
The Visual Debugger: Past, Present, and Future
Tim Kräuter
tkra@hvl.no

Western Norway University of Applied Sciences
Bergen, Norway

Patrick Stünkel
patrick.stuenkel@hvl.no

Western Norway University of Applied Sciences
Bergen, Norway

Adrian Rutle
aru@hvl.no

Western Norway University of Applied Sciences
Bergen, Norway

Yngve Lamo
yla@hvl.no

Western Norway University of Applied Sciences
Bergen, Norway

ABSTRACT
The Visual Debugger is an IntelliJ IDEA plugin that presents de-
bug information as an object diagram to enhance program under-
standing. Reflecting on our past development, we detail the lessons
learned and roadblocks we have experienced while implementing
and integrating the Visual Debugger into the IntelliJ IDEA. Further-
more, we describe recent improvements to the Visual Debugger,
greatly enhancing the plugin in the present. Looking into the fu-
ture, we propose solutions to overcome the roadblocks encountered
while developing the plugin and further plans for the Visual De-
bugger.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments.

KEYWORDS
Visual Debugging, IDE plugin, IDE Integration
ACM Reference Format:
Tim Kräuter, Patrick Stünkel, Adrian Rutle, and Yngve Lamo. 2024. The
Visual Debugger: Past, Present, and Future. In 2024 First IDE Workshop (IDE
’24), April 20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3643796.3648443

1 INTRODUCTION
This paper details the experience of implementing, maintaining, and
improving the Visual Debugger [16]. The Visual Debugger is avail-
able for IntelliJ IDEA and Android studio as a plugin [26], however,
its architecture makes it adaptable to other Integrated Development
Environments (IDEs). The Visual Debugger automatically hooks
into the IDE’s debugging process and graphically depicts the cur-
rent stack frame variables as an object diagram to foster program
comprehension [16].

In [16], we introduced the Visual Debugger, describing its ar-
chitecture and a typical usage scenario, as well as comparing it to
related tools. The contributions of this paper are twofold:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IDE ’24, April 20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0580-9/24/04
https://doi.org/10.1145/3643796.3648443

(1)We describe key improvements made to the Visual Debugger
since [16], see section 2, which aim to enhance program compre-
hension further and lead to a smoother integration of our plugin
into IntelliJ IDEA.

(2) We discuss the lessons learned and roadblocks we experi-
enced while developing the Visual Debugger as a plugin for IntelliJ
IDEA, see section 3. In addition, we propose methods to mitigate
these roadblocks to achieve smoother and simpler IDE integration
in the future from the perspective of plugin and IDE developers.

2 THE VISUAL DEBUGGER
The Visual Debugger is an open-source IDE plugin that visualizes
the stack frame variables as an object diagram to improve program
comprehension. It is available for IntelliJ IDEA and Android Studio
through the JetBrainsMarketplace [15, 26] making use of the IntelliJ
Platform [17]. We integrated our plugin into IntelliJ IDEA, the most
used Java IDE, with approximately 70% market share as per the
JVM Ecosystem Report 2021 [4].

Desired debugging information might not be present in the top-
level variables and has to be obtained by digging multiple levels
(following links to related objects) deep into different variables.
Thus, in specific scenarios, especially when data is hierarchically
structured, a graphical representation results in a faster and better
understanding of the stack frame variables [16].

Until now, we have only received positive feedback regarding
the Visual Debugger, which now has close to 8500 downloads1. This
marks a more than threefold increase in downloads compared to
the initial release of our research paper [16] on July 21, 2022, which
garnered approximately 2700 downloads.

Additional artifacts, including source code, a demonstration of
the Visual Debugger tool, and a description of the Visual Debugging
API, can be found in [25].

2.1 Description
Traditionally, stack frame variables are represented textually, such
as in Figure 1 (a), a screenshot of the variables view in IntelliJ IDEA
for a Binary Search Tree (BST).

The Visual Debugger represents the same information graphi-
cally as an object diagram. Using the Visual Debugger is straight-
forward since it opens automatically during debugging in the IDE.
The Visual Debugger visualizes the variables in the scope of the
debugging session (see, for example, Figure 1 (b)) and, stepping

1Last checked on the 22nd of January, 2024, see [26].

https://orcid.org/0000-0003-1795-0611
https://orcid.org/0000-0002-0537-295X
https://orcid.org/0000-0002-4158-1644
https://orcid.org/0000-0001-9196-1779
https://doi.org/10.1145/3643796.3648443
https://doi.org/10.1145/3643796.3648443


IDE ’24, April 20, 2024, Lisbon, Portugal Kräuter et al.

(a) Variables view in the IDE (b) Object diagram in the Visual Debugger

Figure 1: Binary Search Tree (BST) during debugging

through the source code, updates this representation. Figure 1 (a)
and (b) contain the same objects and level of detail, despite null
values being ignored in the Visual Debugger. However, the coloring
in Figure 1 highlights changes and additions, a new feature of the
Visual Debugger discussed in subsection 2.3.

The graphical visualization does not replace the textual debug-
ging view but aims to augment the debugging experience to improve
program comprehension [16]. Concretely, the Visual Debugger is
non-intrusive since it can be used alongside the traditional textual
debugging available in the IDE.

The Visual Debugger automatically updates the debug informa-
tion as the IntelliJ IDEA debugger whenever a user steps through
the source code or reaches a new breakpoint. Moreover, the objects
a debugging variable refers to can be loaded by double-clicking
an object in the object diagram, similar to how it works in most
textual debuggers. For example, in Figure 1, all objects the green
object refers to were loaded. The goal is to make the Visual Debug-
ger familiar by adopting how textual debuggers work such that a
transition is smooth.

A new video demonstration of the Visual Debugger is available at
https://www.youtube.com/watch?v=LsAMTnLxWJw, showcasing
the improvements discussed in subsection 2.3, which were made
since our last publication [16].

2.2 Architecture
In this section, we briefly summarize the architecture of the Visual
Debugger. The plugin’s architecture plays an important role in
understanding the improvements to the Visual Debugger and the
roadblocks we discuss in section 3. The Visual Debugger is sepa-
rated into two independent components communicating through
the Visual Debugging API [16]. Figure 2 summarizes the architecture
of the Visual Debugger.

The first component, the debugging component, integrates with
IntelliJ IDEA, and its primary function is to acquire stack frame
variables throughout the debugging process repeatably. The debug-
ging component makes this information available via a WebSocket
server that implements our Visual Debugging API. Upon establish-
ing a connection to the Visual Debugging API, a client receives

IDE

Browser

Visual
Debugging API

(WebSocket)Live
debugging

data

Load debug
children

Debugging
ComponentPlugin

Visualization
Component

Website

Figure 2: Visual Debugger architecture

real-time updates with the latest debugging information and can
request to load referenced objects for an existing object.

The second component, the visualization component, portrays
stack frame variables as an object diagram for better understanding
(refer to Figure 1 for an illustration). It is implemented using web
technologies and our object diagram library [14] to visualize the
debug information. Additionally, it leverages the Visual Debugging
API to communicate with the debugging component. Thus, it is
agnostic of the IDE used for debugging and can even be reused
for other programming languages than Java/Kotlin. In practice, the
visualization component is hosted on a web server inside the IDE,
as part of the Visual Debugger plugin.

The downside to this flexibility is that the Visual Debugger is not
entirely integrated into IntelliJ IDEA, as the visualization occurs in
a browser external to the IDE. The rationale behind opting for this
approach instead of native IDE integration is discussed in section 3.
In addition, the next section discusses recent improvements to the
Visual Debugger, which led to a better IDE integration despite a
web-based user interface.

2.3 Improvements
We made four major improvements to the Visual Debugger, de-
scribed in detail in the following section.

(1) Browser integration: We integrated an embedded browser
into the Visual Debugger panel inside IntelliJ IDEA. The embedded
browser uses the Java Chromium Embedded Framework (JCEF),
available by default in IntelliJ IDEA. As a result, users now have the
option to use the embedded instead of an external browser. Most
of the functionality of our visualization component worked out
of the box with the JCEF browser. Additionally, nearly all other
features, for example, exporting object diagrams to XML/SVG, were
successfully implemented using JCEF APIs.

https://www.youtube.com/watch?v=LsAMTnLxWJw


The Visual Debugger: Past, Present, and Future IDE ’24, April 20, 2024, Lisbon, Portugal

The Chromium Embedded Framework (CEF) [19] is integrated
with numerous programming languages, including the Java integra-
tion JCEF. The CEF plays a crucial role inmany popular applications,
for example, the cross-platform Steam Client2. However, integrat-
ing web applications into IntelliJ IDEA is not entirely seamless,
which is also highlighted by the fact that using JCEF is still an
experimental feature in IntelliJ IDEA. Consequently, we give each
user the choice to use the embedded or external browser. We discuss
the problems we faced using JCEF and possible improvements in
section 3.

(2) Dynamic loading:We enhanced the loading mechanism for
stack frame variables inside the Visual Debugger. Previously, we had
to pre-load and cache more debug information than was requested
by the user since we could not load debug information on demand.
The initial load invalidated the underlying stack frame supplied
by the Java Debugging Interface (JDI). Now, we leverage the APIs
provided by IntelliJ IDEA, which are a thin wrapper around the JDI.
This enables us to defer loading additional debug information until
explicitly required. Consequently, there is no longer a need to pre-
load potentially unnecessary debug information. This optimization
has improved performance, making the Visual Debugger applicable
to more intricate debugging scenarios.

(3) Change highlighting: The visualization component of the
Visual Debugger now highlights changes using colors and overlays
in the object diagram. New objects and links are colored green,
while changes to existing elements lead to orange coloring. Com-
puting and highlighting the changes is enabled by default but can
be switched off. Figure 1 shows the new change visualization by
highlighting one changed and added object accordingly. A software
engineer is usually most interested in the changes that occur to the
objects during debugging. Our color-based visualization of changes
in the object diagram makes it easier for a software engineer to see
changes even when dealing with a complex debugging situation
with multiple connected objects. Thus, the change highlighting
contributes to our goal of enhancing program comprehension.

Changes can be calculated efficiently using unique object IDs
provided during debugging. We implemented the change detection
in the visualization component such that it can be reused across
programming languages and IDEs [25].

(4) Debug history: Furthermore, the visualization component
now keeps a debug history so that a user can see debug informa-
tion from previous debugging steps. The debug history’s length is
configurable or can be turned off entirely. As described earlier, soft-
ware engineers are most interested in how variables change during
debugging. Consequently, to not only highlight differences to the
previous step, we save the previous debugging information in a
debug history. A software engineer can thus inspect the previously
shown debug information and step as far back as he configured.
The Visual Debugger always shows where the debug information
was collected in the source code, and highlights changes compared
to the previous debugging step. In addition, one can still export the
debug information to an image or even edit it in our object diagram
modeler [14] for documentation purposes [16].

We implemented the debug history in the visualization compo-
nent to be independent of the used programming language and IDE.

2https://developer.valvesoftware.com/wiki/Chromium_Embedded_Framework

Both the change highlighting and debug history improvements align
with our goal to offer a reusable visualization of the stack frame
variables [16].

3 LESSONS LEARNED & ROADBLOCKS
A key takeaway from the experiences we gained from developing
our plugin is that several useful features and APIs are not or only
briefly documented. Consequently, after conducting an extensive
review of the documentation, it proves advantageous to seek as-
sistance by posing questions in the community forum dedicated
to plugin development. One receives quick and useful responses
for clear, detailed inquiries, making the forum invaluable. For ex-
ample, our new dynamic loading of debug information discussed
in subsection 2.3 was enabled due to the IntelliJ IDEA forum. The
forum provides a unique opportunity to interact directly with IDE
developers.

While developing the Visual Debugger plugin, we encountered
two significant roadblocks. We will now describe these roadblocks
and possibilities to overcome them in the future.

(1) No native support for web-based UIs: Creating a user
interface (UI) with interactive diagramming capabilities and inte-
grating it into IntelliJ IDEA was challenging for different reasons.
The IntelliJ Platform is built on Java, and plugin UIs utilize the Swing
framework. However, we could not find a suitable diagramming
framework for Swing to implement an interactive object diagram
for our visualization component. IntelliJ IDEA uses yFiles [27], for
example, to visualize generated class diagrams from source code.
For us, yFiles was not an option because the cheapest license al-
ready carries a significant cost, while we do not plan to monetize
our plugin.

We started with an embedded visualizer using PlantUML [1]
to generate pictures of object diagrams. Moreover, to allow in-
teractions with object diagrams, we opted for the free and open-
source diagram-js library to implement ourweb-based library object-
diagram-js [14] used in the Visual Debugger. To summarize, the
rich web ecosystem and its growing popularity among developers
have led us to a web-based visualization. Integrating a web-based
UI into IntelliJ IDEA is not obvious compared to other IDEs, such as
Visual Studio Code, which is built on web technologies and heavily
uses web views for extensions.

To integrate our web-based UI into IntelliJ IDEA, we now use
JCEF as described in subsection 2.3. We were unaware of this possi-
bility for an extended period. We believe the plugin documentation
regarding JCEF and web views has room for improvement to take
full advantage of the rich web ecosystem. First, it should be more
visible that the integration of web views is possible. Second, the
integration poses challenges that can be reduced by more extensive
documentation about JCEF. We authored a pull request to improve
the plugin documentation, incorporating insights from our experi-
ence with the Visual Debugger.

(2) Missing debugging APIs: Other IDEs than IntelliJ IDEA
are missing a debugging API to implement our plugin. Users of the
Visual Debugger have asked us if the plugin could be adapted to
work with other IDEs and programming languages. For example, we
would like to support debugging Go applications inside the GoLand
IDE, as requested by a user. However, compared to IntelliJ IDEA

https://developer.valvesoftware.com/wiki/Chromium_Embedded_Framework


IDE ’24, April 20, 2024, Lisbon, Portugal Kräuter et al.

plugins, there is no API to hook into debugging processes in GoLand.
Thus, it is currently impossible to adapt the Visual Debugger for
GoLand to integrate with the IDE seamlessly. Our visualization
component cannot operate without a debugging component that
provides debugging information from GoLand. This represents a
major roadblock to adopting the Visual Debugger for other IDEs
and programming languages. One could develop the necessary APIs
and debugging components for each desired IDE and programming
language combination. Nevertheless, there would be significant
redundancy across all these implementations.

A possible solution would be to utilize theDebug Adapter Protocol
(DAP) [20]. The DAP is a sibling of the more popular Language
Server Protocol (LSP) [21] and standardizes an abstract protocol for
how a development tool communicates with concrete debuggers.
The motivation is that debuggers have to be implemented only once
for each language and then can be reused in different IDEs, Editors,
or other tools, such as our Visual Debugger, see Figure 3. Since
not all current debuggers will adopt this protocol, an intermediary
component is envisioned to adapt an existing debugger to the DAP
[20], see debug adapters in Figure 3.

After the success of the LSP, the DAP could become the next stan-
dardized development tool functionality [2, 23]. The official page of
the DAP lists 11 tools supporting the DAP, 67 debug adapters, and
11 DAP SDKs as of December 2023 [20], including, for example, a
Go DAP implementation maintained by Google [8]. Research is also
conducted on the DAP to debug Domain-Specific Languages [6, 11].

Development Tools Debuggers

Java

Python

C#

Java
Debug
Adapter

Python
Debug
Adapter

C#
Debug
Adapter

DAP

 IDE

 Editor

 Other
 Tool

Generic
Debugger

Generic
Debugger

Generic
Debugger

Figure 3: Debug adapter protocol architecture [20]

Like our visual debugging API, the DAP is independent of de-
velopment tools (as shown on the left side of Figure 3) and is also
language-agnostic (as depicted on the right side of Figure 3). How
JetBrains or other IDEs communicate with its integrated debuggers
must not be changed to the DAP. However, each IDE could pro-
vide debug adapters for the supported programming languages or
integrate existing debug adapters into the IDE. In addition, using
a standard protocol requires minimal documentation and leads to
fewer support inquiries.

When the Visual Debugger also supports the DAP in the future,
it can attach to the different debug adapters, which all provide the
DAP, i.e., the same interface. As a result, the Visual Debugger be-
comes compatible with any combination of IDE and programming
language that provides a debug adapter. For example, the Visual
Debugger could be automatically available for more IDEs/Editors,

such as GoLand (Go), RustRover (Rust), Netbeans (Java), and Visual
Studio Code.

Figure 4 shows a possible architecture for the Visual Debugger
using the DAP. Only a light integration for each development tool
(IDE, Editor) is needed to get notified about the start of debugging.
Then, the Visual Debugger can use the provided DAP for all other
interactions. The Visual Debugging API can then be thought of as
a graphical DAP (GDAP) similar to the graphical LSP (GLSP), an
adoption of the LSP for graphical editors [3, 24].

DebuggerDebug
Adapter

DAP

Development
Tool

GDAP

Notify debugging
started

Provided by the
development tool

Visual Debugger

Debugging
Component

Visualization
Component

Figure 4: Visual Debugger architecture using the DAP

4 STATE OF THE ART
Visual debugging has been researched since the 90s [9, 12, 22],
but most of the resulting tools have yet to become mainstream or
integrated with modern IDEs. We will now present three tools that
are still relevant today and compare them to the visual debugger to
describe how our contribution fits into the state of the art.

The Data Display Debugger (DDD)3 provides a graphical data
visualization as a box-and-pointer diagram [28]. DDD is a graphical
standalone debugger that relies on command-line debuggers like
the GNU debugger. Using DDD and the GNU debugger, one can
debug executable binaries originally written in C, C++, Go, Rust,
and more. However, other command-line debuggers can be used to
debug programs written, for example, in Java or Python. DDD is
a powerful tool and, to our knowledge, the first debugger which
includes data visualization.

DDD and the visual debugger are similar since box-and-pointer
diagrams are equivalent to object diagrams when switching to the
object-oriented programming paradigm. However, our tool is deeply
integrated with IntelliJ IDEA, while DDD is a standalone tool used
for compiled executable binaries. Furthermore, the visual debugger
incorporates advanced features such as dynamic loading, change
highlighting and a debug history which helps deal with complicated
debugging scenarios.

Java Interactive Visualization Environment (JIVE)4 is a
plugin for the Eclipse IDE [7]. It provides different visualizations
during program execution. Stack frame variables are visualized as

3https://www.gnu.org/software/ddd/
4https://cse.buffalo.edu/jive/

https://www.gnu.org/software/ddd/
https://cse.buffalo.edu/jive/


The Visual Debugger: Past, Present, and Future IDE ’24, April 20, 2024, Lisbon, Portugal

an object diagram, while the call history is represented as a com-
pacted UML sequence diagram [10]. Furthermore, it allows reverse
stepping and even contains features for extracting a finite-state
model to allow property checking [13]. JIVE provides a custom de-
bugging environment inside the Eclipse IDE to provide its powerful
debugging features.

Compared to JIVE, the visual debugger works alongside debug-
ging in the IDE and focuses on object diagram visualization of stack
frame variables. Similar to reverse stepping, we provide the debug
history feature. The visual debugger focuses on simplicity, usabil-
ity, and seamless integration with the IDE, while JIVE focuses on
advanced debugging features that might be harder to understand.
Furthermore, we decouple debugging and visualization to reuse the
visualization across different IDEs while JIVE is tied to Java and
Eclipse.

The Java Visualizer has been developed as a plugin for the
IntelliJ IDEA for teaching purposes [18]. Like the visual debugger,
it hooks into the debugging process and visualizes the stack frame
variables. Nevertheless, it visualizes variables as a box-and-pointer
diagram and depicts all stack frames and their order on the call
stack. The call stack and box-and-pointer diagram are then updated
for each debugging step in the IDE.

The Java Visualizer is a helpful tool that has inspired the devel-
opment of the visual debugger. However, even in simple situations,
the visualization can get complex since it includes all variables
from the Java heap, not just the variables within the current stack
frame, i.e., the debugging scope. While this can be an advantage,
it often quickly clutters the visualization, especially if one is only
interested in the variables within the current scope. On the con-
trary, the visual debugger only shows relevant information from the
present scope, even filtering the initial depth of the visualization. In
addition, we provide advanced features such as change highlighting,
which become particularly useful as diagrams grow in size.

5 CONCLUSION & FUTUREWORK
The Visual Debugger has increased in popularity, measured by the
more than tripling of downloads of the plugin compared to our
previous publication [16]. In this work, we make two contribu-
tions related to the Visual Debugger and the broader topic of IDE
integration.

Our first contribution is the new improvements we incorporated
into the Visual Debugger. We integrate our Visual Debugger more
smoothly into the IDE by employing an embedded browser based
on the Java Chromium Embedded Framework (JCEF) and improve
the performance of loading debugging information. Furthermore,
the Visual Debugger now highlights changes graphically using
colors and provides a debug history.

Our second contribution is detailing the experience gained by im-
plementing the Visual Debugger. We describe two major roadblocks
hampering tighter IDE integration of our plugin. First, integrating
web-based user interfaces that use the extensive and popular web
ecosystem is not trivial. Using the JCEF makes this integration
possible, but its visibility and documentation should be improved.
Second, not all IDEs offer debugging-related APIs such that we

could integrate our plugin. To make debugging functionality uni-
formly accessible for plugin development, we propose to utilize the
standardized Debug Adapter Protocol (DAP).

In future work, we aim to adapt the Visual Debugger for other
IDEs and code editors such as GoLand, Eclipse [5], and Visual Studio
Code since our users have requested this. We aim to implement
the DAP for the Visual Debugger to minimize the integration effort
and development cost for the different IDEs.

Furthermore, we aim to study the usability and scalability of
the Visual Debugger and its impact on program comprehension.
It seems interesting to find out in which scenarios visual debug-
ging is more effective than textual debugging and vice versa. Since
the Visual Debugger is not meant to replace the textual debugger,
one should also include a combination of both textual and visual
debugging in an empirical study.

REFERENCES
[1] Arnaud Roques. 2023. PlantUML. https://plantuml.com/.
[2] Dominik Bork and Philip Langer. 2023. Language Server Protocol: An Introduc-

tion to the Protocol, Its Use, and Adoption for Web Modeling Tools. Enterprise
Modelling and Information Systems Architectures (EMISAJ) 18, 9 (Sept. 2023), 1–16.
https://doi.org/10.18417/EMISA.18.9

[3] Dominik Bork, Philip Langer, and Tobias Ortmayr. 2024. A Vision for Flexible
GLSP-Based Web Modeling Tools. In The Practice of Enterprise Modeling, João
Paulo A. Almeida, Monika Kaczmarek-Heß, Agnes Koschmider, and Henderik A.
Proper (Eds.). Vol. 497. Springer Nature Switzerland, Cham, 109–124. https:
//doi.org/10.1007/978-3-031-48583-1_7

[4] Brian Vermeer. 2021. JVM Ecosystem Report 2021 | Snyk. https://snyk.io/jvm-
ecosystem-report-2021/.

[5] J. desRivieres and J. Wiegand. 2004. Eclipse: A Platform for Integrating Develop-
ment Tools. IBM Systems Journal 43, 2 (2004), 371–383. https://doi.org/10.1147/
sj.432.0371

[6] Josselin Enet, Erwan Bousse, Massimo Tisi, and Gerson Sunyé. 2023. Protocol-
Based Interactive Debugging for Domain-Specific Languages. The Journal of
Object Technology 22, 2 (2023), 2:1. https://doi.org/10.5381/jot.2023.22.2.a6

[7] Paul V. Gestwicki and Bharat Jayaraman. 2004. JIVE: Java Interactive Visualiza-
tion Environment. In Companion to the 19th Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applications. ACM,
Vancouver BC CANADA, 226–228. https://doi.org/10.1145/1028664.1028762

[8] Google. 2023. Go Implementation of the Debug Adapter Protocol.
https://github.com/google/go-dap.

[9] David R. Hanson and Jeffrey L. Korn. 1997. A Simple and Extensible Graphical
Debugger. In Proceedings of the Annual Conference on USENIX Annual Technical
Conference (ATEC ’97). USENIX Association, USA, 13.

[10] S. Jayaraman, B. Jayaraman, and D. Lessa. 2017. Compact Visualization of Java
Program Execution. Software: Practice and Experience 47, 2 (Feb. 2017), 163–191.
https://doi.org/10.1002/spe.2411

[11] Pierre Jeanjean, Benoit Combemale, and Olivier Barais. 2021. IDE as Code:
Reifying Language Protocols as First-Class Citizens. In 14th Innovations in Soft-
ware Engineering Conference. ACM, Bhubaneswar, Odisha India, 1–5. https:
//doi.org/10.1145/3452383.3452406

[12] Dean F. Jerding and John T. Stasko. 1994. Using Visualization to Foster Object-
Oriented Program Understanding. Technical Report. Georgia Institute of Technol-
ogy.

[13] Jevitha K. P., Swaminathan Jayaraman, Bharat Jayaraman, and Sethumadhavan
M. 2021. Finite-state Model Extraction and Visualization from Java Program
Execution. Software: Practice and Experience 51, 2 (Feb. 2021), 409–437. https:
//doi.org/10.1002/spe.2910

[14] TimKräuter. 2023. Object-Diagram-Js. Zenodo. https://doi.org/10.5281/ZENODO.
10018182

[15] Tim Kräuter. 2023. The Visual Debugger Tool. Zenodo. https://doi.org/10.5281/
ZENODO.10018177

[16] Tim Kräuter, Harald König, Adrian Rutle, and Yngve Lamo. 2022. The Visual
Debugger Tool. In 2022 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, Limassol, Cyprus, 494–498. https://doi.org/10.1109/
ICSME55016.2022.00066

[17] Zarina Kurbatova, Yaroslav Golubev, Vladimir Kovalenko, and Timofey Bryksin.
2021. The IntelliJ Platform: A Framework for Building Plugins and Mining
Software Data. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering Workshops (ASEW). IEEE, Melbourne, Australia, 14–17.
https://doi.org/10.1109/ASEW52652.2021.00016

https://doi.org/10.18417/EMISA.18.9
https://doi.org/10.1007/978-3-031-48583-1_7
https://doi.org/10.1007/978-3-031-48583-1_7
https://doi.org/10.1147/sj.432.0371
https://doi.org/10.1147/sj.432.0371
https://doi.org/10.5381/jot.2023.22.2.a6
https://doi.org/10.1145/1028664.1028762
https://doi.org/10.1002/spe.2411
https://doi.org/10.1145/3452383.3452406
https://doi.org/10.1145/3452383.3452406
https://doi.org/10.1002/spe.2910
https://doi.org/10.1002/spe.2910
https://doi.org/10.5281/ZENODO.10018182
https://doi.org/10.5281/ZENODO.10018182
https://doi.org/10.5281/ZENODO.10018177
https://doi.org/10.5281/ZENODO.10018177
https://doi.org/10.1109/ICSME55016.2022.00066
https://doi.org/10.1109/ICSME55016.2022.00066
https://doi.org/10.1109/ASEW52652.2021.00016


IDE ’24, April 20, 2024, Lisbon, Portugal Kräuter et al.

[18] Eli Lipsitz. 2024. Java Visualizer - IntelliJ IDEs Plugin | Marketplace.
https://plugins.jetbrains.com/plugin/11512-java-visualizer.

[19] Marshall Greenblatt. 2023. Chromium Embedded Framework (CEF).
https://github.com/chromiumembedded/cef.

[20] Microsoft. 2023. Debug Adapter Protocol. https://microsoft.github.io/debug-
adapter-protocol/.

[21] Microsoft. 2023. Language Server Protocol. https://microsoft.github.io/language-
server-protocol/.

[22] Sougata Mukherjea and John T. Stasko. 1994. Toward Visual Debugging: In-
tegrating Algorithm Animation Capabilities within a Source-Level Debugger.
ACM Transactions on Computer-Human Interaction 1, 3 (Sept. 1994), 215–244.
https://doi.org/10.1145/196699.196702

[23] Jonas Rask, Frederik Madsen, Nick Battle, Hugo Macedo, and Peter Larsen. 2020.
Visual Studio Code VDM Support. In Proceedings of the 18th International Overture
Workshop. arXiv, Online, 35–49. https://doi.org/10.48550/arXiv.2101.07261

[24] Roberto Rodriguez-Echeverria, Javier Luis Cánovas Izquierdo, Manuel Wimmer,
and Jordi Cabot. 2018. Towards a Language Server Protocol Infrastructure for
Graphical Modeling. In Proceedings of the 21th ACM/IEEE International Conference
onModel Driven Engineering Languages and Systems. ACM, CopenhagenDenmark,
370–380. https://doi.org/10.1145/3239372.3239383

[25] Tim Kräuter. 2024. ICSE-2024: Artifacts. Zenodo. https://doi.org/10.5281/
ZENODO.10210019

[26] Tim Kräuter. 2024. Visual Debugger - IntelliJ IDEs Plugin | Marketplace.
https://plugins.jetbrains.com/plugin/16851-visual-debugger.

[27] yWorks. 2023. yFiles - the Diagramming Library. https://www.yworks.com/yfiles-
overview.

[28] Andreas Zeller and Dorothea Lütkehaus. 1996. DDD—a Free Graphical Front-End
for UNIX Debuggers. SIGPLAN Not. 31, 1 (Jan. 1996), 22–27. https://doi.org/10.
1145/249094.249108

Received 7 December 2023; accepted 25 January 2024

https://doi.org/10.1145/196699.196702
https://doi.org/10.48550/arXiv.2101.07261
https://doi.org/10.1145/3239372.3239383
https://doi.org/10.5281/ZENODO.10210019
https://doi.org/10.5281/ZENODO.10210019
https://doi.org/10.1145/249094.249108
https://doi.org/10.1145/249094.249108

	Abstract
	1 Introduction
	2 The Visual Debugger
	2.1 Description
	2.2 Architecture
	2.3 Improvements

	3 Lessons Learned & Roadblocks
	4 State of the art
	5 Conclusion & Future work
	References

