import numpy as np import cv2 as cv from matplotlib import pyplot as plt # https://docs.opencv.org/4.3.0/d1/de0/tutorial_py_feature_homography.html MIN_MATCH_COUNT = 10 img1 = cv.imread('b_02.jpg') # queryImage img2 = cv.imread('b_03.jpg') # trainImage img1= cv.cvtColor(img1,cv.COLOR_BGR2GRAY) img2= cv.cvtColor(img2,cv.COLOR_BGR2GRAY) # Initiate SIFT detector sift = cv.xfeatures2d.SIFT_create() # find the keypoints and descriptors with SIFT kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks = 50) flann = cv.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1,des2,k=2) # store all the good matches as per Lowe's ratio test. good = [] for m,n in matches: if m.distance < 0.7*n.distance: good.append(m) if len(good)>MIN_MATCH_COUNT: src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0) matchesMask = mask.ravel().tolist() h,w = img1.shape pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2) dst = cv.perspectiveTransform(pts,M) img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA) else: print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) ) matchesMask = None draw_params = dict(matchColor = (0,255,0), # draw matches in green color singlePointColor = None, matchesMask = matchesMask, # draw only inliers flags = 2) img3 = cv.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params) plt.imshow(img3, 'gray'),plt.show()