted as shown
below.

1.9.4.10 Delete KEK

Figure 20 Delete KEK Screen displays each KEK items by GUID and signature type so
the desired KEK can be identified for deletion.

Figure 20 Delete KEK Screen

1.9.4.11 DB Options

Figure 21 DB Options Screen links to the Enroll Signature (Figure 22) or Delete
Signature (Figure 23) screens.

 Draft for Review

Figure 21 DB Options Screen

1.9.4.12 Enroll Signature

Figure 22 Enroll Signature Screen screen allows image signatures or certificates to be
loaded from USB flash drives.

Figure 22 Enroll Signature Screen

Select Enroll KEK using File and navigate to the KEK file.

Select Signature GUID and enter the GUID corresponding to the DB entry.

Signature GUID is a GUID value that identifies the signature owner. This value must be
in the form: 11111111-2222-3333-4444-1234567890ab.

If no value is entered, a GUID of 00000000-0000-0000-0000-000000000000 will be
created. The GUID is used to identify DB entries when they are deleted as shown
below.

1.9.4.13 Delete Signature

Figure 23 Delete Signature Screen displays each items so they can be identified for
deletion.

 Draft for Review

Figure 23 Delete Signature Screen

1.9.4.14 DBX Options

Figure 24 DBX Options Screen mimics the DB Options Screens …

Figure 24 DBX Options Screen

1.10 UEFI Secure Boot Scenarios
The following UEFI Seccure Boot scenarios are demonstrated below:

1. A signed UEFI image whose signing certificate or signature is enrolled.

2. An unsigned image whose signature is not enrolled.

3. A signed driver whose signature is enrolled and an unsigned driver whose
signature is not enrolled.

4. Booting an OS using a signed & enrolled driver.

These examples use OVMF as the reference platform as described in section 1.10.
Other implementations may present different messages.

1.10.1 A signed UEFI image whose signing
certificate or signature is enrolled.

In this case, the properly signed image is executed. If a security violation is
detected (such as the image is not properly signed and image authentication
fails), the action taken depends on the Image Verification Policy for that type of

 Draft for Review

image (such as OptionRom, Removable Media or Fixed Media). See Figure 25
and section Error! Reference source not found.1.3.

Figure 25 Image Authorization Success

1.10.2 An unsigned image whose signature is not
enrolled.

In this case, image authentication fails and the image is not executed. See
Figure 26.

Figure 26 Unsigned Image Not Executed

1.10.3 A signed driver whose signature is enrolled
and an unsigned driver whose signature is
not enrolled.

In this case, the signed driver is loaded while the unsigned driver is not.

Figure 27 Loading Signed and Unsigned Drivers

1.10.4 Booting an OS using a signed & enrolled
driver.

A Bootable Linux kernel that can be secure booted in QEMU is currently being
developed.

1.11 Using OVMF with UEFI Secure Boot

1.11.1 Overview
OVMF (Open Virtual Machine Firmware) can be used as a reference platform for testing
with UEFI Secure Boot. OVMF runs as the firmware in QEMU (www.qemu.org), an
open source processor emulator.

With QEMU, you can boot to the UEFI shell, execute UEFI applications, enable UEFI
Secure Boot and even boot an operating system.

For more information on OVMF, see:

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=OVMF

Note: SVN Revision r13160 is required as the OvmfPkg in the UDK2010.SR1 release
did not provide a secure boot build option. However, the UDK201.SR1.UP1
release has this feature.

1.11.2 Getting QEMU

QEMU is included in many Linux distriubutions.

A Windows 7* port is not available at the time this document was written. Please
check for updates at http://wiki.qemu.org/Links.

A Windows XP* version of the QEMU binaries can be downloaded from:

http://wiki.qemu.org/Links Unoffical QEMU binaries section

http://www.qemu.org/
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=OVMF
http://wiki.qemu.org/Links
http://wiki.qemu.org/Links

 Draft for Review

Precompiled Windows versions (≥ 0.9.1), provided by TAKEDA Toshiya

QEMU on Windows Ver 0.13.0 (10/16/2010)
http://homepage3.nifty.com/takeda-toshiya/qemu/index.html

Note: This is an older version of QEMU that is missing any updates made since late
2010.

1.11.3 Building OVMF

The EDK II source code that includes OVMF is available at:
https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2 .

Instructions for building OVMF can be found at:

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=How_to_build_OVMF.
OVMF can be built in X64, IA32 or IA32X64 architectures.

To summarize, modify Conf/target.txt as shown to build OvmfX64Pkg:

• ACTIVE_PLATFORM = OvmfPkg/OvmfX64Pkg.dsc or

• TARGET_ARCH = X64

Or OvmfIa32X64Pkg:

• ACTIVE_PLATFORM = OvmfPkg/OvmfIa32X64Pkg.dsc

• TARGET_ARCH = IA32 X64

Or OvmfIa32Pkg:

• ACTIVE_PLATFORM = OvmfPkg/OvmfIa32Pkg.dsc

• TARGET_ARCH = IA32

1.11.4 CryptoPkg OpenSslLib Dependency

The Security Package’s Authenticated Variables and Secure Boot features require the
cryptographic support provided by OpenSslLib in the CryptoPkg.

OpensslLib is not integrated into the CryptoPkg included in the EDK II repository on
Source Forge. Information detailing how to download and install OpenSSL for use in
CryptoPkg’s OpenSslLib can be found in CryptoPkg\Library\OpensslLib\ Patch-
HOWTO.txt.

1.11.5 Enabling UEFI Secure Boot in OVMF

To enable UEFI Secure Boot in OVMF, the following build command is required:

>build –D SECURE_BOOT_ENABLE

When the build completes, the OVMF image is in the Build directory. For example, if
using the UNIXGCC with X64 tool chain, the ovmf.fd image file is located at:

http://homepage3.nifty.com/takeda-toshiya/
http://homepage3.nifty.com/takeda-toshiya/qemu/index.html
https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=How_to_build_OVMF

Build/OvmfX64/DEBUG_UNIXGCC/FV/OVMF.fd

1.11.6 Source Level Debugger

Instructions on how to use the UDK2010 Source Level Debugger with OVMF are
available at @ http://www.intel.com/content/www/us/en/architecture-and-
technology/unified-extensible-firmware-interface/uefi-dev-kit-debugger-tool-
manual.html.

1.11.7 Running OVMF with QEMU

QEMU expects the BIOS to be in the bios.bin file and the Video Rom to be in vgabios-
cirrus.bin. Both these files should be from the same OVMF platform.

As was described in section 1.10.2 above, QEMU can be run on either Linux or
Microsoft Windows XP* systems. However the type of system hosting QEMU has no
releationship to the system that hosted the signing tools described in section 1.4
above. That is an image signed with Linux hosted signing tools should be identical to
an image signed with Micrsoft Windows* hosted signing tools and vice versa.
Furthermore, either image can be run on either QEMU environment.

To run OVMF with QEMU, perform the following steps:

1. Create a ‘run-ovmf’ directory under your build tree to run OVMF with QEMU

bash$ mkdir run-ovmf

2. Copy or link the BIOS and Video Rom Images as shown below:

For Linux hosted QEMU:
bash$ cd run-ovmf
bash$ ln -s ../Build/OvmfX64/DEBUG_UNIXGCC/FV/OVMF.fv bios.bin
bash$ ln -s
../Build/OvmfX64/DEBUG_UNIXGCC/FV/CirrusLogic5446.rom \ vgabios-
cirrus.bin

For Microsoft Windows XP * hosted QEMU:
> cd run-ovmf
>copy ../Build/OvmfX64/DEBUG_UNIXGCC/FV/OVMF.fv bios.bin
>copy ../Build/OvmfX64/DEBUG_UNIXGCC/FV/CirrusLogic5446.rom \
vgabios-cirrus.bin

3. Also copy any images, certificates or keys that will be enrolled in PK, KEK, DB
or DBX using Secure Boot Custom Mode as described in section 1.8.3 above.
Oherwise these files will not be accessible from within QEMU. These are the
TestRoot.cer, TestSub.cer and MyDrivers.efi from section 1.4.1.5 and 1.4.1.6
above

4. Start QEMU with the following command and wait for OVMF to boot to the UEFI
shell as shown in Figure 28 below.

bash$ qemu-system-x86_64 -L . -hda fat:.

http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/uefi-dev-kit-debugger-tool-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/uefi-dev-kit-debugger-tool-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/uefi-dev-kit-debugger-tool-manual.html

 Draft for Review

Note: This command makes the current directory (run-ovmf in this case) the hard
disk used by QEMU. However, QEMU treats this disk as read only so files
generated within QEMU are not visible in run-ovmf after QEMU exits.

Figure 28 QEMU Running OVMF

Next select the file system:

Shell> fs0:

The files copied in steps 2 and 3 above will now be visible when “ls” is typed as shown
below.

Figure 29 – QEMU with .cer Files.

1.11.8 Enabling or Modifying UEFI Secure Boot in
OVMF

UEFI Secure Boot is enabled or modified as described in section 1.8.3 above.

Note: OVMF initalizes with UEFI Secure Boot disabled. That is the value of the
SecureBoot variable is 0x00. So even if the video option ROM was signed, it
was not validated when OVMF booted.

Note: UEFI Secure Boot must be configured for each invocation of OVMF since
variables are not currently persistent across OVMF invocations.

1.11.9 QEMU Notes

In QEMU:

• Type Ctl-alt to release the mouse.

• Type Ctl-alt-3 to see the serial port output.

See www.qemu.org for more information.

http://www.qemu.org/

 Draft for Review

1.12 Using Nt32PKG with UEFI Secure Boot

1.12.1 Overview
Nt32Pkg can be used as an IA32 reference platform for testing with UEFI Secure Boot.

With Nt32Pkg, you can boot to the UEFI shell, enable UEFI Secure Boot, and execute
signed UEFI applications.

Note: Nt32Pkg does not include emulation of a video option ROM, as OvmfPkg does.
So it is not possible to verify signed option ROM’s with Nt32Pkg.

Note: SVN revision r13186 is required as the Nt32Pkg in the UDK2010.SR1 release
did not provide a secure boot build option. However, the UDK201.SR1.UP1
release has this feature.

1.12.2 Building Nt32Pkg

The EDK II source code that includes Nt32Pkg is available at:
https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2 .

Modify Conf/target.txt as shown to build Nt32Pkg:

• ACTIVE_PLATFORM = Nt32Pkg /Nt32Pkg.dsc

• TARGET_ARCH = IA32

1.12.3 CryptoPkg OpenSslLib Dependency

Note that the Security Package’s Authenticated Variables and Secure Boot features
require the cryptographic support provided by OpenSslLib in the CryptoPkg.

OpensslLib is not integrated into the CryptoPkg included in the EDK II repository on
Source Forge. Information detailing how to download and install OpenSSL for use in
CryptoPkg’s OpenSslLib can be found in CryptoPkg\Library\OpensslLib\ Patch-
HOWTO.txt.

1.12.4 Enabling UEFI Secure Boot in Nt32Pkg

To enable UEFI Secure Boot in Nt32Pkg, the following build command is required:

>edksetup -–nt32

>build –D SECURE_BOOT_ENABLE

Nt32Pkg will start with its file system pointed at its build directory.

…\Build\NT32\DEBUG_VS2008x86\IA32

https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2

5. Create a subdirectory here to contain images, certificates or keys that need to
be enrolled in PK, KEK, DB or DBX as described in section 1.8.3 above.
Oherwise these files will not be accessible from within the NT32 emulation.
These are the TestRoot.cer, TestSub.cer and MyDriver.efi from section 1.4.1.5
and 1.4.1.6 above

1.12.5 Running Nt32Pkg

To start Nt32Pkg, type

>build run

Figure 30 Nt32Pkg Running

Next select the file system:

Shell> fsnt0:

The images certificates, keys or scripts copied to the directory described in section
1.11.4 above will now be visible when “ls” is typed.

 Draft for Review

Figure 31 Nt32Pkg with.cer files

1.12.6 Enabling or Modifying UEFI Secure Boot in
Nt32Pkg

UEFI Secure Boot is enabled or modified as described in section 1.8.3 above.

Scenario’s 1, 2 and 3 decribed in section 1.9 above for OvmfPkg can also be done with
Nt32Pkg. Scenario 4, which involves booting an OS, is not possible.

	Figures
	1 Secure Booting UEFI Drivers and Applications
	1.1 UEFI Secure Boot Overview
	1.1.1 Image Formats
	1.1.2 UEFI Secure Boot Policy
	1.1.3 Additional Information
	1.1.4 Document Precedence

	1.2 UEFI Secure Boot’s Authenticated Variables
	1.2.1 Overview of Authenticated Variables
	1.2.2 Types of Authenticated Variables
	1.2.3 Secure Boot’s Authenticated Variable Descriptions

	1.3 Image Authorization Flow
	1.4 Signing UEFI Images For Production and Release
	1.5 Signing UEFI Images For Development and Test
	1.5.1 Microsoft Windows * Hosted Signing Tools
	1.5.1.1 Required Tools
	1.5.1.2 Getting the Tools
	1.5.1.3 File Format Details
	1.5.1.4 Files Used in this Document
	1.5.1.5 Creating Keys and Certificates for Development and Test
	1.5.1.6 Signing a UEFI Image

	1.5.2 Dual Booting Windows 8 * and Ubuntu Linux
	1.5.2.1 Generating PK with Openssl
	1.5.2.2 KEK and DB Certificates for Secure Booting Microsoft Windows 8 * and various Linux Distributions

	1.5.3 Linux Hosted Signing Tools
	1.5.4 Images with Multiple Signatures
	1.5.5 Image Verification Rules

	1.6 Convert the Signed Driver to a .rom File
	1.7 Install the Signed Driver
	1.8 Adding a Signed Driver to the Boot Sequence
	1.9 Deploying Secure Boot Image and Certificate Policy
	1.9.1 Secure Boot Setup & User Mode
	1.9.2 Secure Boot Setup Standard and Custom Mode
	1.9.3 Using Secure Boot Custom Mode
	1.9.4 Secure Boot Custom ModeSetup Screens
	1.9.4.1 Standard Mode – Secure Boot Configuration
	1.9.4.2 Custom Mode – Secure Boot Configuration
	1.9.4.3 Enabling Secure Boot
	1.9.4.4 Disabling Secure Boot
	1.9.4.5 Custom Secure Boot Mode Options
	1.9.4.6 PK Options
	1.9.4.7 Enroll PK Using File
	1.9.4.8 KEK Options
	1.9.4.9 Enroll KEK
	1.9.4.10 Delete KEK
	1.9.4.11 DB Options
	1.9.4.12 Enroll Signature
	1.9.4.13 Delete Signature
	1.9.4.14 DBX Options

	1.10 UEFI Secure Boot Scenarios
	1.10.1 A signed UEFI image whose signing certificate or signature is enrolled.
	1.10.2 An unsigned image whose signature is not enrolled.
	1.10.3 A signed driver whose signature is enrolled and an unsigned driver whose signature is not enrolled.
	1.10.4 Booting an OS using a signed & enrolled driver.

	1.11 Using OVMF with UEFI Secure Boot
	1.11.1 Overview
	1.11.2 Getting QEMU
	1.11.3 Building OVMF
	1.11.4 CryptoPkg OpenSslLib Dependency
	1.11.5 Enabling UEFI Secure Boot in OVMF
	1.11.6 Source Level Debugger
	1.11.7 Running OVMF with QEMU
	1.11.8 Enabling or Modifying UEFI Secure Boot in OVMF
	1.11.9 QEMU Notes

	1.12 Using Nt32PKG with UEFI Secure Boot
	1.12.1 Overview
	1.12.2 Building Nt32Pkg
	1.12.3 CryptoPkg OpenSslLib Dependency
	1.12.4 Enabling UEFI Secure Boot in Nt32Pkg
	1.12.5 Running Nt32Pkg
	1.12.6 Enabling or Modifying UEFI Secure Boot in Nt32Pkg

