
BPMN Analyzer 2.0: Instantaneous, Comprehensible,
and Fixable Control Flow Analysis for Realistic BPMN
Models
Tim Kräuter1, Patrick Stünkel1, Adrian Rutle1, Yngve Lamo1 and Harald König2,1

1Western Norway University of Applied Sciences, Bergen, Norway
2FHDW Hannover, Germany

Abstract
Many business process models contain control flow errors, such as deadlocks or livelocks, which hinder
proper execution. In this paper, we introduce a new tool that can instantaneously identify control flow
errors in BPMN models, make them understandable for modelers, and suggest corrections to resolve
them. We demonstrate that detection is instantaneous by benchmarking our tool against synthetic BPMN
models with increasing size and state space complexity, as well as realistic models. Moreover, the tool
directly displays detected errors in the model, including an interactive visualization, and suggests fixes
to resolve them. The tool is open source, extensible, and integrated into a popular BPMN modeling tool.

Keywords
BPM, Verification, Control flow analysis, BPMN model checking, Soundness, Safeness

1. Introduction

Business Process Modeling Notation (BPMN) is becoming increasingly popular for automating
processes and orchestrating people and systems. However, many process models suffer from
control flow errors, such as deadlocks, livelocks, and starvation [1]. These errors hinder the
correct execution of BPMN models and may be detected late in the development process,
resulting in elevated costs.

In this paper, we describe a new tool, the BPMN Analyzer 2.01, for analyzing BPMN process
models to detect control flow errors already during modeling. Figure 1 shows an overview of
the tool. The UI is based on the popular bpmn.io ecosystem, while the analysis is implemented
in Rust for optimal performance and memory efficiency. We perform a breadth-first state space
exploration to check soundness and safeness [2] on the fly to uncover control flow errors.
Consequently, the tool can detect deadlocks, livelocks, starvation, dead activities, and lack of
synchronization in BPMN models. The BPMN Analyzer is open source and accessible online
alongside a video demonstration2 [3].

Proceedings of the Best BPM Dissertation Award, Doctoral Consortium, and Demonstrations & Resources Forum co-located
with 22nd International Conference on Business Process Management (BPM 2024), Krakow, Poland, September 1st to 6th,
2024.
$ tkra@hvl.no (T. Kräuter); past@hvl.no (P. Stünkel); aru@hvl.no (A. Rutle); yla@hvl.no (Y. Lamo);
harald.koenig@fhdw.de (H. König)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1In the following, we will use BPMN Analyzer to refer to the BPMN Analyzer 2.0.
2Tool: https://timkraeuter.com/bpmn-analyzer-js/, Video: https://www.youtube.com/watch?v=Nv2W-hXNZYA

mailto:tkra@hvl.no
mailto:past@hvl.no
mailto:aru@hvl.no
mailto:yla@hvl.no
mailto:harald.koenig@fhdw.de
https://creativecommons.org/licenses/by/4.0
https://timkraeuter.com/bpmn-analyzer-js/
https://www.youtube.com/watch?v=Nv2W-hXNZYA


BPMN
modeler

BPMN Editor Soundness Checker

BPMN
model

Language engineer

analysis
results

design
quick fixes

use

instantaneous analysis
analyze every change

& display results TM

Figure 1: Overview of the BPMN Analyzer 2.0

The tool can check models after each change since analysis is instantaneous according to [1],
i.e., it takes 500ms or less. Furthermore, we ensure the results are comprehensible by high-
lighting possible violations directly in the model and displaying an interactive counterexample
visualization. Finally, the tool suggests fixes for the most common control flow errors and can
be extended to suggest more fixes in the future.

Fahland et al. [1] describe coverage, immediacy, and consumability as the main challenges
for users unaccustomed to formal analysis. The BPMN Analyzer addresses all these challenges
since it supports the most common BPMN elements used in practice (coverage), provides instan-
taneous results (immediacy), and a comprehensible user interface (consumability), even including
suggestions for fixes. Developers of industrial BPMN software also like our tool, especially the
End-to-end user journey [3]. Thus, this supports our claim that the UI is understandable for
users unfamiliar with formal analysis.

In the remainder of the paper, we describe how instantaneous, comprehensible, and fixable
control flow error detection is achieved in section 2. Then, we discuss tool maturity in section 3
before concluding in section 4.

2. Innovations

The BPMN Analyzer has three main innovations: instantaneous, comprehensible, and
fixable control flow error detection. In this section, we will present the innovations, and more
details can be found in our extended paper [3].

2.1. Instantaneous Analysis

We demonstrate instantaneous control flow analysis by benchmarking our tool in three scenar-
ios. For all our benchmarks, we use the hyperfine benchmarking tool (version 1.18.0), which
calculates the average runtime when executing each control flow analysis ten or more times. We
ran the benchmarks on Ubuntu 22.04.4 with an AMD Ryzen 7700X processor (4.5GHz) and 32
GB of RAM (5600 MHz). All used BPMN models, our tools to generate them, and benchmarking
scripts to run them are available in [3].



First, we benchmarked how our tool handles BPMN models of growing size. We generated
500 synthetic BPMN models starting with five elements up to 4000. The models repeatedly
contain three activities and an exclusive/parallel block with two branches containing one activity
per branch (see [3]). The BPMN Analyzer spends from 1 ms up to 9 ms for the BPMN models [3]
compared to 0.7 s up to 14 s in our previous tool [4]. In summary, the runtime grows linearly
with the state space.

Second, we benchmarked the tool against a synthetic data set of models that led to a state
space explosion. This represents a worst-case scenario for formal analysis. We generated a data
set of models [3] with a growing number of parallel branches with increasing length, like [5].

Table 1 shows the average runtime of our tool when analyzing these models. The BPMN
Analyzer explores the entire state space while simultaneously analyzing the control flow, i.e.,
verifying soundness properties. The models’ state space grows exponentially, leading to the
same order of growth in runtime. Our analysis is not instantaneous anymore when approaching
17 parallel branches of length 1 (see Table 1). However, analysis is still instantaneous for more
reasonable models with five parallel branches of length 5 or 3 branches of length 20. Other tools
report 2-3s of runtime for most soundness properties and 30s for a model with five parallel
branches [5], which took milliseconds in our tool.

Table 1
Benchmark results of the parallel branches models

Branches Branch Length Runtime States

5 1 1 ms 35

10 1 3 ms 1.027

15 1 161 ms 32.771

16 1 360 ms 65.539

17 1 790 ms 131.075

20 1 8.803 ms 1.048.579

5 5 14 ms 7.779

3 20 11 ms 9.264

Table 2
Benchmark results of the realistic BPMN models

Model name Runtime States

e001 [6] 1 ms 39

e002 [6] 1 ms 39

e020 [6] 10 ms 5356

credit-scoring-async3 1 ms 60

credit-scoring-sync3 1 ms 140

dispatch-of-goods3 1 ms 103

recourse3 1 ms 77

self-service-restaurant3 1 ms 190

Third, we applied our tool to eight realistic models, where three models (e001, e002, e020)
are taken from [6], and the remaining five models are part of the Camunda BPMN for research
repository3. Table 2 shows each model’s average runtime and number of states. The BPMN
Analyzer takes 1-10ms for e001, e002, and e020 [3], while [6] and [4] report 3.66-10.26s and
1-1.75s respectively. The benchmarks in [4] were run on the same hardware, while the machine
used in [6] was less powerful. Our analysis is instantaneous for nearly all BPMN models since
most have less than 1000 states, according to [1].

3https://github.com/camunda/bpmn-for-research

https://github.com/camunda/bpmn-for-research


2.2. Comprehensible Analysis

We implemented two features to make control flow analysis understandable for everyone. First,
we highlight the problematic elements that cause control flow errors by directly attaching red
overlays to them in the model. In addition, there is a summary panel in the top-right stating if
any errors are found.

Second, we use tokens to visualize errors interactively, i.e., show an execution leading to the
error. Our analysis provides sample executions resulting in the found control-flow errors, which
we visualize in the editor by showing how tokens move from the process start to an erroneous
state. We are unaware of other tools that visualize errors directly and allow interactions, such
as stopping/resuming and restarting.

In Figure 2, the visualization has been paused just before an unsafe state was reached. One
token is already located at the marked sequence flow, while a second token is currently waiting
at the exclusive gateway e1. The visualization can be resumed or restarted using the play and
restart button on the left side. The gateway e1 will execute when resumed, resulting in two
tokens at the subsequent sequence flow, i.e., an unsafe execution state. Furthermore, one can
control the visualization speed using the bottom buttons next to the speedometer.

2.3. Fixable Analysis

Besides detecting, highlighting, and visualizing control flow errors, the BPMN Analyzer suggests
fixes like quick fixes in IDEs. Quick fixes cannot be provided for all errors, but we currently
cover many patterns leading to deadlocks, lack of synchronization, message starvation, and
reused end events. The quick fixes we support are described in detail in [3] and can be extended
independently of the formal analysis. We are unaware of other tools that can fix identified
control-flow errors.

For example, Figure 2 shows a screenshot of our tool, where quick fixes are depicted as green
overlays containing a light bulb icon. A user can apply a quick fix by clicking on a green overlay
and instantly see the changes regarding control flow errors. If unhappy with the result, a user
can undo all changes since each quick fix is entirely revertible due to the command pattern. A
user might not like a quick fix if it not only fixes an error but also has unintended side effects,
such as introducing a different control flow error.

Figure 2: Execution visualization (left) and suggested quick fixes (right) in the BPMN Analyzer



3. Maturity of the Tool

The BPMN Analyzer incorporates many findings from our previous work [4] while focusing on
instantaneous and understandable error detection, as described in the previous section. The
tool is open source [3], and we ensure high code quality by employing industry best practices
such as rigorous static analysis and testing. Furthermore, we received positive feedback from
companies in the BPMN process orchestration space [3].

4. Conclusion & Future Work

In this paper, we describe the novel BPMN Analyzer that provides instantaneous, comprehensible,
and fixable BPMN control flow error detection and is integrated into a popular BPMN modeling
tool. We benchmarked our tool against synthetic and realistic BPMN models to demonstrate
instantaneous soundness checking. We address the three main challenges, coverage, immediacy,
and consumability, to provide formal analysis to non-expert users as identified in [1]. In
addition, our tool offers quick fixes for common patterns that lead to control flow errors. One
can understand the BPMN Analyzer as a BPMN-specific model checker, implemented in Rust
paired with an intuitive user interface based on the popular bpmn.io ecosystem that is open for
extension by design.

In future work, we aim to improve our tool by providing more quick fixes, considering
advanced BPMN elements such as different events, and ranking quick fixes based on usefulness
and previous user behavior. Finally, we aspire to test our tool in a real-world scenario to gather
feedback and measure its impact on productivity.

References

[1] D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer, K. Wolf, Analysis on demand:
Instantaneous soundness checking of industrial business process models, Data & Knowledge
Engineering 70 (2011) 448–466. doi:10.1016/j.datak.2011.01.004.

[2] F. Corradini, C. Muzi, B. Re, F. Tiezzi, A Classification of BPMN Collaborations based on
Safeness and Soundness Notions, Electronic Proceedings in Theoretical Computer Science
276 (2018) 37–52. doi:10.4204/EPTCS.276.5.

[3] T. Kräuter, P. Stünkel, A. Rutle, H. König, Y. Lamo, Instantaneous, Comprehensible, and
Fixable Soundness Checking of Realistic BPMN Models, 2024. arXiv:2407.03965.

[4] T. Kräuter, A. Rutle, H. König, Y. Lamo, A higher-order transformation approach to
the formalization and analysis of BPMN using graph transformation systems, 2024.
arXiv:2311.05243.

[5] F. Corradini, F. Fornari, A. Polini, B. Re, F. Tiezzi, A. Vandin, A formal approach for the
analysis of BPMN collaboration models, Journal of Systems and Software 180 (2021) 111007.
doi:10.1016/j.jss.2021.111007.

[6] S. Houhou, S. Baarir, P. Poizat, P. Quéinnec, L. Kahloul, A First-Order Logic verification
framework for communication-parametric and time-aware BPMN collaborations, Informa-
tion Systems 104 (2022) 101765. doi:10.1016/j.is.2021.101765.

http://dx.doi.org/10.1016/j.datak.2011.01.004
http://dx.doi.org/10.4204/EPTCS.276.5
http://arxiv.org/abs/2407.03965
http://arxiv.org/abs/2311.05243
http://dx.doi.org/10.1016/j.jss.2021.111007
http://dx.doi.org/10.1016/j.is.2021.101765

	1 Introduction
	2 Innovations
	2.1 Instantaneous Analysis
	2.2 Comprehensible Analysis
	2.3 Fixable Analysis

	3 Maturity of the Tool
	4 Conclusion & Future Work

