
MSC ARTIFICIAL INTELLIGENCE

MASTER THESIS

Belief State for Visually Grounded,
Task-Oriented Neural Dialogue Model

by

TIM BAUMGÄRTNER

11043683

April 5, 2019

36 European Credits

March 2018 - April 2019

Examiner:

Dr Raquel Fernández

Supervisor:

Dr Elia Bruni

Assessor:

Dr Iacer Calixto

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Acknowledgement

I would like to thank all professors, lecturers, teaching assistants and the course

administration at the University of Amsterdam, who contributed to my great experi-

ence as a student of the Masters of Artificial Intelligence program. They have always

understood to make the learning experience fun and challenging.

My sincere thanks to Raquel Fernández, for fruitful discussions about research

directions, her intermediate feedback on this work, and for her patience with me.

Further, for providing me with opportunities to do research in her lab, letting me

present my work at the Dialogue Modeling Group and taking me along to the ParlAI

workshop in New York.

I am profoundly grateful to Elia Bruni who created an environment that let me

experience AI research at first hand. He always understood to provide me with

opportunities in which I could grow personally and professionally and experience

what it is like to do research. I owe my sincere gratitude to him and Raquel for

inspiring me to pursue a research-oriented career.

Lastly, heartfelt thanks go to my parents. Without their love and support, this

work would not have been possible.

i

Abstract

The development of intelligent, conversational agents that can interact with humans

in natural language is a longstanding goal of artificial intelligence. An approach that

has recently gained traction is to learn conversational agents end-to-end. Thereby,

the agent has to learn not only the language but also an intermediate representa-

tion of the dialogue state that is required to produce high-quality utterances. This

approach is in contrast to the more traditional work on spoken dialogue systems,

specifically dialogue agents with a dialogue manager that have an explicit represen-

tation of the current state of the dialogue. However, this requires interpretation and

expensive annotation of the intermediate utterances.

In this work, we investigate an approach to equip an end-to-end system with an

explicit dialogue state. This state provides a representation of the dialogue after

each new utterance pair of the interlocutors. However, it is trained only from com-

plete dialogues that lead to task success, therefore avoiding expensive intermediate

annotations. Subsequently, the language generation is conditioned on the dialogue

state. Specifically, we use the GuessWhat?! task, a two-player visually grounded,

task-oriented, dialogue dataset. In this game, one agent is assigned an object in

an image, and another agent tries to identify that object through a series of yes/no

questions that the first agent answers. We apply the explicit dialogue state repre-

sentation to the question generating agent, compare the effectiveness of different

state representations and provide a detailed analysis of the task performance and

generated language.

ii

Contents

Acknowledgement i

Abstract ii

1 Introduction 1

1.1 Overview and Contributions . 3

2 Background and Related Work 4

2.1 Deep Learning . 4

2.1.1 Multi-Layer Perceptron . 4

2.1.2 Recurrent Neural Networks . 6

2.1.3 Gradient-Based Learning . 9

2.2 Visually Grounded NLP . 11

2.3 Dialogue Systems . 12

2.3.1 Task-Oriented Dialogue Systems 12

2.3.2 End-to-End Dialogue Systems 13

2.3.3 Multimodal Dialogue Systems 15

3 GuessWhat?! 16

3.1 Task Setup . 16

3.1.1 Evaluation . 17

3.2 Advancements in GuessWhat?! . 18

3.2.1 Guesser and Oracle Improvements 18

3.2.2 Question Generator Improvements 19

4 Model 21

4.1 Baseline Models . 21

iii

4.1.1 Oracle . 21

4.1.2 Guesser . 22

4.1.3 Question Generator . 24

4.2 Belief State . 26

4.2.1 Motivation . 26

4.2.2 Model . 28

4.2.3 Application to other Task-Oriented Dialogue Settings 30

5 Experiments and Results 31

5.1 Belief State Object Representations . 31

5.1.1 Object Representations from Annotations 31

5.1.2 Fine Tuning . 33

5.1.3 Visual Attention . 35

5.2 Ablation Studies . 36

5.2.1 Bag of Objects . 36

5.2.2 Belief State over All Object Categories 37

6 Analysis 38

6.1 Task Success . 38

6.1.1 Task Success by Number of Questions 39

6.1.2 Oracle for Number of Questions 40

6.1.3 Number of Objects . 42

6.2 Quantitative Linguistic Analysis . 43

6.2.1 Definite and Indefinite Determiners 44

6.2.2 Repetitions . 45

6.2.3 Influence of Belief State on Category Questions 47

6.3 Ablation Study Analysis . 49

6.4 Qualitative Examples . 51

7 Conclusion 53

7.1 Future Work . 54

Bibliography I

A Reproducibility XII

iv

B Hyperparameters XIV

B.1 Oracle Hyperparameters . XIV

B.2 Guesser Hyperparameters . XV

B.3 Question Generator Hyperparameters XV

B.4 Comprehensive Belief State Results . XVI

C Analysis XVII

C.1 Number of Parameters . XVII

C.2 Game Statistics . XVIII

C.3 Number of Games by Number of Objects XX

C.4 Qualitative Examples . XXI

C.5 Sunburst Diagrams . XXVI

v

List of Figures

2.1 Elman RNN Graph . 8

2.2 LSTM Graph . 9

2.3 Spoken Dialogue System Pipeline . 12

3.1 Example Game from GuessWhat?! . 17

4.1 Oracle Architecture . 23

4.2 Guesser Architecture . 24

4.3 Question Generator Baseline Architecture 26

4.4 Question Generator with Belief State Architecture 29

6.1 Venn Diagram of Successful and Unsuccessful Games 39

6.2 Task Success Rate by Dialogue Turn . 41

6.3 Task Success Rate by First Solve . 42

6.4 Task Success vs Number of Objects / Target Category Instances . . . 44

6.5 Use of Indefinite and Definite Determiners 46

6.6 Qualitative Example with Generated Dialogues 48

6.7 t-SNE on Belief State by Question . 50

6.8 Venn Diagram of Ablation Models . 51

A.1 Web Tool . XIII

C.1 Number of Games vs Number of Objects XX

C.2 Number of Games vs Number of Target Category Instances XX

C.3 Qualitative Example 1 . XXI

C.4 Qualitative Example 2 . XXII

C.5 Qualitative Example 3 . XXIII

vi

C.6 Qualitative Example 4 . XXIV

C.7 Qualitative Example 5 . XXV

C.8 Sunburst Baseline . XXVI

C.9 Sunburst Belief . XXVII

C.10 Sunburst Belief+FineTune . XXVIII

vii

List of Tables

3.1 Task Success of Related Work . 20

5.1 Results for Belief Model with different Object Representations . . . 33

5.2 Results for Belief+FineTune Model with different Object Represen-

tations . 34

5.3 Results for Belief Model with Visual Attention 36

5.4 Results for Ablation Studies . 37

6.1 Game Statistics of Solved Games . 40

6.2 Task Success with Oracle on Number of Questions 42

6.3 Quantitative Linguistic Measures . 45

6.4 Number of Repeated Questions . 47

6.5 Influence of Belief State on Category Questions 49

B.1 Oracle Hyperparameters . XIV

B.2 Guesser Hyperparameters . XV

B.3 Question Generator Hyperparameters XV

B.4 Comprehensive Belief State Results . XVI

C.1 Number of Parameters of the different Models XVII

C.2 Game Statistics of Games Solved Games Comparison XVIII

C.3 Game Statistics of Ablation Models . XVIII

C.4 Game Statistics of Games Solved by Ablation Models Comparison . XIX

viii

1 | Introduction

The development of intelligent, conversational agents that can interact with humans

in natural language is a longstanding goal of artificial intelligence. Applications of

dialogue systems are already ubiquitous in our everyday life in the form of personal

assistants such as Amazon’s Alexa and Apple’s Siri, chatbots on Facebook’s Messen-

ger platform , Twitter bots or dialogue systems in call centres helping a customer

directly or routing the call to a respective human expert. However, these systems

are usually far from perfect, often lacking the ability to hold an engaging and coher-

ent conversation over multiple utterances or only useful on a narrow set of domains.

Spoken dialogue systems use a pipeline approach, which is generally composed

of three units: First, a module that takes acoustic user utterances as input, and pro-

duces hypotheses what has been said. Second, a dialogue manager that keeps track

of the information provided by the user and the user’s goal. It also decides the next

action to take by the system and how to respond to the user. This information is

represented in the belief state [Young et al., 2010, Jurafsky and Martin, 2019] (also

called dialogue state or information state). Finally, the third unit generates and

verbalizes the next system utterance based on the belief state. The dialogue state

tracking challenge (DSTC) [Williams et al., 2013], is particularly concerned about

the central component of dialogue modelling, the dialogue manager. It introduces

a unifying testbed and dataset for the dialogue manager to make the different ap-

proaches better comparable. However, while the DSTC operates on the input from

automatic speech recognition and natural language understanding modules (i.e. the

first unit in the Spoken Dialogue System pipeline), it does not regard further down-

stream task such as the generation of the next system utterance. Note that in this

work, we focus on text-based dialogue systems, which in principle can be extended

to speech-based systems.

Recently, deep learning based methods have significantly advanced the field of

1

CHAPTER 1. INTRODUCTION

artificial intelligence in many of its domains [Krizhevsky et al., 2012, Mnih et al.,

2013] including natural language processing (NLP) [Goldberg and Hirst, 2017].

While deep learning methods require large datasets, they have outperformed rule-

based and statistical approaches. The data-driven models learn end-to-end, tak-

ing as input the raw data, learning their own task-specific, internal representations

and eventually returning an output according to the task at hand. For example, in

[Vinyals and Le, 2015] this approach is applied to conversations in an IT helpdesk

scenario and movie dialogues. While these approaches are typically able to pro-

duce syntactically correct responses, they have difficulties generating diverse and

engaging replies [Li et al., 2016] or long term coherent replies for task-oriented

systems. Thanks to remarkable advancements in computer vision, many NLP tasks

have been enriched by visually grounding them. Adding visual perception to lan-

guage tasks allows building more human-like semantic representations, which are

deeply intertwined with perception [Barsalou, 2008]. New tasks and datasets have

been proposed on the intersection of language and vision such as image captioning

[Rashtchian et al., 2010, Young et al., 2014, Lin et al., 2014], machine translation

[Elliott et al., 2016, Elliott et al., 2017], question answering [Antol et al., 2015] and

also dialogue [Das et al., 2017, De Vries et al., 2017a, de Vries et al., 2018].

Deep learning based dialogue systems are now omnipresent in artificial intelli-

gence research. However, an explicit module representing the task of the dialogue

manager has not been widely adopted. In this work, we attempt to enrich the suc-

cessful deep learning based dialogue systems with the dialogue manager idea from

more traditional dialogue system research. We propose a deep learning based, visu-

ally grounded dialogue system that has an explicit belief state representation that is

grounded in the visual perception both participants share. Analogous to a dialogue

manager, the belief state is updated with each new interaction between the dialogue

partners. It further represents the information conveyed in the dialogue thus far in

an effective manner. Downstream, it is utilized to focus the perception of the system,

as well as condition the language generation. The working of the model is princi-

pally demonstrated on the task-oriented, visually grounded GuessWhat?! [De Vries

et al., 2017a] dataset. However, its application is not limited to this task and can be

in principle employed to other task-oriented dialogue settings.

2

1.1. OVERVIEW AND CONTRIBUTIONS

1.1 Overview and Contributions

Our main contributions are the following:

• We present an end-to-end trainable dialogue system with an explicit belief state

representation inspired by the dialogue systems pipeline.

• We conduct elaborate experiments and evaluate different representations and

applications of the belief state in the GuessWhat?! scenario.

• To the best of our knowledge, our model generates dialogues with the high-

est task success rate in GuessWhat?! when only learning from the original

dataset1.

• We present a detailed analysis of the task performance and linguistic measures

of the baseline model and our approach.

• We make our entire code base public to reproduce our experiments, results

and analyses and facilitate further research2. We also provide a web-based tool

for comparing the belief state representations of different dialogue models at

every turn.

In chapter 2 we review deep learning fundamentals for this work. Further, we

discuss the motivation and related work for visually grounded natural language pro-

cessing tasks and dialogue systems in general. In chapter 3 we formally introduce

the GuessWhat?! game and review recent advancements. Next, in chapter 4 we

start by introducing the GuessWhat?! baseline models, and then motivate and for-

mally describe the belief state model and its variants. Subsequently, in chapter 5

we describe the experimental setup and report the results. Chapter 6 provides a de-

tailed analysis of the results and investigates the generated language by the models.

Finally, chapter 7 provides a conclusion and an outlook on future work.

1In other words, without exposing the agent to more training examples other than those in the

train set, as for example done in reinforcement learning [Strub et al., 2017, Zhang et al., 2018] or

cooperative learning [Shekhar et al., 2019].
2https://github.com/timbmg/belief

3

https://github.com/timbmg/belief

2 | Background and Related Work

2.1 Deep Learning

Deep learning has recently significantly advanced state of the art in artificial intel-

ligence. The success is also due to its compositional properties. Building blocks of

different abstraction levels can be stacked on top of each other, forming new archi-

tectures to solve problems. The emergence of frameworks that provide easy entry

points for practitioners, such as PyTorch [Paszke et al., 2017] and Tensorflow [Abadi

et al., 2016], further facilitate the accessibility of the technology.

Essentially, deep learning is concerned around the idea of function approxima-

tion. A set of parameters θ transform an input x into an output ŷ , such that it is

close to a desired output y , i.e. f (x |θ) = ŷ ≈ y . During the training process, the

parameters θ are changed such that the distance between ŷ and y is minimized. In

the following sections, the most important deep learning buildings blocks for this

work will be reviewed.

2.1.1 Multi-Layer Perceptron

At the core of deep learning is a vector-matrix multiplication also referred to as a

linear transformation. It consists of an input vector x ∈ Rn, where Rn denotes that

the vector has n elements and all are in R, and a matrix W ∈ Rm×n and a bias vector

b ∈ Rm, both containing trainable weights (see equation 2.1). Note that the boldface

small characters denote a vector and boldface capital characters represent a matrix.

The weight matrix and bias are also referred to as parameters which are updated

during the training process.

4

2.1. DEEP LEARNING

W x+ b=

w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n
...

...
. . .

...

wm,1 wm,2 · · · wm,n

×

x1

x2
...

xn

+

b1

b2
...

bm

=

n
∑

i=1
(w1,i ∗ x i) + b1

n
∑

i=1
(w2,i ∗ x i) + b2

· · ·
n
∑

i=1
(wm,i ∗ x i) + bm

(2.1)

In many occasions, the linear transformation is followed by a non-linear element-

wise operation, also called activation. The most commonly used are listed below.

• sigmoid: σ(x) = 1
1+e−x

• hyperbolic tangent: tanh(x) = ex−e−x

ex+e−x

• rectified linear unit: relu(x) =max(0, x) [Nair and Hinton, 2010]

The application of the non-linear activation function after the linear transformation

allows for also approximating non-linear relations between the input x and output

y. Before the introduction of these functions, a major criticism was that non-linear

problems could not be solved [Minsky and Papert, 1969] (e.g. a simple function

such as XOR cannot be learned).

When stacking multiple layers of non-linear transformations (i.e. a linear trans-

formation followed by a non-linear operation) on top of each other, a Multi-Layer

Perceptron (MLP) is formed (also referred to as feed-forward neural network). Inter-

mediate outputs of the non-linear transformations are referred to as hidden layers.

In mathematical terms, an MLP with a single hidden layer and a relu activation func-

tion can be expressed as follows:

ŷ=W1 (relu(W2x+ b2)) + b1 (2.2)

5

2.1. DEEP LEARNING

Many problems in artificial intelligence are treated as classification problems

(e.g. recognition of handwritten digits [LeCun et al., 1998] or generation of the

next word in sequence [Mikolov et al., 2010]). In order for the final output of an

MLP to represent a valid probability distribution over the classes, the output vector

ŷ has to be normalized such that
∑

i
ŷi = 1. To do so, the softmax function is used:

ŷi =
eai

∑

j
ea j

(2.3)

where ai is the unnormalized output at the i th index.

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) [Rumelhart et al., 1985] play a tremendous role

in Natural Language Processing as they are able to model sequences by design. Many

state of the art models are based on recurrent networks (e.g. part-of speech-tagging

[Bohnet et al., 2018], text classification or sentiment analysis [Howard and Ruder,

2018]) or have only recently been outperformed by transformer models [Vaswani

et al., 2017] (e.g. language modelling [Merity et al., 2017])3.

Formally, an RNN processes a sequence X= x1, ...xt ...,xm of length m by updating

a hidden state ht at each timestep based on the hidden state of the previous timestep

ht−1 and the current input xt .

ht = f (xt,ht−1) (2.4)

The reason this type of network is called a recurrent neural network is obvious from

equation 2.4. The output at time t−1 is also part of the input to the next timestep t.

Another convenient feature of RNNs is that the functions applied at every timestep

are shared over the time dimension. This allows the network to be applied to variable

size sequences and recognize patterns more independently over the time dimension.

This becomes clear when trying to use an MLP for sequence processing. First, the

input to the MLP needs to be of a fixed dimension, which makes it impractical to

process inputs with variable sizes. Second, especially in the language domain, the

3State of the art retrieved from https://github.com/sebastianruder/NLP-progress. Accessed on

1st April 2019.

6

2.1. DEEP LEARNING

same information can be expressed with different word order (e.g. "Germany won

the world cup in 2014" and "In 2014, Germany won the world cup."). A system based

on an MLP would have to learn to detect the linguistic features at every timestep since

they can occur theoretically everywhere. In contrary, an RNN shares its parameters

over timesteps, i.e. the same function is applied at every timestep [Goodfellow et al.,

2016, Chapter 10].

There are many different versions of RNNs, most commonly are the Elman Re-

current Networks [Elman, 1990] also referred to as vanilla RNNs, Long Short-Term

Memory (LSTM) network [Hochreiter and Schmidhuber, 1997] and Gated Recur-

rent Units (GRU) [Cho et al., 2014]. The last two’s main advantage is that they

overcome the vanishing gradient problem [Hochreiter, 1991, Bengio et al., 1994] in

vanilla RNNs and therefore are beneficial when modelling long term dependencies.

In the sections below, Elman RNNs and LSTMs are briefly reviewed.

Elman Recurrent Neural Networks

Elman RNNs are a simple form of recurrent neural network. At every timestep, the

hidden state ht is updated and an output yt is produced according to the following

equations:

ht = tanh(Whhht−1 +Wxhxt + bh) (2.5)

ŷt = f (Whyht + by) (2.6)

Where f can be any function appropriate to the use case (e.g a softmax for classifi-

cation), ht ∈ Rn, xt ∈ Rm, yt ∈ Ro and therefore Whh ∈ Rn×n, Wxh ∈ Rn×m, bh ∈ Rn,

Why ∈ Ro×m and by ∈ Ro. Figure 2.1 illustrates the working of the Elman RNN.

While in theory, this network is able to learn to predict for example the stock

price (time series prediction) or the next word in a sentence (language modelling),

practically the network suffers from the vanishing gradient problem. That is, as we

obtain the gradient for inputs that lie further in the past, the gradient gets smaller

and smaller. This is due to the derivative of the activation functions that are in

(0,0.25] for sigmoid and (0,1] for tanh. The gradient is multiplied with this, there-

fore, for each layer that is activated, it will become smaller. Essentially, this inhibits

the model from learning longer sequences.

7

2.1. DEEP LEARNING

Figure 2.1: Elman RNN Graph

Long Short-Term Memory Networks

Long Short-Term Memory Networks [Hochreiter and Schmidhuber, 1997] are de-

fined by the following equations 2.7 - 2.12.

ft = σ(W f hht−1 +W f xxt + b f) (2.7)

it = σ(Wihht−1 +Wi xxt + bi) (2.8)

ot = σ(Wohht−1 +Woxxt + bo) (2.9)

ect = tanh(Wchht−1 +Wcxxt + bc) (2.10)

ct = ect ∗ it + ft ∗ ct−1 (2.11)

ht = ot ∗ tanh(ct) (2.12)

Where ht ∈ Rn and xt ∈ Rm, therefore W·,h ∈ Rn×n, W·,x ∈ Rn×m, b· ∈ Rm and

ft , it ,ot ,ct ,ht ∈ Rn.

LSTMs are centred around the idea of gates. At every timestep a forget vector ft

(equation 2.7), an input vector it (equation 2.8) and an output vector ot (equation

2.9) is computed. Each of the elements in these vectors is in (0, 1) due to the sigmoid

activation function. These gates are computed based on the current input xt and the

previous hidden state ht−1. Based on the input and forget gate, the cell state ct is

updated. First, a new propositional cell state is computed (2.10). This new cell state

is then element-wise multiplied with the input vector, which now becomes clear acts

as a gate to the new cell state. Besides, the forget vector is element-wise multiplied

8

2.1. DEEP LEARNING

Figure 2.2: LSTM Graph

with the previous cell state (right half of equation 2.11), and thereby acting the

other way round, controlling which parts of the previous cell state shall be kept in

memory and which shall be replaced. Finally, a new hidden state is computed with

the output gate and the tanh-activated cell state (equation 2.12).

2.1.3 Gradient-Based Learning

In the previous sections 2.1.1 and 2.1.2, linear transformations have been used ex-

tensively. In this section, the main method for updating the weights and bias shall

be explained.

Generally, the goal of a machine learning model is to perform "well" (according

to an evaluation metric, e.g. accuracy for classification problems) on new, previously

unseen data. However, we usually do not have access to the true data distribution

and therefore cannot optimize the model towards that goal directly. Rather, we have

access to a dataset D containing samples (x i, yi) from that distribution, where x i is

some input and, in case of supervised learning, yi a corresponding output (e.g. x i is

a house location and year, and yi its price, or x i is a sentence and yi its sentiment).

Since we only have access to a limited number of samples, but we want to optimize

the model performance on unseen data, usually the data is split into a training, val-

9

2.1. DEEP LEARNING

idation and test set (Dt rain, Dvalid , Dtest). The training set will be used to directly

optimize the parameters of the model. In turn, the validation set will be used for

intermediate model performance evaluations. Finally, the test set is the surrogate for

the true data distribution and therefore it will only be used once hyperparameters of

the model have been chosen according to the evaluation metric on the validation set.

This procedure is referred to as Empirical Risk Minimization. Formally, we want to

minimize the empirical risk J (also called objective function) on the training dataset

of the expected loss L, between the predicted output f (x |θ) = ŷ and y:

J(θ) = E(x i ,yi)∼Dt rain
[L(f (x i|θ), yi)] (2.13)

=
1
n

n
∑

i=1

L(f (x i|θ), yi) (2.14)

When interpreting the model output probabilistically and taking the logarithm we

obtain:

J(θ) = −E(x i ,yi)∼Dt rain
log pmodel(x i, yi) (2.15)

The objective is now to find the parameters θ ∗ such that:

θ ∗ = argmin
θ

−
n
∑

i=1

log pmodel(x i, yi) (2.16)

This can be accomplished by changing the model parameters θ in the negative di-

rection of the gradient of J(θ), which points into the direction of the steepest ascent.

We therefore minimize the objective function.

θ t+1 = θ t −α∇J(θ t) (2.17)

where α is the learning rate.

In the Stochastic Gradient Descent (SGD) algorithm, the gradient ∇J(θ t) is esti-

mated from a minibatch of examples, instead of the entire dataset. This has several

advantages, namely: First, in order to update the parameters, the model does not

have to be evaluated on the entire dataset, which usually is expensive particularly

10

2.2. VISUALLY GROUNDED NLP

with large datasets. Second, empirically, the noisy gradient estimation also helps to

overcome potential local minima in the loss surface.

In this work optimization algorithms that are based on SGD are used, namely

Adam [Kingma and Ba, 2015]. Compared to SGD, Adam keeps an adaptive learning

rate for each parameter in the model based on the magnitude of the gradient.

2.2 Visually Grounded NLP

By virtue of advancements in computer vision, many natural language tasks have

been enriched with a visual context. That is grounding the language used in visual

perception such as a single image or even video. Tasks range from visually grounded

image and video captioning [Rashtchian et al., 2010, Young et al., 2014, Lin et al.,

2014] [Chen and Dolan, 2011, Rohrbach et al., 2015, Torabi et al., 2015], reference

resolution [Kazemzadeh et al., 2014], machine translation [Elliott et al., 2016, Elliott

et al., 2017], question answering [Das et al., 2017] to also dialogue [Das et al.,

2017, De Vries et al., 2017a, Mostafazadeh et al., 2017, Kim et al., 2017a, de Vries

et al., 2018].

The idea of visually grounding language is based on the observation that humans

also do not learn language in isolation but in a highly multimodal way. That is, while

learning, i.e. becoming intelligent, we are constantly exposed to all our sensory

input such as sound, smell, touch and also our visual perception of the physical

world. Further [Harnad, 1990] points out, that symbols cannot be solely defined by

other symbols (symbol grounding problem). In babies, it has been shown that this

multimodal input is heavily intertwined with language learning [Smith and Gasser,

2005]. Further, research in cognitive science has shown that comprehending a word

also activates the perceptual system [Zwaan et al., 2002, Barsalou, 2008]. Therefore

suggesting that the two modalities go hand in hand.

In order to advance artificial agents, grounding their understanding is a neces-

sity. Adding visual perception to artificial agents has also been a long-standing goal

[Winograd, 1972]. However, only recently adding visual context has become more

widely adopted, mainly due to efficient representations learned by computer vision

models.

11

2.3. DIALOGUE SYSTEMS

2.3 Dialogue Systems

2.3.1 Task-Oriented Dialogue Systems

As opposed to chit-chat dialogue systems, task-oriented dialogue systems assist an

user in accomplishing a task through a conversational interface. An early successful

dialogue system was the GUS system [Bobrow et al., 1977] that introduced the idea

of frames. Frames are sets of slot-value pairs that the system needs to fill to perform

a task (such as booking a flight). Based on what information was already provided

through the dialogue and saved in the frames, and what information is still miss-

ing, the system produces the next utterance. Based on this idea a pipeline approach

for dialogue developed. Generally speaking, more traditional dialogue systems con-

sist of a natural language understanding unit, a dialogue manager and a natural

language generation module. If the system interacts with its user through speech,

additionally speech recognition and text to speech modules are added [Jurafsky and

Martin, 2019, Jokinen and McTear, 2009] (see Figure 2.3).

Figure 2.3: Spoken Dialogue System Pipeline

The dialogue manager module is of particular interest to our work. [Jokinen

and McTear, 2009] further break down the module into two parts. First, the di-

alogue context model (also known as dialogue state tracker) that keeps track of

12

2.3. DIALOGUE SYSTEMS

information provided in the dialogue for the task at hand. It holds the information

in an internal representation, called the belief state or dialogue state. Further, it

might provide context to the dialogue by interfacing to external systems or input

from other modalities. Second, the dialogue control unit (also known as dialogue

policy), that decides what action to take next. Essentially, it determines the dialogue

act of the system. For example, the system might ask a clarification question, provide

information to the user or restart or end the conversation.

The dialogue state tracking challenge [Williams et al., 2013, Henderson et al.,

2014a, Henderson et al., 2014b, Kim et al., 2017b, Kim et al., 2016b] has specialized

in the dialogue manager component. It provides a testbed for general dialogue state

tracking modules and several datasets. However, it regards dialogue state tracking in

isolation. While it does incorporate the uncertainty coming from speech recognition

and natural language understanding, it is not concerned about natural language

generation.

Training all modules of the pipeline in a data-driven process is a major challenge

since usually labels for each module are required. Moreover, when the modules are

trained separately, the input from a previous module might be flawed. The approach

of [Young et al., 2013] acknowledges this uncertainty and therefore models the di-

alogue as a partially observable Markov decision process. The dialogue manager

models the dialogue state transition function and what action to choose next with

stochastic models. Albeit state and action are modelled by probabilistic functions,

still symbolic variables are ultimately used. The system is trained through reinforce-

ment learning, i.e. via task success. Notably, the dialogue management component

we propose for the GuessWhat?! system has a continuous dialogue state and there-

fore, the uncertainty can be incorporated in the downstream modules.

2.3.2 End-to-End Dialogue Systems

Another line of research is that of end-to-end dialogue systems. These models purely

learn from the language, without any intermediate representations like dialogue

acts or handcrafted features. End-to-end learning has shown many improvements

in artificial intelligence, for example in machine translation.

Based on [Ritter et al., 2011] data-driven approach to response generation in the

context of social media, [Vinyals and Le, 2015, Shang et al., 2015, Sordoni et al.,

13

2.3. DIALOGUE SYSTEMS

2015b] employ the sequence to sequence framework [Sutskever et al., 2014] that has

been successful in machine translation, for dialogue modelling. The past utterances

are represented in a fixed size vector through an encoder recurrent neural network.

From this representation, the next utterance is decoded. The advantage of these

models is that they are generative, therefore in principal being able to produce a wide

range of utterances. Results show good syntactical capabilities, however, they tend

to generate inconsistent utterances, i.e. contradicting themselves (see the example

below). Furthermore, also the diversity of the utterances is problematic, for example

when employed in question answering scenarios, these model tend to generate save

answers like "I don’t know" [Li et al., 2016].

Human: what is your job ? Machine: i ’m a lawyer .

Human: what do you do ? Machine: i ’m a doctor .

Example taken from [Vinyals and Le, 2015]

A model building on the vanilla sequence to sequence framework is the hierarchi-

cal recurrent encoder decoder [Serban et al., 2016]. Here, the encoder is modelled

hierarchically on the word and utterance level. The lower level recurrent network

encodes a single utterance word by word. The output is then processed by the higher

level recurrent network, that encodes the dialogue history utterance by utterance.

From the hidden state of the utterance encoder, the system reply is generated. This

approach has also been tried in GuessWhat?! [De Vries et al., 2017a], however, it did

not improve over a simple recurrent language model that is additionally conditioned

on the image.

Another notable end-to-end system is that of [Bordes and Weston, 2016], where

memory networks [Weston et al., 2015, Sukhbaatar et al., 2015] are used on a task-

oriented dialogue setting. The model can read and write to a dedicated memory via

an attention mechanism [Bahdanau et al., 2015]. It is tested the on babi tasks, a toy

dataset in the restaurant domain [Bordes and Weston, 2016]. While it excels at the

simple tasks like correctly querying a knowledge base, the model still struggles with

correctly conducting full dialogues.

In summary, end-to-end systems rely on a latent representation. These are not

learned explicitly but only through the dialogues themselves. While this allows for

less expensive data collection, the models do show drawbacks on consistency.

14

2.3. DIALOGUE SYSTEMS

2.3.3 Multimodal Dialogue Systems

Another line of related work is that of systems incorporating other modalities, specif-

ically visual perception. A predominant approach to adding visual perception to a

dialogue agent is to extract visual features from an object classification network such

as VGG [Simonyan and Zisserman, 2015] or ResNet [He et al., 2016]. A simple ap-

proach is to use the activation of one of the final, fully connected layers as feature

representation [De Vries et al., 2017a, Das et al., 2017]. Another approach is to take

outputs from the convolutions layer and reduce them via an attention mechanism

[Yang et al., 2016, Kazemi and Elqursh, 2017]. This allows the model to focus on

specific areas of the image. Recently another method has shown promising results in

obtaining a visual representation for downstream language applications. [De Vries

et al., 2017b, Strub et al., 2018] condition the visual pipeline on a language encod-

ing, such that it can focus from the beginning on relevant features.

15

3 | GuessWhat?!

3.1 Task Setup

GuessWhat?! [De Vries et al., 2017a] is a two-player, visually grounded, dialogue

dataset. The goal is to determine an object on an image through a series of yes-

no questions. Therefore, it requires both visual understanding, as well as language

capabilities.

More specifically, the players adopt two different roles: that of a Questioner and

an Oracle. The Oracle is randomly assigned an object on the image. On the other

hand, the Questioner does not know the assignment and has to ask yes-no questions

in order to determine it. Once the Questioner is confident of having determined

the target object, the Questioner can proceed from to the guessing phase in which

an overlay on the image marks all possible objects to choose from. If the Ques-

tioner selects the correct object, the game is considered successful and unsuccessful

otherwise. Independent of the result the game terminates at this stage, i.e. more

questions and another guess is not permitted. Figure 3.1 shows an example game.

On https://guesswhat.ai/ the game can be played and the dataset explored.

The dataset has been collected via Amazon Mechanical Turk and consists of a to-

tal of 155,280 dialogues, of which 144,434 have been finished (i.e. none of the two

humans players have aborted before the guess was taken) and 131,394 ended suc-

cessful (90.97%). After preprocessing the human dialogues (for details see [De Vries

et al., 2017a]), the vocabulary size of tokens used at least three times is 4,919. The

dataset is based on images from MS COCO [Lin et al., 2014], in total 66,537 dif-

ferent images are used. Therefore there are about 2.3 dialogues per image. The

dataset is split in a 70:15:15 ratio into a train, validation and test set. The valida-

tion set consists only of images which are also in the train-set. However, new target

16

https://guesswhat.ai/

3.1. TASK SETUP

Figure 3.1: Example game from GuessWhat?!. Figure from [De Vries et al., 2017a].

objects have been selected. On the other hand, the test-set contains completely new

images, neither present in the training nor validation split. Therefore, the valida-

tion split evaluates how well the model generalizes to new objects, while the test-set

measures the performance on new images.

Formally, a game G consists of a dialogue D with a variable number of question-

answer pairs [q1, a1, ...,qt , at , ...,qn, an]. Each question-answer pair consists of a vari-

able number of words [wt,1, ..., wt,τ, ..., wt,m]. Besides, also an image I ∈ R3×W×H

with a set of annotated objects oi ∈ O of which one is the target object otar get is part

of the game. Each object is specified by a set of points, forming a polygon around

the object. Each object is assigned a category c ∈ C, and |C|= 81. Both, the polygon

and category information come from the MS COCO annotations [Lin et al., 2014].

3.1.1 Evaluation

In [De Vries et al., 2017a], baseline versions of the Questioner and Oracle agents are

proposed. Thereby, the Questioner is split into a Question Generator and a Guesser.

The former is responsible for generating the next question given the dialogue history

and the image. The Guesser comes into play when the dialogue is finished. Given

17

3.2. ADVANCEMENTS IN GUESSWHAT?!

the entire conversation and the list of objects, it has to select the target object. The

evaluation of the Guesser and Oracle performance on the dataset is straight forward,

as simply the total number of correctly guessed games, or in case of the Oracle cor-

rectly answered questions can be calculated based on the human dialogues. On the

other hand, the evaluation of the Question Generator is more difficult. While the

perplexity can be measured, it might not be as revealing due to the fact that there

is a big space of potentially correct next words. This is a common problem in dia-

logue as opposed to, for example, machine translation where the space of correct

translations is much smaller.

Since GuessWhat?! is a task-oriented setting, we can, however, evaluate the

Question Generator on the task. Therefore, all the modules are evaluated alongside

each other. In order to do so, the Question Generator predicts the next word based

on its previous generation (for details see section 4.1.3). In this way, new questions

are generated which in turn can be answered by the Oracle. Finally, after a fixed

number of questions, the Guesser uses the generated dialogue between the Question

Generator and the Oracle to predict the target object. The accuracy resulting from

this process can be used to measure the performance of the Question Generator.

3.2 Advancements in GuessWhat?!

3.2.1 Guesser and Oracle Improvements

Building on the Feature-wise Linear Modulation (FiLM) line of research [De Vries

et al., 2017c, Perez et al., 2018], [Strub et al., 2018] apply this technique to the

Oracle and Guesser model. Thereby, the visual pipeline is manipulated through lan-

guage, by shutting down or amplifying feature detectors. Further, an attention mech-

anism on the language itself allows for multi-step reasoning in the visual pipeline.

Thereby, the Oracle performance improves to 83.1% (from 78.5%) and the Guesser

to 69.5% (from 62.6%) on the test set4.

4Details of the baseline Oracle and Guesser model are provided in section 4.1.1 and 4.1.2.

18

3.2. ADVANCEMENTS IN GUESSWHAT?!

3.2.2 Question Generator Improvements

In [Shekhar et al., 2018] we address the issue of the fixed number of questions that

the baseline Question Generator has to produce during inference. While humans can

stop the game at any point and proceed to the guessing phase, for lack of a better

mechanism, the baseline generates a fixed number of questions. By introducing

a Decider module that predicts whether to stop the dialogue after each question-

answer pair, the dialogues become more natural due to fewer repeated questions.

In [Strub et al., 2017] reinforcement learning is applied to the Question Gener-

ator. The authors start from the pretrained baseline models of the Oracle, Question

Generator and Guesser (detailed in section 4.1). The authors frame the dialogue

generation as a Markov Decision Process in order to apply the policy gradient al-

gorithm REINFORCE [Williams, 1992]. Thereby, questions are generated from the

Question Generator by sampling from the categorical distribution over the vocabu-

lary. A zero-one reward is defined, namely if the Guesser module is able to correctly

identify the target object from the sampled dialogue, a positive reward is provided.

Thereby, a task accuracy of 60.3% on the validation and 58.4% on the test set is

achieved, by evaluating the agent with a greedy decoding strategy.

In [Zhang et al., 2018], the performance is further improved by adding interme-

diate rewards on a question level. Thereby, dialogues are rewarded that have only

few questions before the correct target is identified. Further, questions that improve

the Guesser certainty on the target object are encouraged. Finally, questions that do

not help to disambiguate between the objects are penalized. Therefore, the system

is encouraged to solve the game with fewer questions, which therefore have to be

more informative. This system achieves a task accuracy of 63.6% and 60.7% on the

validation and test set respectively.

In [Shekhar et al., 2019], we propose a joint architecture for the Question Gen-

erator and Guesser based on a shared, visually grounded language encoder. Further,

we achieve on par state of the art performance, by applying a novel learning scheme

named cooperative learning that schedules the updates of the different output mod-

ules of the Questioner (viz. Guesser and Question Generator). On the validation set,

this architecture achieves 63.3% and 60.7% on the test set. Table 3.1 provides an

overview of the performances of the different works.

19

3.2. ADVANCEMENTS IN GUESSWHAT?!

Model
Validation

New Objects

Test

New Images

[De Vries et al., 2017a] 43.5% 40.8%

[Strub et al., 2017] 60.3% 58.4%

[Zhang et al., 2018] 63.6% 60.7%

[Shekhar et al., 2019] 63.3% 60.7%

Table 3.1: Task performance of different Question Generator improvements. All

results are based on greedy decoding.

20

4 | Model

4.1 Baseline Models

The model presented in this work builds on the baseline models introduced in [De Vries

et al., 2017a]. These are described in the following three sections.

4.1.1 Oracle

The Oracle agent faces a multimodal (language and vision), question answering

problem. Typically, question answering problems can either be solved by a discrim-

inative or generative model. In the former case, a set of possible answers over the

entire training set has to be chosen, then a classifier is trained. For the latter, e.g. an

RNN can be used to generate the answer given a question and possibly other inputs

(both these approaches are for example explored in the VQA baseline [Antol et al.,

2015]). In the case of GuessWhat?! a discriminative approach is natural due to the

low number of classes. The game is designed such that only yes, no or not applicable

(n/a) can be chosen as answer by the Oracle.

In the baseline setup by [De Vries et al., 2017a], the Oracle takes as input the

target object’s spatial location as bounding box derived from the polygon and its cate-

gory c as one hot vector. The spatial location is provided by MS COCO annotations in

form of the points of a polygon of the object borders. These points are transformed

following [Hu et al., 2016, Yu et al., 2016] into an 8-dimensional spatial feature

vector star get . The features contain the upper left and lower right point of the rect-

angular bounding box encapsulating the object, as well as, the centre point and the

bounding box width and height. Therefore, the spatial location of the target object

is represented as follows: star get = [xmin, ymin, xmax , ymax , xcent re, ycent re, wbox , hbox].

Note that before processing, the bounding box is normalized, by setting the centre

21

4.1. BASELINE MODELS

of the image to the origin and the width and height in the interval [−1, 1]. The

category is represented through a dense embedding ctar get retrieved from a learned

embedding matrix Ecategor y . The current question qt is processed by a Recurrent

Neural Network, specifically an LSTM [Hochreiter and Schmidhuber, 1997]. Each

word wt,τ in qt is represented by an one hot vector, such that it can be processed

into an embedding by multiplying the representation with the word embedding ma-

trix Eword . The word embeddings are sequentially processed by the recurrent neural

network. The last hidden state of the LSTM is used as a language representation ht .

Note that in the baseline version the dialogue history is not exploited in the Oracle,

i.e. only the current question qt is processed. The three representations (language,

category and spatial) are concatenated and passed through an MLP with one hidden

layer, activated with a ReLU. Finally, a softmax layer is applied to the three outputs

of the MLP, resulting in a probability for each of the answers. The architecture is

shown in Figure 4.1. Formally, the model can be expressed as follows:

star get = [xmin, ymin, xmax , ymax , xcent re, ycent re, wbox , hbox] (4.1)

ctar get = Ecategor y c (4.2)

ht = LSTM(qt) (4.3)

p(ai) = softmaxi(MLP([star get ,ctar get ,ht])) (4.4)

where [·, ·] denotes concatenation.

During training, the Negative Log Likelihood of the correct answer is minimized.

Therefore the loss is defined as follows: L(θ) = − log p(a|θ), where p(a|θ) is the

probability of the correct answer class under the current set of parameters. The

parameters are optimized with Adam [Kingma and Ba, 2015]. The model achieves

an accuracy of 78.9% and 78.5% on the validation and test set in [De Vries et al.,

2017a] and 78.82% and 78.33% in our re-implementation of the model respectively.

All hyperparameters can be found in Appendix B.1.

4.1.2 Guesser

The Guesser has to select an object oi from the set of objects O. Each is represented

by its location in the image via the spatial feature vector si, which is obtained in the

same way as done in the Oracle, and its object category via an embedding ci. Besides

the object representation, the selection is based on the question-answer pairs in the

22

4.1. BASELINE MODELS

Figure 4.1: Oracle Architecture

dialogue D. The dialogue D is processed by an LSTM, similar as in the case of the

Oracle. The words in the questions, as well as the answers, are represented through

a learned embedding Eword . These representations are then sequentially processed

through the LSTM. The last hidden state of the LSTM hD is used as the represen-

tation of the dialogue. For each object in the image, a separate representation is

computed combining ci and si. Therefore, the spatial feature vector si, as well as a

separately learned embedding for the object category ci is concatenated to represent

the object oi. This representation is then processed by an MLP to obtain a final ob-

ject representation ri of the same dimensionality as the hidden state of the Guesser’s

LSTM. The weights of the MLP are shared among the variable number of objects in a

game (i.e. the same weights are used to compute ri for all objects). The dot product

between the dialogue representation and each object representation leads to a score

for each object. This score vector is finally processed by a softmax function, leading

to a probability for each object, i.e. p(oi|D, si,ci) = softmaxi(hD × ri). The architec-

ture is shown in Figure 4.2. Formally, the Guesser model can be summarized in the

following equations:

23

4.1. BASELINE MODELS

Figure 4.2: Guesser Architecture

si = [xmin, ymin, xmax , ymax , xcent re, ycent re, wbox , hbox] (4.5)

ci = Ecategor y ci (4.6)

hD = LSTM(D) (4.7)

ri = M LP([si,ci]) (4.8)

p(oi) = softmaxi(hDrT
i) (4.9)

All parameters of the Guesser are optimized by minimizing the Negative Log

Likelihood of the target object, i.e. L(θ) = − log p(otar get |θ). The parameters are

optimized with Adam [Kingma and Ba, 2015]. The model achieves an accuracy

of 62.1% and 61.3% on the validation and test set respectively in [De Vries et al.,

2017a]. Our re-implementation scores 64.0% and 62.8% respectively. All hyperpa-

rameters can be found in Appendix B.2.

4.1.3 Question Generator

The Question Generator’s task is to generate a question given the previous question-

answer pairs and the image. The generated question has to be grounded in the

24

4.1. BASELINE MODELS

image, be coherent with dialogue history (i.e. previous question-answer pairs) and

most importantly, eventually the question-answer pairs are used to perform the task,

identifying the target object.

In [De Vries et al., 2017a] different architectures have been experimented with,

including the Hierarchical Recurrent Encoder Decoder (HRED) model [Sordoni et al.,

2015a]. However, a simple RNN language model [Mikolov et al., 2010] setup that

is additionally conditioned on an image feature vector achieved the best results.

This model has a visual pipeline processing the image I with a pretrained VGG16

[Simonyan and Zisserman, 2015] network to obtain a visual representation v of the

image. The VGG16 network has been optimized on ImageNet [Deng et al., 2009] to

categorize an image into one of 1000 classes5. For GuessWhat?! the final output of

the network (also referred to as FC8) is used to obtain the visual representation.

In order to generate the next question qt in the dialogue, an LSTM is used. The

LSTM generates the next word in the sequence, by taking in an embedding of the pre-

vious word wt,τ−1 obtained through the embedding matrix Eword , and the visual rep-

resentation v. Further, the previous hidden state ht,τ−1 and cell state ct,τ−1 are used

and updated. This results in a sequence of hidden states Ht = [ht,1, ...,ht,τ, ...ht,m]

for each word in the question. This hidden state in the sequence is linearly trans-

formed and followed by a softmax to obtain a conditional probability distribution

at each timestep over all possible next tokens p(wt,τ|w1,1, ..., wt,τ−1, I) given the se-

quence so far and the image. The architecture is shown in Figure 4.3. Formally, the

Question Generator model can is summarized in the following equations:

v=Wv VGG16(I) (4.10)

lt,τ = Eword wt,τ−1 (4.11)

ht,τ = LSTM(lt,τ,v,ht,τ−1,ct,τ−1) (4.12)

p(wt,τ+1) = softmax(Wht,τ + b) (4.13)

During training, the LSTM is trained with teacher-forcing [Williams and Zipser, 1989].

In this setting, the input word is always taken from the data. In order for the LSTM

to predict the next token in the sequence, the first input word is a start-of-sequence

token and therefore, the first output of the LSTM predicts the first actual token of

the sequence.
5On ImageNet VGG16 achieves a top-1 error of 27.00% and top-5 error of 8.80%

25

4.2. BELIEF STATE

The network is optimized by minimizing the Negative Loglikelihood Loss, i.e.

L(θ) = − log p(wt,τ+1|θ) and the gradients are determined according to the back-

propagation through time algorithm [Rumelhart et al., 1986]. The parameters are

optimized with Adam [Kingma and Ba, 2015]. All hyperparameters of the Question

Generator can be found in Appendix B.3.

During inference, human dialogues are not used. Therefore, the word input to

the LSTM at each timestep is the previously generated token. In [De Vries et al.,

2017a], that is determined by sampling, greedy decoding and beam search. In this

work, we only compare to greedy decoding.

Figure 4.3: Question Generator baseline architecture. During training wt,τ comes

from the human dialogues, during inference, the previously generated token is used,

i.e. in case of greedy decoding wt,τ = arg max p(wt,τ−1).

4.2 Belief State

4.2.1 Motivation

As discussed in the previous section, the task of the Question Generator module is to

ask the next question given the previous question-answer pairs and the image. What

question to ask next is learned from the human dialogues. However, learning just

from the statistics of word occurrences is hard, particularly in dialogue, where the

26

4.2. BELIEF STATE

space of potential next acceptable words is vast. This also applies to GuessWhat?!6.

We argue that the process that generates the question is based on the uncertainty of

the questioner agent. That is, its belief about what objects are still candidate target

objects, given the dialogue history so far drives the language generation process.

Modelling this observation is a common approach in artificial intelligence and

deep learning in particular to improve model performance. For example in machine

translation, one can argue that the process that generates a target word, is heavily

connected to its alignment in the source. This has been successfully addressed and

modelled in the attention mechanism [Bahdanau et al., 2015]. Similarly, we also

address this in the Question Generator, by providing it with an explicit representa-

tion of the current belief. That is, the process that generates the next question is the

uncertainty of the questioner agent over the potential target objects. We represent

this in the belief state. Therefore, the model will be equipped with a component

similar to the dialogue manager in the more traditional dialogue modelling pipeline

(see section 2.3). This should improve the signal-to-noise ratio the Question Gen-

erator experiences during training. When exploiting the belief representation, the

space of potential next questions is smaller. For example, when narrowing down

the set of objects by grouping them. At first, the belief state would contain an equal

distribution over all objects in the image. Allowing to group them for example by

finding common properties. Further, when the object category is already guessed

(e.g. after the question-answer is it a person? yes), the model can focus on questions

that disambiguate between objects of that category.

Another point of view of adding a belief state of potential target objects is that

it separates what (i.e. semantics) to ask, from how (i.e. syntax) to ask. The belief

state represents the objects that are still considered potential target objects under the

current dialogue history and defines what the question should be about. Vice versa,

another important skill is to verbalize this belief, by producing a question about it

that can be understood by the Oracle and therefore leads to correct answers. Both

skills are required to perform well on the GuessWhat?! task, and excel at any task-

oriented dialogue in general.

From these perspectives, it also becomes clear, why it should be easier for the

6For example when imagining a plausible follow up question after the first turn in the example

in Figure 3.1. Valid questions could for example query the colour or the location. However, the

Questioner chooses to ask is it partially visible?

27

4.2. BELIEF STATE

Question Generator to learn an effective language. Given a belief state, it is less

required to reason about the dialogue history anymore for determining what to ask,

as this is already done and efficiently represented in the belief state. In contrast,

without a belief state, the model might need to carry on information from the first

question as it might become relevant again in a later turn.

4.2.2 Model

We define the belief state as a probability distribution over the objects in the image,

given the dialogue history. To obtain this, we evaluate the Guesser module at each

new question-answer pair. Note that we do not use the Guesser output to determine

whether the correct object has been guessed, merely we leverage it as a representa-

tion of the current uncertainty over the objects given the dialogue so far. Formally,

pt(oi) = GUESSER(q0:t , a0:t ,O) (4.14)

where 0 : t is short for all timesteps up to t.

The probability distribution by itself is not a useful input to the Question Gener-

ator module yet. That is because the probabilities cannot be linked to the objects. In

each game, there are a variable number of objects. Therefore, an object representa-

tion attached with the object probability is used as input to the Question Generator.

In order to obtain a single belief state representation, independent of the number

of objects, we opt for a weighted bag of words approach (or bag of objects in this

case). Therefore, each object is represented by a continuous, fixed-size vector ri,

and R contains all object representations of the game. This representation is then

multiplied by the respective probability. Finally, all the weighted representations are

summed up. This can be efficiently computed by the dot product between the matrix

of object representations R and the probability vector over the objects, resulting in

the belief state bt .:

bt =
∑

i

ri ∗ pt(oi) = RT × pt (4.15)

The belief state is provided to the Question Generator by concatenating it to

the input at every timestep. Therefore, equation 4.12 is updated such that the new

hidden state is also conditioned on the belief state:

ht,τ = LSTM(lt,τ,v,bt ,ht,τ−1,ct,τ−1) (4.16)

28

4.2. BELIEF STATE

Figure 4.4: Architecture of Question Generator with explicit belief state representa-

tion, updated after each new question-answer pair.

Figure 4.4 shows the architecture visually. Note that the belief state is updated after

each new question-answer pair.

Besides directly concatenating the belief state to the word embedding, we also

further use it to refine the visual representation. Therefore, we extract visual features

from the conv_4 layer of a ResNet-152 [He et al., 2016], pretrained on ImageNet

[Deng et al., 2009]7. The resulting features for each image are in R14×14×1024. Since

we do not obtain the visual features from a fully connected layer as in the baseline

setting, the visual features still have spatial information. We make use of an attention

mechanism, that lets the network learn on which spatial dimension it should focus.

We choose the Multimodal Lowrank Bilinear (MLB) [Kim et al., 2016a] attention

mechanism, which has shown promising results in multimodal settings [Kafle and

Kanan, 2017]. We flatten the visual annotation to a 2d matrix A∈ R196×1024. We then

obtain scores for each of the image regions, by first linearly transforming them and

the belief state into vectors in Rh×1, where h is the hidden size of the attention mech-

anism. Further, the results are activated with tanh and then element-wise multiplied,

7On ImageNet ResNet-152 achieves a top-1 error of 22.16% and a top-5 error of 6.16%.

29

4.2. BELIEF STATE

and again linearly transformed into a scalar for each image region. The scalars are

now processed into a probability distribution with a softmax. Finally, the dot product

between the region probabilities and the visual features results in a visual feature

vector vt ∈ R1024. Note that the belief state changes after each question-answer pair.

Therefore, we also recompute the attention and resulting visual features. Formally:

si =ws × (tanh(Wa ×AT
i) ∗ tanh(Wb × bT

t)) (4.17)

vt = softmax(s)×A (4.18)

where Ai ∈ R1×1024 is the annotation vector in location i, Wa ∈ Rh×1024, Wb ∈ Rh×|b|,

ws ∈ Rh and s ∈ R196. This visual vector is then used as in the baseline version, i.e.

passed through a linear layer and then concatenated to the LSTM input.

4.2.3 Application to other Task-Oriented Dialogue Settings

In the previous section, we described how the model can be applied to the Guess-

What?! task. In this section, we provide more detail on how the approach can be

transferred to other task-oriented settings.

Any task-oriented dialogue system is defined by its task K, that usually can be

automatically evaluated. Further, the task might be factored into multiple subtasks

k1, ..., kn that can be performed individually. For example in a restaurant setting,

where the dialogue system shall recommend a restaurant to a user, subtasks might

be to determine the user’s preferences for location, type of cuisine and price [Bordes

and Weston, 2016].

From a dataset of dialogues with labels for the task, classifiers Ck can be trained

to produce a probability distribution pk over the task outcomes. By factoring the

task into multiple subtasks this can be represented in a smaller space. In the above

restaurant setting, instead of producing a probability distribution over all restau-

rants, a distribution over each of the properties (location, cuisine type, price, etc.) is

more efficient. Further, this will also help the agent as tasks that still have a high un-

certainty are separated from solved subtasks. Eventually, as detailed for the Guess-

What?! setting, the language generation can be conditioned on these probability

distributions by learning a representation rk,i for each task outcome, and weighing

it with the respective task probability (see equation 4.15).

30

5 | Experiments and Results

5.1 Belief State Object Representations

In the previous chapter, we introduced the general architecture of the Question Gen-

erator with an explicit belief state. We now conduct several experiments for different

representations.

5.1.1 Object Representations from Annotations

One way to represent the set of objects is by learning an embedding for each category

Ecategor y , and we will, therefore, refer to this belief state representation as Category.

Practically, by only distinguishing objects by their category, all games can be solved

where the target object is the only instance of that category. The Question Generator

can enumerate all the object categories present in the image, and query each. When

the Oracle responds with yes to a question about an object category, the game can be

solved confidently (e.g. if there is only a single dog on the image, the question iden-

tifying the target object category will suffice to solve the game). However, this also

exposes the disadvantage of this representation. It is not possible to disambiguate

between objects of the same category.

Therefore, we can make use of another object annotation, namely the spatial

location of each object. Since we will eventually sum up the object representations

weighted by the belief probabilities, using only the spatial location is not practical8.

Therefore, we can extend the above approach by concatenating the spatial feature

vector to the category embedding and processing it through an MLP. We will refer to

8For example, it would not be possible to distinguish between two objects in the centre of the

image and an object on the left and right. If the probabilities for objects are similar, the resulting

hypothesis of the object location would be in the centre in both cases.

31

5.1. BELIEF STATE OBJECT REPRESENTATIONS

this approach as Category + Spatial. The object is represented in the same fashion

as done in case of the Oracle and the Guesser.

Finally, instead of learning the object representation from scratch, the represen-

tation learned by the Guesser can also be reused. Therefore, we retrieve the output

of the Guesser’s MLP for each object in the image (see equation 4.8). Subsequently,

we apply a linear transformation to obtain the object representation for the belief

state. We refer to this approach as Guesser Object Representation and to the model

as Belief.

The latter two approaches allow the Question Generator to also do simple spatial

reasoning of the objects. The absolute locations are directly accessible. Therefore,

distinguishing between two objects of the same category, but with different locations

in the image (i.e. left and right) is possible. However, distinguishing objects by

their relative location to each other remains difficult, since it requires a multi-hop

reasoning process. For example in the question is it below the table?, first the context,

in this case the table, has to be retrieved, only then the objects spatial location.

However, the belief state does not provide information on the objects in context.

Experimental Setup

For all object representations, we search the parameters of the visual representation

(i.e. the size of Wv in equation 4.10) and the object representation (i.e. the size

of R in equation 4.15). The former we search in [0,64, 128,256, 512], therefore

also allowing no visual representation from the VGG16 FC8 features. We search

the object representation in [64,128, 256,512]. Note that depending on these sizes,

also the input size of the LSTM changes (i.e. W f x ,Wi x ,Wox and Wcx in equation 2.7

to 2.10)9. We evaluate the model performance as done with the baseline Question

Generator, by tracking the loss on the validation set. Subsequently, we use the model

with the lowest validation loss and test its performance on the task by generating

questions. We report the performance of the model when asking a total of 5 questions

in order to compare with the baseline. Further, we search the number of questions

n in {5, ..., 12} of the best models on the validation set and report the of the best

number of questions on both sets.

9An overview of the number of parameters of the best performing models is provided in the ap-

pendix in Table C.1

32

5.1. BELIEF STATE OBJECT REPRESENTATIONS

Results

The results for the best performing model in the hyperparameter search are reported

in Table 5.1. We can see that all models with a belief state perform well above the

baseline performance of [De Vries et al., 2017a]. Besides task success, also the cross

entropy improves. We find that the best models do not use the visual representation

from VGG16 FC8. We conjecture that this because the belief state in this setup and

the FC8 features highly overlap in what they represent, namely the object categories

of the image. Note that FC8 is the final layer of VGG16, therefore on the ImageNet

setting, it provides a probability distribution over the respective categories. For a

more detailed analysis of the results we refer to chapter 6.

Belief State

Representation
|Wv| |R|

Cross

Entropy

Validation

Accuracy

(n=5)

Test

Accuracy

(n=5)

Validation

Accuracy

(best n)

Test

Accuracy

(best n)

None / Baseline 512 n/a 1.475 42.90% 42.55% 43.05% (n=6) 42.55%

Category 0 64 1.443 49.48% 48.30% 49.94% (n=8) 49.60%

Category + Spatial 0 256 1.433 50.00% 49.49% 50.78% (n=8) 50.23%

Guesser Obj. Rep. 0 256 1.436 49.16% 48.57% 50.06% (n=8) 49.06%

Table 5.1: Results for Question Generator with explicit belief state with varying ob-

ject representations. Cross entropy is measured on the validation set. |Wv| represents

the size of the visual embedding, |R| the size of the object representation.

5.1.2 Fine Tuning

In previous experiments we kept the parameters of the Guesser, i.e. the parameters

generating the belief state, fixed. In this experiment, we do not stop the gradient

at the level of the Guesser. We unfreeze the parameters and update them through

the language modelling loss of the Question Generator, therefore, fine-tuning them

end-to-end. Note that we restart the training procedure, i.e. we randomly initialize

the Question Generator weights. We refer to this model as Belief+FineTune.

33

5.1. BELIEF STATE OBJECT REPRESENTATIONS

Experimental Setup

For this experiment, we take the hyperparameter settings of the eight best perform-

ing models of the Category, Category + Spatial and Guesser Object Rep. setting. The

hyperparameters and results for all these models with the frozen belief state can

be found in the Appendix (see Table B.4). Note that as common in fine tuning, we

reduce the learning rate updating the Guesser parameters (1e−5). Further, this will

require to copy the Guesser network. One module will be fine-tuned and produces

the belief state. Another will be kept fixed and performs the final guessing of the

object.

Results

The results for models with a fine-tuned Guesser can be found in Table 5.2. All

models further improve over their settings with a fixed belief state. The cross en-

tropy improves for the Category setting and stays the same for the other belief state

representations. In contrast to the models with a fixed belief state, two of the best

performing models use the VGG16 FC8 visual representation. We conjecture, that

the fine-tuned belief state now learns a complementary representation. For exam-

ple, instead of having a uniform distribution over the objects, the belief probabilities

might be more focused. Therefore, the VGG16 features provide a holistic view of the

image, while the belief state provides the best guess and its representation under the

current dialogue. Again, we refer to the analysis chapter 6 for a detailed review of

the results.

Belief State

Representation
|Wv| |R|

Cross

Entropy

Validation

Accuracy

(n=5)

Test

Accuracy

(n=5)

Validation

Accuracy

(best n)

Test

Accuracy

(best n)

Category 0 64 1.428 54.85% 53.83% 55.65% (n=8) 54.65%

Category + Spatial 128 512 1.432 55.08% 54.75% 56.15% (n=7) 55.63%

Guesser Obj. Rep. 256 512 1.437 54.73% 54.46% 55.37% (n=7) 55.22%

Table 5.2: Results for Question Generator with fine-tuned belief state.

34

5.1. BELIEF STATE OBJECT REPRESENTATIONS

5.1.3 Visual Attention

As described in section 4.2.2, we experiment with a visual attention mechanism. We

use the belief state as query, and annotations from the conv_4 layer of ResNet-152.

Experimental Setup

For all experiments, we use the belief state representation that achieved the best

results in the previous section, i.e. the belief state representation that learns a rep-

resentation from the object category and a spatial embedding from scratch and has

512 dimensions (row 2, Table 5.2).

We investigate how the model performs with visual features from the attention

mechanism, with and without concatenating the belief state to the input. Further, we

research the impact of fine-tuning the belief state representation in this setting. For

all experiments, we search the size of the visual embedding in [64, 128,256, 512].

Additionally, as a baseline, we train a model that does not query with the belief state,

but with the hidden state of the Question Generator. We, therefore, use the hidden

state after each answer token input. For this model, we also search for the size of

the visual embedding in [64, 128,256, 512].

Results

The results for the Question Generator with attention over the visual locations are

reported in Table 5.3. First of all, the model that queries the visual representation

with the hidden state of the Question Generator performs better than the baseline

by [De Vries et al., 2017a] and our re-implementation. We find that all models

that query the visual features with the belief state outperform the visual attention

baseline model. Further, we observe that both additionally concatenating the belief

state and fine-tuning it improves performance. However, the performance of the

model that combines these settings is only on par with the belief model with the

static visual features from VGG16 FC8 (see Table 5.2).

35

5.2. ABLATION STUDIES

Attention

Query

Fine

Tuning
|Wv| |R|

Cross

Entropy

Validation

Accuracy

(n=5)

Test

Accuracy

(n=5)

Validation

Accuracy

(best n)

Test

Accuracy

(best n)

Hidden State n/a 256 n/a 1.450 43.78% 43.19% 43.84% (n=6) 43.13%

Category + Spatial 7 64 0 1.445 45.30% 44.38% 45.69% (n=6) 45.06%

Category + Spatial 3 256 0 1.440 45.75% 45.86% 46.09% (n=6) 46.04%

Category + Spatial 7 64 512 1.430 48.49% 47.66% 49.38% (n=8) 48.78%

Category + Spatial 3 128 512 1.422 55.21% 54.23% 56.10% (n=7) 55.11%

Table 5.3: Results for Question Generator with visual attention. The first model

serves as a baseline, the hidden state of the LSTM is used to query the visual anno-

tations. The models in row 2 and 3 do not have the belief state concatenated to the

LSTM input but only use it to query the visual annotations. Finally, the models in

row 4 and 5 also have the belief state as input to the LSTM.

5.2 Ablation Studies

5.2.1 Bag of Objects

In the previous experiments, the proposed model was provided with the list of objects

in the image. However, when the dataset was collected, this list is not explicitly

provided to the human player. Instead, only the image is given, from which a human

player then detects the objects in the scene.

One way of providing the list of objects to the Question Generator that is similar

to the belief state approach is to use an unweighted bag of objects approach over

the object representation. This is equivalent to the belief state with a uniform prob-

ability distribution at every timestep. Therefore, all object embeddings are summed

with the same weight. This can be thought of, as a perfect visual perception for the

categories, as they are available to the Question Generator at all times and do not

need to be extracted from the visual features. We concatenate the bag of objects

to the word embedding at every timestep. Similar to section 5.1.1, we search the

visual embedding in [0, 64,128, 256,512] and the size of the bag of objects embed-

ding dimension in [64, 128,256, 512]. This experiment will demonstrate how much

36

5.2. ABLATION STUDIES

performance simply comes from being provided with the list of objects, and how

much gain comes from the belief state itself.

5.2.2 Belief State over All Object Categories

In case of a bag of objects representation, we rely on the object annotations. Another

approach is to not assume this list, instead provide a belief state over all possible 81

object categories in GuessWhat?!. Thereby, we do not provide the Question Gener-

ator with any interpretation of the image. Thus, we train a Guesser with the goal to

only predict the category of the target object from the human dialogues. This model

achieves an accuracy of 80.52% on the validation set. Subsequently, the probabil-

ity distribution over all objects is used as belief state and the Question Generator is

trained.

The results of both experiments are shown in Table 5.4. A more detailed analysis

is provided in chapter 6.

Model
Belief State

Representation
|Wv| |R|

Cross

Entropy

Validation

Accuracy

(n=5)

Validation

Accuracy

(best n)

Baseline n/a 512 n/a 1.475 42.90% 43.05% (n=6)

Belief Category 0 64 1.443 49.48% 49.94% (n=8)

All Categories Category 64 64 1.456 44.52% 44.75% (n=8)

Belief Category+Spatial 0 256 1.433 50.00% 50.78% (n=8)

Bag of Objects Category+Spatial 64 64 1.431 45.32% 46.40% (n=7)

Table 5.4: Results for ablation studies and the respective belief model for compari-

son.

37

6 | Analysis

We now perform detailed analyses of the results of the previous chapter. We, there-

fore, choose our implementation of [De Vries et al., 2017a] for comparison (which

we refer to as Baseline, Table 5.1 row 1) and the best performing model with a belief

state obtained from the original Guesser (Belief, Table 5.1 row 3) and a fine-tuned

belief state (Belief+FineTune, Table 5.2 row 2). The two belief models both use the

Category+Spatial object representation. Note that we do not use models with a

visual attention mechanism, as the results are on par with the simpler visual repre-

sentation proposed in [De Vries et al., 2017a]. All analyses are conducted on the

validation set. Further, for comparison, we use the outcome after 8 questions if not

stated otherwise.

6.1 Task Success

We first take an overview of the successful and unsuccessful games by the different

models. Figure 6.1 shows Venn diagrams of successful (left) and unsuccessful (right)

games.

We notice that the majority of games that are solved are solved by all models

(28.7%), similarly for unsuccessful games, where 29.76% are not completed suc-

cessfully by all models. Further, the amount of games only the baseline solves is

small (4.8%) and the number of games only the baseline fails is quite large (12.6%).

From these numbers, we can conclude that the models mainly learned additional

ways to solve the task at hand and keep the skills learned by the baseline.

We now take a closer look at the statistics of the games solved by each model

(see Table 6.1). When comparing the statistics of the successful games to the entire

validation set, we notice that in general easier games are solved. That is games with

38

6.1. TASK SUCCESS

Figure 6.1: Venn diagram of the relative number of games that are solved (left) and

that are guessed incorrectly (right) by the different models.

fewer number of objects, fewer number of objects with the same category as the tar-

get and bigger target object areas. When we compare the statistics of the baseline to

the belief models, we can see that they are better able to deal with more objects and

games with many different object categories. In the appendix, we provide further

statistics on games solved by one model but not by another (see Table C.2).

6.1.1 Task Success by Number of Questions

Next, we compare how effective the generated questions are in terms of task success.

We, therefore, take the dialogue up to turn t and evaluate it with the Guesser (see

Figure 6.2). We notice that the baseline model solves the majority of its games within

four rounds (42.36% task success). Barely any additional games are solved after the

fourth round. For the models with belief state, we observe that task performance

plateaus about 1 question-answer pair later.

This means that the belief models learn the long term dependencies in the dia-

logue more effectively. This can be concluded as a game can only switch to successful

if the produced question and answer add enough information to disambiguate the

target object. Therefore, the questions at later timesteps of the belief models must

be more informative to the Guesser, as questions by the baseline.

39

6.1. TASK SUCCESS

All Games Baseline Belief
Belief

+FineTune

Num Games 23,739 10,122 12,056 13,284

Num Objects 8.54 (±4.67) 6.84 (±4.07) 7.02 (±4.19) 7.07 (±4.14)

Num Object Categories 3.49 (±1.72) 3.28 (±1.49) 3.38 (±1.56) 3.51 (±1.61)

Num Instances of Target Cat. 3.99 (±3.59) 2.66 (±2.62) 2.68 (±2.63) 2.52 (±2.50)

Log of Target Object Area 8.64 (±2.00) 9.13 (±2.04) 9.17 (±2.02) 9.08 (±2.02)

Table 6.1: Game statistics of successfully solved games by model. Except for Num

Games, all values are averages and standard deviations are in parentheses.

6.1.2 Oracle for Number of Questions

By evaluating the Guesser after each question-answer pair, we can also investigate

what the influence of the fixed number of questions is. In [De Vries et al., 2017a]

as well as in this work, we let the Question Generator ask a fixed number of ques-

tions, neglecting the fact that humans have the option to ask a variable number of

questions. We search the optimal number of questions per game by evaluating the

Guesser at every question-answer pair and stop the generation when the Guesser is

able to solve the game correctly. Note that we do not go beyond the maximum of 8

questions. We also perform this procedure on the human dialogues with the trained

Guesser (Human+Guesser). Results are shown in Table 6.2.

Interestingly we generally see a big jump in performance when we can stop

the dialogue prematurely. Most interesting however is the comparison to the Hu-

man+Guesser result. We observe that the model with a fine-tuned belief state even

slightly surpasses the Guesser performance on human dialogues. This means, that

from a task success perspective, this model cannot learn to produce better ques-

tions anymore by getting closer to the human data. When we unroll this analysis

by question-answer pair, i.e. investigate when then model solves the game correctly

the first time, we can observe a difference between the model with fine-tuned belief

state and the human dialogues (see Figure 6.3). The questions asked by the fine-

tuned belief state model in the first three rounds surpass the performance of the

human dialogues, however, in later rounds this effect is inverse. This shows that the

questions in later rounds of humans are better than in the generations of our model.

40

6.1. TASK SUCCESS

Figure 6.2: Task success of the different models after each question-answer pair.

The results also unveil the potential of our approach in [Shekhar et al., 2018],

where we introduce a Decider module to predict when to stop the dialogue. A model

that can perfectly predict when to stop the dialogue can not only improve the lan-

guage but also task performance.

However, the Human+Guesser result is also concerning. By qualitatively look-

ing at human dialogues we observe that in the majority of cases humans initiate the

guessing phase when the object is clear, only rarely humans ask one additional ques-

tion confirming their hypothesis (e.g. in the example in Figure 3.1, it is impossible

to confidently predict the right object before the last/fourth question). Therefore,

human dialogues should not be solvable by the Guesser module with much fewer

questions on average. Most likely, the Guesser overfits on the data, for example

exploiting the unbalanced target categories.

41

6.1. TASK SUCCESS

Baseline Belief
Belief+

FineTune

Human+

Guesser
Human

Task Success 62.30% 67.58% 72.88% 72.13% 90.80%

Avg. (StD.) Num Q 2.19 (±1.55) 2.26 (±1.59) 2.35 (±1.60) 2.61 (±1.96) 5.07 (±3.23)

Table 6.2: Task success with an Oracle on the number of questions on the validation

set.

Figure 6.3: Relative number of games that are solved the first time after t question-

answer pairs.

6.1.3 Number of Objects

One dimension of complexity in GuessWhat?! is the number of objects in the image.

Therefore, we analyse the model performance with respect to the number of objects,

and the number of objects of the same category as the target object (see Figure 6.4).

42

6.2. QUANTITATIVE LINGUISTIC ANALYSIS

In order to relate these results, we provide an overview of the number of games by

the number of objects and the number of objects with the same category as the target

object in the Appendix (see Figure C.1 and C.2).

In case of the number of objects, we see that all models consistently perform

well above a random baseline. Not surprisingly, performance decreases with more

objects. Further, the Belief model outperforms the baseline with any number of

objects, and in turn, the model with a fine-tuned belief state outperforms the Belief

model.

For the analysis on the number of objects with the same category as the target

object, we notice a strong performance gain for the Belief+FineTune model when

there is no other object of the same category as the target object. The model solves

88.04% of these games as opposed to the Belief model with 74.14% and the Baseline

with 63.82% successful games. This explains a big part of the overall performance

improvement, as 31.02% of all games in the validation set fall into this category.

For games with 5 or more objects with the same category as the target object, we

observe that fine-tuning the belief state does not lead to improvements, the Belief

model performs on par, or even slightly better. This effect occurs as for the part of the

belief state representation that comes from the object category, a fine-tuned belief

state will not help because the disambiguation between objects cannot happen on

a category level. Therefore, the disambiguation must happen on the spatial level.

However, representing that many locations is hard.

6.2 Quantitative Linguistic Analysis

In this section, we analyse the language of the generated dialogues. Table 6.3 shows

linguistic measures calculated on the generations of the different models. We ob-

serve that the size of the vocabulary compared to humans is much smaller. Recall

that humans use 4,919 different tokens that occur at least 3 times after tokeniza-

tion10. Nevertheless, the vocabulary of the Belief+FineTune model is 22% bigger

than that of the baseline and Belief model. Further, it generates a greater number

of unique questions. Also, we notice that the average number of tokens slightly

increases with respect to the baseline.

10Tokenization performed with NLTK [Bird et al., 2009] Tweet Tokenizer.

43

6.2. QUANTITATIVE LINGUISTIC ANALYSIS

Figure 6.4: Relative number of games solved with respect to the number of objects

(left) and the number of objects with the same category as the target object (right).

The yellow line indicates random performance. On the right side, random perfor-

mance is defined over the number of objects with the same category.

We further take a look at the contents of the questions, by checking if a certain

word is present. We use the same word list for super categories, categories, and

colours as in [Shekhar et al., 2019].

6.2.1 Definite and Indefinite Determiners

We further analyse the language by providing sunburst diagrams of all models (see

section C.5 in the appendix). We notice that there is a shift in the distribution of

the use of indefinite and definite determiners between the baseline (Figure C.8) and

the two belief models (see Figure C.9 and C.10). We investigate this further by

measuring the number of questions with an indefinite determiner (a, an and any)

and a definite determiner (the) by dialogue turn (see Figure 6.5). We notice that all

models change from indefinite to definite determiner over the course of the dialogue.

This is logical, particularly for games with multiple objects of the same category as

the target. After determining the object category, the agent needs to refer to a specific

44

6.2. QUANTITATIVE LINGUISTIC ANALYSIS

Baseline Belief
Belief

+FineTune

Vocabulary Size 368 368 449

Unique Questions 2,145 1,896 3,161

Avg. (StD.) Question Length 6.32 (±1.7) 6.59 (±1.8) 6.60 (±1.8)

Questions answered w/ yes 38.86% 58.30% 62.63%

Questions w/ Super Category 26.30% 31.68% 22.51%

Questions w/ Category 53.88% 49.03% 48.53%

Questions w/ Colour 8.38% 6.86% 7.98%

Table 6.3: Quantitative Measures on dialogues generated by different models. Token

list for Super Category, Category and Color taken from [Shekhar et al., 2019].

instance of an object, therefore switching from indefinite to definite determiner. For

the belief models, this shift is amplified. From the 5th question, only less than 20%

of the questions contain an indefinite determiner and more than 80% a definite

determiner.

6.2.2 Repetitions

Similar to [Shekhar et al., 2019] we analyse the number of repetitions of questions

generated by the models. Therefore, we check for exact string matches in the gen-

erated questions. We measure the number of games that contain repetitions and the

number of repeated questions in total. First, we take a look at full games, i.e. we

regard all questions in the dialogue (see first row in Table 6.4).

We notice that almost all games contain at least one repetition. Further for

the baseline, 44.88% of all questions are repetitions. Here we can observe an im-

provement for the belief models, where only 38.77% (Belief) or even 32.94% (Be-

lief+FineTune) of questions are repetitions.

From looking at qualitative examples we observe that repetitions mostly occur at

the end of dialogues, often when the game is already solved (e.g. see Figure 6.6).

Note that, the models are not trained on this phenomena, as the training data does

not contain questions after the game has been solved because human players can

stop the game at any time. We conjecture that this is one of the reasons the models

45

6.2. QUANTITATIVE LINGUISTIC ANALYSIS

Figure 6.5: Relative frequency of questions with an indefinite determiner (left) (a,

an, any) and a definite determiner (right) (the).

generate repetitions in the first place. Therefore, we also look at the repetitions

when we disregard questions generated after the Guesser predicted the correct target

object for the first time (see second row in Table 6.4).

The number of games that contain repetitions now drastically decreases for all

models. Further, the difference between the models also becomes clearer. While

the baseline still has 51.97% of games with repetitions, the number drops 7.71%

points for the Belief model, and 8.08% for the Belief+FineTune model. Similarly,

for the total number of repetitions. This observation confirms our hypothesis, that

the belief models are better able to learn long time dependencies as they are able to

longer generate questions without repeating themselves.

These observations are also shown qualitatively in Figure 6.6. We see that the

baseline repeats questions (is it a skateboard? and is it the one on the right?). Note

that these repetitions occur before the target is identified. It also fails after identify-

ing the target category to ask a discriminative question to distinguish between the

different cars. In contrast, the belief models generate a greater variety of questions

and are eventually both able to identify the target object. Note that, in the belief

model there are also repeated questions, however, they appear at the end when the

46

6.2. QUANTITATIVE LINGUISTIC ANALYSIS

Baseline Belief
Belief+

FineTune

Full Dialogues
Games w/ Repeated Q 23,540 (99.16%) 22,978 (96.79%) 23,025 (96.99%)

Total Repeated Q 10,655 (44.88%) 9,204 (38.77%) 7,819 (32.94%)

Up to 1st correct Guess
Games w/ Repeated Q 98,694 (51.97%) 84,062 (44.26%) 83,354 (43.89%)

Total Repeated Q 43,714 (41.00%) 32,580 (33.29%) 27,243 (29.55%)

Table 6.4: Number of games with repetitions and the total number of questions that

are repeated within a dialogue. The first row shows results for full dialogues, i.e.

including all 8 questions. Contrary, for the second row, we only regard questions

that are generated before the Guesser is able to predict the target object from the

dialogue. Note that therefore, the denominator for the total number of repeated

questions in order to obtain the relative frequency differs from model to model.

target object is already identified by category (car) and location (left). Further, in

this example we can also observe the switch from indefinite determiner to definite

determiner. The definite determiner is used after the target category is identified.

6.2.3 Influence of Belief State on Category Questions

We now analyse whether the belief state has a direct influence on the question that

is generated (Table 6.5). Therefore, we take the arg max of the belief probabilities

after every turn in the dialogue and determine what category is currently predicted

by the belief module. For the baseline, we evaluate the Guesser. We then check if the

category string of the argmax is used in the question11. We perform this first on all

games in the validation set (All Games). However, the problem with using all games

is that games where there are multiple objects of the same category as the target,

the generated questions also have to disambiguate between these objects. This is

most likely done by referring to object properties or their spatial location, but not

necessarily by their object category. Therefore, we also perform the same analysis

on games with only one object of the target category (we refer to this as Single Target

11A positive example would be: The argmax of Guesser probabilities yields person and the question

is is it a person ?. Note that we also allow partial matches, for example, if the category is tennis racket

and the question contains racket.

47

6.2. QUANTITATIVE LINGUISTIC ANALYSIS

Figure 6.6: Game ID: 199807, Target Category: Car

Baseline Belief Belief+FineTune

is it a person? no

is it a skateboard? no

is it a skateboard? no

is it a car? yes

is it the one on the right? no

is it the one on the right? no

is it the one on the right? no

is it the one on the right? no

→ Failure

is it a person? no

is it a skateboard? no

is it a car? yes

is it the one on the left? yes

is it the whole car? yes

is it the whole car? yes

is it the car on the left? yes

is it the whole car? yes

→ Success

is it a person? no

is it a car? yes

is it the one in the middle? no

is it the one on the right? no

is it the one on the left? yes

the one that is cut off? yes

the whole car? yes

the whole car? yes

→ Success

Cat. Instance in the Table). These are about 31% of all games. We further slice the

analysis by considering full dialogues, and only dialogues up to the turn where the

Guesser is able for the first time to correctly predict the object.

First, we notice that the relative frequencies for the baseline in all settings is lower

than that of the belief models. Note that overall, the models ask about the same

number of questions about object categories (see Table 6.3). This clearly shows that

the belief state has a direct influence on what the Question Generator asks about.

Furthermore, we notice in games where it is only necessary to determine the

object category, about every second question of Belief+FineTune has a match with

the predicted category of the belief state. These frequencies are more than twice as

48

6.3. ABLATION STUDY ANALYSIS

Games
Up to 1st

correct Guess
Baseline Belief

Belief+

FineTune

All Games 7 29.99% 50.04% 42.43%

All Games 3 26.14% 43.63% 39.63%

Single Target Cat. Instance 7 26.06% 47.70% 52.11%

Single Target Cat. Instance 3 17.16% 33.70% 49.72%

Table 6.5: Relative number questions that contain the object category of argmax of

the belief probabilities.

high as those of the baseline model.

For qualitative examples, we refer to the example section in the append C.4.

At the bottom of each example, we provide a table that shows the ar gmax of the

respective probabilities, and in colour code if the generated question contains the

category or not.

In addition, we also visualize the belief state and the question that is generated

via t-SNE [Maaten and Hinton, 2008]. t-SNE is a dimensionality reduction method

that aims at preserving the local distances between points in high dimensional space.

Therefore, points that are close in the t-SNE result in 2d space, are also close in

high dimensional space. We consider all questions that occur at least 1000 times in

dialogues up to the turn where the Guesser is able to correctly identify the target

for the first time. Further, in order to balance among the different questions, we

take the belief state of each question 1000 times. I.e., for each question, we analyse

1000 belief states. The results are shown in Figure 6.7. We colour each question

differently and see that clusters by question appear. This means, that the belief

states that produced that question are similar. This provides further evidence, that

the belief state highly influences the generated question.

6.3 Ablation Study Analysis

In section 5.2 we conducted ablation studies to further investigate the performance

improvements by the belief models.

From the results (Table 5.4) we can interpret where performance improvements

49

6.3. ABLATION STUDY ANALYSIS

(a) Belief (b) Belief+FineTune

Figure 6.7: t-SNE on the belief state of the different models, coloured by question.

are coming from. When removing the dynamic belief probabilities, and providing a

uniform distribution (Bag of Objects), the ablation model’s performance decreases

4.38% compared to the Belief model. This provides evidence on how important the

belief state representing the uncertainty over the objects is. Vice versa, the ablation

model improves over the baseline by 3.35%. This gain can be contributed to the

improved visual perception.

Similar in case of the ablation model that has a belief state, but without receiv-

ing the list of objects. This ablation model improves 1.7% over the baseline. We

conjecture that this improvement is low because of the much larger space of object

categories (81) compared to the average number of objects in the image (8.54).

Therefore, the belief state becomes harder to interpret. Nevertheless, we observe

an improvement over the baseline, which can be contributed to the dynamic belief

probabilities. That is because, in this setting, we do not provide a list of objects in

50

6.4. QUALITATIVE EXAMPLES

Figure 6.8: Venn diagram of solved games for the two ablation study models (left)

and including the Belief model (right).

the image.

Figure 6.8 (left) shows a Venn diagram of the solved games by the two ablation

study models. While 32.75% of games are solved by both models, 25.68% of games

are only solved by one model, and the mass is about equally distributed.

Next, we add the set of games solved by the Belief model to the Venn diagram

(Figure 6.8 right). We see that the majority of the games solved by the Belief model

are also solved by either of the ablation models. Further, there are 8.18% of games

that are not solved by the ablation models, but by the Belief model. We conclude

that the Belief model learns an efficient way of combining the improved perception

(bag of objects) and the dynamic belief state (all categories) in order to solve these

games.

6.4 Qualitative Examples

We provide further qualitative example by picking 5 games at random. We, therefore,

take the original order of the games IDs provided by [De Vries et al., 2017a] on the

validation set and sample game IDs with replacement. We use numpy version 1.15.4

and set the seed to 1. This results in the following game IDs: 5635, 125592, 63722,

51

6.4. QUALITATIVE EXAMPLES

170089, 116089. We choose this approach to minimize cherry picking. The games

with their generated dialogues and images can be found in the appendix in section

C.4. Further examples can be easily viewed with the web tool we also publish (see

section A).

52

7 | Conclusion

We presented a principal method of equipping an end-to-end, task-oriented neural

dialogue model with a belief state similar to the tasks of a dialogue manager in the

traditional dialogue systems pipeline. Our model is end-to-end trainable and does

not require intermediate annotations of dialogue states.

We tested the model on GuessWhat?!, in a visually grounded, task-oriented di-

alogue setting. We conducted an elaborate search on different possible representa-

tions for the belief state for the task at hand. Our best performing model achieves

55.63% on the GuessWhat?! test set. That is an absolute improvement compared to

the baseline of 13.08% and a relative improvement of 30.74%12.

We conducted a detailed analysis of different variants of the model, shading light

on where task success improvements are coming from. At the task at hand, we show

that our model mainly extends the capabilities of the baseline. Main improvements

come for example from games where the target object is the only instance of its

category. Further, we showed that models equipped with an explicit belief state

representation ask better questions in later rounds compared to the baseline. In

terms of task success, this is shown by breaking down the performance over the turns,

linguistically, this also shown by the fact that our models produce fewer repetitions.

In addition, our best model learns extremely effective from the human dialogues, we

show that for early rounds the learned language is even slightly more effective than

that of humans in terms of task success evaluated by the Guesser. We further showed

the direct influence of the belief state on the question that will be generated. Our

ablation studies further show that improvements do not only come from improved

perception but provide evidence that our models learn an efficient representation

combining the improved vision and the dynamic belief state.

12Comparison conducted to the task performance of our implementation of the baseline with the

best number of questions.

53

7.1. FUTURE WORK

7.1 Future Work

In this work, we extensively addressed how the belief state can be used in a super-

vised learning framework. While this model is to the best of our knowledge state

of the art when regarding supervised approaches, we leave it for future work to ex-

plore the efficiency when applying reinforcement learning [Strub et al., 2017, Zhang

et al., 2018] or cooperative learning as in [Shekhar et al., 2019]. Besides our novel

learning paradigm, also our joint architecture for the Questioner could benefit from

the explicit belief state. It could be added to both the common encoder and the

Question Generator. The belief state would be concatenated on a word level, and

the probability distribution would be produced by the Guesser that is also condi-

tioned on the common encoder. It will be interesting to explore if similar results

or improvements can be achieved in this setting, as the Guesser (and therefore the

belief state) is trained jointly with the Question Generator. Moreover, the Decider

module we proposed in [Shekhar et al., 2018] can be conditioned on the belief state.

The proposed models could be extended (e.g. by concatenating the belief state to

the Decider input), or also a module based on the belief state alone can be explored.

In addition, the proposed architecture can easily be transferred to other task-

oriented setups. For example in the navigation setting of [de Vries et al., 2018], the

tourist agent can have a belief state over the possible locations. Another exemplary

application is the mutual friend task [He et al., 2017]. The belief state can be over

the different properties of the friends, such as school, major or company.

Further, learning an efficient, end-to-end representation of the image that can be

used by the Question Generator is still not addressed adequately. Our model that

uses lower-level visual features that in principle should be more expressive does

not outperform the simpler approach of using VGG16 FC8 features. Potentially, ap-

proaches such as [Strub et al., 2018] can be employed also in the Question Generator.

54

Bibliography

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: a system

for large-scale machine learning. In OSDI, volume 16, pages 265–283.

[Antol et al., 2015] Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,

Lawrence Zitnick, C., and Parikh, D. (2015). Vqa: Visual question answering. In

Proceedings of the IEEE international conference on computer vision, pages 2425–

2433.

[Bahdanau et al., 2015] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural ma-

chine translation by jointly learning to align and translate. In 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings.

[Barsalou, 2008] Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol.,

59:617–645.

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-

term dependencies with gradient descent is difficult. IEEE transactions on neural

networks, 5(2):157–166.

[Bird et al., 2009] Bird, S., Klein, E., and Loper, E. (2009). Natural language pro-

cessing with Python: analyzing text with the natural language toolkit. " O’Reilly

Media, Inc.".

[Bobrow et al., 1977] Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A., Thomp-

son, H., and Winograd, T. (1977). Gus, a frame-driven dialog system. Artificial

intelligence, 8(2):155–173.

I

BIBLIOGRAPHY

[Bohnet et al., 2018] Bohnet, B., McDonald, R. T., Simões, G., Andor, D., Pitler, E.,

and Maynez, J. (2018). Morphosyntactic tagging with a meta-bilstm model over

context sensitive token encodings. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July

15-20, 2018, Volume 1: Long Papers, pages 2641–2651.

[Bordes and Weston, 2016] Bordes, A. and Weston, J. (2016). Learning end-to-end

goal-oriented dialog. CoRR, abs/1605.07683.

[Chen and Dolan, 2011] Chen, D. L. and Dolan, W. B. (2011). Collecting highly

parallel data for paraphrase evaluation. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Human Language Technologies-

Volume 1, pages 190–200. Association for Computational Linguistics.

[Cho et al., 2014] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D.,

Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representa-

tions using RNN encoder-decoder for statistical machine translation. In Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special

Interest Group of the ACL, pages 1724–1734.

[Das et al., 2017] Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J. M.,

Parikh, D., and Batra, D. (2017). Visual dialog. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, volume 2.

[de Vries et al., 2018] de Vries, H., Shuster, K., Batra, D., Parikh, D., Weston, J.,

and Kiela, D. (2018). Talk the walk: Navigating new york city through grounded

dialogue. CoRR, abs/1807.03367.

[De Vries et al., 2017a] De Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle,

H., and Courville, A. C. (2017a). Guesswhat?! visual object discovery through

multi-modal dialogue. In CVPR, volume 1, page 3.

[De Vries et al., 2017b] De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O.,

and Courville, A. C. (2017b). Modulating early visual processing by language. In

Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,

and Garnett, R., editors, Advances in Neural Information Processing Systems 30,

pages 6594–6604. Curran Associates, Inc.

II

BIBLIOGRAPHY

[De Vries et al., 2017c] De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O.,

and Courville, A. C. (2017c). Modulating early visual processing by language. In

Advances in Neural Information Processing Systems, pages 6594–6604.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.

(2009). Imagenet: A large-scale hierarchical image database. In Computer Vision

and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255.

Ieee.

[Elliott et al., 2017] Elliott, D., Frank, S., Barrault, L., Bougares, F., and Specia, L.

(2017). Findings of the second shared task on multimodal machine translation

and multilingual image description. In Proceedings of the Second Conference on

Machine Translation, WMT 2017, Copenhagen, Denmark, September 7-8, 2017,

pages 215–233.

[Elliott et al., 2016] Elliott, D., Frank, S., Sima’an, K., and Specia, L. (2016).

Multi30k: Multilingual english-german image descriptions. In Proceedings of the

5th Workshop on Vision and Language, hosted by the 54th Annual Meeting of the

Association for Computational Linguistics, VL@ACL 2016, August 12, Berlin, Ger-

many.

[Elman, 1990] Elman, J. L. (1990). Finding structure in time. Cognitive science,

14(2):179–211.

[Goldberg and Hirst, 2017] Goldberg, Y. and Hirst, G. (2017). Neural Network Meth-

ods in Natural Language Processing. Morgan & Claypool Publishers.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

Learning. MIT Press. http://www.deeplearningbook.org.

[Harnad, 1990] Harnad, S. (1990). The symbol grounding problem. Physica D:

Nonlinear Phenomena, 42(1-3):335–346.

[He et al., 2017] He, H., Balakrishnan, A., Eric, M., and Liang, P. (2017). Learning

symmetric collaborative dialogue agents with dynamic knowledge graph embed-

dings. In Proceedings of the 55th Annual Meeting of the Association for Compu-

tational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:

Long Papers, pages 1766–1776.

III

http://www.deeplearningbook.org

BIBLIOGRAPHY

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778.

[Henderson et al., 2014a] Henderson, M., Thomson, B., and Williams, J. D.

(2014a). The second dialog state tracking challenge. In Proceedings of the 15th

Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL),

pages 263–272.

[Henderson et al., 2014b] Henderson, M., Thomson, B., and Williams, J. D.

(2014b). The third dialog state tracking challenge. In Spoken Language Tech-

nology Workshop (SLT), 2014 IEEE, pages 324–329. IEEE.

[Hochreiter, 1991] Hochreiter, S. (1991). Untersuchungen zu dynamischen neu-

ronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer,

Technische Universität München.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory. Neural computation, 9(8):1735–1780.

[Howard and Ruder, 2018] Howard, J. and Ruder, S. (2018). Universal language

model fine-tuning for text classification. In Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1,

pages 328–339.

[Hu et al., 2016] Hu, R., Xu, H., Rohrbach, M., Feng, J., Saenko, K., and Darrell, T.

(2016). Natural language object retrieval. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4555–4564.

[Jokinen and McTear, 2009] Jokinen, K. and McTear, M. (2009). Spoken dialogue

systems, volume 2. Morgan & Claypool Publishers.

[Jurafsky and Martin, 2019] Jurafsky, D. and Martin, J. H. (2019). Speech and lan-

guage processing. Third, draft edition. unpublished draft, retrieved January 2019.

[Kafle and Kanan, 2017] Kafle, K. and Kanan, C. (2017). Visual question answer-

ing: Datasets, algorithms, and future challenges. Computer Vision and Image

Understanding, 163:3–20.

IV

BIBLIOGRAPHY

[Kazemi and Elqursh, 2017] Kazemi, V. and Elqursh, A. (2017). Show, ask, at-

tend, and answer: A strong baseline for visual question answering. CoRR,

abs/1704.03162.

[Kazemzadeh et al., 2014] Kazemzadeh, S., Ordonez, V., Matten, M., and Berg, T.

(2014). Referitgame: Referring to objects in photographs of natural scenes. In

Proceedings of the 2014 conference on empirical methods in natural language pro-

cessing (EMNLP), pages 787–798.

[Kim et al., 2016a] Kim, J., On, K. W., Lim, W., Kim, J., Ha, J., and Zhang,

B. (2016a). Hadamard product for low-rank bilinear pooling. CoRR,

abs/1610.04325.

[Kim et al., 2017a] Kim, J., Parikh, D., Batra, D., Zhang, B., and Tian, Y. (2017a).

Codraw: Visual dialog for collaborative drawing. CoRR, abs/1712.05558.

[Kim et al., 2016b] Kim, S., D’Haro, L. F., Banchs, R. E., Williams, J. D., Henderson,

M., and Yoshino, K. (2016b). The fifth dialog state tracking challenge. In Spoken

Language Technology Workshop (SLT), 2016 IEEE, pages 511–517. IEEE.

[Kim et al., 2017b] Kim, S., D’Haro, L. F., Banchs, R. E., Williams, J. D., and Hen-

derson, M. (2017b). The fourth dialog state tracking challenge. In Dialogues with

Social Robots, pages 435–449. Springer.

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for

stochastic optimization. In 3rd International Conference on Learning Represen-

tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-

ings.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-

agenet classification with deep convolutional neural networks. In Advances in

neural information processing systems, pages 1097–1105.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998).

Gradient-based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324.

V

BIBLIOGRAPHY

[Li et al., 2016] Li, J., Galley, M., Brockett, C., Gao, J., and Dolan, B. (2016). A

diversity-promoting objective function for neural conversation models. In NAACL

HLT 2016, The 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, San Diego California,

USA, June 12-17, 2016, pages 110–119.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,

D., Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in

context. In European conference on computer vision, pages 740–755. Springer.

[Maaten and Hinton, 2008] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data

using t-sne. Journal of machine learning research, 9(Nov):2579–2605.

[Merity et al., 2017] Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing

and optimizing LSTM language models. CoRR, abs/1708.02182.

[Mikolov et al., 2010] Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khu-

danpur, S. (2010). Recurrent neural network based language model. In Eleventh

Annual Conference of the International Speech Communication Association.

[Minsky and Papert, 1969] Minsky, M. and Papert, S. (1969). Perceptrons: An Intro-

duction to Computational Geometry. MIT Press, Cambridge, MA, USA.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., and Riedmiller, M. A. (2013). Playing atari with deep reinforcement

learning. CoRR, abs/1312.5602.

[Mostafazadeh et al., 2017] Mostafazadeh, N., Brockett, C., Dolan, B., Galley, M.,

Gao, J., Spithourakis, G. P., and Vanderwende, L. (2017). Image-grounded con-

versations: Multimodal context for natural question and response generation. In

Proceedings of the Eighth International Joint Conference on Natural Language Pro-

cessing, IJCNLP 2017, Taipei, Taiwan, November 27 - December 1, 2017 - Volume

1: Long Papers, pages 462–472.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units

improve restricted boltzmann machines. In Proceedings of the 27th international

conference on machine learning (ICML-10), pages 807–814.

VI

BIBLIOGRAPHY

[Paszke et al., 2017] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,

Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic differenti-

ation in pytorch.

[Perez et al., 2018] Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A.

(2018). Film: Visual reasoning with a general conditioning layer. In Thirty-Second

AAAI Conference on Artificial Intelligence.

[Rashtchian et al., 2010] Rashtchian, C., Young, P., Hodosh, M., and Hockenmaier,

J. (2010). Collecting image annotations using amazon’s mechanical turk. In Pro-

ceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data

with Amazon’s Mechanical Turk, pages 139–147. Association for Computational

Linguistics.

[Ritter et al., 2011] Ritter, A., Cherry, C., and Dolan, W. B. (2011). Data-driven re-

sponse generation in social media. In Proceedings of the conference on empirical

methods in natural language processing, pages 583–593. Association for Compu-

tational Linguistics.

[Rohrbach et al., 2015] Rohrbach, A., Rohrbach, M., Tandon, N., and Schiele, B.

(2015). A dataset for movie description. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3202–3212.

[Rumelhart et al., 1985] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985).

Learning internal representations by error propagation. Technical report, Califor-

nia Univ San Diego La Jolla Inst for Cognitive Science.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).

Learning representations by back-propagating errors. nature, 323(6088):533.

[Serban et al., 2016] Serban, I. V., Sordoni, A., Bengio, Y., Courville, A. C., and

Pineau, J. (2016). Building end-to-end dialogue systems using generative hi-

erarchical neural network models. In AAAI, volume 16, pages 3776–3784.

[Shang et al., 2015] Shang, L., Lu, Z., and Li, H. (2015). Neural responding ma-

chine for short-text conversation. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Confer-

ence on Natural Language Processing of the Asian Federation of Natural Language

VII

BIBLIOGRAPHY

Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers,

pages 1577–1586.

[Shekhar et al., 2018] Shekhar, R., Baumgärtner, T., Venkatesh, A., Bruni, E.,

Bernardi, R., and Fernández, R. (2018). Ask no more: Deciding when to guess

in referential visual dialogue. In Proceedings of the 27th International Conference

on Computational Linguistics, COLING 2018, Santa Fe, New Mexico, USA, August

20-26, 2018, pages 1218–1233.

[Shekhar et al., 2019] Shekhar, R., Venkatesh, A., Baumgärtner, T., Bruni, E.,

Bernardi, R., and Fernández, R. (2019). Beyond task success: A closer look at

jointly learning to see, ask, and guesswhat. In Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers). to appear.

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very

deep convolutional networks for large-scale image recognition. In 3rd Interna-

tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings.

[Smith and Gasser, 2005] Smith, L. and Gasser, M. (2005). The development of

embodied cognition: Six lessons from babies. Artificial Life, 11(1-2):13–29.

[Sordoni et al., 2015a] Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simon-

sen, J., and Nie, J.-Y. (2015a). A hierarchical recurrent encoder-decoder for gen-

erative context-aware query suggestion. In Proceedings of the 24th ACM Interna-

tional on Conference on Information and Knowledge Management, pages 553–562.

ACM.

[Sordoni et al., 2015b] Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell,

M., Nie, J., Gao, J., and Dolan, B. (2015b). A neural network approach to context-

sensitive generation of conversational responses. In NAACL HLT 2015, The 2015

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June

5, 2015, pages 196–205.

[Strub et al., 2017] Strub, F., de Vries, H., Mary, J., Piot, B., Courville, A. C.,

and Pietquin, O. (2017). End-to-end optimization of goal-driven and visually

VIII

BIBLIOGRAPHY

grounded dialogue systems. In Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-

25, 2017, pages 2765–2771.

[Strub et al., 2018] Strub, F., Seurin, M., Perez, E., de Vries, H., Mary, J., Preux, P.,

and CourvilleOlivier Pietquin, A. (2018). Visual reasoning with multi-hop feature

modulation. In The European Conference on Computer Vision (ECCV).

[Sukhbaatar et al., 2015] Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-

to-end memory networks. In Advances in neural information processing systems,

pages 2440–2448.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence

to sequence learning with neural networks. In Advances in neural information

processing systems, pages 3104–3112.

[Torabi et al., 2015] Torabi, A., Pal, C. J., Larochelle, H., and Courville, A. C. (2015).

Using descriptive video services to create a large data source for video annotation

research. CoRR, abs/1503.01070.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need.

In Advances in Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,

USA, pages 6000–6010.

[Vinyals and Le, 2015] Vinyals, O. and Le, Q. V. (2015). A neural conversational

model. CoRR, abs/1506.05869.

[Weston et al., 2015] Weston, J., Chopra, S., and Bordes, A. (2015). Memory net-

works. In 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[Williams et al., 2013] Williams, J., Raux, A., Ramachandran, D., and Black, A.

(2013). The dialog state tracking challenge. In Proceedings of the SIGDIAL 2013

Conference, pages 404–413.

IX

BIBLIOGRAPHY

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–

256.

[Williams and Zipser, 1989] Williams, R. J. and Zipser, D. (1989). A learning algo-

rithm for continually running fully recurrent neural networks. Neural computa-

tion, 1(2):270–280.

[Winograd, 1972] Winograd, T. (1972). Understanding natural language. Cognitive

psychology, 3(1):1–191.

[Yang et al., 2016] Yang, Z., He, X., Gao, J., Deng, L., and Smola, A. (2016). Stacked

attention networks for image question answering. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 21–29.

[Young et al., 2014] Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014).

From image descriptions to visual denotations: New similarity metrics for se-

mantic inference over event descriptions. Transactions of the Association for Com-

putational Linguistics, 2:67–78.

[Young et al., 2010] Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J.,

Thomson, B., and Yu, K. (2010). The hidden information state model: A practical

framework for pomdp-based spoken dialogue management. Computer Speech &

Language, 24(2):150–174.

[Young et al., 2013] Young, S., Gašić, M., Thomson, B., and Williams, J. D. (2013).

Pomdp-based statistical spoken dialog systems: A review. Proceedings of the IEEE,

101(5):1160–1179.

[Yu et al., 2016] Yu, L., Poirson, P., Yang, S., Berg, A. C., and Berg, T. L. (2016).

Modeling context in referring expressions. In European Conference on Computer

Vision, pages 69–85. Springer.

[Zhang et al., 2018] Zhang, J., Wu, Q., Shen, C., Zhang, J., Lu, J., and Van Den Hen-

gel, A. (2018). Goal-oriented visual question generation via intermediate re-

wards. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 186–201.

X

BIBLIOGRAPHY

[Zwaan et al., 2002] Zwaan, R., A Stanfield, R., and H Yaxley, R. (2002). Language

comprehenders mentally represent the shapes of objects. Psychological science,

13:168–71.

XI

A | Reproducibility

We make our entire code base public in order to ensure the reproducibility of our

experiments and facilitate future research. The code, models and log files can be

found at github.com/timbmg/belief.

We provide the parameters of the following best performing models:

• Our implementation of the baseline models

• Belief model

• Belief+FineTune model

• Belief model with visual attention

• Belief+FineTune model with visual attention

Moreover, we provide the log files of the models we conducted our analysis on,

namely the Baseline, Belief and Belief+FineTune model. Along, we publish the

jupyter notebook for generating the plots used in this thesis. Lastly, we provide a

web tool for comparing up to two dialogue models and their belief probabilities at

every turn. For an example see Figure A.1.

XII

https://github.com/timbmg/believe

APPENDIX A. REPRODUCIBILITY

Figure A.1: Web tool for browsing and comparing dialogues of different models.

The bounding boxes represent the MS COCO annotations, the red box encloses the

object guessed by the selected model at the end of the dialogue (if different from

the target object), the green box the actual target object and all other objects have a

blue bounding box. Besides the object category, also the probability of the belief is

displayed for every object in the bounding box. This is the probability the Guesser

assigns at the current turn, which can be chosen with the slider. The arrow buttons

at the top allow for changing to the next game.

XIII

B | Hyperparameters

In the following sections, the hyperparameters for the various models are listed. Any

not specified hyperparameters are set according to the suggested default settings in

the original paper (e.g. in case of the optimizer). All models have been trained until

the validation loss was consistently rising. Subsequently, the model of the epoch

achieving the lowest loss on the validation set has been selected.

B.1 Oracle Hyperparameters

Hyperparameter Value

Optimizer ADAM [Kingma and Ba, 2015]

Batch Size 32

Learning Rate 0.001

Gradient Norm Clip 3

Word Embedding Size 300

Category Embedding Size 512

LSTM Hidden Size 512

MLP Hidden Size 512

Table B.1: Hyperparameters of the Oracle model. The same hyperparameters have

been chosen as in [De Vries et al., 2017a].

XIV

B.2. GUESSER HYPERPARAMETERS

B.2 Guesser Hyperparameters

Hyperparameter Value

Optimizer ADAM [Kingma and Ba, 2015]

Batch Size 64

Learning Rate 0.0001

Word Embedding Size 512

Category Embedding Size 256

LSTM Hidden Size 512

MLP Hidden Size 512

Table B.2: Hyperparameters of the Guesser model. The same hyperparameters have

been selected as in [De Vries et al., 2017a].

B.3 Question Generator Hyperparameters

Hyperparameter Value

Optimizer ADAM [Kingma and Ba, 2015]

Batch Size 64

Learning Rate 0.0001

Word Embedding Size 512

Visual Embedding Size 512

LSTM Hidden Size 512

Table B.3: Hyperparameters of the Question Generator model. The same hyperpa-

rameters have been chosen as in [De Vries et al., 2017a] for the baseline model. For

additional hyperparameters of the belief models, and their search space, please see

chapter 5.

XV

B.4. COMPREHENSIVE BELIEF STATE RESULTS

B.4 Comprehensive Belief State Results

Belief State

Representation
|Wv| |R|

Cross

Entropy

Validation

Accuracy

(n=5)

Category 0 64 1.443 49.48%

Category 0 512 1.444 49.40%

Category 128 128 1.439 48.21%

Category 256 256 1.446 48.12%

Category 512 256 1.453 47.93%

Category 0 256 1.443 47.62%

Category 128 256 1.441 47.60%

Category 256 128 1.445 47.53%

Category+Spatial 0 256 1.433 50.00%

Category+Spatial 128 512 1.440 48.75%

Category+Spatial 0 512 1.434 48.44%

Category+Spatial 256 256 1.441 48.32%

Category+Spatial 128 256 1.437 48.24%

Category+Spatial 64 128 1.432 47.87%

Category+Spatial 64 512 1.436 47.86%

Category+Spatial 256 512 1.445 47.76%

Guesser Obj. Rep. 0 256 1.436 49.16%

Guesser Obj. Rep. 64 512 1.436 48.35%

Guesser Obj. Rep. 0 64 1.436 47.93%

Guesser Obj. Rep. 0 512 1.435 47.71%

Guesser Obj. Rep. 128 64 1.438 47.56%

Guesser Obj. Rep. 256 512 1.444 47.51%

Guesser Obj. Rep. 64 64 1.433 47.50%

Guesser Obj. Rep. 128 128 1.436 47.38%

Table B.4: Results and hyperparameter setting for the 8 best (by validation accuracy)

Belief models for each belief state representation.

XVI

C | Analysis

C.1 Number of Parameters

Table C.1 shows the number of parameters of each model. Note that the Belief

model is listed twice. Since the Guesser used for generating the belief state is not

updated the same module can be used to perform the task evaluation. Therefore we

report the number of parameters when considering the Guesser part of the model

and when excluding it. Further, note that the Belief model excluding the Guesser’s

parameters has fewer parameters as the baseline, as the size of the input to the

Question Generator’s LSTM is smaller for the belief model (|Wv| + |R| + |Eword | =
0+ 256+ 512 = 768) as in the baseline (|Wv|+ |Eword | = 512+ 512 = 1024). All

numbers are excluding the visual pipeline.

Model Test Accuracy Parameters

Baseline 42.55% 16.46M

Belief (excluding Guesser) 49.49% 15.19M

Belief (including Guesser) 49.49% 20.23M

Belief+FineTune 54.75% 19.15M

Belief+FineTune + VisAttn 54.23% 23.00M

Table C.1: Number of Parameters of the different Models

XVII

C.2. GAME STATISTICS

C.2 Game Statistics

Games solved by: Baseline Belief Baseline Belief+FT Belief Belief+FT

But not by: Belief Baseline Belief+FT Baseline Belief+FT Belief

Num Games 2,448 4,382 1,999 5,161 2,252 3,480

Num Objects 8.36 8.19 8.66 8.13 9.05 8.50

Num Object Categories 3.51 3.69 3.32 3.88 3.55 3.96

Num Instances of Target Cat. 3.75 3.32 4.28 2.92 4.26 3.08

Log of Target Object Area 8.45 8.85 8.44 8.73 8.70 8.54

Table C.2: Game statistics of the set of games solved by the model in the first row,

but not by the model in the second row. Note that Belief+FineTune is abbreviated

with Belief+FT for space reasons.

All Games Uniform All Categories

Num Games 11,018 10,628

Num Objects 8.54 6.85 6.25

Num Object Categories 3.49 3.33 3.33

Num Instances of Target Cat. 3.99 2.56 2.67

Log of Target Object Area 8.64 9.20 9.20

Table C.3: Game statistics of the set of games solved by the ablation study models.

XVIII

C.2. GAME STATISTICS

Games solved by: Uniform All Categories

But not by: All Categories Uniform

Num Games 3,243 2,853

Num Objects 8.01 8.43

Num Object Categories 3.58 3.61

Num Instances of Target Cat. 3.24 3.75

Log of Target Object Area 8.74 8.66

Table C.4: Game statistics of the set of games solved by the ablation study model in

the first row, but not by the model in the second row.

XIX

C.3. NUMBER OF GAMES BY NUMBER OF OBJECTS

C.3 Number of Games by Number of Objects

Figure C.1: Number of games by number of objects on the validation set.

Figure C.2: Number of games by number of objects with the same category as the

target object on the validation set.

XX

C.4. QUALITATIVE EXAMPLES

C.4 Qualitative Examples

The following pages show different games, the generated dialogue by each model

and the ar gmax of the belief probabilities, or in case of the baseline, of the Guesser

probabilities.

Figure C.3: Game ID: 5635, Target Category: Person

Baseline Belief Belief+FineTune

is it a person? yes

is it a woman? no

is it a woman? no

is it a woman? no

is it a woman? no

is it a woman? no

is it a woman? no

is it a woman? no

→ Failure

is it a person? yes

is it the person on the motorcycle? no

is it the person on the motorcycle? no

is it the person on the left? yes

is it the person on the left? yes

is it the whole person? yes

is it the person on the left? yes

is it the whole person? yes

→ Failure

is it a person? yes

is it a man? yes

is he wearing a hat? yes

is he wearing a hat? yes

is he wearing a hat? yes

is he wearing a hat? yes

is he wearing a hat? yes

is he wearing a hat? yes

→ Failure

1 2 3 4 5 6 7 8

Baseline person person person person person person person person

Belief person person person person person person person person

Belief+FineTune person person person person person person person person

XXI

C.4. QUALITATIVE EXAMPLES

Figure C.4: Game ID: 125592, Target Category: Cup

Baseline Belief Belief+FineTune

is it a piece of furniture? no

is it a piece of furniture? no

is it a piece of furniture? no

is it a piece of furniture? no

is it a piece of furniture? no

is it a piece of furniture? no

is it a piece of furniture? no

is it a piece of furniture? no

→ Failure

is it a chair? no

is it a table? no

is it a glass? yes

is it the one on the right? yes

is it the one on the right? yes

is it the one on the right? yes

is it the one on the right? yes

is it the one on the left? no

→ Success

is it a chair? no

is it a table? no

is it a table? no

is it a lamp? no

is it a lamp? no

is it a lamp? no

is it a table? no

is it a chair? no

→ Failure

1 2 3 4 5 6 7 8

Baseline vase cup dining table dining t. dining t. dining t. dining t. dining t.

Belief vase cup cup cup cup cup cup cup

Belief+FineTune chair dining table vase vase vase vase couch vase

XXII

C.4. QUALITATIVE EXAMPLES

Figure C.5: Game ID: 63722, Target Category: Motorcycle

Baseline Belief Belief+FineTune

is it a vehicle? yes

is it the motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

→ Success

is it a motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole bike? yes

is it the whole bike? yes

→ Success

is it a vehicle? yes

is it a motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

is it the whole motorcycle? yes

→ Success

1 2 3 4 5 6 7 8

Baseline motorcycle motorcy. motorcy. motorcy. motorcy. motorcy. motorcy. motorcy.

Belief motorcycle motorcy. motorcy. motorcy. motorcy. motorcy. motorcy. motorcy.

Belief+FineTune motorcycle motorcy. motorcy.. motorcy. motorcy. motorcy. motorcy. motorcy.

XXIII

C.4. QUALITATIVE EXAMPLES

Figure C.6: Game ID: 170089, Target Category: Zebra

Baseline Belief Belief+FineTune

is it a zebra? yes

is it the one in the middle? no

is it the one on the right? no

is it the one on the right? no

is it the one on the right? no

is it the one on the right? no

is it the one on the right? no

is it the one on the right? no

→ Failure

is it a zebra? yes

is it the one on the left? yes

is it the whole zebra? yes

is it the whole zebra? yes

is it the one on the left? yes

is it the whole zebra? yes

is it the whole zebra? yes

is it the one on the left? yes

→ Failure

is it a zebra? yes

is it the one on the left? yes

is it the one in the middle? no

is it the one on the right? no

is it the one on the left? yes

is it the one in the middle? no

is it the one on the left? yes

is it the one on the left? yes

→ Failure

1 2 3 4 5 6 7 8

Baseline zebra zebra zebra zebra zebra zebra zebra zebra

Belief zebra zebra zebra zebra zebra zebra zebra zebra

Belief+FineTune zebra zebra zebra zebra zebra zebra zebra zebra

XXIV

C.4. QUALITATIVE EXAMPLES

Figure C.7: Game ID: 116089, Target Category: Bowl

Baseline Belief Belief+FineTune

is it a fridge? no

is it a bottle? no

is it a bottle? no

is it a bottle? no

is it a bottle? no

is it a bottle? no

is it a bottle? no

is it a bottle? no

→ Success

is it a person? no

is it the fridge? no

is it the fridge? no

is it on the fridge? no

is it on the fridge? no

is it the fridge? no

is it the fridge? no

is it the fridge? no

→ Failure

is it a person? no

is it a fridge? no

is it a stove? no

is it a stove? no

is it a fridge? no

is it a bowl? yes

is it the one with the white stuff in it? no

is it the one with the white stuff in it? no

→ Success

1 2 3 4 5 6 7 8

Baseline bowl person person person person bowl bowl bowl

Belief bowl bowl bowl person bowl bowl person person

Belief+FineTune refrigerator refrigerator oven refrigerator refrigerator bowl bowl bowl

XXV

C.5. SUNBURST DIAGRAMS

C.5 Sunburst Diagrams

Figure C.8: Sunburst Diagram of Baseline Question Generator with 8 questions per

game.

XXVI

C.5. SUNBURST DIAGRAMS

Figure C.9: Sunburst Diagram of Belief Question Generator with 8 questions per

game.

XXVII

C.5. SUNBURST DIAGRAMS

Figure C.10: Sunburst Diagram of Belief+FineTune Question Generator with 8 ques-

tions per game.

XXVIII

	Acknowledgement
	Abstract
	Introduction
	Overview and Contributions

	Background and Related Work
	Deep Learning
	Multi-Layer Perceptron
	Recurrent Neural Networks
	Gradient-Based Learning

	Visually Grounded NLP
	Dialogue Systems
	Task-Oriented Dialogue Systems
	End-to-End Dialogue Systems
	Multimodal Dialogue Systems

	GuessWhat?!
	Task Setup
	Evaluation

	Advancements in GuessWhat?!
	Guesser and Oracle Improvements
	Question Generator Improvements

	Model
	Baseline Models
	Oracle
	Guesser
	Question Generator

	Belief State
	Motivation
	Model
	Application to other Task-Oriented Dialogue Settings

	Experiments and Results
	Belief State Object Representations
	Object Representations from Annotations
	Fine Tuning
	Visual Attention

	Ablation Studies
	Bag of Objects
	Belief State over All Object Categories

	Analysis
	Task Success
	Task Success by Number of Questions
	Oracle for Number of Questions
	Number of Objects

	Quantitative Linguistic Analysis
	Definite and Indefinite Determiners
	Repetitions
	Influence of Belief State on Category Questions

	Ablation Study Analysis
	Qualitative Examples

	Conclusion
	Future Work

	Bibliography
	Reproducibility
	Hyperparameters
	Oracle Hyperparameters
	Guesser Hyperparameters
	Question Generator Hyperparameters
	Comprehensive Belief State Results

	Analysis
	Number of Parameters
	Game Statistics
	Number of Games by Number of Objects
	Qualitative Examples
	Sunburst Diagrams

