OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.248
Model: OLS Adj. R-squared: 0.248
Method: Least Squares F-statistic: 1097.
Date: Thu, 17 Mar 2022 Prob (F-statistic): 3.53e-208
Time: 18:44:08 Log-Likelihood: 8498.5
No. Observations: 3326 AIC: -1.699e+04
Df Residuals: 3324 BIC: -1.698e+04
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 0.0011 0.000 3.391 0.001 0.000 0.002
x1 0.6159 0.019 33.125 0.000 0.579 0.652
==============================================================================
Omnibus: 437.950 Durbin-Watson: 1.838
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1855.618
Skew: 0.583 Prob(JB): 0.00
Kurtosis: 6.468 Cond. No. 57.0
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.