# dplyr  [](https://cran.r-project.org/package=dplyr)
[](https://github.com/tidyverse/dplyr/actions/workflows/R-CMD-check.yaml)
[](https://app.codecov.io/gh/tidyverse/dplyr)
## Overview
dplyr is a grammar of data manipulation, providing a consistent set of
verbs that help you solve the most common data manipulation challenges:
- `mutate()` adds new variables that are functions of existing variables
- `select()` picks variables based on their names.
- `filter()` picks cases based on their values.
- `summarise()` reduces multiple values down to a single summary.
- `arrange()` changes the ordering of the rows.
These all combine naturally with `group_by()` which allows you to
perform any operation “by group”. You can learn more about them in
`vignette("dplyr")`. As well as these single-table verbs, dplyr also
provides a variety of two-table verbs, which you can learn about in
`vignette("two-table")`.
If you are new to dplyr, the best place to start is the [data
transformation chapter](https://r4ds.hadley.nz/data-transform) in R for
Data Science.
## Backends
In addition to data frames/tibbles, dplyr makes working with other
computational backends accessible and efficient. Below is a list of
alternative backends:
- [arrow](https://arrow.apache.org/docs/r/) for larger-than-memory
  datasets, including on remote cloud storage like AWS S3, using the
  Apache Arrow C++ engine,
  [Acero](https://arrow.apache.org/docs/cpp/streaming_execution.html).
- [dbplyr](https://dbplyr.tidyverse.org/) for data stored in a
  relational database. Translates your dplyr code to SQL.
- [dtplyr](https://dtplyr.tidyverse.org/) for large, in-memory datasets.
  Translates your dplyr code to high performance
  [data.table](https://rdatatable.gitlab.io/data.table/) code.
- [duckplyr](https://duckplyr.tidyverse.org/) for large, in-memory
  datasets. Translates your dplyr code to high performance
  [duckdb](https://duckdb.org) queries with zero extra copies and an
  automatic R fallback when translation isn’t possible.
- [sparklyr](https://spark.rstudio.com) for very large datasets stored
  in [Apache Spark](https://spark.apache.org).
## Installation
``` r
# The easiest way to get dplyr is to install the whole tidyverse:
install.packages("tidyverse")
# Alternatively, install just dplyr:
install.packages("dplyr")
```
### Development version
To get a bug fix or to use a feature from the development version, you
can install the development version of dplyr from GitHub.
``` r
# install.packages("pak")
pak::pak("tidyverse/dplyr")
```
## Cheat Sheet
[](https://cran.r-project.org/package=dplyr)
[](https://github.com/tidyverse/dplyr/actions/workflows/R-CMD-check.yaml)
[](https://app.codecov.io/gh/tidyverse/dplyr)
## Overview
dplyr is a grammar of data manipulation, providing a consistent set of
verbs that help you solve the most common data manipulation challenges:
- `mutate()` adds new variables that are functions of existing variables
- `select()` picks variables based on their names.
- `filter()` picks cases based on their values.
- `summarise()` reduces multiple values down to a single summary.
- `arrange()` changes the ordering of the rows.
These all combine naturally with `group_by()` which allows you to
perform any operation “by group”. You can learn more about them in
`vignette("dplyr")`. As well as these single-table verbs, dplyr also
provides a variety of two-table verbs, which you can learn about in
`vignette("two-table")`.
If you are new to dplyr, the best place to start is the [data
transformation chapter](https://r4ds.hadley.nz/data-transform) in R for
Data Science.
## Backends
In addition to data frames/tibbles, dplyr makes working with other
computational backends accessible and efficient. Below is a list of
alternative backends:
- [arrow](https://arrow.apache.org/docs/r/) for larger-than-memory
  datasets, including on remote cloud storage like AWS S3, using the
  Apache Arrow C++ engine,
  [Acero](https://arrow.apache.org/docs/cpp/streaming_execution.html).
- [dbplyr](https://dbplyr.tidyverse.org/) for data stored in a
  relational database. Translates your dplyr code to SQL.
- [dtplyr](https://dtplyr.tidyverse.org/) for large, in-memory datasets.
  Translates your dplyr code to high performance
  [data.table](https://rdatatable.gitlab.io/data.table/) code.
- [duckplyr](https://duckplyr.tidyverse.org/) for large, in-memory
  datasets. Translates your dplyr code to high performance
  [duckdb](https://duckdb.org) queries with zero extra copies and an
  automatic R fallback when translation isn’t possible.
- [sparklyr](https://spark.rstudio.com) for very large datasets stored
  in [Apache Spark](https://spark.apache.org).
## Installation
``` r
# The easiest way to get dplyr is to install the whole tidyverse:
install.packages("tidyverse")
# Alternatively, install just dplyr:
install.packages("dplyr")
```
### Development version
To get a bug fix or to use a feature from the development version, you
can install the development version of dplyr from GitHub.
``` r
# install.packages("pak")
pak::pak("tidyverse/dplyr")
```
## Cheat Sheet
 ## Usage
``` r
library(dplyr)
starwars |>
  filter(species == "Droid")
#> # A tibble: 6 × 14
#>   name   height  mass hair_color skin_color  eye_color birth_year sex   gender  
#>                                    
#> 1 C-3PO     167    75        gold        yellow           112 none  masculi…
#> 2 R2-D2      96    32        white, blue red               33 none  masculi…
#> 3 R5-D4      97    32        white, red  red               NA none  masculi…
#> 4 IG-88     200   140 none       metal       red               15 none  masculi…
#> 5 R4-P17     96    NA none       silver, red red, blue         NA none  feminine
#> # ℹ 1 more row
#> # ℹ 5 more variables: homeworld , species , films
## Usage
``` r
library(dplyr)
starwars |>
  filter(species == "Droid")
#> # A tibble: 6 × 14
#>   name   height  mass hair_color skin_color  eye_color birth_year sex   gender  
#>                                    
#> 1 C-3PO     167    75        gold        yellow           112 none  masculi…
#> 2 R2-D2      96    32        white, blue red               33 none  masculi…
#> 3 R5-D4      97    32        white, red  red               NA none  masculi…
#> 4 IG-88     200   140 none       metal       red               15 none  masculi…
#> 5 R4-P17     96    NA none       silver, red red, blue         NA none  feminine
#> # ℹ 1 more row
#> # ℹ 5 more variables: homeworld , species , films ,
#> #   vehicles , starships 
starwars |>
  select(name, ends_with("color"))
#> # A tibble: 87 × 4
#>   name           hair_color skin_color  eye_color
#>                              
#> 1 Luke Skywalker blond      fair        blue     
#> 2 C-3PO                 gold        yellow   
#> 3 R2-D2                 white, blue red      
#> 4 Darth Vader    none       white       yellow   
#> 5 Leia Organa    brown      light       brown    
#> # ℹ 82 more rows
starwars |>
  mutate(name, bmi = mass / ((height / 100)^2)) |>
  select(name:mass, bmi)
#> # A tibble: 87 × 4
#>   name           height  mass   bmi
#>                
#> 1 Luke Skywalker    172    77  26.0
#> 2 C-3PO             167    75  26.9
#> 3 R2-D2              96    32  34.7
#> 4 Darth Vader       202   136  33.3
#> 5 Leia Organa       150    49  21.8
#> # ℹ 82 more rows
starwars |>
  arrange(desc(mass))
#> # A tibble: 87 × 14
#>   name      height  mass hair_color skin_color eye_color birth_year sex   gender
#>                                    
#> 1 Jabba De…    175  1358        green-tan… orange         600   herm… mascu…
#> 2 Grievous     216   159 none       brown, wh… green, y…       NA   male  mascu…
#> 3 IG-88        200   140 none       metal      red             15   none  mascu…
#> 4 Darth Va…    202   136 none       white      yellow          41.9 male  mascu…
#> 5 Tarfful      234   136 brown      brown      blue            NA   male  mascu…
#> # ℹ 82 more rows
#> # ℹ 5 more variables: homeworld , species , films ,
#> #   vehicles , starships 
starwars |>
  group_by(species) |>
  summarise(
    n = n(),
    mass = mean(mass, na.rm = TRUE)
  ) |>
  filter(
    n > 1,
    mass > 50
  )
#> # A tibble: 9 × 3
#>   species      n  mass
#>        
#> 1 Droid        6  69.8
#> 2 Gungan       3  74  
#> 3 Human       35  81.3
#> 4 Kaminoan     2  88  
#> 5 Mirialan     2  53.1
#> # ℹ 4 more rows
```
## Getting help
If you encounter a clear bug, please file an issue with a minimal
reproducible example on
[GitHub](https://github.com/tidyverse/dplyr/issues). For questions and
other discussion, please use [forum.posit.co](https://forum.posit.co/).
## Code of conduct
Please note that this project is released with a [Contributor Code of
Conduct](https://dplyr.tidyverse.org/CODE_OF_CONDUCT). By participating
in this project you agree to abide by its terms.