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Abstract. The Business Process Modeling Notation (BPMN) is a widely
used standard notation for defining intra- and inter-organizational work-
flows. However, the informal description of the BPMN execution seman-
tics leads to different interpretations of BPMN elements and difficulties
in checking behavioral properties. In this paper, we propose a formal-
ization of the execution semantics of BPMN that, compared to exist-
ing approaches, covers more BPMN elements while facilitating property
checking. Our approach is based on a higher-order transformation from
BPMN models to graph transformation systems. As proof of concept, we
have implemented our approach in an open-source web-based tool.

Keywords: BPMN · Higher-order model transformation · Graph trans-
formation · Model checking · Formalization

1 Introduction

In today’s fast-paced business environment, organizations with complex work-
flows require a powerful means to accurately map, analyze, and optimize their
processes. Business Process Modeling Notation (BPMN) [18] is a widely used
standard to define these workflows. However, the informal description of the
BPMN execution semantics leads to different interpretations of BPMN models
and difficulties in checking behavioral properties [4]. Formalizing BPMN would
reduce the cost of business process automation drastically by facilitating the
detection of errors and optimization potentials in process models already during
design time. To this end, we propose a formalization that covers most of the
BPMN elements used in practice and supports checking behavioral properties.
General behavioral properties such as Safeness and Soundness were adapted
to BPMN [6], which can uncover potential flaws in BPMN models leading to
deadlocks or other undesirable execution states.

In this paper, we consider two fundamental concepts when formalizing the
execution semantics of BPMN. First, state structure, i.e., how models are rep-
resented during execution. The state structure corresponds to the type graph
in Graph Transformation (GT) systems. Second, state-changing elements, i.e.,
which elements in a model encode state changes. These elements are implemented
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using GT rules. In our approach, we automatically generate GT rules based on
a Higher-Order model Transformation (HOT) for each specific BPMN model, as
shown in Figure 1.
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Fig. 1. Overview of the approach

To begin the BPMN modeling process, a modeler first defines the BPMN
model and its corresponding behavioral properties for evaluation. This model
must adhere to the BPMN metamodel as outlined in the BPMN specification by
the Object Management Group [18]. To create the state structure for BPMN,
the BPMN execution metamodel is defined by language engineers, utilizing the
BPMNmetamodel as a foundation. Typically, an execution metamodel is created
by extending the languages metamodel.

Furthermore, we define a HOT from BPMN models to GT systems. We
call the transformation higher-order since the resulting graph-transformation
systems represent model-transformations themselves [23]. The HOT creates a
GT system, i.e., GT rules and a start graph for a given BPMN model. It is
defined using rule generation templates, which describe how GT rules should
be generated for each state-changing element in BPMN (see section 3). The
obtained GT system conforms to the execution type graph, which corresponds
to the BPMN execution metamodel. In the figure, we have colored both artifacts
blue to visualize that they contain the same information. Ultimately, we use
Groove as an execution engine for the GT system and check the behavioral
properties defined earlier.

Our approach has been implemented in a user-friendly, open-source web-
based tool, the BPMN Analyzer, which can be used online without needing
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installation. The BPMNAnalyzer was validated using a comprehensive test suite.
Additionally, our approach is versatile as it can be applied to formalize other
behavioral languages, such as activity diagrams, state charts, and more. To define
the execution semantics of an alternate behavioral language, one simply needs
to establish a new execution metamodel and HOT (see the language engineer in
Figure 1).

The contribution of this paper is twofold. First, we introduce a new approach
utilizing a HOT to generate GT rules instead of providing fixed GT rules to for-
malize the semantics of a behavioral language. Second, we apply our approach to
BPMN, resulting in a formalization covering most BPMN elements that supports
property checking.

The remainder of this paper is structured as follows. First, in section 2, we
introduce BPMN and point out the theoretical background of this contribution.
Second, we describe the BPMN semantics formalization using the HOT (sec-
tion 3) before explaining how this can be utilized for model checking general
BPMN and custom properties (section 4). Then, we present BPMN Analyzer
implementing our approach in section 5. Finally, we discuss related work regard-
ing BPMN element coverage in section 6 and conclude in section 7.

2 Preliminaries

In this section, we will briefly introduce the execution semantics of BPMN,
and readers are encouraged to consult [11] or the BPMN specification [18] for
more in-depth information. Furthermore, our application of GTs to formalize the
execution semantics of BPMN will be outlined in addition to a brief overview of
the theoretical principles that underlie our use of GTs.

2.1 BPMN

Figure 2 depicts the structure of BPMN models with the corresponding concrete
syntax BPMN symbols contained in clouds.

A BPMN model is represented by a Collaboration that has participants and
messageFlows between InteractionNodes. Each participant is a Process contain-
ing flowNodes connected by SequenceFlows. A FlowNode is either an Activity,
Gateway, or Event. Many types of Activities, Gateways, and Events exist. Activ-
ities represent certain tasks to be carried out during a process, while events
may happen during the execution of these tasks. Furthermore, gateways model
conditions, parallelizations, and synchronizations [11].

The BPMN execution semantics is described using the concept of tokens
[18], which can be located at sequence flows and specific flow nodes. Tokens are
consumed and created by flow nodes according to the connected sequence flows.
The FlowNode is colored purple in Figure 2 since it represents the state-changing
elements of BPMN, as described in section 3.

A BPMN process is triggered by one of its start events, leading to a token at
each outgoing flow of the triggered start event. Activities can start when at least
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Fig. 2. Excerpt of the BPMN metamodel [18]

one token is on an incoming sequence flow. The start of an activity will move the
incoming token to the activity. When an activity terminates, it deletes its token
and adds one at each outgoing sequence flow. Furthermore, different gateway
types exist, such as parallel and exclusive gateways. Parallel gateways represent
forks and joins, meaning they delete one token for each incoming sequence flow
and add one token for each outgoing sequence flow. Exclusive gateways represent
an XOR by deleting a token from one incoming sequence flow and adding a token
to exactly one of the outgoing sequence flows. Events delete and add tokens
similar to activities but have additional semantics depending on their type. For
example, message events will add or delete messages.

2.2 Theoretical background

We use typed attributed graphs for the formalization of the BPMN execution
semantics. Each state, i.e., token distribution during the execution of a BPMN
model, is represented as an attributed graph typed by the BPMN execution type
graph, which we introduce in section 3.

Regarding GT, we utilize the single-pushout (SPO) approach with negative
application conditions (NAC) [9], as implemented in Groove [20]. In addition,
we utilize nested rules with quantification to make parts of a rule repeatedly
applicable or optional [21,22]. Moreover, we utilize the NACs to implement more
intricate parts in the BPMN execution semantics, such as the termination of
processes.

Formal definitions of SPO rules, their application, and the corresponding
extensions of the theory (NACs, nested rules) are well-known, see [9,21]. We do
not repeat them to instead focus on our practical contribution.
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3 BPMN semantics formalization

The approach supports all the BPMN elements depicted in Figure 3. These
BPMN elements are divided into Events, Gateways, Activities, and Edges. Events
and Activities are further divided into subgroups. Although all these elements
have been implemented and tested (see [16]), due to space limitations, we only
explain the realization of the elements marked with a green background. In
the following, first, we define the BPMN execution metamodel to represent the
BPMN state structure, then we explain our formalization of the elements in
Figure 3.

End Events (EE)

Start Events (SE)

Activities

Tasks

Events (E)

Boundary Events (BE)

Gateways

Edges

Intermediate Events (IE)

Receive Task
(RT)

Send Task
(ST)

Sub Process, expanded

Message flowSequence flow

NSE MSE SSE

ITE MICE MITE

LICE LITE SICE SITE

IBE MBE MBE (non-interrupting)

SBE SBE (non-interrupting)

NEE TEE MEE SEE

Parallel
Gateway

Inclusive
Gateway

Exclusive
Gateway

Event based
Gateway

RT
(instantiating)

N = None
M = Message
S = Signal
I = Intermediate
C = Catch
L = Link
T= Throw
Er = Error
Es = Escalation

ErEE EsEE

EsIE

ErBE EsBe EsBE (non-interrupting)

Activity

Fig. 3. Overview of the supported BPMN elements (structure adapted from [14])

3.1 BPMN execution metamodel

In our formalization of BPMN, we utilize a token-based representation of the
execution semantics, similar to the approach used in the informal description
of the BPMN specification [18]. To describe processes holding tokens during
execution, we define the execution metamodel shown in Figure 4, depicted as
a UML class diagram. In the context of our approach, we fulfill the role of the
language engineer by defining the execution metamodel (see Figure 1).
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Fig. 4. BPMN execution metamodel

We use ProcessSnapshot to denote a running BPMN process with a specific
token distribution that describes one state in the history of the process execution.
Every ProcessSnapshot has a set of tokens, incoming messages, and subprocesses.
A ProcessSnapshot has the state Terminated if it has no tokens or subprocesses.
Otherwise, it has the state Running. A Token has an elementID, which points to
the BPMN Activity or the SequenceFlow at which it is located. A Message has
an elementID pointing to a MessageFlow. To concisely depict graphs conforming
to this type graph, we introduce a concrete syntax in the clouds attached to
the elements. Our concrete syntax extends the BPMN syntax by adding process
snapshots, subprocess relations, tokens, and messages. Tokens are represented
as colored circles drawn at their specified positions in a model. In addition, we
use colored circles at the top left of the bounding box, representing instances of
the BPMN Process; these circles represent process snapshots. The token’s color
must match the color of the process snapshot holding the token. The concrete
syntax was inspired by the bpmn-js-token-simulation [2].

Our BPMN execution metamodel was not created by extending the BPMN
metamodel and adding missing concepts such as tokens and messages. We chose
to create a minimal execution model only containing concepts needed during
execution. This is only possible since our rules are generated by the HOT for
each specific BPMN model such that the structure of each model is already
implicitly encoded in the rules. This design choice leads to smaller states in the
graph transformation system when compared to an execution metamodel that
extends the BPMN metamodel.

The execution metamodel is a UML class diagram without operations, which
can be seen as an attributed type graph [12]. We keep the execution metamodel
and the execution type graph separate (see Figure 1) because the execution
metamodel should be independent of the formalism used to define the execution
semantics. One can reuse the execution metamodel when changing the formalism
or concrete tool implementing the formalism (in our case, Groove) by adjusting
how the execution metamodel is transformed. Using the execution metamodel
as the type graph, we can now define how the start graph and GT rules for the
different BPMN elements are created.

Since our approach is based on a HOT from BPMN to GT systems, we
generate a start graph and GT rules for each given BPMN model (see Figure 1).
Generating the start graph for a BPMN model is straightforward. First, for
each process in the BPMN model, we generate a process snapshot if the process
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contains a none start event (NSE). An NSE describes a start event without a
trigger (none). Then, for each NSE, we add one token to each outgoing sequence
flow. An example of a start graph is shown in Figure 5 using abstract and
concrete syntax.

P1 ActivityA

start

startToActivityA

1
1:ProcessSnapshot

name="P1"
state=[Running]

1:Token

elementID="startToActivityA"

:tokens

Fig. 5. Example start graph in abstract (left) and concrete syntax (right)

The HOT generates one or more GT rules for each FlowNode, i.e., state-
changing element in a BPMN model. In order to provide a better understanding
of the transformation process, we will begin by presenting two example results,
namely the generated rules for an activity (as shown in Figure 3). Following this,
we will delve into an explanation of how our HOT creates these rules as well as
others.

Figure 6 depicts an example GT rule (L → R) to start an activity in abstract
syntax. The rule is straightforward, moving a token from the incoming sequence
flow to the activity itself.

L R
1:ProcessSnapshot

name="P1"
state=[Running]

1:Token

elementID="startToActivityA"

:tokens 1:ProcessSnapshot
name="P1"

state=[Running]

1:Token

elementID="ActivityA"

:tokens

Fig. 6. Example GT rule to start an activity (abstract syntax)

For the rest of the paper, we will depict all rules in the concrete syntax in-
troduced earlier. The rule from Figure 6 depicted in concrete syntax is shown on
the left in Figure 7. The rule on the right in Figure 7 implements the termina-
tion of an activity, which will move one token from the activity to the outgoing
sequence flow.

P1

end

ActivityA
activityAToEnd

P1

end

ActivityA
activityAToEnd

P1 ActivityA

start

startToActivityA

1

1
1

P1 ActivityA

start

startToActivityA

1

Fig. 7. Example GT rule to start (left) and terminate (right) an activity
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To summarize, we described two example rules and introduced a concrete
syntax to depict them concisely and understandably. In the following subsections,
we use this concrete syntax to define how these rules and rules for other flow
nodes are generated by our HOT. Elements of the HOT are depicted using rule
generation templates that show how specific rules are created for various flow
nodes. Defining the rule generation templates and thus the HOT from BPMN
to GT systems is the second task of the language engineer in our approach (see
Figure 1).

Our HOT defines a formal execution semantics of BPMN, similar to other
approaches that formalize BPMN by mapping to Petri Nets or other formalisms
[7].

3.2 Process instantiation and termination

Start events do not need GT rules since the generated start graph of the GT
system will contain a token for each outgoing sequence flow of an NSE. Other
types of start events are triggered in corresponding throw event rules.

Figure 8 depicts the rule generation template for end events (NEE in Fig-
ure 3). All rule generation templates show a state-changing element (FlowNode)
with surrounding flows in the left column and the applicable rule generation in
the right column. The left column shows instances of the BPMN metamodel
(Figure 2), and the right column shows the generated rules typed by the BPMN
execution metamodel (see Figure 4). If more than one rule is generated from a
FlowNode, an expression defines how each rule is generated. For example, the
expression ∀sf ∈ E.incSFs for the rule generation template of end events (see Fig-
ure 8) generates one rule for each incoming sequence flow sf of the end event E.
We use “.” in expressions to navigate along the associations of the BPMN meta-
model shown in Figure 2. In the example, E.incSFs means following all incSFs
links for a FlowNode object, resulting in a set of SequenceFlow objects.

BPMN-FlowNode Rule Generation Template

E

...

1

n
End event

E

1
sf

E

sf

Generate a rule

Fig. 8. Rule generation templates for start and end events

The generated end event rules delete tokens one by one for each incoming
sequence flow. However, they do not terminate processes. Process termination
is implemented with a generic rule—independent of the input BPMN model—
which is applicable to all process snapshots. The termination rule in Figure 9
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is automatically generated once during the HOT. The rule changes the state of
the process snapshot from running to terminated if it has neither tokens nor
subprocesses.

Fig. 9. Termination rule in Groove

The Groove syntax is the following. The thin black elements in Figure 9 need
to be present and will be preserved during transformation, while the dashed blue
elements need to be present but will be removed. Furthermore, the fat green
elements will be created and the dashed fat red elements represent the NACs,
whose presence prevent the rule from being applied.

3.3 Activities & Subprocesses

Figure 10 depicts the rule generation templates for activities and subprocesses
(see Figure 3). Activity execution is divided into two steps implemented in two
parts in the first rule template. The upper part generates one rule for each
incoming sequence flow to start the activity. An activity can be started using
a token positioned at any of its incoming sequence flows. This part generates
the sample rule on the right of Figure 7. Having multiple incoming or outgoing
sequence flows for a flow node is considered bad practice since the implicitly
encoded gateways should be explicit to avoid confusion. Our formalization still
supports those models not to force modelers to rewrite them, but we recommend
using static analyzers to avoid such models [3].

The lower part generates one rule that terminates the activity. It deletes a
token at the activity and adds one at each outgoing sequence flow. This implicitly
encodes a parallel gateway (see Figure 11) but should be avoided, as described
earlier.

Subprocess execution is like activity execution. The upper part of the tem-
plate generates one rule for each incoming sequence flow. The rule deletes an
incoming token and adds a process snapshot representing a subprocess. The cre-
ated process snapshot is represented with a colored circle on the top left corner
of the subprocess with a token at each outgoing sequence flow of its start events
(similar to start graph generation). There is a subprocess link between the pro-
cess snapshots to depict the subprocesses relation in Figure 4. If the subprocess
has no start events, a token will be added to every activity and gateway with no
incoming sequence flows.
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Fig. 10. Rule generation template for activities and subprocesses

The bottom part of the template generates one rule to delete a terminated
process snapshot and adds tokens at each outgoing sequence flow. Subprocesses
are terminated by the termination rule (see section 3.2).

3.4 Gateways

Figure 11 depicts the rule generation templates for parallel and exclusive gate-
ways (see Figure 3). A parallel gateway can synchronize and fork the control
flow simultaneously. Thus, one rule is generated that deletes one token from
each incoming sequence flow and adds one token to each outgoing sequence flow.

Exclusive Gateways are triggered by exactly one incoming sequence flow, and
exactly one outgoing sequence flow will be triggered as a result. Thus, one rule
must be generated for every combination of incoming and outgoing sequence
flows. However, the resulting rule is simple since it only deletes a token from an
incoming sequence flow and adds one to an outgoing sequence flow.

3.5 Message Events

Figure 12 depicts the rule generation templates for message intermediate throw
events andmessage intermediate catch events (MITE andMICE in Figure 3). The
first rule template describes how MITEs interact with MICEs. A MITE deletes
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Fig. 11. Rule generation template for gateways

an incoming token and adds one at each outgoing sequence flow. In addition,
it sends one message to each process by adding it to the incoming messages
of the process. However, sending each message is optional, meaning that if a
process is not ready to consume a message immediately, the message is not
added. A process can consume a message if its MICE has at least one token at
an incoming sequence flow (see rule template two in Figure 12). We implement
optional message sending using nested rules with quantification. Concretely, we
use an optional existential quantifier [21] (see blue dotted rectangle marked with
optional in Figure 12) to send a message only if the receiving process is ready
to consume it.
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j
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Fig. 12. Rule generation templates for message events
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The second rule template in Figure 12 shows the behavior of MICEs. To
trigger a MICE, only one message at an incoming message flow is needed. Thus,
one rule is generated for each incoming message flow. The rule template shows
that MICEs delete one message and one token, as well as add a token at each
outgoing sequence flow.

4 Model checking BPMN

Model checking—and verification in general—of BPMN models is necessary to
ensure the correctness and reliability of business processes, which ultimately
leads to increased efficiency, reduced costs, and user satisfaction. Using our ap-
proach, model checking a BPMN model is possible using the generated GT
system and behavioral properties based on atomic propositions (see Figure 1).
Behavioral properties are defined using a temporal logic, such as CTL and LTL.
In this paper, we will use CTL. An atomic proposition is formalized as a graph
and holds in a given state if a match exists from the graph representing the
proposition to the graph representing the state [15].

We differentiate between two types of behavioral properties: general BPMN
properties defined for all BPMN models and custom properties tailored towards
a particular BPMN model. We do not consider structural properties (like con-
formance to the syntax of BPMN) since they can be checked using a standard
modeling tool without implementing execution semantics. We will now give an
example of two predefined general BPMN properties and show how they can be
checked using our approach. Then, we describe how custom properties can be
defined and checked.

4.1 General BPMN properties

Safeness and Soundness properties are defined for BPMN in [6]. A BPMN model
is safe if, during its execution, at most one token occurs along the same sequence
flow [6]. Soundness is further decomposed into (i) Option to complete: any run-
ning process instance must eventually complete, (ii) Proper completion: after
completion, each token of the process instance must be consumed by a different
end event, as well as (iii) No dead activities: each activity can be executed in
at least one process instance [6]. Process completion is synonymous to process
termination. In the following, we will describe how to implement the Safeness
and Option to complete properties.

We specify Safeness as the CTL property defined in (1). The atomic propo-
sition Unsafe is true if two tokens of one process snapshot point to the same
sequence flow. It is shown in Figure 13 using abstract syntax. We cannot use the
concrete syntax to define the Unsafe proposition because the proposition should
apply to any BPMN model. Our concrete syntax is always used with a given
BPMN model.

Option to complete is specified using the CTL property defined in (2). The
atomic proposition AllTerminated is true if there exists no process snapshot in the
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Fig. 13. The atomic proposition Unsafe in Groove.

state Running, i.e., all process snapshots are Terminated. AllTerminated is given
in [16].

AG(¬Unsafe) (1) AF (AllTerminated) (2)

Checking the properties Safeness, Option to Complete, and No Dead Activi-
ties is implemented in our tool [16]. The property Proper Completion is not yet
implemented, but all the information needed can be found in the GT systems
state space.

4.2 Custom properties

To make model checking user-friendly, we envision modelers defining atomic
propositions in the extended BPMN syntax, i.e., the concrete syntax introduced
in Figure 4. Therefore, to define an atomic proposition, a modeler adds process
snapshots and tokens to a BPMN model, which we can automatically convert to
a graph representing an atomic proposition.

For example, the token distribution shown in Figure 14 defines two running
process snapshots with a token at activity A. Differently colored tokens define
different process snapshots. A modeler could use this atomic proposition, for
example, to check if, eventually, two processes are executing activity A simulta-
neously by creating an LTL/CTL property. Thus, a modeler does not need to
know the GT semantics used for execution.

However, the modeler must still know the temporal logic, such as LTL and
CTL, to express his properties. In the future, a domain-specific property lan-
guage for BPMN would further lessen the amount of knowledge required from
the modeler [17].

A

start end1 1

Fig. 14. Token distribution defining an atomic proposition.



14 T. Kräuter et al.

5 Implementation

In this section, we will present our tool and then describe experiments regarding
its performance.

5.1 BPMN Analyzer tool

Our approach is implemented in a web-based tool called BPMN Analyzer, which
is open-source, publicly available, and does not require any installation [16].
Figure 15 depicts a screenshot of the BPMN Analyzer.

The modeler can create or upload a BPMN model, which can then be verified
using either BPMN-specific properties or custom CTL properties in the verifica-
tion section. BPMN Analyzer can generate a GT system for the supplied BPMN
model and run model checking in Groove [15]. To evaluate the correctness of our
HOT, we have created a comprehensive test suite [16]. It verifies that rules are
generated as defined by the rule generation templates in the previous section for
each BPMN element. Additionally, we have conducted performance experiments
for our approach, as described in the next section.

Fig. 15. Screenshot of the BPMN Analyzer tool

5.2 Experiments

Model checking is a useful technique but often falls short in practice due to insuf-
ficient performance. Poor performance might have many reasons, most notably
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large models leading to state space explosion. We experimented with ten differ-
ent BPMN models from [14] to assess the performance of our implementation.
We picked the models at random, besides disregarding some models that were
similar. The models include realistic business process models (001, 002, and 020)
[14].

To calculate the average runtime, we used the hyperfine benchmarking tool
[19] (version 1.15.0), which ran state space exploration for each BPMN model ten
times. The experiment was run on Windows 11 (AMD Ryzen 7700X processor,
32 GB RAM) using Groove version 5.8.1 [16].

First, we ran our HOT for the BPMN models. The HOT took less than one
second to generate a GT system for each model. Thus, the generation of the GT
systems is fast enough.

Second, we ran a full state exploration using the resulting ten GT systems, see
Table 1. The exploration takes roughly one second for most of the models. Only
model 020 needs nearly two seconds due to its larger state space. Furthermore,
up to one second is spent on startup not model checking. For example, Groove
reports only 722 ms for state space exploration for model 020.

We conclude that our approach is sufficiently fast for models of normal size.
In addition, there is still room for optimization, such as avoiding costly I/O
to disk. A comprehensive benchmark, including a detailed comparison to other
tools and scaling up the model size, is left for future work.

Table 1. Experimental results for a full state space exploration in Groove

BPMN model Processes Nodes (gw.) States Transitions Total time

001 2 17(2) 68 118 ∼ 1.00 s

002 2 16(2) 62 108 ∼ 0.97 s

007 1 8(2) 45 81 ∼ 0.92 s

008 1 11(2) 49 85 ∼ 0.93 s

009 1 12(2) 137 308 ∼ 1.01 s

010 1 15(2) 162 357 ∼ 1.04 s

011 1 15(2) 44 69 ∼ 0.97 s

015 1 14(2) 53 86 ∼ 0.95 s

016 1 14(2) 44 68 ∼ 0.94 s

020 1 39(6) 3060 8584 ∼ 1.75 s

6 Related work

The most common formalizations of BPMN use Petri Nets. For example, [7]
formalize a subset of BPMN elements by defining a mapping to Petri Nets con-
ceptually close to our HOT-based formalization. Encoding basic BPMN model-
ing elements into Petri Nets is generally straightforward, but for some advanced
elements, it can be complicated to define [13]. For example, representing termi-
nation end events and interrupting boundary events, which interrupt a running
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process, is usually unsupported because of the complexity of managing the non-
local propagation of tokens in Petri Nets [4]. We solve these situations by using
nested graph conditions, for example, to remove all tokens when reaching a ter-
mination end event.

A BPMN formalization based on in-place GT rules is given in [24]. The
formalization covers a substantial part of the BPMN specification, including
complex concepts such as inclusive gateways and compensation. In addition,
the GT rules are visual and thus can be aligned with the informal description
of the execution semantics of BPMN. A key difference to our approach is that
the rules in [24] are general and can be applied to every BPMN model, while
we generate specific rules for each BPMN model using our HOT. Thus, our
approach can be seen as a program specialization compared to [24] since we
process a concrete BPMN model before its execution. However, they do not
support property checking since their goal is only formalization.

The tool BProVe is based on formal BPMN semantics given in rewriting
logic and implemented in the Maude system [4]. Using this formal semantics,
they can verify custom LTL properties and general BPMN properties, such as
Safeness and Soundness.

The verification framework fbpmn uses first-order logic to formalize and check
BPMN models [14]. This formalization is then realized in the TLA+ formal lan-
guage and can be model-checked using TLC. Like BProVe, fbpmn allows checking
general BPMN properties, such as Safeness and Soundness. Furthermore, they
focus on different communication models besides the standard in the BPMN
specification and support time-related constructs. We currently disregard time-
related constructs [8,14] and data flow [5,10].

Table 2 shows which BPMN elements are supported by our approach and
the approaches mentioned above. Compared to other approaches, we cover most
BPMN elements. The coverage of BPMN elements greatly impacts how useful
each approach is to check properties in practice. In addition, we cover the most
important elements found in practice since we come close to the element coverage
of popular process engines such as Camunda [1].

The missing elements, when compared to Camunda, are transactions, can-
cel events, and compensation events. These elements are rather complex, but
[24] shows how cancel and compensation events can be formalized. We plan to
support these elements by extending our implementation and test suite in the
future.

7 Conclusion & future work

This paper makes two main practical contributions. First, we conceptualize a new
approach utilizing a HOT to formalize the semantics of behavioral languages.
Our approach moves complexity from the GT rules to the rule templates mak-
ing up the HOT. Furthermore, the approach can be applied to any behavioral
language if one can define its state structure and identify its state-changing ele-
ments.
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Table 2. BPMN elements supported by different formalizations (based on [24]).

BPMN element/feature Dijkman Van Gorp Corradini Houhou This
et al. [7] et al. [24] et al. [4] et al. [14] paper

Instantiation and termination
Start event instantiation X X X X X
Exclusive event-based gateway X X

instantiation
Parallel event-based gateway

instantiation
Receive task instantiation X
Normal process completion X X X X X

Activities
Activity X X X X X
Loop activity X X
Multiple instance activity
Subprocess X X X X
Event subprocess X
Transaction
Ad-hoc subprocesses

Gateways
Parallel gateway X X X X X
Exclusive gateway X X X X X
Inclusive gateway (split) X X X X X
Inclusive gateway (merge) X X X
Event-based gateway X1 X X
Complex gateway

Events
None Events X X X X X
Message events X X X X X
Timer Events X
Escalation Events X
Error Events X X X
Cancel Events X
Compensation Events X
Conditional Events
Link Events X X
Signal Events X X
Multiple Events
Terminate Events X X X X
Boundary Events X2 X3 X

1 Does not support receive tasks after event-based gateways.
2 Only supports interrupting boundary events on tasks, not subprocesses.
3 Only supports message and timer events.



18 T. Kräuter et al.

Second, we apply our approach to BPMN, resulting in a comprehensive for-
malization regarding element coverage (compared to the literature and industrial
process engines) that supports checking behavioral properties. Furthermore, our
contribution is implemented in an open-source web-based tool to make our ideas
easily accessible to other researchers and practitioners.

Future work targets both of our main contributions. First, we plan a detailed
comparison of our HOT approach with approaches that utilize fixed rules. It will
be interesting to investigate how the two approaches differ, for example, in run-
time during state space generation. Second, we aim to improve our formalization
and the resulting tool in multiple ways. We intend to extend our formalization to
support the remaining few BPMN elements used in practice and want to turn the
modeling environment of our tool into an interactive simulation environment. In
addition, we can use this environment to visualize potential counterexamples in
cases where behavioral properties are violated.
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8 Appendix

This section shows examples of the BPMN Analyzer checking general BPMN
properties. Our tool and the example models are available as artifacts [16].

8.1 Safeness example

Figure 16 shows a screenshot of the tool detecting an unsafe situation. Unfor-
tunately, Groove does not provide a counterexample when running CTL model
checking through the console. Thus, we cannot highlight where the model is
unsafe. In this case, the sequence flow Unsafe is unsafe.

The exclusive gateway merges the sequence flows but does not synchronize.
Thus, the outgoing sequence flow can hold two tokens, and Activity C is executed
twice, which might not be intended. This could be a simple mistake of picking
an exclusive instead of a parallel gateway.

Fig. 16. Screenshot of detecting an unsafe situation
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8.2 Option to complete example

Figure 17 shows a screenshot of the tool checking the Option to complete prop-
erty.

Option to complete does not hold for the BPMN model since the scan (second
exclusive gateway) might never be successful. This leads to an infinite loop. Thus,
not every process might terminate.

Fig. 17. Screenshot of checking Option to complete

8.3 No dead activities example

Figure 18 shows a screenshot of the tool detecting a dead activity. Activity C is
dead, which is highlighted when checking for dead activities.
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Fig. 18. Screenshot of detecting a dead activity

The parallel gateway is incorrect since it cannot synchronize two sequence
flows that never split. The mistake can be fixed by using one gateway type consis-
tently. However, in practice, erroneous situations might be much more complex
when multiple processes communicate using messages, signals, and other events.
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