
Combining Reinforcement Learning
and Search for Cooperative

Trajectory Planning

Master Thesis

by

Timo Klein
Degree Course: Economics Engineering M.Sc.

Matriculation Number: 2122521

Institute of Applied Informatics and Formal Description Methods (AIFB)

KIT Department of Economics and Management

Advisor: Prof. Dr.-Ing. Johann Marius Zöllner
Second Advisor: Prof. Dr. Andreas Oberweis
Supervisor: M.Sc. Karl Kurzer
Submitted: August 19, 2021

KIT – The Research University in the Helmholtz Association www.kit.edu

www.kit.edu

Abstract

How can the sample efficiency of decision making in autonomous driving be improved?
This thesis provides an answer by combining Reinforcement Learning (RL) with Monte
Carlo tree search (MCTS). The proposed algorithm plans cooperative trajectories for
scenarios with a flexible number of agents through a novel neural network architecture.
Agent interactions are modeled using a Transformer encoder. Exploiting the limited
information from their own viewpoint, agents are able to generate predictions for other
vehicles. The method builds on an AlphaZero-extension for continuous action spaces
(A0C) by formulating a multi-agent training objective. Its policy enforces action bounds
through a mixture model of transformed normal distributions.

The proposed algorithm is evaluated against an MCTS augmented with domain-specific
heuristics. In a challenging driving scenario, the method is able to outperform the baseline
in terms of sample efficiency and planning speed. In another scenario, the algorithm is
able to recover the heuristic knowledge of the MCTS while learning tabula rasa. Ablation
studies highlight important design choices and provide insights into the significance of
the method’s components. Finally, a comprehensive analysis illuminates the generaliza-
tion capabilities of learned networks and highlights the potential of methods combining
learning with planning and heuristics.

CONTENTS ii

Contents

List of Abbreviations v

1 Introduction 1

2 Preliminaries 3

2.1 Reinforcement Learning . 3

2.1.1 Reinforcement Learning as a Markov Decision Process 3

2.1.2 Decentralized Markov Decision Processes 5

2.1.3 Reinforcement Learning Terminology 6

2.1.4 Centralized Training with Decentralized Execution 8

2.2 Monte Carlo Tree Search . 8

2.2.1 Upper Confidence Trees . 9

2.2.2 Monte Carlo Tree Search in Continuous Action Spaces 11

2.2.3 Monte Carlo Tree Search in Multi-Agent Settings 12

2.3 Neural Networks . 13

2.3.1 Deep Learning . 13

2.3.2 Convolutional Neural Networks . 16

2.3.3 Attention and Self-Attention . 18

2.3.4 Gaussian Mixture Models . 20

3 Related work 23

4 Concept 25

4.1 Environment . 25

4.1.1 Input Representation . 25

4.1.2 Reward function . 28

4.1.3 Action space . 31

4.2 Enforcing action bounds . 32

4.3 Objective Function . 35

4.3.1 Training target . 35

CONTENTS iii

4.3.2 Single-agent objective . 35

4.3.3 Multi-agent objective . 37

4.4 Guiding the Search . 38

4.5 Network architecture . 40

4.6 Training algorithm . 42

5 Implementation 45

5.1 System implementation . 45

5.2 Restricting the policy standard deviation 47

6 Evaluation 50

6.1 Evaluation Metrics . 50

6.2 The baseline . 51

6.3 Does the model work as intended? . 54

6.4 Which selection policy to choose? . 58

6.5 How well does the learned model perform versus pure MCTS? 60

6.6 How important is the number of iterations? 65

6.7 How many mixture components are needed? 66

6.8 What is the effect of centralized training? 68

6.9 How important are the learned value estimates? 69

6.10 Which loss components are critical for success? 71

6.11 How well can the learned policies generalize? 73

7 Discussion 76

7.1 Findings . 76

7.2 Limitations . 77

7.3 Outlook . 79

8 Conclusion 80

A ECA automatic kernel size 81

B Proof of Proposition 1 81

CONTENTS iv

C Squashed normal log probability correction 84

D Numerically stable log probability formula 84

E Evaluation scenarios 86

F Reward parameters 87

G Network architecture 88

H Hyperparameters 90

I Baseline hyperparameters 92

J Set of training seeds 93

K Set of evaluation seeds 93

L Iteration randomization 94

LIST OF ABBREVIATIONS v

List of Abbreviations

CDF Cumulative Distribution Function

CNN Convolutional Neural Network

dec-MDP decentralized Markov Decision Process

DQN Deep Q Network

DRL Deep Reinforcement Learning

DUCT Decoupled UCT

GMM Gaussian Mixture Model

MARL Multi-Agent Reinforcement Learning

MCTS Monte Carlo tree search

MDP Markov Decision Process

MLP Multilayer Perceptron

PDF Probability Density Function

POMDP Partially Observable Markov Decision Process

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

SAC Soft Actor-Critic

UCT Upper Confidence Trees

LIST OF FIGURES vi

List of Figures

1 Markov Decision Process (MDP) . 4

2 Monte Carlo tree search . 11

3 Perceptron . 14

4 Multilayer Perceptron . 15

5 Convolution . 17

6 Self-attention . 20

7 Agent view maze . 21

8 Scenario example . 26

9 Agent view example . 26

10 Squashed normal density . 33

11 Guided Monte Carlo tree search . 39

12 Multi-agent Transformer . 41

13 Different versions of restricting the policy standard deviation 48

14 Action space pruning for scenario 06 . 55

15 Action space pruning for scenario 08 . 56

16 Agent trajectories for scenario 08 . 57

17 Training success for different selection policies 58

18 Evaluation success for different selection policies 59

19 Training plots for different scenarios . 60

20 Success rate and desires fulfilled in scenario 06 63

21 Success rate and desires fulfilled in scenario 08 64

22 Training plots for different iterations . 65

23 Evaluation results for different iterations 66

24 Training for different numbers of components 67

25 Evaluation for different numbers of components 68

26 Centralized training versus decentralized training 68

27 Rollout training and explained variance . 70

28 Evaluation of different rollout strategies . 71

LIST OF FIGURES vii

29 Training progress for different losses . 72

30 Loss components during training . 72

31 Scenario 01 . 86

32 Scenario 02 . 86

33 Scenario 03 . 86

34 Scenario 04 . 86

35 Scenario 05 . 86

36 Scenario 06 . 87

37 Scenario 07 . 87

38 Scenario 08 . 87

39 Iteration randomization success rate . 94

LIST OF TABLES viii

List of Tables

1 Literature on RL and search. 23

2 Baseline performance for 100 and 200 iterations 53

3 Final selection performance in scenario 06 59

4 Scenario 08 performance versus the baseline 61

5 Scenario 06 performance versus the baseline 62

6 Scenario 08 wall clock time performance 62

7 Scenario 06 wall clock time performance 63

8 Training wall clock time for different iterations 66

9 Generalization performance . 74

10 Reward function constants . 87

11 MCTS hyperparameters for the RL algorithm 91

12 Training hyperparameters for the RL algorithm 92

13 MCTS hyperparameters for the baseline 93

1 INTRODUCTION 1

1 Introduction

Reinforcement Learning (RL) has been responsible for some of the biggest breakthroughs
in the recent history of artificial intelligence. It has solved the long standing grand chal-
lenge of Go [73], achieved Grandmaster-level performance in the video game Starcraft II
[81] and navigated balloons in the stratosphere [6]. Succeeding in tasks which experts
deemed decades away has been made possible by a combination of classical RL with
neural network function approximation called Deep Reinforcement Learning (DRL). Due
to its tremendous achievements, some researchers have even hypothesized that reward
maximization is sufficient for the construction of artificial general intelligence [76].

A tantalizing application domain for such an artificial intelligence is highly automated
traffic. Futurists imagine meals delivered by autonomous vehicles and parcels arriving via
autonomous drones. Seamless cooperation between cars and trucks on highways makes the
congestion plaguing large cities a thing of the past. Along the way, the efficiency gains
of fully autonomous traffic reduce humanity’s carbon footprint and contribute towards
overcoming the biggest challenge of our generation: climate change [67].

Why has this future not been realized yet despite DRL’s fabulous success stories? As
amazing of a tool as it is, DRL is still bedeviled by many issues. Particularly its de-
ployment to the real world has been impeded by what is in robotics called the reality
gap. Looking at the achievements presented in the introductory paragraph, a common
thread emerges: DRL has been successful in domains where simulators can provide the
vast amounts of data needed for trial and error learning. On the other hand, progress in
real-world applications has been slow.

Delving deeper into the reality gap, a number of smaller issues emerge which together
hamper the adoption of DRL for autonomous driving. A recent survey has identified nine
challenges holding back RL in the real world [21]. Of these, four are of particular interest
and together with a fifth question form a set of guiding research objectives for this thesis:

1. Being able to learn on live systems from limited samples.

2. Learning and acting in high-dimensional state and action spaces.

3. Reasoning about system constraints that should never or rarely be violated.

4. Being able to provide actions quickly, especially for systems requiring low latencies.

5. Dealing with other learning agents within the same environment.

In the autonomous driving setting on which this work is based, cooperative driving sce-
narios are given and implemented in a simulator. An Monte Carlo tree search (MCTS)

1 INTRODUCTION 2

based planner is used to solve these situations [46]. The main research objective can
therefore be narrowed down to:

How can the sample efficiency of a cooperative planning algorithm be improved?

To answer this research question, a combination of DRL and the aforementioned MCTS is
employed. The method is motivated by the success of AlphaZero in Go, where intertwining
learning and search has led to superior performance compared to supervised learning [73,
75]. Building on previous work, a hybrid input representation is used by a neural network
to prune likely unpromising actions from the MCTS sampling [47]. The network is inspired
by recent Transformer architectures [80, 19, 20] and uses a self-attention mechanism to
learn proposal distributions for a flexible number of agents. Through the Transformer,
an agent is able to predict the behavior of other agents with the limited data available
from its own point of view. Usage of a transformed Gaussian distribution allows the
enforcement of action bounds, thereby conforming to the physical limitations of real-life
vehicles [29]. Lastly, the algorithm is trained by extending a recently proposed AlphaZero
modification (A0C) for continuous action spaces [58] to multi-agent environments.

The structure of this thesis is given as follows: First, the theoretical basis for the proposed
method is defined by an introduction to RL. Then, MCTS is explained along with some
relevant modifications. Neural networks are introduced next, with a focus on important
building blocks for this thesis. The third chapter constitutes a short review of related
literature and provides context to the approach. Afterwards, the environment is defined,
which is followed by the derivation of a transformed normal distribution. Subsequently,
the A0C loss is extended to multi-agent settings before the network architecture is intro-
duced. Last in the chapter, the guided MCTS procedure is described. This is followed
by a short section on implementation details. The next chapter presents the evaluation
results of the proposed algorithm and discusses its empirical performance. A discussion
of the results along with their limitations is followed by a conclusion and an outlook.

To summarize, this thesis provides the following contributions to extant literature:

• Novel self-attention based network architecture suitable for applying guided MCTS
to scenarios with a flexible number of agents.

• Extension of the A0C loss for continuous domains to multi-agent settings.

• Thorough empirical evaluation demonstrating the sample efficiency and generaliza-
tion abilities at test time.

2 PRELIMINARIES 3

2 Preliminaries

This chapter introduces the theoretical foundations of the proposed method. First, the
basics of Reinforcement Learning (RL) are described starting with Markov Decision Pro-
cesses (MDPs). Following is a subsection extending MDPs to a more general multi-agent
setting: decentralized Markov Decision Processes (dec-MDPs). Then relevant RL ter-
minology is introduced. Next, the concept of Centralized Training with Decentralized
Execution is explained, which is a very common framework for training Multi-Agent Re-
inforcement Learning (MARL) algorithms. The second sub-chapter describes the Monte
Carlo tree search (MCTS) planning algorithm and its most common instantiation, Up-
per Confidence Trees (UCT). This is followed by two important extensions that allow
the application of MCTS to problems with continuous action spaces and multiple agents.
The last section introduces neural networks with a particular focus on concepts relevant
to the approach chosen in this thesis. These are namely Convolutional Neural Networks
(CNNs), the self-attention mechanism and Gaussian Mixture Models (GMMs).

2.1 Reinforcement Learning

The following chapter gives an introduction into the main RL formalism, namely MDPs.
This problem specification is then extended to multi-agent settings with dec-MDPs. RL
terminology is described next before the chapter ends with a brief description of a common
MARL training paradigm.

2.1.1 Reinforcement Learning as a Markov Decision Process

Borrowing slightly adapted notation from [24], an RL problem can be formalized as a
5-tuple 〈S,A, P,R, γ〉, where1:

• S is the state space of the environment.

• A is the action space of the environment.

• P (s′|s, a) : S ×A× S → [0, 1] is the transition function specifying the dynamics of
the environment. That is, given a state s ∈ S and an action a ∈ A, the transition
function outputs a probability distribution over the next state s′ ∈ S.

• R(s, a, s′) : S × A × S → R is the reward function of the environment, mapping a
transition (s, a, s′) to a real-valued reward r ∈ R.

1To make the notation more concise, in the following text s′ := st+1, a′ := at+1, s := st and a := at

are used as abbreviations.

2 PRELIMINARIES 4

Agent

Environment

Action atState st Reward rt

rt+1

st+1

Figure 1: MDP control loop. The agent receives a state st and a reward rt. Once the
action at is selected, the environment transitions to the next state st+1. The transition
yields a new reward rt+1.

• γ ∈ [0, 1] is a discount factor which weighs future rewards.

In an MDP, the agent and the environment interact with each other over a sequence of
discrete time steps t = 0, 1, 2, More specifically, at time step t the environment is in
state s ∈ S. The agent perceives this representation and chooses an action a ∈ A. After
execution of action a, the environment transitions into the next state s′ ∼ P (s′|s, a). The
transition (s, a, s′) also yields a reward R(s, a, s′) for the agent. The whole process is
illustrated schematically in Figure 1. Resulting from the agent-environment interaction
is a sequence of transitions which is called a trajectory and denoted as

T =
(
(s0, a0, r0), . . . , (st−2, at−2, rt−2), (st−1, at−1, rt−1), st

)
, (2.1)

where st is a terminal state [24].

There are two important characteristics of the above MDP definition meriting further
explanation. First, the process is fully observable. This means that the agent observes
the true state of the environment. A model that extends MDPs to partially observable
environments is the Partially Observable Markov Decision Process (POMDP), which is
not considered in this work. The second key characteristic of the MDP framework is that
the transition function exhibits the Markov property. It requires that P (s′|s, a) solely
depends on the previous state-action pair s, a instead of the whole sequence of previous
states and actions [77]. The Markov property can be stated formally as

P (st+1|st, at) = P (st+1|st, at, st−1, at−1, . . . , s0, a0) . (2.2)

On one hand, this assumption simplifies modeling the transition dynamics significantly.
On the other hand, the Markov property imposes restrictions on the state s ∈ S, as it
must now encode the knowledge of all previous agent-environment interactions [77].

2 PRELIMINARIES 5

The rule by which an agent selects actions is called a policy and denoted as

π(a|s) : S ×A → [0, 1] . (2.3)

It is a mapping from an action a to the probability of selecting that action given a state
s.

Finally, the goal of the agent within the MDP framework is to find a policy that maximizes
the discounted future reward ∑∞k=0 γ

krt+k+1 [77]. This can be expressed in terms of the
so called value function [77]

V π(s) = Eπ
[∞∑
k=0

γkrt+k+1

∣∣∣∣ st = s
]
, ∀s ∈ S , (2.4)

where V π(s) is the expected reward when starting in state s and following policy π.

The agent’s optimization goal can now be expressed in terms of the value function as

V ∗(s) = max
π∈Π

V π(s) , (2.5)

where V ∗(s) is the optimal value function. Another function playing an important role in
RL is the action-value function or Q function. It is similarly defined to the value function
with the key difference being that it additionally conditions on the action [77]:

Qπ(s, a) = Eπ
[∞∑
k=0

γkrt+k+1

∣∣∣∣ st = s, at = a
]
. (2.6)

The optimal Q function is defined analogously [24]:

Q∗(s, a) = max
π∈Π

Qπ(s, a) . (2.7)

A key aspect in which the Q function differs from the value function is that it allows a
direct expression for the optimal policy π∗(a|s). If in each state s ∈ S the agent selects
the action a ∈ A with the highest Q-value, it automatically follows the optimal policy
[24]. Equation 2.8 shows this relationship

π∗(s) = arg max
a∈A

Q∗(s, a) . (2.8)

The formalism described above covers single-agent settings. Since the goal of this thesis
is to learn behavior in environments with multiple agents, it must be extended. A general
extension of MDPs for multiple agents is called a dec-MDP and described in the next
section.

2.1.2 Decentralized Markov Decision Processes

So far only solutions single-agent MDPs have been considered. In the real world however,
agents often compete with each other for resources or cooperate in teams to achieve a
common goal. Incorporating the set of agents into the problem specification, a dec-MDP
can be described as the 6-tuple 〈Υ,S,A, P,R, γ〉[62, 46], where:

2 PRELIMINARIES 6

• Υ is the set of available agents with indices i ∈ {1, 2, . . .}.

• S = ×Si represents the joint state space, where Si denotes the state space of agent
i.

• A = ×Ai formalizes the joint action space, where Ai denotes the action space of
agent i.

• P (s′|s, a) : S × A × S → [0, 1] is the transition function specifying the dynamics
of the environment. Note that the transition function now conditions on the joint
action a of all agents.

• R(s, a, s′) : S × A × S → R is the reward function of the environment, mapping a
joint transition (s, a, s′) to a real-valued reward r ∈ R.

• γ ∈ [0, 1] is a discount factor, describing the influence of future rewards.

In the following work, a variable denoted with the subscript i refers to the agent i.

As with MDPs, a dec-MDP makes two important assumptions which require further ex-
amination. The first assumption is that agents select their actions independently without
knowing about other agent’s decisions. While the solution to the dec-MDP is a joint pol-
icy Π = 〈πi, . . . , πn〉, each agent only optimizes its individual policy πi : Si ×Ai → [0, 1]
[62].

The second assumption is that the dec-MDP is jointly observable [62], meaning that com-
bining the observations of all agents allows recovering the exact state of the environment.
To give a concrete example relevant to this work, consider an environment where multiple
cars are on a road and each car observes its own location and dynamics (e.g. velocity,
steering angle, etc.) perfectly. Then combining the observations of all vehicles would yield
the complete state of the environment.

2.1.3 Reinforcement Learning Terminology

Since its inception in the late 1970’s [77], RL as a field has developed its own terminology
for a variety of concepts. Since some of them are relevant to understand content in later
chapters of this work, they are briefly explained here.

Recall that the goal of RL from Section 2.1.1 is to find a policy π(a|s) that maximizes
future reward. The question then becomes: How can such a policy be learned? In general,
RL algorithms can be categorized into two broad classes: policy-based and value-based.
Policy-based methods try to directly learn a policy which maximizes Objective 2.4. A
very common class of algorithms within this framework are policy gradients, among which
REINFORCE is known best [86]. Value-based algorithms try to instead learn a value

2 PRELIMINARIES 7

function or Q-function from which the optimal policy can be derived. Q-Learning and an
extension called Deep Q Network (DQN) [57] are its most prominent representatives.

DQNs belong to a major area of focus for current research in RL called Deep Reinforce-
ment Learning (DRL). Consider a simple environment like a 9 × 9 grid maze: In such
an environment it is possible to simply store all relevant quantities in a table. As state
or action spaces grow large or even infinite, the approach quickly becomes intractable.
A solution to this problem is to approximate the Q-function or policy using deep neu-
ral networks, which are introduced in section 2.3. The combination of RL and function
approximation is called DRL and responsible for many recent breakthroughs in artificial
intelligence [57, 73].

A learned policy can be either stochastic π(a|s) or deterministic π(s). Given a state s, a
deterministic policy will always select the best known action a. This inhibits exploration
of actions which are currently deemed suboptimal but could provide better returns in the
long run. To alleviate the issue, deterministic policies usually inject randomness into the
action selection to encourage exploration. Examples are ε-greedy action selection [57] or
adding action noise via some stochastic process [54, 75]. Another option is to learn the
parameters of a distribution from which actions can then be sampled. Particularly in
continuous control settings this is a common strategy, where often the parameters of a
normal distribution are learned. An example of an algorithm learning a stochastic policy
is Soft Actor-Critic (SAC), which is a very competitive model-free method for continuous
control [28].

The term model-free in the last sentence refers to systems that are only learning from trial-
and-error [77]. Model-based methods on the other hand rely on a model of the environment
to plan future actions. This model can either be given, for instance through the rules of
the game like in chess, or it can be learned by the algorithm [77]. The system described
in Section 4 is an example of a model-based algorithm.

Lastly, RL systems can be differentiated into off-policy and on-policy algorithms. To give
a succinct explanation: "On-policy methods attempt to evaluate or improve the policy that
is used to make decisions, whereas off-policy methods evaluate or improve a policy different
from that used to generate the data" [77]. To illustrate the difference, consider again the
example of DQN. Just like this thesis (see Algorithm 1), it uses a replay buffer to store
past experiences and learn from them. These experiences however are all gathered from
different policies, since between environment interactions training occurs. It is therefore
an off-policy method. On-policy methods on the other hand are trained using only data
gathered from the current policy. The reuse of previous experiences in what is called
experience replay allows off-policy algorithms to be more sample efficient [24].

2 PRELIMINARIES 8

2.1.4 Centralized Training with Decentralized Execution

In the dec-MDP framework, each agent selects its own actions independently of the other
agent’s choices. This paradigm is called decentralized execution. During training however,
it is desirable that agents have access to additional information to accelerate the training
process [56]. Due to the nature of training RL agents in a simulator, conditioning on extra
knowledge is a commonly used approach. This gives rise to a paradigm called Centralized
Training with Decentralized Execution, where the agent may utilize additional data during
training which it cannot access at inference time [23].

2.2 Monte Carlo Tree Search

MCTS is a decision-time planning algorithm which uses multiple sampled trajectories
to approximate an action-value function [77]. At each step, simulations are run until
a computational budget is exhausted, building a tree rooted at the current state. The
simulation statistics accumulated at the root node are then used to make a final decision.
As a model-based method it relies on knowledge of the environment’s transition dynamics,
which are usually known beforehand (e.g. in games like Go) but could also be learned2

[24]. MCTS exhibits a number of desirable characteristics [12]:

• Aheuristic: While the algorithm’s performance can often be increased by including
domain-specific knowledge into the search3, the base version already works on a wide
variety of problems without any modifications.

• Anytime: MCTS can be terminated at any time during the search and immediately
yield up-to-date results.

• Asymmetric: The algorithm’s search favors more promising nodes in the search
tree, thus providing more accurate results for important regions of the tree.

The following chapter provides an overview over the MCTS algorithm, starting with the
most popular single-agent variant called Upper Confidence Trees (UCT). This algorithm
is then extended to be applicable to dec-MDPs with a continuous action space in the
subsequent sections. The MCTS description mostly follows [12] using notation adopted
from [58] and [73, 75] to keep consistency with Chapter 4.

2An example of an algorithm that learns the transition dynamics is MuZero [70].
3In Section 6.2 the effect of heuristics on the MCTS used as baseline for this work is evaluated.

2 PRELIMINARIES 9

2.2.1 Upper Confidence Trees

To describe the basics of MCTS, it makes sense to start with a simple MDP first. It is
simple in the sense that the action spaceA is discrete and finite. An additional assumption
is that |A| is "small", where small in this case means that the cardinality of the set A is
smaller than the number of MCTS iterations. While the algorithm is still applicable if
this condition is not met, it requires modifications to perform well. One such modification
is introduced in Section 2.2.2.

At each state s ∈ S of the environment, the UCT algorithm builds a new tree starting
from the current state. As this state constitutes the root of the search tree it is denoted
as s0. Each node within the tree stores an environment state s ∈ S4. Each edge consists
of a state-action pair (s, a) and stores a set of statistics {n(s, a),W (s, a), Q(s, a)}5, where
n(s, a) is the visitation count andW (s, a) is the cumulative sum of returns for each action.
Q(s, a) = W (s, a)/n(s, a) represents the approximated state-action value [58].

The MCTS algorithm then grows the tree with each simulation run according to the
four steps illustrated graphically in Figure 2 and described in the following. The name
Upper Confidence Trees (UCT) comes from applying a selection policy based on upper
confidence bounds [43, 42]. Through this, the algorithm is able to find a solution to the
exploration-exploitation dilemma.

1. Selection
A so called tree policy πtree descends down the tree starting from the root node s0,
selecting actions according to the UCB formula

UCT(a) = Q(s, a) + Cuct

√√√√ log n(s)
n(s, a) (2.9)

until a leaf node is reached. Here n(s) = ∑
a n(s, a) denotes the total visitation count

of state s and Cuct > 0 is a constant controlling the weight of the exploration term.
A node is defined to be a leaf node if it is both non-terminal and expandable (i.e.
has unvisited actions) [12]. Note that the correct exploration-exploitation trade-off
is only achieved if Q(s, a) is properly scaled between 0 and 1 to not diminish the
exploration term [12].

2. Expansion
Once a leaf node is reached, the tree is expanded by selecting a previously unvisited
action ā, leading to a new leaf state sL. L denotes the depth of node sL in the tree
and indicates that it is a leaf node. This is usually achieved by setting UCT(ā) =∞

4Usually environment states are vectors or matrices and are denoted in bold. To improve readability,
the bold font is omitted in the MCTS section.

5To keep it simple, subscripts for node depth are used only when they are needed for disambiguation.

2 PRELIMINARIES 10

for all actions ā that have not been visited yet. If there are multiple unexplored
actions to choose from, the tie can be broken by selecting an action at random [12].

3. Simulation
Starting from the newly selected node sL, a simulation policy πsimulation is used to
perform a Monte Carlo rollout until a predetermined depth or a terminal stage is
reached. The simplest possible policy πsimulation is to select an action uniformly at
random from the set of available actions A. Once the ending conditions are met,
the simulation policy halts with a stored trajectory T

T =
(
(sL+1, aL+1, rL+1), . . . , (sL+D, aL+D, rL+D)

)
. (2.10)

The accumulated and discounted rewards ∆ = ∑D−1
d=0 γ

drL+d+1 can now be used as
a Monte Carlo estimate of the leaf node’s value function V (sL) [58].

4. Backup
In the last step, the nodes that have been visited on the descent down the tree must
be updated with the estimated value of the new node. Given the trace

T =
(
(s0, a0, r0), . . . , (sL−1, aL−1, rL−1)

)
(2.11)

within the tree, the total action values of the trace can be computed recursively as

R(sd, ad) = r(sd, ad) + γR(sd+1, ad+1), 0 ≤ d < L . (2.12)

The recursion is initialized with the Monte Carlo value estimate of the expanded
node R(sL, aL) = ∆ = V (sL). Now the cumulative sum of returns for all actions
visited during the iteration is updated for each edge (sd, ad) with W (sd, ad) ←
W (sd, ad) + R(sd, ad). The corresponding visitation counts are incremented with
n(sd, ad)← n(sd, ad)+1. Finally, the update can be completed by re-computing the
approximate state-action values Q(sd, ad) = W (sd, ad)/n(sd, ad). This backup step
is then recursively applied to all nodes up the tree until the root node s0 is reached
[12, 58].

Once a fixed number of iterations N is completed, the algorithm terminates with a tree
of exactly N nodes, since with each iteration one leaf node sL has been added. The root
node now holds the visitation counts for each available action n(s, a), ∀a ∈ A together
with their action-value estimates Q(s, a). There are multiple criteria for selecting the
action to be executed within the environment, among which two are commonly used [12]:

1. afinal = maxa Q(s0, a): selection of the action with the highest action-value estimate.

2. afinal = maxa n(s0, a): selection of the action that has been visited the most.

2 PRELIMINARIES 11

∆

πtree πsimulation

Selection Expansion Simulation Backup

Figure 2: Illustration of the four phases in each MCTS iteration. The tree policy πtree
traverses the tree until an expandable node is reached. A simulation policy πsimulation then
performs a rollout, resulting in an outcome ∆. Finally, the tree statistics are updated in
the backup phase. Graphic is based on [12].

While the first selection rule seems intuitive at first, it suffers from the high variance
of Q(s, a) estimates for actions with low visitation counts. A more common choice is
therefore the selection of maxa n(s0, a) since the visitation counts are more robust to
outliers. Usually though both rules are tried and the decision is made based on empirical
performance in the application domain.

The plain UCT algorithm described above can neither select actions for multiple agents
nor can it deal with continuous action spaces. Since the goal of this thesis is to plan
cooperative driving trajectories, it must be extended to function in such settings. These
necessary extensions are the topic of the next two sections.

2.2.2 Monte Carlo Tree Search in Continuous Action Spaces

UCT as discussed so far cannot handle continuous action spaces. To see why, it is worth
remembering that any interval on the real line contains infinitely many numbers. There-
fore |A| =∞ and the MCTS never stops exploring actions at the root node, growing a tree
without any depth. A technique that deals with this dilemma and allows for exploitation
in continuous action spaces is called Progressive Widening [18]. It proceeds as follows:
Each time the tree policy visits a node in the tree (including the root node), the criterion
in Equation 2.13 is evaluated and the number of available actions m(s) is determined [58].

m(s) = Cpw · n(s)αpw . (2.13)

2 PRELIMINARIES 12

Here Cpw > 0 and αpw ∈ [0, 1] are constants and control whether a flat tree (exploration)
or a deep tree (exploitation) is built [18]. If the number of already chosen actions |As| in
state s is smaller than m(s), the conditions for progressive widening are met. Then one
or more new actions are sampled from the action space and added as edges. Through
this procedure, the tree slowly grows larger in areas that are visited more often, gradually
filling out the interval on which the continuous action space is defined [18]. The most basic
strategy for sampling new actions is uniform sampling. More sophisticated approaches
are however also possible as will be explored in this thesis (see Section 4.4).

2.2.3 Monte Carlo Tree Search in Multi-Agent Settings

UCT with progressive widening as introduced in the previous section has the ability to
deal with continuous action spaces. It is however not applicable to dec-MDPs out of the
box. In the following, an extension to UCT called Decoupled UCT (DUCT) is described
which has been shown to work well empirically in settings with multiple agents [78, 50].

The core idea behind DUCT is that each agent i ∈ Υ maintains its own set of statistics
{ni(s, a),Wi(s, a), Qi(s, a)}. All rewards and visitation counts are treated as if there were
no dependency between them which is called decoupling. As a result, each agent retains
its own tree policy πtree,i by independent application of Formula 2.9.

During the selection phase, iterative action selection for all agents without knowledge
of each other’s choices generates a joint action a ∈ ×Ai [78]. Since the UCT value of
an unexplored action is infinite, it is ensured that each agent tries each action at least
once. This does not mean however that all combinations of all actions are selected at
least once. As a consequence, the full joint action space ×Ai is not completely explored
[78]. If the joint action a has already been chosen previously, the search progresses to the
corresponding node and recursively applies the selection policy again.

If at least one agent chooses an unexplored action or the combination of independent
best actions ai has not been selected yet, the search tree is expanded and a leaf node is
added. Compared to Section 2.2.1, the edge leading to the new node now comprises a
joint action and a joint state (s, a), where the joint state s is the concatenation of the
individual agents’ states.

In the simulation phase, each agent now has its own rollout policy πsimulation,i to sample
actions from (analogous to the plain UCT algorithm). Together they form a joint action
for all agents and allow performing Monte Carlo estimates of the leaf node in a multi-
agent setting. Similarly to the single-agent case, uniform random sampling for each agent
is a natural choice as rollout policy. The simulation results in a reward vector ∆ =
(∆1, . . . ,∆|Υ|) that has to be backed up through the tree. Since all actions chosen during
the selection phase have been joint actions, each agent increments its own, independently

2 PRELIMINARIES 13

stored values and visitation counts and updates its action-value estimates Qi(s, a) [78].

In the last step, each agent individually selects the action with the highest Qi(s, a),
forming a joint action that is then executed in the environment. To what does the
algorithm described above converge? This can be analyzed using tools from game theory,
where each step of the dec-MDP can be seen as a simultaneous move game. The solution
to such a game is called a Nash equilibrium, which is defined by mutual best responses.
This means that no player has a reason to switch strategies given the other player’s
strategy. The DUCT algorithm does not converge to such an optimum [78]. However,
its strong empirical performance compared to other approximate solution methods still
makes it a good choice for a dec-MDP [78, 50].

The extension of DUCT to continuous action spaces is straightforward: As each agent
has its own tree policy πtree,i, it is able to evaluate criterion 2.13 on its own and decide
whether a new action needs to be sampled or not. Consequently, the number of actions
chosen may be different for each agent in each node of the tree. While this poses no
problem for the DUCT algorithm, it makes training a network to guide the search more
challenging, as will be discussed in Section 4.3.3.

2.3 Neural Networks

In simple Reinforcement Learning (RL) environments, it is often possible to store the
value function or Q(s, a) in a table and compute the optimal policy. Most interesting
applications however have either large state spaces (e.g. images) or large action spaces,
for instance in continuous control. In these settings, an optimal policy or optimal value
function can only be approximated.

One commonly used technique for function approximation — originally intended for su-
pervised learning — are neural networks, which are the topic of this chapter. The first
section introduces artificial neurons and how they can be combined to construct more ex-
pressive, deep models. Then Convolutional Neural Networks (CNNs) are briefly explained
as they form the backbone of most current advances in image processing. Next, an atten-
tion mechanism is introduced which allows a neural network to learn interactions between
elements of a sequence. The last section discusses a class of models that can represent an
arbitrary conditional probability distribution called Gaussian Mixture Models (GMMs).

2.3.1 Deep Learning

The basic model of an artificial neuron has been introduced in 1958 as the "Perceptron"
and has not changed much since then [68]. Figure 3 depicts its structure. The goal of such
a model is to approximate some function y = f ∗(x), for instance in a regression problem

2 PRELIMINARIES 14

Activation
function

∑
w1x1

......

wnxn

w0x0

wbb

Inputs Weights

Figure 3: The Perceptron. First inputs are weighted and summed together with a bias
term. Then they are transformed by a nonlinear activation function.

[26]. Inputs are fed into the neuron and weighted by a corresponding weight, hence the
term "feedforward network" for networks composed of such neurons. Then the weighted
inputs are summed together with a bias term and transformed by a nonlinear activation
function. Mathematically, the process can be described through Equation 2.14 [26]

h = g(wTx + b) =
A∑
a=0

waxa + b , (2.14)

where the inner function wTx + b defines an affine-linear transformation controlled by
a weight vector w and a scalar bias term b. g denotes the activation function. Some
important options for g are introduced in later paragraphs of this section.

The simple model outlined above cannot learn complex relationships between inputs and
outputs. A common example is the XOR function or "exclusive or" [26]. To be able to
solve these kinds of problems, compositions of different functions are needed such that
y = fD(. . . f 2(f 1(x))). Here D specifies the depth of the network. Such a composition
of neurons is called Multilayer Perceptron (MLP). A single layer can be represented by
Equation 2.15:

h = g(WTx + b) . (2.15)

It uses a weight matrix W and a bias vector b to produce a vector-valued output h. The
activation function g is now applied element-wise. Figure 4 depicts a possible network
topology for an MLP with one hidden layer.

Now that the basic concepts of deep learning have been introduced, the choice of an
activation function can be discussed. Clearly it must be a nonlinear function, because
if g is chosen to be linear, the whole network collapses into a linear model [26]. What
activation function should be used then? One commonly used function is called the

2 PRELIMINARIES 15

g

g

g

g

g

g

g

g

g

g

x1

x2

x3

ŷ1

ŷ2

Input
layer

Hidden
layer

Ouput
layer

W1 W2

Figure 4: Visualization of an MLP model. Inputs are passed into a first layer and trans-
formed by a weight matrix W1 and a nonlinear activation function g. The process is
repeated to produce estimates ŷ1, ŷ2. The bias term is not visualized.

sigmoid function and defined as

σ(x) = 1
1 + e−x

. (2.16)

However, it has multiple drawbacks. First, the exponential in the denominator is expensive
to compute. While this is not an issue for small neural networks it can quickly add up to
a noticeable performance overhead in large models with billions of neurons. Second, for
large positive or negative values of x the gradient converges towards 0, making training
difficult [26].

An alternative that fixes the first problem of the sigmoid and partially addresses its
second shortcoming is the Rectified Linear Unit (ReLU) [26]. It is simple to compute
mathematically and can be expressed as

ReLU(x) = max(0, x) . (2.17)

It is a linear function for positive input x and 0 else. While it is easy to compute, it is
still nonlinear and allows the network to function [26].

The last import activation function that needs to be discussed is the Softmax. It is com-
monly used as an output function for classification problems since it can produce a valid
probability distribution over output classes. The probability for class i is defined as the
exponential exi of the activation xi, which is then normalized by the sum of exponentiated

2 PRELIMINARIES 16

activations over all classes k = 1, . . . , K [26].

Softmax(xi) = exi∑K
k=1 e

xk
. (2.18)

MLPs are a good choice for processing a wide array of numerical inputs. They do however
lack the inductive biases needed to succeed in domains where the data has a certain
structure like images or time series. A very common architecture with such a bias are
CNNs [51]. Since they are particularly successful at processing images and the concept
described in this work relies on visual input, they are introduced next.

2.3.2 Convolutional Neural Networks

CNNs [51] are a widely-used architecture of neural network for all kinds of tasks but
excel at processing visual input. In image classification, they have been responsible for
arguably the biggest breakthrough in modern machine learning [44] by introducing three
key concepts into the architecture [26]:

1. Sparsity. In an MLP, every input unit is connected to every output unit. Interac-
tions in convolutional layers are limited to local neurons.

2. Parameter sharing. The localized interactions of a CNN share weights within a
layer.

3. Equivariance to translation. If a pattern in an image is moved to another
location, its feature map will be moved by the same amount.

Properties one and two result in large efficiency gains as a convolutional layer only has to
store a fraction of the weights compared to an MLP [26]. Property three is desirable for
image processing since detecting an edge should succeed irrelevant of its place within the
image.

Using notation from the Squeeze-and-Excitation authors [36] , a convolutional layer trans-
forms an input X ∈ RC′×H′×W ′ to a feature map U ∈ RC×H×W using a set of C filter
weights V = [v1, . . . ,vC]. The transformation can be written mathematically (without
bias terms) as

uc = vc ∗X =
C′∑
s=1

vsc ∗ xs , (2.19)

where ∗ denotes the convolution operation. In Equation 2.19, a single output feature
map uc ∈ RH×W for channel c is constructed by applying the corresponding filter vc =
[v1
c , . . . ,vC

′
c] to each channel of the input X = [x1, . . . ,xC′] [36]. Note that the filter

vc for a single output channel uc has a set of weights for each channel 1, . . . , C ′ of the

2 PRELIMINARIES 17

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0




∗

1 0 1
0 1 0
1 0 1


 =

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0




xc vc uc = vc ∗ x

Figure 5: Visualization of a single computation in a 2D convolution operation. Local
values of the input feature map xc are processed by a 3 × 3 kernel and produce a single
output value. The process is simultaneously performed in all locations to produce the
output feature map uc.

input image. These weights are shared for all local interactions however, indicated by
the constant subscript c. One such interaction is visualized in Figure 5, where a filter
processes local input values to produce a single value in the output feature map.

CNNs model channel dependencies implicitly through the convolutional filter being ap-
plied to all input channels [36]. Since the filter only captures local dependencies, the
learned features lack global context. Squeeze-and-Excitation networks [36] have popu-
larized the concept of channel attention6, which is a mechanism that explicitly allows
the network to learn channel dependencies. More recently, ECA-Net has been proposed
and includes a simplified and more efficient method to add global channel context to the
learning [83]. It describes a two-step mechanism, where in the first step channel statistics
are aggregated via 2D global average pooling:

zc = 1
H ×W

H∑
h=1

W∑
w=1

uc(h,w) . (2.20)

The channel statistic zc can be interpreted as a summary representation of the local
features in channel c. Performing global pooling over all channels of the feature map U
results in a vector z ∈ RC containing the aggregated representations.

To learn interactions between the channel statistics zc, one could now employ a fully
connected neural network [36]. As has been discussed in this section however, convolu-
tional layers are computationally more efficient. In ECA-Net, the channel dependencies
are therefore learned using a 1D convolution with kernel size k:

s = σ(C1Dk(zc)) . (2.21)

The 1D convolution is denoted as C1D while σ indicates the sigmoid activation function.
The resulting feature vector s is now a representation of local channel interactions scaled

6The more general concept of neural attention is introduced in the next section.

2 PRELIMINARIES 18

between zero and one. It can be used to obtain a recalibrated output feature map X̃

x̃c = scuc (2.22)

by scaling each channel of the output feature map uc with the corresponding channel
activation weight sc obtained from the vector s.

The last question remaining now is how the kernel size k of the ECA-module is determined.
The authors give a formula to automatically set the kernel size defined in Equation 2.23

k = φ(C) =
∣∣∣∣∣ log2(C)

γ
+ b

γ

∣∣∣∣∣
odd

, (2.23)

where C is the channel dimension and | · |odd indicates the nearest odd number. γ = 2
and b = 1 are constants given by the authors. The formula is derived in Appendix A.

Channel-attention is a successful mechanism for modeling global context in CNNs. It
is however limited to applications in computer vision. To learn interactions between
arbitrary sequences of inputs, a more general model of neural attention is needed. The
self-attention mechanism described in the next section introduces one such concept.

2.3.3 Attention and Self-Attention

Neural attention architectures originate from natural language processing, where they
have been proposed to solve the alignment problem in machine translation [5]. The
attention mechanism in Sequence-to-Sequence models can be seen as a scoring function:
It learns relative weights for each element of an input sequence used to decode a specific
output element. As established in Section 2.3.1, such a function can be parameterized
by a neural network. By conditioning on all elements of the input sequence with learned
weights, the network is able to model long-range dependencies between the elements.

The Transformer proposed in [80] goes one step further and removes the recurrent en-
coder and decoder in Sequence-to-Sequence, solely relying on attention. The resulting
architecture is able to learn complex dependencies between sequence elements in parallel.
While the model was designed to learn interactions between word tokens in sentences, it
has since then been applied to image data [20], pedestrian trajectory prediction [22] as
well as RL [87]. This section introduces the basics of multi-head attention before it is
applied to learn agent interactions in Chapter 4.5.

Multi-head attention is computed from three matrices: the queries Q, the keys K and
the values V. Given the dimensionality of the queries and keys dk, it can be described
mathematically as

Attention(Q,K,V) = Softmax
(QKT

√
dk

)
V . (2.24)

2 PRELIMINARIES 19

Where do queries, keys and values come from? They are all computed from the same
input sequence (x1, . . . , xN) and the representations generated from that input sequence
Z = (z1, . . . , zN)7 [80]. The concatenated representation Z of the input sequence is an
N×dmodel matrix. Q,K and V can now be obtained by multiplying Z with three distinct
weight matrices WQ,WK ∈ Rdmodel×dk and WV ∈ Rdmodel×dv . The resulting products are
given below [80]:

ZWQ = Q ∈ RN×dk (2.25)
ZWK = K ∈ RN×dk (2.26)
ZWV = V ∈ RN×dv . (2.27)

In the original model as well as this work, dk = dv for simplicity. The matrix product QKT

now produces an N ×N matrix, where each row contains unnormalized attention scores.
After applying the Softmax function row-wise, multiplication with the values matrix V
results in a representation Attention(Q,K,V) ∈ RN×dv . Each row of the self-attention
representation is a convex combination of the rows of V, where the summation weights are
determined by the corresponding row of Softmax(QKT

√
dk

)8. To give an example: The second
row of Attention(Q,K,V) is computed as linear combination of all the rows of V, where
the weights for the linear combination are given by the second row of Softmax(QKT

√
dk

). The
term

√
dk increases numerical stability by preventing the dot-product inside the Softmax

from growing too large. Summing up: The self-attention mechanism computes a represen-
tation Attention(Q,K,V), which is a weighted sum of a projected input representation
ZWV = V. Since the weights are computed from the same input sequence (using different
projections Q and K), the whole architecture is called self-attention. Figure 6 visualizes
the process as computational graph9.

The last important component of the Transformer model is the concept of multi-head
attention. It is defined in the original work through Equation 2.28 [80]:

MultiHead(Q,K,V) = Concat(head1, . . . , headH)WO (2.28)
where headh = Attention(ZWQ

h , ZWK
h , ZWV

h) .

The second line in the formula immediately elucidates the core idea of multi-head atten-
tion: Instead of using just one matrix Q,K and V for each self-attention layer of the

7In natural language processing, the input sequence is a sentence and the generated representation z
are the embedded words.

8A blog post illustrating the row perspective of matrix multiplication instead of the commonly used
dot-product perspective can be found at https://ghenshaw-work.medium.com/3-ways-to-understand-
matrix-multiplication-fe8a007d7b26.

9Several visual guides can be recommended. The "Illustrated Transformer"
(https://jalammar.github.io/illustrated-transformer) and "Transformers from scratch"
(http://peterbloem.nl/blog/transformers) are particularly worth mentioning.

https://ghenshaw-work.medium.com/3-ways-to-understand-matrix-multiplication-fe8a007d7b26
https://ghenshaw-work.medium.com/3-ways-to-understand-matrix-multiplication-fe8a007d7b26
https://jalammar.github.io/illustrated-transformer
http://peterbloem.nl/blog/transformers

2 PRELIMINARIES 20

MatMul

Scale

Mask (opt)

Softmax

MatMul

Q K V

Figure 6: Computational graph of self-attention. Queries Q are multiplied with keys K
and scaled. Optional masking prevents the model from attending to specific positions.
After applying the Softmax function, values V are multiplied together with the learned
weights. Graphic is based on [80].

model, H different such matrices are used in parallel. This allows the Transformer to at-
tend to different projection subspaces [80]. Apart from producing higher quality represen-
tations, multiple heads also increase computational efficiency by using dk = dv < dmodel.
This reduces the memory needed for the weight matrices WQ

h , WK
h and WV

h . For exam-
ple, the values are now computed on dv columns of the input representation ZWV

:,:dv = V.
The notation :, : dv is borrowed from array indexing in Python and denotes selecting all
rows and the first dv columns. Thus the queries, keys and values for each head all focus
on different parts of the input representation Z [80]. The only requirement imposed by
splitting up the weights for each head like this is that dmodel must be divisible by H to
produce valid dimensions for dv and dk [80].

Once attention is computed for each head in Equation 2.28, the resulting representations
headh are concatenated and multiplied by a weight matrix WO. This enables learning
interactions between the outputs of each head before MultiHead(Q,K,V) is fed as input
into the next layer of the Transformer. After N layers of self-attention, the output is used
to decode a target representation in the original model [80].

2.3.4 Gaussian Mixture Models

While the normal distribution is the most common probability distribution, it has one
drawback: It is unimodal. This severely limits its capabilities when modeling multimodal

2 PRELIMINARIES 21

Figure 7: View of the agent facing an obstacle. Ideally, the agent would learn that
evading the obstacle is possible on both sides through a multimodal distribution.

data. One solution to this problem is to mix multiple normal distributions in a superposi-
tion [8]. The resulting mixture distribution is a linear combination of normal distributions
with the desirable property of being able to approximate arbitrary probability distribu-
tions [7].

Coming back to the case of RL, it can often be advantageous to have a stochastic policy
π(a|s) with multiple modes. Consider for instance the case in which a vehicle is positioned
directly in front of an obstacle (see Figure 7 for example): It can avoid the obstacle to
the left or to the right, which would ideally be modeled by a multimodal distribution.
While a categorical distribution in discrete action spaces is inherently able to do so, a
normally distributed policy would have to choose either side. This example provides
the motivation for an introduction of GMMs in the following section, which are able to
represent multimodal stochastic policies in continuous control settings.

Mathematically, a mixture of normal distributions is defined by the linear combination in
Equation 2.29 [8]:

p(a) =
K∑
k=1

αkN (a|µk, Σk) . (2.29)

Here the mixture coefficients αk are scalar weights for the individual Gaussians making
up the mixture. Each normal density N (a|µk, Σk) is called a component and has its
own parameters. µk is the mean vector of the distribution and Σk is the covariance
matrix. The covariance matrix must be symmetric and positive semidefinite to specify a
defined normal distribution. To form a valid mixture model, the coefficients have to be

2 PRELIMINARIES 22

non-negative and must sum to one as stated in conditions 2.30 [8]:

K∑
k=1

αk = 1, αk ≥ 0 . (2.30)

A mixture density network is a mixture model where the coefficients αk(s) and the com-
ponent parameters µk(s) and Σk(s) are the output of a neural network given an input
s. It is thus a conditional probability distribution given s [7]. Note how with the right
notation, the left-hand side of Equation 2.31 looks similar to the notation used for a policy
πθ(a|s). Indeed, a mixture density network is able to parameterize a stochastic policy.

p(a|s) =
K∑
k=1

αk(s)N (a|µk(s), Σk(s)) . (2.31)

How does a neural network learn outputs that conform to the restrictions imposed by a
GMM? A closer look at the requirements for the mixing coefficients αk(s) in Equation 2.30
reveals that they are the same as for a probability distribution. It is thus possible to learn
αk(s) by a network with k output neurons over which the Softmax activation function
from Definition 2.18 is applied [8].

Learning the covariance matrix Σk(s) is usually done with a trick to improve numerical
stability. It has two steps: First the log standard deviation is learned by the network.
This learned value is then exponentiated to produce the real standard deviation value.
Through learning the log standard deviation, the neural network can output both positive
and negative values, increasing numerical stability. The following exponentiation returns
a value greater than zero, making it a valid choice as standard deviation [71].

The generation of observations from a GMM follows a two-step procedure:

1. An index k is drawn from 1, . . . , K. The probability of choosing index k is deter-
mined by the corresponding mixing coefficient αk(s).

2. An observation is sampled from the k-th mixture component. It is parameterized
by the mean vector µk(s) and the standard deviation Σk(s).

3 RELATED WORK 23

3 Related work

Action space

Discrete action space Continuous action space

N
um

be
r
of

ag
en
ts Single

agent
A

Example algorithms: AlphaGo,
AlphaZero, MuZero, SAVE
Example studies: [73, 75, 74, 70,
30]

B

Example algorithms: A0C,
Continuous MuZero, Sampled
MuZero
Example studies: [58, 89, 38]

Multi
agent

C
Example algorithms: Multiplayer
AlphaZero
Example studies: [64]

D

Example algorithms: This
work
Example studies: This study

Table 1: Overview over prior research combining Reinforcement Learning (RL) and Monte
Carlo tree search (MCTS). While the AlphaZero family of algorithms utilizes self-play
during training, they only plan for a single agent at a time. Therefore they are considered
single-agent algorithms in this overview.

AlphaGo and its monumental win in the show match versus Lee Sedol have received a
tremendous amount of attention [73]. Naturally, a plethora of follow-up research continues
to improve the original algorithm or extends it for use in other domains. Work by the same
group for instance removes the need for human expert knowledge with AlphaGo Zero [75]
and applies the combination of RL and MCTS to other games [74]. This results in the
AlphaZero algorithm. Expert iteration is another extension to AlphaGo which has been
developed independently of AlphaGo Zero [2]. In discrete action spaces, using Q-Learning
instead of policy gradients shows improved performance [30]. Among follow-up works, the
MuZero algorithm stands out since it removes the need for knowing the environment’s
transition dynamics. Instead, MuZero performs tree search in a latent-space model [70].
As the exact knowledge of the transition function is a very restrictive assumption, using
an approximate model allows application to domains such as Atari [70]. An orthogonal
direction for extensions is provided with Multiplayer AlphaZero, which successfully applies
a modified algorithm to three-player games [64]. Multiplayer AlphaZero differs from this
thesis in two ways: It considers a competitive setting instead of a cooperative one and
does not learn interactions between agents.

A further stream of research focuses on developing combinations of RL and MCTS for
continuous action spaces. A0C is the first of such works, extending AlphaZero to simple
continuous control scenarios provided by OpenAI Gym [10]. It forms the basis for this
thesis. Similar extensions have then been applied to MuZero, resulting in successful
applications to classical control and simulated robot manipulation/locomotion tasks [89,

3 RELATED WORK 24

38].

[33] apply an AlphaZero-inspired algorithm to tactical decision making in autonomous
driving. Compared to this work, they do not learn in a continuous action space. Five
high-level actions are used instead which are subsequently mapped to continuous actions
by a physics model. [33] also consider single-agent settings only and do not plan actions
for other agents in a scenario10. A very similar approach is presented by [14]. Other
works use model-free RL [53], combine RL with A∗ planning [91] or use RL together with
game-theoretic reasoning [9]. A Multi-Agent Reinforcement Learning (MARL) approach
to learning driving behavior is proposed by [4], from which the hybrid input representation
in this thesis is derived.

When a multi-agent setting is considered, most works rely on learning a single policy that
is used by all agents via parameter-sharing [4, 64]. Some algorithms do consider scenarios
with a flexible number of agents. Deep sets [40] or graph networks [39] are able to learn
interactions between different entities in an environment. They do however only learn
behavior for a single decision-making agent. Another approach is to use Recurrent Neural
Networks (RNNs) to process trajectories from multiple agents [22]. While an RNN is able
to aggregate information from different entities, its inherent sequentiality implies that
some agents have more information at their disposal than others.

Transformers [80] have emerged as the dominant architecture for processing sequential
input, with applications in natural language [19] and trajectory forecasting [25]. [87] have
proposed an attention-based network architecture which is conceptually similar to this
thesis. However, they do not use a planner to improve the policy and instead rely on
model-free RL.

Lastly, this thesis builds on an MCTS approach for cooperative decision making in au-
tonomous driving [46]. Note that [46] plan in a continuous action space compared to
previous approaches which just learn high-level primitives [52]. Using a neural network
to guide the MCTS has already been investigated [47]. In contrast to this thesis, they
rely on supervised learning from expert trajectories instead of RL to train the network.
Their architecture also uses a Multilayer Perceptron (MLP) and thus produces a fixed-size
output that does not scale with the number of agents within a scenario.

10While other agents exist in their scenarios, they do not learn and are controlled by a driver model.

4 CONCEPT 25

4 Concept

Chapter 2 has laid the theoretical foundations needed to describe the concept of this
thesis. In the first section, the environment is defined with a focus on three aspects: The
state space S, which is defined by a hybrid input representation using numerical and image
input. Then the reward function is described, before the action space A is defined. Next
is a derivation of the tanh-squashed Normal distribution, which is motivated by the need
to constrain actions within the physical boundaries of a vehicle. In the following section,
an objective function for multi-agent scenarios is obtained by extending a formulation
of the AlphaZero loss for continuous action spaces. How a Transformer-based network
architecture can be used to handle scenarios with a flexible number of agents comes next.
The penultimate section describes a guided Monte Carlo tree search (MCTS) procedure,
where rollouts are truncated by network evaluations. Finishing up the chapter is the
concept of a training algorithm for the system.

4.1 Environment

Section 2.1.2 has introduced the theoretical framework of a decentralized Markov Decision
Process (dec-MDP) as a tuple 〈Υ,S,A, P,R, γ〉. Now it is time to elaborate further on
how some of its components are implemented concretely. Of particular interest are the
state space S, the action space A and the reward function R(·). Section 4.1.1 details
a hybrid input representation consisting of a local visual map of an agent together with
numerical information about all other vehicles in a scenario. It can be processed efficiently
by a neural network. This characterizes the state space S. Next is the definition of the
reward function R(·), before a brief description of the action space A follows. How the
chosen actions are mapped to vehicle trajectories finishes the chapter.

4.1.1 Input Representation

In general, a state s ∈ S in the dec-MDP is given by a scenario. It in turn is defined as
a road with multiple lanes, a set of active agents executing actions and optionally a set
of stationary vehicles (obstacles) on the road. Surrounding the road is non-drivable area.
The number of lanes, active agents and obstacles as well as their position is flexible and
different for each scenario. Figure 8 shows the map for such a scenario, where two agents
have to drive through a bottleneck. In order to avoid a crash, one vehicle will have to slow
down and the other must accelerate while both merge into the center. This maneuver
requires cooperation between both agents [46].

How can such a scenario be encoded in a way that is both efficient to process for a neural
network as well as close to real-world autonomous driving? To answer this question,

4 CONCEPT 26

Figure 8: Example of a cooperative driving scenario where two agents have to avoid a
crash while driving through a narrow bottleneck.

Figure 9: Example of an agent’s view from scenario 08 (Figure 8). Active agents are
depicted in yellow, whereas obstacles (stationary vehicles) are represented as

non-drivable area on the lane. The lanes are colored in different shades of purple.

a hybrid input representation consisting of both a visual map and a set of numerical
inputs is chosen [4, 47]. The map is a top down view of the agent’s region of interest in
the scenario that is defined by its sensor range. It covers an area of 64m forwards and
backwards as well as 6.4m to each side from the center of a vehicle’s back axle. The
total viewable area is thus 128m × 12.8m. This is encoded into a two channel image of
2× 32× 64 pixels, where the first channel is an agent map that solely encodes the active
agents in the scenario. The second channel represents lanes, obstacles and non-drivable
area. Obstacles are using the same numerical values as non-drivable area. This allows for
a more efficient representation using only two channels instead of three. Since an agent
receives the same reward for crashing into an obstacle as it does for driving off the road,
no distortion between its perception and its immediate reward occurs. This is discussed
further in Section 4.1.2 (also see Appendix F). Figure 9 shows an example of an agent’s
view in scenario 08.

Lastly, it is important to note that the resolution of the visual map is coarse due to

4 CONCEPT 27

performance constraints11. Particularly for longitudinal maneuvers, 2 meters per pixel
might not seem granular enough. A consideration however is that lateral maneuvers
usually require more precision, for instance when avoiding an obstacle. This is still allowed
by a finer lateral resolution of 0.4 meters per pixel.

Visual input representations have the advantage that they are flexible and environment-
agnostic. As described above, there is however a trade-off between representational capac-
ity and computational efficiency. Numerical inputs on the other hand are less computa-
tionally expensive and allow for detailed information but need to be tailored to a specific
task. Since the goal of this thesis is learning cooperative driving behavior, it is sensible
to additionally encode agent information numerically to foster interaction. The state of a
single agent i at time step t is composed of a static state vector nstatic

i and dynamic state
vectors ndynamic

i (t) [47]. The static component of the state refers to agent information that
does not change over the course of a scenario whereas the dynamic component changes
with each time step t. Concatenation of the current dynamic state vector with the past
seven dynamic state vectors and the static state vector yields the full numerical state of
an agent. It is represented in Equation 4.1, where ⊕ represents the concatenation opera-
tion. While combining past information into a Markovian state might seem redundant at
first, it produces little computational overhead due to the efficiency with which numerical
values are processed. At the same time it ensures that agents have access to all needed
information [47]. Similar techniques like "frame-stacking", where the past m images are
combined into a single stacked image, are also common in other Reinforcement Learning
(RL) applications [57].

ndynamic
i (t) =

(
xi(t), yi(t), ẋi(t), ẏi(t), ẍi(t), ÿi(t), φi(t)

)
nstatic
i =

(
ẋdesirei , ldesirei , vwidthi , vlengthi

)
ni(t) = ndynamic

i (t− 7)⊕ ndynamic
i (t− 6)⊕ . . .⊕ ndynamic

i (t)⊕ nstatic
i . (4.1)

More concretely:

• (xi(t), yi(t)) is the normalized relative position of agent i.

• (ẋi(t), ẏi(t)) is the normalized relative velocity of agent i in lateral and longitudinal
direction.

• (ẍi(t), ÿi(t)) is the normalized relative acceleration of agent i in each direction.

• φi(t) is agent i’s normalized relative heading in radian.

• ẋdesirei is the desired velocity of agent i in longitudinal direction.
11Profiling the executable reveals that the program spends around 9.5% of its runtime generating the

maps. This can quickly jump to over 40% for higher resolutions.

4 CONCEPT 28

• ldesirei is the desired lane of agent i.

• (vwidthi , vlengthi) are the vehicle dimensions of agent i.

It is important to highlight that dynamic state information is given relative to the ego
agent. That is, relative to the agent currently making the decision. During each scenario
run all agents sense each other with limited sensor precision outside of the 128m× 12.8m
region of interest. The limited precision is modeled by bounding relative values on the
interval [−1, 1]. To give an example, suppose x1 = 10 is the longitudinal position of
agent one while x2 = 138 is the longitudinal position of agent two. Then the relative
longitudinal position of agent two with respect to agent one is xrel2 = 128. Normalizing by
the maximum frontal sensor range of agent one yields xrel, norm2 = 128/64 = 2. However,
since agent two has been outside of agent one’s sensor range, xrel, norm2 is capped at 1.
This reflects the limited precision of sensors over longer ranges. Intuitively, agent one can
sense another vehicle approaching but its distance is too far to take exact measurements.

The full numerical state of an agent i within a scenario is given as the matrix produced
by stacking the numerical states ni(t) of all agents Υ within the scenario:

snumi (t) =


n0(t)
n1(t)
...

nΥ(t)

 . (4.2)

It is worth repeating that all numerical states in snumi (t) are relative to the current agent i.
Now that the state space S of the environment is defined, the next section can introduce
the reward function R.

4.1.2 Reward function

The reward function of an RL environment is key in eliciting the desired behavior from an
agent. Actions that are desired should be reinforced while actions leading to undesired or
even harmful behavior should be punished. Ideally, the reinforcement comes immediately
after a specific action, making the reward function dense. The opposite of dense rewards
are sparse rewards. An example of a sparse reward environment is the game of chess:
Here an agent only receives a positive or negative reward upon completion of the game
but not for any intermediate actions. Therefore the following paragraphs specify a dense
reward function composed of three parts (see Equation 4.3) [46]:

1. A component which punishes actions that are too jerky, thereby encouraging smooth
driving maneuvers.

4 CONCEPT 29

2. A term that rewards an agent depending on its distance to a desired target state ,
which is specified by a target velocity ẋdesirei and a target lane ldesirei .

3. A validity component punishing actions that lead to either collisions or driving off
the road.

The components outlined above define the ego reward for each agent. It is a sum of three
elements [46]:

ri = ractioni + rstatei + rvalidi . (4.3)

Its first term is the action reward ractioni . It is always negative and can be interpreted as
the cost of performing a driving maneuver between two time steps t0 and t1 [46]. The
action reward consists of the following components

ractioni = wLC(li(t1)− li(t0))2 + wAX

∫ t1

t0
(ẍi(t))2dt+ wAY

∫ t1

t0
(ÿi(t))2dt+ wIA . (4.4)

The first term (li(t1) − li(t0))2 punishes lane changes while the second
∫ t1
t0

(ẍi(t))2dt and
third term

∫ t1
t0

(ÿi(t))2dt aim at minimizing the acceleration in longitudinal and lateral
direction. The relative importance of each component can be adjusted via the weights
wLC , wAX and wAY . wIA is a constant that is added if the generated action is invalid, for
instance when the vehicle’s steering angle is past its maximum or the agent exceeds the
maximum speed limit [46].

Next is the state reward rstatei aimed at minimizing the distance between the current state
and a desired target state of the agent [46]:

rstatei = 2wV D · exp
(
− 0.00745 · (ẋdesirei − ẋi(t))2

)
− wV D︸ ︷︷ ︸

Velocity component

+ wLD − wLCD
∣∣∣li(t)− ldesirei︸ ︷︷ ︸

Lane deviation component

∣∣∣
+ wLCD · exp

(
− 5.0c

l
i(t)− yi(t)

2 ·Wl

)
︸ ︷︷ ︸

Lane center deviation component

. (4.5)

Subscripts for the time step t in Equation 4.5 are dropped as quantities are only evaluated
at the current step t. The weight wV D is used to scale the velocity deviation term. It is
defined using an exponential function exp

(
− 0.00745 · (ẋdesirei − ẋi(t))2

)
with a quadratic

exponent [46]. If the agent’s current velocity ẋi(t) reaches its desired velocity ẋdesirei , the
whole exponential reduces to the factor 1, thus maximizing the velocity deviation reward
as wV D.

The lane deviation component is composed of a positive weight wLD, from which the
weighted absolute lane deviation wLCD

∣∣∣li(t)− ldesirei

∣∣∣ is subtracted. Here wLCD is the lane

4 CONCEPT 30

center deviation weight. If for instance the agent’s target lane is ldesirei = 3 and its current
lane li(t) = 1, then wLCD · 2 is subtracted [46].

Lastly, the deviation from the lane center is rewarded using an exponential term similar
to the velocity deviation term. It is subsequently weighted by the lane center deviation
weight wLCD. If the vehicle is exactly on the center line of the lane it is currently driving
on (denoted as cli(t)), the denominator reduces to 0 and the whole center deviation reward
becomes wLCD. The term in the numerator is defined as two times the lane width Wl in
the current scenario12 [46].

Combining everything above, the maximum state reward achievable is the sum of the
three weights wV D +wLD +wLCD. This is accomplished if the agent drives exactly center
on its target lane and with the desired velocity. The exact values of the weights wV D, wLD
and wLCD may be adjusted individually for each scenario.

The last component of the reward function in Equation 4.3 is the validation reward [46]:

rvalidi =


wIS, if invalid state

wC , if collision

0, else

. (4.6)

wIS is a constant added if the action leads to an invalid state. That is, if the vehicle leaves
the road and is in non-drivable area. The reward wC is given if the action results in a
collision with another vehicle or obstacle. When neither of the above occurs, the chosen
action is deemed valid and nothing is added. Usually the weights for invalid states and
collisions are set to large negative constants (e.g. wIS = wC = −1000) as both states are
highly undesirable [46].

The three components described above fully define the ego reward for an agent. While
the validation reward is straightforward, there is a push-pull dynamic between the action
reward and the state reward: On one hand, an agent wants to reach its target state as
quickly as possible through the state reward. One the other hand, abrupt maneuvers are
punished more severely by the action reward. Together they form a balance in which an
agent tries to achieve its goal state quickly but also economically [46].

To achieve cooperation and fully specify the reward function R of the environment, one
last component is missing. It is the cooperative reward. Given a cooperation factor λi,
the cooperative reward rcoopi of an agent i is defined as [46]:

rcoopi = ri + λi
Υ∑

j=0,j 6=i
rj (4.7)

Here ∑Υ
j=0,j 6=i rj are the summed ego rewards of all other agents. The cooperation factor

12Lanes are assumed to have equal width in all scenarios.

4 CONCEPT 31

λi ∈ [0, 1] determines the disposition of agent i to cooperate13. This scaled sum of other
agent’s rewards added to the own ego reward ri finally specifies the reward function of
the environment R.

Exact values for all constants from this section are given in Appendix F. The last critical
component to be defined in the environment is the action space A, which is outlined in
the next section.

4.1.3 Action space

At each time step t, an agent i can choose to change its longitudinal velocity ∆vlongitudinali as
well as its lateral velocity ∆vlaterali [46]. This results in a 2-dimensional, continuous action
space A. To interpolate between two discrete time steps t0 and t1, a jerk-minimizing
trajectory is generated by solving for the coefficients ap, bp of fifth order polynomials [46]:

xi(t) =
5∑
p=0

apt
p, yi(t) =

5∑
p=0

bpt
p (4.8)

using the following boundary conditions

ẍi(t1) = 0 (4.9)
ÿi(t1) = 0 (4.10)
ẏi(t1) = 0 (4.11)
ẋi(t1) = ẋi(t0) + ∆vlongitudinali (4.12)
yi(t1) = yi(t0) + ∆vlaterali (4.13)

xi(t1) = ẋi(t0) + ẋi(t1)
2 (t1 − t0) . (4.14)

Constraints 4.9, 4.10 and 4.11 specify that the vehicle must not accelerate in its target
state and that there is no lateral acceleration. The target state is defined by the desired
velocity (Equation 4.12) in longitudinal direction and the desired vehicle position in lateral
direction (Equation 4.13). Now only the distance covered in longitudinal direction is
missing, which is described by Boundary 4.14 [46].

Lastly, the produced actions must conform to the physical limitations of the controlled
vehicle. This is ensured by bounding ∆vlongitudinali and ∆vlaterali on the interval [−5, 5].
How these action bounds are enforced for actions sampled from a Gaussian Mixture
Model (GMM) is described in the next section.

13It is possible to specify different cooperation factors for the agents. In practice, the cooperation factor
is the same. Refer to Appendix F for details.

4 CONCEPT 32

4.2 Enforcing action bounds

Stochastic policies in continuous control settings are commonly represented by a diagonal
normal distribution N (µ,Σ). Each dimension in the action space is represented by an in-
dependent normal distribution, resulting in a diagonal covariance matrix Σ. The network
is then trained by backpropagating through the parameters µ and Σ of the distribution.
Prominent algorithms using this technique to specify a stochastic πθ(a|s) are for example
Trust Region Policy Optimization (TRPO) [71] and Proximal Policy Optimization (PPO)
[72].

In most RL tasks, the action space is bounded in some form. Common benchmarks
like OpenAI Gym [10] usually restrict actions to be in [−1, 1]. In real-world tasks like
autonomous driving or robotics the action space is limited by the capabilities of the
physical system. In such cases a normal distribution has the undesirable characteristic
that its support is unbounded.

The most crude solution to this problem is cutting the distribution at the desired bounds.
This may however introduce biases that negatively affect performance [15]. Another
solution is to select a distribution with finite support. [15] and [58] propose to use a
transformed Beta distribution. While the transformed Beta distribution has theoretical
appeal due to its flexibility and finite support, training a policy for this work has not
succeeded using it.

A more elegant and stable solution has been proposed in the Soft Actor-Critic (SAC)
algorithm [29]. Here πθ(a|s) is parameterized by a normal distribution which is squashed
by the tanh function to be between (−1, 1). Subsequently, it is re-scaled by a constant
factor to fit the action bounds. Figure 10 shows the flexibility of such a distribution for
different standard deviations. Since the tanh-squashed normal distribution is used for the
approach outlined by this thesis, it is derived in the following paragraph.

Let u ∈ RD be a normally distributed random variable and µ(u|s) be the density from
which u is drawn. Note that the support of µ(u|s) is unbounded. The goal is to find the
density of the transformed random variable a = c tanh(u) with c ∈ R+ \ {0} and express
it in terms of µ(u|s). The Cumulative Distribution Function (CDF) of the transformed
random variable is given as ∫ c

−c
π(a|s) da , (4.15)

which is desired to be expressed in terms of c tanh(u). The following proposition expresses
the Probability Density Function (PDF) of the transformed random variable in terms of
the untransformed density µ(u|s).

4 CONCEPT 33

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

Sample value

D
en
sit

y

Figure 10: Density function of the squashed and rescaled normal distribution for
µ = −0.5 and different standard deviations. Samples are bounded in [−5, 5].

Proposition 1. The PDF of the transformed density can be expressed as

π(a|s) = µ(u|s)
∣∣∣∣∣ det da

du

∣∣∣∣∣
−1

, (4.16)

with ∣∣∣∣∣ det da
du

∣∣∣∣∣ = cD
D∏
i=1

1− tanh2(ui) . (4.17)

Proof. See Appendix B.

Now that the transformed density π(a|s) is known, the next step is to derive its log-
probabilities since they are needed to calculate the gradient of the objective function in
Sections 4.3.2 and 4.3.3. They can be obtained by plugging in the squashed normal PDF

4 CONCEPT 34

and iteratively applying logarithm rules until Expression 4.18 is reached14:

log π(a|s) = log
(
µ(u|s)

∣∣∣∣∣ det da
du

∣∣∣∣∣
−1)

= log
(

µ(u|s)
cD
∏D
i=1 1− tanh2(ui)

)

= log µ(u|s)−D log c−
D∑
i=1

log
(

1− tanh2(ui)
)
. (4.18)

A closer look at the term D log c reveals that it is only dependent on the dimensionality of
the action space D and the scaling term c. Therefore it does not contribute to gradients
with respect to u. Dropping it yields the log-likelihood formula from the SAC paper [28]:

log π(a|s) = log µ(u|s)−
D∑
i=1

log
(

1− tanh2(ui)
)
. (4.19)

Expression 4.19 is mathematically correct, but numerically unstable. To see why, note
that tanh is already very close to one for values ui ≥ 3. Due to floating point imprecision,
it can easily occur that tanh(ui) = 1 for larger values of ui. This results in taking the
log of zero and NaNs during training. Luckily, Formula 4.19 can be re-expressed into a
mathematically equivalent, but more stable version. Recall the definition of the hyperbolic
secant as sech(ui) = 2e−ui

e−2ui+1 . Also note that sech2(ui) = 1− tanh2(ui). Some algebra and
application of the logarithm rules yield15:

−
D∑
i=1

log
(

1− tanh2(ui)
)

= −
D∑
i=1

log
(
sech2(ui)

)

= −2 ·
D∑
i=1

(
log 2− ui − log(e−2ui + 1)

)

= −2 ·
D∑
i=1

(
log 2− ui − Softplus(−2ui)

)
, (4.20)

where Softplus is a common activation function in machine learning defined as Softplus(x) =
log(1 + ex).

Extending the squashed normal distribution defined above to a squashed GMM is con-
ceptually easy. Generating observations follows the same procedure as sampling from a
regular GMM (see Section 2.3.4). First a component is sampled before subsequently an
observation is drawn from that component. As all components in a squashed GMM are
squashed normal distributions, the observation conforms to the specified action bounds.

So far this thesis has discussed the environment and how an algorithm can comply with
its restrictions. The next section explains how such an algorithm may be trained.

14The detailed steps can be found in Appendix C.
15For a derivation see Appendix D.

4 CONCEPT 35

4.3 Objective Function

This chapter details the procedure for policy improvement in continuous action spaces.
It is guided by finding answers to two questions:

1. How can a continuous policy specified by a tanh-squashed normal distribution be
improved via MCTS?

2. How can the derived objective function be extended to a multi-agent setting?

The first two sections then proceed to derive a loss function based on the MCTS visita-
tion count distribution for improving a continuous policy in the single-agent case. Their
contents follow the approach in the A0C paper [58]. The last section provides a simple
— yet effective — method for extending the objective function to a multi-agent setting.

4.3.1 Training target

The MCTS outputs a set of actions A0 and visitation counts N0 at the root node. Unlike
the training in discrete settings, where the normalized visitation counts can be used as
training target [74], the count distribution needs to be transformed into a continuous
target first. The key assumption is that the density at the root actions aj ∈ A0 should
be proportional to the visitation counts n(s, aj) ∈ N0. This allows the definition of the
following training target [58]:

π̂(a|s) = n(s, aj)τ
Z(s, τ) , (4.21)

where τ ∈ R+ is a positive temperature parameter that scales the importance of the
visitation counts. Z(s, τ) is an action-independent normalization term. It is noteworthy
that Equation 4.21 does not specify a proper density as it is not defined between its
support points. However, the following section shows that this fact becomes irrelevant as
the objective function only considers the loss at the support points [58].

4.3.2 Single-agent objective

The single-agent objective function for training the network in a continuous setting con-
sists of three components [58]:

Lθ(a, s) = Lpolicyθ (a, s)− αLHθ (a, s) + LVθ (s) , (4.22)

where Lpolicyθ is the policy loss, LHθ is an entropy regularization term and LVθ is the value
loss. In the following, each of these three terms is examined in detail.

4 CONCEPT 36

The aim of the policy loss Lpolicyθ is to move the network distribution πθ(a|s) closer to the
improved MCTS distribution π̂(a|s). Intuitively, it would make sense to use a measure
of how different πθ(a|s) is from π̂(a|s) to compute the loss. The first choice among such
measures in RL is the Kullback-Leibler divergence [45]. This is indeed how the policy loss
is specified [58]:

Lpolicyθ (a, s) = DKL

(
πθ(a|s)

∣∣∣∣∣∣π̂(a|s)
)

(4.23)

= Ea∼πθ(a|s)
[

log πθ(a|s)− log π̂(a|s)
]
. (4.24)

Plugging in π̂(a|s) = n(s,a)τ
Z(s,τ) from Equation 4.21 and simplifying using logarithm rules,

the gradient of the policy loss can be expressed as16 [58]:

∇θLpolicyθ (a, s) = ∇θEa∼πθ(a|s)

[
log πθ(a|s)− log π̂(a|s)

]
= ∇θEa∼πθ(a|s)

[
log πθ(a|s)− log

(
n(s, a)τ
Z(s, τ)

)]
= ∇θEa∼πθ(a|s)

[
log πθ(a|s)− τ log n(a, s) + logZ(s, τ)

]
. (4.25)

At this point it is time for a closer look at Formula 4.25. First note that the goal is to
calculate the gradient with respect to θ of an expectation over the policy distribution
πθ(a|s). However, the term inside the expectation also contains the log-visitation counts
log n(a, s). They implicitly depend on the policy via action selection, but also on the
environment state s. The states s follow an unknown distribution which cannot be differ-
entiated [77]. Luckily, the REINFORCE-trick allows the transformation of Equation 4.25
into one from which gradients can be taken [86, 58]. It does so by interpreting the term
log πθ(a|s) − τ log n(a, s) + logZ(s, τ) as a score function. This allows transforming the
gradient of an expectation to an expected gradient17. Equation 4.26 can now be estimated
via sampling.

∇θLpolicyθ (a, s) = Ea∼πθ(a|s)

[(
log πθ(a|s)− τ log n(a, s) + logZ(s, τ)

)
∇θ log πθ(a|s)

]
.

(4.26)

To further simplify Expression 4.26, the term logZ(s, τ) can be dropped since it is action-
independent (see previous section) and thus does not depend on θ [58]. Additionally, the
expectation over the whole policy distribution a ∼ πθ(a|s) can now be replaced by an
expectation over the empirical distribution of the actually chosen actions ac ∼ Ds in

16The subscript j from aj has been omitted to improve readability.
17More generally, the REINFORCE-trick states that ∇θEx∼p(x|θ)[f(x)] = Ex∼p(x|θ)[f(x)∇θ log p(x|θ)],

where f(x) is a black box score function. p(x|θ) is a known distribution parameterized by θ, which is the
parameter for which the gradient should be taken [86, 58].

4 CONCEPT 37

each state s ∼ D currently stored in the replay buffer D [58]. This now yields the final
expression for the gradient of the policy loss with respect to the network parameters θ:

∇θLpolicyθ (a, s) = Es∼D,ac∼Ds

[(
log πθ(a|s)− τ log n(ac, s)

)
︸ ︷︷ ︸

Scaling factor for the gradient

∇θ log πθ(a|s)
]
. (4.27)

The second term −αLHθ in the objective function is an entropy maximization term. Aug-
menting the policy loss with this regularization term has several benefits. First, it prevents
the policy from collapsing if all sampled actions are very close to each other [58]. Second, it
improves exploration while at the same time still reducing the likelihood of obviously bad
actions, leading to faster training speed [28]. Lastly, the policy is able to learn behavior
with multiple modes more easily [28]. The entropy objective is defined as:

LHθ (a, s) = H(πθ(a|s)) = −
∫
πθ(a|s) log πθ(a|s) da . (4.28)

However, since there is no closed form solution for calculating the entropy of GMMs
[37], it has to be estimated during training through the log-probabilities of the policy
distribution.

The last part of the objective function is the value loss LVθ . It is defined as the mean-
squared error between the value estimate produced by the network Vθ(s) and a value
target V̂ (s) [58]:

LVθ (s) = Es∼D

[(
Vθ(s)− V̂ (s)

)2
]
. (4.29)

Clearly the value target is an improved value estimate obtained through the MCTS. It is
however not obvious at first how it should be calculated. Using the state-action values at
the root nodeQ(s0, a), one could weigh the value of each action by its normalized visitation
count and use the sum as target [58, 85]. However, since the number of MCTS iterations
is finite, this way of calculating V̂ (s) would introduce a bias induced by exploratory moves
[85]. This work therefore uses the same value targets as A0C [58], defined as:

V̂ (s0) = max
a

Q(s0, a) . (4.30)

Selecting the value of the best action at the root node s has several desirable charac-
teristics. First, it disregards exploratory moves. This makes it consistent with the final
action selection in the MCTS if the action with the highest value is chosen. Second, it is
conceptually easy as well as efficient to calculate.

4.3.3 Multi-agent objective

So far, the objective function in Expression 4.22 only covers the single-agent setting. To
increase clarity in the following section, it can be rewritten as

L = 1
|A|

A∑
a=1
Lpolicya − αLHa + LVa , (4.31)

4 CONCEPT 38

where an average over the number of actions A the agent selected in the batch is taken
to reduce the loss to a scalar. Note that for the sake of readability and succinctness,
the subscript denoting the network parameters θ has been dropped and the function
arguments (a, s) are omitted.

The most straightforward extension to multi-agent scenarios is to average the components
over the number of agents |Υ| within a scenario, producing

L = 1
|Υ|

Υ∑
i=1

(1
|Ai|

Ai∑
a=1
Lpolicya,i − αLHa,i + LVa,i

)
. (4.32)

The key part in Equation 4.32 is that Ai is now dependent on the agent i. To see why
that is the case, it is worth remembering that progressive widening is done on a per-agent
basis. It is thus not only possible but highly likely that each agent i ∈ Υ has chosen a
different total number of actions compared to the other agents. If the mean were taken
only over all the actions for all agents at the same time, it would be biased towards agents
that have done more progressive widening than others and thus produced more actions.
First calculating the mean over all the actions for each agent Ai and only then averaging
over all agents ensures equal contribution of all agents to the scalar objective value.

In the final step, the multi-agent objective in Expression 4.32 has to be extended to allow
for training on multiple scenarios at the same time:

L = 1
|S|

S∑
s=1

(
1
|Υs|

Υs∑
i=1

(1
|Ai,s|

Ai,s∑
a=1
Lpolicya,i,s − αLHa,i,s + LVa,i,s

))
. (4.33)

The extension to multiple scenarios follows the same logic as in the previous step. S

represents the set of scenarios in the training run. The number of agents |Υs| is now
dependent on the scenario s being used to generate a particular training sample, as is the
action count Ai,s for an agent i. Again, simply taking the average loss over all agents as
proposed in Equation 4.32 would lead to bias when using multiple scenarios. Only this
time the objective value would be biased towards scenarios with more agents as compared
to bias towards agents that have sampled more actions. Therefore the average over all
agents within a scenario Υs has to be taken first.

4.4 Guiding the Search

When using MCTS in continuous action spaces as described in Section 2.2.2, one question
remaining is how newly added actions are sampled. A simple solution is to select actions
uniformly at random. This does however not take into account the specifics of the current
state. In autonomous driving for instance a vehicle might drive right at the left edge of
the road. When sampling new actions uniformly at random from the complete action

4 CONCEPT 39

fθ

πtree fθ(s) =
(
µ, σ, V̂

)

Selection Expansion Evaluation Backup

Figure 11: Iteration of the guided MCTS. The algorithm behaves like regular Upper
Confidence Trees (UCT) (see Section 2.2.1) until the evaluation phase. Instead of a
simulation, a network evaluation fθ(s) of the expanded node is performed. A Value
estimate V̂ and distribution parameters (µ, σ) are added to the node before the backup
phase proceeds unmodified.

space, approximately half of the actions will lead to driving off the road. These search
iterations are wasted, since the vehicle should not leave the road under any circumstance.

The goal of this work is improved sample efficiency of an MCTS-based planning algorithm.
It is accomplished by pruning the search space such that undesirable actions are not being
sampled. Guiding the search with state-dependent probability distributions has led to
tremendous success in the game of Go [73, 75, 74]. Subsequently, it has been extended
to continuous action spaces with the A0C algorithm [58]. A0C and AlphaZero form the
basis for the following approach of using a neural network to guide the MCTS planning.

The procedure is visualized in Figure 11. Comparing the guided MCTS to the description
of the basic algorithm from Section 2.2.1, it can be seen that the first two phases of the
search are left unchanged. The key difference is in the evaluation stage: Once a new node
has been expanded, a neural network evaluation is performed instead of a rollout. Note
that the leaf node from which a new action has been sampled must have been expanded
in a previous iteration of the search. Therefore the expansion step is already utilizing
the guided MCTS18. In the evaluation stage, the network fθ takes as input a state s and
produces two outputs. First, a probability distribution (µ,σ) conditioned on the current
state s19. This probability distribution is appended to the expanded node, allowing for
repeated sampling without the need for additional network evaluations20. Second, the
node is evaluated with a scalar value estimate V̂ . The use of a network estimate instead

18The root node has to be evaluated before initializing the search.
19If a GMM is used, the network also outputs the mixing coefficients αk(s).
20Due to no training occurring during MCTS execution, the distribution parameters are deterministic

given a state s.

4 CONCEPT 40

of a Monte Carlo estimate truncates the search at the expanded node and removes the
need for a rollout. After the evaluation, the backup phase of the MCTS proceeds as
described in Section 2.2.1. Instead of a rollout result however the value estimate obtained
from the network fθ is backed up.

Extending the guided search algorithm outlined above to multiple agents is straightfor-
ward: Rather than regular UCT, Decoupled UCT (DUCT) as described in Section 2.2.3
is used. Instead of a single distribution (µ,σ) and a scalar value estimate V̂ , the network
has to output a probability distribution for each agent i as well as a value vector of length
|Υ|. Ideally, this model should account for interactions between the agents to achieve
cooperative behavior. While a Multilayer Perceptron (MLP) as described in Section 2.3.1
can model dependencies between agents, it is also restricted to produce a fixed size out-
put. As described in Chapter 4.1 however, driving scenarios may have a flexible number
of vehicles, requiring a more sophisticated architecture. A model which is able to produce
a flexible number of outputs is therefore described in the next section.

4.5 Network architecture

The previous chapter has established the need for a neural network which is able to
learn interactions between a flexible number of inputs. The following paragraphs combine
Section 2.3.2 and 2.3.3 with the hybrid input representation described in Section 4.1.1
into an architecture that fulfills all requirements of the environment. It is inspired by the
works of [47] and [19], while being conceptually similar to the model of [87]. Its complete
specification can be found in Appendix G.

Figure 12 shows a schematic visualization of the neural network proposed by this thesis.
The architecture consists of two main components: First is a convolutional tower pro-
cessing the visual map of the ego agent restricted to its own point of view. Note that all
operations in the following description assume 3×3 kernels unless explicitly stated other-
wise. After an initial convolutional layer, the image is downsampled using a pooling layer
with stride 2. This initial stage is followed by three basic convolutional blocks [31], where
the first convolution has stride 2 and increases the number of filters by a factor of 2× over
the output of the previous block. The second convolutional layer of each block uses stride
1 and does not change the depth of the feature maps. All blocks use skip connections
to alleviate the degradation problem [31], which add the input of a block to its output.
Before the block’s input is added through the skip connection, an ECA-module learns
global channel context [83]. Adding a channel-attention mechanism to the convolutional
network is motivated by significant performance gains in applications to Go [88]. The
final component of the image processing pipeline consists of a fully convolutional head
inspired by [35]. It uses two convolutional layers with 1× 1 kernel size after applying an

4 CONCEPT 41

Trajectory
Embedding

Add & Norm
Multi-Head
Attention

Add & Norm
Feed

Forward

Agent
Trajectories

4×

|Υ|×

Positional
Encoding

Conv2×16

MaxPool

Conv16×32

Conv32×32

Conv32×64

Conv64×64

Conv64×128

Conv128×128

AvgPool
Conv128×256

Conv256×128

1×

Policy
Network

µ σ V̂

Figure 12: The Transformer model used in this thesis. On the right side, an ECA-
ResNet processes visual input maps and outputs a vector representation. On the left
side, the states of all agents Υ relative to the ego-agent are embedded and then fed into
a Transformer encoder. The resulting |Υ| vectors are concatenated with the output of
the convolutional pipeline. A parameter-shared MLP policy decodes the concatenated
representations, producing a distribution (µ,σ) and a value estimate V̂ for each agent.

average pooling operation. The network output of the convolutional tower is a compact
vector representation of the input image, denoted as m.

The core component which lets the model learn interactions between a flexible number
of agents is a Transformer encoder. The difference between the Transformer encoder and
a decoder is that the encoder allows interactions in both directions of the sequence. The
decoder on the other hand uses masking to ensure that only left-to-right dependencies
are modeled21. Recall that an agent’s numerical state snumi (t) consists of its own tra-
jectory data as well as the relative trajectories of the other agents in the scenario (see

21In natural language processing, this means that the encoder produces a bidirectional representation.
BERT is a prominent example of such a model [19]. The decoder is instead used for classical language
modeling, e.g. in the GPT architecture. Here the model cannot condition on future tokens, i.e. right to
left dependencies [19].

4 CONCEPT 42

Section 4.1.1). This can be interpreted as a sequence of objects between all of which
interactions are learned by utilizing the multi-head attention mechanism. Following the
steps outlined in Section 2.3.3, the agent trajectories are first normalized and then em-
bedded using a single fully connected layer. This produces an |Υ| × dmodel representation
matrix Z, where |Υ| is the number of agents in the scenario. Then positional encodings
are added, allowing the network to identify each agent in the sequence. In this work,
learned positional embeddings are used compared to fixed sinusoidal ones [19]. The em-
bedded and augmented agent trajectories are next fed into a Transformer encoder with
four layers to learn bidirectional interactions between the agents. Finally, the output of
the Transformer is a representation matrix T of size |Υ| × dmodel.

To obtain a distribution for each agent in the scenario, each row of the matrix T is
concatenated with the vector output m of the convolutional tower. This can be interpreted
as a sequence of combined representations for each agent. The elements of the sequence
are then fed into an MLP policy network utilizing parameter-sharing. Reusing the network
weights helps to keep the model as small as possible. In the final step, the policy outputs
distribution parameters and value estimates for each agent.

The multi-agent Transformer architecture described in the previous paragraphs fulfills
the requirement of being able to handle a flexible number of traffic participants. What
is the intuition behind the model? Clearly an agent only receives information from its
own sensors. Using itself as a model though, it can exploit the incomplete information
obtained from other agents to approximate their action distributions. Of course this kind
of modeling becomes coarser and coarser the further other agents are away. It is however
not unlike humans make predictions about the immediate future of traffic situations.
Drivers also have to plan using imperfect information, as they only perceive the road
from their perspective.

The last part missing from the concept now that a network architecture has been deter-
mined is a training procedure. It is outlined in the next section.

4.6 Training algorithm

The high-level training procedure for the guided MCTS is described in Algorithm 1.
Before the first execution of the search, hyperparameters are loaded from a configuration
file and used to set the seeds. Then an empty replay buffer D is constructed. The neural
network parameters θ are initialized randomly at the start of the training. The algorithm
then performs a data-collection and training loop for E episodes.

During training, experiences are generated by executing the guided MCTS with the cur-
rent network parameters θ. At each stage of the search, the root node states s, actions

4 CONCEPT 43

a and corresponding visitation counts n are exported22. Value targets V̂ (s) are obtained
using Equation 4.30 and saved as well. Note that the training data for all agents in the
scenario is exported. This provides a regularization component by presenting the network
with different ego perspectives for each scenario. More importantly, it speeds up data
collection by a factor of |Υ|×, where |Υ| is the number of agents in a scenario. Since the
generation of experiences is by far the most expensive computational component of the
algorithm, training speed is improved significantly.

To further augment the training data, Gaussian noise is added to vehicle starting posi-
tions and scenario lane width. Given the noise standard deviations as σlane, σx and σy

respectively, this results in:

wlane = w̄lane + εlane, εlane ∼ N (0, σlane) (4.34)
xi(0) = x̄i(0) + εx, εx ∼ N (0, σx) (4.35)
yi(0) = ȳi(0) + εy, εy ∼ N (0, σy) , (4.36)

where wlane is the lane width and (xi(0), yi(0)) is the starting position of agent i. The
same quantities denoted with a bar correspond to the initial locations without noise.

Once the MCTS has generated S samples, the data collection stops and all experiences
are stored in the replay buffer D. The buffer is using a fixed-size FIFO-queue, which is
indicated in Algorithm 1 by the if-clause removing the oldest samples once the maximum
size D is reached. More sophisticated schemes of determining the buffer size exist, e.g.
using a sublinear window function [88] or an exponentially growing buffer [2]. However,
a fixed size queue keeps it simple and is sufficient to show the efficacy of the proposed
approach.

After the generated experiences have been added to the dataset D, a training loop iterates
over the shuffled samples in the replay buffer P times. First a batch of B experiences is
drawn from the buffer. The states sb and actions ab of the batch are used to generate action
log-probabilities log πθ(ab|sb) and value estimates Vθ(sb) from the network. Criterion 4.33
can now be evaluated by using the value targets V̂ (sb) and visitation counts nb. The final
part of a training step consists of performing a gradient descent update for the neural
network parameters θ.

Once the network training has concluded, a new episode e is started with the updated
parameters θ. The training proceeds for a fixed number of steps. A high level description
such as the one given above of course omits a number of implementation details. The
next chapter therefore highlights the most crucial choices.

22Subscripts 0 are omitted as only root node data is exported.

4 CONCEPT 44

Algorithm 1: Guided MCTS training
Set Python, Numpy, PyTorch seeds to S.
Initialize network parameters θ randomly.
Initialize empty buffer D = ∅.
for e = 0 to E do

while t < T do
Load new network parameters θ.
Execute guided MCTS.
Generate samples
(s, a,n, V̂ (s)) ∼ π̂(a|s).

end

Store samples:
D ← D ∪ {(s, a,n, V̂ (s))}Tt=1.
if |D| > D then

Remove |D| −D oldest samples.
end
for p = 0 to P do

Draw B samples
{(s, a,n, V̂ (s))}Bb=1 ∼ D.
Generate action log-probabilities
log πθ(ab|sb).
Generate value estimates Vθ(sb).
Update θ ← θ − λLθ(ab, sb).

end

end

Algorithm components
Guided MCTS policy π̂(a|s)
Network policy πθ(a|s)
Fixed size replay buffer D

Hyperparameters
Seed S
Replay buffer size D
Number of Episodes E
Number of samples T
Number of training epochs P
Batch size B
Learning rate λ

Languages
C++
Python

5 IMPLEMENTATION 45

5 Implementation

The goal of this chapter is to highlight some important details in the concept outlined
previously. First, the general implementation of the system is discussed with an emphasis
on the utilized software frameworks. This is followed by highlighting a specific code issue
observed during network training. As it turns out, it is of crucial importance how the
policy standard deviation is restricted.

5.1 System implementation

The overall training loop of the system described in this thesis is implemented in Python,
while the Monte Carlo tree search (MCTS) itself is a C++ library. Once a run is started,
a neural network is initialized from random parameters and saved to disk. PyTorch is the
deep learning framework chosen for this thesis because it allows seamless interoperability
between Python and C++ thanks to torchscript and the libtorch C++ library [63]. As
soon as network initialization is completed, a data collector instance is constructed from
a configuration file. It employs the distributed computing framework ray [60] to start
multiple instances of an MCTS ROS node [65].

The MCTS loads the saved network parameters from the disk and runs the guided search
until the scenario reaches a terminal condition. Care must be taken when training data
is generated from different scenarios with possibly different numbers of agents. If all
scenarios were chosen with equal probability for instance, the dataset would be biased
towards scenarios with more agents. This is due to the trajectories of all agents being
exported according to the training procedure in Section 4.6. The problem is resolved by
sampling scenarios with probabilities that are inversely proportional to the number of
agents |Υn| in the scenario. The probabilities can be obtained by first determining an
unnormalized weight for a scenario n:

|Υn| · wn = 1
|S|

⇔ wn = 1
|Υn| · |S|

. (5.1)

The intuition behind Formula 5.1 is to have scenarios weights wn which result in a uniform
distribution 1

|S| when multiplied by the number agents in a scenario |Υn|. A valid proba-
bility distribution can then be generated through normalization of all individual weights
wn by the sum of all weights ∑S

s=1ws:

P (Sn) = wn∑S
s=1ws

, (5.2)

where P (Sn) specifies the probability of sampling scenario n for data generation.

5 IMPLEMENTATION 46

During MCTS execution, the rollouts are replaced by a simulation policy which uses
network evaluations to add both distribution parameters and value estimates to a node.
Ego rewards obtained during execution of the search are normalized between −1 and 1
using Formula 5.3

r̂ = −1 + (r −max(r) + d) · 2
d

, (5.3)

where r is the unnormalized reward given by the reward function in Section 4.1.2 and d
is the diameter of the reward interval. max(r) is the maximum obtainable reward. The
used values can be found in Appendix H.

Unlike the Python framework, the libtorch C++ library does not possess a frontend
for the PyTorch distributions. Therefore all policy distributions used in this work are
implemented manually using Eigen3 [27] to keep them as lightweight as possible. After
a stage of the search has finished, the root node statistics for each agent are exported
in a PyTorch archive and saved on an SSD. They constitute the training data. Once
enough data for an episode has been generated, the data collector terminates the MCTS
runs. Subsequently, a PyTorch dataset is constructed from the D newest samples, where
D is the size of the replay buffer. The network is then trained with stochastic gradient
descent. Because storing data and training the network comprises only a fraction of the
total training time these operations are implemented in Python.

If a rolling average computed from the success rate of the last three training episodes is
higher than that of the previous best model, the network is saved to generate data in the
next episode. When the current success rate average does not improve on the highest
value, the gating test has been failed. In this case, the next batch of training experiences
is still generated from the older model with the highest success rate. Nonetheless, the
training proceeds with the current network and without reloading the weights.

Section 2.2.2 has established that progressive widening is done on a per-agent basis. Since
the data collection phase might use scenarios with different numbers of agents, special
attention has to be paid to padding the data batches. Value targets are padded using
a large negative constant −1 · 1010. On one hand, this provides direct feedback through
exploding loss values in the case of bugs. On the other hand, since rewards are normalized,
it is easy to generate a mask for padded values.

Agent actions and visitation counts are padded using zero values. To generate a mask for
the policy and entropy loss (refer to Section 4.3), note that an exported action cannot
have a visitation count of zero. Therefore generating a mask that removes all zero visita-
tion counts can also be used to discard log-probabilities generated from padded actions.
The last implementation detail worth discussing is significant enough to warrant its own
section, which follows.

5 IMPLEMENTATION 47

5.2 Restricting the policy standard deviation

When learning the standard deviation σ of a normal distribution in Reinforcement Learn-
ing (RL), one usually proceeds as follows [71, 66]:

1. Learn the logarithm of the standard deviation log σ instead of restricting the learned
parameter to positive ranges only.

2. Restrain log σ to be in some range, e.g. an interval between 2 and −20.

3. Calculate elog σ as standard deviation of the distribution.

In this process, step one helps to increase training stability by allowing the learned pa-
rameter to take positive and negative values. The second step adds numerical stability to
the learning by capping outliers and restricting log σ to prudent values. Lastly, the actual
standard deviation is computed by exponentiating the learned parameter. This ensures
σ ≥ 0, which is needed to generate a valid normal distribution.

The technique by which log σ is restricted is rarely specified but of critical importance.
One common approach taken is to use "clamping" to cap the network output between
interval boundaries [66]. The code snippet below implements this in PyTorch:

1 log_param_min , log_param_max = self. log_param_bounds
2 log_std = torch.clamp(log_std , min= log_param_min , max= log_param_max)

torch.clamp simply cuts values outside the target interval off and replaces them with the
minimum or maximum possible values. Another option is to use a tanh transformation
to restrict the standard deviation [90]:

1 log_std = torch.tanh(log_std)
2 log_std_min , log_std_max = self. log_std_bounds
3 log_std = log_std_min + 0.5*(log_std_max - log_std_min) * (log_std + 1)

Here the learned parameter is first constrained between −1 and 1. Then log σ is rescaled
and a bias term is added to achieve the desired interval boundaries. Now that both
methods have been described, the question becomes: Which one to choose? This thesis
uses the clamping approach motivated by its empirical performance. Figure 13 provides
an explanation for the observed superiority of clamping. In the experiment, an identical
neural network with random parameters is initialized. Then the distribution generated
by these parameters is visualized by drawing 50000 samples and plotting an approximate
2D density over the action space.

Analyzing the results, it becomes immediately clear why the tanh method struggles to
learn: The distribution generated is centered around the origin, but with a very narrow
support. The histograms in Figure 13b further illustrate that values outside of the interval

5 IMPLEMENTATION 48

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5
−4
−3
−2
−1
0
1
2
3
4
5

Longitudinal change in m/s

La
te
ra
lc

ha
ng

e
in

m
/s

(a) Density obtained through log σ clamping.

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

Longitudinal change in m/s

La
te
ra
lc

ha
ng

e
in

m
/s

(b) Density obtained through log σ transformation.

Figure 13: Contour histograms using different techniques to restrict the standard devia-
tion. To generate the plots, 50000 samples were drawn from the distribution parameters
produced by the same random neural network. a) uses clamping to restrict the learned
log standard deviation. As a result, the random initialization leads to exploration of the
whole sample space. b) uses the tanh transformation. The resulting distribution resembles
a 2D standard normal distribution and narrowly restricts sampling around the origin.

5 IMPLEMENTATION 49

[−3, 3] are sampled with very small probability. This is problematic, as it leaves a large
amount of the action space unexplored at the start of training. Using a scaled tanh
transformation to cap the log standard deviation therefore inhibits learning.

Comparing the torch.clamp approach, it can be seen that the distribution has four
modes, one in each corner of Figure 13a. There is however also a reasonable likelihood
of generating samples from all areas of the action space. This is desirable for a random
network at the start of training: It allows the algorithm to fully explore all available
actions before narrowing the distribution, thereby preventing premature convergence to
local optima.

For the reasons elaborated on above, all experiments in the following section use clamping
instead of the tanh transformation to restrict the log standard deviation.

6 EVALUATION 50

6 Evaluation

To evaluate the proposed approach, two scenarios are used to train models: Scenario
06 (Figure 36), where two agents have to merge, and scenario 08 (Figure 38), where
two agents have to pass a bottleneck. Scenario 06 is easier and allows multiple ablation
studies whereas scenario 08 can be considered more challenging23. It should therefore
provide more insights into the potential of the guided search algorithm. After introducing
a baseline used for comparison, the section headers serve as guiding questions for the
studies conducted in the body.

6.1 Evaluation Metrics

The algorithm described in the previous sections is empirically analyzed according to one
main metric: the success rate. A scenario run is deemed successful if no collisions or
invalid states occur. They are denoted with indicator variables Icollision for a collision and
Iinvalid for an invalid state. Recall that a state is invalid if the vehicle is not on the drivable
area (refer to Section 4.1.2). Additionally, if the algorithm was unable to generate actions
for each agent, the run is stopped with an indicator Iunable_continue. Therefore the success
of a single run can be stated in Definition 6.1:

Isuccess = max(1− Icollision − Iinvalid − Iunable_continue, 0) . (6.1)

The indicator variable success is thus one if neither of the aforementioned negative events
occurs. If a collision, invalid state or failed planning attempt has taken place, it is zero.
Aggregating the individual scenario successes into the success rate over N evaluations can
be written as

Psuccess = 1
N

N∑
n=1

Insuccess , (6.2)

where Psuccess is the success rate and Insuccess is the indicator of success for the n-th run.

In this place it is worth mentioning that in Reinforcement Learning (RL) usually the
episode reward is used to determine the learning progress. For the multi-agent driving
scenarios evaluated in this thesis, the normalized cooperative reward R is given as

R = 1
T

T∑
t=1

1
|Υ|

Υ∑
i=1

ri,t , (6.3)

where ri,t is the reward of agent i at time step t. ri,t is summed over all agents and time
steps in the scenario before being averaged over the number of steps T in the episode

23Why that is the case is disclosed in Sections 6.2 and 6.5.

6 EVALUATION 51

as well as the agent count |Υ|. As will be discussed in Sections 6.5 and 7.1, using the
normalized cooperative reward as measure of success is problematic.

Another metric used in the subsequent evaluation is the percentage of times an agent’s
desire has been fulfilled. Recall from Section 4.1 that each agent has a goal state consisting
of a target lane and a target velocity in longitudinal direction. How often this goal state
is reached for a total number of N runs can then be used as an alternative measure of
success:

Pdesire_fulfilled = 1
N

N∑
n=1

Indesire_fulfilled , (6.4)

where Indesire_fulfilled indicates that an agent’s desire has been reached in the n-th run.

To facilitate reproducibility of the results shown in the following sections, the hyperpa-
rameters for the evaluation and training runs are stated in Appendix H. They are kept
fixed across all runs unless explicitly stated otherwise. All training runs use the same
network architecture which is defined in Appendix G. The seeds to initialize the random
number generators for training and evaluation are specified in Appendix J and K, respec-
tively. When a trained model is evaluated, no learning occurs and its weights are kept
fixed.

Now that the metric for evaluation and the training settings have been discussed, the
following sections empirically analyze the capabilities of the proposed algorithm.

6.2 The baseline

When evaluating any method, it is important to select a competitive baseline as compar-
ison. As such, the Monte Carlo tree search (MCTS) developed by [46] is chosen when
evaluating the proposed approach. It uses several heuristics to improve its performance
in low iteration settings. This is in contrast to the network-guided search which learns
from tabula rasa. In the following, these heuristics are explained.

To generate new actions for progressive widening, Section 2.2.2 refers to uniform sam-
pling as the simplest strategy. The baseline however uses Blind Values as an orthogonal
approach to produce guided actions [17, 46]. Action generation proceeds as follows: For
each actually chosen action, first a set of candidate actions is sampled uniformly from the
action space. Their blind value is calculated subsequently. It can be seen as a scoring
function utilizing the statistics of already explored actions. Together with a distance mea-
sure the statistics provide an attractiveness score [46]. The value is high for actions far
from already selected ones at the beginning of the search. With higher visitation counts,
actions with higher UCT values are preferred. Blind values thus weigh exploration versus
exploitation for each actually expanded action [46].

6 EVALUATION 52

As a second heuristic that is particularly useful in low iteration settings, the baseline adds
a number of pre-calculated maneuvers to each newly expanded node. These maneuvers
are generated by calculating actions which conform to previously determined semantic
action groups [46]. An example action from these groups is for instance a lane change to
the left while decelerating. To calculate values for the chosen maneuvers, the MCTS relies
on the scenario specification [46]. The number of actions added this way is dependent
on the search depth: If the newly expanded node is close to the root of the tree, nine
pre-calculated maneuvers are added. For nodes deeper in the tree, only five basic actions
are generated [46].

What happens if the predetermined driving maneuvers in the last paragraph do not
conform to the action bounds? In this case, the baseline MCTS ignores the constraints.
As a result, it is able to select actions which are not accessible to the RL algorithm.
Through the tanh squashed normal distribution introduced in Section 4.2, the approach
proposed by this thesis cannot violate the action bounds.

To make results comparable, actions are bounded for the baseline in the following eval-
uation. Additionally, ego reward normalization according to Equation 5.3 is added to
produce equally scaled values. Table 2 shows how these modifications alter the baseline
results. Enforcing action bounds has a negligible effect on the success rate. Interestingly,
the ego reward normalization improves the baseline compared to using unnormalized
rewards. A variant of the MCTS without pre-calculated maneuvers is also evaluated.
Without them, the baseline is not able to solve scenarios 02, 05, 06, and 07 at all. This
highlights its reliance on heuristics in low iteration settings.

Due to its higher success rate and comparable reward values over the unmodified baseline,
the Bound & Norm variant from Table 2 is chosen for all further evaluations. As
scenarios, 06 is selected as it is solvable easily by the MCTS. This allows an evaluation of
whether the guided search is able to recover the pre-calculated heuristic maneuvers. As
another scenario, 08 is chosen. Here the heuristic actions are insufficient and cannot solve
the task, as evidenced by the MCTS needing more iterations.

With the baseline being introduced, the focus of this work now shifts towards evaluation of
the guided search approach. A starting point is a qualitative overview assessing whether
the network is able to successfully prune the sample space.

6
EVA

LU
AT

IO
N

53

Base Norm Bound Bound & Norm No pre-selection
Iterations 100 200 100 200 100 200 100 200 100 200
Scenario

Scenario 01 0.99 0.98 1.00 0.98 0.99 0.98 1.00 0.98 1.00 1.00
Scenario 02 0.80 0.82 0.97 0.96 0.80 0.82 0.97 0.96 0.00 0.00
Scenario 03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Scenario 04 0.98 1.00 0.99 0.99 0.98 1.00 0.99 0.99 1.00 1.00
Scenario 05 0.91 0.95 0.99 0.98 0.92 0.93 1.00 0.99 0.00 0.00
Scenario 06 0.97 0.97 0.99 1.00 0.97 0.99 0.99 1.00 0.00 0.00
Scenario 07 0.08 0.12 0.07 0.11 0.08 0.12 0.07 0.11 0.00 0.00
Scenario 08 0.17 0.69 0.20 0.79 0.17 0.69 0.20 0.79 0.39 0.49

Mean 0.7375 0.8163 0.7763 0.8513 0.7388 0.8163 0.7775 0.8525 0.4238 0.4363

Table 2: Performance of the baseline MCTS for 100 and 200 iterations. Norm corresponds to normalized ego rewards according to
Equation 5.3. Bound enforces action bounds in [−5, 5]. The combination is denoted as Bound & Norm. No pre-selection shows
performance without expanding pre-calculated maneuvers. The best performing algorithms are shown in cyan (100 iterations) and brown
(200 iterations). Ego reward normalization improves the baseline results. Not using pre-selected actions yields a performance drop-off.
For all following comparisons, the Bound & Norm baseline version is chosen as it performs best and produces comparable reward values.

6 EVALUATION 54

6.3 Does the model work as intended?

The goal of this thesis as stated in the introduction is to improve the MCTS sample
efficiency through guiding the search with learned knowledge. A simple, yet effective way
to qualitatively verify whether the desired phenomenon occurs or not is to visualize the
network distributions.

Figure 14 contrasts an agent’s view in scenario 06 with the output distribution of the neu-
ral network. The visual maps in Subplot 14a depict the situation: Agent zero approaches
a number of obstacles on its current lane and must merge into the middle lane to avoid a
crash. At the same time, agent one can be seen entering the images from above. It also
desires to merge into the center.

The corresponding network distributions are shown below in Figure 14b. It can be seen
how the GMM effectively prunes all actions in the sample space which correspond to
driving to the right. As this would lead to either driving off the road or colliding with an
obstacle, the network guides the MCTS as intended. Additionally, the network shows a
preference for slowing down when approaching the obstacle in the first plot of 14b. After
that, actions are sampled over the whole longitudinal range. Through this, the agent
is able to avoid the other vehicle by either accelerating or decelerating. The latter two
visualizations in Graphic 14b indicate that the network still prefers deceleration.

A less dramatic example of the model’s prediction of the action space is shown in Figure 15.
Here agent zero has to avoid obstacles on both lanes as well as another vehicle while driving
into the bottleneck. The corresponding maps are depicted in Illustration 15a. Note that
scenario 08 is more narrow compared to scenario 06: It only has two lanes instead of
three.

The network distributions visualized in Figure 15b show a slight preference towards driving
left. This is needed to avoid the obstacles. However, both acceleration and deceleration
are permitted with no obvious inclination visible. The agent therefore stays flexible and
can avoid the other vehicle by either slowing down or accelerating.

To further evaluate the proposed approach qualitatively, Figure 16 visualizes 20 trajecto-
ries for each agent in scenario 08. 100 MCTS iterations are used for both the baseline as
well as the guided search. The seeds are kept fixed such that the starting positions are
the same for both approaches. They are marked with red dots. Obstacle positions and
lane width are not randomized for visualization purposes.

Both plots show immediately how the learning based approach completes more runs than
the baseline MCTS. The pair of agents passes through the middle while at the same time
avoiding a collision. Their trajectories are both close to the center line between the lanes,
indicating that they pass the bottleneck consecutively.

6 EVALUATION 55

(a) Agent zero visual map.

−5 0 5

−4

−2

0

2

4

−5 0 5

−4

−2

0

2

4

−5 0 5

−4

−2

0

2

4

(b) Agent zero output distribution. x-axis refers to longitudinal velocity change in m/s. y-axis
is lateral velocity change in m/s.

Figure 14: First three steps of scenario 06 for agent zero. In (a), the perceived visual
maps are shown. It can be seen how the agent is approaching obstacles on its lane. (b)
shows the distributions produced by the network for a Gaussian Mixture Model (GMM)
with 3 components. 20000 samples are drawn to visualize the distributions. The model
effectively biases the action space. The actions preferred by the network can be interpreted
as decelerated lane change to the left.

6 EVALUATION 56

(a) Agent zero visual map.

−5 0 5

−4

−2

0

2

4

−5 0 5

−4

−2

0

2

4

−5 0 5

−4

−2

0

2

4

(b) Agent zero output distribution. x-axis refers to longitudinal velocity change in m/s. y-axis
is lateral velocity change in m/s.

Figure 15: First three steps of scenario 08 for agent zero. In (a), the agent is approaching
the bottleneck while noticing the other vehicle. (b) The network distribution biases
sampling towards a slight left turn to avoid the obstacles. To avoid a collision with
the simultaneously merging other agent, all longitudinal actions are still allowed. 20000
samples are drawn to visualize the distributions.

6 EVALUATION 57

0 50 100 150
0

2

4

6
GMM 3
MCTS

m

m

(a) Agent zero trajectories.

0 50 100 150 200
0

2

4

6
GMM 3
MCTS

m

m

(b) Agent one trajectories.

Figure 16: 20 trajectories using 100 iterations for each agent in scenario 08. Seeds are
fixed, resulting in the same starting positions (denoted as red dots). Guided search is using
a GMM with three components. The plots show how both agents are able to navigate
through the bottleneck without colliding more often when using the guided search. This
contrasts with the pure MCTS approach, where the vehicles crash when driving into the
center more regularly.

6 EVALUATION 58

On the other hand, Figure 16a already shows clearly how agent zero is not able to avoid
the obstacles and the other agent at the same time. Almost half of its trajectories end in
the area to the left of the first obstacle. A pass of the bottleneck only succeeds four times
for the baseline.

The visualizations in this section have shown that the network is able to successfully guide
the search. Next, the choice of MCTS selection policy is discussed.

6.4 Which selection policy to choose?

In Section 2.2.1, two strategies for selecting the action to be executed in the environment
are introduced: selection of the action with the highest visitation count and selection
of the action with the highest action value. The choice in the Upper Confidence Trees
(UCT) algorithm is usually the former [12].

Which strategy is best for cooperative autonomous driving is not immediately obvious.
Therefore a short empirical evaluation is conducted to find the best approach. Figure 17

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

Max value
Max visitation

Episode

Su
ce
ss

ra
te

Figure 17: Training success in scenario 06 using different MCTS selection policies. Both
runs use 50 iterations and the same three seeds. Selecting the action with the highest

action value yields a higher success rate.

shows the training progress of both selection strategies in scenario 06 for 50 iterations. In
contrast to the literature [12], selecting the action with the highest action value seems to
outperform selecting the most visited action.

6 EVALUATION 59

5 10 25 50 100 200 400
Iterations

Baseline

Max visits

Max values

M
od

el
0.87 0.96 1 0.99 0.99 1 1

0.13 0.42 0.69 0.74 0.92 0.98 0.99

0.4 0.55 0.68 0.85 0.96 0.97 0.98

Figure 18: Training success in scenario 06 using different MCTS selection policies. Both
models are trained using 50 iterations. Selecting the action with the highest action value
yields a higher success rate for lower iterations. Results are averaged for three models.

Matrix 18 further examines the learned models in an evaluation setting. Overall, selecting
the action with the maximum action value outperforms selection based on visitation
counts with a mean success rate of 0.7686 to 0.6971. The difference mainly stems from
low iteration settings, particularly for 5, 10 and 50 iterations. For higher iteration values
as well as 25 iterations, the maximum visitation selection has a marginally higher success
rate. Interestingly, the baseline is stronger than both learned models. Its high success
percentage using just 5 iterations confirms that the heuristic maneuvers are good enough
to solve some scenarios outright.

Iterations 5 10 25 50 100 200 400 Mean
Selection Metric

Max value
Success 0.3967 0.5533 0.6767 0.8467 0.9567 0.9700 0.9800 0.7686
Reward 0.2213 0.2366 0.2554 0.2738 0.2905 0.2951 0.3008 0.2676
Desire 0.0000 0.0000 0.0000 0.0000 0.0033 0.0033 0.0033 0.0014

Max visits
Success 0.1300 0.4200 0.6900 0.7433 0.9233 0.9833 0.9900 0.6971
Reward 0.1514 0.2104 0.2511 0.2629 0.2865 0.2942 0.3001 0.2509
Desire 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0200 0.0029

Table 3: Performance of different selection policies in scenario 06. Using the maximum
action value as criterion outperforms selecting the most visited action in four out of seven
settings. Final selection based on visitation counts has a slightly higher success rate for
25, 200 and 400 iterations.

The difference between both guided search models is expounded by Table 3. In addition
to the higher average success rate, maximum value selection also has the highest cooper-
ative reward values for each iteration setting. As the number of iterations increases, the

6 EVALUATION 60

difference between both models narrows. For the rate of fulfilled desires, both maximum
action value and maximum visitation count are close to zero for all settings.

Now that the choice of final selection policy has been evaluated, the next section discusses
the performance of guided search versus the baseline in detail. Due to its higher mean
success rate, the maximum action value policy is chosen for all following evaluations.

6.5 How well does the learned model perform versus pure MCTS?

The success rate visualization of different selection policies in the last section (Figure 18)
shows the baseline outperforming the learned models. This raises an interesting question:
Are there scenarios where the guided search exceeds the success rate of the baseline and
vice versa?

Looking at the training success in Plot 19 first, one can see how for scenario 06 the model
is able to approximate the baseline performance only late during the run. This is not

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

Scenario 06
Scenario 08

Episode

Su
ce
ss

ra
te

Figure 19: Training progress for scenarios 06 and 08. Models are trained over three
seeds using 200 iterations. Error bands show one standard deviation. The success rate
of the pure MCTS baseline for the same number of iterations is shown as dotted line.

surprising because the baseline completely solves the task for 200 iterations. For scenario
08, the guided search exceeds the performance of the MCTS at around episode 65 and
continues to improve upon it.

A closer look at Table 4 confirms the hypothesis for scenario 08: The learned models guide

6 EVALUATION 61

the search effectively, yielding a higher success and desires fulfilled rate than the baseline
in all iteration settings. The difference is particularly noticeable below 200 iterations. At

Iterations 5 10 25 50 100 200 400 Mean
Model Metric

GMM 3
Success 0.3000 0.4967 0.6833 0.8267 0.8300 0.9433 0.9500 0.7186
Reward 0.2779 0.2954 0.3119 0.3205 0.3276 0.3341 0.3367 0.3149
Desire 0.0067 0.0200 0.0567 0.1767 0.1333 0.2900 0.3833 0.1524

Baseline
Success 0.0200 0.0100 0.0200 0.0900 0.2000 0.7900 0.8700 0.2857
Reward 0.6738 0.6430 0.6404 0.6096 0.6145 0.6255 0.6238 0.6330
Desire 0.0000 0.0100 0.0000 0.0000 0.0002 0.0002 0.1000 0.0214

Table 4: Performance of the GMM 3 model versus the baseline in scenario 08. The best
value is shaded in cyan. Using guided search outperforms the pure MCTS baseline in
both success and desires fulfilled percentage. The difference is particularly stark in low
iteration settings. It is noteworthy that the MCTS consistently produces runs with higher
reward despite a lower success rate. For the guided search, the results of three models are
averaged.

100 MCTS traces, the guided search succeeds in 83.00% of runs compared to only 20.00%
for the baseline. Starting at 200 iterations, the success rate for the baseline makes a jump
and closes the gap between both approaches. Using a learned network however is still
superior, which is also reflected in terms of the average success rate at 0.7186 compared
to 0.2857.

The results described above also transfer to the rate of fulfilled desires. This should come
as no surprise, as an agent is only able to reach its target state if it stays on the road and
does not crash. The overall average rate of desires fulfilled across all iterations is 0.1524
for the guided search versus 0.0214 for the baseline.

Interestingly, the results of the previously examined evaluation metrics do not carry over
to the normalized cooperative reward. Here the baseline strongly outperforms the guided
search by more than a factor of 2× on average. The results for 5 iterations especially raise
questions. At this setting, the baseline achieves its highest cooperative reward despite a
success rate of only 2% and no desires fulfilled.

The outcomes are flipped regarding the detailed evaluation results of scenario 06 in Ta-
ble 5. Here the baseline posts stronger results compared to the guided search in all
iteration settings. 25 iterations are already enough for it to solve the task with 100% or
99% success. This is consistent with the findings of Section 6.2, which report that the
pre-calculated maneuvers are enough to succeed in scenario 06. While the learned model
is able to recover the knowledge added through the heuristic, it needs 200 iterations to
do so.

6 EVALUATION 62

Iterations 5 10 25 50 100 200 400 Mean
Model Metric

GMM 3
Success 0.4367 0.5733 0.7133 0.8533 0.9467 0.9900 0.9933 0.7867
Reward 0.2168 0.2345 0.2564 0.2755 0.2901 0.2986 0.3045 0.2681
Desire 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Baseline
Success 0.8700 0.9600 1.0000 0.9900 0.9900 1.0000 1.0000 0.9729
Reward 0.5798 0.4976 0.4943 0.4633 0.4791 0.5126 0.5157 0.5060
Desire 0.0000 0.0200 0.0100 0.0300 0.0000 0.0000 0.0000 0.0086

Table 5: Performance of the GMM 3 model versus the baseline in scenario 06. The best
value is denoted in cyan. Pure MCTS outperforms the 200 iteration model in all regards.
The difference is particularly noteworthy in medium iteration settings (10, 25, 50, 100).

Three models are averaged for the guided search.

The results described for the success rate also carry over to the other evaluation metrics.
It is noteworthy that neither the baseline nor the guided search are able to achieve a
percentage of desires fulfilled higher than 3%. As for the cooperative reward, the baseline
substantially outperforms the guided search similar to scenario 08. However, the results
fluctuate without apparent relationship to the success rate. Another important measure

Model Runs Iterations Success Wall clock

GMM 3 100 50 0.8400 49s
Baseline 100 400 0.8700 57s

Table 6: The guided search approach is competitive with the baseline using eight times
less iterations and 8s less wall clock time.

to look at — particularly important for potential real-world deployment — is the wall
clock time. Tables 6 and 7 report the results. In scenario 08, the guided search achieves
a similar success rate to the baseline with 8× less iterations. Due to the reduced number
of planning traces, it is competitive in terms of wall clock time and even slightly faster.
On scenario 06 in comparison, the learned model needs 100 iterations to be as successful
as the plain MCTS24. This results in planning that is orders of magnitude slower than
the baseline. The reason for these findings lies in the computational cost of network
evaluations. Profiling the code reveals that the guided search spends around 48% of its
runtime performing neural network inference.

Lastly, Section 4.5 describes how the networks can use the imperfect information gained
from only one agent’s point of view to plan for other agents as well. The results for the
corresponding evaluations are visualized in Figures 21 and 20. For the success rate, the

24The comparison is made between values within tables. The wall clock time between tables is not
comparable due to different background workloads on the servers.

6 EVALUATION 63

Model Runs Iterations Success Wall clock

GMM 3 100 100 0.9900 2m43s
Baseline 100 100 0.9900 4s

Table 7: The guided search approach performs the same in terms of success percentage
compared to the baseline. It requires the same number of iterations which results in
non-competitive wall clock time due to the slowness of network evaluations.

5 10 25 50 100 200 400
Iterations

Baseline

Both

Agent 0

Agent 1

M
od

el

0.87 0.96 1 0.99 0.99 1 1

0.44 0.57 0.71 0.85 0.95 0.99 0.99

0.41 0.57 0.69 0.84 0.92 0.98 0.99

0.43 0.59 0.74 0.84 0.93 0.99 0.99

(a) Success rates for different points of view.

5 10 25 50 100 200 400
Iterations

Baseline

Both

Agent 0

Agent 1

M
od

el

0 0.02 0.01 0.03 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.01

(b) Desires fulfilled for different points of view.

Figure 20: The two matrices show the model performance depending on which agent is
using the network in scenario 06. In (a), the success percentage is shown. (b) depicts
the percentage of desires fulfilled. Planning from one agent’s point of view shows similar
performance compared to planning for both agents. An average of three models is shown
for the guided search.

findings are very similar for all points of view. Using only the visual map for a single agent
is usually within a bound of three percentage points higher or lower compared to using
maps for both agents. This results in comparable average success rates when utilizing
all maps (0.7867) versus only agent one’s map (0.7871) in scenario 06. There is a slight
drop-off when using agent zero’s visual input only with 0.7714.

The only outlier in scenario 08 occurs when using 100 iterations, where planning from
agent zero’s point of view is more successful by four percentage points compared to both
agents. Apart from that, the average success across iterations is remarkably stable: 0.7186
for both compared to 0.7186 (agent zero) and 0.7119 (agent one).

When looking at the percentage of desires fulfilled, it stands out that in scenario 06 the
learned models are not able to achieve values above zero with one exemption. The baseline
has similarly low percentages with exceptions for 10, 25 and 50 iterations.

The results are more interesting for scenario 08, where fluctuations for the rate of desires
fulfilled can be found starting at 25 iterations. Using only agent zero’s map performs
noticeably better for 100 MCTS traces. Both agent’s point of view is more successful
at 25 and 50 iterations. Overall however, the mean percentage of desires fulfilled hovers

6 EVALUATION 64

5 10 25 50 100 200 400
Iterations

Baseline

Both

Agent 0

Agent 1

M
od

el
0.02 0.01 0.02 0.09 0.2 0.79 0.87

0.3 0.5 0.68 0.83 0.83 0.94 0.95

0.3 0.5 0.67 0.81 0.87 0.93 0.96

0.3 0.47 0.69 0.82 0.84 0.92 0.94

(a) Success rates for different points of view.

5 10 25 50 100 200 400
Iterations

Baseline

Both

Agent 0

Agent 1

M
od

el

0 0.01 0 0 0.02 0.02 0.1

0.01 0.02 0.06 0.18 0.13 0.29 0.38

0.01 0.02 0.09 0.11 0.19 0.25 0.39

0.01 0.02 0.1 0.13 0.23 0.28 0.34

(b) Desires fulfilled for different points of view.

Figure 21: The two matrices show the model performance depending on which agent is
using the network in scenario 08. In (a), the success percentage is shown. (b) depicts the
percentage of desires fulfilled. Using only a single agent’s point of view is competitive with
utilizing maps from both agents. Guided search outperforms the baseline for all settings
and metrics. Three models are averaged for the guided search results.

around 15% with 15.24% desires fulfilled when using all visual maps compared to 15.10%
and 15.62% for agent zero and agent one, respectively. The baseline is not competitive at
only 2.14%.

6 EVALUATION 65

6.6 How important is the number of iterations?

For approaches that combine RL with search, there is a trade-off between time allocated
to the learning component of the algorithm and time allocated to the planning component
[59]. In the context of this thesis, planning corresponds to the number of MCTS iterations
used during training. What number works best is not immediately obvious and therefore
evaluated in the context of scenario 06.

Figure 22 shows the training progress for 50, 100 and 200 iterations. While all models

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

200 Iterations
100 Iterations
50 Iterations

Episode

Su
ce
ss

ra
te

Figure 22: Training progress with different iteration numbers. The 200 iteration model
learns in fewer episodes than both other models. Using 100 iterations approaches a
similar level of success as using 200. For all models, three seeds are trained and one

standard deviation is shown.

successfully improve over the course of the episodes, the network trained with 200 itera-
tions exhibits the highest success rate. This is unsurprising, as more time spent in MCTS
searches should not only improve the quality of the action selected in the environment
but also produce enhanced training targets.

Delving deeper into the issue, Matrix 23 reveals an interesting dynamic: Despite being
trained with a smaller time budget, the 100 iteration model outperforms the one trained
with 200 iterations. The phenomenon is especially noticeable when using a medium
number of MCTS traces (10, 25 and 50). Both the 100 as well as the 200 iteration
networks are superior when compared to the 50 iteration model.

6 EVALUATION 66

5 10 25 50 100 200 400
Iterations

Baseline

50

100

200

M
od

el

0.87 0.96 1 0.99 0.99 1 1

0.4 0.55 0.68 0.85 0.96 0.97 0.98

0.4 0.61 0.75 0.88 0.94 0.98 0.99

0.44 0.57 0.71 0.85 0.95 0.99 0.99

Figure 23: Evaluation of models trained with different iteration numbers. The model
using 100 iterations performs best for medium iteration values. In high iteration settings,

the networks show similar performance. All results are averaged over three models.

Iterations 50 100 200

Wall clock 8h53m 14h28m 32h11m
Mean success 0.7686 0.7933 0.7867

Table 8: Wall clock times for different training iteration numbers in scenario 06. The
mean evaluation success rate is shown below. The model using 100 iterations has a higher
evaluation success rate than both 50 and 200 iterations.

Table 8 reports the mean success rates across all settings together with the wall clock
time needed for the training. It confirms the findings of the matrix plot, where the 100
iteration model performs best. When looking at the wall clock time, it takes roughly 1.6×
as long to train as the 50 iteration model. The network trained using 200 MCTS traces
takes another 2.2× longer compared to using 100 traces. Larger models are not trained
due to the computational resources required.

After this short evaluation of the number of iterations, the next section tackles an im-
portant question regarding the policy distribution: How many mixture components are
needed to properly guide the search?

6.7 How many mixture components are needed?

As noted in Section 2.3.4, a GMM has the theoretical ability to approximate any dis-
tribution. Using a mixture model however introduces an additional hyperparameter in
the number of components K. On one hand, having more components is desirable as it
results in a more expressive model. On the other hand, it might also degrade performance
or destabilize the training.

Therefore it is sensible to perform an empirical analysis to determine the optimal number
of components. The training results for different K in scenario 08 are shown in Figure 24.

6 EVALUATION 67

For each setting, three runs are executed with the same three seeds each. The error

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1
Normal
GMM 2
GMM 3
GMM 4

Episode

Su
ce
ss

ra
te

Figure 24: Training plots for models with different numbers of components K in scenario
08. The Gaussian policy performs subpar compared to using a mixture model. Runs are

averaged over the same 3 seeds on Scenario 08 with one standard deviation shown.

bands show one standard deviation from the mean. It can be seen clearly that a policy
parameterized by only a normal distribution has a noticeably lower success rate than the
mixture models. This is an indicator that a single normal distribution is not enough
to fit a proper model. When increasing the number of components, no distinguishable
difference in the training can be observed.

Looking at the evaluation results, a GMM with K = 3 shows slightly improved per-
formance compared to the other two mixture models. Plot 25 shows the data for all
evaluations. 100 runs with fixed seeds are performed for each iteration setting and av-
eraged over three models for each K to obtain the results. Matrix 25a shows a slightly
higher success rate for the GMM with three components. Its mean success rate is 0.7186
versus 0.7052 for K = 4 and 0.6948 for the GMM 2. Additionally, it possesses the highest
success rate in four out of seven iteration settings. All models outperform the baseline and
all mixture models outperform a single normal distribution. Lastly, it is noteworthy that
a GMM with four components shows slightly better results than using two components.

The findings regarding the success rate carry over to the percentage of desires fulfilled
in Matrix 25a. Again, all learned models show stronger results than the baseline and
the normal distribution cannot compete with mixture models. The GMM with three
components outperforms the other networks, particularly for 50 and 200 iterations. This

6 EVALUATION 68

5 10 25 50 100 200 400
Iterations

Baseline

Normal

GMM 2

GMM 3

GMM 4

M
od

el
0.02 0.01 0.02 0.09 0.2 0.79 0.87

0.02 0.09 0.15 0.29 0.43 0.61 0.76

0.28 0.47 0.62 0.78 0.85 0.91 0.95

0.3 0.5 0.68 0.83 0.83 0.94 0.95

0.28 0.52 0.64 0.78 0.86 0.91 0.95

(a) Success rates for different K.

5 10 25 50 100 200 400
Iterations

Baseline

Normal

GMM 2

GMM 3

GMM 4

M
od

el

0 0.01 0 0 0.02 0.02 0.1

0 0 0 0.05 0.08 0.19 0.2

0 0.02 0.06 0.12 0.17 0.23 0.39

0.01 0.02 0.06 0.18 0.13 0.29 0.38

0.01 0.03 0.06 0.09 0.18 0.28 0.33

(b) Desires fulfilled for different K.

Figure 25: Desires fulfilled and success percentage for different numbers of components
K in scenario 08. (a) shows the success rate, where the mixture models substantially
outperform a single normal distribution. All learned models are superior to the baseline.
These results are also reflected in the percentage of desires fulfilled (b). An average over
three models is used except for the baseline.

results in the highest mean desires fulfilled percentage of 0.1524 versus 0.1419 for the
GMM 2 and 0.1410 for K = 4.

Harnessing the results from the previous paragraphs, all other models are trained using
a GMM with three components. The evaluation of whether centralized training improves
the learning process therefore only uses K = 3 in the following section.

6.8 What is the effect of centralized training?

In Section 2.1.4, the Centralized Training with Decentralized Execution paradigm is intro-
duced as a technique to stabilize training performance. Figure 26 shows the evaluation

5 10 25 50 100 200 400
Iterations

Baseline

Decentralized

Centralized

Central eval

M
od

el

0.87 0.96 1 0.99 0.99 1 1

0.42 0.58 0.71 0.86 0.95 0.98 1

0.4 0.61 0.75 0.88 0.94 0.98 0.99

0.4 0.61 0.75 0.88 0.94 0.98 0.99

Figure 26: Model evaluations for centralized training and decentralized training on
scenario 06. Both were trained using 100 iterations. Centralized training slightly

outperforms decentralized training. Using centralized value estimates at evaluation time
(Central eval) shows no success rate gains over decentralized evaluation. Plain MCTS is

superior to both models.

results of models differing in their usage of centralized value targets.

6 EVALUATION 69

During the training and evaluation of the guided search approach, all agents make de-
cisions from their own point of view. In particular, they calculate value estimates and
distributions conditioned on their own state. This produces an accurate ego reward esti-
mate as both numerical states and a visual map is available to each agent. Centralized
training in the context of this thesis refers to using only the ego reward estimates during
training. An ego agent’s reward estimates for the other vehicles are discarded, as they
rely on incomplete information. After all, the ego agent only has a map from its own
point of view at its disposal.

Centralized value targets minimally increase the mean success percentage by 0.76 percent-
age points (0.7857 to 0.7933). The increase is not consistent across iterations. Further-
more, adding centralized value targets at evaluation time yields an even smaller benefit
of 0.05 percentage points. The final mean success rate improves from 0.7933 t 0.7938.

After centralized value targets have been shown to not be a key component to network
training, the next ablation study examines whether learned value targets are needed at
all.

6.9 How important are the learned value estimates?

Both AlphaZero as well as the A0C algorithm on which this thesis is based use a network
architecture with two heads. One head learns a policy, whereas the other head learns
value estimates for environment states [74, 58]. This architecture has shown improved
performance compared to separate networks for each task [75]. In the application to Go,
truncating potentially long rollouts is reasonable, especially since a strong rollout policy
can be expensive to compute [73].

Compared to learned value targets, using rollouts may be able to accelerate training
progress by improving early state value estimates. The simulation policy used in the
context of this thesis is able to choose from five basic actions: acceleration and deceleration
without lateral movement, lane change to the left or right without change in longitudinal
velocity and "doing nothing" (no velocity change in either direction). The choice between
these actions is made by uniform sampling [46].

In an evaluation of whether the rollout policy described above is able to improve per-
formance over learned value estimates, the first step comprises looking at the training
progress. It is depicted in Figure 27a. Both value estimation methods show almost iden-
tical performance during the training.

A quantity which can be helpful for evaluating whether successful value learning occurs
is the coefficient of determination or R2. It is given in Definition 6.5 and explains how
well predictions ŷi explain the variation of a target variable yi [84]. For this reason it is

6 EVALUATION 70

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1
GMM 3
Rollout

Episode

Su
ce
ss

ra
te

(a) Training success.

0 10 20 30 40 50 60 70 80 90 100 110

0

0.2

0.4

0.6

0.8 GMM 3
Rollout

Episode

Ex
pl
ai
ne
d
va
ria

nc
e

(b) Explained variance

Figure 27: (a) shows the training success of using MCTS rollouts versus learned value
targets in scenario 08. Both models perform similarly. (b) depicts the explained variance.
The rollout model converges faster and to a higher value. Both plots show one standard
deviation error bands for three seeds.

also called explained variance.

R2 = 1− RSS

SY Y
= 1−

∑(yi − ŷi)2∑(yi − ȳ)2 = 1− Var(V̂ (s)− Vθ(s))
Var(V̂ (s))

. (6.5)

Here RSS = ∑(yi− ŷi)2 is the residual sum of squares and SY Y = ∑(yi− ȳ)2 is the total
sum of squares [84]. Equation 6.5 then re-expresses R2 in terms of the network output:
value targets V̂ (s) and network value estimates Vθ(s).

The explained variance for the guided search with and without MCTS rollouts is plotted
in Figure 27b. Here one can see a clear differentiation between faster progress and higher
final values for the rollout model compared to using network value estimates. This is to be
expected, as the value targets V̂ (s) are always produced from the same simulation policy
when using rollouts. They are therefore stationary, as their distribution does not change
over the course of the training. The training targets based on network value estimates as
as described in Section 4.3.2 (Equation 4.30) on the other hand are non-stationary. The
learning process changes their distribution during the training.

Does the effect described above impact the algorithm’s performance in an evaluation
setting? As shown in Figure 28a, MCTS simulations increase the success rate from 0.7186
(GMM 3) to 0.7467 (Rollout). The Rollout model uses simulations both at training as
well as at evaluation time whereas the No rollout model is trained using simulations but
does not perform them at evaluation time. Still, the No rollout model has a higher average
success rate compared to the network using learned value targets (0.7319 to 0.7186).

In contrast to the results regarding the success rate, the ranking is flipped when analyzing
the percentage of fulfilled desires. Here the GMM 3 has the highest average across different

6 EVALUATION 71

5 10 25 50 100 200 400
Iterations

Baseline

GMM 3

Rollout

No rollout

M
od

el
0.02 0.01 0.02 0.09 0.2 0.79 0.87

0.3 0.5 0.68 0.83 0.83 0.94 0.95

0.34 0.52 0.73 0.82 0.89 0.95 0.97

0.31 0.51 0.72 0.81 0.88 0.92 0.97

(a) Rollout success rates.

5 10 25 50 100 200 400
Iterations

Baseline

GMM 3

Rollout

No rollout

M
od

el

0 0.01 0 0 0.02 0.02 0.1

0.01 0.02 0.06 0.18 0.13 0.29 0.38

0 0.01 0.01 0.03 0.07 0.09 0.11

0 0.01 0.07 0.13 0.17 0.23 0.29

(b) Rollout desires fulfilled.

Figure 28: Performance of different rollout strategies in scenario 08. GMM 3 performs
no rollouts during training and evaluation. The Rollout model uses MCTS simulations
as value targets during both training and evaluation. The No rollout model is trained
with MCTS rollouts instead of network value estimates but uses the network during
evaluation. Using MCTS simulations yields a slightly higher success rate but noticeably
lower percentage of desires fulfilled. Results are averaged over three models.

iteration settings with 0.1524. This is followed by the model not using simulations at
evaluation time (0.1290). Performing rollouts at training and test time yields an average
rate of desires fulfilled of 0.0457.

The results of this section are inconclusive of whether learned value targets are required
as a core component of the proposed algorithm or not. A last ablation study therefore
follows next with an evaluation of which loss component drives the learning process.

6.10 Which loss components are critical for success?

Modifications to the value targets from the previous two sections have had minimal impact
on training and evaluation performance. This motivates the question of whether the value
loss is even needed for the proposed algorithm. In an ablation study in the following
paragraphs, models are therefore trained using only either the policy loss or the value
loss.

Figure 29 visualizes the success rate over the course of the training on scenario 06 with
100 iterations. It immediately stands out that using the value loss as the only objective
results in no improvement at all. In comparison, the progress of the model trained only
on the policy loss is indistinguishable from the runs minimizing the full objective detailed
in Section 4.3.3.

6 EVALUATION 72

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

Value loss only
Policy loss only
Both

Episode

Su
ce
ss

ra
te

Figure 29: Training progress for models trained on different objective functions in
scenario 06. Using only the policy loss progresses similarly to using the full objective.
The model minimizing only the value loss shows no signs of improving. Runs are

averaged over three seeds with one standard deviation shown.

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

Value loss only
Policy loss only
Both

Episode

Lo
ss

(a) Overall loss.

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

Value loss only
Policy loss only
Both

Episode

Po
lic
y
lo
ss

(b) Policy loss.

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

1.2

Value loss only
Policy loss only
Both

Episode

Va
lu
e
lo
ss

(c) Value loss.

0 10 20 30 40 50 60 70 80 90 100 110

−0.1

0

0.1

0.2

0.3
Value loss only
Policy loss only
Both

Episode

Ex
pl
ai
ne
d
va
ria

nc
e

(d) Explained variance.

Figure 30: Progress of different loss components over the course of the training on scenario
06. Three models are trained with one standard deviation shown. Models optimizing only
one component are able to minimize the respective objective. The explained variance for
the value loss only model is lower than for the network trained on Objective 4.33.

6 EVALUATION 73

A closer examination is depicted in Figure 30. Runs where only one loss component
is minimized show the desired behavior in Plots 30b and 30c: The loss is reduced for
the target objective component and stays at the same level or increases for the other
component.

Looking at the explained variance (see Equation 6.5) reveals that the model trained only
on the policy loss hovers slightly below zero. This is to be expected, as random outputs
should have no explanatory value in regards to the variation of the value targets. The
network using only the value component as objective shows learning progress on a low
level, converging to an R2 of around 0.1. Training on the full loss improves upon this
value by a factor of roughly 3×.

An interpretation of the results from this Section is given in Chapter 7.1. The evaluation
concludes with an analysis of the generalization capabilities of the proposed approach.

6.11 How well can the learned policies generalize?

Overfitting to a specific environment is a prevalent problem in Deep Reinforcement Learn-
ing (DRL) agents [16]. Training and evaluation on the same environment as done in the
previous sections is a conventional procedure for common benchmarks [16, 10]. Neverthe-
less, learning more abstract, general knowledge would be desirable. An agent that learns
to stay in the lane and avoid obstacles should for instance be able to transfer these skills
to similar environments. Whether the networks trained through the approach proposed
by this thesis are able to do so is evaluated in the following section.

To benchmark generalization performance, the learned models are additionally evaluated
on previously unseen scenarios. All scenarios are visualized in Appendix E. The base-
line MCTS without guided search as well as an untrained model serve as standards for
comparison.

6
EVA

LU
AT

IO
N

74

Model SC06 SC08 Reg. SC08 SC06 & SC08 SC06 & SC08 + Exp. Random Random + Exp. Baseline
Scenario

SC01 0.44 0.98 0.93 0.98 1.00 0.01 0.99 1.00
SC02 0.27 0.72 0.83 0.78 0.95 0.01 0.90 0.97
SC03 0.48 0.99 0.98 0.96 1.00 0.00 1.00 1.00
SC04 0.10 0.82 0.87 0.60 1.00 0.00 0.99 0.99
SC05 0.70 0.21 0.17 0.61 0.96 0.34 0.95 1.00
SC06 0.99 0.39 0.32 0.90 0.98 0.31 0.98 0.99
SC07 0.00 0.00 0.02 0.05 0.01 0.00 0.00 0.07
SC08 0.39 0.84 0.81 0.84 0.54 0.00 0.04 0.20

Mean 01-05, 07 0.3317 0.6200 0.6333 0.6630 0.8200 0.0600 0.8050 0.8383
Mean unseen 0.3400 0.5871 0.5886 0.6630 0.8200 0.0838 0.7313 0.7775
Mean 0.4212 0.6187 0.6162 0.7150 0.8050 0.0838 0.7313 0.7775

Table 9: Generalization performance of different trained models measured by success rate. All are trained using 200 iterations. 100
different seeds are used in each evaluation with a randomly selected model. Evaluations are run using 100 iterations. Cyan marks a
scenario an agent has been trained on whereas brown symbolizes an unseen setting. The best models are denoted in bold. The network
trained on scenario 06 ("SC06") shows limited generalization capabilities but still improves over a random baseline ("Random"). A model
trained on scenario 08 ("SC08") performs better on unseen scenarios. Adding BatchNorm and LayerNorm has little effect ("Reg. SC08").
Training a network on both scenarios ("SC06 & SC08") yields a higher mean success rate and more consistent generalization for scenarios
04 and 05. Adding three pre-calculated actions (lane change left, lane change right, no change) improves the performance of the random
model ("Random + Exp.") past the trained models . A combination of these actions together with the model trained on scenario 06 and
scenario 08 yields the highest average success rate ("SC06 & SC08 + Exp.").

6 EVALUATION 75

The results are reported in Table 9, where unseen scenarios are shaded in brown and
scenarios which have been trained on are marked with cyan.

Looking at the success rates, the models trained on scenario 06 ("SC06") and 08 ("SC08")
are able to show improved performance in unseen scenarios compared to a random model
("Random"). The network trained on scenario 08 demonstrates evaluation results more
in line with the pure MCTS baseline in scenarios 01, 02, 03 and 04. Its performance in
scenarios 05, 06 and 07 remains subpar. Particularly in scenario 06, SC08 is not able to
improve considerably over a random network.

Adding batch normalization [41] and layer normalization [3] during training ("Reg. SC08")
minimally boosts generalization performance. At the same time, the normalization schemes
decrease the success rate on the scenario that is being trained on.

Using two scenarios in the training process ("SC06 & SC08") has added benefits apart
from the performance on seen tasks: The combined performance on the unseen scenarios
04 and 05 is the highest with 0.605 compared to the next best model ("SC08") at 0.515.
Success rate on the training tasks stays similar to the networks trained on a single scenario.

Section 6.2 demonstrates the benefits of using pre-calculated maneuvers. Incorporating
such maneuvers into the guided search approach is therefore a reasonable thing to try.
However, care must be taken during network training: If the heuristic is enabled during
the training phase, the model focuses on learning the pre-calculated actions. This is
undesirable, as they are already added to each node anyway. Additionally, a pre-calculated
lane change may introduce extreme actions at the border of the action space. The arising
large negative log-probabilities negatively affect training stability.

For the experiments with pre-calculated maneuvers, three basic actions are added: lane
change left, lane change right, and no change. The results when using an enhanced random
model are reported in Table 9 under "Random + Exp.". Simply adding these three basic
actions leads to an orders of magnitude improvement in success rate. "Random + Exp."
even outperforms the "SC06 & SC08" model on average. The increase is particularly
noticeable in scenarios 01-06. Adding the same maneuvers to the "SC06 & SC08" network
yields the model with the highest overall success rate ("SC06 & SC08 + Exp."). It inherits
the strength of the baseline MCTS on scenarios 01-06 while improving its performance in
scenario 08. The success rate of "SC06 & SC08 + Exp." on this task however falls short
of the models without heuristic expansion ("SC08" and "Reg. SC08"). Lastly, scenario 07
is inherently difficult with no approach achieving a success percentage of above 10%.

7 DISCUSSION 76

7 Discussion

The previous chapter has given detailed results on the empirical performance of the pro-
posed approach. These are interpreted in the following section. Next, the limitations of
this thesis are discussed before an outlook provides paths for future research.

7.1 Findings

Reflecting the experimental results in the previous chapter, it stands out that the baseline
and the guided search perform well in different settings. Scenario 06 is easily solvable by
pre-calculated basic actions as evidenced by the strong Monte Carlo tree search (MCTS)
performance with just five iterations (refer to Table 2). On the other hand, scenario 08
seems to require more nuanced interaction between the agents and driving between two
lanes. Here the guided search provides real benefits and can even realize a speed-up in
wall clock time.

Looking closer at the findings of Section 6.5, it emerges that the attained cooperative
reward has no consistent relationship with the success rate. This is surprising, as both
crashes and driving off the road are penalized heavily (see Appendix F). It appears as if
there are situations in which an agent may prefer to terminate the episode early instead
of trying to resolve the situation.

Contrary to the usual choice of selection based on visitation counts [75, 58], the proposed
approach performs better when selecting the action with the highest action value. This is
in line with the baseline MCTS. One possible hypothesis explaining these results is that
selection using the maximum action value is optimistic. Such behavior is problematic in
competitive settings, where it can lead to exploitable policies. However, the tasks in this
thesis are cooperative in nature. Thus agents have an incentive to accommodate behavior
of other agents instead of exploiting it.

Overall, the training process of the proposed approach is remarkably stable, which is not
necessarily a given in Deep Reinforcement Learning (DRL) methods [32]. Various tech-
niques which suggest improved final performance like using MCTS rollouts, centralized
value targets or iteration randomization25 neither increase nor decrease the success rate
substantially. Only using a Gaussian Mixture Model (GMM) instead of a normally dis-
tributed policy leads to noticeable success rate gains as analyzed by Section 6.7. This
seems plausible given the motivation for using mixture models from Chapter 2.3.4.

Since the modifications described as having no effect in the previous paragraph all relate to
value targets, it comes as no surprise that the learning is driven by the policy loss. Models

25See Appendix L for a short treatise of iteration randomization.

7 DISCUSSION 77

trained using only the value loss show no learning progress at all. Yet this contradicts
findings in the literature, where the value component of the objective function was found to
be more important [82]. Of course, there are significant differences in the environments:
Board games have discrete action spaces compared to the continuous control scenarios
introduced in Chapter 4.1. Additionally, domains like Go require building deeper trees
to obtain a sparse reward rather than the wide trees with dense reward produced by the
environments in this thesis. In conclusion, the experiment reveals that guiding the MCTS
using a learned distribution is the important component of the model. Utilizing network
value estimates has no further benefit.

Evaluating the generalization performance of trained networks shows higher success rates
on unseen scenarios compared to a random model. The gains are more pronounced if
the unseen task is similar to the scenario which is used during training. A network
trained on scenario 06 for instance generalizes well to scenario 05, which has a setup
closely resembling scenario 06. For reference, all scenarios are visualized in Appendix E.
An exciting result relates to training on multiple scenarios, which leads to improved
performance on unseen tasks in Table 9.

Motivated by the success of the baseline, actions determined through a heuristic are added
to the guided search. This combination results in the algorithm with the highest overall
success rate. However, one must be careful to not add too many pre-calculated actions.
Adding more than the three basic maneuvers outlined in Section 6.11 reduces the average
success rate again as it inhibits sampling from the network’s proposal distribution.

Nevertheless, the approach proposed in this thesis does not come without limitations.
These are discussed in the following section.

7.2 Limitations

Regarding the limitations of this thesis, the computational demands stand out in partic-
ular. Models trained using more iterations often need more than a day of training time.
This makes it challenging to scale up the algorithm and either include several scenarios
or use more difficult tasks which require a higher number of training iterations. In super-
vised learning, the scale of the models and training process is what drives computational
demands (e.g. in [19]). Compared to that, the algorithm introduced in the previous chap-
ters is bottlenecked by training data generation using network inference. As this work is
a proof of concept, the aforementioned inference is not optimized for throughput speed.
This in turn limits the scale at which the system can be trained.

The high demands in terms of compute also have trickle down effects concerning specific
algorithm choices. For instance, one reason why the guided search does not perform better

7 DISCUSSION 78

on some scenarios might be the coarse resolution of the map. This could lead to vehicles
unnecessarily colliding with obstacles. Enhancing map size however leads to a significant
increase in training time. As an example, doubling the resolution requires approximately
2.5× more wall clock time.

In terms of real world deployment, the proposed approach is limited due to the slow infer-
ence speed of the network. To be competitive in terms of wall clock time, the guided search
must use significantly less iterations than the baseline MCTS. While this is achieved in
scenario 08, scenario 06 requires too many iterations for the proposed model to recover the
performance of the baseline. As a consequence, the guided search is orders of magnitude
slower for the same success rate.

Also related to the available resources is hyperparameter tuning. The approach described
in this thesis has around 170 parameters to optimize26, not including the network architec-
ture. Optimizing performance in such a huge search space is difficult. One can therefore
assume with high confidence that the used parameters are suboptimal.

The generalization capabilities of the model introduced by this thesis are highly task-
dependent. The network trained on scenario 08 for example generalizes to scenarios 01-04.
On the contrary, the model trained on scenario 06 also gains performance in scenario 05.
What determines generalization success on unseen tasks? One might first assume it is the
difficulty of the scenario. Upon closer inspection however, scenarios 01-04 and 08 have
two lanes while scenarios 05 and 06 have three lanes. It is thus a reasonable hypothesis to
conclude that models are only able to transfer experience to tasks with a similar number
of lanes. This would preclude the learning of truly general driving skills.

Expounding the findings of the previous paragraph, it is fair to question the generality
of the obtained results. Due to computational constraints, ablation studies are only
performed in two scenarios. But as discussed, performance may be task dependent. More
studies are therefore needed to examine whether the results and ablation studies are
translatable to other scenarios and settings.

Lastly, looking at the proposed approach it stands out that the MCTS requires knowledge
of the environment’s transition function. As discussed in Section 3, this assumption is
restrictive and limits the applications of the algorithm. In addition, a learned forward
dynamics model could also increase the generalization capacities of this work’s method.

Many of the limitations discussed in the current section provide avenues for future re-
search. The chapter therefore concludes with an outlook on some particularly fruitful
directions.

26The exact number depends on the settings. As an example, enabling ε action selection requires
setting additional parameters which determine the decay.

7 DISCUSSION 79

7.3 Outlook

Recapping the previous section, increasing the speed at which training data is generated
emerges as a stream for future work. Here three orthogonal directions are equally viable:
First it is possible to increase throughput via improved engineering. Techniques such
as quantization in PyTorch [63] or Nvidia’s TensorRT [61] are able to improve network
inference speed on CPUs by factors of 2× up to 4×.

Another possibility is improving the architecture of system parts. Distilling the learned
network [69] or using an additional smaller policy in parts of the MCTS [49] are some con-
ceivable modifications. A large stream of current research in the deep learning community
is made of more efficient Transformer networks: Models like the Linformer or Performer
are able to better trade off speed versus accuracy and are therefore prime candidates to
improve the network architecture of this work as well [79].

Lastly, a third direction consists of modifications to the MCTS itself. Parallelizing the
search is a well established research direction [13] and has already been extended to con-
tinuous action spaces for the baseline used in this thesis [48]. Recently, more sophisticated
approaches have been developed and shown larger performance gains [55]. MCTS par-
allelization in connection with guided search might however be non-trivial to implement
efficiently. Another method is therefore to be more selective with network evaluations,
for instance by evaluating only the root node instead of all expanded nodes [47].

Raising the system’s scalability through improved engineering or more performant indi-
vidual components seems dull and uninspiring at first. After all, it symbolizes incremental
progress instead of an ingenious breakthrough. However, simply increasing the scale of
learned models has led to important advances in research, for instance with AlexNet [44].
Phenomena emerging from large-scale training also power some of the biggest success
stories in natural language processing [11].

A further pathway for future research is provided through algorithms which utilize a
learned model. This could be by either performing tree search in a compact latent space
[70] or by combining Reinforcement Learning (RL) with a learned model in other ways [34].
As exact knowledge of the environment’s transition function is a restrictive assumption,
using a learned model instead will provide routes for a more general application of the
proposed approach.

Finishing up this chapter, the evaluation results in Section 6.11 hint at another rewarding
direction: the combination of learned networks together with other forms of knowledge.
Clearly integrating a heuristic into the guided search presented by this thesis is only a
minuscule step towards such a concept. In the future, one can however envision systems
that reason more abstractly about the underlying causes or constraints of an environment.

8 CONCLUSION 80

8 Conclusion

This thesis presents an approach for guiding the sampling of a Monte Carlo tree search
(MCTS) based planner through a neural network learned by Reinforcement Learning
(RL). The model is able to succesfully predict maneuvers in a continuous action space via
learned proposal distributions. As the planner is used in cooperative multi-agent driving
scenarios, a novel network based on the Transformer architecture is developed. It is able
to learn interactions between a flexible number of agents from a hybrid numerical and
visual input representation. An empirical evaluation shows that the proposed approach
is able to improve sample efficiency and wall clock speed in a challenging multi-agent
driving scenario over a pure MCTS baseline.

Interpreting the agents within a scenario as a sequence of objects allows the application of a
Transformer encoder to learn interactions between a flexible number of agents. This newly
developed network architecture is trained starting from tabula rasa by extending the loss
function of an AlphaZero-inspired algorithm (A0C) to multi-agent settings. Action bounds
are enforced by using a policy consisting of mixtures of transformed normal distributions.
Once trained, the network is able to effectively predict trajectories for all vehicles in a
scenario using only the incomplete sensory input of a single agent.

An empirical analysis shows that the guided search using a neural network is able to suc-
cessfully recover the performance of a baseline augmented with domain-specific heuristics.
In a more challenging scenario, the proposed approach achieves competitive results to the
MCTS while using 8× fewer iterations and less wall clock time. Experiments disclose a
stable learning process for a variety of modifications. Additional ablation studies reveal
that learning in continuous domains is driven by the policy objective, which is in contrast
to existing findings in board games. The networks trained by the proposed algorithm
are able to generalize knowledge to unseen scenarios with some success and improve sub-
stantially over a random network. Finally, augmenting the guided search with heuristics
yields a method with the strongest overall performance and a high success rate on all but
one task.

A ECA AUTOMATIC KERNEL SIZE 81

A ECA automatic kernel size

The authors state two assumptions before deriving their formula for the automatic kernel
size [83]:

1. A linear mapping φ between number of channels C and kernel size k like C = φ(k)
is too restrictive to capture the relationship.

2. Channel dimensions in Convolutional Neural Networks (CNNs) are usually set to
powers of two, e.g. 16, 32, 64.

The ECA paper therefore defines the following exponential relationship [83]:

C = φ(k) = 2γ·k−b , (A.1)

where γ and b are constants to be chosen by the user.
Equation A.1 can now be solved for k:

C = 2γ·k−b

⇔ lnC = (γ · k − b) · ln 2

⇔ lnC
ln 2 = γ · k − b

⇔ log2C + b = γ · k

⇔ log2C

γ
+ b

γ
= k (A.2)

Rounding Formula A.2 to the nearest odd number | · |odd and plugging in γ = 2 and b = 1
yields a mapping ψ(C) from channels to kernel size [83]:

k = ψ(C) =
∣∣∣∣∣ log2C + 1

2

∣∣∣∣∣
odd

. (A.3)

The result in Equation A.3 is used by the authors in all their experiments.

B Proof of Proposition 1

The starting point is to show some helpful properties of the scaled tanh transformation.

Lemma 1. The scaled tanh Transformation y = c tanh(x) is bijective. Its inverse is
x = artanh

(
1
c
y
)
.

B PROOF OF PROPOSITION 1 82

Proof. The first step is to prove that the scaled tanh transformation is invertible.

y = c tanh(x)

⇔ x = tanh−1
(1
c
y
)

⇔ x = artanh
(1
c
y
)

⇔ x = 1
2 log

(
1 + 1

c
y

1− 1
c
y

)
(B.1)

Since the range of the tanh is (−1, 1), the range of the re-scaled tanh is (−c, c). Thus
the domain of the inverse function is y ∈ (−c, c). Therefore 1+ 1

c
y

1− 1
c
y
> 0 and the function is

defined on (−c, c).
In the second step it has to be shown that g−1(g(x)) = x. This can be done by simply
plugging in the definition of the scaled tanh transformation and simplifying

g−1(g(x)) = 1
2 log

(
1 + 1

c
c tanh(x)

1− 1
c
c tanh(x)

)

= 1
2 log

(
1 + tanh(x)
1− tanh(x)

)

= 1
2 log

(1 + e2x−1
e2x+1

1− e2x−1
e2x+1)

)

= 1
2 log

(e2x+1
e2x+1 + e2x−1

e2x+1
e2x+1
e2x+1 −

e2x−1
e2x+1

)

= 1
2 log

(e2x+1+e2x−1
e2x+1

e2x+1−e2x+1
e2x+1

)

= 1
2 log

(
e2x + 1 + e2x − 1
e2x + 1− e2x + 1

)

= 1
2 log

(
2e2x

2

)

= 1
2 log

(
e2x
)

= x

(B.2)

Lemma 2. The scaled tanh Transformation y = c tanh(x) is continuously differentiable.
Its derivative is d

dx
c tanh(x) = c− c tanh2(x).

Proof. The result follows directly from the derivative of the tanh function, which is
d
dx

tanh(x) = 1− tanh2(x).

B PROOF OF PROPOSITION 1 83

Remark 1. Since the scaled tanh transformation is applied element-wise, these results
hold in the multivariable case.

While lemmata 1 and 2 are rather trivial, their results are nevertheless needed to pro-
ceed further and apply the multivariable inverse function theorem to the scaled tanh
transformation.

Proposition 1. The Probability Density Function (PDF) of the transformed density can
be expressed as

π(a|s) = µ(u|s)
∣∣∣∣∣ det da

du

∣∣∣∣∣
−1

, (4.16)

with ∣∣∣∣∣ det da
du

∣∣∣∣∣ = cD
D∏
i=1

1− tanh2(ui) . (4.17)

Proof. First define ϕ(x) = tanh−1
(

1
c
x
)

using Lemma 1. The Cumulative Distribution
Function (CDF) of the transformed random variable a = c tanh(u) can then be written
as ∫ c

−c
π(a|s) da =

∫ ϕ(c)

ϕ(−c)
µ(u|s) du (B.3)

Application of the change of variables to the integral in Formula B.3 yields
∫ ϕ(c)

ϕ(−c)
µ(u|s)du =

∫ c

−c
µ(ϕ(a|s))

∣∣∣∣∣ det dϕ(a)
da

∣∣∣∣∣da (B.4)

Lemma 2 allows the application of the multivariable inverse function theorem to the term
dϕ(a)
da . It can express the derivative of the inverse function ϕ in terms of the scaled tanh

transformation a = c tanh u

dϕa
da

=
d tanh−1(1

c
a)

da
=
(
d c tanh u

du

)−1

=
(
da
du

)−1

. (B.5)

For this result to hold, the Jacobian da
du has to be invertible. Since the scaled tanh

transformation is applied element-wise, da
du is a diagonal matrix with the single-variable

derivative ∂a
∂ui

= c− c tanh2(ui) of the transformation on the diagonal. Its determinant is
thus ∣∣∣∣∣ det da

du

∣∣∣∣∣ =
D∏
i=1

c(1− tanh2(ui))

= cD
D∏
i=1

1− tanh2(ui) (B.6)

C SQUASHED NORMAL LOG PROBABILITY CORRECTION 84

From tanh2(ui) ∈ (−1, 1) it follows that c− c tanh2(ui) > 0. This is enough to show that
da
du is a positive definite matrix and thus invertible everywhere, allowing the substitution
of Expression B.5 into Equation B.4. Swapping the inverse and determinant is now the
only thing needed to arrive at Formula 4.16

µ(u|s)
∣∣∣∣∣ det

(
da
du

)−1∣∣∣∣∣ = µ(u|s)
∣∣∣∣∣ det da

du

∣∣∣∣∣
−1

. (B.7)

C Squashed normal log probability correction

The correction formula for the squashed normal log-likelihood follows from iterative ap-
plication of the logarithm rules:

log π(a|s) = log
(

µ(u|s)
cD
∏D
i=1 1− tanh2(ui)

)

= log µ(u|s)− log
(
cD

D∏
i=1

1− tanh2(ui)
)

= log µ(u|s)−
(

log cD + log
D∏
i=1

1− tanh2(ui)
)

= log µ(u|s)−
(
D log c+

D∑
i=1

log
(

1− tanh2(ui)
))

= log µ(u|s)−D log c−
D∑
i=1

log
(

1− tanh2(ui)
)

(C.1)

D Numerically stable log probability formula

Before starting to derive the more stable formula it helps to review some useful definitions
and identities:

1. The Softplus function is given as Softplus(x) = log(1 + ex).

2. The hyperbolic secant is given as

sech(x) = 1
cosh(x) = 2e−x

e−2x + 1

Here the definition of cosh(x) = (e−2x + 1)/2e−x is used.

3. tanh2(x) + sech2(x) = 1, so sech2(x) = 1− tanh2(x).

D NUMERICALLY STABLE LOG PROBABILITY FORMULA 85

The goal here is to reformulate the entropy correction term. Using 2) and 3) yields:

−
D∑
i=1

log
(

1− tanh2(ui)
)

= −
D∑
i=1

log
(
sech2(ui)

)

= −2 ·
D∑
i=1

log
(
sech(ui)

)

= −2 ·
D∑
i=1

log
(2e−ui
e−2ui + 1

)
(D.1)

After this key step is done, Expression D.1 can be simplified by applying logarithm rules:

−2 ·
D∑
i=1

log
(
sech(ui)

)
= −2 ·

D∑
i=1

log
(2e−ui
e−2ui + 1

)

= −2 ·
D∑
i=1

(
log(2e−ui)− log(e−2ui + 1)

)

= −2 ·
D∑
i=1

(
log 2 + log e−ui − log(e−2ui + 1)

)

= −2 ·
D∑
i=1

(
log 2− ui − log(e−2ui + 1)

)
(D.2)

Now the definition of the Softplus function can be inserted into Equation D.2:

−2 ·
D∑
i=1

(
log 2− ui − log(e−2ui + 1)

)
= −2 ·

D∑
i=1

(
log 2− ui − Softplus(−2ui)

)
(D.3)

D.3 is the formula commonly seen in code repositories. Below is an example snippet from
OpenAI’s SpinningUp library [1]:

1 import numpy as np
2 import torch.nn. functional as F
3 # pi_distribution is a pytorch normal distribution object
4 logp_pi = pi_distribution . log_prob (pi_action). sum(axis =-1)
5 # Correct the log probabilities by the formula derived above
6 logp_pi -= (
7 2*(np.log (2) - pi_action - F. softplus (-2* pi_action))
8). sum(axis =1)

E EVALUATION SCENARIOS 86

E Evaluation scenarios

This section briefly describes all the cooperative driving scenarios used for evaluation.

Figure 31: Scenario 01. The red agent wants to merge onto lane one, where the faster
green vehicle wants to keep the lane.

Figure 32: Scenario 02. Both vehicles want to keep the lane, but the green agent is faster
and has a higher desired velocity than the red agent.

Figure 33: Scenario 03. All agents have the same target velocity, but the red agent wants
to switch lanes and must merge between the other two vehicles.

Figure 34: Scenario 04. Similar to the previous scenario, the green agent wants to merge
onto lane zero, where two vehicles are approaching. To complete the maneuver, it must
either accelerate or decelerate.

Figure 35: Scenario 05. The red vehicle must react to the green vehicle’s lane change due
to avoiding the obstacles on lane zero.

F REWARD PARAMETERS 87

Figure 36: Scenario 06. The red agent wants to merge onto lane one at the same time as
the green vehicle must avoid the obstacles.

Figure 37: Scenario 07. The blue agent must merge onto lane one to avoid the obstacles
in its path. However, the lane is already occupied by two approaching vehicles.

Figure 38: Scenario 08. Both agents must cooperate and merge into the middle to avoid
obstacles in a bottleneck.

F Reward parameters

Table 10 shows the values of all reward weight coefficients described in Section 4.1.2.
While they can be adjusted individually for each scenario, all parameters are kept fixed
for this work.

Notation Parameter Value

wLC Lane change weight −10.0
wAX Longitudinal acceleration weight 0.0
wAY Lateral acceleration weight −5.0
wV D Velocity deviation weight 500.0
wLD Lane deviation weight 100.0
wLCD Lane center deviation weight 85.0
wIS Punishment for invalid states −1000.0
wC Punishment for collisions −1000.0
wIA Punishment for invalid actions 0.0
λi Cooperation factor 0.5

Table 10: Constants in the reward function and their settings.

G NETWORK ARCHITECTURE 88

G Network architecture

This appendix gives the full PyTorch printout of the network architecture as described in
Section 4.5. While it is more detailed than simply listing parameters in a table it allows
for exact re-implementation of the model.

Embedding architecture. Numerical agent states are vectors of length 60.
1 (embedding): class= LinearEmbedding , input_dim =60, embedding_dim =64,
2 embed_dropout =False , positional_encoding = Embedding (8, 64), device =gpu

Transformer architecture with four encoder layers and dmodel = 64. Each layer has two
heads. Because the layers are identical only the first one is shown.

1 TransformerEncoder (
2 (layers): ModuleList (
3 (0): TransformerEncoderLayer (
4 (self_attn): MultiheadAttention (
5 (out_proj): _LinearWithBias (in_features =64, out_features =64,
6 bias=True)
7)
8 (linear1): Linear (in_features =64, out_features =256 , bias=True)
9 (dropout): Dropout (p=0.0 , inplace =False)

10 (linear2): Linear (in_features =256 , out_features =64, bias=True)
11 (norm1): LayerNorm ((64 ,) , eps =1e-05, elementwise_affine =True)
12 (norm2): LayerNorm ((64 ,) , eps =1e-05, elementwise_affine =True)
13 (dropout1): Dropout (p=0.0 , inplace =False)
14 (dropout2): Dropout (p=0.0 , inplace =False)
15)
16)
17)

ResNet architecture used in the convolutional tower of this work. It consists of an initial
convolution with max pooling followed by three basic convolutional blocks. The output
is reduced to a vector with 128 elements by a fully convolutional head.

1 AttentionResNet (
2 (trunk): Sequential (
3 (block1): BasicBlock (
4 (nonlinearity): ReLU ()
5 (conv1): Conv2d (16, 32, kernel_size =(3, 3), stride =(2, 2),
6 padding =(1, 1), bias=False , padding_mode = reflect)
7 (conv2): Conv2d (32, 32, kernel_size =(3, 3), stride =(1, 1),
8 padding =(1, 1), bias=False , padding_mode = reflect)
9 (channel_attention): ECALayer (

10 (avg_pool): AdaptiveAvgPool2d (output_size =1)
11 (conv): Conv1d (1, 1, kernel_size =(3,), stride =(1,), padding =(1,),
12 bias=False)

G NETWORK ARCHITECTURE 89

13)
14 (projection): Conv2d (16, 32, kernel_size =(1, 1), stride =(2, 2),
15 bias=False)
16)
17 (block2): BasicBlock (
18 (nonlinearity): ReLU ()
19 (conv1): Conv2d (32, 64, kernel_size =(3, 3), stride =(2, 2),
20 padding =(1, 1), bias=False , padding_mode = reflect)
21 (conv2): Conv2d (64, 64, kernel_size =(3, 3), stride =(1, 1),
22 padding =(1, 1), bias=False , padding_mode = reflect)
23 (channel_attention): ECALayer (
24 (avg_pool): AdaptiveAvgPool2d (output_size =1)
25 (conv): Conv1d (1, 1, kernel_size =(3,), stride =(1,), padding =(1,),
26 bias=False)
27)
28 (projection): Conv2d (32, 64, kernel_size =(1, 1), stride =(2, 2),
29 bias=False)
30)
31 (block3): BasicBlock (
32 (nonlinearity): ReLU ()
33 (conv1): Conv2d (64, 128, kernel_size =(3, 3), stride =(2, 2),
34 padding =(1, 1), bias=False , padding_mode = reflect)
35 (conv2): Conv2d (128 , 128, kernel_size =(3, 3), stride =(1, 1),
36 padding =(1, 1), bias=False , padding_mode = reflect)
37 (channel_attention): ECALayer (
38 (avg_pool): AdaptiveAvgPool2d (output_size =1)
39 (conv): Conv1d (1, 1, kernel_size =(5,), stride =(1,), padding =(2,),
40 bias=False)
41)
42 (projection): Conv2d (64, 128, kernel_size =(1, 1), stride =(2, 2),
43 bias=False)
44)
45)
46 (inital_conv_pool): Sequential (
47 (conv7x7): Conv2d (2, 16, kernel_size =(3, 3), stride =(1, 1),
48 padding_mode = reflect)
49 (norm): Identity ()
50 (nonlinearity): Hardswish ()
51 (pool3x3): MaxPool2d (kernel_size =3, stride =2, padding =0, dilation =1,
52 ceil_mode =False)
53)
54 (fcn_head): Sequential (
55 (avgpool): AdaptiveAvgPool2d (output_size =1)
56 (1 x1conv1): Conv2d (128 , 256, kernel_size =(1, 1), stride =(1, 1),
57 bias=False)
58 (nonlinearity1): Hardswish ()
59 (1 x1conv2): Conv2d (256 , 128, kernel_size =(1, 1), stride =(1, 1),

H HYPERPARAMETERS 90

60 bias=False)
61 (nonlinearity2): Hardswish ()
62)
63)

The policy is a four-layer Multilayer Perceptron (MLP).
1 (policy): class= DiagonalGMMPolicy , components =3, state_dim =192 , action_dim =2,
2 action_bound =5, log_std_bounds =(-5, 2),
3 hidden_layers =4, hidden_units =[1024 , 512, 512, 256] ,
4 nonlinearity =ReLU , layernorm =False

H Hyperparameters

Table 11 lists the relevant MCTS parameters used to obtain the results from Chapter 6.
Hyperparameters for the RL models were tuned by hand. A setting is deemed relevant if
it differs from the baseline settings or if it is of importance to the RL training procedure.

H HYPERPARAMETERS 91

Notation Parameter Value

γ Discount factor 0.7
Cuct Initial UCT 200
Cuct UCT constant 4

Move grouping False
ε-greedy selection False

Action noise False
Blind values False

Expansion policy expansionUCT
Final selection continuousMaxActionValue

Cpw Progressive widening (PW) coefficient 1
αpw PW exponent 0.7

Predetermined actions False
Numerical state history length 8

min(r) Minimum unnormalized reward −2603.0
max(r) Maximum unnormalized reward 685.0

d Reward interval diameter 3288.0
Minimum scaled reward −1
Maximum scaled reward 1

Maximum longitudinal range 128m
Maximum lateral range 12.8m
Map size C ×H ×W 2× 32× 64

x axis scaling 0.5×
y axis scaling 2.5×
Max agents 8
Max speed 36m/s

Max vehicle length 5m
Max vehicle width 2.2m

Max lanes 4

Table 11: MCTS parameter settings for the RL algorithm.

The training parameters for the RL algorithm are listed in Table 12. For the model
trained on both scenario 06 and scenario 08, D = 240000 and T = 20000.

I BASELINE HYPERPARAMETERS 92

Notation Parameter Value

E Training episodes 120
D Replay buffer size 120000
T Samples per episode 10000
P Training epochs 1
B Batch size 1024

Centralized value estimates True
Iteration randomization False

Rollouts False
Optimizer SGD

λ Learning rate 0.001
Momentum 0.9
Weight decay 0.00002

Gradient max value 10.0
τ Target temperature 10.0

Loss policy coefficient 1.0
Loss value coefficient 1.0

α Loss entropy coefficient 0.2
Scalar reduction action

Table 12: Training hyperparameters for the RL algorithm.

I Baseline hyperparameters

The baseline MCTS parameters were optimized using Bayesian optimization in an un-
published work. Relevant values are listed in the following table. Move grouping settings
refer to the semantic action groups. More information on them can be found in [46].

J SET OF TRAINING SEEDS 93

Notation Parameter Value

γ Discount factor 0.7
Initial UCT 200

Cuct UCT constant 4.0
ε-greedy selection False

Action noise False
Blind values True

BV candidate samples 100
Expansion policy expansionUCT
Final selection continuousMaxActionValue

Cpw Progressive widening (PW) coefficient 0.55
αpw PW exponent 0.4
αpw Max PW depth 2

Move Grouping (MG) True
MG UCT constant 12.0

MG detailed action classes True
MG final decision True
MG PW bias True

MG PW coefficient 0.55
MG PW exponent 0.4

Table 13: MCTS parameters for the baseline.

J Set of training seeds

The training seeds used for all runs are: 1337, 7961, 4089.

K Set of evaluation seeds

For the evaluation, a set of 100 randomly generated seeds between 0 and 9001 has been
used.

2005, 5579, 4614, 3534, 2410, 5850, 5942, 6299, 4913, 3374, 1915,
5503, 8988, 1662, 432, 8051, 1246, 6407,5710, 7705, 5744, 1806,
4808, 2398, 6272, 1125, 310, 7352, 4628, 6086, 846, 3481, 8124,
1078, 118, 2017, 6829, 5608, 5550, 8619, 8887, 8063, 5530, 5517,
5240, 6898, 6097, 739, 1351, 5884, 8157, 6668, 7258, 8833, 6969,

L ITERATION RANDOMIZATION 94

1499, 7315, 775, 6801, 4091, 468, 475, 6290, 7100, 3328, 4484,
8618, 5698, 5920, 5762, 7542, 4347, 8677, 8040, 5191, 7558, 7924,
5753, 8613, 6194, 2475, 475, 6120, 1727, 1600, 8514, 6668, 8410,
5744, 1270, 308, 735, 3597, 8060, 4946, 3586, 615, 1646, 7605,
6723.

L Iteration randomization

Iteration randomization is a training scheme where the number of MCTS iterations is
randomized between a high value and a low value during training [88]. The goal is to
generate data faster and produce more diverse situations during training. Figure 39 shows
an evaluation using 400 as high and 80 as low value on scenario 08. Full searches with
400 iterations are performed 33% of the time. The iteration randomization model only
slightly outperforms a Gaussian Mixture Model (GMM) with 3 components despite a
2.5× increase in wall clock training time. The GMM 3 was trained using 200 iterations.

5 10 25 50 100 200 400
0

0.2

0.4

0.6

0.8

1

Baseline
GMM 3
Playout

Iterations

Su
cc
es
s
ra
te

Figure 39: The iteration randomization model slightly outperforms the non-randomized
GMM for low iterations. Both models outperform the baseline. Note that the x-axis is

scaled logarithmically.

REFERENCES 95

References

[1] Achiam, J. Spinning up in deep reinforcement learning.

[2] Anthony, T., Tian, Z., and Barber, D. Thinking Fast and Slow with Deep
Learning and Tree Search. arXiv:1705.08439 [cs] (Dec. 2017). arXiv: 1705.08439.

[3] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer Normalization.
arXiv:1607.06450 [cs, stat] (July 2016). arXiv: 1607.06450.

[4] Bacchiani, G., Molinari, D., and Patander, M. Microscopic Traffic Simu-
lation by Cooperative Multi-agent Deep Reinforcement Learning. arXiv:1903.01365
[cs] (Mar. 2019). arXiv: 1903.01365.

[5] Bahdanau, D., Cho, K., and Bengio, Y. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv:1409.0473 [cs, stat] (May 2016). arXiv:
1409.0473.

[6] Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado,
M. C., Moitra, S., Ponda, S. S., and Wang, Z. Autonomous navigation
of stratospheric balloons using reinforcement learning. Nature 588, 7836 (Dec. 2020),
77–82.

[7] Bishop, C. M. Mixture density networks. Publisher: Aston University.

[8] Bishop, C. M. Pattern recognition and machine learning. Information science and
statistics. Springer, New York, 2006.

[9] Bouton, M., Nakhaei, A., Isele, D., Fujimura, K., and Kochenderfer,
M. J. Reinforcement Learning with Iterative Reasoning for Merging in Dense Traffic.
arXiv:2005.11895 [cs] (May 2020). arXiv: 2005.11895.

[10] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., and Zaremba, W. OpenAI Gym. arXiv:1606.01540 [cs] (June 2016).
arXiv: 1606.01540.

[11] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language Models are Few-Shot
Learners. arXiv:2005.14165 [cs] (July 2020). arXiv: 2005.14165.

REFERENCES 96

[12] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling,
P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., and
Colton, S. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games 4, 1 (Mar. 2012), 1–43.

[13] Chaslot, G. M. J. B., Winands, M. H. M., and van den Herik, H. J. Par-
allel Monte-Carlo Tree Search. In Computers and Games, D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, H. J. van den Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds.,
vol. 5131. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 60–71.

[14] Chen, J., Zhang, C., Luo, J., Xie, J., and Wan, Y. Driving Maneuvers Predic-
tion Based Autonomous Driving Control by Deep Monte Carlo Tree Search. IEEE
Transactions on Vehicular Technology 69, 7 (July 2020), 7146–7158. Conference
Name: IEEE Transactions on Vehicular Technology.

[15] Chou, P.-W., Maturana, D., and Scherer, S. Improving Stochastic Policy
Gradients in Continuous Control with Deep Reinforcement Learning using the Beta
Distribution. 10.

[16] Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. Quantifying
Generalization in Reinforcement Learning. 8.

[17] Couëtoux, A., Doghmen, H., and Teytaud, O. Improving the Exploration in
Upper Confidence Trees. In Learning and Intelligent Optimization, Y. Hamadi and
M. Schoenauer, Eds., vol. 7219. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 366–371. Series Title: Lecture Notes in Computer Science.

[18] Couëtoux, A., Hoock, J.-B., Sokolovska, N., Teytaud, O., and Bon-
nard, N. Continuous Upper Confidence Trees. In Learning and Intelligent Optimiza-
tion, C. A. C. Coello, Ed., vol. 6683. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 433–445. Series Title: Lecture Notes in Computer Science.

[19] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805
[cs] (May 2019). arXiv: 1810.04805.

[20] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S.,
Uszkoreit, J., and Houlsby, N. AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. 21.

REFERENCES 97

[21] Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C.,
Gowal, S., and Hester, T. An empirical investigation of the challenges of real-
world reinforcement learning. arXiv:2003.11881 [cs] (Mar. 2021). arXiv: 2003.11881.

[22] Everett, M., Chen, Y. F., and How, J. P. Collision Avoidance in Pedestrian-
Rich Environments with Deep Reinforcement Learning. arXiv:1910.11689 [cs] (Apr.
2020). arXiv: 1910.11689.

[23] Foerster, J. N. Deep Multi-Agent Reinforcement Learning. 205.

[24] Francois-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., and
Pineau, J. An Introduction to Deep Reinforcement Learning. Foundations and
Trends® in Machine Learning 11, 3-4 (2018), 219–354. arXiv: 1811.12560.

[25] Giuliari, F., Hasan, I., Cristani, M., and Galasso, F. Transformer Networks
for Trajectory Forecasting. arXiv:2003.08111 [cs] (May 2020). arXiv: 2003.08111.

[26] Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT Press,
2016.

[27] Guennebaud, G., Jacob, B., and others. Eigen v3, 2010.

[28] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
arXiv:1801.01290 [cs, stat] (Aug. 2018). arXiv: 1801.01290.

[29] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J.,
Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and Levine, S. Soft Actor-
Critic Algorithms and Applications. arXiv:1812.05905 [cs, stat] (Dec. 2018). arXiv:
1812.05905.

[30] Hamrick, J. B., Bapst, V., Pfaff, T., Weber, T., Battaglia, P. W.,
Sanchez-Gonzalez, A., and Buesing, L. COMBINING Q-LEARNING AND
SEARCH WITH AMORTIZED VALUE ESTIMATES. 27.

[31] He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image
Recognition. arXiv:1512.03385 [cs] (Dec. 2015). arXiv: 1512.03385.

[32] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and
Meger, D. Deep Reinforcement Learning that Matters. arXiv:1709.06560 [cs, stat]
(Jan. 2019). arXiv: 1709.06560.

[33] Hoel, C.-J., Driggs-Campbell, K., Wolff, K., Laine, L., and Kochen-
derfer, M. J. Combining Planning and Deep Reinforcement Learning in Tactical

REFERENCES 98

Decision Making for Autonomous Driving. IEEE Transactions on Intelligent Vehicles
5, 2 (June 2020), 294–305. arXiv: 1905.02680.

[34] Hong, Z.-W., Pajarinen, J., and Peters, J. Model-based Lookahead Rein-
forcement Learning. arXiv:1908.06012 [cs, stat] (Aug. 2019). arXiv: 1908.06012.

[35] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M.,
Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., and Adam, H.
Searching for MobileNetV3. arXiv:1905.02244 [cs] (Nov. 2019). arXiv: 1905.02244.

[36] Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. Squeeze-and-Excitation
Networks. arXiv:1709.01507 [cs] (May 2019). arXiv: 1709.01507.

[37] Huber, M. F., Bailey, T., Durrant-Whyte, H., and Hanebeck, U. D. On
entropy approximation for Gaussian mixture random vectors. In 2008 IEEE Inter-
national Conference on Multisensor Fusion and Integration for Intelligent Systems
(Seoul, Aug. 2008), IEEE, pp. 181–188.

[38] Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain, M.,
Schmitt, S., and Silver, D. Learning and Planning in Complex Action Spaces.
arXiv:2104.06303 [cs] (Apr. 2021). arXiv: 2104.06303.

[39] Huegle, M., Kalweit, G., Werling, M., and Boedecker, J. Dynamic
Interaction-Aware Scene Understanding for Reinforcement Learning in Autonomous
Driving. arXiv:1909.13582 [cs, stat] (Sept. 2019). arXiv: 1909.13582.

[40] Hügle, M., Kalweit, G., Mirchevska, B., Werling, M., and Boedecker,
J. Dynamic Input for Deep Reinforcement Learning in Autonomous Driving. 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Nov.
2019), 7566–7573. arXiv: 1907.10994.

[41] Ioffe, S., and Szegedy, C. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs] (Mar. 2015).
arXiv: 1502.03167.

[42] Kocsis, L., Szepesvari, C., and Willemson, J. Improved Monte-Carlo Search.
22.

[43] Kocsis, L., and Szepesvári, C. Bandit Based Monte-Carlo Planning. In Ma-
chine Learning: ECML 2006, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Stef-
fen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, Eds., vol. 4212. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006, pp. 282–293. Series Title: Lecture Notes in Computer Science.

REFERENCES 99

[44] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification
with deep convolutional neural networks. Communications of the ACM 60, 6 (May
2017), 84–90.

[45] Kullback, S., and Leibler, R. A. On information and sufficiency. The annals
of mathematical statistics 22, 1 (1951), 79–86. Publisher: JSTOR.

[46] Kurzer, K., Engelhorn, F., and Zöllner, J. M. Decentralized Cooperative
Planning for Automated Vehicles with Continuous Monte Carlo Tree Search. 2018
21st International Conference on Intelligent Transportation Systems (ITSC) (Nov.
2018), 452–459. arXiv: 1809.03200.

[47] Kurzer, K., Fechner, M., and Zöllner, J. M. Accelerating Cooperative
Planning for Automated Vehicles with Learned Heuristics and Monte Carlo Tree
Search. arXiv:2002.00497 [cs, stat] (May 2020). arXiv: 2002.00497.

[48] Kurzer, K., Hörtnagl, C., and Zöllner, J. M. Parallelization of Monte Carlo
Tree Search in Continuous Domains. arXiv:2003.13741 [cs, stat] (Mar. 2020). arXiv:
2003.13741.

[49] Lan, L.-C., Li, W., Wei, T.-H., and Wu, I.-C. Multiple Policy Value Monte
Carlo Tree Search. 7.

[50] Lanctot, M., Wittlinger, C., and Winands, M. H. M. Monte Carlo Tree
Search for Simultaneous Move Games: A Case Study in the Game of Tron. 8.

[51] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W., and Jackel, L. D. Backpropagation Applied to Handwritten Zip
Code Recognition. Neural Computation 1, 4 (Dec. 1989), 541–551.

[52] Lenz, D., Kessler, T., and Knoll, A. Tactical cooperative planning for au-
tonomous highway driving using Monte-Carlo Tree Search. In 2016 IEEE Intelligent
Vehicles Symposium (IV) (June 2016), pp. 447–453.

[53] Liao, J., Liu, T., Tang, X., Mu, X., Huang, B., and Cao, D. Decision-
Making Strategy on Highway for Autonomous Vehicles Using Deep Reinforcement
Learning. IEEE Access 8 (2020), 177804–177814. Conference Name: IEEE Access.

[54] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., and Wierstra, D. Continuous control with deep reinforcement
learning. arXiv:1509.02971 [cs, stat] (July 2019). arXiv: 1509.02971.

[55] Liu, A., Chen, J., Yu, M., Zhai, Y., Zhou, X., and Liu, J. WATCH THE
UNOBSERVED: A SIMPLE APPROACH TO PARALLELIZING MONTE CARLO
TREE SEARCH. 21.

REFERENCES 100

[56] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mordatch,
I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
arXiv:1706.02275 [cs] (Mar. 2020). arXiv: 1706.02275.

[57] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,
G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature 518, 7540 (Feb. 2015), 529–533.

[58] Moerland, T. M., Broekens, J., Plaat, A., and Jonker, C. M. A0C: Alpha
Zero in Continuous Action Space. arXiv:1805.09613 [cs, stat] (May 2018). arXiv:
1805.09613.

[59] Moerland, T. M., Deichler, A., Baldi, S., Broekens, J., and Jonker,
C. M. Think Too Fast Nor Too Slow: The Computational Trade-off Between
Planning And Reinforcement Learning. arXiv:2005.07404 [cs] (May 2020). arXiv:
2005.07404.

[60] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E.,
Elibol, M., Yang, Z., Paul, W., Jordan, M. I., and Stoica, I. Ray: A
Distributed Framework for Emerging AI Applications. arXiv:1712.05889 [cs, stat]
(Sept. 2018). arXiv: 1712.05889.

[61] NVIDIA. NVIDIA TensorRT, Apr. 2016.

[62] Oliehoek, F. A., and Amato, C. A Concise Introduction to Decentralized
POMDPs. SpringerBriefs in Intelligent Systems. Springer International Publishing,
Cham, 2016.

[63] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. 12.

[64] Petosa, N., and Balch, T. Multiplayer AlphaZero. arXiv:1910.13012 [cs] (Dec.
2019). arXiv: 1910.13012.

[65] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R., and Ng, A. ROS: an open-source Robot Operating
System. 6.

REFERENCES 101

[66] Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., and
Dormann, N. Stable baselines3, 2019.

[67] Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A.,
Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-
Brown, A., Luccioni, A., Maharaj, T., Sherwin, E. D., Mukkavilli,
S. K., Kording, K. P., Gomes, C., Ng, A. Y., Hassabis, D., Platt, J. C.,
Creutzig, F., Chayes, J., and Bengio, Y. Tackling Climate Change with
Machine Learning. arXiv:1906.05433 [cs, stat] (Nov. 2019). arXiv: 1906.05433.

[68] Rosenblatt, F. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review 65, 6 (1958), 386–408.

[69] Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirk-
patrick, J., Pascanu, R., Mnih, V., Kavukcuoglu, K., and Hadsell, R.
Policy Distillation. arXiv:1511.06295 [cs] (Jan. 2016). arXiv: 1511.06295.

[70] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L.,
Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lilli-
crap, T., and Silver, D. Mastering Atari, Go, Chess and Shogi by Planning with
a Learned Model. arXiv:1911.08265 [cs, stat] (Feb. 2020). arXiv: 1911.08265.

[71] Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. Trust
Region Policy Optimization. arXiv:1502.05477 [cs] (Apr. 2017). arXiv: 1502.05477.

[72] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.
Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs] (Aug. 2017). arXiv:
1707.06347.

[73] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
and Hassabis, D. Mastering the game of Go with deep neural networks and tree
search. Nature 529, 7587 (Jan. 2016), 484–489.

[74] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M.,
Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap,
T., Simonyan, K., and Hassabis, D. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science 362, 6419 (Dec. 2018),
1140–1144.

REFERENCES 102

[75] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.,
Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T.,
and Hassabis, D. Mastering the game of Go without human knowledge. Nature
550, 7676 (Oct. 2017), 354–359.

[76] Silver, D., Singh, S., Precup, D., and Sutton, R. S. Reward is enough.
Artificial Intelligence 299 (Oct. 2021), 103535.

[77] Sutton, R. S., and Barto, A. G. Reinforcement learning: an introduction,
second edition ed. Adaptive computation and machine learning series. The MIT
Press, Cambridge, Massachusetts, 2018.

[78] Tak, M. J. W., Lanctot, M., and Winands, M. H. M. Monte Carlo Tree
Search variants for simultaneous move games. In 2014 IEEE Conference on Compu-
tational Intelligence and Games (Dortmund, Germany, Aug. 2014), IEEE, pp. 1–8.

[79] Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham, P., Rao,
J., Yang, L., Ruder, S., and Metzler, D. Long Range Arena: A Benchmark
for Efficient Transformers. arXiv:2011.04006 [cs] (Nov. 2020). arXiv: 2011.04006.

[80] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention Is All You Need.
arXiv:1706.03762 [cs] (Dec. 2017). arXiv: 1706.03762.

[81] Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik,
A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh,
J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai,
T., Agapiou, J. P., Jaderberg, M., Vezhnevets, A. S., Leblond, R.,
Pohlen, T., Dalibard, V., Budden, D., Sulsky, Y., Molloy, J., Paine,
T. L., Gulcehre, C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T.,
Kavukcuoglu, K., Hassabis, D., Apps, C., and Silver, D. Grandmaster
level in StarCraft II using multi-agent reinforcement learning. Nature 575, 7782
(Nov. 2019), 350–354.

[82] Wang, H., Emmerich, M., Preuss, M., and Plaat, A. Alternative Loss Func-
tions in AlphaZero-like Self-play. In 2019 IEEE Symposium Series on Computational
Intelligence (SSCI) (Xiamen, China, Dec. 2019), IEEE, pp. 155–162.

[83] Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q. ECA-Net: Efficient
Channel Attention for Deep Convolutional Neural Networks. arXiv:1910.03151 [cs]
(Apr. 2020). arXiv: 1910.03151.

REFERENCES 103

[84] Weisberg, S. Applied Linear Regression. 370.

[85] Willemsen, D., Baier, H., and Kaisers, M. Value targets in off-policy Alp-
haZero: a new greedy backup. 9.

[86] Williams, R. J. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. 28.

[87] Wright, M. A., and Horowitz, R. Neural-Attentional Architectures for Deep
Multi-Agent Reinforcement Learning in Varying Environments. 8.

[88] Wu, D. J. Accelerating Self-Play Learning in Go. arXiv:1902.10565 [cs, stat] (Feb.
2020). arXiv: 1902.10565.

[89] Yang, X., Duvaud, W., and Wei, P. Continuous Control for Searching and Plan-
ning with a Learned Model. arXiv:2006.07430 [cs] (June 2020). arXiv: 2006.07430.

[90] Yarats, D., and Kostrikov, I. Soft actor-critic (SAC) implementation in Py-
Torch, 2020.

[91] Yurtsever, E., Capito, L., Redmill, K., and Ozgune, U. Integrating Deep
Reinforcement Learning with Model-based Path Planners for Automated Driving. In
2020 IEEE Intelligent Vehicles Symposium (IV) (Oct. 2020), pp. 1311–1316. ISSN:
2642-7214.

Assertion

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, August 19, 2021 Timo Klein

	List of Abbreviations
	Introduction
	Preliminaries
	Reinforcement Learning
	Reinforcement Learning as a Markov Decision Process
	Decentralized Markov Decision Processes
	Reinforcement Learning Terminology
	Centralized Training with Decentralized Execution

	Monte Carlo Tree Search
	Upper Confidence Trees
	Monte Carlo Tree Search in Continuous Action Spaces
	Monte Carlo Tree Search in Multi-Agent Settings

	Neural Networks
	Deep Learning
	Convolutional Neural Networks
	Attention and Self-Attention
	Gaussian Mixture Models

	Related work
	Concept
	Environment
	Input Representation
	Reward function
	Action space

	Enforcing action bounds
	Objective Function
	Training target
	Single-agent objective
	Multi-agent objective

	Guiding the Search
	Network architecture
	Training algorithm

	Implementation
	System implementation
	Restricting the policy standard deviation

	Evaluation
	Evaluation Metrics
	The baseline
	Does the model work as intended?
	Which selection policy to choose?
	How well does the learned model perform versus pure MCTS?
	How important is the number of iterations?
	How many mixture components are needed?
	What is the effect of centralized training?
	How important are the learned value estimates?
	Which loss components are critical for success?
	How well can the learned policies generalize?

	Discussion
	Findings
	Limitations
	Outlook

	Conclusion
	ECA automatic kernel size
	Proof of Proposition 1
	Squashed normal log probability correction
	Numerically stable log probability formula
	Evaluation scenarios
	Reward parameters
	Network architecture
	Hyperparameters
	Baseline hyperparameters
	Set of training seeds
	Set of evaluation seeds
	Iteration randomization

