import numpy as np from apyori import apriori simpDat = [['K','A','C','B'], ['D','A','C','E','B'], ['C','A','B','E'], ['B','A','D'] ] #FP树中节点的类定义 class treeNode: def __init__(self, nameValue, numOccur, parentNode): self.name = nameValue self.count = numOccur self.nodeLink = None #nodeLink 变量用于链接相似的元素项 self.parent = parentNode #指向当前节点的父节点 self.children = {} #空字典,存放节点的子节点 def inc(self, numOccur): self.count += numOccur #将树以文本形式显示 def disp(self, ind=1): print (' ' * ind, self.name, ' ', self.count) for child in self.children.values(): child.disp(ind + 1) #构建FP-tree def createTree(dataSet, minSup=1): headerTable = {} for trans in dataSet: #第一次遍历:统计各个数据的频繁度 for item in trans: headerTable[item] = headerTable.get(item, 0) + dataSet[trans] #用头指针表统计各个类别的出现的次数,计算频繁量:头指针表[类别]=出现次数 for k in list(headerTable): #删除未达到最小频繁度的数据 if headerTable[k] < minSup: del (headerTable[k]) freqItemSet = set(headerTable.keys())#保存达到要求的数据 # print ('freqItemSet: ',freqItemSet) if len(freqItemSet) == 0: return None, None #若达到要求的数目为0 for k in headerTable: #遍历头指针表 headerTable[k] = [headerTable[k], None] #保存计数值及指向每种类型第一个元素项的指针 # print ('headerTable: ',headerTable) retTree = treeNode('Null Set', 1, None) #初始化tree for tranSet, count in dataSet.items(): # 第二次遍历: localD = {} for item in tranSet: # put transaction items in order if item in freqItemSet:#只对频繁项集进行排序 localD[item] = headerTable[item][0] #使用排序后的频率项集对树进行填充 if len(localD) > 0: orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)] updateTree(orderedItems, retTree, headerTable, count) # populate tree with ordered freq itemset return retTree, headerTable #返回树和头指针表 def updateTree(items, inTree, headerTable, count): if items[0] in inTree.children: # 首先检查是否存在该节点 inTree.children[items[0]].inc(count) # 存在则计数增加 else: # 不存在则将新建该节点 inTree.children[items[0]] = treeNode(items[0], count, inTree)#创建一个新节点 if headerTable[items[0]][1] == None: # 若原来不存在该类别,更新头指针列表 headerTable[items[0]][1] = inTree.children[items[0]]#更新指向 else:#更新指向 updateHeader(headerTable[items[0]][1], inTree.children[items[0]]) if len(items) > 1: #仍有未分配完的树,迭代 updateTree(items[1::], inTree.children[items[0]], headerTable, count) #节点链接指向树中该元素项的每一个实例。 # 从头指针表的 nodeLink 开始,一直沿着nodeLink直到到达链表末尾 def updateHeader(nodeToTest, targetNode): while (nodeToTest.nodeLink != None): nodeToTest = nodeToTest.nodeLink nodeToTest.nodeLink = targetNode def loadSimpDat(): simpDat = [['K','A','C','B'], ['D','A','C','E','B'], ['C','A','B','E'], ['B','A','D'] ] return simpDat #createInitSet() 用于实现上述从列表到字典的类型转换过程 def createInitSet(dataSet): retDict = {} for trans in dataSet: retDict[frozenset(trans)] = 1 return retDict #从FP树中发现频繁项集 def ascendTree(leafNode, prefixPath): #递归上溯整棵树 if leafNode.parent != None: prefixPath.append(leafNode.name) ascendTree(leafNode.parent, prefixPath) def findPrefixPath(basePat, treeNode): #参数:指针,节点; condPats = {} while treeNode != None: prefixPath = [] ascendTree(treeNode, prefixPath)#寻找当前非空节点的前缀 if len(prefixPath) > 1: condPats[frozenset(prefixPath[1:])] = treeNode.count #将条件模式基添加到字典中 treeNode = treeNode.nodeLink return condPats #递归查找频繁项集 def mineTree(inTree, headerTable, minSup, preFix, freqItemList): # 头指针表中的元素项按照频繁度排序,从小到大 bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: str(p[1]))]#python3修改 for basePat in bigL: #从底层开始 #加入频繁项列表 newFreqSet = preFix.copy() newFreqSet.add(basePat) print ('finalFrequent Item: ',newFreqSet) freqItemList.append(newFreqSet) #递归调用函数来创建基 condPattBases = findPrefixPath(basePat, headerTable[basePat][1]) print ('condPattBases :',basePat, condPattBases) #2. 构建条件模式Tree myCondTree, myHead = createTree(condPattBases, minSup) #将创建的条件基作为新的数据集添加到fp-tree print ('head from conditional tree: ', myHead) if myHead != None: #3. 递归 print ('conditional tree for: ',newFreqSet) myCondTree.disp(1) mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList) def fpGrowth(dataSet, minSup=3): initSet = createInitSet(dataSet) myFPtree, myHeaderTab = createTree(initSet, minSup) freqItems = [] mineTree(myFPtree, myHeaderTab, minSup, set([]), freqItems) return freqItems dataSet=simpDat freqItems=fpGrowth(dataSet,4) #4代表最小频繁度,即要找出出现4次或4次以上的频繁项集 freqItems