import cv2 import numpy as np def detectAndDescribe(image): # 将彩色图片转换成灰度图 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 建立SIFT生成器 descriptor = cv2.xfeatures2d.SIFT_create() # 检测SIFT特征点,并计算描述子 (kps, features) = descriptor.detectAndCompute(image, None) # 将结果转换成NumPy数组 kps = np.float32([kp.pt for kp in kps]) # 返回特征点集,及对应的描述特征 return (kps, features) def matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh): # 建立暴力匹配器 matcher = cv2.BFMatcher() # 使用KNN检测来自A、B图的SIFT特征匹配对,K=2 rawMatches = matcher.knnMatch(featuresA, featuresB, 2) matches = [] for m in rawMatches: # 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对 if len(m) == 2 and m[0].distance < m[1].distance * ratio: # 存储两个点在featuresA, featuresB中的索引值 matches.append((m[0].trainIdx, m[0].queryIdx)) print(len(matches)) # 当筛选后的匹配对大于4时,计算视角变换矩阵 if len(matches) > 4: # 获取匹配对的点坐标 ptsA = np.float32([kpsA[i] for (_, i) in matches]) ptsB = np.float32([kpsB[i] for (i, _) in matches]) # 计算视角变换矩阵 (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh) # 返回结果 return (matches, H, status) # 如果匹配对小于4时,返回None return None def drawMatches(imageA, imageB, kpsA, kpsB, matches, status): # 初始化可视化图片,将A、B图左右连接到一起 (hA, wA) = imageA.shape[:2] (hB, wB) = imageB.shape[:2] vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8") vis[0:hA, 0:wA] = imageA vis[0:hB, wA:] = imageB # 联合遍历,画出匹配对 for ((trainIdx, queryIdx), s) in zip(matches, status): # 当点对匹配成功时,画到可视化图上 if s == 1: # 画出匹配对 ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1])) ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1])) cv2.line(vis, ptA, ptB, (0, 255, 0), 1) # 返回可视化结果 return vis def cv_show(name, img): cv2.namedWindow(name, cv2.WINDOW_NORMAL) cv2.imshow(name, img) cv2.waitKey(0) def stitch(images, ratio=0.75, reprojThresh=4.0, showMatches=False): # 获取输入图片 (imageB, imageA) = images # 检测A、B图片的SIFT关键特征点,并计算特征描述子 (kpsA, featuresA) = detectAndDescribe(imageA) (kpsB, featuresB) = detectAndDescribe(imageB) # 匹配两张图片的所有特征点,返回匹配结果 M = matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh) # 如果返回结果为空,没有匹配成功的特征点,退出算法 if M is None: return None # 否则,提取匹配结果 # H是3x3视角变换矩阵 (matches, H, status) = M # 将图片A进行视角变换,result是变换后图片 result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0])) # cv_show('result', result) # 将图片B传入result图片最左端 result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB # 检测是否需要显示图片匹配 if showMatches: # 生成匹配图片 vis = drawMatches(imageA, imageB, kpsA, kpsB, matches, status) # 返回结果 return (result, vis) # 返回匹配结果 return result # refFilename = "10.jpg" # imFilename = "9.jpg" refFilename = "1.jpg" imFilename = "2.jpg" img1 = cv2.imread(refFilename, cv2.IMREAD_COLOR) img2 = cv2.imread(imFilename, cv2.IMREAD_COLOR) r1, v1 = stitch((img1, img2), showMatches=True) # refFilename = "3.jpg" # img1 = cv2.imread(refFilename, cv2.IMREAD_COLOR) # imFilename = "4.jpg" # img2 = cv2.imread(imFilename, cv2.IMREAD_COLOR) # r2,v2= stitch((img1,img2),showMatches=True) print(r1.shape) # print(r2.shape) # r1 = r1[:400, :400, :3] # r2 = r2[:400,:400,:3] # r,v= stitch((r1,r2),showMatches=True) # cv_show('result', r) cv_show('result', r1)