{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Set algebra with Python scripts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set theory is a branch of mathematical logic that studies sets, which informally are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used in the definitions of nearly all mathematical objects.\n", "\n", "**Set theory is commonly employed as a foundational system for modern mathematics**, particularly in the form of [**Zermelo–Fraenkel set theory**](https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory) with the [axiom of choice](https://en.wikipedia.org/wiki/Axiom_of_choice).\n", "\n", "Python offers a native data structure called set, which can be used as a proxy for a mathematical set for almost all purposes." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import IPython.display as disp" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Various ways to create a 'set' object in Python" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{1, 2}\n" ] } ], "source": [ "# Directly with curly braces\n", "Set1 = {1,2}\n", "print (Set1)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "set" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(Set1)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{2, 3}\n" ] } ], "source": [ "# By calling the 'set' function i.e. typecasting\n", "Set2 = set({2,3})\n", "print(Set2)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{1, 2, 3, 4}\n" ] } ], "source": [ "my_list=[1,2,3,4]\n", "my_set_from_list = set(my_list)\n", "print(my_set_from_list)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** Empty (Null) set is a special set **\n", "$$\\forall x, x \\notin \\varnothing$$ \n", "#### Do not try to create the empty set by declaring an empty {}. That denotes an empty dictionary object " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "my_set = {}\n", "print(type(my_set))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Instead, use the set() function to create the empty (null) set from any empty data type e.g. dictionary or list" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n" ] } ], "source": [ "my_set = set({})\n", "print(type(my_set))\n", "my_set_2 = set([])\n", "print(type(my_set_2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Membership and size testing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Membership testing by '*in*' and '*not in*' keywords" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Here is my set: {1, 3, 5}\n", "1 is in the set: True\n", "2 is in the set: False\n", "4 is NOT in the set: True\n" ] } ], "source": [ "my_set = set([1,3,5])\n", "print(\"Here is my set:\",my_set)\n", "print(\"1 is in the set:\",1 in my_set)\n", "print(\"2 is in the set:\",2 in my_set)\n", "print(\"4 is NOT in the set:\",4 not in my_set)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Size checking by '*len*' or '*not*'" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "S = {1,2}\n", "not S" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "T = set()\n", "not T" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Size of S: 2\n", "Size of T: 0\n" ] } ], "source": [ "print(\"Size of S:\", len(S))\n", "print(\"Size of T:\", len(T))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Venn diagrams" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAADuCAYAAABF767HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGoRJREFUeJzt3XmM3Od93/H3MzM7e3BJLsnlfYiSKImkJJqKrMuObNmW\nBafJHzlqtI7bJgISwEGOBnETI6mV8bT/NKnrtHASoGiQNE1gBHaB2I58JJAsR/BFi9bJS6R4k8ul\neC93Z/aaefrHs1utR+Kxu7/Z5/h9XsBgSQHifHd35jPP/RhrLSIi8paC7wJEREKjYBQRaaFgFBFp\noWAUEWmhYBQRaaFgFBFpoWAUEWmhYBQRaaFgFBFpoWAUEWmhYBQRaaFgFBFpoWAUEWmhYBQRaaFg\nFBFpoWAUEWmhYBQRaaFgFBFpoWAUEWmhYBQRaaFgFBFpoWAUEWmhYBQRaaFgFBFpoWAUEWmhYBQR\naaFgFBFpoWAUEWlR8l2ASChM1ZSAXqAL6J56dM34WgDMjK/Tf24A48DY1NfpxygwDAzZih1dyO9F\n5sdYa33XILKgTNWUgRXAcmAZ0AcsBRa18WkngKvA0NTjAnDOVuzlNj6nzJGCUZJnqmYxsGbGY5nf\nin7MOHAeODf1OGMrtu63JFEwSnKmWoSbgFtwQdjOlmA7nAdOASeAN23FNj3XkzsKRkmCqZpeYDMu\nDNeSzsTiOHAaOAYcsxU74becfFAwSrRM1XQCdwB3Av2ey1kIk7iAPAScshW9edtFwSjRMVWzDtgK\n3AoUPZfjSx04DBywFXvRdzGpUTBKFKbGDbfjAnGJ53JCcwbYg+tq6w2dAQWjBM1UTTewAxeKHZ7L\nCd0Q8Brwuq3YSd/FxEzBKEGamkzZCdxFfrvLczUKvArsUUDOjYJRgmKqpgd4ADepksrMsi814Ee4\nFqSW/MyCglGCMLUdbweulaitqtm6ArxgK/aI70JioWAMgTFF3B7dxS1fu/nxPblm6v9o4JZuTH+d\nwI0vXWF6y5m1jQX8DubFVM0W4EHc9yztcw74jq3Yc74LCZ2CcSEZ0w2sw625mxmC3Rk/kwVGcEE5\n83EZa4cyfq45M1WzAngUWOW7lhyxwF5cC1KLxa9BwdhOxpRxQbgOWE8Ye3Sv4rabnQROYxf+zWGq\npgD8BK7brHFEP4ZxrccTvgsJkYIxS8aUcHtz1/NWy9Bc9//xqwkMMh2U1l5o9xNOtRIfw51uI/4d\nAb5nK7bmu5CQKBizYMw6YBtur27MS0tquJA8CpwgwxeHWolBqwPP2Yo95buQUCgY58qYTtwau624\n8/xScxU3FnUAa8fn8w9NrUn8MLAyi8KkbV7BjT3mfmmPgnG2jFmDax3eRtytw5s1CRwE9mBnf6iq\nqZoNwAdxJ2BL+M4Cz9qKHfZdiE8KxpvhJlHuwAXics/V+HQKF5A3NWBvquZ+XPc55HFWebsx4Nu2\nYo/7LsQXBeP1uPWFd+PGxdTiecsQ7tCCfdi3d7umjgP7ILBxoQuTzFhgl63YV30X4oOC8Z0YY3At\nxHejRcfXMwTswtqj0//BVM0S4F+gE3BSsR/4bt7GHRWMrYxZC7wHLSeZjTPA981nKAAfQa3r1JwC\nnrGV+U3CxUTBOM2YHuBhYIvvUmJ0ZgP1P/0Ik/99LT21Yi4mpfLmEvCNvEzKKBiNKQD3APej8/7m\n5OSt1F55kG4KmOECk3+xivFnl9Ljuy7J3DDwtK2Es620XfIdjMb0Ao+jvbpzdngrtf076cb8+Mzz\ngS7qn11L6WxZHzaJGQH+IfVwzG8wGrMR+AAaD5uzg3czcnDHta8mHTU0PruW8V2LMz8kQ/wawbUc\nr/gupF3yF4xuxvkB3BIcmaMTt1F79aEbd5ebYL+8jNpfrYrubme5vhouHGe96D8G+QpGN8HyIdy9\nwzJHZ9dRf+FRuijc/MLtvd3U/9N6ypqYSUoN+Iqt2Ku+C8lafoLRHfTwIbI/+zBXLq1g7PsfoqNZ\nnP1BEBeKjFc2wvFOyu2oTby4jAvHMd+FZCn9YHRd5/tws87amjYPI71MPP8RCo2Oubf6JqD5+TWM\nPqdZ65QMAl+zlXhOjb+RtI9/cktxPoTbwaJQnIexLia/9zjMJxQBOqDwO4P0/OYgI8aS+KdybqzB\nTWQmI91gdKH4QdwpODIPkyWa332cxlh3dktvnrjCouop6grHZNxmquZh30VkJc1gdKH4OArFTPzg\nA4zVFtOZ9b97X42ePzytcEzIDlM1d/kuIgvpBeNbobjZcyVJeP0eRi73t2/C6t0j9PzBgMIxIe81\nVRP90XxpBaMLxSdQKGbi0grGDt3d/kmSh4fp+f0B6u1+HlkQJeBxUzVR73hKJxjd2YlPAJt8l5KC\nyRLN3Y9SmM1axfl4ZJie3xtAFzKloQ93LW600ghGhWLmXnwPo1lOttyMR6/S8ztnFI6J2GKqZrvv\nIuYqjWB0S3J0WnRGjt9O7c31ftYZfmCInt86w4iP55bMPWKqJoS71Gct/mA0ZicaU8zMSC8Te+/3\ne7DGh4dY9LHzCscEFIHHTNVEt4Y47mB02/we8F1GKpoG+8P305zLdr+s/asL9GyrkdQ2s5xaCbzL\ndxGz5f0NMGfGLMJ1oaP7NArVobupjSzJfr3iXBTB/McBCr0NktlmlmP3m6pZ6ruI2YgzGN9aq6gD\nITIy1sXk4W1hnU25tEHHU6fIzT0jCSsC7/NdxGzEGYzubpbVvotIyWv3M94shXck2PZRuj+u8cYU\nrI1pV0x8wWjM7bg7WiQjl5czNrgx3Nb3Ry/Qc2+NUd91yLw9GMvC77iC0ZhlwPt9l5GaVx7Ctt7Z\nEpIimN8/TWnJpMYbI9dNJBMx8QTjW+OKJd+lpOTUZmpX+8IaW3wni5uUnjqt8cYE7DBVE/xZnPEE\nI+wAolwsGqrJIs1998Vzi9/WUbp/7qJ2xkSuhDsfNWhxBKMxi4Gf8F1Gag7eS328K55gBPjF83Sq\nSx29u0LfERNHMMJ7UBc6UxMdNI7dGe6Ey7V0WYqfeFMLvyM3fVNnsMIPRmNuAW7xXUZq3tjOaAg7\nXObivVfpvquucIzcZlM1fb6LuJaw3xhuwiWZ49JD0SjQPL4ljB0uc1EA8+8HfVchGdjhu4BrCTsY\nYRsQ1VaiGBy7k9HJctxDExvH6Xz/kA63jdwdoc5QhxuMxpRxV55KhizYI1vjmnC5ll8+R6moKxFi\nViTQzRrhBiPshPDX18VmcMPCH0DbLv2TdPzMJbUaI7c9xN0wYQajMZ0E+kkSu8PbfFeQrX99gXJn\nk6bvOmTOysCdvotoFWYwwl1oeU7mhhcz3s4b/3zobVJ64or2UUcuuMMlQg3GaO+KCNkb25nwXUM7\n/PQlfYhGrj+0K1fDC0ZjNgJLfJeRorPr412icz3rJyhrXWP0gupOhxeMcLfvAlJ0sZ+xic50W1Y/\nf1HjjJG7w1RNMHkUTCHA9J5o3fbXBidvY9J3De30wDCdPboGIWbdBPTeDysY3dhisOcCxuzsesq+\na2inDij89GV1pyN3u+8CpoUTjMYUCXB2KgWXlzMW2yk6c/GRy+kOFeTExlCuWg0nGN2nhRZ0t8Gp\nW9PuRk9bNUl5x4hajRHrBNb4LgLCCsbElh6HY3BD+q3FaT93SeOMkdvkuwAIJRjdTpdVvstI0ZU+\nJkZ70h5fnOldI3R1aCdMzII4YjCMYIT1aNKlLQZuydc9KR1QuKeer+85MX2maryvYw4lGDf4LiBV\nF1cG8zteMA8OqzsdOe95EMqbZr3vAlI11JefbvS0d9U0Ox251b4L8B+MxiwFFvsuI0Uji5hodFD0\nXcdCWz9OWYu9o+Z9vsF/MKq12DYXV+VjmU6rApj7RzTOGLGlpmq87usPIRi9jyek6uLK/M7OPjCi\nk70j57U77TcYjTHAOq81JOzyivx1o6fdq3HG2HntTvtuMa6C/E0OLISmwQ4vzu/Ptn+Scv9EPocS\nEpHrYAxi+0+KhvoYt5HeG50VjTNGzeud077fOLoatU0urdSs7K3aNR2zXlM13oaCfAej9xXuqRpZ\nrMmHtWovxs5bw8l3MGr9YpvUe7TFcuVkfiefEuGt4eQvGI0pAL3enj9xY90KxuUKxtjlssXYiw6O\naJvRLoXCoiYl3TkdtVwGo8YX22i8U8EIsG5cS3YitsjXEysYEzRZpNksKRgB1k1odj5i3rYF+gxG\nTby0yWiPWknT1o1rdj5i3q46UYsxQfVFGlebtk5LdmKWyxajt/GD1NV7FIzTVk9ogi9iZV+3Bvrc\naB/8Jv/nYdm/hSeHp1q3H4bn/w6+5buuG5nwvEP6t7/JL50c4t7OIle/8AtUfdbSmWpHukaJP+d3\naVLCUmQ9P+Lf8A++y8qYwbUaRxf6iX2Gk+/F5TfUCc3PwP99Ek4ch86d8Okvwf6PwhnftV1P0/NP\n9rHNfK+3zHN/+RJP+q0EijbRFmMXk/wqn2MpY4xR5PP8Li+whwc46ru0jJXxEIw+30LBz5o+BFee\nhBMAt8DYKjhz0PPm9pthPQfjz27lUH8PI36rcIqpthgLwNKpO7QnKGLDfz/NUe660sG3GGd6BlYM\nwMZfJPxPZGs0EzutmPImgkkMn+PTjLKSTXw7wdYiePr9+QynaF6wJ6Hz4/CJT8AXb/XQrJ8t313p\nkCTbYgQoYfk9/jO/zqe4xGb2JHnos5dXs8+3UBQv2atQfD984n2w67/CS77ruRkmip/swsjFj2IF\ndVbxOnu523cpbeBlhYXPYAx+SUkDeBT+3Xo48yV4xnc9N8sE/5NdOBPR9EtmaZBeLtANwAgdnGU7\nKxn0XFU7ePls8znGGPzb909hyyvwcD+cXgVPAfwa/H0V9viu7XoKTb/DFL/xdX5lcJg7xxv0fvRL\n/NGjm/jqbz3Ed33U0kh1vPVNlvKPPImlgMWwgd18kNd8l9UGXn5/xlpPrxtj/iWw3M+Tp+3wVmr7\n76PHdx0hONhF/ZO3TLWsJEZ/Yyu2vtBP6rMrrc39bVLUTun/L9mudH54uaDCZzDWPD530rpr8cz4\nt9v5UqJd6XwYtxWbu8mXIY/PnbTukWQX+87a6bKCMWLerjPzGYxXPT530rprCsZpA+W4NhLIj/G2\nZlgtxgR1TFA0jfBn/RfCQIeCMWK5bDEqGNuoPKbDagFOl8M/xUmuyds8hLrSieocVYtx1NCsFTWs\nEDFvjSd/wWhtA81Mt01XXcF4scSE7xpkXq74emLf4y/qTrdJd02zsec69OEQOQWjZKtnWGsZzyoY\nY6dglGz1XfD+u/XuWKc+HCJWsxXrbSjE95vnrOfnT1bfBco0892dfrFHM9IR89ZaBP/BOIj2TLdF\nsUmhZ4TcXh56pcjE6U48Xwsm83DO55P7DUY3Mx30xVIx67uQ3w+dfd1axxk5r71J3y1GgNO+C0jV\ncq+fuX69sCjfwwgJyH0wnvJdQKpWvJnfMbYf9aobHbERW7Fe1zj7D0ZrLwALfhBlHiweolyYzF93\n+myJiYul/H4oJMD7pKz/YHTUnW6TxUP52/3xWk/+vufEvOm7gFCCUd3pNll2Pn8txh/2av1i5Lzn\nQSjBqBZjm6w9ka9DFBpgX1pEp+86ZM6GbcVe9F1EGMFo7Qjg/YeRohXn6OrI0RFkh7oYHS0E8rqW\nuTjhuwAIJRid130XkKpVA/lZ6P2VZepGR07B2OJ1yE/LZiFtOBrU77ltrhSZ+O5idaMjNkkgw2rh\nvGGsHQfe8F1GivrP0lkaT/9D59kljFujFmPEBmzFBjFZGE4wOnt9F5AiA2blmbS70w2wX1mu1mLk\nDvsuYFpYwegWe3tf3JmiDcfSbknt6WFUi7qjNg4c9V3EtLCC0VGrsQ1WnqGrmPAumC9r0iV2R2zF\nBjPcE2IwHkFbBDNXsJiVZ/xdR9lOl4pM7O6ly3cdMi8HfRcwU3jBaG0TOOC7jBTdvj/Nxd7f7NMW\nwMgN2Yod9F3ETOEFo7MfdGxU1pZdoLP3SlqtxnFD8+k+TbpELrg1zGEGo7XDBNa0TsWtr6c1zvh0\nH/WhUpot4ZxooGCclRfQgu/MbTxCdyprGocLTH6hn27fdci8HPJ99uI7CTcYra0Br/ouIzUFi9l0\nOI3u9BdXMD6mfdExswT6Hg/9RfUKmqHO3JZ9dBUacd+5fKHI+FeXqbUYueO2Yi/7LuKdhB2M1k4A\nu32XkZryOMX1xxj1Xcd8/M/VNBra/he7V3wXcC1hB6NzgABO9E3Nna/Fe+/03m7q31+s1mLkBm3F\nBrvLLfxgtNYC30HLdzLVXae07kR8wxST0PyTNdr6l4AXfBdwPeEHI4C159FWwczd/SKdsW0T/Noy\nRs+W6fBdh8zLcVuxQd8nH0cwOruB4Kb1Y9Y5RnHL3nhmqAc7GPvrfm39i1wT2OW7iBuJJxjdeY3f\nQl3qTN2+n+6ukfCPJBszNP5wA4UJLc+J3YFQZ6JniutFZu0AgY9NxKZgMffuDr87/WerGTujLnTs\nJoAf+S7iZsQVjADWvgwc811GSlYP0L38zXAnYp5bQu25pfT4rkPm7WVbscG+zmaKLxidbwNDvotI\nyY4fUgxx+c5AB2P/Y42W5iTgEgGvW2wVZzC68cZ/QnupM9N7lfKmI2G1GscMjc9soKCF3El43lZs\nNLut4gxGAGsv4tY3Ska2v0RXeTScsw0/v4ZxjSsmYW/Ii7nfSbzBCGDtQdzZjZKB0iSF+79DI4Qu\n9bNLqP3zEnWhE3CVCJbntIo7GJ3vAed8F5GKFefouv2A3/Wir3VT/7zGFVPxzyHd5XKz4g9GaxvA\nN4CLvktJxdZX6Fly0c8hE/u6qD+1kS6NKybhZVuxA76LmIv4gxHA2lHgaeCC71JSYMA8+Dyl4sTC\nrm882EX90xvpVCgm4QwRrzlOIxhhOhy/Bpz3XUoKuuqUdv5g4XbEHO5k9A820qmdLUmoA8/aivU+\nVj1Xab0IFY6ZWnuK7g1H2z/eeKST0U9toqzTuJNggW+FeF3BbKT3QrR2DBeOmpDJwL0/pKvnavsO\nmjhWVigm5kVbsad9FzFfab4Y3wpHHXA7T8UmhUeepdgxlv1i+pNlxj61iY5RhWIqjgIv+i4iC+m+\nIN3umK+jcJy37jqlR56lmeXZjfu6qP+HTZRqRV19moizwHMxjyvOZGwa38e1GdMBPAps8V1K7M6v\nYnTXY5Rtce4fqE2wX15G7a9WsSjL2sSrK8BXbMVGfY/QTOkH4zRjtgOPgFoo83F6E/WX3kMXc1hS\nM2Zo/Le1jOu+lqSMAl+2FZvUoS75CUYAY/qBx4ElvkuJ2dE7qe29f3bHgJ0tMf7URoz2PidlEnja\nVmxyw1X5CkYAY8rAY8Bmv4XEbd9ORo5su7nu8O5F1P7LOro085yUSeCbse5suZH8BeM0Y+4FHiLl\nCag2e/ERagObr91ybID9Qj/1L67QIbOJSToUIc/BCGDMKlzXutd3KbF6+WFqp259e/CdLzH+ubU0\nX+vR5VWJmQC+YSt20Hch7ZTvYAQwphPXctzqu5RY7dtJ7cg2F46T0Hx6GfX/00+3tvclZwL4emxn\nK86FgnGaaz3+JNDvu5QYHdpO7RsPYj67luLJTsq+65HMjeK6z8lNtLwTBeNMxhhcy/EBUBdwFoaB\nXeYzgJvY0pKotFzGhWJSS3KuR8H4TtzM9U7gHqDkuZqQTQAvA69OnYuJqZq1wBNAp8/CJDMDwD/Z\nig3+7vEsKRivx5ge4N3AXaAzAmeYBA4CL2LffoqKqZqluHBcttCFSaYOAN+J6RKrrCgYb4YxfcDd\nwB2Q6/Gzq8Be4PWpgzquyVRNCXgf2ooZoybwgq3YaK47zZqCcTaMKeHe6NuAlZ6rWUgDwB7gOLN8\nwZiquQd4GK0XjcUw7jzFpJfj3IiCca7c9sJtuKBMcZvbJPAGsGfqqto5M1WzGrdeVAdHhO0Y7vKq\ntp2/GQsF43y503vuwIXkCs/VzJfFHfB7FDhwo+7ybJiq6cIth7otq39TMtMAdtmK3eO7kFAoGLNk\nzHJgHbAeWEsc45E14BRwEjiVZRi+E1M1t+ICUifshOECrpWo60BmUDC2i1sT2Y8LyXXAGsJY+tPE\nHSp6EjiJtQt+s6Jaj0GYBHYDe/I463wjCsaFYkwBWI0LyX5gMW6PdjtblSO4Q0SnH5eBM1g70cbn\nvGlTrcf3gg6ZWGAncctwrvouJFQKRt/cYvLpkGz92o1bP2lws7rTaykbuE/86a8TwNDUYzoEh7A2\n83tasja1rGcnsIMwWtQpqwPftxX7hu9CQqdglCCYqukFHkTrHtthHHgVeNVWwv+wDIGCUYJiqmYV\n7gqK1b5rSUAD2Ae8lNJ9LAtBwShBMlWzHrgPNyYrs2OBQ8BuW7HDvouJkYJRgjbVgrwPuMV3LRGY\nBF7HdZk1sTIPCkaJgqma5bgJmtvQJE2rEVyXeb+6zNlQMEpUTNWUcRM0W8n3ocIWOI07AeeY1iJm\nS8Eo0TJV048LyC3EscsoC+dx44eHbeXtR75JNhSMEj1TNQXcJM1m3FhkaodVXAKOA4dsxV7yXUwe\nKBglOaZqVuIC8hZgOfEdMjyOO+rtBHBKM8sLT8EoSZsak1yN26u+BneOZmiTNzXcqUbngDPAWY0Z\n+qVgDJQx5ieBP8adHN4A9gO/ba19wWthkZvqdvfjjohbjrt+oY+F2a/dwJ2CPoQ71eYccM5W7MgC\nPLfMgoIxQMaYJbhu1K8BX8RNLDwKDFprX/VZW6pM1XQAS3D71Ltw+9S7Z/y5i7f2q09/nf5zA9f9\nHZv6Ov0YxZ2IPQQMabIkHgrGABlj3g08Y63t812LSB7pHo4wHQQaxpi/Nsb8lDFGt+2JLCAFY4Cs\ntUO4g1wt8L+Ac8aYrxpjdLCCyAJQVzoCxpitwN8Ch6y1H/Ndj0jq1GKMgLX2APC/gXs8lyKSCwrG\nABljthpjPmmM2TD1943Ax4Af+K1MJB8UjGG6CjwE7DLGjOACcQ/wSa9VieSExhhFRFqoxSgi0kLB\nKCLSQsEoMkfGmOEZj6Yxpj7j7x/3XZ/MncYYRTJgjDkG/Iq19hnftcj8qcUoItJCwSgi0kLBKCLS\nQsEoItJCwSgi0kLBKCLSQsEoItJC6xhFRFqoxSgi0kLBKCLSQsEoItJCwSgi0kLBKCLSQsEoItJC\nwSgi0kLBKCLSQsEoItJCwSgi0uL/AXlwhNIFER2cAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import matplotlib_venn as venn\n", "S = {1, 2, 3}\n", "T = {0, 2, -1, 5}\n", "venn.venn2([S, T], set_labels=('S','T'))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOkAAADvCAYAAAAXbvP+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlwXNd1p7/Te2MHARLcN3GVSFEUqdVaY0mWY8XS2OU4\nju04sh1LnlKlPEkcO87EFGOPXZlMNmtmKjNJKnHGWyTbiWVHsSxZGyVSC2WRkiiKO0WQBAEQO9B7\nvzN/vIYFUgCIBrrfu924X1WXBKL7vdMP7/fOveece66oKhaLxVwCfhtgsVgmx4rUYjEcK1KLxXCs\nSC0Ww7EitVgMx4rUYjEcK1KLxXCsSC0Ww7EitVgMx4rUYjEcK1KLxXCsSC0Ww7EitVgMx4rUYjEc\nK1KLxXCsSC0Ww7EitVgMx4rUUpGIyHUislNEBkSkV0SeE5ErpvA5FZFVY36+WkQeKxyjW0QeEpEF\n5bW+OKxILRWHiDQAPwEeAOYAi4DtQHoah2sG/i+wHFgGDAH/WBJDS4TYHkeWSkNEtgKPq2rTBL//\nJPB5YD7wIvAZVX1LRJ4BrgcSgAKfUtV/Oe+zlwNPq2p9Ob9DMVhPaqlEDgJ5EfmmiLxXRJpHfyEi\ndwJfAj4AzAV2AN8FUNUbCm/bpKp15wu0wA3AvrJaXyRWpJaKQ1UHgetwveHfAd0i8rCItAH3Al9X\n1f2qmgO+BlwmIssudFwRuRT4Mq4XNgY73LVUPCKyDvgWcAjYBCwFcmPeEgXerao7RUSB1ap6+Lxj\nrAKeBr6oqv/PG8unhhGetISRuoiIfF9Ejhd+d1NZDbcYgaq+CfwTsAFoB+5R1aYxr7iq7pzo8wUv\n+zjwFdMEChDy24AxkbrPAg8CEdzJ/XQidQDPAn8NPFQSA2cJsl0iQHzMKwpI4TX6MBcgi/u3GftK\n6jbNe2ar6znfB/yLqp4UkSXAR4DngUeAr4jIHlXdJyKNwG2qOno/dAIrgcOFYy0CngD+p6r+rVff\noRh8H+6WK1InIieBj6nqU2X+ChWDbJcA0ISbdmjGTV80A3VAcIaHHwEGgQGgF+gDunWbZmZ43HdQ\nENZfAe/C/T79uA/6z6vqoIh8HPhD3JTKAPCYqn6y8Nl7gW24D6LPAOuB+wv2/xJVrSu13dPFBJE2\nAMdwL/L3gOdVta/wuzuBvwB+DXe+8UXgV1X12sLvx51fFH4360Uq2yUItAELC695eDvFUVyxnhl9\n6TYd9vD8VYHvIgUQkfXAF4BbcD3mI8Dv4M4zvq+q/1B4XwAYBtYXvKkV6XnIdqkFLsINnrQxcw9Z\navqB48Bx3aZdPttSERgh0rGUIlJXOM6sEalslxrcedZK3IdcpTCMK9ijuk3P+GyLsRgnUgARuQ+4\nBzgN/LOqfnuC981qkcp2WYIb0VyMG9SpZHqBN4BDuk2zfhtjEiZEd0sWqSscbzQqCRARkRiQ1nI/\njUQEiOEGJGoK/x/kXPEIkAdSQLLw3xQ69ZtStksYWAtcAjSWxHYzmINboHCVbJfDwD7dpr0+22QE\nvnvSUkbqVPVBETleeO9YVqjq8RIZHObtyOjoq6lgw3S9WRb3e/eNefWibwdZZLvEcIf/63HTVLOB\nY8DLs12svovUeERCwALclRaLgBYPz55Ixzj9wAcZ+utlrD0VocbDc5vEUVyx9vltiB9YkY6HSA2w\nCnf5ktdpCwAcQY+uI3noEqL5sBuh7QuS3VNL9j8aCe6vIeq1TT6juMHEF3SbJv02xkusSEcRieCK\ncjVuTtG3QEznQpKvXUEwVTPxsPZsiMxTDWQfaSLSHSbspX0+k8Etatmv22bHzWtFKtKKGyFdic+B\ntFwQ59UrSZ1ePvVhrQN6NEr6kSacJxqJ56Xio7xTpRt4Vrdpt9+GlJvZK1I3irwJ12v6Tm8r6Zff\nhaQn8Z4Xoj9I9qE55P69mdgsEasCe4Hduk0dv40pF7NPpK44rwBa/TYF3Lnn/stIHFtDDYHSCGsg\nSPYHc8g+3DxrPGsX8HPdpkN+G1IOZo9I3dX71+Am/o1guJ7M7uvR4cbyBIGGAuQeaiHzb83EtfrF\nmsEd/r6jsKXSqX6RusUMW3Hzi8bcqCdWknhtKzENlj9y3B4h/ecLkGOxWZFffRNXrFUz/K1ukYqs\nAa7FsOT/gY2MHNpArZfnzIM+1kji7+cRTwfMWOxfRk4Dj+k2ne6aZKOoTpGKxHHXmi732ZJzUNC9\nV5M8ucK/ooT+INlvzCf3Uh1xv2zwiH7gp7pNB/02ZKZUn0hFVuAKNOa3KWPJB3BeupHU2flmVA09\nXU/ib+YTy1a3V00BP6v0FTbVI1J3rem1wMV+m3I+2TD5Xe8mO9hs1oPjdJj0/YsJdESquhgihyvU\nk34bMl2qQ6RucOhW3Bpbo0jGye28BSdZZ9a8eJS0kP+zhWSqfPibx52jnvDbkOlQ+SIVaQHeg9un\nxyjSUfLP3E5+JgUKXuCAPthC4tut3gazPMYBHtVt2u63IcVS2SJ1WzG+GwPWxZ5PPoCz43Yyw41m\nDXEn4+l6Ev9joRlz5jKRxw0mnfLbkGKo3KCByEW4Q1zjBKqgL95IupIECnDjEDVfOkVClAp+ck9K\nELhNtsscvw0phsoUqZv//BUMtX/v1SR75lfmHO+aYWq+fIpksHqFGgZuL/SFqgiMvMknxW23ciMG\nVQ+N5eAljPiZBy0FW0eo2X6SVBULtQ54j2wX40Zh41FZInU96A0YKtBTy0ge3FjZAh1lU4L4105U\ntVDnAjf7bcRUqJzAkchi4HYMfbD0N5N+7jbCWoLigM/9lE+0D7IxGmToOx9keynsmy476kn8d9OC\nSf+HT9DNRsIM8YUZX58XdJvuLYldZcLIG/4diMzBbZxtpL25IM7uG5BSCBTgpuXs/OxWvlGKY82U\n64eo+fUeEn7bcQ6XspP3lez6XCHbZW6JjlUWjLzpz8HtN/ReDCuSH8urV5KarNVJsdy1jkOtNefu\nTeInHz1L/JohzOkrdA2HaCzZ9QkA7y60SjUSs0XqlvrdDuYm2TsWkyym3UklEgD5gw6iK1KUfPMl\nQ2jAbSlrJGaLFK7GkA4K45ENk997VVXXvf6SiBL4ykmkLo9nWxx6zBrZLiv9NmI8zBWpW020wW8z\nJmPvVaRzEfOKKcpFY57wH3RUrTcFuLawT6tRmClSkVrcXKixdC4keWZJdQ9zx2PLCPGbBwwLJJWO\nGmCL30acj5kpGJE7MKSL33g4gj5+F7lMrDxD3fse4dNnhlmTyVMXDTF0/VIe/t2reK4c55oOCSF/\nz0q0P+TTKOJ/82n6WEOOOkIMsYGHubNk10eBH+o27SnR8WaMeSIVWYvhXvTIOhL7N88+LzqW1+Ik\nv7S0Mksfp0CnbtMf+W3EKGYNd90d0a7y24zJyAdwDl1ibjrIKzYmib+3r2qHvW2yXS7y24hRzPKk\nItfjdvUzloMbSJhW+pfI1mWHMs354XSzM5xp0uFsYyCRrQ9l8rGgqgAIyOgfWsb7i4cDmXw8PJKr\nCQ9oXWTAqYv0S12kP1gXHgiFg5lxdwtPCPm7L4JE0LjdxEtBP/CQCVtZmBOZFJkHrPPbjMnIBXGO\nrPNvo6R0LpbvHFma7kvO15FsQyCRrQ+mcrUhJRCGC86PJ613zjqxUDYdCw2m37lpXFAKAg4N5Rtj\nZ7Wt9kSoKdYdqUGDn+pm5IH55uaxZ0ATcBFj9r71C3M8qchduDuYGcv+TSSOXOydF805IedsYlGm\nc3hZ/mxyYSiRbTBmJ7WA5PLNsa7MnNpTzn/bcDLQX99djfPTAeBBv72pGZ7UzYkaLdBsmPzxNeX3\nopl8NN8xtCJ9augi6U3OjypBIxeOOxoK9iQXxnuSC7nqpTuSjy5dnaV2d4bGx0LU7DfmYTJDGnF3\n2TvopxFmiNTtMG80BzeQyofKM6xzNKDtA2uSbw2sDwykW6IQMGrOeyGWjnTGmhLrs/35W2sZvBWC\nPRkans7S9EiESGelV2Rdis8i9X+463rR9/hrxOQo6KMfJF/q6qJsPpI/0ndp6nj/xdGsEzPlgTkt\nTta0Jh5ZfM07Hy7RoymaH3ZoeCKOqJHrgKfAw3727jXhxtjstwEXonMRqVykdDnBRLYue6BnS/b0\n0EUxR0NVEXRZlDgbr8+MZIcited6zvTKGGc+B913Z2n6cYY5P4oTSJmV+rswFwO+idRfT+pGdO8q\n9mNb4BP7YWMNDJ2l/IuiX7iJRPeCmQeM+pLz0gd6tjrdiUUxkEr1KhPyetPykZ3zNk7+0JF0noYn\nU7R+O0qo3wQnMRXywLd1m6b8OLnfT7Rp5UQ/Cjv/F94sis6GyZ9tm1nXv46h5cmnj38w/Wz7XdHu\nxOJ4NQoUYPXgqWhAncmf+hoNMnB7LUf/IUDXp0ZwYpWw+1kQWOvXyf0TqUgENw9VNL8Hh5bgzaLo\n9pWkp9txIZGtyz574v3J3R23xQczLdUS8ZyQqJMNrRjqmJq30UiAvrtqOfJPDr3/KYEGDckFTsga\nv07spyddhRlz4kk5cVHx10hV9GDP5pEnjn042JeaX435wwnZ0H+suA84tSG6P1nD0b/PMrLZl+Hk\nFGmW7dLox4n9FKnR1UXg7sRdbIPr/lRr+snjH8oc6LmiVgn6PZ3wnHmpvlh9ZiRb9AdzrRFO/mmM\nU3+UJF9j6sLyFX6c1J+bSKQJgzsujPLWKqZ8s+WckLP3zA0jO07cFRnJNlX90HYiBGRD/7HpLwwf\nvjbO0X9QBm42sXh/FokUlvp03qI4O39qheNnhpclf37sI/kTg+tqIVCVQaFiWDrSObNpjFMX4szv\n1dD+pwnDvOpc2S6ebwzml0iXzeTDG+HTd8IX+qCtDv7sU2VoIpUP4Aw1TF4GmHeCzkunb028dPo9\n8Uw+XumVNSWjMZuIxnLpmYsrsbmGY3/rkFydLoFZpcJzB+N94MaN6rbN5BCvwd+XyJoJ6Z1LhsDE\n89F0LpbfdfKO7FBmTkWV8HnFspHO9IHGpTO/NvnmMCf+XGn9doKWh0y41vOBN7w8oR+edKlP5y2K\ns/Mn7oo3lG7KPPXWh5yhzBwji99NYNlwKQt0gsLZ36qh/atJnKjfedX5Xp/QD7Es8uGcRdPTNv61\n6RxemnzmxAeCdng7OQuSvaXvXpHYFOf432TJNeVKfuypUyfbxdNSTj9EavSSNHAL6geb3jkfPdK3\nMfHi6dtijoaqsRNBSYk62VBLaqD07T+zi6Icf0BJL/Oztain3tRbkYqEcVe8G83AHDJO8O1royq6\n58yNI290X1Njo7dTZ8lIV3k8Xr4pzFt/EfSx+KGKRermRo2/ybvHzEdzTtjZefKOVPvg2qpYreIl\nremB8h1co0FOfjnC0FV+7FHj6U7hXovU6N2rRhks+PqcE3Z2nLgr25tcMKtK+0pFY2akzNOCUIDT\nX4z6INRmL0/mhyc1nkQdgbwTdHa235EZzjTP2uqhmVKfS3iQ4vNFqDHZLp5F9r0WaYPH55sWybgE\nXjj13vRAeq5NscyAiJMLRvMZDyqGfBGqZ/ey1yL1vKSqWBSc53pvzfUkF9ohbgloTg8VX2w/LUIB\nTn8hSmK9V9VJVShSkSCY1VR6PF6MfDRxJrHceDsrhTmZQQ/XiYYDnLw/RGaBFw8GzxyOl57UeC96\njPclDoRvs0UKJaQ5PeRthZDWBGn/mnpQmO9ZrMKKtEA3m1P7+J14MpL0u+ysqojlM94XzORaI7R/\nNVvmbg9VKVJjNzlKMSe3my+GISj5QN70Nh4VRdTJ+nM906tjdH2mnGtSq1KkxrZK2c0fZ/PUBAFy\nQT/LQquPiJPzr3il/1drGb6iXBHfqkzBGFnveoCPjPSz5peR3HzApDXGlU/IyftbYXb6DyLk5pTj\nyevZyHBWe9J+VqcP8eFzIrm5QM4Od0uI4HPXeq0JcvLLOXTcHR9ngmffa9aKNEfUeYk/Fgiec7Gd\ngI0blZKAOv7XaqcvinH2Y6Wen3r2MDd+8XW52MN/SaVpeceQRbQ6G1f7RcDvvYZG6f1AnPSiUi5v\nq0qRelR5cmE6uSJ5hneNW7AQdIxv0lxR5AKmXM9QgI7Pl3KYZEVaLhyC+hr/ecIgVtAJWk9aQtKB\nsDnzh/RFMfreV6phrxVpuTjCB5IpWieMzIXyRk2dK5500LD0ePdvR0vUfsWzXN2sEmmGuvxhfn3S\nJHTQMTJTVLGkghFzPCmAxoJ0faYUc1PPmnd7KVI/e9IA8AafTueJTarCaC46a4Np5SBlmicFGLq2\nFEEkz1q3eHlDDnl4rnFOviRzkpsuuPysJl1jXWkJSQYjBs7xg0LXPTMdrlahJ1VN4uE4/nz28rv5\n83Oi4xHPxK1IS4iRnhTc7vgzW3vq2QJzr6Mkg3jcxAmgj7XpftZNaRF3UIOBUD6UywVzFRNB6hjq\naH7y+JN3Z/PZBoBFDYueuWXlLU/4bRdAX7Te3Ide1z3K8s9N99OeedJZIdKD/EZRBbmRbCRfSSIN\nBoLOlgVbvr+2de2JofRQ9Af7f/Bfj/Yd3b+yeWWHn3Y5oL2RBnPX56YvipFcmyZ+YDorWvpLbs8E\neB0kGfT4fCRpzXWzuahWKHXpuoqqsp9XO29gbevaEwD10fp0PBTv6E/1+97feCQUz+YDhu/R2vOR\n6USfc7pNPYuxeH0Bez0+H4f4cHoqc9GxNCYaDamSKZ5Tg6daEtnEktVzVhe55Xbp6Y02mP+wG7ks\nRnZusenBvrLYMgFei7TLy5PliDonubnodX/NI81mP/0nYDgzHH3i2BP3rp+7/sH6aL3vW9t3xyrh\nYRcUen6j2HRMFYtUtR8P86XHuSPlEC06cNE00mRoSHJisvls8McHfnzv/Lr5L1y9+OpX/LYHoCtW\nIQ+7wRtjRe7W5umI0I+L2OnFSRTRY9w5raBFNBcNhnPhimnRoKo8fODh36qN1HbcetGtj/ttzyjd\nsSZzg0Zj0WiQwZuKGXl4OiL0I4LZASwp90nOclk6TfO0W1w0JhozZxvOVkSE9/Wu11f1JHuujoVi\np/557z//CcDFcy/+160Lt77ul00D4Zp0OhipnO7/A7cJTY9O5Z05ZoFITwJXlvskJ7h1RjWj8wbm\ncbbhbKnMKSsb2zYe3ti28R6/7RjLW7Xzc3jYrGvGpFbFyM3JEeq9kCY6dZt6Wo/s/XBX9SwwXM5T\nOAS1iy0zukHaBtoqY6hmKIcbFlXEKORtAkL/e6ZSgeR57tmvif1b5Tx4N5enRrv/TZe6dF04ko34\nvnKnEkkGI9mzsabK8aKjDP7KVB4sp8tux3n4JdKy5vBOcWNJQv8twy1WpNOgvXZeZV637PzoBXKm\nGTyej4J/Ij0DlG1jnW4uL0kKZVHvIgNXcJjPkfqFlZF6GY+hayaL6h/3ej4KfolU1aFM3rSf1eks\n9SWZD7UNtMWC+aD5VTMGkZVg/lTN3Mob6o4yfNVkvz3ilRlj8fOJ90Y5DtrBtSXLbwY0IPMG5vm+\nWL2SOFq/IO1IoHJHIKm1kQn2kEkDp7w2B/wUqRvlLfn4vpeLS/qdlvYsrdwbzgf2zFldYVHd89Bo\nkMSG8aZix/wY6oL/fXdL7k2HWFbS1MncwbnRSqo+8pPuaGNqIFJXcSWV7yBx2XhTnMOe21HAb5Ee\noYQBpBHacjlqS/okF0QW9yz2avfoiuaVOasroKB+CiTXnq+LPt2mnqdeRvFXpKp5YF+pDtfHxWWZ\nP67qXBVFveuzWokMheKZ4/ULilq3ayzp5eePxkp2j04HE+YPrwIbKMEuVT1sKIuQYtlYqG2gLdnZ\n1FkdN2EZ2DNnVY6p/g27Xm9m11/eTS7ZAALzL3uGd/2hEe1eAHDqQ2NKBDPAQT/N8Xu4C6oZXKHO\nmH7WlK2fzuqO1f5fK0NJBKPZA41Lp/4AC4QdNv7m9/ngd+/n9r/+Oh2/uJkTzy4oo4nFk1w/WtTw\npm5TX2MSptx4rzHDPqaK6DCLyha0aE40R+uT/i+kNpFdcy/JFZV2aV07wMpbTgBQOy9NrKmDoVO+\nt3s5h+QaB3DweagLpohUNQvsmckhkrTmlHBZv8/6k+vLefiKpCvWlDzSsGj604Aze1pI9ixh2U2+\nt3s5h8xiAQ562ctoIswQqcs+YGC6H04yr+yVQW2DbbGGRIP1pgUc0KfbNk1/ipE4G2XXX9zLql99\nkLo2s65rZpEAv/DbDDBJpG6kd8d0P55knieJ5g3tG7w4TUVwuGFxsi/aML0pRjYZ5PEv3svcS15g\n891GtHs5h6NbUrpNy7qkcqqYEN19G9XTiBwE1hT70QTzShLZ/Ryf+0Q77RujRIe+w3e2n//7luGW\nWMtQS7KnvmdWR3ozEszvnLthejW66sDjX/gtalo6uO6LxrR7+SW5QJ6XNjaIEFDF9w2nzPGkb/M8\n0wgiJZlXkpPfxE07P8tnvzHZey5969KgqPj+x/OTl1rXpzPB8PSGugd/sor+Y1czeHIdP/zYn/DD\nj/0Jr33bnCHKgZUp0tEgUOe3KWCaJwVQTSGyC7i5mI+lmFOSGtu7uOvQHva0TPaeunRdZGXnypEj\n84/UluKclUZ7zdzEvuYV4+6UPiXWvv8wa99vVLuXXzISy/D66tFRUi0+NHQ/HxM9KageosgEcooW\nT/ccWXd6XU0sE5t1K2QSwWj28YVbp93gzWgUZeflivPLrvtGtNAxU6Quz1JEE+IMDZ6uVgloQDYf\n2zyrhrwO4jy66AonGwiZfN9MnyNLE5ydM3aebcRmU+ZebNUc8BhT3C5R8X7Pkdbh1tjC3oWe7a7l\nN7tb1qa6Y82Vu6B7MhKxDC9fcn4w0Ir0grgd76eYlhFfCuA3vbUpNhuGvafiLck9LaunPw81GUXZ\nudkZM8wdxYp0SrjzU8+Syvdx36e/yle/MMxw24f40J99g2+8a7L3h5xQ4IojV2g1R3uHQvHMYwuv\nqPx1ohNxdEmC7pbx5tlGiFRUK2QFlsiNwNqJfv0zvpXN0OjbRP9w2+HE/sX7q87TjASjmR8uuyGQ\nDMXMywSUgr6GFI9eF0XHrT3epcprntt0HuZ70rfZAZzw24iJWNW5qqZlsMWzLdq9IBUI53609Dqp\nWoGmIlmevCo8gUDBEE9aOSJ1Oww+zgR9kRT/m19deeTKaE26piq6OGQkmH94ybuc4XCNEWmIkpMX\nh6eudApFCxNhxDCzckQKoxHfR3D79hpHyAkFrj1wbUXtyDYeOQnk/33JNbn+aH31zkNf3JSi74Jd\n9o144FaWSGF0kfgjQPvYfxbyRjz14tl46OpDV+cDTqAiA0k5CeT/Y9FV2apNtQAcWjbC8cVTiR9Y\nkU4b16M+Chwd/acwI8aIoinRFL382OXpSuuLlAqEcz9acl2+o6a1OiuKAN5akGD3xqmWc1qRzgh3\njvpzYD9AhAFjRAqwoH9B/LLjlyUrRahDoXjmB8tupCfWWL1D3BPzE+zcUkwE3giRVnbUzs0f7UCk\nN8zwZX6bcz5LepfUAIk9y/fEEXwPbE3E6XhL8tFFV0arttwPoH1+gue2FpsiM0Kk1fFHUd33V3z4\nzWFCxgVslvQuqTHZo77WtGLkJ0uujVe1QE+2JXh2y3TW/1qRlpLvcUnys9zMEcxrb7Kkd0nN5uOb\nUyZVJaUC4dyjC69I7pq3obqX251sS7Bjaxyk2JFMThUjtnCsnIqjCyDCUuB2QfW32Z94P8fiIdSo\nh1BPXU/qhVUvhPPBvK9J8uO1bYmn5m+OTnvRdqVwcPkIL0/7IXRWlR+W1J5pUk0ibQY+NPrzIoYz\nv88rzmoGjIpUDkeHs7vW7NJUJOV5gCYdCOeebtuUrZpO8xPhoLy8Icnh5TMp0zykypMls2kGVJNI\nA8AnOW8IfysnEp/ijUgtOWOCZJlgJr9rza7sYM2gZw+Qt2rnJZ6avzmaDkaq23tmQjl2bM3RNeM0\n0guq7C2JTTOkakQKIMIHgNbz/72GbP4+Xk1fT4cxBfCK6r7F+xLH5h2rKWfktzdSl3p+7iWcrJ1n\n1IiiLAzUpXnyqiDJeCkeyD9VNaNWvNpEej0wYQfrtfSlP8F+ZyO9xgz3Ohs6U6+seCWUDWVL6ukH\nwjXpF1ovdqp+aAvuetDDS5P84pLYOGtCp8t3VDGipWe1iXQdcMOF3reMwczHOZDfSmcsiP/5y1Qo\nlXtp1UvZ/tr+GQtqKBTPvNS6Ln+4YXH1ixMgEc3w3BY9r+3JTMmq8o8lPN6MqDaRtgAfnOr755LI\nfpwD2es4HQsbEAk+3no88cbiN6LTif6ejTak9jWtcA42LImrFJ1uqEyOLh5h94Y4+ZLneLtU+bcS\nH3PaVJtIA8DdFLkOsIF0/tc4nrqBU6GFJHwtLE+H0vk9y/aku5q6Ljh/TgYj2cP1izL7mpZHBiN1\n1bmkbDyS0Sy7LsvTObdc8+xXVXm+TMcumqoSKYAId8H0O2UvYCR7C+2Z6zgdXkjCtzrWzobO1KvL\nXg2cn6pxEOdUTWtqX9MKaa+dF5s1XhMgF8yzf2WKN1bFSzj3HA9jgkZQnSK9EihJHe8ihjO30J7d\nSldwMcMRr4sjFNWj844mX15yQk40NDvH6hYETte0RHPVXMI3HnlxOLo0yd51MbJlL8BwgG+aUm0E\n1SnSNuDOUh83TN5ZS192Ez25NfTLMgZDLaRL7mmHCOe6iecO05jfQ2tgL62RwWBQWH8kydpjUSLm\n5HvLjqKcnJ/i5UvCJUqrTIVOVX7k0bmmRDWKVICPAWWPbsbIOUsYzraSdFpI0ULKaSElzaSlibTU\nkQ3kEfKI5gmQRzRHgByiWQJ0UaOnqOUkdXKSuuAZakLZyfoHB3MO648kWXUiQjxdvXPQXCBP+8I0\n+1aFGKrzesqxW9WMLQ9HqTqRAohwA7DObzvKysLOFGuPKvN6YgT8TyOVhOF4hkPLcxxaFitDxHaq\n/FCVsz6de1yqVaTLgPf4bYcnxFM51h5Ns7I9SrS0BRGe4IhDV0uKNy4KlDFaO1USqnzLZxveQbWK\nNAh8gkpf1F4UqsztzbC0I8fCrjB1/kWmL0g+4NA9J8XxRUL7gig5YwJhr6myy28jzqcqRQogwm3A\ncr/t8I1WUucQAAAHbElEQVSaRJalHVkWnwkwpz9C0MdiDQclUZOhsyVH+4IgZ1onakbtNw+pTn2T\nMK+oZpGuBG7x2w4zUKVpMEdLf5bWPqV5MEj9cJiQU/p0hqIkYjn6GrP0NEH3nCC9jWEf55hTpVuV\nf/XbiPGoZpEGgN8EjFn5Yhx1I1kah/LUJh1qE0o8JUQzQjQrhLMBAuq2h9ZRpycAiiOQijokYkoy\npozEhUQ8wEg8wHBtyKDhazE8q8obfhsxHlU7Z1PFEWE/sMVvW4xluDbMcG31pnKmTg447LcRE1GJ\nT7xi2I9bQWKxTMYxVYzdvrKqRapKAjjmtx0W4zngtwGTUdUiLbDPbwMsRtOlymm/jZiMqhepKmeA\nHr/tsBjLy34bcCGqXqQF9vhtgMVIulTP3fjLRGaFSFU5gvWmlndivBeFWSLSAi/5bYDFKCrCi8Is\nEmlhpb2Rmw9bfGG33wZMlVkj0gLGFU9bfKFDlZN+GzFVZpVIVekGDvlth8VXHGCH30YUw6wSaYEX\nwZz+NRbPeUWVfr+NKIZZJ1JVRrDD3tlKP/CK30YUy6wTKYAqb4I5LRstnvGMauXVcs9KkRZ4BkN2\ncrZ4wpuF6rOKY9aKtFB8/5zfdlg8IQHmdKQvllkrUgBVDgNH/bbDUlYU+LnJS9EuxKwWaYFncZ+0\nlupktyodfhsxE2a9SFVJAT8D8n7bYik57aqVF809n1kvUgBVuoCn/LbDUlIGgJ/7bUQpqNoeR8Wi\nyhERmoHL/bbFe55pho/fDcMN7s+3PgPfe8Jfm2ZEFvhZJc9Dx2I96RhU2c2sDCRFHbj/+9BzP/zi\n6/DozfDQAr+tmiYO8ISJ/XOni/Wk7+QpoAFo9dkOD7lqwH0BLEvDvA442AQVF3BR4ClV3vLbkFJi\nPel5qJIDfoo7p5mFPN4Cp5fAb1ZiA7cdhbRaVWFFOg6FQocfQ2UVYs+c9ih89F6490FYkfLbmiLZ\nWSj3rDqqtoN9KRAhDtwBNPttS/kZCsKm+2DLPnjocb+tKZKXqiHVMhFWpBdAhBiuUOf4bUv5yANb\n7ob6EdjxoN/WFMkeVV7024hyYkU6BQpCfR/Q4rct5eFvVsHnPg+tp0AKN8Rn/xW2v+6vXZOiwPOq\nvOa3IeXGinSKiBAFbgfa/LbFQg43zXLcb0O8wIq0CAqbE98ArPbblllMAvipKmf9NsQrrEingQiX\nAVdQ2AvQ4hm9uAId9tsQL7EinSYiLAZ+BYj5bcss4QTuELcqSv2KwYp0BohQB9wKzPXbliomB7yg\nOns33rIinSGFeeoW4FJscUipOYvrPWdZUcm5WJGWCBFagRup2jSNpyjuJlsvV2LjsFJjRVpCRAgA\nm3CXuwV9NqdSGcQtkq/IpmHlwIq0DIjQhOtVbU516uSAvcDewiIHSwEr0jIhggBrcOerdT6bYzpH\ncauHZlVqZapYkZaZwhB4PbAZqPHZHNPowI3cdvltiMlYkXqECCHgEtw562zPrXbi7slidxGYAlak\nHiNCBNgAXMzs8qwO7rD2des5i8OK1CcKw+CluEPhxVRviWEKeBPYV9gsy1IkVqQGUKhcWld4VYN3\nVdz55mHgsI3WzgwrUoMoRISXACuAZVTW3NUBTuMOaY8Xmo5bSoAVqaEUBNuGK9rFuN0LTRsSp3E9\n5nFcYc664ncvsCKtEAqLzhfiFvO3FF5eDo0d3KViXaOv2V5T6xVWpBVMoa3LqGDnAPVAHHeYHGV6\nnjcFjABDuCV6g0Af0G3nlv5gRVqlFIbLUVzRxoEIrjd0cAM7Y//r4IozYQvazcOK1GIxHLv+0WIx\nHCtSi8VwrEgtFsOxIrVYDMeK1GIxHCtSi8VwrEgtFsOxIrVYDMeKtAoQketEZKeIDIhIr4g8JyJX\nTOFzKiKrxvx8sYjsFpG+wutxEbm4vNZbLoQVaYUjIg3AT4AHcOt3FwHbcVeoFMtp4MO4K25agYeB\n75XGUst0sSKtfNYAqOp3VTWvqklV/ZmqvgogIp8Ukf0Fz/ioiCwr/Pszhc/vFZFhEfmwqvar6hFV\nzeMW5+eBVeOd1OIdVqSVz0EgLyLfFJH3ikjz6C9E5E7gS8AHcJe47QC+C6CqNxTetklV61T1X8Z8\nrh+34P4B4GvefA3LRFiRVjiqOghch7ui5e+AbhF5WETagHuBr6vqflXN4QruslFvOskxm4BG4D7g\nlbJ+AcsFsatgqgwRWQd8CziE2z50KZyzDjQKvFtVd4qIAqtV9fAExwoA3cB6VbUd/nzCetIqQ1Xf\nBP4Jt21oO3CPqjaNecVVdecUDxfA7f6wqDzWWqaCFWmFIyLrROT3RWRx4eclwEeA54G/Bf5IRC4p\n/K5RRD405uOdwMoxx7pVRDaLSLAQNf5L3K4M+z36OpZxCPltgGXGDAFXAb8nIk1AP25K5vOqOigi\ndcD3CvPQAeAx4KHCZ+8HvikiceAzuPPaB3AbnyWBF4HbVdV2/vMROye1WAzHDnctFsOxIrVYDMeK\n1GIxHCtSi8VwrEgtFsOxIrVYDMeK1GIxHCtSi8Vw/j+dM/yzkT7s2gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "venn.venn3(subsets = (1, 1, 1, 2, 1, 2, 2), set_labels = ('Set1', 'Set2', 'Set3'))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set relations\n", "* **Subset**\n", "* **Superset**\n", "* **Disjoint**\n", "* **Universal set**\n", "* **Null set**" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Univ = set([x for x in range(11)])\n", "Super = set([x for x in range(11) if x%2==0])\n", "disj = set([x for x in range(11) if x%2==1])\n", "Sub = set([4,6])\n", "Null = set([x for x in range(11) if x>10])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Universal set (all the positive integers up to 10): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}\n", "All the even positive integers up to 10: {0, 2, 4, 6, 8, 10}\n", "All the odd positive integers up to 10: {1, 3, 5, 7, 9}\n", "Set of 2 elements, 4 and 6: {4, 6}\n", "A null set: set()\n" ] } ], "source": [ "print(\"Universal set (all the positive integers up to 10):\",Univ)\n", "print(\"All the even positive integers up to 10:\",Super)\n", "print(\"All the odd positive integers up to 10:\",disj)\n", "print(\"Set of 2 elements, 4 and 6:\",Sub)\n", "print(\"A null set:\", Null)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Super.issuperset(Sub)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Super.issubset(Univ)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Sub.issubset(Super)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Sub.issuperset(Super)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Super.isdisjoint(disj)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Alternatively, operators like '<=' or '>' can be used to check relations**" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Super > Sub" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Sub <= Super" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Algebra of inclusion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If A, B and C are sets then the following hold:\n", "\n", "**Reflexivity:**\n", "\n", "$${\\displaystyle A\\subseteq A}$$\n", "\n", "**Antisymmetry:**\n", "\n", "$$A\\subseteq B\\ \\ and\\ B\\subseteq A\\ \\text if\\ and\\ only\\ if\\ A=B$$\n", "\n", "**Transitivity:**\n", "\n", "$$If\\ {\\displaystyle A\\subseteq B}\\ and \\ {\\displaystyle B\\subseteq C}, then\\ A ⊆ C$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set algebra/Operations\n", "* **Equality**\n", "* **Intersection**\n", "* **Union**\n", "* **Complement**\n", "* **Difference**\n", "* **Cartesian product**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Equality/Non-equality of sets" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S1 and S2 are equal because order or repetition of elements do not matter for sets\n", "S1==S2: True\n" ] } ], "source": [ "S1 = {1,2}\n", "S2 = {2,2,1,1,2}\n", "print (\"S1 and S2 are equal because order or repetition of elements do not matter for sets\\nS1==S2:\", S1==S2)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S1 and S2 are NOT equal because at least one element is different\n", "S1==S2: False\n" ] } ], "source": [ "S1 = {1,2,3,4,5,6}\n", "S2 = {1,2,3,4,0,6}\n", "print (\"S1 and S2 are NOT equal because at least one element is different\\nS1==S2:\", S1==S2)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Intersection between sets" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In mathematics, the intersection A ∩ B of two sets A and B is the set that contains all elements of A that also belong to B (or equivalently, all elements of B that also belong to A), but no other elements. Formally,\n", "\n", "$${\\displaystyle A\\cap B=\\{x:x\\in A{\\text{ and }}x\\in B\\}.}$$\n", "\n", "![Set intersection](https://upload.wikimedia.org/wikipedia/commons/5/5a/PolygonsSetIntersection.svg)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S1: {9, 3, 6}\n" ] } ], "source": [ "# Define a set using list comprehension\n", "S1 = set([x for x in range(1,11) if x%3==0])\n", "print(\"S1:\", S1)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S2: {1, 2, 3, 4}\n" ] } ], "source": [ "S2 = set([x for x in range(1,5)])\n", "print(\"S2:\", S2)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Intersection of S1 and S2: {3}\n", "Intersection of S1 and S2: {3}\n" ] } ], "source": [ "# Both intersection method or & can be used\n", "S_intersection = S1.intersection(S2)\n", "print(\"Intersection of S1 and S2:\", S_intersection)\n", "\n", "S_intersection = S1 & S2\n", "print(\"Intersection of S1 and S2:\", S_intersection)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** One can chain the methods to get intersection with more than 2 sets **" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S3: {4, 5, 6, 7, 8, 9}\n" ] } ], "source": [ "S3 = set([x for x in range(4,10)])\n", "print(\"S3:\", S3)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Intersection of S1, S2, and S3: set()\n" ] } ], "source": [ "S1_S2_S3 = S1.intersection(S2).intersection(S3)\n", "print(\"Intersection of S1, S2, and S3:\", S1_S2_S3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** Now change the S3 to contain 3**" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S3: {3, 4, 5, 6, 7, 8, 9}\n", "Intersection of S1, S2, and S3: {3}\n" ] } ], "source": [ "S3 = set([x for x in range(3,10)])\n", "print(\"S3:\", S3)\n", "S1_S2_S3 = S1.intersection(S2).intersection(S3)\n", "print(\"Intersection of S1, S2, and S3:\", S1_S2_S3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The symbol '&' can be used for intersection" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Intersection of {1, 2, 3} and {1, 3, 5} is: {1, 3} with size 2\n" ] } ], "source": [ "A = {1, 2, 3}\n", "B = {5,3,1}\n", "print(\"Intersection of {} and {} is: {} with size {}\".format(A,B,A&B,len(A&B)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![3 sets intersection](https://upload.wikimedia.org/wikipedia/commons/3/3e/Venn_0000_0001.svg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Commutative law:** \n", "$${\\displaystyle A\\cap B=B\\cap A}$$\n", "\n", "**Associative law:**\n", "$${\\displaystyle (A\\cap B)\\cap C=A\\cap (B\\cap C)}$$\n", "\n", "** Distributive law:**\n", "$${\\displaystyle A\\cap (B\\cup C)=(A\\cap B)\\cup (A\\cap C)}$$\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Union of sets" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. Formally,\n", "\n", "$${\\displaystyle A\\cup B=\\{x:x\\in A{\\text{ or }}x\\in B\\}}$$" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S1: {9, 3, 6}\n", "S2: {1, 2, 3, 4}\n", "Union of S1 and S2: {1, 2, 3, 4, 6, 9}\n", "Union of S1 and S2: {1, 2, 3, 4, 6, 9}\n" ] } ], "source": [ "# Both union method or | can be used\n", "S1 = set([x for x in range(1,11) if x%3==0])\n", "print(\"S1:\", S1)\n", "S2 = set([x for x in range(1,5)])\n", "print(\"S2:\", S2)\n", "\n", "S_union = S1.union(S2)\n", "print(\"Union of S1 and S2:\", S_union)\n", "S_union = S1 | S2\n", "print(\"Union of S1 and S2:\", S_union)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S3: {10, 5}\n", "S4: {8, 7}\n", "Union of S1, S2, S3, and S4: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}\n" ] } ], "source": [ "S3 = set([5*x for x in range(1,3)])\n", "print(\"S3:\", S3)\n", "S4 = set ([7,8])\n", "print(\"S4:\", S4)\n", "S1_S2_S3_S4 = S1.union(S2).union(S3).union(S4)\n", "print(\"Union of S1, S2, S3, and S4:\", S1_S2_S3_S4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The symbol '|' can be used for union" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Union of {1, 2, 3} and {3, 4, 5} is: {1, 2, 3, 4, 5} with size 5\n" ] } ], "source": [ "A = {1, 2, 3}\n", "B = {5,3,4}\n", "print(\"Union of {} and {} is: {} with size {}\".format(A,B,A|B,len(A|B)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Union of sets](https://upload.wikimedia.org/wikipedia/commons/e/ee/Venn_0111_1111.svg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** We can prove the following identities (associative and distributive properties) **\n", "\n", "$${\\displaystyle A\\cup (B\\cup C)=(A\\cup B)\\cup C}$$\n", "$${\\displaystyle A\\cap (B\\cup C)=(A\\cap B)\\cup (A\\cap C)}$$\n", "$${\\displaystyle A\\cup (B\\cap C)=(A\\cup B)\\cap (A\\cup C)}$$ " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### More algebra of inclusion involving union and intersection" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If A, B and C are subsets of a set S then the following hold:\n", "\n", "**Existence of a least element and a greatest element:**\n", "\n", "$${\\displaystyle \\varnothing \\subseteq A\\subseteq S}$$\n", "\n", "**Existence of joins:**\n", "\n", "$${\\displaystyle A\\subseteq A\\cup B}$$\n", " \n", "$$If\\ {\\displaystyle A\\subseteq C}\\ and\\ {\\displaystyle B\\subseteq C,}\\ then\\ {\\displaystyle A\\cup B\\subseteq C}$$\n", "\n", "**Existence of meets:**\n", "$${\\displaystyle A\\cap B\\subseteq A}$$\n", "\n", "$$If\\ {\\displaystyle C\\subseteq A}\\ and\\ {\\displaystyle C\\subseteq B,}\\ then\\ {\\displaystyle C\\subseteq A\\cap B}$$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Complement of set" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAE8CAYAAABQAcL1AAAAAXNSR0IArs4c6QAAAARnQU1BAACx\njwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAP+lSURBVHhe7P0HdGPXkbYLz/q/ufd+M2OruxkB\nIiciECBBggEMYM4kCII555xzjt0km+yc1QqtLCtLliVZyZJlWc45jXO25SDHifbYM+9ftdmUWxJn\nhs7q1jlrvWsfHBwEHoCop2rXrvobSJu0SZu0SZu0SZu00SZBgbRJm7RJm7RJm7SJTYICaZM2aZM2\naZM2aRObBAXSJm3SJm3SJm3SJjYJCqRN2qRN2qRN2qRNbK9Cwd/8zd9IkiRJkiRJkq5B7XWToECS\nJEmSJEm6xrXXTYICSZIkSZIk6RrXXrf/Fgrwy3OSJEmS9GfVf/3id/rPn5/Fby+L91lX3r/b4yVJ\nkrS73mDT97hJUCBJkqS/uP5LjOeF/usXrAsEARfwq1fO4Tc/vYDf/OwCwcH2fTvnbeuNzyVJkqQ3\n6g02fY+bBAWSJEn6s+o/ycv/7c/O4d9+dAY//85J/PRbx/Hjb57Ej75+Ft/54ml88RNH8bmPHMUn\nP7CFDz+/gQ+RPvbiYXzmQ0fxpU+cxFc/cxrf/fJ5/OgbF/DDr53Bd7+4hR989Sh+/PVj+Mk3j4vn\n/PcfnyGokCIKkiTt6A02fY+bBAWSJEn6k4i9fw75//qV0/jnl8n4f/sYvvelw3jlW+cIAi6ScT+J\nj5Oxf9/TK3j8wRncfWkIF062Y225BgtTZZgZL8P0WDnGB32YnajA6nwdDq824eh6K64/2Ys7bxrF\nQ3dN4V33zeDdD83h2ceW8P6nDxFAbBJYHMP3v3IOL3+FgOPrW+I98HvZ7X1KkvRW0Bts+h43CQok\nSZL0B2knD+DXPzmNf/vRafz25zfgV6/cgJ999zy+9+XT+Mqnj+Ol9yzjMQKA224cwNahBowNFqO3\nIxdtTdmor06FtyAGuVmRyExzICXRjHiXHqlJVmSkOuhYJLLSnSgpTIKvKBHV5aloqs1GQ3UGKR09\n7UWYHKnE8mwDNlaacWqrFffcNoQP0mt+7TOb+Nbn1vCTb27Rezq16/uXJOla1hts+h43CQokSZL0\nB+q8mPv/5x+cw3e/fBwfen4RTzw8jYtn2nFwsQrT5PnXViWitCQBWRkOJCYYkZIUDk+SGcluEwGA\nFjFRKqQmW5Gd4RQQ4CEgyM+JRV52LIoLEgkGUggS7MhOj0GGJ4rOdSAnI5bGSAKHaIKGGKR7+LEu\neowbhfnJqPBn0GvX4/pTXXjxqVm8/JXNXd67JEnXtt5g0/e4SVAgSZKkPeu3PzuLf/nBKbzyrVP4\n5hcIBN67ggfvHsWpI83ktfvQ0ZKN8tJ4eAtdZNDjkZZiQUFODBltOxJi9UiMNyPFbUViXDjiYwxC\nyQlWJNHxeJcRLqcesaSkeIsAgMxUJ/Ky4pGfTWCRFkNwEIsybwaS4qxIT44SgJBOsJCXHY+czFgU\n5SeizJdGrxeF+ppsTIxUYvNgI269vg0feHYG3/r8Gv7l5RO7/m2SJF1LeoNN3+MmQYEkSZL+R/32\nZ2fwrz88SR73YXz5kwfxgffM4YE7B3Fsow7jw0VoqE1BSREZ5IJY8t4jyJhbyONno24lKLAhPSUC\nabTP0wLs9aeRsWej744NJyCwESBYCA5MdJuBIULsJ7jC6Rw6P9FBj4+ix0XS6ESGJxoet53OsxMw\nxCA3M45gwIXsjBgU5iXSe0hCbnYcUuh18nPc8JWkorY6BwM9JVhfacJN57vx6H3D+ORL8/j5d47i\nN/S37fY3S5J0tesNNn2PmwQFkiRJeoP+6xdnBQz8M3nVDANf/PgqnnpkDNefasLEcAGqyshzT4+A\nO86IGKcWsTF6AoEIJCVYRCQghbz/ZPL+Mz2RSCTjnxQXjjQy1KmJUWTUHXTMCrfLCk8C79tonx5H\n+1lpsWJ00/1JdDw53o44ZzhiI430HBHidqRFjfRkJ7JSY5Gd5kJulosAxI6CPDfyczk64SAgSEBB\nrhu5NOZmJ8BblIpSXxZamr2Ym2nAzdcP4H1PTePrnz0o/sbdroEkSVez3mDT97hJUCBJkqTXiIHg\nNz/l6MBpfPsfj+C5x6dxbL0WNeWJ5OXbEOs0wukw0BhOHj0bdxsSYqyIj7YgLsosFE9KcFqE4iLN\niLWb4Iog2a2IibAI8X58VAQSXVFIjnUKJdG+O9pBYyTcMQ7EOiyItpmEeN8dbUdKnBOpCdFIdccQ\nZNA+wYgn0UZQYkO6x4HsjGgCggQxlcCgkJMVi8z0aBQWJMFb7EFlRQ66u6sxOVaN++4Ywjc+v4X/\n+Ml2saTdrockSVej3mDT97hJUCBJkqRXxYaRCwh947PrePqdkzi11YSu1mwytJFwOQ2IjtxWTBQZ\n+Cjy4J0EAdEkGl2RdMxhQozdKMZYB93PIiCIsdHjrCSbGU5rOMkkRoaD2EibgIM4GmMdDA1mAQFR\nViOiLAahmIhwOseGRAKF5NgoAQ2JMXZ4EiKRl+VCNhn9zNQoIYaC3OxY5OXEERC4kJFG4MDRAwaE\nbDqWE4+Kimz09FSjr7ccx7a68PyTy/jxN44QHJze9bpIknS16Q02fY+bBAWSJEkSywt//ZMz+NHX\nT+BzH97Cree70d9ZAG9+PBJjLYi06hFJhj3GYUZMJHnvdjLulw13tI2NO98mY28hY0+KttAxq0Uo\n2kL3hdN9pGirlWDAQobeLOS0cCSAQIAUzcfN4XCEG2EzaGHTaxBh0CEyXC9eI46AIcFpF9GCbYjg\nKYYI5GRwAmI0ctI5x8CFfDL8HCnIozGTgCA5kaDDZSQwsAtAyKBzs+i8mup81NcXobe3ElsbXXj0\ngSl89dMH8e8/lpYwSrr69QabvsdNggJJkt7i4l4D//HT6/HdLx7Dkw9OYnOxDvVlqeSR2wkGyECb\ndIggwxxFhjnabiHjb4bDbESEUU/GWweHyUiGm4y5yQS7wSgUaSQIMBEAkKKMBBUGMx0joLBGECTY\nCAboPvOVIiAIp3P4OYxGWHVaWLQaAgMtPS+9tpmjDeFwcWSB3oNLyIyEaKvIVchIiUR2WjTys+JQ\nlOtGcX4iwUE8MlKjkJhghsupQ3ysEWkeBzLTnfAQIOTmxKG6KhctLaXo6irHynI7HntwAt/47Jo0\nlSDpqtcbbPoeNwkKJEl6C4tLA//6J9fjSx9fw6UzHehsyERqvI2MsBYxZHgZBOwWA+xmgwABe7gB\nVvLgTRolTColwjUqYcBtej2sWh2smm1FaOl8fTgiSQ49GXodPZZGAQMCCAguXpVZRAgiw00ko4AM\nOwEHRwnsRoIOAhIWRwyizHp6PE9DcH5COOKdZiTFmeFx2wQY5KS7UJiTgOK8RBTQyBEEToBMiAsX\n4mhBFkcWMl1IdFtQVpqBpiYvamvzhdZW2/D8uxdFRcbdrpckSVeL3mDT97hJUCBJ0ltY//rDc/jE\niys4tlqH0rxYJEYZEWPWIMqkQSQZ3wiTFmYdAYA6TMigkkMXFgqtPBT6MDnC1SpYNBpY1HSeSg2z\nkvaVWlhVBAYaggktGXhShJrEt8nYsxxGggYh2jdxtGFbkeE6MvwsLRl/HRl/zicg2RgG6H2ZVXSO\nCk6rBq4IHRKc4fAkRCDV7RB1C7JSY5CXEU9g4EZhrluAQW5WnIAArmOQQoCQ5olEuT9TJCCWFHtQ\n5s9AqS8NVZU5aGv14fhWN156dk4kXO52zSRJuhr0Bpu+x02CAkmS3qL6p++fwYefX8HGUi282THC\nyMaRAY6P4PC/GjaDBuFaBQxKGfSKUDGyGAp0DAVy+Xa0gGAgXElSqBAepoJZsQ0GO1AQodmGAgYF\ns1pJEEEgoVXD+qqUsBJ42PQqRBhUBAds/LUCBOIjw5EYbYGbExodBCw2rQCDKIuagEGDuEgDkuOs\nBAV2ZHmikZ8ZD29eMnyFHqHi/CSxPJHrGfASxYxUp4gUVFVkw08gwEDAtQyKCpNQU5MnphP6+6pw\n4fQAvvvFw/j3H0kRA0lXp95g0/e4SVAgSdJbTJxD8OufXMBH3ktAsFwHf1EieexKRFt1cIZrEKlX\nIEIrJyhQwaSRQ68MIRAIJiAIhVEl34YEAgM9gYEhjMBAoSAoUIrRFEaQQHBgUTEU6H8XKSAwsNIx\nIz1HuEpGcCAXCheiYySzVkZgIIfdqBCGnyHFHW2Ch4x+SiwvRzTCZVcjyqqA06ZATISKoICjBSYk\nx9qQkewUUYLiXIKCAg9KSMUECAU57u2qiCL5MF4UOSonGOBoQWV5togSFBS4UUmgUF6Wibo6LyYn\nWvHwPRP45ufXRG+H3a6jJElvZr3Bpu9xk6BAkqS3kBgI/v3HF/CpD6xgbbEGfm8SYqPM5L3LEO8I\nh40MsyF0PxnwYEQQKITTbb0yiKAgkGAgGCa1DCYy6oYwAgVZsJAxTEZQQECgCCMoIEBQkOev0ggo\ncOiMcBAUsGwaLT02iAAgBGbNjoLpdiA9byDtBxEUBBMUyOAkwx8XqUFijAGe+HAy+kYy/hoCATnd\nF4oYu5xuq5EQraPz+L5wJMVuF0PKSI5GdqoLeZkJKMhORFFuEorzk0XEoCg/CSVFBAzFHvi8qQIC\nOFpQXJSMEq8H/tJ0VFYWorGxEoMDtXjuiVn84CubUuKhpNfq54u4lLnvCpsZjUuf+H2jSsfw5cda\ncbQm7HfPI4vH0duH8eWX//jv2+/e27b2uklQIEnSW0j/8VNuYXwMB5drkJkehSi7AQ6rThhqh0kF\nh0FBnr0Mdp0cVto3EBCoQ/dBGXwdjfuhDwsS0smDoA3d1pVQEE5QYL4MBXaCgkidSYihwM6JiBwN\noOe26cMQYeBRJsCAgcCiDYbNQO8jXC4iAu5oPZJcxstAoEW0TY5Ic7BQXJSSAMCIVLeFwMEqwIAr\nHdqMYfS+ZXBYVEh0WZCbHid6JdRVFQoY4CkEjhQwEBQXJqO4gCChOGU7WpDv3gYDfy6qqsvQ3tGE\nI4cH8KHnl0Qr5t2up6S3pv7zE/XIfY3N3Ifcc4v4z13O3VU/X8dz49YrHv86pZTh438kGLz+Ofe6\nSVAgSdJbRL9+5QK+9uljuOFUu5gy4Mx9h0ULm0mNcL0KZqMaJhoNWiX0GgICkjosBIqQQCFNGOcV\n8PSBHHoFjaRwtRJmFT1WSSOLgUCpQoRag0itHlF6A0EBwYFGBweLbvNqgxiLRdQtiNDrYNEoCRQI\nSIxk+C16uGwGxNmNiOOqiXadAIQYGycXhsFpkSHaKkd8lBopcUZkJtuRk+ZCUqwFLocOMXYtAYMB\nCTFm0VOB+yYU5iWjqiKPDH8mCgs8yMtNQi4dKyxKhbckAyW+LBozUUC3i7zpBAselBWnobetEn3t\nfpw/1omPPj8vogVS8qEk/PIkvnwu+g02828y6/Hln+92/ut1Ct+7KxVyfkxKLh76xLHLx8/inz/R\nfzly8HtCxi56/fvb6yZBgSRJ17jYmP3mZ9fjW58/hTsv9qOxIgVJ0VxASEeetRpmvRJGggGWjoBA\nTUZapQqDVhlGUCCDShYKtVwGvYpAgaRXhEEXJodRqRDLEa0ajQADziswKxSw0GhTqWHXaOHQMgxo\nYefpBBWNOpOoXRBt5voFZtjofotajQgd5zMYCQjCEStEQBDBcGBAfKSOpEdCFOcPcJ6BHimxJqS5\nLchKcSA33QVPgm17aSKNmQQC3FGRVyNwE6WsDG7WlILiIs4d8CCXoCCbVEC3i7yZKCYVFmeg0JsB\nb2k2fN40lBcl0XXKRr0/C6Pdflw6042vfvIQ/u2HUuLhW14vT+JoypVTBzva4xTCztSDLBUPfemN\nhbJejULUdODl1933++j172+vmwQFkiRdw+JKhb/68Wn8+Otn8OBt4+hqyEFitJm8dS0ijCpYdAqY\ntGHQaxXQacKgUYdBqZRDoZAJIGBpCQL0KgIHjUpAgZaAQEuQYCLjH2HQk5fPyxG3ocAUxlMIYQIO\nOGLAcGCj0aq4LLWeAMAoZNPot5cxqlWw6wkKzLy6wIQYq1G8P159kBAVjmSXWSQaeuItBAJWER3I\n5h4HpJzUSOQQAAgQ8DiRywCQm4giziHI4joFschMcxEYxCE3J1EohyMF+SkoJCgoLE4nOCAVEiCU\nZKK0PA+VZdmo8nrgy41HrS8TjeU5mOyvwMO3j+O7X9iQKh6+pXUWv3wsd9vLF978MJ4ZUb9qN+Uj\nQ/jlro/7nXaM/l7O/WN0pT1n7XWToECSpGtYIkrw85vwwuNz6GrMFsv6eNmfTa9AOMGAUSOHQS2D\njmBAo5RBqQhFmDwEclkwlLJQaBRy6NVk7LVqhOs0l6GAQIFkIhAQhYb0euHthzM4cARBJoeJFC7f\nhgMz5xlwAiJLqaHztAQUahjClCQ6Rs9jJ7hgKODCRFFcrMikFqsh3NEWpCZEEBDYaLQREDiQn+FC\nEZcyznIhP9NFYwIKs90iodBLMFBSkAIvL0ekkacO8ul4PsFABsFBBkFCNp2bzysTvBkoInHEIL+Q\npw4yUFqWh6ryXFSVpMKbE4fGijzU+bNRV5qJkc5yPPvwBL73xXVpGuEtq0089yoEcGTgxBWQQJLl\n4rnv/U/fjTN4+a4UOjcITXcd2uX+P52utOesvW4SFEiSdA3rX14+gW989giOHWxEfpoTVh158gQB\nvATQSDKoQqEjMRCoCQiUl4FAHhoEZWiImDbQKQkeyJs3adRiNLDx53oDWi5BbILDYICN9tnj50iB\nUX4ZDBgKLgPB76BASyCggk4WBm0oAYec7iOgYCiICudyyTqCFg3dVm1DgdOM5FgL4jlPwGlASrwZ\neRkxKCYvvjgnnuCAxrwklJHHX+HLQjl5+z428AwHNPpLMlBWmoUyui89NQapHu57EC+gwOvNhLck\nS8AARwxYxfT4cjq/lpcsFqWgsjgNlUWpqKHn6aj14txWHz7xwhJ+JUUL3pr63hCmZJft5E4OwZXH\n/kaNqcc2d3+skAQFkiRJ+iuJowQvf3kLTzwwhqbKdLjsehiUITAoSDwSDOhVbPRl0IjpghABBWEy\nFkcKQqAiqeWhIjKg5xUGBAZmziMgIx5BMGA3kmiMEGWONSLZUNQtuKyd5EMW1y8wq+k90KglaNCG\n8tJGJT2O4cJAQMDPR8/NRYyMBAU8fRBtEasIYh16kg5JseHITWcocJMSUCRKGqegqiwXDdXFqK8q\nQkVpDgFBGkqLCQh82aig+8r9uWLqICszATnZicjj+gUFBA9F6QIKdsCAowbeIg/Kiz2o8RMgEBBU\nEBhU0f11vhxM9NbgXXdP4DtfWN/1mku6lnVFguBrEgGvjB78b9MCEhRIkiTpr6RfvXIGX/joGg4v\n1ZCnbYSZCxEREHAhIh71SoICklYRSkAQChUBAUOBgiBASWIgUIYSHIQEkYKh4TwCggIblycO/13j\nIpteJzx9zi3gaQTOL7CQrLTPsojyxwQENFp1RhiVGujkCug5/0CtEWARad7ue8BQYDOo6fk1BDEm\nAgIbkuMi4I42wx2zXdI4PzMOJVxvQCgZ/uJMNNZ40d5cgbamctQTHFSU5gpV8nRART4qy/NRRmDg\nK8lCMYFAfn4KQUKSgINCAojXTCVwTgLBRg3nFvgyUC0iBzmoJShorSnBqfVOvO/xKfzrD05I0whv\nJb2mNsGVSYVX5hmQ/scphN+dazg0hd/sds6XO9DEzyMlGkqSJOlPqX9++SyefHCCDFsS1CH7CQSC\nt6cLroACLY0ajhCIyMB2dEAZJoOKdRkKFAQFiuAgqEJDYFQpyWhzgyKTiBSYuPeBViOWFnKkwErQ\nwKsReDqBVxSweF/AAQFAhN5EIMCVDVX0WC6lbNhuoWy1wGkJJzhg4OBWyUbEO61IiY9EemIU0hJp\nTI4Syw+9YrogFWVe8uD92Wiu86GrtRp9nfXo6aglMKhAY13ptuq31VDrQ1trJZoJGqqriuAtzkAO\nQUF2TiLyCBCK6bbXtz2VkEdQkJ8Zi3JvOmo4n6A8Fw0EFi0EG+30nGM9Nbjt/CC+/fnDUrXDt5Be\nU5vg9csPf58phJ1zd4WHneWO0pJESZIk/QnF3Q+/9ulNnNpsRFaqC06bCUZOJiQAYGnDQkXdATVH\nB8jwhwUHCiloXyXnyIFMHFdzXoEsVAABS8e1CcjwW/RaMfLSRINSATPtc3MkcZ9oecy5AQYhG4GB\nhY6bGRaMRoQTJJi4iZJejyiCAZcjQijGbhWdGV0OKxJi7EiOj0JqYgwyUmKQmRqLnHRudJQkpgWq\ny3JRX1UoAGCwrw3DA+2kDowMdmBsuAuTY72YGu/F+Eg3hgba0NvVgOHBNgz2t6Crsw71BBIcNSgs\nSBXLFDl64CvJhJegwE9wUFGahQKGg6x45GXGiX4K9QQGrXUlaKwswsxQDR66YwS/+M4xKVrwltCV\ntQl2M/q/zxTCUXz8UMT2eTVV+MiXd/JTjuHLd+UinZ/jv1mu+Pto573saK+bBAWSJF1j4lyCf/nB\nKTz76BT6OnIRadWLFQZ6JS8vJBiQBwswYCBQyRgIAiALPCDEYPAqFIQE0bmhBAJhQgwH27e3QYDr\nFWhkBApybpSkEHULuEHSDhSIfAMSTzEIaCBZCRIYCjgvIcJkJAiIQLwzUijOaafRDrcrkmDAhfTk\nWKQluUjRSCcwyEqLE2WL/QQFnDvQ3lyO/u4GAoFOjA51Egj0YXlhHEc3l3Hh7BGcO71J+0tYmBsW\nQDA20onx0S6MDHegt6cRDfWlKCe4KCEQ8BanCxVxkmKhRyQq8nJG7pvAjZXK6ZwqggUGg6aqYvS1\nlWNruRVf/OgK/uXl47t+DpKuIV1Zm2BXD//3mUIgvTyHS1eWN36NwtB218E/KkrAev3z7nWToECS\npGtMv/3ZWXzvS1u4eKoNhdkx2wmEoYECCFgqggKGAWVokIAAeVAAiSMFl1ccEBBowuRQhQaLegR6\nZZgQ76sJAjSX4YBvCyig8xkQtm/z9IRcTDOYeTqB4MCs08CkUYmVC+E6HfQqlah7YOJph3ATnDYL\nou1WuCJtiI92IDkhBh6CglQCgvSUOGSncb0BN4nbICfCV5SBuupitDSWobOtBv29rRgZ6sLs1BA2\nNxZx48WTuOuOG3DppjM4c+ow1g7OYGKsGxPjPZic6MUkjaMEBt1ddWggz58TEX0l22BQXJQqqh4W\n5CXTayWgiMbSojSxqoHBoNqfg0YCkrZ6H0Z7KvHYvWP4zhfWdv0cJF0req3B/2+jAK+ZQthD+P/n\nG/j4XaVouuIx6SO1eOcLG380ELB2bPmO9rpJUCBJ0jUkLlb0nz+/gE+9tIqp4RLyvk1QEBDwckMN\nAwEBgoKjAyGBkBEMsOQEBjvLD7lQ0U5kQMsGno6xkWftGH2GBRbv70ADRw84GZGjDfLAALHPz8EF\nj0TRI7VSVETUExioGTgIKrgGgoGnG4w6RJiNiIqwIC7GgRR3LJIIDJLdMcjwJKAwj4x1QSbyczzI\nzU6GtygTNeSt11WXoL7Wj7bWegwPdmNmagRbm6u45ebzuPuum3Hx+pM4cXwd64fmMDXRT9oGAgYE\njhgMD7aio60KtdWF8Psy4fOmC5UUc4OkdDG1UJifgiKSl0DBX5yGilJ6bZ66qMgnMCjG4eUmfOjZ\nSanF8jWtK6cG/qd8gddOIey97PGfR6++j8va6yZBgSRJ15B++7Mz+OX3TuLOG7rIeKXAYTWQIZbD\nbNCKREJ5cICAAvkeoGDH6O+AwatQQAafxfkG4hhPN3BSIh0LC6LnCgkSyxh36htwXQPeZwhQ8fk0\nMhyYeVmjORwOmxlOjhRE2eGOdQooyExLQlZ6Io3cwCgd/pJcUg5KCAhKvdkCCFqbKtDSWEnefgUG\n+jowPtaPg6tzuHjhJO6951bceMNpHN1axeL8GMZGusX0wchQh9D4aCfBQRc9romew48Kfw58xfQ6\nBAelnFvwKhh4RNSgMDdJVErkwkicgFhVylMJeehq8eO+W/vw7c//eZeXSfor6soIwB5XFmzb0T+k\nc+KfTlfac9ZeNwkKJEm6hvTL7x7D5z68jINzFUhNtEGtII9dRd68Rrldg4A8/DAy5rLgIIQGMhgE\nEhQEkZEPIePOlQoJCFhyOTShBAVXRgvYoF8BBRwt2E5CvLxCgUX7O1EArYqehysg0qhWyum9bK9q\n4PcSbtTBZjbBbjUjMsKC6KgIxLmikJTggic5HtmZvGQwDfl5GfCXFpA37yfjX45GUktTFXq6msig\nt6G7qxlNTbUYGurD2Ngglpdmcf78STz80D244/abcOrkJlaWpjA9OSjyDgb7WkktGBlsw+RYNx2j\n52ivRm1lAfzeDJQTFPi5zkFpLkp8uaLAUVFhmgADbr3MXRZLCpIJDNJQ7c9CQ3UB1pca8d4npvCb\nn57Z9TORdDXrytoEv6/++BUEf4xe/372uklQIEnSNSJOMOTe/w/e0YPmmjTyvI1knIMJBsh7DwuB\niowy1x+QExSEvgoFQQQFbOQ5V4CggGCAgUBEADgSIKCAPHsBBQQKl6FAyfkHBAG8IoFhgHMTRE0D\njhqQ4VcTFGgIBF4VN1hSK2DUa2A26WE1G0hG2CxG2G1mxDgdSBRAkIA0jxuZGckoyM9Eub8IjQ2V\naG2uRWd7A/p628jD78fszAgZ+iGMDPeit7eTgGAI4+NDWFqcxZkzx/HA/Xfhrjsv4dyZYzi0Ooe5\nmVGMDndhqL8NA70tGOhpov0WDPU1o6ejBk11XlSUZgsoKCMoKC0rQFl5IcrK8lHqy4a3KA3ccpmh\nwFuQhDKvB1V+zjHIxmB3Ge6+eQjf//Km+Ax2+2wkXaV6TW2CP0B/xSmE17+XvW4SFEiSdI2Ie/5/\n/TMb2FqpQEayDbZwFXRqAgEZGf8QBoNQUZhIRgCwAwWhgVdCAcPAZSggQGAo0NGoF1AQJsbXQ8F2\ncSMSjzICDy6CdFlc74CjAwwEOq0KJqMODrsVjggLIqymy2BgQKTdgvhYJzwpCchITxbKyvSgpDgP\njfVV6O7iZYTNBATtGB8bwCoZ+Y21Jawuz2BhfhJzc9OYnh7H1NQYlpbmcOL4Fm695QZcuvkCzpw6\nIqBgZmqYYKIXE6M9GB3sQG9nvSh21Nlaia62SrQ1laG2Ig9lJbw0MUtAQXllMaqqilFZUQA/AUNJ\nkQdFBAQlhQwFKQQR6SJi0FRThKNr7XjpmXnxGUhLFK8dvaY2wR+kv94Uwuvfy143CQokSbpG9PPv\nHMOHnp3F5JAPcU495CHXkfaTd64Q/QxCyJsPYRgIDkFIEN0OYDDgPAMy5iGh21BA0l0uQawNDRVQ\nYOB+BgqFGDmCsAMFHCFgIBCtlRkASNvgsV0mWcFwoKTnIyAwmnSwRZgRHx+D6GgHwQGBgS0cDocV\ncXEEBJ5EZGWlISc7Hdk0FhbkoKqyFO1tjejr60RPD3n4/V2YnBjGwdUFHD68io2NFWxtrePkyeNY\nXJzH/PwMVlYXsbm5jqNHN3D82CY2N1YJHCYwNMirEwbFksWFmWEM9DSihox9LRclqvehs6UCjZxw\nWMxLEtNQ5MtDaQUBQTWBAamcziv18bLFFIIDrpWQBH9JCo3JaKzJx9RIHW67OIhffPc4fvMzaRrh\n2tCVtQl+j6mA33cVwp9JV9pz1l43CQokSbpG9P0vbeCxe4fgL4pFuC4IGkUgFLIAAoDroFTIBRiE\nkhFnKAgOCvpvoYCBQEO3d6IEDATcJpnrEHBuAScYMgzsQIGGYECrDBNRAZ4+EEDANRAuA4GJgMBi\nNcERaYPbHYuYmEg4oyLgojEpMQ5ZmanIz+NCQjkoLCTRWF9fhc7OFnR3txEQtGNgoAsjI32YGB/C\n9NQolpfncOzYBm688QLuuOM2HDmyia0jh3H8+BEcI62tLQstLxMkTQyK3IPlhQmcOHoQJ46sYnay\nD3WiT0I26ioL0NZYioaqArp2vOIgFQXF2fCW5sNfXoAyjhSIZYtpKC5KQXFhIkoK3fB7U9DSUIym\nukI01RZgarQaH3thET/91pFdPx9JV5murE3we3n8b45VCK++/mXtdZOgQJKka0Bcm+Drn17DzWda\nkZ5khk65H2Gh1wkoUCtDoNOpISeDzZGC4OBgBF0BBWEEBeoQTiIME50LtQwIl6GAowMmggFui8yF\nifScK3A5uVBMGZC0dEynVog8AoaB1wKBXgABRwkiCQpiY52IjLIhihML46KRnp4igKCAgaAoF96S\nAlRU+NDV1Ybh4b5tjfRjcnIEs3MTmJubxPT0GFYPLuDChdO46+7bcffdd+HMmdM4f+EcLl68gHPn\nz2Bzc42gYAULC1MYHelFT1cLNg7N4+YbTuH2S+cIDJbRy5UNqwpFtKChulDkB5QVp8FbnIkiXz5B\nQQF8/jwSJx1mwevlyofJ8O5AQUkK2pq8aKzJI8DIQ39XBd5xaQjf/gK3Vt79c5J0teh1Kwl+L8P+\n+lUI/1vnxD+PrrTnrL1uEhRIknQN6NevnMFnP7iKQ3N+OCO4JsB+AoJ9ZKADoFGREVeFQSYLISD4\n76CAjf2VUBByOUoQJoCA2yKHq1Qw7BQx4mjBDhQwADAUhMkEECgVMmgvA4HNZkYETxWQ7CQGAqvN\nRLfNiI1zIiPTg5zcDGTnpCMvPwul/mI0N9djYKAHExMjmJmdwPzCNFZXF7G+sSq0srqAI0c3cOtt\nN+Gee+/GzZcu4czZs7jxphtxyy0344Ybr8fJU8dw+PAhzNHjBwe60N/bjqObK7jnrpvw6MN34c5b\nz2FhegBdrZUiUlDJ7ZWLU8Vyw/KyfPgrS+Cr8Aoo8PqyRcOk4uKU7emD4mSUepNQ5ktBfXUOgUUO\naitz0dpUgo3lNnz2Qwfxb1LdgqtcV3r7f8AUwGumEP63ssd/Hu289o72uklQIEnSVS72Sv/p+yfx\nnkcn0deaBZ3yAIzqIBi0nOgXjOCAt+PAgX0ICSEIIGP+OyjYTjQMC9qOFKgJCDhCoCUgYBnC5Ntt\nkAkGXoUCui2ggKMFnFhI4kgBTx/wUkSePuAliEaDFjZrOKIit6MCkQ4b7BHbYBAerofFYoQz2g6P\nx4209GSkpiUhO5sMcrkPPT0dGBrsFYmDqwcXsXVkHceOb5KhP4rTZ46RjuPiDedw9ztuxx133obj\nJ07Qfadw08034bbbbqHxBoKEkzi8uSamGvp62kSS4pHDy3jHnTfh8XfegwfvuQlb67MY7msSUYLS\nIo/ouljpy0BtdTGqGypQXlOKUgKE4pIsFHG1QwaCklT4SwkeSGUkHwFCTQX3SshAaXEa+rur8NQj\ns/juFzekhMOrWXuuTfDf6XVTCH/Qc/xxevW1L2uvmwQFkiRd9TqPn37zJN5xYy+qyYMNJ6/dxEsA\nyXhzd0NZQIAw/qFBwSIyIPZJfFwWGIgwkjIwAKqgQGiCA6El6UKDYVQqYVAyCChF7QLON9BwvoGM\nly7KRBVDLmfMZY7FdEJIIPRKOSw6NSJMekSS4Y8lKEiMdSIpLhqJLifiXTGIjLAhwmJGlJ3ui49F\nRloK8nK4aFARmhpqBBCwMV9ZnsXW1iEy8McJBI7i1OkjOHf+BG697QbceRcb//N07DiOHmNIuAkP\nPvgQHn30UTGdcOToJpaW5gksRjE40InmpmqMjXRhZWkMG2vTWFsZxcJMHwZ7aoSnz9MB5SUEBaUe\nVFflorreh8paL3xlOSgkIMgr9KCwiCDAnwV/WTZKSzMJEjgpMRk+byq993SUetPgp/H4Rjs+8vy8\nVLfgqtVraxP8YV7+X38K4Up7ztrrJkGBJElXvc7j2184hlNrjchLiSYgUMB4ee5fwXUIAri/wWUg\nCNiOEPDUAQOBnKQgGFAFBUDNQECGXcfGPTRItDdmKNBfCQUEBDv1DLjfwXZjJDouD4GawMBAMGLR\nawgKdHCYDYh1WJFMQOBJcNEYA7crFjGOSMQ6nUhJdCMvm7zwgjyU+byor+WiRG0YGx3AzPQolhan\nsb6+jOMnNnHi5JaAggvXn8Jdd9+Cd9xzG2686RzOXziDS7fchnvuvR+PP/4EnnjiCdx77z0i4XBu\nfkbkJPRwgaPGKvT3NhMYdGB0qBV9XdXobq9Ac30hqsvS4SeYqq1IR11lBmpr8ggKSlBV50VZVT68\nBAIFxWnI50ZJZPi9vgyUsAgAvEUeAQTldE4lwUIZHe/r9OH2iz34+qcP7vJZSXrT6zW1Cf4IY/5X\nnkLYed0d7XWToECSpKtYPHXwX7+4gM98YA0LI34kRprJs5dBz0sEQ0MQxlDAxj8oREQHQg4EIvhA\ngBhFlIDuFysIQoKgJaOuIxhgIDDIOFKgglHkEXCCIa88uFztkAsZkRgKtsGARzmBQohoz2zRq2Hj\nmgThetEGmaEg1U1QEB+DuOhouKIikRQfh9ysDJSVeFHh96G+phKd7c0YGdpeYcBQMD8/Sd7+LA4e\nWhRa39gGhJsvXcBtt98oAOHC9Wdx993vwAMPPoiHH3kY9913L2666QYc3jiEiclR9Pa2o721Di3N\nHCnoxPRkL8aG29DVVoG2Jh+a6goIBHgFQjbam4rR0exFc1MJahp8QtUMBpX5KPZlIq8gBbkFySjk\nqQYy/mUcMaDRR6DA8nsZLtJQU56DpekaPH7/MP71BydE6endPjtJb069pjbBHxX2/+tOIbz6upe1\n102CAkmSrmJxBb1f/+Qc3vPINHoacxBl0kJHxlknDxUFiXagQBYUTDAQiKD9B4R4X06QoCAg4L4F\nWhI/xkCPZSDgkYFgRwwGPFXAfQw4OrADAjx1wNEBI0lHMGLSKGA1aBBh1G5Dgd2CZC5MlBCDJBpj\nohyIdUbCk+RGYW42KgkIaqsr0N7SiMH+bkxNjmB6agxzcxMCCnicnhkjA09e1/QIlpZncOz4YZw9\nd/xy9OAYLl26CXfddQduueUmnD5zAocOLWN2ZhxDQz3o7GxCa0sNgUEtFudHsX5wGiuLoxgfacNg\nbz2628rR1liC1gYvBrqrMNhTjY72CtQ1+bfVWIrqWi/85bkoKEpFTn6SgAK/Pws11YWoqykUUYJi\nAgZus1xSmIIKAoWeNh9Obbbjq586KMBgt89OkqQ/p95g0/e4SVAgSdJVrP/4yWn8/DsncPv5LlQW\numEhT11LRl3HSYBk8AUQXM4pCNx3AAHX7aNxv4gWMBQoRSXD7ciCgYy8kUZTWCiMilCEqzUI12hg\nUquFeD9cy8f4NoMCRw8uQ4Ga9gkKwrVKAQT2cJ4+2IaCRFckAUEUEmIiERPpQGKcC2nJicjLyoC/\npAgtjXUY7CMgmBjB/OwkFhdmsLoyL4oUcZ0BXoo4Nj6IkdE+AQcMBusbK9g4vCpWGBw9uoXz589i\na2sD09MTIlGxv68T/f2d6OpqRntbHbo6Guh5R3Hk8AKObi7g0MoY5qf7MNTXgI5mH5rrCtHTXobe\njnIBBY2tFWhoKUc9gUFtvQ8VVYUoKc1CEXdS9GWisjIPzc1+TIx1EMw0orGewEFEC0jFqagiUBjs\n5mmETnz/S+u7fnaSJP059QabvsdNggJJkq5iccvel798FMcP1qMwPRrhIsFw2/PnqoM7UMA5BAcI\nCPa//ToBBUFXQoH8CihQEhSwx88Jg3otSQezTgszwYCFRivdthl0NGoJADiKoBBTBiyDeIxawECU\n1SDkcljgjolAQnQE4pw2xEU7kJ7iRjbXJ8jOQHlpMYb6u7FAMLC8OEve/DQOrixg7dASNjZWsbl5\nSIxLBAczs2OYnBrG9MwoFpemcWhtgcBgBZtbh3DixCZWD85jkqBheLgHc3NjmJoawkB/Ozo76tDT\n3YTJ8V567klsbsxh/eAkluaGMDrYgs7WcjSTUe9uqxDTCp0dVWjrqEFjSwXqeAqh1ouqGq5sWChU\nU1OEhvoSNDWWopnub2kqRV11gSiRzK2VywgMyrypaKzKwdx4NT7wzDR+8s2tXT8/SZL+XHqDTd/j\nJkGBJElXsf7l5RP4+qcPY3GsHOkJEa+BAl55IPIJGAwCgxFAMMBgEMhTCAQFnFOg4L4HXM5YHgo9\nwYCAAhI/j91kRITJ8CoE8Gin2w6zEY5wus+oE0mFFr2KwEFJkKCg+7Vw2oyIsYcjOsKE2EiGAvtl\nKLAiLsaBzNRE5GSmojAvC7VVfkxPjpCxnsfK0hxmpscFGHBjo4Ncm2BtBQcPLmJ2dgIjo/3o6+9A\nT287Rsf6CQymsLa+KHSQAGF2dlSAwBIdP3FiHWtr8xgf60V3VwP6+1owNdGLQ6tT2DpMMHFoGssL\nI5gY6UBfVy06WsrR21kj+iB0dlSjg441t1aipq4EldVFBANFqCcQaKbzWlsr0NJchkYGhso8MYVQ\nXZErogTlvgwxfcDRgnKChM5mL+66qR9f+vhBKbdA0l9Ub7Dpe9wkKJAk6SrWP798Ep/70EGMdBUh\nyWkWxlwXxi2PL0NBUBCN3DJZhuCAQAEDPLLE6gM6h/MKNDzlQI/jJEWGAotGASe3NbaECxCIMOoF\nIERZTIi2mcngm+l+k1hhEElymHV0v+ZydCCcZBZjPIFAUqxDyO2KQAKN6Z4E5GZ5UOrNIy+7BjPc\nyGhhBnMzExgdGcD46NB2BUMCgQUChGmRH9CLzq4WNDXXoK6+Ah2dTZenEqYJDiYxPTuM0dEegoJB\nHN5YxM03ncapkxv0+FEMEBD09zUTfPRh7eA0jm4tYXN9FiuLY5gc60J/dwPBQBV6u+oIDirQTjDQ\n0VmLFgIEhoLyygJUVBWgobGU3kMtQUYd2um+hnovaqsLUENgUF6aCV8h90JIRVVpFioICPxFHtrP\nxNJUPV54cgk//faxXT9DSZL+HHqDTd/jJkGBJElXqf6L9Juf3YAPPbsgkgwTIk0wqbaT/9jIi5bG\nISFQyeVQK1WQExhwrYIQAoWQQK5VwLkGAQQOgaLGAD9GrwgVz2HVKsVywpgIi6g3YA/XCwCIjggn\n7588/qgIMfL0QFwU37bQfUYBArGRZiHe56mDVLcTaUnRSGUlxwjl56SQl12Mvh5eJthHINCPkeE+\nDA70kAHvErUKuB0yVzUcGR1AHx1r72giw1yFyiof6hsq0NffTvDQT+d0ExB0YGCgmaCiAyvLY7j+\nwhYunN/C4fU5eu4udHXWYXS4A6vLEzi2tYyjm0tYXZoQtQs622vRVO9HWzMZ+tpSNDaUoa29Gq3t\nVSKfoKwiD/6yHNTVedHdXYfengYBDnU1RWhuKEGlPxve/GQU5iTAm5eEaoKCWjq/wpuGoux4VBIg\nnDnSiQ8/Pye1Vpb0F9MbbPoeNwkKJEm6SsUV8/7pe6fxxP2jqPN7EG3Ri/A/e/zbUEAKDYWWawlo\ndVAplNtgEMxgwF0SuV4Bg8EBKIIDoObliPRYAQU6FeLZ8Dts5P1fjggQHMTYzeT9c46Ag2QX+8lx\nUUiJd9Jtm4gMMCDERnK0IByJLjsyU2KRk5aA/Mwk+IozkZ3ppjELbS01op3xQF+HqDo4NNBNt4cx\nMsSA0I+pye1WyAcPLYk+BtzvgPMKenrb0NJai67uZgwNdwoomJsbxPh4F0FFC4aH2rC+NkNQsIlT\nJw9hdmaAvHry8ttrsDA3jJPHD+H82S0BBzMEFV0EBQwD7S1VaG2qQDOLjD7nFdQ3+gUUcJJhVVUB\nOuhYD4FBW0s5qirzUcnFjXITkZ9NQEBgUFKQIqIE1aWZAgoKMmPhy0/CQHc5brk4gB9/44hU1EjS\nX0RvsOl73CQokCTpKtV/EhS88o1juPdSL8oKEhBl1hEUyKEmINCScdepFCQlNJehIMJqg9kUDmWY\nYhsKAgMRGsRTCFyv4IAoQGQkIAjnxEGVDOEaxeXogFnAgNPG0wG/g4BEl0NEApJiI+FJiKLjkQQG\nDAVmGi10jgOZnlgUZBEMFKajzJsNn5dGXxYa6nzo7W4UnvrQQCf6ydAP9neJqYPZ6QnSJBbmZ3Hw\n4DI2Dh/CiZNc0fAoNjZXMTzSi6bmajS3VKOrqwFDg82Yme7F5Hin2B8caMLS4gjOnD6E0ycPYnlp\nFJ1kzPt7m0RewdrBGZw+tUH3rRMkjKC7sx51tT40N3KuQCVaWzlKUC2AgHMJKnj6gAGAVFaWi5Li\ndORmu5HuiUZBTiLyMuNQRGBQ4csUUwccJagrzxERgqKsOPgLkkUp5eXZFjz9zmn87NvHpPwCSX92\nvcGm73GToECSpKtUbFh+8JUjuOVsOwrSY2DTq4Snv1Nu2GzQIdygh06jhkGnhyvGhWinEwa9HmFy\nOcK44iErNFhAAcOEQSkjhUIdGghV6AGRROi0bScMxkXZyPhHIy0x5tXIAEcCEl0MBnZ43FE08n4E\n0pKcZCzdKMxh7zkVlaW5qK0oEBUA62uL0EVGemigVYT2Z6aGMD05hIkx8vYJCmamxgkIeFniEjbW\nD2Fza/0yFBzDkaNrYvVBe0c9GsiINzaWob21DMODTQQYbRgZ4khBC+Zm+3HsyAJOHl/GoYOTBAst\ndF87Rkc6MTczhCNbSzhFULC8NI7enibU1pSQfGhsKEczgUFjc7lIMOSWyeUVeULFRalISY5CfKwF\nsdEmuOOs8BdzsaJcNNK5LXVeNBA4NFUVoI7AwF+QgrzUaFQRCDVUFWGguxbHD/fik+9fltorS/qz\n6w02fY+bBAVXqX76rS18+RNLePqRfjx0Vwduv9iIyeHsV/X6z3Mv8hVFvvr4s0erxPOy+HVYu70P\nSX89cRj6u/+4hbNbTUh322BQcKnh7fwArhsQYQ6Hw2aFlUaL2SKgwBVD8GC1Qq/TCVjQqpRQEhjI\nAvZBHrgfyuAA0gGEBV4HgyqUoEApag7wagIGgSxPAtKTYgUMuBwmkUAowIBAIJWgID0pGjnp8eQ5\np6C0KIOAIA2+wjRU+XNRV1WIUl8aWppKyGuvJwAgAz07SIZ/EUc2V7F+aFFECXj6gCMFhw6ukPE+\njKPHNrF1ZEM0RtrcOohDa4sYn+hHR2cD6up8qK3KQweBAdcLGB1uFZqc6KLnm8TRrQUap+hYG4ED\nicBgarKXnnsax46uYGV5EgP9raip9qLMn49qGmsIELguAQOB35+DkpIM5OQkIoEgwGpRwhGhQVJC\nBLyFqaKh0hw93+xEN4Z66tFIQNDESxfpMfnpLnhizagvz0FncwU6ObLRWoHTW+34+Ptm8KtXTu36\nuUqS9KfQ63/f97pJUPAm13e/uIZPvTQjjDMb646mpDd8Vn9JxcVoxPtgCGEgkWDhr6df/fgUvv4Z\nMpYrtUiOswgjblDJYdQqEWkNR0JsNJLcCXDHxyHW5YLb7YaLRpvNBpPJBKOewUAluhuGBlyHkAPX\nQR60DwqSMng/rAalWFHAKws4P8CT4ER2agKBQRw8bm5yxPkCLmSkxAgxDBRmJ4rIQJk3E+UlmbTv\nEd50LXnaLQ0laKjPJ8+8koxzI8ZG28hAd2NjbR6nTx7GmdNHCQ7WsbI0T8aalyMewonjR3Hu/Gmc\nO3caZ86eEJUMuSnS0eNrWFiaQH9/C5rqitDaWIK+7hqMDjaLaoVjBAbzM/04uDIuNDPVixECA44Y\njI12CBhZX5/BysoEhobaUEkQUEBG3l+eR2BQTCpCRUUBAUEmMjPiEBPN1ysEJkMoUhIdaKgpFs9/\n8sgiTh1ZwvryOCbouVtqi9FSU4RarnKYHY/MxAg0V+Wjo6EU9ZUERQRJzXUFuONiF776yZVdP1dJ\nkv4Uev1v9143CQreRPq3H558DQC4YrRv+Fx2dMAZh/D+SUTMrcN9y0NCuR/88qvyffvfUPYj/F66\n8vHJ9z0tnjPq8FnxOvJ8367vY0cMKwwKLz09JqIYu/19kv60+tcfnMQXP3YIq9PlZLBtZMRV2yWG\nww1wRUYg2R2PNE8yPMlJSEhIQFxcHOx2O7RaLdRqNbRqFdSKMChk3CxpH2QcKQgNgDaMpxE4SqCA\nPZyXGXKkwIg4J+cJRCI9KQaZBAacL5CdFk+KQ36mG/6iDFT781BTloeq0hwCgwz4yNDyWFuRL6Cg\nrbUEgwO1GB3hVQfc/Kgdy4sT5NGv4tyZY7h44RxuvOECefFHBBRsHt4QQHDp0o248aYLAgqOnziM\nI8cOYm2DaxMMor+7Fj0dlQIKhvobBRRMjnVgdqoHC7MDWJgfxOx0H8bHOgUYDA+1YmSkHfPzw1hc\nGsPwSIeAgpy8ZAEFDY1+NJNnz3BQSFATH2eDOVyBcKMMiQkRqKJzpsa7cOr4CjYPTWOCnrO9sRRV\nvkx4cxPFtEEZqSTXjVxPFErzElFFcFFB8ualwEdgsDhZiwfvGMS3v7CO3/7srOhhsdtnLEnSH6rX\n/0bvdZOg4K8s9rTZmP53EYAd488GOu2xl4TB3s2g/6VU8OnvIuu5T4n3w0Dy38ECT0XwFARDAsPO\nbn+7pD9O//T94/jsB1cxOeiFJz6CDLgWNqNWQEG0nQsFOZEQF4u4WBeiIiNFhECn00Eulwsp5DKE\nhYZAFhwooEAu8gqCYFDJYNYqYNKEEmQoEGnRIDrCgBiHEfHRFiTHO7bBIMWF9ORoGmNQmMNdBgvQ\n3lSGlnqfgAB/cbqIEvCSvbrKfDTXF6Ozw0feeg3BAHn0Y+2YnOjE4sIYAcA8Th4/jBsvXsC977gL\nl26+CadPnRJwcO78Gdx++y0EBjeITok8fXDw0BwOrs1icXFUGOUx8tIHeurQ11WDgd56MtqdBAT9\nWJwbwDyNDAXTU70CDAYHmtFN547S/izdP0QQUVVTiNz8ZFTS2N5RTe+zFtVVRcjMjIfDroWJgCDO\nZUYV/V39PQ1YJBjZXJvGND1HTVkuMpOj4I42wu00IjPJAW92ggCDosxY5HucKEh3oZiAoZyuCecf\n9HdWYHO1Bc8+yomHJ/EfP5HAQNKfVq//Td7rJkHBX1hsINlQri95d40EaOs7EHv2dgEAxV/66a6G\n+c0mjkowrDAoMMC8/m9iMfTwdIMURfjT6ZffO45PvG8Jva05SIq1ERBoEK5TwqRTwWrSwWo2wUIy\nGQ3QajUICwtDaGgoQkIIBGQyyAgIQggIggMPbEcKgvZDJeMkxVBRndCgCqFRRrChQmykCYkuGxLp\ndcRI4tdMdFmRmuhAUW4SmutKMNBdJ+bN6yrz4Cv0oMzL7Yjz0VRXjLamEnR3l5JRrsLoSCOmJjvI\ni+cQ/xQOrs7g8PoyTp88jrvvvB0PPfAA7r7rLly8/npcJFC49dZLuOHG8zh2fEP0PuCpg8Vlbpo0\njJmxLsxP9WGkvwkdzQwlJRim/eX5IRxcHsPy4jDmZvpFxGB6qgcDA41oaStHT189xghKBoabUVNf\nhEJvKhqafejta0B3Vz3K/LlIdNsRbpTTdVSgKD8F3Hp5ZrIXk9yCeaAFPW1VKMx2w0XgYNEGCSVF\nmwQUVNPfXkogUJgWg6wkO3JTnaj2ZWKM3ttAZzVG+6px5mgPPvXSGn71yg347c+2u17u9llLkvT7\n6vW/wXvdJCj4C+hKEHj9dWZPm0P07H3/ISH/N6t2IIEh5/V/M0cReIpEAoQ/Tr/47jF89PkFtNak\nIZmMtNWghkEth04lF2Cg0yihVMjJ+AcjODgIBw4cQFBQkIADlUqFMAKDkKBtKGAg2I4W7IMqNEDk\nJ0SYeDpCAadNj7REJ0ry01GQlSwSCl2RRkTbdUiIMSMjJVpEBdoayzDU24jOlgpU+LKQnxUvugY2\nExD0kREcGWjA+HgDxkbJGI82CShYXhrEOnn8B1emsbI0g/VDqzh/9jTe9c534t1PvBv33Xsfbrnl\nZlx/8fz26oNj6zi8uYq19QUsE0yIKYDpfhxaGsX4UJsAk9LiNDTUFGF6vAsbh7is8SwOrU5gdWUM\nMzN96O9vQGOTD60EBv2DTeil91VPwFJWmYOOrmoMDbcRvNQjnyCAowQaVQDsNg3qa4rpeSaxODf0\n6t/Zx7UMKvKRkxoDp4WATLUfKa5w+POTUe/PRhmNVfR+ijLjkOOha0iQ0EPQNDPagfHBFgz2VOLC\n8W589dOn8a8/vID//Pnun7UkSb+vXv+7u9dNgoI/ozg/YDcQYEPJc/Ycit/NoF5rYtjhyAdPN7z+\nWnAEQZpi+MP0OyhIR0qcXUCBXiWDXq2AxaSDQacRUBBCQBASzGAQLCIEDAScUyCXhSI4KEBAgSI0\ncFvBB7ahQC1DpFULh0WDeKcZuRluVPvzCQzSkJ7kRJwzHPHR4SJKUJiTiOqyXPLSy4X3zNECXpfP\nFf7ys+NQX5WHfjK2U2NtZMTbMTfXipnpNszOdGJpsV/UDWAoWF6cIs2TEV/H7bfeioceeBAPPvAA\n7rjjNpw+cxIbm4fE1MHa+hJWD81iYWlcdD48tDiGZTLUizODmBnrFga7rdFPIFJLr9kpIgXLiyNY\nWhrG5GQXenpqUddYjKZmH7p6qtHZU4PG1lLUNhahq68Wg8MtaG+rRioZeo4Q6Mj750TDFnrORYKQ\n8eF29HLdg646jPY3o5vgoJwMf4rLjHD1AcQ7tGK6oKLQgxICI1+OG/lp0SQnKoo9aCNI6mz0obEq\nH5W+DAx1V+DuS3P43EdO0md6Dr8lMJAiBpL+WL3+t3avmwQFf2Kx98tesLfI+ZrruQMCV8uUwJ9L\n/xMgcA6CtJph7/r5d47hI88RFNRmitoAJq0CmrAQ6DUKRFiMCDfqoVKGCSjgaQOOECgUCiGlUomQ\nkCAEBhxACIGBRsGVD+XQKujxylDR4MhmUsJhVotCRLnpCWKJIa8wSI6PEBECj9uOLDKcnDzHUMD5\nBDPknS9wS+LeBtE+OC8zFtwxsLWBQ/p15Kk3Y3Gxgwx0D5aX+nFwdRgb63MEBrNYWZomo0vj8gLO\nnz2L++65F48/9hje+c6HcdNNN+DoscOi8dHyCgHB4riAgpXlCayTpke6sHVoBpeuP4bbbjyJ+ck+\nAQYtDaXo7arF8MB2gaOxsXZ0dlWhtqEI9U1etHVWoL2rEs1tfjS1laJ7oBa9/Q2or/OJBEOLWSmW\nIaYkRaKV/r5hgp7myzkTve3V9Do9ZNTrRbQgLy0GUQQRsRFq5KZEobIoFWV5ScjzOJGTEomiTBeq\nS9LEyoSqknSUFqSIssh15XkEF3W45fopfPz9x/GTb13AP718SrTF3u1zlyRpL3r97+teNwkK/kRi\nY/b6qABPDXB+wFsdBP477QDC66cYdqIHu11nSb/TT791lKBgEW31WWSkrdCpZMLb13BDI44U6FVQ\nECQEB+2HLDQISoUMyrBQyEODESYLQUjgAQQH7Ic8JBAGtRLhOg3BgAZWgxZ2kx5WvQzRNg08ZBxz\nUl3ISnHCHcNVDY1IibcSILiQnxknEui4M2Abeb8LZHgPH5rA4mwf2ptLUZgbj6K8BFSUZpBR9Yp8\ngpmpFgKAPqwfGsXmxiSObM5jY22GvPkJzE6NYGpyCIfXV3HzTdfjoQfvJSi4H7fcchEnTmxg9eAM\n5uZGMTM7iPmFEayuTODQ8jhG+luwtTaLe+68Ho89cgeOHZ4TnQ+rynJEcaH66kKCkkaMDDajp6sa\nDY1e1NUXobmlFG3t5WhtL0NLux/d/bXo7q0TSYaRDj3CTWGIijQgOzNB9EdgFed7RGGm2opCTI92\nkUFvQVdzBWr8OcggeOBkw+xkgoLiNNQRAGQnO5CRGIGCDBfKClPgy0+Gn8Yyup9zLnhVgt+bgT4C\nlLPHR/DeJzfwvS+fxyvfPI5///EpKWog6Q/Slb+prL1uEhT8kWLj9fqVA+wFc47AboZQ0u7iqRTO\nreDVFjvXkRMxOeoiTS3sLoaCj75vBa2NmXStbNCoFcL4h4YcgEIeRPv7EBT4dziw//8lAPi/UMje\nJhQW/A+QB/0DFEHXQU3n6gkczGoN7AYjokwWRIdHIMZsQ6xViZxEG3xZsShKj4bboUK0ORSJTi3y\nUiPhL0hECRn94pw4MnDJaG8sxsxEGxnpQSzO9aCvpwp+nwcF+QQOhW5UlmWgubYIfR1VZEzbsbY0\nQsZ7RmhtZRSzk11kuBvQRUZ6eLAR87O92CDAOHZkDutrBBoLA+Ttd2N6spPGLkxNdRIg9GF5eRRj\nYx0YJ80RjKwuj2B5th9jBABdzX5RPIhLDbfXeTHSU4+xPs4HKCOjnosGej+tdE5baxmaCGK6umsx\n0N+MpgY/zAQEKsUBRNr1yMtORm2VDxX+QuRkJCMpzgmP24Xaci9BQSdmJwYwOtCO+spiZHmikZEc\niZL8JLTUFaGIrk9KghXJCTbkZcULMay00+t2tpXTdclCeWk6KQ2NtTmYm6zHux5Yxlc+fQr/+qOL\n+K9fcq4Br06QmilJ2ruutEmsvW4SFPyBYhjghLmd68XGjI2aFBX448TRA55muXKpowQHu0tECl5Y\nJu81HTHRXKVQDZVSBrksQEgRdgBKof3QKA/AqA2GQRMELRk6lew6KIO3ixRpCCSMYQrYtDpEGc0E\nBHYCgCiUZiegnjz8Rn8mKgqSkJlgRnKMHpmJVnizY8nrTYI3Nw6FWTFkAMmTrsnDxHATVhf7sTTf\nh0Hyusv9qcjKiIInxYq0lAgylg7kZ5LHXOyh8wvR31mNsaFmMuBNIu+gpcGLSn69y2KDWVmRjerK\nXNRU56GutgCN5OE3NhSjibz9jo4KDNBj6+qLUUXn1JMR7uqoxFBvPQbJwPe2VaKjvgQN5bloqszH\nQHsVJggWhnrqBKBw2+PqKn7eQgEFff2NottiXa0XVrNCXLtwQxiSEiLhLcxCmS8PBTlpyEhJQKbH\njbpKH8YGurA6P0GQM4mZsV4CgwICAbeIoDTVFNDtXFSWZqLcR39TaRaKCRY4EXJkoEmAUEeLn/7W\ndBQXuOk3hR5Tn4u+zmJcPDOAD7+whR987Tx++b0z+A2vTtjleyBJ0m7a+f3c0V43CQp+T+0GA5xl\nfy2tHHiz6PVTCzFkkCQ4+J1+9u2j+PDzS6ipSEKM0wqLyQiTXkveLfc0CIZOI0e4UQmzUQWTTgYz\nGTeWSSuDThkEVcgBhAXthyLoALShMoSr1bAbTHCaI+COdKKyMI2gIAs1PP9NBi4nyYFsUhGHwcnz\nrihORUmeGzmpUeQdR8JH4NBKhlqsMhhuRk9nBUpLPPAkWRETpUFUhBKxEVokROqREmsR2fileSki\n7F7PlQTptUryk5Gb7kJmShTS6LXSEu1kgKOQmxlLxjhBdCTkboQVZGQb64rR31uHyalusZrAT8f8\nvgzUkJFvJRBob/Kjo7EULTXFqKXXqCvLRU9LBaZH2rEyN4hFLmg00oZegocW8toZCjq7atDTww2S\nShDl0EOtDIBGFYgIqxaeRG75TJCTlkiefwyS46NRSIBQV1FCcNOE+ckBbKxwMaN2tNSVoJIgoKE6\nHy1cn6G1HF0EJC2NPpTT+2xvLsP0BMHE0jD6CIYYCgrz4pGf7UJudjSd48FATymOb3bjnfcv4mPv\n38SPvnEe//JDLm8t1TSQ9L9r53dzR3vdJCjYo3glwZUwwJ4se7QSDPz5xcsbr6x/IEUOtsVQ8KHn\nF8ibTkBcjB3RDgecdjt5tlro1ArYLUbERkcgjuSw6hBh5sJGGlgJEowamShUxFAQFrgfquAQGBRK\nWHR6OEwWMt52FKbFoTgjjkYX8jzRyE2OIiCIFcvtKovTCQrSRFvg9CQ73DFGeBKsZLjjCVJy0Eye\nfAN59d7CJCS7LYiMUMBqCkGUMQzOcAVcFjUSyOimRJuRHk+G3+1AeoJd5C8kxZiREGUUckebkJoQ\nQZDAfRe4UBKXWo5BaWGqMLwj5NXPzvWL5YVlfoIKApVSb5roWFjN+QSkal8W/HQ+9yXo76jB0nQ/\nzh5fwc3XH8HJY0uYmepBa0sZqmsK0UBGu52MN08fuOMjYNTLBRgYCKqiI80EOC4kxkXRtaa/iRtF\nRVmRGBuJvMxkej9+rM6P4dDSGMaHWgWY8MqL1nqvWJHByY7d9NwMMz2d1ZerLnaLvg08fVBckIgC\nAgOOrPi8BD5laQQRBQQP9Tix1YXHH5rHFz95HL/43vX4j59exK9fOYPf/lyaUpC0u3Z+L3e0102C\ngv9F3HuASw7vXBcpMvDXE8PBlZEDXuHxVk5I5CWJH3nvPBpqUpBKxio1KQlpyUlwOR2wm8PJeEUj\nKz0JOenJcHMDoygzeesG2AgMTLowaOTBYgkid0hUBnO75TCY1AQNOiPsRhPiInSIj9Agwa5DcnQ4\nspOi4M12o5wMLENBWZFHQEGq24boCBUiLQrERGrofUQIOCgpSkZBbjxSkmyIcWoJUuRwGGRwmug8\nswoxFhUBgpKOyWHXy8TopOOxNi1BCb12pAHJLgvSEx3ITHYig14/jfbTaSzKSRLllNtbytHTW4+a\n2kL4SsiwFqagiN4T10hgcWGh4hw3CrMS0NHox/hACw4tjuKmC1u4987rce40/X+Pd6KqIhdFxR5U\nVOYSIJSjtbkCaQQfdhsv7ZQJOIiMMBJ8EWDZjAjXK2HQyKFXhUIlC4BJKxe1HPo7G3BwYUTUTujv\nrBFQwHUaejuqyfNvEFDQw/v0nvt76tDW4kdleTbKfGnw+1JfVWF+PP0tCSJiUFudLeBgZLCc4KAD\nTzw0i6999iT+6eWL+JcfnBarFDjnYLfviKS3rnZ+J3e0102Cgv9G7IXyErmd6yHBwJtHPK1wZc4B\nQxvD226f47Wsf375BD79wSVMjnhRUZJHRtpLHnQRGc8kxEVyj4JEMp7Z8OblIj3ZjeR4F3m4NpgN\nWjJoSqjDeLVCMMJCgkS5Y5VcDo1SCa2KiyCpYSNwiCBFmdSId5iQ6eZyvWRks5IJDlLg5bbIean0\nek647HrYwxWwmeT0GjqkkNefkxFLiiNIcCA+xgSnTY0oMqYx9HxxFjL6VgONesQQpETTsZhwLeLJ\n4CYRvCSSkpwWghEbkmO25YmzEyA4kZ0Si6xkF9LcUaJwUj5BQE5OAgryk8mQeggKkpHhiaHXjaK/\n24mctFjkZsSj2p+Ltno/BnsaMT89gIWZAXR31JARzkR2Zhy83lQ0cVEjLr5Ung+3m+CK4MQcroLN\nooWL3kscwZXNrIdBq4BRGybAQElQoAkLRJRNj/KSXIwNtmFmvJtepwGNNYViVUZHSxnamrc1MtiC\n4cFmtDSVEthuQ0xZaQYpHSXFdE1JleWZNNI1LkpEXW0uOtpK0dnuQ3trMQFFKc6fHsJT7zqIz3xk\nCz/+xin89mfnJTCQ9Brt/D7uaK+bBAW7iL3PK0sQSwmEb04xpF25WoF7SLyVphR+/cppfO0zazh3\nog297bVorqlFlc9PRjoZURYrXA4HkmJd8CTEIzbKTkbLDKtJT8ZMBZ0qTHRH3IYCEkGBQhYKJYGB\nUs73yWEIC4YxLAhmVQjsBiXi7CZhnFPjHMggQMjxxKGIACHNHYkYMp52sxIR4WGItmvhjrUgLZk8\ne1KCiyMUGthNYYgxkvE3aRBLAMBAkEAQ4LaHIzGSICDSQkDwO3nIAGckOJGZGCOUnUzGPTUe+QQm\nGYnRiI8Mp9fSIz6e4CHZgVwCA29RqihHnEYwkBhHMBEfQR78NhykJUYiNz1uu4tjSRZKClORn5so\nxDDh92ehoiIXxcVp9HxOWC0qGPQy6HUyWMLVAgp4OsYariMYUMCkU0KvZrA6gLDgfTBqQglSYtHX\nWSfKLk+OtKOhumB7lQPBQWOdF031JaK1M08lNNV7BRD4CEbK/Zn03pORk+VCYT4BTl68EK/aKPUR\n6BQkoK4ml0CiiMZsAoMyzE034ezJATz5zmV8/fPn8IOvncC///gs/lPKN5BE2vld3NFeNwkKrhAX\nHrpyqoBD1X/tBkSS/mcxrF1ZCImnFDj/Y7fP91oTzyd//8uH8dDdI5gYbEJjVSV57vlIjI5BuEYD\nI3n7Zp0eNqMRJq0GOqUCWpaKowTy7WZIBASy4CAxcv0C7ocQevmYiqsbBu2HmqQLDUS4Wo4IgwpR\nZh1iyZAnk9HOTHLBHW0VTZO2Gydx6WMy6AQK3E6ZjbPbZYGTQMHBUwNWA2LI03YSFLBiCAzi7WYk\nOm1IcTngiY0USo2PQhZBQGFmMkoLMlFWnCOiIZW+fDEWZnuQ6o5GrDMckQ4NQbwRaR4ncrMTyLAm\nIIVePzEuQjRvSk10wkNgEMsRiNgIpCY5kUz3u2NtSE+NIcObioqyHHgJBjIzY5GY6EB0dDjMBDlG\nQ5iAApNRiSgCFxe9T4uJczboOEnFSz8D9yH4wN8TXL0dzggjWhv8mJvsw/RYlwACLt5UVZ5DxrwI\n9bXk6fc1iuTGhrpilJaki6kLhoKCPDe9n0hkpvPfQX97gVuAQnFhIh2LQnlZOj0+n85Nh7+U3nNF\nFlqaizA1Xosbzo/gfc+s4XtfvYBffn870ilFDt7a2vlN3NFeNwkKLoub9XB2O//tO1MFuxkhSW9O\nMbxdOaXAhaSu9agBr1t/5RtH8L4nZzE1VIOy/CwyqLGwEwRoQkOhCAqGMjgUGrkCavL+w4JCyKuV\nQa1QQiGTI5RLHwcGISgwEEFc7pibI4VcVnAAwrgnwv59CN13HY3XQREYAI0sGEZVGKx6NSLNBrjI\noDsIEmxGFQGBEUmxDtFWOT8rCYU5KSjITqbbLqQkOAgOyHN3RSIhygZXRDiiLAY4yOt22kxIiLaT\nJx+LvMwUePPJayaVFuWgqqwYLQ1V6OtqwchgN0aHeshLbkdrUw2qK7zIo9eIdZkEFCQm2OBJcRIc\nxCCFQCA1OQYZqfHITEugfYIXem8pBBKpSTFIIGBwx9np8UlkZHPI4OYiK4v+7902JCQQTHCkITES\nLnrPNquOoEAFewS9zuVIgVYlhyqMoIqAKSTgOgTu+3sCg78jUAhFWUk2hvuaMTLQgsrSLPi9aQIK\naqsLhdpay9HU4CNIKERNNS+x9IpVE/m5bmRluJDqiURxUQpKfenw0WOLC5PpvgSUeD0CHvx0PI+L\nQhXRNSZgKCB4qKrKxthIOS5dHMQHn1slWDyO3/zsIv7jp2ckOHiLaue3cEd73d7yUPD66ABnuUtT\nBVenON+DK0jufJYcNbjWyyb/88vH8cWPH8T0sA/p7iiYNWrowsKgJihQh8hoXwmzVg+rwQSThoyZ\nUkXGTIEwgoNggoGAAwdwYP9+HDiwH4Fk9BkOgggIuHuihvMMgoMIBg4gLGA/lFwOmaBAr5DBoJST\neAyFSS1DhInLIduQk+4mY56F6rIC1FUWC1WXkXfvy4G/OAu+vEwUZ6chNy0JaW4XEmPsSHQ5kOVJ\nQEVJPnraGzE7MYSJ4V4M9rRtw8BAF9ZX53H9ueO49dIF3HjxNLYOr2Bhdow87iax6iA/LxHZWfHI\nyoynkaMFiSguIKNK78VbkIns9ESCARcyPPFCyYlRSE2JIe88hQwwvZ8c8sYzYwkOslFbU4yamhLU\n1ZfC788j0IhFpMOEqEgL3PFOOAgOtGqOtGz3i1ATHKjD6DqF7oM8+O0EHg6CgRw00vMwELQ1lQrD\nX12Vj+rKfAEC5f5sVBIo8PGmRh+8xalk/FNQVpopVFLsQWlJmsg14OmFgnw3AUy8AAKuz+ArofOL\nkul9xyI7Owa1tQUECEloqMvF7FQtbjjbiY+/uIIffPUIfvXjU7t+dyRd29r5HdzRXre3NBRwmHkn\nd4CjA7zEcDdjI+nq0uujBpxrsNvnfy2I8wpe+eYxXDjejJLcaDL8HBkIglpGRj1MhnCtFpFWK8kO\nnVIDpUxBUKCGWsGtlJUIDZUjOChENEvilsrBIUEICDqA/Qf2QRZIhi6IVyiEkIIRRrflBBIKnloI\nDSbwCIYyZLvVslmngM2ohssRjnTyyrmjIgNBR1MlBslwT410YW5yQJQwniKjP0Ref0d7AxngMjLE\nxfD58skIV2CGDP3d77gVt9x6EcdOHMby6hzWt1Zww6XzuOueW3HvA3fi/offgfsfeQduf8clnLtw\nDIcOTmCI5+gb/OR9e8nQ0ljrp7Ec7a316GxrJA/dj6pKH41lYr+yvIgMLBcuIgCoJuNNRpzzEXq6\najAy3I72jjoUFRNM5KQgNTUecXGRsFmNcNjNcEbaEGFlMFBAIQsSUQMtXQN1WACMWhnSPS6CkXSU\nlWTSmIqudroG/U3o661HMwFCeVkOSrj2Axn/Sp464KkLgodS3/Ztnsrwc4SBVEbwwJEMX0kGQUCq\nmOLgegw8egkc8vPikJnhFJGDgoJEOj8DTfUF6G4vwsZqMx5+xxg+9YFlvPKNo+K7ItU3eOto5/dv\nR3vd3pJQ8PqVBZw7IEUHri29PmrApaivxVbNnFfw7z8+g6ceGkNPSwairCoy0iHQq1hhMGrUMOv1\nCNcZoQxVkCfLHi5PH6ggJ0AICZYhKDAYgWTsGQwCgwKxP2Afrtv3dgTu24/gfQcgC+B6BiFCDAVh\nAgrIO5aFCCgwcgMmk5aggPMK9HDHRCA7NQHl3my0N1YIIDi8Oo1Txw7hyNF1nCWP/+SpLdHxcHRs\nAK0EB9W1ZWhpq8fKoQU88dSjeOfjD+LOe27DTbddxB0EA4+++2G8+9nH8OR7HsdTzz+BZ154Eo8/\n8y489Og9uPuuCzi6tYCJ8W4M9DUTILSREe7A5MQgVlfmsLG2gumpUbp/CKMj/ejv60BrSy3BAHvw\nZaRSgoR88sjT6XGNmJrqw+BwB9raa1FZ5SUw8CCWoMBi1r8KBXabWbSmlocEkOgacXVI2QE47SYU\n5aeizJeNUm8GgUGGSCqcm+nH5GQ3ujqr6XULyfjnEaQwlBRc3s8nb78Y9fUltF8gbleU5xEw5JKh\nZyjIRFEhRwxSCACSSUmXowexAgo4D0FMKRQmi8gCRxSaG4owP1WHS9cP4L3vXsQ/fmwNL39lE//8\n/RP47c/O7Pp9knTtaOe3b0d73d5yUMCG4cpeBVLuwLUt7kGxs0KBo0LXYhIizxl/4aMHcWKjAQVZ\nTlgMYQQBMpISJi23U1ZCJScQCAkj4yVHSBApUE4wEIrAgGAEHAjEgQMHEBAQgIDAAzgQuA8HCAwC\nCQgC3r4PQQwGBA6K4FACgyB6nmARhWDo0ISF0utp4IwwIToiHDEOE+KdFqTERyI/0426iiKMkZFm\nKDh7cgNnCAhuv/Nm0k04e/445hYm0NHVjBry6pvb6jC3NIV33HcH7n3wLtzzwJ2496G78PBjD+Dp\n59+NFz74PF766Pvw/o+8gOdeehZPExg889xjeM8zD+K2W09j7eAUJsd7MD7ag5npERw9cgi33nID\n7r3nTtx4w3mcOX0chzcOYnp6DJ0dTagmKKivZZWQd56HEvLE+7rrMDHRg6mZIaxvLGJsvB/+skLE\nxUchgv4+pzMCkQ4rLOEGaOjvlxEQBB54GwL2/T3BwT64nFZ4CzNQSc9XSQadEwvnCQgOroxjbrZf\nRAtaWsrQ3ORHU2MpGrjAEa9KoNutrRVCXGKZVVNdJJZG+kqyyNinIT8vBbk5ycjOSkRGejyyM2PF\naoVsVqYLWaTsrFjkZvPKhSSUFKejujwXvV1l2FjtwF23jOF9Ty3hy588jB997agofvWv5CDt1DmQ\nogjXlnZs3I72ur2loOD10wXSyoK3hjgKdGXRI66GuNv342oVJxz++BvH8czjcxjqL0RUpBIG/X5Y\nzUpEkufKc+AGrQ5qhQphoQqEBikQHCAnIAglMOBIAY1k7DlawDkFIeT9y2QhUMjDCB6CEUzQEBrE\nyxZlkNF5vIRRq+SSyVqYdGpYjRpEWQ2IjbQgIdoqoIDbLacmOFCS50FHYxmmRjqwcXAa5y+exO13\n3YSbb7seR06sY3i8Dw0t1Sir9qKi1oe2nibMLU9h/dhBHD93BGduOIkLl87irgdux5PPP46XPv4i\nPvjJl/DsS0/jyReewHvf/xQ+9uFn8fADt+DI4QUCgm7y9tsxOTWCs+dO4NF3PYz3v/9FPPPM07j/\n/vtw8eL1WD24hO6eNpSXEwyUF5GnXoiyy9MHXIp4fKwbi0uTuHjDKWxsrqCtvQEZmcmIjXPCFctw\nYN7uMyG6TvJ1omsjC6QxAOFGlUhyLCniML4fw4MtWFudwPqhKcwSFPT01KGzs5pUg7a2ShEZqCMo\naG4up9tVBAwVaGzwEzSUEzD46b0VwVvMORMMBdvKyU5BeloCMtLikJMZj/ycRORlEyikuuBJihLi\n/ZzMBDqehOyMBGQRRAwPNGB1oQM3nx/Cs++ax2c/dBDf+9JR/OK7J0V1xP/8+TZg8vdJar509Wvn\n925He93eMlDAqwt2/jZpuuCtqSunE66l1Qn8A/7L753Ai8/MYWm+CikpNlgtIWKdvcNmIJlg0hsJ\nDPQil0AWrPwdFATJCALkCA0NFdMHvAIhNDQIcnko5Dy1QEAQtD9AQIEiVE7HOKEuhKBAAYtRB7Ne\ng3CdCjaTBi6CgkRXhAADhoLkOBvyySBx0aB2MnR9nfUYHOnGxPSQgIH27iZU1Pjg9eejoCQbBd5s\neMsKUNNUgXaCg4k58vZPH8Yd99+Kx555J55+37vx7ucfwwOP3Yd7HrkbD737ATz5nnfi2acfwB23\nnsHq8gQGB9rIG28R0xJHj23g/gfuwQsvPI/3vvd5PP30k3jwoQdw/cXzmJmdQE0tl0bOJyDIfTWn\noLnBh6HBNszNj+HgoTkax9Hb147KKh+ystMEFISH66FS0rWQBSM0mEFAi9gYBzzJsaKCZLk/D10d\ndZie7MPK0ihWFkewtDiMiYkudHRUoaurBn19DQIOGAiqq4vQ2OgXqq/30VhGcFCJpsYKVFd54fVy\npCADJd4clPryxJiX60EugUAeAUFBbpIAg4w0F5ITHXDTdU+ItSLZ7UBaSjTBgRu+Yu4V4UMdvVZn\naylmJ5twdL0Ld9w0jkfvncGLTy3hCx89jK98ag0/+voR/PuPT0vNl65y7fzW7Wiv21sCCq7MH+BC\nRLsZDElvDXE1xJ3vwrWUZ/CrV07j859Yx4njDYhL0ECufBtUGjJYZgVsEbykjqBAzyFvHXn8aoQE\nhiHwQKhQcGAoGbcQhASxAkkBCCbtu24f9u/bL5YsygkaeBkj1zZQykJFpMCoVQqZ9QQfFh3inAwF\nZJAICBKiw5ESZ0VeeizKyNjWluWI7oFVlZzYV0LGuACFBRnIzExEVhYZtfw0+AkImpurMELe/vTs\nMA6tzeP8heN4kADgKYKCRx+/D7feeQOOEyicOncEN99+AXffcxPuuO0MTp9YxfzsEMZGusjT78P0\n9DjW1ldw06Ub8ehj78Izzz6Dlz7wEl586f147InHcOH6M+jt7SSj66P3kicMubeQ6wnkoquzDmME\nLX0D7WjvbEJLaz3qG6rgKy1CbFw0tFoVQrhFNSv4ACJs4WSQk+D3FYgkxo62WowMdWBuZhALc0ME\nBz2Ynuqlv6sdbe2V6O6pw9BQK/r66blbygUMtLVXo62tGk0ERM3NlbRfgxa6FjUETT5fLoFBDsrK\nilBZWQJOzCwqzEIhRw6yCQ6ykpGbmYQsXnqZFAN37HZJ6wT6LFKTopGdnoA8usaZqXHITItDSWE6\nmutK0NZUgqnRJhxa6iZA6KbfyW7cdL4b73pgDB9//xK+/Y+H8ZNvba9ekJY1Xn3a+Z3b0V63axoK\n2BO8Mn+ADcJuhkLSW0sFn/7ua/IMroUSyb/92Vl84x+3cOF8I6JigxEo+1sEyf4/hKn2Qa0Nhlqt\ngslkgjncCqPOArVCL6YRgg5wNCCE9kPI4LPRD4WM6xUEHiAwCIJKpYJer4deqxPTCduVD3kJngw6\nlUyU++VeCtF2IxK4HDF5qYkuhgMzQYFFdDvMz3ChMJtbLMcLA5VNxotrGWR4YsXtkiL2Yv0YHerE\nYQKBm288jQvnjuL0qQ2cO7uF22+7Hvfecwk333wGm5tLZPDJ2C6OY2NzEcePH8SxrQUcXB4TnvnU\nRD8Z4jHy8KfpnFkcP3kcd997D9799FP44Ec+jE9++tP40Ec+hIcfeQCzs1PkjVehsrwQFeXcvClV\n5BXU15Wiu7cVTc3VKCsvJlhhY+xDRUUp4hNcUCjlIudCJgsmyFIgId4Fb3Ee6mvJwNeTQW+pRndX\nAwb6WzA00IKBviYMD7dhYIAhoAydXbUYJChgdXXxdEItAUIz+vpa6HYD2tv5WAOBQR3q68sFDJT5\nCwmofKjmlRMVJSguzkVxQTZBQRpdTwKC1ES6lsmipXNSvBMxkRbE0+eRnrx9jdOSGRYiREGnDA99\nHnkppGTUVhaivbkCPR3ck6ECfd0+LMzW4MSRJly60ILnnxjHFz++ipe/chj/9P3jIkFRmlq4OrRj\n93a01+2ahYIrgYANACec7WYgJL01dWWewbWQgMie3Le+tImLF+oRkxAMhe7/EBT8La478Lf4u3/4\nPwgIDEBERATcCUlwx3sQZXdBrwm/PJUQKoBAr9GRkddCo+Rli3JERkYiLS0N6enpcEXHCCgIDebq\nh4EEBgQaihBYeMWBzQBXZDjcrgh4EhzwuO1IjrchyRWOhGgj4qN0iIvUIDZSJ/INEsmTzUh2oTgv\nFY01pRgjGNhkGLh4Eg/ffzueefJh3HbpHI4dWcHawRmsH5rD5uFFrK5MYZKMfj8Zz8HBdvK8u8RK\ngYXZAcySJz4x1oOpyQEsLkxgZnYSk1NjWD+8jtvvuhPPPPcevPD+9+OjH/846WN46uknsLa2is72\nRtRUeVFVUUhQ4CFDmUQGOBcNTVVobqlBUXEOssgbz8lNh6+0GG53LBQKGfZzMScCo+goO3zeQrQ2\n14nljxXkxfvJs2fIqKspQVNDKd1XLtoxc4SgoZGONZfRfr2IFPQRMPQTEIyMdmJ8vAejo93oH2in\nY23o6maIqEFNjV/AAC/f5P2Kcq+AAm9hDgqy05HlSRIwkJ2WLODAk+hCnJM+axcXkopHTkaiALCc\nDDeSEyLhijIJpXuiUZCThJJCLq6UK/Ip2lpL0dhQgIb6XIKbPPR3Z+Pm810EBzMCDn767WP4tx+d\nlODgKtCV9py11+2ahAL2/K5MKGTPcDfDIOmtLV62eGVL5qu94+KPvnWcvOomRLv3QaH/PwhR/i0C\nQv8W+4P+FkpVGFyxZATyC1FeWo3crEI4CQzUch1CDsigkilgN9vgjLCLDotWowG5ublklFrQ1NSE\nrKwsKBVKUdQolJfhhQZCKQ9EhNUgOi9G2w3kmVqQmmhHWpKDoMBCEKBBhCkYFt0BIadFjpzEGFTm\nZ6CbPODZQYKBxUmc31rFTac2ccPJwzi1sYRDs6OYHenGIgHA1soMTm+t4BhBw8rMMEb7WtHRWIHW\nOj86myrR31mP0cFWTI6RUSWDylAwPzeO6elJTE1PYPPIFu669z48/74X8eQzz+I9732B9t+Hxx5/\nFIc318kot6OhroygoAjF+ew9J6GoKB3+8iI0t9aKSAEDQXpGMo2ZSEiIhV6vQUhIEJRKOTwpiejq\naMXSwgxWl2cxPNiNHjLmPIXQ0lQhVjYIKOhtQHdfPeoJCqpqCmn0obWtEp3ddeglOBgmwJmYGhDT\nJhNTgxgd68PAYBfBQ6tIdGxtayBIqUdDQzWqqspQ6veirMQLX2EhCrOzkZOeSlCQisyUJIKyOAKC\nKNHS2eOOEWDA0YL0FBdBgUP0hEgkaGMoyM9OICjw0HciE9XlOWhvKUF3h5+AoIiuSToqyz1oqEnH\ncF8xTm024fH7R/H5D3PdgyP4zU+lZY1vZu38ru1or9s1BwVXAoGUUChpL+I8k53v/dUMBj/8xhZu\nu7UOMYn7oTb9/xCq+lsEyv4fMY1gMGkRTwbNX0o/+M1dKPNVIi7aTTCgxYG3BSIsSCYKHMU5o8nA\nR8AWbkKqxyOgoLOzkwxlEbRaLYGBnDzkUITJeT79OphNakTa9Ih2GEQfgqQ4K8lCz6NHpEUGM8GA\nncAgPkqNDLcNhSlxaCVDO9nTguWxfiyO9mKOjB+PKxMDWBrvx0RvK9bmRnH98XXccfEULp7cwBLd\nN9hej9aaUlSV5MCX50FZYQZqySNvJ6M7OtSKGTKqK0tT2Fhfwtr6QaytHcSZc2dx7wMP4pnnnsfT\n73kOzz7/Aul5PPbYozh58jh55wNobSFDS1BQmJskoICX/hUUZZHxLkVtXQWBgRd5eZlIIQCIJbCy\nWs1Qa5QCCjIyUtHV2YaV5XmcOLaBk8cP4yhBzAwZ9va2GlEdcWSoHVOcUzDWjtb2SlRWFwgwaGgq\nRUdX7TYUjHRiemYIi8sTWFiapP1hsRxyaLhHwEH/AMFGbwfaO5oJ0upQW1uJ2spKVPvLUO71ojg3\nBzkEBWlJ290w3S4n4qP587TRGEGfiYM+b6sAt/gYzjewwMMtqVM5WuCGr8iD0uJUAoMM1NdkE8xk\no7YqC61NhWhpLERzQx46WvIxPliKk4cb8a77hvE5goOff+co/uOnp3f9Pkr662rnN21He92uKSh4\nPRBIbY4l7VXXAhj85NvHcc9trUhNUcJg/HuoVH8Huez/Qib7O2G841wOlBTlo6OVDH1bK+JiXFDI\nwhASEAydSgujTk9evwPRkVGwmS2w2yJQXFiE6soqFObnI8JqhUnPdf8VUMqCERZ8AFaCjWh7OGId\n4YixmxATQYBg0yLKokKkKQxRZiWSosORS15pSU4iijMS0FpdjLGeRswOd2JyoA1DnQ2kRtrvwMGZ\nUZwgo377xdN44I6bcPfN57FBhr6vtQ6NlV7U+vNRXpyFouwk5KbFia6HxfkELw1+zE4P4dTJw7h0\n8wWcu/6cyCc4d/F63P3AA3j3s+/B0+8lIHjxRTz7wnvxxJOP4fzFc1hankZ/XysZQR/ycxIIDNyi\nQFB+QToKizIJCvyobyAwKCsiAEgmJSE5OR4Oh5mubyji46LEfT3dLZibHcWZ01u46cbTBCYL6Osl\nA97ox8w0T2kMY2K8A50dlairK0ZdbTEaG30EDpXo7W0QyyDn50ewujqNtUNzWFqawPT0sICWCdbk\nMIFDH53bgY4Ozj1opedqRmtzA+pqKuEvKURedjoyPDx9EEtgEAN3jAMuhwVOm5FEn61VDyeL9mPs\nBgIHK5K5HXVyNPIy3aJ7ZElRMvw+DyorMuh5c9HW6kNnexm9DtdzyCdoyEZTfTZmJypwy4VuvPjU\nFL75uUOv5hvs9r2U9NfRzu/Zjva6XTNQIAGBpD9WVzsY/PJ7p/H4PUPw5zhh04bAELYfWtnboQz+\nexjUAWQIdMhJjydPsART470CElTKUGjJ63U4HJDL5Qg3kRGJchEAOEQLZac9EukpHmSlpZGHGQOb\nyQRtmFyUOubeCHaTAbF2K+JIUeEGWHk1gkoGq5oea9QgKdKKHDJSJZkpKM3xkPGJQXlJKlrqi9Hf\nVYPJkTZMk0GcGOrALHnGxzaW8dA7bsPD99yO2288j62Di2hvIO/aRzDgzaExl8YsMmAeMmZRiHdy\n3oJFNF6aIuN5260X8eSTj+Lu++/F6Qvncer6C7jl3nvw+HPP4en3ExB84CU88+ILeOKZJ3DDLTfg\nMHn1k5N9aG2tRCFBQVEeGceiNBQVZSA11YXy8nzw8kBeEVBWloeaGi+qqoqQTVBis2lgsahF46Sc\nnGRUVBQIw3727BYOH17A0FA7OrmNMh1bnBvE+DDBWAsZ2MZStDVxxIZVhv6eesxM9mJ5YRSHViZx\neH1e5FIszo9jZopXLwwScIyJCo3D3BBqoIveMwHD5AD6CaxaO+pRVeNDSWkeigoyxIqEzDQ3UuKc\niKfrH2XWw6ajz5g+jwgad/ZdAubMSIiyIjUhGkU5aSgsSIbX66G/NZP+zlzU1hbS316KjvYKUiUa\nuHmTaDGdhd7uUpw+1o2nH53Clz95CD//7jERNZByDd4c2vkt29Fet2sCCiQgkPSn0tUMBr/4zjG8\n+PgkOmrSYNeFQB38D1CHsN6GkP3/DxzktaenRKPMl4PergakpbphDtdBr1MJKLDZbIiKjEa0MxYR\nNge4WJE1nEPN5HkmJBAg2GFQqSDjxknXvR2yA/uglYciwqCF02yEXa8hIJDDGBYCozwYFgKOKIMa\nbjI+6a5IpMU6EG1XkodqQHaakwx8Jvo6qgkGejA9ymDQianhXqwtTmOUSxHXVaDKV4CCLPLcM5OR\nl+5GticWqe5IpMRHEBCYyBM2ID7ajKzUOIwMdeH2227Eiy8+R0b/STL6N+PMDRdx67334pn3vx/v\n+eAHBBg88fyzePTdj74KBVMEBe1t1Sj1poo2x1zuOC/PIzollpRki+WB/f2taG+vRV9fM8YIYgYH\n21BZWYiEBDuSkpzweGKQleUmuKjC1FQ/hrlMMj2uu7tBeP9LC8MYG2pGT0cl2hkGmkrF2NlWicHe\nRkzSc85ND2BhdojOHSMomMXBlW0wmJoYwMz0MGZnRkljBAjjWFmZwxLdPzk7jN5BulbtdWhp5WWM\n1Wio8cNXlI00dwyirUZYCQLM3PZar4JVEwYL7Vu0YYgM14o22E6rAXEEBulJru1qiAWJoq8Cd2lk\nOKiuzkdjYwn9bWVoovfNZZq3Cy75UV9bgNGhctxx8xA+8f4V/PTbR/EbKWLwptDO79iO9rpd9VAg\nAYGkP7WuVjD49x+dwuc/vIrpgQK4o4wwqYNg1ctEzYCEGDN56RweT0Fxfhqa6stQXJiFGKcNBvLu\nLWYTYmMYCJyIsEYg3GiCRqmE1cSZ6k64Y2MRTeDAJZMZCoL3XQc5d04MCRQdE80aJcLVYTAqQqDj\nJkEhAdCFHoBJEUyAooTLokeCg14jSocYO69E0MNDBtVXkIrGah/qK70o9+aiODcDpQXZKMnPRGF2\nKgoyPfAXZYn7CskbT3U76Dl4tYOOgEBLo55umwQYNNT6ceL4uogUPPbk4zh3wwUcOX0SF2+7FU+/\n7wW89ImP4bkPvh/veubdeOCd9+P6my/g4No8ed/taGwoRWlRCnyFJIKCYm6GlJ2I0tJcYdgnJ9nQ\ndwrvf25uWKijo5aAIEp0UuSIQE9PIxnKCgELpaU5otPi2FgPjh5dxZHDc1hZGMTUWDu6O6rQWFeM\n+hqeq/cRoNVijCCCoWCZgGBpYVysvDh+bA0b64sEAiOYnhoWCZTLSzOin8Pq6jwWGQrmRjAwwvkG\nrejpa0V3V7NoNe0ryoEn3gmnxUCfTRh9DqGw0efMUQKO5vAYaeapHqNofx1P34MUOj8xIYIAJxI5\n2XEoLvKgzE9QUJUvSjE3crtnet/cl4F7MlRU5IljjQ3FGB6oxJH1Fjx45wA+9+El/OSbR0T55N2+\np5L+Mtr5DdvRXrerGgq48IwEBJL+HLoawYA9tB9+9SgevqMfs8Ne9LZmYrCzAIvTbZid6EVrY5ko\nXJOfnYwKfz5KinMQ73JAR0ZDp1ERFDgRRYbfbAoXdQn0Gi3MBl5dEIE4goUdKAgLDiQwOABVSBAU\nwQE0cpvlIOjkITDIg1+FAk3wfgEGZlUoIg0qRFu0cEaoEWGSw2qUI9KqQVLcdvOkzJQ4ggQnklyR\nZPhjkE8wUJSTLuCgpa5MyE+GOp2898RYCz3OLMT7PDceZdOSl5uCsZFeXLp0AXfdezeOnjqGQ0cO\n4/QNF/H4e57Fhz79CbznAy/igXc9jNvuvhWnzp/APBng7q56VJMh9xEUeAuSRGVDhgKOFvA0Ak8f\nDA11kNHnJYJV6O9vERGDsrJ8OJ0mEU3ooudgKOAphpwceg5vFkFDHXn0kzh8eBFHNuextT6FQ8uj\nGBlsJhgoQQ0Z1/qaIrS3VGCwvxmzBAUH6fyDK9M4dXId584cITBYx8ryNAHBhACCgwcXcOjgIpaX\nZ7FAx6fp/Y/PDGNktBe9/e30/mrosy1CdnoSwaBdTB1YtQqYlDIRKbAbNCS1GKMIGGJsBH0EBVyi\nmqMF0VF6xMeFI9UTBW5HXeJNIzDIBndv5MZNFeXcoCmbwIlbOmcQMBAAlXBHx0zU1+ZipN+Hm851\n4fnHp/GPH1vBD7+2KZaHS8WP/vLa+f3a0V63qxYKrqxDIAGBpD+HrgQDjkjt9j18M4kb2vzbD0/h\nG59ZwwefncOHn1vCh55bx/ufPYvHHrqEscE2MnrbUOArIk88Lx2x0RHQqmRQhYXCYTOTLDBz9UOt\nhqCApFYTGOjJgFvgsFigUcghDwoU0shDBRTIA/chLHA/1KGB0BMUsLS0z1CgFdGCEEToFLAbuUFT\nEAzqQBrpWLiKPH0jealWYZRiI61IJCjI8iSIiIGvIBsV3nx0t9aivbES5WR8czPikJ8VL+b/c9Jj\nRPZ8licW0XY9EuIc5MV6sbQ0jTPXn8HGkQ0c3NzAyQvn8ci7n8AHP/kxPPXCc7j93rvo/lN0/yGM\nT/ShlYx+JXck9GXA700VUFBYmEZKFwae8wo4p6C+3i+iArW1JXSsQEwbhIcrRbSAlzEyHGRmupGb\nmyJKFXORpY2NeczODmN5cQSba1MEBtOY5W6JbZVo4K6INcUECKXoIaiYovdyaHUaG2vzOHl8DWdP\nb+HUicPY3FjG2qFFrK8tYX19GYdoXFqaxeLKLJY4KfHgHGbnxtDV3UwefBEy0xIRF2OHkwy+I1wH\nG8GARUPXn2Ag0qQVchhJdB+DActh0cPO0wl2HWJdJiQn2pGZ7kIuXWeGg4L8ZBQWeOjapAkYKCnO\nQDFdo6KCVORku5Gfmyy6OBaTeMXC2lIj7rx5AO99Ygpf+OgK/ulljmSdEdEDqfHSX0Y7v1072ut2\nVULB6wsTSUAg6c+lHTDgiNTVAAY74mQvrl3/25/fiFe+dSve+/RNGOpvREGuR0wflBRmIoO8c2eE\nkbz/UKhk3AI5jAwDLyU0wkqepJKMfmhQAMJCtxsg6dVKyIIOIHDf2xF8YB+UodxS+cA2FAQRFMiC\noAsLEdLSvjqEowkHoJMHIZzAw0SvExrw9/S4fTATJMTYw5EUGwV3TCR5qXYao5CR7IY3Lwu56clk\n7N0oyE5FdVkBAUEOisjw8OqAGvJaG2oK6G9IovvjUUZePecZxMVYkZOVLELom0fXcewEedqnT+D8\nTTfgwUcfwYsffgnveupxXLx0PdYPr2B+cUoUQWolT72WPPbm+mI00vNWkCdcTEbP58sReQIFZPg4\nKlBRwdMCuSLZkKcH4uPtiIjQwmRSCDiIijLB43GhqqoYIyNdWF2dwuLimKhUyFUNpyfo2NKI6JrI\n7ZS5WFAL9zyoK0F7axVGhzuxsjQpVi4c3ljE1uaqiBScJDA4TuJeDptbh0T55uWVeRyiv2Hz+Dq2\njm9gZXUOrW31ZMTT4HJGIIIMPbeztuhUMIvpAjUi9CSOFBAQsKx0m+8Pp/sNajm09Lm5os1ITLC/\nKnd8hOilwPueZCe434KXAIijAwwEaZ4YpNPfzIBQSfDk89JnkRKN7Mw41FXnYHqsCkcOVuPhu/rx\n6Q8s4hffPUHfy/NSMuJfQFfac9Zet6sSCnZ6GUiFiST9ucXAyZEo/r55i5wCSHf7Tr5Z9ZufnsW/\n/ugGvPuhBUwM16Kmsgi13H+goliUwI0iKDBpw8ggBJOxDhBgwEBgIs9SHhyIIDL+wQH7CQYCoSA4\nYBhgKAihUSUjWAgLhVYRCp1CBoNKLsRQoKbnCgu8DvIDb4OCRnUwRxIOQBF8Hb3OfhjVMjjMnBdg\nRpSVPFqzgTzbcMQ7HfAkuAQoeBJikJtBHiiDTB558Pke4c23NfnQ2eonuHEjOy0aFQQMeRluJMUT\nVKS50dxUhc0j67j+hnO44dKNuPn2W3HfIw/hpY9+EE8+9zRuvPVGLJMRHZ8cQi8Z7LbWSlF5sKut\nHB3NpWSkuUlRMWprfSJikJ9Pr+3NEmBQXe0VyYSNjeUikpCSEgM3AQknGnJUgY9xLgFPJXBCIucg\ncO5BG4EH5xLw1MHYcCsGextEkmFT/XaToo62akyO92JjbQ7Hjh6kcQEbG0s4dmwN584dx5mzx3Hs\n+GFsHF7FwUOLBAVzWOV6DFurAg5mZsdQV1+BjPQkOB0WWOnaWg1qGDnxUymDRaOEkT4js5ojBlo4\nLSZEEfxF0nV3mPWI4IgCN3YiKIiPtSLOZUFsjJlAy0zHwsU+H2cwyM5MEMpIi0VWRjxysxJRwGWT\n6fNhaGBQSE1x0uik+2NQUZqK1vp0LEyW4B239OAfP7qGH35tC//+41O7fmcl/Wl0pT1n7XW76qCA\n297uvEep9bGkv4SuBAOOUO32vXyziudy//WHp/GZDx7C0bU2tDX6UF/tIzAoEdnmvHbdTFBgJC+e\njbYuLIiMSAj0imCEcQvlYO6QeEBEDF7dD9yPMNrXkrGxmnRkUPSw0WjhVsrkdeoIEhgwZAHXIWT/\n2xBKYCALeDvkDAmBBBn7/wEyGtXyYIIIAhIyVjqFnDxWNRkoI6JsFkRHmAUcFOakIy8zUUx31FTk\no5Xef09nNQb7alFW4kF2egxKizIIGjxIT4lFTmYSmhsrybPexO133Iy777kT77jvHXjn44/iI5/4\nMJ5/8TncdufNmF+cRP9gh0gQbGspR0uTHz3tlehqLRP7PFVQX18qYIBzC/LI6HF+AUcKePqA7+fI\nAR/n5Yj5ZBAZIHJzk0VeAa9U4CgE9zJoaiqn97S9/LCjtRzdnTX0N9TSfiUa6uizICjgvIa52WEc\n2VrGyRMbOExAcJiM/YmTh3Hh+pM4feYYjhxdx/rGCg6tbU8hrG2uEhQcxArBwdTMKBqaapCdlQpn\npBVGvUpcW04CNakUBAVqaAnqjHSd7UY94hwRiIuMICizwRVpQ2yUHbFOOwEFwYLdIBQdZRLRl3iX\nTYyx3Ogq1oZkd5RoD53Mq0BoTCMwykjlDpHxQnyb7+NzGSrcsUZkpdlRUhiL1oZUHF6pxKP3DOIz\nH1jAK9/YEpURpcjBn147dnJHe92uKijghK+d9yc1N5L0l9SVTZQ4UrXb9/PNKp7H/fHXj+GeWwYx\n2OMnbzsPpcW5SCHP2m5Sw6QOhUVLRlkdAoOC8wIOQB8WACUZbaWcGyAFvwoEYaGBQly8SK9RIJoN\nChmTGBod5PGbDRroyDtV0jnyoP0IZTAgIAgVuo4AYR/2/8P/xYG3/R3BAUNCAIHDPsgCAqAKDYVB\nzaFsJcw6tSjVW0BQwA18yn05onLhQE8dAUEDpsbb0NxQiOL8RHjJk2cwyMtKptvp5IHX4ey5E7j/\ngbvwzkcfwLsefwTPvfAsPvbJD+OFl57D7XfdTEZ0CO0d9WLqoJWMdWuzH73kyXfzevzW7U6FDQ10\nrbhRkjdTTCFwxIAjATtTCJw3wABQUpIlphsYCjLJg+ZpB05I7O1tFiOvSOBoBENBQ12xgJCerjqC\ngzoCEG6iVIr+vmYszI9ia3M7OsBRgs2tVZw8tYXzF07ixIktur2Gw5uHCA42cPTYYZwgUDh+9hgO\nH9vA0so8uvs66X3kkzGPgII+O4VYGRIGm0EHu0EPDUGBPkwGh8kAtzMKCdFRBAUMBgQI0WTEXU76\nDA0EemrR5Mph08Pl5CqIEUKx0VZRFTEh1i5AweXkSIIV7rgI0VPBk+QUUwmslMQoJMbbRQvnaIcS\niXEGOiccnkQzwVwCRvvyccOpZrzv3ZP49hc28LNvH5VWK/yJtWMrd7TX7aqBgiuXHnJf/N1+uCVJ\n+nOKI1M7/x9PP9K/6/f0zSj2wn79kzN48alZLExWoiCLG+jEI4F+8G0GBYyqYEQYlIgyawkOZDAp\ngwQgqDhhkLxNDXmbCm4THLifjoVArQgVYihwkQFyx/KSRScZDAciI8Jh1pNXqgylxxBABB+APJin\nH0iB+xBy4DoEvO3vEXjd2wgS9iMsKBDB+/YJMRhwUSQGBTkBiM2kR2piLD2vhSAmC11t1RgdahEh\n+NWlIRobUFeVL6Cg3JuNkoIMVJTmEzS04cYbz+HRdz2AZ9/zBF548T345Kc+io987AN45rl346ZL\n5zE03Im6ejLSZJAZCtrJg+/vqkZvZxUZ7FoRQeBVBzxNUFdXKgoW8fQBJxOy0a8jD5+XKvL9DAYc\nRSgo4EhBijiPjzMQ8HkcLeilc9sJBmqrCgQUDA+2YmS4XRznqYPhwXbMzgxvVzRcX8TaoXlsbq7i\nxMlNESU4SiBw5Mg63T5CkHAGFy+ew613XsJt77gVN9x6EafPnsDM/CQqq/wCCgL2v42u6dvps1XA\naTUj2mohIJAT9IXBbjQgPtKBGLsNEQQIVqMedrMJTrsV9stQYKbvg9moIkjQw8nVKqPMBAHbnReT\nEqIEINitWjoeToaf8w64A6OdjL5TRA04WsBgkJxgFzAQ61QLJcWbkJ1GwODSoyQ/GjOjxbj7pi58\n8sV5/OSbx/DrV05LKxX+RNr5rdrRXrerAgquTCzkBja7/WBLkvSXUPJ9T7/6P3K1JB5ytvd//uI8\nPveRw9hcbYSv0IO0pGhwR8MU+iFPpB94p0VDhoOz0hWw6WSw6kIRFnIAFpMWUQ4LGQAjwUEoLOE6\nMhJWccygU4owtd3G2epxKPHmw19ahIy0JDgizFArZQglKAgKuA6BB95OIxl+Tlwkw68IDaHnDyYw\nCCBQCCBgIBgICiYgCELQvgOiFoImLBRGjRImfRhyM5NFJUYOu48OtWHr8DSW5vvR1V6JUl5mmelG\nUZ5HnDM93ofrzx/H4++6Hx/58Av4xy98El/+ymfxYdq/777bsbY2RyBQgarKAvLcvSKk39tVIyIF\nnFfQ1VFNUMDNh8pE/gDnBwwMtAoI4KmApqYKAQ18jCMKvDqBlzDyCgSeTuCowk4OAk8x8FRCd1cd\nmpv8YjkfN0gaob+BoYCnDXroeaemBrCwMI7FxUmsHpzH0WNrOHE5ufDw5kEBAwIEbrsZd9x1G+68\n+3bcff/duP+dD+Khdz2MO+6+A3OLc/CVehFhs4jGVQq6vnqlEjaCgCiLmT5THcwaDYEfJyDqYFAp\noZaF0nUmENRxt0urAAWnzSymhMJ1KhjVCjElZDXyclJeAhpJ35040WiJoweuKAtiIsnoEzTE0/co\n8XJ75qR4O1LckUhNjiJZ4EkyExyYCB65R4YGMQ4lna9DZooNVb54zI4U4v5bOd9gFf/ysrSE8U+h\nnd+pHe11uyqgYH3JK96TtNJA0ptBEXPr4vt4dSUensdPvnUW7333HC6ebMfpI+009uPSuTFcf2IE\nB2eb0FCRiXiHDuGqQPImwyAL3geDVoEYJ/3Iu12IspuRQgahpDgPfl8h3PHRsFmMwjPNzUlHW2sD\n+ns70dJUh1JfEdJSk2CzmqAIC4EslIyUnIw+AYGKDJFKLiMw4NUIgQIKQgO2oUAWGIzg/RwpYKPG\n8EDnywOQ7HbCT156a1MZGdRWHD+6gM2NKRE5qKDjBVmJojBTbWURRgY7RFOi++65Be974Sl89jMf\nwRe/+Ck89dQjZFhPYmZ6SMzlV1bko6mhBL2dNRgeaMJQLxnojspXoYA9/fb2GlGTgCsUctIg1yPg\nSoVcg4DrFvBYSa/J0wc8vZBF74PFEQOeauDIAkNER0eNSDasryvBQH8zZqb6RL+DLi56RFDAyxcX\nFwkKliZwcG0Bx09s4NTpIyJKwFMht99xCQ8+dB8eJQB45NGH8NAjD+CdT7wTTz73FJ5+/hk8+MiD\nWFpdQonPKwpRBXEUhq41Q4HVoIfDxMsTw2Gn0aYng09woA0Lg5LgjD8PrVIBo1ZDMGAkGS7nhxAU\naLahgHNGGAoSYhxk3AkoE10EBtFk5LcbLcU6LSQzQUI44mhkMEhPiUFORjwBgQXxLh1iolRiKsEV\npaZztCQdEl0GZCTZUVGciJHuIpzdbMTz75rA97+0Xd9g9++ypL3oSnvO2uv2pocCDtPuvCdppYGk\nN4MYTOX5PvGdZGDd7Xv7ZtSvf3Ie//T98/jh187g5a+ex/e/cj2++6WL+ObnrsfnP3IWd988g67G\nAgIDvaiGqAwLgFYdCpfThqyMZLiiI5CaEo/62goM9HWiurIUOdlpyM/LRB0dGx8fwtzsJKanxjA6\nOkiGtVW0GzaR1ykjIJDJ2MgHQ02eqTpMDqVMJiIEwQcIDAgOGAhkBAYMCLJAuk1gEBrIiY1vJ2/U\ngrzsZNRUFWGgt4mM/gJpHhOjHeBeCBwpKMhJRqU/jwx7HRbnRnD+zBbuv/cWPP3kw3juPY/h9lvP\nE0gsiK6FddXFqOLERfLehzhHgZ6HyxD3dRIQtG9DAUcDWJwbMDLSiYmJXhEdYM9/Gxi2pxm4giED\nAEcJuCcCQwHXK8jISBDi6YbaGi8a6ksEFAwOtNA12oaC7q4G0ThpZmYICwIKprDB0wanNgUM3HDj\nOdx196148qnH8b4Xnxd6+tkn8dgTj+JdTz4mVlM8RVDwwCMPYnFlEd6SYphMRhzYd50ALq1CAbNW\nB6tOj0izBU6LlcAgXECBRh4GtVxO0LX9WTCkGdS8RFFzWWqYdRqCCk4mNSDKyk2vyPhH2ZAUF4W0\nJG7FHI1EAoOEGM4tsSDGYYQr0kT328Glpwtzk5GeGoX4WCOckWo4HSok0H5iXDjcLiM9zghPQgRB\nXQL8BSloqkrHwqgXzzw8jm999pCYTtjtuyzpf9eO3dzRXrc3NRRweDYmRi/eD4dtd/uBliTpryEG\n1J3/laspv4Al1omT/vPn5/Gbn50XsPBvP7qAr33mAm6/YQZVJWkwqgJE2F5HUBATZUFOVgr9qJsR\nHWVFZbmXjNoIGckhdHe3kmFswdBwH5aW57C8PI/Vg0vYOHwIa6TO7g7Eu+MgU4Rif8B1ZIBCRY4C\n1z1gMOApBAaCbTEMbEcLQgkWQgICCBj2I2j/2xBhNiA1OQ4+bzZ53NVYWRoX1f8GyYvnlQfZaXGi\n018ZAUJLvR8D5MXPTQ1gc20OZ04cwrnTGzi8NiMaD/V21qKuqkDM73e2lmNssBlzk92YHGkVOQXt\nrezZMww00d/XKCoYcrniOQINLnXc1lYtViZwAiEvN+TpA54y2F6l4BFLE9Po/SQkOOB0hiM5OVqs\nTigpyYS3OB2NDX4CgSYBGNvA0UXPPSqqK3Lb5CNcm+DUloCCS7fcgEfe+QA++OGX8MlPfxwf/ugH\n8QyBwCPvehjveOBevOPB+3Hfww/i0h23YWJmGvmFBTAYDNi3bx9dtwCoZHLolWoYSHajGVFmziMw\nw6jWEhQooAlT0uegEH0ugukz4GN8ronuN+t0sBmMdL4J9vAdcf0DPVwOK5LjnWT8WVGkSDLyXPnS\nLJQcbxefCU/p5OUm0vVwIjHRBnc8PS7RjhRSUoKN4MCK1EQHcnlpI3e9THOhND8Bi2M+vPexCfzo\nq1tSAuIfqJ3fpx3tdXtTQ4GURyDpzayd/AIG16upsNGV4iRE1m9+eho/+eZZPPXIKoa7/CjMToQj\nwgiNKgR2m4G8vQTExkTATscKCzJFt76F+SkymJ1CY2ODmKPbs7OT5PHO4vDWOk6fO4V1AoPquio4\nnHYE8xSCLFhUT+TKiAwF7J3KghgAAl+NGDAQhAbyyOJVD/thIyhIJCOUm8UlmgvQS8a6r6cR9eSB\ns/FJTYxCpidW1DSoLM0T0wjcTrmHjPYQgcMQG/ahdoKIpu2lgDVFQlxZcHyoBfNT21DQ3ba9PLG1\ntVoYbAYDnjrg8P7yMkHIYLtYlcB1DHaggHMHtmEgWSxJ5CgBVzvkYkYmbh9NY3paLLLJG3aTV5zq\niYGvJAvNTeWisNHERB9mZocxOTWIyelhbB45hM2tg2IJ4tlzJ3HvfXfhhRefF2Dwnuefwb0EAzfd\nchM2TxzD2tEtHD5xFKvrh9DW1YH0zAwBBQEEVEH7D4gpGVWoHBpZmDD0Fp0BZq1eGH4NwcAOFCgJ\nHmRBIdASFBhVGoRrdLDo9bAZt6EggkZexWDWEjBoOE9Bi+iIcMRwl0X6XqQkOJGeFLOdq+LmKIIT\nWamxyM9KRFGRB8XFqSgqTCFAcCMzw0XfJ16p4EQGK8UpwCA9MRJpBFLJsRbkeexYmfDhPY+M4Udf\n25JyDP4AXWnPWXvd3rRQsFOPQMojkPRmFgMrf0+vtvoFrxf/6P7qlXP4/EeP48zRPjTXeumHOxY2\nCxmScA1iyQtMdDsRE21DTrYHba31ZCjH0NrWgMamGrR1NGNgqBfjU6OYmB7H7MIMDq6TYTtxBENj\nw8jOz4FWrxGJhywZj0EBCAk8QB4qGbAD2womccSAwYCnEuTBpJAgUWo5OjKCvEsXsjNSUObLFyrM\nSyVjRN5qLDf0sSMzhfsmuFFI3rq/KB11FQVoayxFZwvXIKhEB9ck4CY+1YX0NxaJ2gQMBbMTnTQ2\nizoFTXQ/5wFw/gBDARchWlgYFX0MOHLAyYO8VJEjBpxvwBUMGQrS0+NFESMGgoQEO1wuK6Kjw+l4\nHJ2fR/CQiyQyfNuVD2NEVcRW7sA40Ibh0W6MjNH1mxjA0vIs5hcIsOYnsby6gJOnj+Pue+/CfQ/e\nh1vvuBUn6PYqXdvx2SkMToxhYHwUHb3d8PpLEe92CygIoeu2A1iKEBl0ZPy1JB51YSqxr5aHISwk\nlK5xCF3jUAKDMIICJfQKLnqkhVmAgQE2PQMB5yIYCCrouFZDt7Wi6BEXneIWzMlxXJ46nq59oqgr\nkZuRgNz0BBG9ySZYystPQyF9Hqy8/FSCgxTk0vEczsFgqEtmOIih53AR3EWjNC8FtaXJWJn048kH\nRvCdL6xLOQa/p66056y9bm9KKGCva+d9ZD33qV1/jCVJejOo+Es/fbV+AYPsbt/nq0X/9Yvz+PE3\nz+PR++Yw0lcNb2E64ggGHBEGRDst5OHGwsVL0sgjrKjwYnZuAqNjA+joakFzawO6etoxNjWG6fkp\nLCzPY31rAzfeehOOnT5BRqsLCckJ0KhkCJMFIoS8/yBenrjv7aT9QoHk2TIYbEPBdn6BjIwbS6vi\nJXJ6REZw0loUAQt5nGmJSEt2IZGMr2ihzKF6TnDj9fLJUchOc6E4Nwllxemo9GWhpjwXtRV5BAp5\nqK/MQ0tdMfo6qsT0wfRYO0YHGgUUcNlhXkrIRp9XHoyP92B+fkSIIwjc/4CjA7zPkMDLFXl6gKGA\n+yAkkuHntsupqWTgMhMEQPDKhc7OWnEew4Lb7SDj6EFtHQFLVwMBVScmpgbpmo5japrAanKYIGEQ\no+PDmF+cxbGTR3Hq7ElsHdvE/NI8xibH0DcyhI7+XjS2t6K0sgKejHQ4oiKh1WoRykmcYgqGEza5\n2qQGajL6ymAZlHRbRft8PORAoIgohNC5HC1QhYRBE6qAVqaCgeBATCNo9LDqjIggMOCIgZ3kCN+u\nhhhh0iHSohddFrkYFkNBYXYyCrKTxNLXfF7+mkmiMTvHg4LCDPhK8+Dz5aKI9nPoXF7CKOobJEcL\nMOCpBC8BQ2FmHBrL07A2U4XH7x3GVz6+jH/+/vFdv7uS3qgdG7qjvW5vSijYmTbgLO/dfoglSXoz\nicF15/+GO3fu9p2+WvQvPziHT7x/A4dX2+D3ZSKNQCDJ7YQnhZvjpAgocEZZkJubJqCAS+/OkVfb\n09cpiudMzE6QF7siOhRevPkGPPL4o7jv4Qdw+NgR1DXVIT42EjYyIholGaRAhoG3iaS4gOv20f4+\nAQZiGoGgYFvbhk0ewvUR5DDpNbDbwhEX40Biwnb2e3SEDnazCk4aE6K5EqKd4MAmlOq2k7FyIC3R\ngcKseJTkMySkoqYsG20NJRjoqiEoaBJRgoGeWnS2+EXnQjb0vPyQjfnoaBempwdEoiFPGTAQsHjJ\nIkcUuE4B5xRwnwTOH2BxgiEXM/L7c8VqBX4sq6GhVEwvMDDkkjdcVe1Fe2cdhkd6sCCWI85hbHwQ\n4xNDGBrpR99AD/oHezE5MyGiL1OzkxgaHULvQC+6BvrQ3N2B8roaZOXnIjouFsbwcCgUSgSLSMFr\noUAZIoecrikrLChEQEPAdfux/210/em6y4JDIQ8IRVgAgUOQHGoCBL1cBZOK61foYdObxCqGSHO4\nqH3gtJpExMBmUCPKaqBrz2AQg+zU+FejBNtQkAxPmhtpBAz5BAKVVSV0fUvgK8kVUMDfsSw6P5Pg\nIJPgIJcrI6ZEIy8tDt7sRNSWpmJhzI9H7x7A/5+9/45uLLvOvOHvr3dG6grMIAlGMGcwZ4IASRAk\nQGQCYARzzrlyzjl3dXXOQa1Wqx2UZVm2bEsztt9xkseeGXskWbblIHvscX6f79kHhVK1puxV1ri7\nq2Rirb3uBXCR7r24z2/vs8/ev/X1g/jr71584Lm7be+38DUpbA97e+SgYHvYYNseRwsPI6wvtj7w\nvH5c7O//5Cq+89sX8eaLq3B2Naga911WE3oCDgT8dnrBpSgoyFDRgrn5CTx15wauXr9I73UPFujZ\nblK4Lly9iBdefQnv/OSn8cWv/gw+86XP46U3XsOx0ycQHPCh02JERVkh0lO10MRKxECAYBcid0nk\nQO7LUEI0ASFkaljhLhikqohBBooL8ggGJaigh5qfmYjsdA2KCAZV+iw0VBWgrjwXVSWZqChKR2l+\nMj3bBDRW5aKtSQ9raxX8TiPGg04sTvdiZW4ACwIEvB/sJRB4Q5EAKWUsQwiSECi5BDJUIAWNpJqh\n19uhIgDhGgWhwkUUv8aye30QZNaB9EEQsJC8gc2tOczODanhB4EIK1/XS7CYmRtR+QSHDm8pKFhc\nnsXqxhIWVxYIWhMIjgxieHwYY1NjykbGRzA8NozBsRF0D/TD4nCgprERuUWFSE5LQ1ycBpHcZ1G7\nIxGzW8pNx6kIQGK0BprIGMTyMXk8ms8LFETt4jIitM81uwkNERpo74JBqiYJukQBg1QVMZDpjPkZ\nGdyf0jshC3mEtOzURNXgqjA7FWWF0vUyF3UVBQQxPYW+EsZWA5pMTTC2NaOzqx3+Hi96er1wuW2w\nWJrRQlhoa23geWZEF0FKKlg21xWjlfuxtbEUrQ3FcFpqsW/ZibdfmMbv/soRNdy1XRr5X7b79Vzs\nYW+PFBSIlxWebbBdxnjbHie7fxhBynE/6Px+HEwKHf3t927hP3/1GNYWXQh0m9FPcZyaHFRgUFNd\ngpycVOj1efRynap7383bV3H6/El6sWvYklD35fO49fRt3LjzJM5cOo9jZ07h8KnjOHrqGE6fOoy5\n2VHYrG0oLclHWkoC4uNiEB0ZoaAgUkUMZF2MYkXxEiCQiEGiRqOGEbIJBfkUJH1xAcpK8lCUm4Jc\nXTwKsqTzYjpqpN5+aTZqy7IJB9mor8jm/Qw0VOagubYAFlM5fISCqREPlmb6lEmCYb/fAr/LBJc9\n1ONAZhjILAQZIgjXJ5C6BRIdCNUmMCk4cDhaVVRApiKG8ghyVLQg1BypS9UzkGjD+voMVtemVEEk\nl5vgQagYHu3BCoFhbV2iA3NYXJrG5PQogWAOc4szfD4It9eJLmcX7G47nB4nnF4X3N0eWF0OmDo7\nUGtsRklFOXT04BO0WkRxf+3YsRO7ntiJyB3cnzsjEL0jAnEELLFo7tfIJ7ivd0qFSRmqiUNsdKza\n1/GRcSEgiE5ASmwi0ggF6ZJnQDAQy+D7i2WnJisgyExOhE6rQUaShusaPq5BbnoCCrOSUFqgU1MV\nGwx1BAIjLLZ2ONwEKr8bgR4Pza2iBm5XB+xdrbBaDLBJyWruV7ulgcdJZiSUocNYAa+tCf2eZmwt\n2PHSk5P47V8+jr/8zsXtBMR/we7Xc7GHvT1SUBAuUrQ922DbHkerefZtdf5KOe7HOSnq7753DX/4\nu5fxzK15TI250RtwYWSoRy0FCvLz0lBclAUjPbxTpw/h9TdfxEuvPqvaEV+9cQXPPH8Hl69ewvLa\nKj3aUfQNBunxzmHPvv04fPgABXIB4/R2fT4PDE0NSE1JhiYuFjFRUYiMoFDFCiSI90oxkymJUZKM\nGAltfBwy0lJQkJuNgrxsVTgpPysNBbokFGeloCw/A5X8XtXF2aguIQyU56OxqlBZfUUePVdJhitD\nZ1stfO42jA93Y266D7NTvaoEccBngcfVApejhaLfgbFRP+bo2UtfgonxHop5N0ZH/Pd6Hkj439Zl\ngsPZhg4CQAM93KLiTJRIbkNDGZ9rwUDQi+mZYczOjyqbWxzHEOHCTahweTvRH/RhfmmSEDCN6TmJ\nAgxynw1iZn4S07Tg6CCBwIYmYyNq6qtR21ADQ4sB7Z3taDQYUFFZzc/UIzMrB0n05mPj4hFBj38n\nBT9su2SIQACLj0cRAiIp/nI/clcUYiKkTgT3PS1qt8z+kCmhGiSq3AOCQbwWqQmSmJhCCyUophIS\nZDZDSnw8UjTx0CVJQy0tl/F8PhpZqQJoySgmPBZmp6C4MBN1daWwtBvgcXfA7+tCwN+Fvh4H+nul\nK6V0irTxmLTD62xFt6tNVd20tFSh3VQBW3sNuh1GdNubMeAzYW3BiRdvz+CXv3oAf/I/zuIf/+zq\nA8/jf+92v56LPeztkYGC3/7PB+99tnhdD7robtu2PeoWLmr0wpMDDzzPHwcLzUS4hZ/97DHsWR2g\nSLbTe+bFvNuBpoZKdZEXMJB5+DJ3/5PvvIrPfPZTePL2Fbz00nN4+ZUXcOrUCfT29FE8PejpGcD8\n/AqOHD2Bk6dO4dDhw9i3bx+WlpYIBj7k5uYiJSUFWm0iYqVdc0wUoqMIBFG7ERMtUMAlLSEuWvVi\nyM3SITdbh6y7LZ7zpTET71fmZ6MiPwvluRkoy8tArZ5QUFmMJoJMY1WxmrLYZqxWc+e7KUAjFGwp\nPzw50YOhoIffpQMuVyu8HjMG+h2EgQEsL1HIZwcJCD4MDroQHHTz99BrJzi0Ei7aO+jZ8r0kq76m\nTq+goKKyEM2mGrgogGNS52B+DFOzwxibJlzMDGFwpAceiqLD0wlvwInRyUE+PoKhsX70BQMKCiZn\nxvjYGPqHetFBD7uiugwFJfkoKi1EdX0VTPS8KyuqUJhbhGxdNpK1qYinZx8dFYfdEdHYReHfsTsS\nTxAIZLk7KiZkhIIIMcJAlNjukEXftXBURhMjZag1BDEpbiQzFZJpKaFlfDKSNInQxmqQTHDISE7m\ncUhRJZFTE2K4nqiGEooIBDnpCchKi0NZcQZMTeVwcD+J+EvHy14foShgw2BvlzKZItrTTTBwmVSj\nKzOBoM1Ujs72angczYQFI5dN8LkMmBmx4NnrY/jGz+zDH/+3EBhsDye838J6GraHvT0yUOCwFqvP\n3W52tG2Ps93fNOlxTToM9Uq4hf/x65dw9dwkXF0GGChELkcHbJ0mlJXmQpcer6AgSE/36Weu4/Nf\n+Am89YmXcfv2DVy/fhn79++lRz1Iz3oMRwkDN248hRdeeAWfevddvPDSizh95gwWFhYUFOj1egUG\nUokvJSUJTzzxMezetUNBQay0ao6NQhyXkpgo3Rqlc6PAQUZaMnJ1KSiiFWdShDJSUJCeREhIRL4u\nCaV5OtQQDJqq9TA1SBJbBVqbq1Q5ZI/LjCA9/vHRgIoIDA640N1tgdPZouBAChgJDMzPBTE+5lfV\nCP0UsV4CgY9L6YwoOQTWLhPc3g5YbUYVHSgrz0OdZNBbDPBJPgEhQGYWCBSMEwomuRwa64OPHrLD\n2wmn14pAvxd9g34E+rzo6e/G9NyEihSMTQ6ju8ejxuT15cUo0hegVIoFNdaiucWA8tJy5GcXIDMt\nC0n05DUxCYiix/8gKNgVycfE+Jw8L6aA4C4chKFA8goUGNydASLTFRNjE6CNk5LIWiRrkpSlEQ6k\nKJJEDqSUskBBtpRFTo4nHCQgV3IMspJRlJOK/CwtigvSUFORhxZDhQIDiQb4Pe00s7KAN7TeTSiT\n863DXI2W5lIYm0oIBmWwd9bDbW9S5rQ1wNpag/kJB567OYtvfPkA/vx/nldFjrbB4AcWvg6F7WFv\njwQUhFsibycXbtuPg4V7IzzOSYcSLfjff3QNv/iloziw4VPJXx3tRgR8TjTWVyAtVYPCAh2sVhOO\nn9iPtz/5Ct751OsU+2PYf2ATe/Zu4NDhg3jq9pN4991P4zOf+Yxavv7663j22Wdx8OBBAkUQNpsN\nBQX5yMzUIScnC3l5OYiLi1ZAEB25S9XwFyCIj4tCwl2T1s3JiXHQUfyzCQG5aVyKGIXHtVPilYcq\nIWx9figrvqm2VCW9tUkNA0sj3ISCAYLAyIgPQwSAXoq+22uG3WlCINCpQGB6qg8TYwEM9DnQLXUG\nRMgIBAIFMqtA8gjsjjYVKTDzPSulgmFpDmrqStHS1sDHOxAc9mN4pAfDo70YGe+n0A+qZd9gNwXf\nCY/fAV+PS8FA74APwdF+rG0uY3ltgduOwOV1oMFQq6CgpKwYZZWlKK8qQ2mFHoX5hcjJyEV6ig6J\n8UmIjdYgkgIvQHA/FITBYAcf23n3OYGCyN0EAwECWowAQUQsgSCG7xMTmvVBC9WKiL8HBRItSKWl\na1ORkSSlkgUUNISDBGQR6HJ5PCRSkJueiJI86W2Qj7oqab2co6yhtpiCT4GXIRq3QEAbl22quqQA\ngcPWhK6OBphbKhUQGBqKYDLoYbXUqmiB39tKgGiDmxDm7GzC1JANV8+O4he+sB9/8Nun8Td/fPmB\n5/O/R7tfz8Ue9vaRQ4GMvYZbIm+XMt62HweT4a/w/0iGxR503j/qFqpyeBV/+Lvn8bOfOYjDewLo\n81vhdlrUEEJOtoT7I9FsqML09BAuXT6FV19/XnX029qzqkodP/3MHfz0Z34Kb775pgKBW7du4ebN\nm7h06RK2trYwPDwMr9eL8vIy5Obm0LKRl5+D1NRkJMTHqqGDqAgBg13QJsSp2QpZOnqkGanIyUxT\nVQ6L8jJRkiO1/SX57a6HmpmiPFQ1nk1hkkY9jTVSDbGWQNBE4TGpDokyFDAy0o2g5BP02Cjibehy\n8DkK1DAfGyEsBAkOPfzd3fRkpYGSRApk+CCcYOiht+8gIBj53vqyXBSVZKKyqghN3C8yJ9/nt8Pr\n42v6PRggIASlbwIBQSxIWBgc7uFSgGEQ41PDmJmfUDMPFpZnuc0AupydqG2oJgiUoqK6XFlxaREy\n1fBJlooSpGrTQkMHEiWg0O/cRfHfJUAQgoKP7wyBgdyXxxUU0CJ3haIFKkJwFwpk2CA+9geWECvd\nMqU3glQ+JAwkpSEjWUcISAnVO1DTHKNVy2udVkAsDYXSWTNPh9qyfDU10dJap6YbNtaWoKlOPP9q\nCn8TXHYTPM5W+DxmNQ1UogUeQpnL3gxbR50aOmhuLKEV89hV8Lg13IMCOyHM02WCn1AxNdyFs0eC\n+PTry/jNrx/G9//n+e08A1r4GhS2h7195FAQnoIoY7EPusBu27Y9jlZy6po6rx/3KYrSkOa7v3Me\nv/TlY7h0ZhrDA11oNdVBX5xLKIhCBT3B7u4uHDy0gZdeuqNq9h89th/nL5zG62+8is9/4bO4c+c2\nYeEEDh0+gM3NTaysrGBmZhpjY6MEgyG0tppQWVmO/Pxc6HSpSE9PQbJW2i5HqWhBbPQupCYnKAgo\nK8lHFb3muuoyNNVXwdhYA2NdBWrKClFZkquiAvVVJcqkla908KulSJso0jLlzUXP3uuhuPfaVeLg\n8IgPA0E3fAER91ZCgREeESkZ45YGRgSA3oANPbS+HjsG+p0EAwo9oUAqEvb0OuByW9BsrEZJaQ6K\n9dmokpbB/Lx2SzOhwaoiBr4eJ/qCPmUDwwEVLRifkgTMEUzNjGJ6bhxzi1OYX5pRQwejE0PoDnjQ\n1t6CqtoKVNaUo7a+BjV18jnFqjqkLk0HHQU6mZ57XEy88vp33wWCMBQIENwziRjQFBhwuwiaihbc\nBwWqVoFUObzPtJpEfkYy0iQ6kKJDZmqGSjaUegep8VpoY2KQGBON9MR4FOdm8Djkoa6iCC2NleiS\nGQUEAItULyQMyPBBa3Ml2ltr+XgjnBR2iRT4Bbj8ndzXnQh0t8PN49DZLgWq9Gisk0ZcRXxNCAw8\nTiOcKjfBDI+9Rdkoz8tj+wfx+nOL+MUvHcDv/8ZJ/OW3Lyiw/fc6pHC/nos97O0jhYL7owTbUxC3\n7cfJZBgsPEXxcY0WiMkFVWoX/MW3r+FXfv40Lp+ZQq/PjOqKYuRkpyKfHqG104SN9Xnceeoqrlw9\nq9r+Xr9xES++9AzeePNl3j+tyvbOzU1SSB2qk5/P343RsWHMzk1ThKWgjwGFhXnQxEUjOSkeKTRp\ntRwfF4kETRQy0pOgL5Se/GUwmxrhtlvQ3+NBsL8bPd12OG30HjtbKDJmiowVHlcHRcVAgKlFK734\nDoqT1BSQngU9BAIBgeFRP4YIBX0DTnrzFnrlJtjopaq8Ahnv7u5QWfGSHR/sd2Fo0ItBLgM+G1xO\nM+xdLaqWgVQ4lIhJaVkeKmSmQ2MFTK31sNpa4Q/wvQlNPX0e9Af96B3oRt+gD0OjfYSCIUzPjt21\ncZVLMDk9hsGhPkKKB5ZOM9+rFqXlJXzfctQ11CowKC3XIzM7Q0FBWlI6RTs0dCDi/n4oEBjYrexj\nd5dPEA520OR5gQIxmXUQrSyUR6CJjVMWqigpCYcJSI5PQiqhQJecjswUQkFisooUZKWmQ5ckCYbx\nyEhKVP0QGnmMWpuq0dlST4++WQ3ZCBRYLU20Rnr9NcpkGMFOcZciWU67UQ0hSInpvh4r938bujob\n0GIsQ11NHqor+b71BTyeZYSJenhk+MHVxvOAUOBoxQDhbWTQhbWFXlw7N43PvLMHv/WNY/ij/3ZW\n6cy/x8jB/Xou9rC3jxQKtqME2/bjbOEpio97tEBMPK6//d4N/PrXz+P0sRHUUPwydVqUFGXDaKxB\nDz3hxYUJzMyO4vCRPbh0mQBx5SzOXziJg4e2MDYeRJvZqIYJ9PpiWDrM9NKDmJ2dpqftQFNTPbKy\n0rFr58eRpBUoSFBgICa1DLIzU/lZufQaxVs0Y3JsEPv3rOLg3jXMTg1jeiKIeXrc6yuzfHwZezYW\nMDU+QAHvQpetBZ0d9Cwp5uLZS/2BgaBHAcGgDB30ytBBK6yS4CZj2gQDt7OVYNHG13eqnIKhQemJ\n4OZ9Kxz2VljaKW4UOilyZDY3orqmBMX6HNTU6tVUTYkS2J3t6CUM+CVKQBgYGAooKAjwMVkOBAP8\n/B617O338Xt4VWGfQG83X2uFscWAyupyFBbn872LUFZRqkzWc3KzCAUUZ20aEgkFMVFxyuvfdRcI\nFBRQ/D+2g0CwY9c9OLgHBbTdOwkGOwkGtEhaFE0qSobLTauS0yqvQKYoEgz4OZJPIBEDXXIasgkl\nxbn5KMzORl6GNE/SoaI4D811lTA318JiqlPDB5JT0NJcqQoTeZxtavhGYMBhM8ItQzDc13arIZRn\n4KH3Tyhz2g3otNSqZMN6QkFleSbhIBdGgww/lKOxtogg2Hx3BkMXAt4OAkKrgjhphX362DyeubWE\nL//Ufvzur57AX/07rIJ4v56LPeztI4OC7SjBtv24249LtEBMZiRIu+U//h9P4sWn1lQYOD8nnR68\nVjVJaqVn7HS0o7vbhn37V/Dkk5fw/AtP4uati1hdm4Wtq5WCWQqPV1oO9xMeprC0PK+WlvYWlOoL\nkJykoaf7MZU/kJQg3RSl50E8MtO0yMlMQWlxDoz0QHu6HdhYnsW5U4dx5uQhLK/MYHV1Fnv3ruDY\n8X04e/YITpzYj5WVaQwGKbCONgJJA1weC7r9VnrvhAMKfd8Avf7eLri97QoI2umBinV0NKgxbxEx\nF4XG55E2y+K9dlK8jGhvk0qPFCx6wC0UPqndUFSUpSo91teXo6W1QUGBrasNPj8dHo8V3m47vX8n\nzcXv4OR+sBNEbHA4OwkhFlht7eiwtqmlt9uFTms7DMZGVFVXEKKKUFhUoPItsnMykUHx1enSkE4v\nPQwFKlJw3/DBDgq+ihAQCAQMwkMIYSgQ27UjZLt3EA7CxteEC0hJ6+UwFNybfSC5BQnJBIJMlOQV\noCSXlpdHOMjhMgflhTmoLS9GY5VeTQOVvAJ9kXS4LEIr4TE8hCNw4HXzfOEx8Xktat3RZYS1o5Ew\n0ECI43For0VbSyUMjSUqWtBYX6giB+bWKp4HZQTEYr5npYKLQHcn36dDWS8hYXTIi6X5fhzZP4zn\nb8/ha1/Yr6IGf/vHl//dDCfcr+diD3v7yKBgO0qwbf8e7McpWiD2599+Dm+8cADtLbXIIxToUhNU\ni+VqEYAavarqNz7eh1OnDuC552/i+RdvYXFpAk5XOwXRgWvXL+P2Uzdx9twprG+sYHh4AA311cjJ\n1kFLCJD8gbiY3ar8caImiqInswzikUsoqCB8dLQ1YYze9cE9K7h45ijOnTmCPftWsIdAIL0DDh/d\no8Dg4KF1LCyO0wvvVomA0pkvPFNAIMArswgIB55ui0ouNFvq0dJWjVZzDcxtNfx9XMpMBcKEeLUy\n9i0NotoIA5KfYKIHLGBQR9ApKaannJumoKDZwNe1SydAIzo6W+ByWyn0bRT5VkKCmfuhUz1m62rn\nNiYCRBNMLY00WTahta2ZrzNz3YCGRgJHTSUqK8tQXFyIrOxMlYSZlKxVy7SUNAUF94YP/lkokEjB\nvwQF0v/g7nJnqKqkRAtkWqK0U9beHT4I1SoIWW5GNsoKi5Gfma0iBfr8PJQV5EGfl8n1LD6XhVLu\nD0n4zMtO4jmSjqryfNV5U4YRnPYWuAkGHjkv7gq5RGbCUCBtlsUEDFqM5WioKyQUFMFoKFWg0N5a\ng5qqfNTXEjZMVep1DslPkCGiboIfbaDPpaaWri/34fqFKXzhvT0qavAX37qAf/x3UAnxfj0Xe9jb\nRwYFXVa9+pztKMG2/Tjbj8NMBLFQpOAm/vj3XsSrzx1Fh9mArIxkZYX5GdBTGEUcG+rLVEh9kYJ8\n9vxhXL12GnPzI5iY7MexE/vwhS98Bp/61Cdw+fJ5bjNLr91DoChDVmYqkgkAifEyzv0xxEbtQEJc\nBJITY5CRRvDI06G5oVJFCdaXp3Hs4CbOnzqMc6cPq34BAgMHDm1gLwFhY3MeyytTmJoOEgq8FH7x\nxltD5miB3dlKOKBA06z0Ttva69BsqqRJLgAFn96nFNqRlr4CPwIGYjJ7wdhYAUNDOcWN2xiqUVVR\nqLpI5uelq0ZRrS0Uso4WmgkWgoG1qw3t7UaKfyMFX9oHtykgMLeb0GysR119lbLGploYmhv4WKOy\nltZmtaxvqEVlVQWKS4qQmZmhgCAxkSItYJCUqqYIJsZp/xkoCA8fhCIFamriXSCQ4YMfhgIxKS8d\n7j+hgEATj6T4H0QIUhPlM5ORo8tSkQJptJSVkqK6J0qkQBIN8zJS1JTEnLR4ZNGyMxORm52M4kId\nqisLKPLVFHFCmkwrlJwAQpskcsq0T6fdRHFvhkNKTdO6bNJmuQaGJj3PrSIFBs1cb2upIhAUor6u\nCE0NehgaS9HeVqegQBJCJe9DbKDPjUHCwdiwG8cPjeAnPrGF3/j6cfzJ7537sU9CDF93wvawt48E\nCsJ1CbajBNv278HCMxGunfM98P/wOJgkaklOwW/+pyfx1PWDcFotyEqnOFAAJLRfkJtOT75AjbOr\nXglTA5ic7EOAF/vhkW4cOLiMp+5cwosvPI29e9YwMR7E4IAffb1een+1FNUMQoEkue3C7p3/D+Lj\ndiMlMRq6FA2KCR0NNaUEgi7s3ZjH1YsncO7kAVwkEFw4ewQnTx1SyY2nuS5gIMMVS4SCeYLJBL+H\ngIF0I5Qogd3RGjKCQYfVgEZDOapqClBVW4DG5jIY6YU2N5WpNr6dUmvA1sLfaoLVTC++uUZBQVNd\nGeqqS1BVJr0XclVeRWlJHj1XPVpM9eiwmJSZCQGtrSJqBI+2ZhUFaLe0qAiB0SSCT6ioLlNWW0cw\naKyDwSBg0IRAjw9er5vbNaOouFAVd9LpdKryY3JyMrRawoFGi4TYRGii41VOwQ/PPgjVJgjNQgiB\nwfsTDX84p0BMNUm6O3QgMw+SEhJVomFCTDyXiQpCtIQQKXksSYbSjjkhOopLDXJ1aSgrzOaS8JAg\nj0UoKCjM16GiLA91NSWhjogmSfxsouCbYJcIDOHAJjkGEj2Q5EGai8fHLYWMnIQ4QoJFwM3A/c7j\nVFWZg4rybNTwuNUKGNQXw9hcwe2M8BIsJPIQHprwEwh7eez7ex2EAwe21gbw0p1lfOMrh/H9b8ns\nhCsPPN9/HOx+PRd72NtHAgXh1sgSWn3QRXTbtu3Hye6PFjyuVQ7/6c9v8LtfxWvPbWJqxEsvuh41\nlXoU5OiQmS5j/skqvC/j7cHBbqwsT2LPnnnVO2B0zIeJyR7MzQ9jZmYMo6MDhIIhTE+NYGSoD6bm\nOuTxfQQKkhKikaCJgDY+ku+bgDLJI2isRJuxDsE+D45R9F994Taev3MNt6+fw42rZ3Hrycu488x1\nPPnUFVy9dhbnzh/D6TOHcfjIJtY35jArkQqBg0EP/BKmplC4KB6dtmYYjBWoobdZSw/UYCxXUNAi\njXiMNQSBRtjaKeoUMYkOyLh4TUWhgoGK0jwCQQ5Ki3MVDNVUlaChroKiV03xqr1nxuZ6mIwNMBEC\nQsMEEgmoRwO3q64pR3lFibKq6nLU1VejifvV0NwIp7ML7e1tKkogRZ0kQTMjI0NBQWKilIOWttIa\nxEVpEBsRq5IMReR30tv/+BMEAJqKEhAEFAzsulurQNb5+A4VIZD+B9FqKqK8j8BFoiaBFq/KG6dq\nKe5JybyfiPi7UJCWlKZqFcjsAwECKV6k5XdJioslKGiQnaZFRnKoB4JOG01ASCQ0ZSookPbbMgvE\n7WpXszfcd01goMVUzf1UxecblLD39tjg67YoMHA6Tar0tNvdqiIHMrzTTJgzNJUSEopQXZWvlua2\nWsKFAU5HCC6k0NQQj7nMGukhGAgkDPU7CQZB3L66gJ/9zD58+5unfmwLHoWvOWF72NuHDgXhHgeP\nXfXC7/4WypoT7ttH3Sj72t88eNtt27YfsnBrZcmledD/4lG2UNnjJ/Hrv3QCR/b2od1YjfKSApia\n6ijaecimZ5hFMCgtyqEoVtJL68DUxIDqCriyMonRER/8fqkCKDUCuni/H0uL07QpenBeVFcWIzWZ\nohSzC0mEAV2qdEOMRZYuASWFEiUooZdejWCvC0f3rxIIruKpG+dw5fxRXL10Es89/yReee1ZvP7G\n88peefUZPPvcTVy4eFzlFmxuzRNQFjE7O4ShIR+9cLtqaNTR2UTPnGJMQamvK0Zzc7kSm1YRp5Z6\ndLY2qCx6Q10Zqsvz+fuyUFqYhZKCTBW9KMxLR1F+JioJCXXVpaivLUc1Bb6irAiV5cWorS5DI4Ve\nrNlAT5eAUN9QRQ+3HFVSjIjblpYWQa8vRHm5HrU1VWoWhtFooDia6QHXIj8/DzpdOvLy8ggHOUhP\nT1dQEKVmB8QiNjJOVSSUqYUi8jsUEOzCx8TuyyeQaoZPSNTgHhTsVhAhBY+kPHKoOFEq0lMo+ilc\nJqcgMy1drWsJCtIkSSIEUqcgKy0TKQlJiI+MQTKfk4qGyZo4AoJGAUFmSrwqJCVljiuKswhMRWji\neSGdEIeHpFJkEP19boq+FR63RVWHFCCorMhDRXmuWhdhFyjw++j1e6WVdZsyj0eiCC2wdDSgpbVK\nRQmqqvJQXZ2vjl8bgUHAQqILAgUDfU41jXSQMDCsAMGNkaAby/MBXD4zic98ch3f/M9HVE2DB537\nj7P9QKvuavpD3j50KJAQqry/hFQfdPF8VM31tWeged8+SoDm0m/B9YBtt23bfthavvgr6ryRGTcP\n+l88yiYlj//mj2/i3dcWMdzbgvLibBTSszdQ7MqL85GdnowMaYKTm6GiBTJDwO1sp/gHMDtDIQ56\nlefWSRH2uKx8bBSb6wtYmBuH096uchIkOqCJ3amAQE/xLeNn6Olh6gkFFSXZaKrTw08BWVsYw7kT\n+3D66BaOHVzFmZP78dTT1wgCz+JTn34Dn/ncu/js599VZZevXj+LI9zuwIFVnOR2a6vTmBjvRU+g\nS3mn5tZaCraegl6IBoKBDBs01Zeoks4CA20GeqR1hIaKQopbDkr4PYvzdPztacjLSkFuZjLBQH5z\nAWqr9CpyUkpIKszPQnFhLuGgGHU1FYSFSnq1/KzGGgqfHiXcZyWEKn1JIdcLUFSYx3XxeCsonvVo\nbTEqKy8rQ6YuA+kU56KCQhQWFCA7KwvJSUkUc2kpHac8fPH0748UiOiLSYQglEvAxyNCUCDFi1SS\nIR+T4QYpeqSNT1b1DjJSMwl4mchM13E9LQQFhANJNFRQoBEoyFBQkByvRSzfTwoYJcUJEIS6JUqJ\n45w0rWqIVKWnwDdUqOiAxy2lo/uxtbmAfftWMElo7CPkeb2hktFGgkCpPpvwk8J9k4nGBj1sNoOq\nLtnTY1N9KQQIpLCUh5AgRabMljo0NpWiWoYR6grRbCxHS0sV2lqr+Zn1KroQ4Ov7e7swMuTB7FQ/\nJkZ9d6snmlUH0IunJ/HeG2v4L79wEH/2++fw93/649M/4QdaFbKHvX2oUCDTEMPv3/Gr33rgxfPR\ntL+B+VL3+/aPsuZnYP7ug7bftm37P01yaOS8kZyaB/0/HlX72z++gt//jdM4e8RPoSyhB5iKotxM\nFS3Iz0qHLiWBoqKhZ5+EXIqlJN7VVhejs6MJvdIet8+hvDYvRb2vx43F+QkVJRga9FOIq5GbnYLU\npFjo0uIpqtkwt9TBZZdiRM1obihHpT4HtRX5sLTUYsDfhcXpoIKDjaUJHNizhLPnjuH2nat4+51X\n8cUv/xR+9uc+h/feexNXrp4mEKxRhJZx9uxhbGzMUph61JizxVwPQ2MZxbxANeqprymCgUJUX0NA\n4Hc31NLLryYwVBShpixfVUssKyKoFGTyt9NzzxQoSFHRkaqyQlSXF6OyjF5/US5/f7aqqSDRgvpa\nCj3hydAoMxUqUVyUh9wcSUzMosjnoJDwkMf1okJ+RgWhpLGBotZCb9mA0pISZFCgBQz0xSXK8nPz\nuJ/S7xYXiqclqGEE8fhVTsHd3gaq1DFBYGdEtDKJFKjGSFyqZkhRMvwQr3ompGjTFBBkpWcjO0Pq\nH6SrYYM0Wqo2SUGB5BTIlEQd4UHqFMhjcTJlkSbVDAUKslKTkZ+RosocV0jUqLZUFS8aG+nl8Z7E\n/v2rOHF8Pw4f2sTC/Bhh0adqR0hzKUNzJYW9BBU8FgUFMpMjFbUENQGD/n4Hhoe9aqmaVrlaCAUm\ntHc2qOTQhkY9X1+GNnMNWtuqFRjIEIOT23RT/HsJAUODLkyN+1WLbIECVVrZ34mZCR9OHBrFq88t\n4ld+7qBqxfx33/vxmLb4w3r1sLcPFQo++86seu+0vrEHXjQfWfvvv4SiuvuHDsK2PYSwbQ9v4emJ\nJw52PfD/8aja337vOn75Zw9gcdJCjzkd2tjd9BSj6DlLUlkq0qXQUAK9Ra0G6RI61iWjmOJZX6sn\nGNBLdEnSVwdcDjPa2xoJB50qkiBT+mS8OTtDOh5qCBRJatqa1AKYmejHCoV/aqwX3c42GBtKUVeZ\nD1NjKfz0LKdG/Jif7MPS3Ag2CQanTh/G08/cwKc+9To+97l38SkCwuVLJ7Fv7zI212ZxVBIQFycw\nPOiFq6sFLU0Uk6pC1JTnUvjzKGDF9GpL0VRdiPoKep7lfK40n95unrJqvazno0LBQQ7hQIYSctBI\n0ZcqizWSF1BWjOoK/X3G71wtsxUkIlGtogT5uVnI4D7LyiRY5GTyfjZyCAmFBVKgRyIV9TA1NxMi\nmggFemRnZiEnizBSXIySwiIU5OWpx5ISE5EgHvw/AwUKDO4CgYoSqGhBtGqbHB2jQVxcoooQSMvl\nVAp9erKOcJdBOEjnY0lI0EgOgQZJ8dIhMdQlUc1A4GviJf+AnydRgpCFeh+kJWiQx2NfSziSSIuz\nw4her01BwDmC29mzR3H48BaWl6cxOzuK0dFeBAJ2WCxN9PhF3MvQTDhoaa1FPQGttDQLJSUZXC+B\nx2vBYNCt2lf7/B2qcVWnrUlNIRUwkFwQiRyYpbYBwUBmLDgdRrhdJkKgGf09VgT77Tz+MozgwGCv\nDX5PG3po40EHDmwN4ulbc/jCeyv4/d88/mORZ/DDevWwtw8VCsIJho/XNMR/Qtfbe/Af1X6RIYMv\no2Gu/N5++o9zX0TXA1+3bdv2fnscEw4ln+Avvn0V7742jx53PfR5KRSGKCRrIgkDMuUsCbpkqY0f\ni8TYSApJJFISY5GZnqiyziViYDJWw9xaB6OhkkKXQ1igWNboUabPVVPVsjO0almuz1HT/kS4N1en\ncXj/Ci/WC1iZH8HIgFvVu2+T2vmGcvgICkO9dowTDmbnxrC+uYATJw/i5s2LeOmlp/Dyi0/hwvlj\n2Lu1iCV6patLkwSNAXqHXbCaG2CokyhAPsU/Fw2VBTDVl6KNwtRMOBAoUEBAAKgszlFRgqoSgQOJ\nGOQRDCjgXK8pL1ItpWsr9agoLeT3L1AwIMMIFZIrUJRHIZeERHmuCMVcz8qUokPcZ9JmWJeGrIx0\nZQVS+KeM36mmmvtMrIbAVKwAIDszU8GAstw85OfkIjU5BfGx8SqnQIYPVE7B3eGD8LRDAYF73REJ\nBLujYkNAoCFQJCSrdssSJZBaB1LCWCwtOVXNOAj1PIjncU1UUxIlSiAmlQ2j+DlRfP/4qFBOgcw8\nkJwCGT4oL8qF127B9EgfFqeGsDg9jHOEgdu3r+DmjYs4dmwfZmZGCAR9GBjwwuu1orOzGVabiWJe\nT0+/TkUOrDzWDQRAAQM9rdlYCZe7TfWsCHe0lCqUls4GBQSNhlKYuJRIgYBBJx/38Hmnqk5phJ/b\n9/jaFRiMD3swNuRCgEDg7mpCv7+d55Ed83NOXDk/ivfeWsRv/qdD+KvvXnrgf+JxsfC1JmwPe/vQ\noEAuguH3frzaI38PjfcgQCIDf30fJNA0e9D4u//0gNdt27b9nxZOOJSo2YP+J4+a/eOfXcO3v3ke\nNy8MwFifjwJ68+laikF8JI3eYWIcUhMpCvEhKNBqCAyEgrRkDTLSE1B0dzpaJQVYX5xFIUxQsFBc\nmImiAh295VSVsFfJbQQIZE65TDsUIDi8fxkH9y4SDOZxcM885qf6KTgmNFYXwNJSrdb7pDfBQDfG\nJwaxuDiJvXuXVYj6PIXoyMENBQNTY/2YGOnBUJ8bHnsroaLqrvDnopbWVFmI1voytBMKjDWEgnKK\nuwBAcQgGZF3d57rU9hcrl+cIAtVlxSgvkSTEXJVPIEMIAgQlBQSerHTCUYqynMx0inu6goFUQpRY\nWooW6SnJfCyF+yGLwFSsogV6wkB5aRn3UwGBIYP7TMfXZ3GbXO7PQhQXFKkQfzwFWhoZRe0K5RNI\nzYEnntilEg1DOQUCBhEKCCIJA9FxhAgCgYYef4L0LpBOhwliXOdjUgQpnVAgQwcpWllPUbkFqVpu\ncxcIJLcgkp8TyffX8H1T+H6ZycnI1aVzv+Shvbkes2NBHNm7ihOHNnFozzJOnz6MW7cu4fr1C6oE\n9giBIBBwwu3phMPZDoejDYEeqfzYARuBwEHgc7ra0MXj294hNRtqKPjV6OhsVMmqPn8nvP4OmkX1\nqhAoqK4tQH1jCYymCrRbatHVZSBwSNXEVkKB9FYwwG5tULkEo0EnzwkvzwcbfC4TerytBIZWfqdm\nbKwFcOp4H956eQbf/OVjKkom/4EH/TcedQvrbdge9vahQcELTw6o95Ve8w+6WD6y9rtfRLbm7n4J\n5xDc/9j/rxzZb3/vwa/dtm37IZMomZw3EjV70P/kUbO//d5V/ObXT+D4fi8KsuOQkx5HKIhWUKBL\nSkBiTCQSaElxAgjxyM2QJDwKoI5iJ62Ms1IUBOTlUGDSpZdBNMVRy8fSCQYZyiRCYKQgSznhxbkR\nnDy6B4f2LWF9eQKLs0MqUnDi0Br2b8yq6EBTTSE9+xJ0UijsUo5YGg/5HBjo82I46Mc4RWeOHurM\nZJAeYQCDPS70+ezwUYA6W+vRVF2M6pJsVElmPK2xPB8tNSVoIxg0ExDqCAoSJRAgqC2T4YRi1NEE\nCopy0pGfmYr8rDSuZyCPnn8hlyUFOSgrLuBvKURJYa7q6JhJAEjRSiKflGzW8Lcn3rUECrI0fJI6\nAPEEBJnSKfuigGBRzH2WrYYKJCIgSX/pFOYsXYaKEpSVlBI6KtTYv0wRlChBNKFAIgUCBTKrQM0u\nkGiBJBXujkSENDlKTKIlQyOzBsQEDCj0yvg+Uu9ALCNNx/fOVBAin1fA76BLkaZLWgUEYrEEkVh+\nnkCBlrCRS2ipKSvlvjVh0O/GxuIMThzcxGkCwJH9PG4H1lUU5+ixfaokdTePRafVRC/fiC7pWumz\noW/Ag95+l5ou2mkzwkHxl/4UYxO9qnGVtLWWqpNSaMra1QxvoAN+irrd3YJmQkF5ZQ4qa/LQ1FzK\n7QQKmuDmcz3crtvTCmtHLcymMjgIBv2EifEhFyZH3AQDK3oJDwGvEX19RgwPmTE1ZcXhg368+sI0\nfu2XDuIvvnMJ//AYNlQK6dMP7GFvHxoUOKzF6n0fr6GDv0PHs7P3DR2EZxvcHz3YHkLYtoc3iZKF\nz5vHYQjhb/74Or72+X1YmGhDZmoEQSBaQYGahy6dDGOjKBI7CQZRhIZMNNfTq2uqU+Ps+qIcilu2\nigoICCQlRiI+bie9XI2ChII8AoQsc1NRXZGP9tY6+L2dGKZATI4E1JCB32OBmyIx3OdEsMcOl9WA\nhqp8GGQaYWVeKEmwrkx1anQ5LXDYzRQAI2w0Zxe9RDtFx2FGN5+ztzcRJspQTdEvI5SIVRRQ0Eqy\n0FRZgOYqAoE+G5X8vuWFWQoKGirpfUr9AZluWFqAvIxkpCfFITVB5uXHIYVLAYOKkgLUVcnUxRIK\nez49+mzkZRMM0iVEL/P/YyjAMdwHGiRrCVMEBU1stLLkxASKvg6FeRIJyFcgUJTPz8rOoUiHpgWK\nUAso1FRWo76mjsCQpzx8VacgMlS4SGoOSPGiUE5BNHbxsV2SQyA5ART2xOQ0FSHQyMwBgoDMPJBk\nQ41KWIznMSTEZWarzy4tLuFvqSDo6JGVnqlyCuIkj4DbScRAq0yDGIJHfmYmLMZmjPQFMD85jLnx\nISxMhoYOlmZHFQjMzY9jaLgHDh6HJkM1GpskB8AAl6cT3f4uSG+MVnODGj6wdZnQP+jG9GxQmayb\nLQ0U/HIYjJWEiUa4u9sVFDgp6Ka2apRVZKOiKgcNUu3QXMPzoZ6wyO1cJjV84CAkeLnsdhnh4uMO\nPu8nNIwMdKm2y70+E+z2ckJEE6ZnnPy+bqyuOnHn9iR+8Wf24I/+2+nHLvkwfJ0J28PePhQo+NZv\nHVfvKbUJHnShfGTtfbUJ7k8qvD/PgLY9hLBt/wqTaJmcN4/DEMJ3f+cs3n1jCQO9zfRYI1RSoBQq\nykjTqjHnuKhoRO7cTWGKQU5GNoGgmYLciTaTUY2l61IJA1qKiSaCQBBxLyFRl5JIsUmioKYSJtJQ\nSnioowCrBDUKfMBNT1CK3FiNsNNDFBiwt9NTlII1Us2uNJOWQU8+m3BQqDLd2wxVKhJgbzfA0WFC\nF5edUnbYWI9OUwPapVZADcW9JB/FWekoEjHPz0FTBb3Lhlq01FajpriQoCC5BDJkUAhjfRVaG2v5\nGXrkpCcjKS4SSZoopPE3ZPA3SEXHytJCQhDfl0BQlJelcgkqy2Q2QjHBJwupAk8U/sQEetsaOhdx\nFGGaLDUU1jh62wnxiUhOSkE6PfUs7seSIsm5qEBJcSnycmUqYi6X+SjIL0J+XiG3y+B+pchrUijq\nWkRHaggFsYjYKVGDaEQRFET04ynmiQlJBJEUaAkDUohIK8bPS+LxS5D2yNLjgMcxketFOdwf1TU8\nDs0wNTSgorhY9TbISktFcrwASASPeSQ00VFIjIvh8U1CU0MNAn6KOIFgemoY42NSnIo2MYCx0T70\nB5yEOxtsFiOaasvULI6qUnr1PGZSf8LSUqeqR1ppdoKCjxA3SFAIBuzo83bA00XIM9fB2lqLrjYe\n345GCjhFvltC/h3w+dphtRIaGovR2FCM1pZKwqFBDR14XQRDB8GA5nW2EBJNKjfFZWsmFJgx4Leh\n329V+QY+goGv24ShwU6Mj3ZhaqIL+7cCuH6xH1/56RX82e+ff+B/5FG1kG79wB729qFAQXjWweM2\ndPC+2gQ/PP1wewhh235Ee1yGEKQ+wf/49VN4jt5Su5keY1YscnNSkamT8WiKTnQsYiLpne6IQNSu\nGKQnZ6ChthHtLe1orKsnQOi4DQVEmhvFR9OzjaXHGUsxopdN7zmbXnRRbhbKKaK1FFRjfSUv/E0U\nAREFB4Z6naGLtq8DA75OBHiBd1jq6O0XUbB1KC9IQkVhKmpLc9RQQC2FprmaYNFURRCoQ1tjFYz0\n8A1VpcoaK/SopdCL6Otz+Ln5uagvozDV1cHSZCAU1KFOX4oavSQb6gkf0umvXH234txMJGui6Rl/\nHPFRu5DK35+tS0F+drqCApmSWCrTDQkaMnwQggIKOF8nrZ+ltoCWwqyhSMeKh05PO7weJTMHomIR\nG0svXPoLpOgo/EXQl5QTCsq4zwuQocu+Z+lpmQSCVIIE3y82GTHRiYjaHUcgECiI4bpMN6QnrwkV\nJFI9EiSHgDCQLFUIE5NUz4LMFEIIv1daYiLStYm8n8x9WoBWwoDdbFbef7W+BPo8AklGuhoeio3c\nRSCQZlXRSE2OJ/Rkqj4PQ8N9mJ0bx+hYv+oM6fJY4XR3wum0wGo2oMNUz+NWoRI4ywoIdPo87t8C\nldvRWFlEYKuCo53HvtMId0cznOYG2KQhVXMVulpq4LY0oZti3t3ZDHdnE2w2gqKrGT09PDf6bej2\ntqkOio0NRaqBkiQY+r3tBIEQFEg7Zo+jBU4bIbPTQDAwottpRq9Xhg8IBd0d6AkQDAgafT1m9Pe0\nEYRbMTtpx9aqE89cD+LXf/EQ/uFPr6n/xYP+L4+ahbTpB/awtw8FCh7PWQf31yZ4kOhvDyFs249m\nj8MQgqpi+Oc38N9//QIung2iujIDeXkJyM6k0CSJdxuJWHqYsYSCyJ2hGvoyNl1SWEIxrERBTh7i\nY0WgdiGZAqpL0yI9lV5rrMxp1yA7LZlCm0WPsQhN9N7b6MXbzEZ4u9rRQ69yfNCHqZEAJoa6MUmb\nGfVjargbQz02uKyNITAo1aGqREdhyaP3L+F+gkFZLgzVRTDVlaK5NtS+t6GiiNtQuEvowRfl0ChI\nFO3Whmp0GptgNTWjvamBr6skJOi5vUxNLEdDZRkqivJRKAmDyVK5LxpxETsQS9PGRamZF9m6VIIB\nRZyWk5Gm7hfmZaOY4CFAIImFklCYkpyMRAnd3wWBsEVHU8xlquBu8e4JBgIMcQlIS81AdlYecrLz\noUvP4uvTkZKSjtRUHZJlGCBeOiMSBiLi+VoBghjCmRyLGMREaLjvtUhOoOgn65DO16VppbshAYDL\nzFSps5CFguxsFGTJMgtFOZJAKdERPfdtPUXciLamRop4KfSEJ8kVEZCL53FPjOMxTIpHLoGonEDk\nsFswMtKPiclh+P1OGAkA0ia7ioBWU6NX0YGmmlLuT2mlXEAYKFTHpa4sX8GcHLeW+jJCQaMCgo7m\najTJzBA+3lCWg7b6UrgsjfDZ6MlT1D2EAntXI1wOA/zdZoq4tExuU90TJVpgai6D3dakoMBDKBAY\nkIiB10GoJFjY+F7SGttjb0HA00notKFPWmr72ggXrejv5TnoI0Q4GxDsa8XcpAMHN114+c4Ifv83\njuOvv3vxsQCD8DUmbA97+8Ch4LGddXB/bYIHDg9sDyFs249u4VkIj2ohI7no/f2fXsc3vnoc+7a6\nUV6WQaGKhPQkSEqMDSXL0euUueyxFDNpprP7id0UDUmekzC1jFdHIYUeaA5FNSeTninBID8jlZ6n\nCEEBRUJP4a5AS2M12iXE39qELnqVEvb3qlwAmTLGizMv3n0+K4YHXBgb8mC438n7HfT0WuDixd/W\nXgszvUNTY4myNopCh1S1o1laqtBuquTzFTA16GGkmY1VfJ0RA4EuZTIjoc1QiVrCRVVpDmEjj2Io\nCYbiJWciT5eCXFohhV/yKOLoLUfveoKAI62dZT/EIYEAlCj1/5O0KkKSIeH2xASKcyySuQ+SKMYJ\nFGUR/BipK0AYkOiAAMEumUq4M1RlUNUZ4FIjXj3FX6IGoahAErQyW4Bev4o48PmoKI0Cgt27YhUQ\nhKIEUuVQagwk8bul3a09IDUIpJ5EigKC3IwsFOflobSwkFaAMi5lmECSBWsrylFfVYmG6iq1XlFS\nhOL8HOTKzAnCTXKCdE6MIWgIAObASJjr8bsgPSx6Ax6YjHUoKsxCpgwxZSQRHFJRXpSFypJslctR\nV1mIZgKAgcAmsz9KJa+jKAOtjeWwtdWhi9bWwO+hz0JZXjJKc5NQU8Ln60vQ1VINV3s9wYFAYKe3\n39WEbpk9QDAIEAo6zZLPQqgxlMLWUa+mIXpdFHq3WUUC/F4LXyP5Jo20JtUOO9At9QtcNCehgBDh\nbsHQYBeCA1Z43QZCRDUGe9swM27D8QN+fP7dVXznmyfxd9979BsphXU3bA97+8ChINwRUS6CD7o4\nPpr2fsH/Z6MA7xtC2C57vG0Pb/VvfFadN49qISPJtv6L71zBZ97dg7kZK8pKM5CeFk2vV6M8fhk+\n2P3EDgrRLkRRxKJ2Rd3tyR+6nxAbR2FMQRG9zALlMVPkEmOQQ++6OCdDjdnXlRfTYxSPvoKiXIvO\nFnpwd6FAxpfbjTWqyJAULBIh75JmOfT6enmBH+yxYajfQbNz3armnHvszXDJVDSHUd0PeMzwuwUu\nTISLZjjoYYbHkod6HZgY9qlkRgkjtzVXqkJG5cWZFEpaPr1nesJpBKDEmN20CJVcqI2NRAyBIGrn\nxxUcxEXJ0MkO7ouPcV88QQiIJjhJHwd67bt2cX/soEcfBY3AU2woMiARgciIGBUdEACQ2gJiAgdy\nX5ZqKEFC/oQAGVK4BwUEBIGC+Hgt4SKB7xWvogXRERrEcF2GDeJjJWcgVIMgPTmdxyED2boMBQRZ\naToFBYU5uQSDXC6zVc6A5BLo8/NQqS9RoCCP52dlcinbZiE/O4NgJ5UPk1TkR86B0pJ82Drb6Fl3\n01O3hxpb5fLzdFpkZSUjNycNBXk6VSZaIMDUyOPcXA0zTe5X6bO5n9NQSSgw1ulh4THo4HHu4LK1\nXg9DVQEaK3K5zEd7Uxm6WmvgstTDY22i2BsJBvT2nc3weVoVFNg7G9AmpY4NZegkKPp4DvikuZLf\nqhohDfKYCyAIGDgk4uBsQx+hcIzngdS76ON51GWV4loEDX8b/N0meBz1KglxsLcV02MWnDnaiy//\n5Dq+/c0TqnPog/47j4qFdOkH9rC3DxwKwr0OHq+OiPcPDfxL+QLvH0LYLnu8bQ9rUuZbzplHtReC\nlHr97u9cwPO3Z3jxrEFRQSov8lpk6qTwjhYpiRqK4W7EREQimt6tJioOUvFOQ9GTIQUpepNPMZEw\nekZ6EpIS6ElLwaOEaOSna+kFyrhyvgrtG6r19BSrVFKgVMHzdLWpDoVmUw0v8tVoFZGgWJhlrrq5\nHnZrMzz0AP2EAylh2yfT0ygKkmUuIWW3o5kX/xY1Fc0jmee2BnRaamBpq1RT0+T5QHcbxULa7LbC\n0cXPaq1AQ10+KsszKIrpKMhKQTohRhP5BCHgP9I+htjdT4RMDSHsVCZAsOvjH8Ouj30sBACRFPTI\nKALBbuz8+A7s+JiA027VmyAyMkaZwICaJXA3QqCiBAIEd02ek2hCvNQGuAsEAgESaQjfl0iBQEF0\nVAJioxIJA4nQxMoUQ9nXISBIIxCkp+iQSSjIycjkUpoZ6ZBDQJDhg/xMwkJ6GrJSU2ipfJwiThiQ\n6ZGZ6TLjQe4TCnKzCXZifA2BLjsjVS2rK/X0uNsozh08PvVqpklKUiyBIR453H/STruQUFBZmqOK\nRUmZanuHAbb2RhWZaabwi5mbK2Djce1qp5nrVEJpV1sNbK3Vaumm2AecJvS6W9HrakWPqwU9PN7d\nPI5emp/3e71mQqERndzebKrgeVKLbm4rQwgDvSL8Ml3Vo84ZacvsdEhrZjN6erowOhrA+FiAUGDj\n+ROareAmbDglmdHZhP6AlEQW8GhGsM+IK2cG8fOf28Sf/t5ZNcz2oP/Po2D3dOmuPeztA4eC8FTE\nx6rXwf0RgH9xWOCHhhC2yx5v27/CZDaOnDcyO+dB/52PyuRC9zd/fAW//SuncfpYH1pNJQoKCvJS\n6HUmIjVJyt/G0lOORkKMhM41qsBNfnYe0pJSkBgXTw81CUV5OWpaXqJGmvfItMVdSIvbjTyKRnle\nBhrKCmGsKYWprgytDRWwGGvh6KDn52xXLYs72uph5dJGIekgJLS11qK1hRf91jpVPln68Tt4EXcS\nBBy8gHdR/G3WOlg767her9Ytlmq0mErR1FiA+np6nYZCvk8ZLO0VMJvL0U6zWPjZtLZWPRob81BR\nStGkt5sQRQAgEIgJGER8/P9B9M6PERR2EYJ2I5pAEEEQiHhiB6J27iIgRSEuKkZBkoqaPLGbRqH/\n+G7seuIHwwMi+goGwhGC+x5XUMD1aEKW5BdIDoIMOUhiolrSJIog0BAVKeWN4xGrogMEiPgUevFp\nPD4CAxkqQpCZJj0NMin+oRLGGRT/rLQ0AkA6stNSoeNxStMm0hK4LnkfydARCLIydSjIz0FJUQGK\nC/N5/KWnQy70RfkoLQlVbpSeDi3N9WiorYC+MEcND6VqY6GTUtcEP+kPUZCdiuL8NDTUFKGTwu+l\nd+6RsX1J9rPxWBPuJPtfhoP8Mu7fRaDjMe12GOGjCQAM+iwY67fTujBMb37Qb1GP9Uo0iM9LAmof\nxT/gJqBYm2AlGEikwEOQ6OZj/RT+8RGf6p8g3TrdHjNc7pB5fZ0YHCIw8PnegI1g0EVgtKhExQ6+\nh4vAKPDY4+P3JiA4bHWYGrXg+Scn8RtfP6LKIT+q+QUhTfqBPeztA4WCcD7B4zUV8f7aBP9a2x5C\n2LaHt0d1aqJAwT9+/za+9sWD2LPmoXBWokyfhawMjRoCiI+NoDcs4+q7oSUAZKSkKyDQF5QQBlJV\nnkGqVqu8zCwKTAw964gd/4GCuQNZ2hiU0ItsLC9Eh6EGDrMB1pZ6tDVWokXAwMQLsdWEjtZ6WGR6\nYaeRF+hWgkEz2qUMLr3NNkJBh4UXf6uR1kRBpwh0hGCgg+vtZmmIU4HW1nIYm0vQUJ+PqqosVFTo\nUF2TpeCggVZbm40GQkArYcBmrUFXV62Cg/raAnrRyUiM3oH4yCeQEL0T8fzuUTsFDj6ugCAuYhdh\n4GOI3LkTMbsjEC/dAmWaHy1OygnvFjiQpD8ZZonETgLCPQAQKOC6tDkWOJDIgeQWhKFAtgknHgoc\nyJCDWtLuH3rYvUuW8ni8goKkBJlpoIMuVTodZocaHOmyuZ6hcgqkwVFakpSllmRDCn+qzD6gkCcm\nhKCA61JUKTMjXXVtrK2pRE11OSrKSni/gICQr6o1NtRWwtTcAJOhTpV2lumpqdo4goj0vUjie2qQ\nwvMkPVmjwKA4P1V1oZTkPqlAOdhjp/dtU0M302M9WJjqx/iQB4MBK/opyEEuxfq725Xw99EEAoZ7\nOjHSa71rNgwFOkPbeOnJcymzVAQsnDwnbJZ6uO30+AkYMnwwNtKNIX6GaszlaScYtMMpEQNCSYAg\nMDDgQn+vA+OjfgQHnPASNjraa2DrlMiSQdU3CHS3YqjfStAwYd+GD596bQnf/a9n8Pd/8mjmF/yw\nPj3s7QOFgscyn+B9tQl+BNseQti2h7RHNa9APJ+//ZNb+IlPbGB+qktd0KVhUYo2CtkZ0iZZq8oa\nJ8fHoyQ/H8V5BcjNyCYcpFEcYxAXGQWtJk6NP6cnJ0ITvRtREn6P+DgyEiJQlp0Cc305ehztmOjz\noN9rhY0AIDMGjPVlsJkb6VU2wmox0DNrgd3ehg5CQVtbA1oIBub2Rlg6m1VFPFl2SA0D8T55kbdR\nCCwdjWg113LbalUCt6lZj7qGQpqUwi1EQxOFrUmWhWgyFnG7Ulis1XxtHboc9YSKatUsqSCLYpcQ\nicRYwkH0E9BE7iAQiO3ib9lFSHiCYLRLQUFCjIbCmsZ9oFNJfnES1pcx/igtf7sGu3aEogMi6GIi\n/lJ9UEHB3dkH9z8WHkaQ52TIQU1bpCl4uBdVCIGBRAzi434ABRIlEDDISA0lGQqoyXCO1JWQ2gSp\niYkqQiCRAYGBVIKAzCzI4H2prlhYmI+6uhoYKPy1dVWorq5AZWUpystLUE4oqCMoNNVXoa6qlBCQ\ngviY3fz9u5FOMMglFKTGRyNZE6VaKNeVF6G9tRaOLnr9FOcReuXjoz7VrXBsuBuTYwF63j4MEAIk\nN2RkgMI85MbooJMib1HDA85OCrytkYJvpPi3YYhwMEnhnhx0YbS3i8DQgQFCgcxMGeC6z9kCB8HA\nZZNkRPnczhAUDHsRIIxImeRufheJFNgcLXARRHr7nBga9GKw3w1/dyck38AtMxcIB7ZOnm/mGnTQ\nHF1yThow0NOOI3sDKr/g+9+6gH98BKMFP6xND3v7QKHgccwneF9tgh/JtocQtu3hLJxXUFmW+sD/\nz0dl//CnV/H9b1/Fi09N0aNr5veT6nzJKMyldykXfa1EAuKRn5WF7HQdBSVJDSNI5CAuUqasxdFi\n1Xx2iSjEx0TwfmRIKLTRqCnMhJOiPzXYjc35MUwN+eHg/YaKApWl3lRTooradLY3wU4ocDjM9OIp\n+GIEBKmXL0uL1Qhzh+FuWVxpkCN99ltU9TtjS5Uy6aBnMJahwaBHI+Gg0VBCKyYMlMDYWgZTm1gp\nWsxlCgzsrka4JA+B79turFaFkWQ2Qm15gZo6KU2RctJToI2LIRgQdnZKxGAnf3cM90kq90cWYSmV\n4CB9CTSEAilFnIAIireIucw4EHEPRwvuRQpocl96F4STDcNQIK8JRwvCkYJQtEDW41RugcolSExF\nSpK0PQ5ZSmIKYYCPa2QqKMEhRioSxvC7x6nogMBAcnycqhshy3QCQmZGGsW/FAZDAxqb6lBZVYba\n2krU11ejpqYC+uLQ8IEUaCrIkVkN0lY5BAXSOVPAQMt1HZeVxXmwW0zoplfupQDLeL5k+QsUjFOk\nJ8b8mJnsxdxUn5pVInAwM+7HxLCHgNCJgKcV3TwWAXcLBvwWBKUmgb8dQa7PBN2Yo8gLHAxT4Acp\n7CN9dgwTEnr5eQoICAZOQqLkCshnjfL9+/od6L1rMnQgUODwmAkKNvQGHNzWSYjoUmDglfOJwGkh\nYHa216lpjm6Z8WKnOUyYGnfgmRuz+N1fPYG/+oOLD/wvfZT2w9r0sLcPFArC9QnMX/vtB14UHz27\nvzbBv2IoYHsWwrb9iBb+vz1K9Qr+5o8u49u/fQ7nT/TC3lFJAdARCNJRUpCh5uYLFIiHmavLUMWI\nNFFRCgZidu+m+EgYXUORiFbT9qJ3h+b0S7EfXVIc8lLi0FCaiwBFfXG8HytTQfS4LGqeern0QiB4\nVEkvhMYKXowbeSE2wdttVebxWuH20ovrtsFN6+7hhd1vJyR0hArluDoIBe2EhJa7kYRmtFukvW49\nmlso8I16NDSVqnK5zcZyVSPfQi/UbKlBS5uUz60jXBgpCPQc5XO6pCpik+qq6Ojk424bHzOrKodl\nRfmEogyCD0WbYBC9W2Zc0ONOSqXISsKlRAo0XGopxlJTICEEBHehIOz1i/gLCISHEu4NIYjJMIJA\nAbdVQMDXqkRFPiYQESl9D6SNsUQJ7gJBSlIakgkD2niCmlROvJvzoY0TKIihRSsoSLk7ZJCSQMCj\nSfvr7LQUFBbkorauGi0tRphMBtRxvbGxFk0EhLq6KhQX5iJbZiFId8wU6Y4Zw+O/U5nM0kiJlyZJ\nUaqFclN1Gbod0nvAgm5vB8XWhuCgG5PjvZidHsDC3JCy+ZkBCmwAs1MCCL0Yp9jLrJJ+PyGAcCB9\nCmbGfRgdsGMwQLAIdCogmCdYzBAmJggaoxT+UQr9mEACwaDH266GD0S8BQomJ3owRfgYIRhIxGCQ\nr+vpc8DF7QQK3Px+AR+BImBXFvDxWBMKOjsa0CZTWyUBUnouuNvgIYBK5ENmKxw/NI4v/9QefOeb\npx652Qjha0vYHvb2gUJB+L0edDF8JO3+2gT/Ko9/exbCtv1oFq5X8Cs/t/XA/9BHYX/5nYv4zf90\nHOsLXWhp0qMkP0OVIs7NkG54KQSDZOVVagkAcfSWEyk0qQkJanxaktbEi9ZERRAUdhEOQt0UUxNj\nlfdYkB6PekKBn17/eL8HfsKBdCosIQwU5aSgOC8NVbxvbKJIU4zt3K5fwrpD9PK47OFrZDk02oOF\nlSksrc5heDiIgYE+9PYF0NPrpzfYg8FgHwYGexHo8cJFMbfaKOYmGXowoKPTxGWTijw4XBJdkBa8\nBi7pNfKCL15iH81uaVR9F1wEE6ll0OO1YbjPS8+1i4+1ExZMKltfvG6BAwEDmXmg+gjESg0HLS2Z\nwpkGbUKKShYMC7okCsbESJ2BaPyH//BxfOw/7lDrklyoAOFu/oFsH561EM4lCEcSInhf3kdmI6gW\nyMnpSNamIlGjhYbvrYpLRUVDaiWkJMr3iVPQJuWK05O1yExNoiUjRyf7PlP1b6iqIjA1N6Kjw8z9\n0wGzuQVGY6MCA4kUFBEKUpMTINUpUwh6kl8SvetjKtdCogVyjLNSElCco1NQIJECK/etjyI7MuLH\nzEwQS0vj2NyYxdbmHFaXJzAz1U9Q6MH0ZC+mJ3oxMernMoBJiRxQzFcXh7G+PKqGFAYIBDLEMM/n\nZinscwQDWZflxKALUxT8ad6XyIOPAi6efU/AinFCx/zCMGZmBzDG9xwa8akEwwBBwuW18BxpJ7TY\neext8Pus8AmEui2w2ZoJBTVoJVRa2hvg5DkisGDvalGRhNnJHjx9Ywa/8UtH8dd/+Gi1Wr6nR3ft\nYW8fGBT89n8+qN4nrW/sgRfDR89+aCbBv0rYf3gWwnbZ4217OJOhNTln3n557IH/ow/b/j/aX//h\ndXztS4focZlQX5mvoKAoV6esIFumtSWrkrdJUrJYCvYQBHRJFKZ4qaVPUZTSxoSC+OgIJNBkbn8y\nPciMZA0qpFgNTToTGmtKUFOSjeKsJJQSBmTooIaPN9eXwmSogrm1Hi6nGeMT/VhYHMf65jz2H1rH\n0RP7cfj4Xpw4cwjnLp7ClauXcfnyRVy8eB7nz5/F2bOncfLUMRw8tA/r68uYnZ3A6Ngg1tbnsXff\nKlbX5jAy1oteGT/uccBDAXDwc8RblC59HrcZUm/fSTEL8MLf7WhTsyKs5iY4rVIwqQ0+F73eXh96\nu71oMTSp6oCa6BhE7eJvpvir8sIUaq2GMBBFaIhJDEEBRV0NG9DU8ADvi4ngh5MJ3zd0IFGCaBki\n+EHBozAgyHPyuPQ40PC9pc+BrMfK9twmhoAiJt8ricdGoCBJE6eOl/QyKMiW6Zd5qC4rgaG2Cm2E\ngbZWIzo7KXp2K7rsnWgj+BgM9aitq1Q5BVKlUaBAYCAuaicBaLeKEsRH71LHWPIICjJTVZ0HqUPR\n0lgDk7Eavb0OrK5O4dixLZw8uQ/Hjm5g394FQsE45mYGMT8bxOL8MBbmgpiiaEvUYGFmABsr4zhy\nYBFHDy5hfroPo0EXxin+sxR/sQWK/fJUH5YJFPN83SLX57ku0QYpbiXj/z5vO0Zk+9lBTPM9x+92\nXhwiPPQF3fD6rXDK8BMB1evuQMDfhb5eJ2HCrqYtdnY0EQjq0WFpQJecF5K/QihwECr9XiuO7B/F\n5z61ie/+19MP/E99VBbSoh/Yw94+MCgI9zsoOXXtgRfDR8/u9/Z/hCGA9w0hbJc93raHs5Yv/oo6\nX9YXWx/4P/qwTWYe/K8/vIX33l6Hy1pHrz0fpdIWmB6i9CgooigIFEjIOZkCk54UqpkvmevaWGms\nEwFpp5wUF00BkiY7cj+C20YjMzkeJTkpyEtPQC4tT5eolsW5aagpy0NjLcWpoUxNRezqbIaD3rmP\nIj1BKFihoBw+soELl4/j1u2LOH/xGE6ePoBLV87glVdeweuvv4a33noTb7/9Nt7+5Nv4xNtv4o03\nXsOrr76El15+Hi+8+CzeePNVvPWJ1/Hiy8/ydedw9txJXLh4GhcunCJEHMGBQ1tYWp6h19qPkX7p\nu2ClZ0rPkcIgUYOO1jp0WZrQ1WGEq0uq5NkxSDDwOq1oMzahqkyPvCyKJgFJZmDEx1KEEwhMqRLW\nD1UllCmGIvwCAiL8Iu5K8PmY3Jcowf8BBOL1x1Lsw0bhl9fcvx7NbaVTYhRfF02TnhQSJRATKEiI\njUUij1eyGipIVDUJ9AW5qpGT2dhI6DHDSxDwuAlJbieFr4sefjtMpibU1VaiVC+NmLKQmS7toCUK\nsQuRuz5G6IlSQwgpEglKSUBBVhrKinJRW1FMuKtEZxvBKuAiEMzi1OnDuHzlNE5zeeDAGtbWZrG4\nMI6F+TGsrUxjbXUaK0u8PzeMdTneB1dx8dxhPHXzHG5cPYm9m7OYHu8lGLgxSTiYGfFikQCwOjeI\n9YUh2jA2l0axynWJMkgDJEkSlGjBoCQmctsp2gShYHy8B2O04HA3Ar12NQtBxN/jalcAI7MR+vq4\nLwgUXQ4TrDZCIa3LHloPwUEboaATk2NePHNjGr/2C4ceqSGEsBaF7WFvHxgUPHZJhg9dm+Cfsx8a\nQtgue7xtD2GPWrLhP/zZNXzv967jzs1xtDaVoqI4LxRWpihUFOerUr8ZyYlIiY9TYCAZ6zqKjEQO\n1Ni0Np6QoKVJkx2NihKIpcTHqEiBQEBWShwykuR+LHJ4v1Kfi+aG8tAURKsRwT43Rof9CA56lccm\nYef5+REcoEhcuHQMN588T4E5gP0HVnCQQn7hwgVcvXoVTz75JJ555hk8//zzePGlF/Da66/ik++8\njZ/66Z/AF7/0eXz9G7+AX/yln8dnPvuTePa5O7j91E1Cw4v41LufwKff+ySh4RXcvHkVZylaxw8u\nY//GNNaXxjA32YfxIS/FyKtaOo8N+TEy6MNwPwXFa4fH0UFQaIPZZCDYVKG0qFAVAEpLlrC+lktp\nIJWkoECKD0lRIhHzcARAIggCBSrR8OO77kUOJCoQFv9wjYJwzQJ5TN5HIEO2UcWRJJGRQCDDBnEx\ncfTi46CJkYTPGDW8ITNCUnicZEaI9Gko4/E0NdbC0Ulxc8s4vAu9gW54PS7YrB1okZwC+T0lhcjN\n5u+RMseJAjrScGk34WMHfxuPd5pWdbzMzUwlaGSjtrIErYZaOG1mDPX7sGfPCs6dP4Gr187j4qVT\nPI6b2NhYUKCwtjaHDYng7FnG1uYC1+fU8tSJfXjqyYt46/Vn8d6nXsWrL93GyWNbmJ8Jhspd99sV\nFCxN9Skg2Foexd61SRzYnMHW6oQadpDiRQIF4WTDMYLCBEFgUoYoeEzFVH0CAqDMRJBIgNdjQb9U\nPxx0Ew7scHvNcPB97AQLu1OGm1rvwYGLsOjzdKjEwyN7+/CFd9fxF9+68MjULbinRXftYW8fGBSI\n5yPv83gkGb6/NsGP5uVvDyFs249m4f/c/34ExiT/5o+u4Hf+3zM4vN+N2vJ8BQI15SVc16OUnmWO\nGjrQ3IMCgYDkOHqK8bGqk155Ub6yopwM1UQoKS5KmUCBzF/PTNEQBBKRnZaglkW5aRTSUnS0NcLv\n6cTURD+OHd7EkcMbWF2ZxAjhYGDArTy7tfUpHDu+RQ//EPbsW8Di8hhmZkcwPT1Jb3OW2y9hc2MN\ne/du4eDBfThz5iRB4Tpee+0l/MRPvouvf/1r+NrXvoK3P/kGReoUTp44gtu3r+Odd97Cl770OXz5\ny5/DJ/ncay8/jVeeu4qnb57BtQtHcP7UXpw5sQfnJTJBz/Xcyf04dnAdG/Rue7rpTToscNjaYLW0\nwNLWDJOhHnXVFarQTxY98mStzA5IUAIuQq7EXJMYsrvFiUTYBQZUrgCXCgwiQ0MK98CAMKDsLhwk\nxIfeKzZGE4oQcPvY6FjEx2mQGJ+g+k8kcF2gQCotChTIrBHpYSC9DCr1BWhrboC7y4KAx05zINDt\ngaPLihajATVV5dAXFyAnSwfpdaGJjSJkREDLY5nAYxpP2MuU9tc5UrkwAyUEgsrSAjTVVcBhbcPY\ncC/271nFjZuX8dTTNwkFF3D02H4sr/BYrc1j3741HD2yF0eP7uPx3oMD+9dw8MA6Tp86hGeevoaf\n/PSb+LmvfBZf++rn8Ol3XsHFc0ewND9GaHRhuNeGaYGC6T6sEQo2CQX7CQSHeV7s35zG/HS/KkIk\nwwdqWqKvE8NDHlWHQKBgkjAxSSgQ4Ozvd8HjkaTCRvikhDahQ6AgQJBwetrgdLfSuPQQELguQGCX\nqYwuKWhkVvUz5iaceOWpGfz+rz865Y/D15WwPeztA4OC8PvYvvmnD7wQPlL2vtoE/xdivj2EsG0/\ngknejZwvkofzoP/Sh2ky5/rrXz2MmelWlBfmoLK4CA2VFagrL0VhFr1FAoFAQCohILQeDU3kTq7H\noa5CD2ubEWaKojQ8kmhBEoVDWVykSjbMyUxRApJPIcnLljbD2WhurIbb2YG5mRFcPH8M7737Op5/\n7jqOHd3k9xhQoV8ZE16YH6LXOYsDBxaxuDiE2dl+TIkXP0qvb7wfE2P9GBvpxchQAMPBAKYng1hf\nncNxis6VS6fx4vNP4Zk7N3h/P4YGA/B5HdxmBEcP78PtW1fx6svP4flnb+Ol527izZdvKXvl+avK\nXn/pFt5581l8+pMv4J23nsWrL97ErWunsLk2jdmpAQT73fwN9DalhG9LLYyGStTX6lFelofC/HTo\n0lJVqWLx/tWwgQg4hT5cwljgQEwiCOGcApnCeP8wQjiyoIYTuF0IEmT4gI9LUiGXMuNAm0AYSww1\npZIhjNioKMRE7EIij1saxT0rnccgNwu1FSWwtDQpKPA5rfA6JLmyHS1NjaguK1XFp7LTU9XUxfiY\nKDWTRIYNJFKQzGMpjbGyMmTGQhbKCBjVlSWor5OCUbXw+exYp/BfJwg8/+JzuH3nSZw5y/21uYb5\n+RkcOLgXFy+eVZGZK1cv4NTpYzh+/BDOnT2BO3du4ic+/Qn80i98Bf/lV7+Ob/zSV3lOvImrl89g\njUARHPCiv4cAOe7D4twAVngurC0NYy9h4DDPjQM8RxZmB9EXsFK0pdthq4KCIYkw3K2NMD3Rp2x0\nyIfBPqeaNmmzEkx9FgKBE4NBJ3r6ZJaLGS6vAEEr7O4WWB3NsNmb0eUwEg6aCVDNqg7C4rQPN8+P\nqSEEmdL7KJQ/DutQ2B729oFAgXg84fd50EXwUbP31Sb4vwr7bw8hbNu/3h6VjolyIfvzb1/Blz+7\nH709dfT4c1FdUkIgKFNwkJOWghQNxUDaHwsUSMc8yR+gB5mfmQYzvU6fwwpra7OCAhk+SIjeHTIR\nE4KBFD/Kz9EhNytNQUEFPcsOswHDg34copf48ou38TNf+km8/NJtnDq5T40xyzjw+Jgf01O9FJQg\nFugZjo566eXR8+PjAgMCBqPDPQSIbvQE5CJvo+jL3HMXAcDP5wUaBjE1MaSAoIuerMUsNe6tvN+D\n+dkJisoq9m6t4tihDVw6s4+2H2eOb+DCaULD9VMKDD755jN467U7eO7OJVw8ewjnzxzE5QtHcen8\nUZw4tgdLC2Mqg729rQGGpkqYjDUEhSY0U2j1JeVIS8tQYCCRABF7EXeBAxF7iQrIYyoRUQoY7SIc\nCBhI5IBwICAhrxULbSvJhvJYDKEglp4897cmQUGBNj4hFCWI4Weofgy7CQmxyEhJQmFOJj36Ypga\na9QMCqeVHnCn9JsworGmCuU81tIMKVQCOQFSwyDhbpQgUROtOiTqUkOWl50OfXEuaqpL+XslS78B\nHRYjBngcJBLw9NM38Pqbr+LpZ+8oKNggFKysLqlE0Ju3ruGZZ5/i8iouXDiDy5fO4mkCwTuffANf\n+ZnP4Zf/09fwn7/x8zwfPoM3X38R1y6fxdb6IkaCPgz0dmJ+uhdryyNYXxm9BwWH9s9j39Y05mf6\nuY1N9T7w0cPvkQJHvXaeZ27V/GhyrEfZ6FD3PSjo7KiHVyooEgYEChQY9HehO9ABB6Ggo6sJrZZa\n2AgEEjFwu9v4OkKDw4QBbnNgvRuffXsJf/3dy49EMaN7OnTXHvb2gUDB4zfzYNu27aOzR2UGgkDB\nn/z+Nbz16gLs9grUlJUoKKgoKkJxTg6yUpKRRoEQMBATMJBIQRZFQnIP2gkFDksrTPVVKJEs9fgY\nJBIItCImsoyLgi49CdkUkuysdBRIhnptBew2sxLtI4c28ezT1/HWG8/j+tXTOHJ4HZvr01heGqGg\n+xAUD26AF/YhF/roKQ70iaA7MDLk4dLJ+zLH3KrqDEixHLerlRfsVji7WpTZOqXJTZvKGm811lKo\nq9BmqkdnezNc9nZ6+92YGOnH4uwwtlbHsXdtAiuEkI3lMRw/tIwbV47j2acuKLt26SjhYYVQsB+3\nCAzPPn0Jz9AuXTiCrc0ZFaaWYj0OuwldNkma7ERnZxcaGgwoLCxBWmqGCv2LuEv+gIi/RAjC1Qzv\nmYDBfVED2TZsIVCIRnT0D4AgMT5RQUFo+ICPxcm0wRgKehQ9fA2ydakql6CprgqWFgM624wqWtDS\nVEsgKEdJXg5y0tOQIUCQmIB0MYKBMkkqTUtGXpZOdb4sKshWZY6rq6RnRBVaWxths7XBQyAbnxjE\nocNbuEMoePudt/Hs88/i1JlTWNtYw9r6KgHhNG7fvoVnnrmDGzeu4cLFcypqIEM9n//8T+MXfuFn\n8Y2vfw0/99Uv4Sc+/TZeeO4Orlw8i821RR5revf9NiwvBrFvzzRtBhtr42p5YN88tjYmMTPZoyIF\nMoQQsg70+qwI9jlCuSGjMuWxB2NDkhviVs9brfVwOprR7TOjj+8/OMRziuYngDg8LWi3NcDUXg0L\nlw53CwKBTn4PO8/fUGfOpakuvPLUBP7kv599JEof36/nYg97+0CgQOZcy3s8Xu2St23bPhp7FMod\n/3/fv4Z/+v4NfOu3r+DG1WG0W/RoptdYVVyCouxs5KSlITslBZlSi4DiEgKDGOgSNQoAGir1MFJo\nmqrLUUaxyKYXmRwXGjpIoXcpgKAKGFGUsnMykMvXFJdQnAzSvMhMsfercLMk+Z06cYAX+EVsEAi2\nNmawhx7g6LAH3aoTYjOF36JsoE8uylYCAi/6vlZ6bSZ4XEbVVlfa38q2dmuj6pjXaqygVXK9TpXd\nbagtQW1VIeqri1FfU4LGulJ0mpvgcbSjT+bUDzhUdT2ZGy8V9pZmB1RY+uTRNVw4sw9nT27hIAXo\n2GGCwdl9uHb1GG7dPIVrV47h9Kkt7Ns7i/m5AQxQNKRCot/vxuDgML3QQQKXC7W1DcjKzL03XCDR\ngR07disL1yEI2z0ouJtrcA8OImMUEMTFxRMCpICRVDXUEgoEDKS9Nb38RGlZnYAkyQFJSlAtkKvL\nS1Quga29BWZTo4KBckJdYY5OHd90qTlB02kJAYSDnLRUlS8iLZRL8nNQWpSvGiI1Ev6aCRNNTVIS\nuRZtZsKV20oPO4DFpSkcPb4Pt568gk988m089fTTvH8My6srWN/cUMmhTz31FJ5+mmJ/5TLOnjuD\nJ58kQLz9Jr7ylS/jl37x5/ELX/sqPv+5n8abr7+CO7dv4uL501hdnufx9iAYtGNjY5zguIyjR5ax\nl3Cwf9+cgoJ1Ap1ApEQJJEIgFvBK3oTlXs+FiWE/pggFE0NyjL3o81t5XBrR1dUAp4tg4Dejf8BG\nKHAQCiRS0AILn2vtqEGrpZpQYOLzXRgb8fBcI3zamjAZtODGuSB+79eOPRL5QffrudjD3j4QKBCP\nR97j8WqXvG3b9tGYJOPK/+WjnJYoUPB3f3Idv/aNszh9sh8trSVoaaxFRWEhcgkEGVotclJT1BCC\njl6jAIFECnLTk1FTWgRDTQWq6DUWZKbRu4wjDESocrcCAxlJGlXQRqoh5uRkqqp5xfRWZd67gVDQ\n1mqgcFoxMtxL729SDQWMDHVjeqoPa6sTvODPYDjoooffpFofB+jJDQ3KBdnFx7sUDLh4QZfnOujJ\nSZvkro562DrqYJH+B02lFP4CtDRXoM1UBUN9Kb3lLOiLMlBeko0ymr4oEzXlBYSFUnrNFbDz9cMU\n9KG+LrUUOBgbcmN2qgf7BQ6OreM4gUDWxUPduzVDgJkiyExgc3MKe7am1focwWCI331wIICxsQks\nLi7zsQV43N2orKiGNjFZiX5oqCA0XKBMQOB+U4+/Hwokx0AjQJCgVVMeU5Ol94G0TU5CCuEgPTmZ\nnj2PXWqq8vIzUpNRnJetpiFKlECGCwwEuVLpcCgQFx+thoZS4mIJezxe3D5Pl4YiwkBZYR6qSosJ\nFHrUEAClGVKXVeb2WwiQRphaGggF9Ji7uzAxFcTmlgwRHML1Gxfx4ssv4NLli9izdwvz83N8bgNX\nr17Bc889q2aLXLx0kduewM2b1I6331JQIEDwsz/zRfzke5/Cyy8+i1s3rhAYj2FhdkINC40Muwhe\nMzh1clPZ4UOLtCUc2D9PcBjBKI+ViLVEACSfwO9pR7dLhhE6EexzYnzIp6BgaqQH4wSEwT67AkrV\nadPWSDAgyAU60Evh9/ktCgKs9iZ08jxrMVfB4RIo4PmhIlVuBQU97kac3O/Dr33tAP7iW+cf+D/7\nMO1+PRd72Ns2FGzbtn3EFoYCKQv+oP/Th2EyjeqvvnsNX//Z0zh6oJfetB5l+VkoztKhMCMN+ToC\nQYp4kbEUjSi1LMxKQz2FXSIEDVWlKM7NgI4AIOVuY3d/XDVAkla6ORnJqnteJqEgP4dAkF+Acn0p\nxaUKTfX1aDFKS1opg0tvus9LT7+TANACt6tNJRkuLgxiZqYHvb0WenK1sHfVcZ3PDco4cQf8Dguc\nHUa0G2rQVCVDHjkoL8xEZVGWWq/R56G2NB+mugo0VBShNE+HvPQk6HN1qCsrgEHGw2sIDuVFqOa2\njTV62DoNGKJHOdjvRH+vHb1+GZ/uoJfapQrs7Ns7j4P7F7G5PoX9XD90MCRIa6tj/L5BLC8NY31t\nnGAwriIG/X0ueD129Pf7KWgD6O3pRru5BcVFBYijEO/YsQNPPLGDcCB1CmTYIDSMsHOnNFISi8bO\nXTHYtTuWpsHuCJmGGIm4qChVVjqDACAFibKl+2FyirK81HQU6Qhh6TpkJyWjJCsLdaXSqroWrQ31\nKoG0OCdb5Q5IJEEr0Z/4CAJcNAqyElGSl4JyglNdJfdRvR7NDWU8Xlw2lqHDIpn6Vh4fD8WzC132\nUFVIu7MN/YMeLC5P4PjJ/bj55AXcunIcpw6vYt86QWmVHv3WAi5fPoPnX7iDF156BheuXMLp82dw\n7dYNvPz6K/j0T30an/3ce/jUu2/h5ZeexpPXz+L8qYPYz9dPDXkw4O/A3HQvDu6bw8njMlthC6dO\nbBAOtnDwwKLKORkgxPkDnej28fyQYQSZScDzScxLUOgjGIyM+jEzG8TkVD+Pj0MNA7icJsJEG8FT\nhqfsPP4OlTfQxeesndIXQ7onSkfORvW4JC/KdEdbRyM8jkZsrjjx1c+u40/+x0dftvx+PRd72NsH\nAgXh6YiG937ugRfBbdu2bXu//Vv87/5vTDKm//B3L+ELP3GU/18PhSAD+hwdiuj5F2akIo+Cnp0k\nYWUZMohVolpbWoQOYyPslha00XMsIRTIDIPEWClYtJtCE4WsdGmhnI68LAoWwaIgJ49QUISqMgp0\nbR29eAMBxASPswv9PV41rt/tttILFa/NQOFpx9SkD9NTfvT1tsNqrYLZXAa3u4EXeyN8nhY42wUI\natFUSSAozkV5fiYtC1VFOajV5yuxb6woRn1ZIUr5HbOT45GmiUJ2SjzvEwxKQ2BgrClX4NDSVAWL\nuV7VuO/2WFTN/oDPSlCht9hBj9BvVXPeJ8cDGB/zYW52ACv0TldXRrEwP8j7/QoMBAo2Nyb53DC3\n7aNXGaBX2YuhYC+6vU6YuO/y6bnHREuFwycIArsQRZEPQ8HO90FBDKEglhZ3FwriESVQEB2pChJJ\nG2TJBcij5RIMclJSUZCWjmJCgSyzEhJRkZuHhrJy/t4yglGuAgjJHZDy1NILQZpYpSVEIDstGoU5\niSgrJPRV5qHdRM+4swlOmZ/PpYNLaT/cLx73mJSU9qjmQjKP301wCg77sLw2jZNnDuHJpy7ixsVD\nOEFg2rvK/bE6iX0bMzhz5ghu37mO5158GteevI7LN67i2u0bePqFZ/HG22/i3U9/Am+8+RKeuXMN\nl88dJqiuYG2eAi6eea8VS9zPe7hvJbHw6OEVnDi2riIGB/YvqGTU/gGKuc8CH4Ggl+t9hEunO1Rz\nwMXvLiAjZY4npwcxNtGrahLI1EUBAh+flwhDX8BGIOzi+WiG3UoosDSobbqsTehsr1f3ZWZDgOCh\nHu+sx8igCe+9MYc//J3TH3m9gvA15d615SFvHygUPD6NkLZt2z5a+7f43/2oJgmGf/8nV/Hffu0i\nXn5mDQM9RlQUp6AsLxPFWenIT6enn5yAjESNAoLslESKSpZKKHRbzehx01NsN6nStioETcFN08ap\n6ICMUxdTpIvyMggEGSpKUFpUgpqKylCUoLmZF1gJ88p0sX7MTAYxEgyo/gOhOvNtGB1xY3amB8PD\nDng8vDhbq+F01hMMGilQDWhvrqPXW4KKwmzl/ev5WRWFOagiIFSX5Cnvv5pwUEI4ERBIiYtEYtQO\npGoikZOaQJjRqW2aqvRoqa9Eq6EaLcZqmFvpERICZKqhAEJ7Wx0aG/Rc1qqCOJLI6KW32Ndrw/CQ\nWwHCxLjMgw/w+/YpMFhaHKbnKstxLC/OYGFuktsMwe9zqwhJQX4uNHEyLLAbERERhAKpdPgvQMHu\nH0BBdESUmiqYnBivogS5Oh4rnY7HixBGEJAIQXFGJvIp/jqNBhV5eajT6wlMeSp3ICFa6keEKhym\nSi2FWEJcaiwKshKgL0hBdVkWzM0V8FMUR+gRj1L8pcvhMJcyvDM2Kr8zqCoD9vHxbgnT99gxOt6L\ntY05nCIU3Lp1HtfOHcCxvbMKCvasTWHf5iyOHduLq9fP45nnb+MpKST17G3cvHOLyzt46fWX8eZb\nr+DFl57GjevncPLIBj3wScxzv04M2DFOMJBZB2KSYLif73386CpOHt9Q0ZrFhSGCigteryQM2jE0\n4lVNkDxeC6FA6g6YFcQIKMh3HSLESEtlEXg/twnNWCA4cL2XUCGzFwSEBATEpCCStaNBQYFEF+R5\nmfpoba+D11mL52+N4tvfPP2R1ysIX1PuXVse8rYNBdu2bY+AReor1X/mo+iW+I9/dg3/+OdP4de/\nfgVH9/fD2JCPSn06KimsJVk6ep5aBQNpkh+g1aihhKqSfIpxPXyOTvT7XHB2ttGzzEFKQjQthiKl\nRSHFtqQgC3oRa1ppEb14fQkqy0pRWyVQUEsoaISto41i48fK4jQO7lvF/j3LSmwkpNvNC/NQ0ElR\nHaIFMTHhRV9fB3y+FoJBIzraa9HaVI1qevsleToU5aRxmYHyIn5eAaEmN50il4r8zBR6xXEUQamw\nKE2cdql1eSw3I4mvk8JL2agpK1DFlJoNFWhuqlBwIKHyTpqhsQzVlfloanTmHRAAAP/0SURBVCgl\nMNTwsQYVzZCQskxpC/i5L/rsCA66VB5B2EaGPZifHVFJcovz04SGETV8YCEMlZfpkZqShJgYwgDB\n4AfDB/cDAW3XfVAQEYICqU2QECslhhOQKZECgYKMDBQq42/PzIQ+K0tFCjLi41GanY0KAkGxTDck\nSCRER6q2ySlSbyJBKiBGoSQ/FVWlmairzOV5oIeXYDZN0V9fHscGvfylhRGsLI2p5fzcMJb5uDQ5\nGqawSnng3j4XpFfF6voMjh3fi0uXjuPCiU0c3pwiFEzgwNY8Du9fwpHDm7hw8STuPHMTL7z6Ap59\n6Vncef5pPP3C03j+lefx4svP4Kk713H+3FHs35zD3GQ/JrgvxwkF0yMefpcxLMz2Y5nAtZfvffLY\nmhpKkERDAbFhlZhq5v53Y3KyB2NjfnTT+3dS+J2EOY/MSOjtIhB0Ew5cPJ86FQiEZyxIdKCbQNrL\nYypRAxch0NJWoxJW21ur1X3ZTl4jMCFQYOuoh8Nag/MnAvidXzmOv/veRzsD4X49F3vY2wcCBVKy\nVd7jsShctG3b9ghYuFbBh13ASBog/eOf3cIf/fdruH11Gr3djagpz6A4aJXnLZECiRIIEKTTsrhe\nxMeqpRpeUy1chAFvlwWdrQZUEBQkYS2D3nh2uhb5WWkqUlCSn6Xq4VeWFioYEKuvkXyCEBS47J0q\ngez8mWN46YXbeOO153D54nHVQU+qyw30dyko2LM1hc2NcczP9/Gib4fbbYDNKm2NWxQYNFbrUVdR\nhPrKErUsJZDkZybT+6UnTcuj+Ivl8LuJyXp+Vgq/YxrhQQd9fgbBJgs1lYUwNleqQkTSqVGKEZl4\n30hQaDFV0UuUevr0KiXE3CO1EKSrnkVFNSRyIGPNToeRMCFJlFVq2W6WokYGwkQzl82EjnrUVEvX\nwXykpSYjluIuwwc7dux8aCiIi5Z+BlJIKF41pMpKTUWeTodCwkAxAaAsJxcVefkqQlCWk4MiiSKk\npSH/7jCD1CyQGgSJcdHQxkvvAi2a60pgMfG3U/gc9IhHB93Yond/7NAqjh5cwd6tOezbM8/jMKMq\nTq7xubn5YTU+39vnpNA66Jn7+dgoNvcs4PDhdRzdN4e9K6PYtzaJY3yP08e3cOzYHpy7cEJVOnzl\nzVfx3MsEgddewstvvML15wgEN3Dp8hkFD6sL0iHRo6oYChTMjfsUFEjSpwwjSKTg3Jm9OEX42L93\nTkUKRke7KfQWjIx0Y3q6X1XEFChwULylZLGLx8gXsGEg6EGgxw6vzE7gMZSEw34eU5mxIBGDAYKD\nDCOI6AsMNNUXKzCQKIIUQhoacCpAkOEDl70ZXlczNpe78POf38D3P+Jkw/v1XOxhbx8IFITf40EX\nv23btm37P+2jgoK/+eOr+PNvP4X33tqLkQEzDPVF9BSzKPAZKJXKg9IqWYYOtBrkUPCLKPRS6VA6\n4MnwQYeJ3jqtVaam1ZSjQp+vhgpyM/g6Cq/UxM/PTlORgqoyCja3qaM11lWqDPaOdqlL78aBvWt4\n4dlb+NIX3sMvfu2LePP153Dm1H7VHGd0xKeqGa4sj6kEvpmZPnqADnp9zSqU63XyYm9tpadmhM1i\nhNXSzAt4Az+jHFXlBSgvoTjq81BXXULBL0K5PhfFBfSm89JRlE8YKMqmI5OvnpNt6mpKYDJWoV8a\n46gEQQsc9hbVUnd4qFt9nzEK39REnyquJB6z3JfcA+mwKLUJWluqUF2Zh8KCVJRyXxYSOLIz05GV\nQTFOT0UaBVmmDMZrpDqh1BsQENhFANhFKAjNRngwFMQSCuJUoqH0N5AmR9p4DVJkCiHBQKaOChTo\nBQjy81FVWIj60lIYq6pQwscz+JnpUq+An5+Ryu8gTaviolTnw6L8bHS0EfRsBrgpdH4KpzQW2kMA\nOHZ4jbaqgGD/3gU1VXR5SZIqRzE9JTMsuhEI2NHNfdQvZanp2c8v8HgRHDboua/ODWCLx+/IgWVV\nMvr4sb04Tyh4+rlbePvdT+DVN1/Ga2+9ipdffwm3CARnzx/HQQGClSkVqQhSrAUKpBHSwmQAKwtB\nBQWrPB+OHlrEpfP7ceLoKjZXx1WNApmt0uPv4HHxYmaqTxW56qbIO/i77DQpUezz87sOulTegRQi\nEggYGiDUUOgFDqT40bDUxujrUlBgbqlEY20hujoa0CMAIcDg71TPuR0muLqauWzCzFg7fuoTC/iz\n/3lRQfeD/ncfhoV1OGwPe9uGgm3btkfAPgookDyCP/ivF/G1L57G0rQDhrpilBdnorSQ3n1eKvIz\nkhUISA5Bbppk62eoYQMBgsaqUnqVlao1rpFwINZubECLoVaVzy3Oy1RQoEtNUKWNZRihqlygoAyN\n9RUEglp64QY47bwQD/pUNcPnn72Jz33mHXz1K5/B22+9ECpgdGgde+id7qUYyfTE2ZkBjA57Vahe\nPHBTs4RzG9BhbiIgmODoauN7mtW6mY+bmvn9DNX3lg11ZaiqKERJURbyc9NQQDCQ9UrCQ12NHvW1\npao8caupBlMUtpXlCczPDmGa6+IZ79+3hI21aSzSExYgOH50E4cPrmGNz42PBtArXqe7XfXf1xMG\nUpOjCADRNA3XpXaAtDmOQXTkbkQQAnbTVD6BGjr410NBQlysShBMIlykabUqeVCgoDQvDxUFBaik\nSR5Bc1XlPSiQAlQZMkWRxzVFZpMkxiFTlwx9cR6s7fWqu2CAAimh9AlCwfrKOA7uW+AxWlJQcGDf\nooKCxYURNcwzPtYbmoXg74K3uxN9/S6MSsXA6UFMTQ3Ss/crIV8l2Ek+wXECxtGjWzh/8QSeff5J\nvPuT7+CtT76OV954CXeeu42zF0+pFtcLixOYGO9TDZAG6L2P9jswO9qNJcnXkGTOuX4CywROEgYu\nnN2HwwcWsDQ3qKaOimD3EgpGhzyYGg/Qq/eqSI6dwn0PCiSvoN+phhKc/M0+Pi9QINMZxYYJDNKR\nUT5bogBmUyWhuRgeAoBAQa+vA/3cR/I53dIfoYvns60Rwd5WvPz0BP9b51S+zoP+ex+GhXU4bA97\n24aCbdu2R8A+TChQhYr+/Br+4ttX8fWvnMLBrR7UV0kCYBYtk4Kehuy0eNXqODMpnmCgRXG2DjX6\nQjRVl8FQW6GiAg1cb6QJBEgBnM62ZoqKEUaCQlVZIQpydQoMFBQUZtMTJ0zUl1OcpfSvAS5HO/zd\nXRgZ8mPP5gIuUyRefP4WXnnpNp59+ipu3TinwODm9bO4eP6I6r8vvQ5kiqCE75sN5agoz0VZaZ4S\n8xaT1CmQqWMmmvHuMmxGNDVWopbCXylQUJyFvNxUZcX8zVWVRWjgd5PSxM2GKnRampTgHTm0psoX\ni507cwjnzx7Gwf0rWF+Vwkpz6ntdPH8Ux45sqna/0xTB0WEfwaSF8JFHCIiAJu4JLmMIBVokaxMR\nHye9CiIReRcGoiOjEEWTnIJ/HgpCUxLvh4LYmFhVrTA+NhZaQkF6UhJy09PV0IFAQVluLkpzcmjZ\nKM/LRVGG5IckIytFqyyDwCftjqWpUW52Gop5jDra6uDztKkQ+hBFWMRU+ghsrE0SCOZUlODwwRWu\nU4AXxzBD4Z+QZL2gV+UU+P02DA56McbHJLdgVLpK0tueGevG4kw/1pbGcIBgIQ2vzl84jmeeu4lP\nyUyDT7yKpwkEFy6fwYHDezC/MIGR0V41lVMKC0nRoXEK9MJUD9YWglheGMTmmkQeFnDmxAbOnNwk\ncExhlvAxJEMAhMaBHqsS9YkRH0a4lBbKkgMiYOAiAAgU9HBbGUrooqALDA312zHO3zwx0k248GBk\nwKkASaIDAgVtxgoFDwIEAk3DfF4s4DUTCPje1kY+b8Tl0334f792UM3qedB/8MOwsA6H7WFv21Cw\nbdv2CNiHCQUCBP/0/Vv4jW+cw5E9AdRV5qO8OB8l+dmqAJGULM6mUOi04lFqkEcvsqwgB41VZaom\ngUBBHUFAcggkuVCK3wgEGBur0WZqQEtzHZrqK1FdUYyi/Ex65DpVH7+uplSNzXe0N6hs/j561cEB\naZPsw9LCKMV2GSeP78VRCsaZUwdw/doZBQnvvP0yIeEahXcLM1NBDPS5+XoLmhrKUVSYgZy8VJSV\n56O+sQJGgkFrWwMsHfQIHbxQcztZdhAKautKUV1Toqyyqggl+hxlst7M19nsMofdhm6vFT6vdNXr\nVt9FwOT2kxdw7copnD65n4K4hM31OXrOa7hEYbtx7SyuXDqJ0ycO0Ftdx96tJVWAqa2lHjrClSZ2\nJ6IidiI6QqYQxvB+LL18aWAkLY5jkaCR5kYaVbJYyhyHoOA+IAhDwe77oCBSeiWE3kMTG4fkBIp7\nWhoKCAR6AkFpfj6KMrlvUpKhS9AgNS4GeWmEs9xMlORlojA7HVk6LbIlzyInjfsxE6XcFzIHvzfQ\nqcLuk/TwZTk9KUWlRghuM/zNcoy2cOzohoreqOGT2WHV3XKEx3Gg340xKQo0OaCaVA0REIK9NkwT\nCuan6eHPBendT6sS1ucJU7dvX8Krrz2Hp5+5qdoqHzm6Fxubi5ieHkIwKH0sutT4voztT/K7LM32\nY3N1FPu2JnHy2ArOn97C+VNbOHF4GXtWxzE7TgDo60KQgj0u1SgFCmS2RL9TDYnYrU2QJkYyc0Ty\nQPwEB2lu1NHJc5LLQX5XiTRM8LNGgy4M8H2ctiZYWqsIBRWqKFYPISHI7yPPT43x8/g5AgUuiRTI\n+3c2YnOxC5/71DL+1x9cfOB/8MOwsA6H7WFv21Cwbdv2CNiH1f9Awpn/8Kc38Ef/7RpuXZqCy9ao\ngKC0ME9VuyugWOQQAnTJ8dBJWJnLgsxUVBTlKiiQMsa15cUoLchGHh/PTtOq/AHJIyiX6X/lRap1\nrgwPSESgkrAgUQJpfGRoqIS5tVbN9+/lxV7G4SUsPzczRJGdVQIsoitetywVFLxwC5948wUlvFsb\n8yqqMNjvQY/fTtGto+dfggbCgLm9CV3S18DZrkDA67OhX7rp0bq5baetBe0Wg4KDDqsRZksTDMZq\nBQPyutGxPhyQRkgU/iNHt/jdAgSPdvW9BAbuULwEVCQ6sLYypcDg7OlDuHDuKG7dOI/bty7xO57D\nlYsn+dgxbK0vqCJM+RTc+LhdFO8I1bFQGhVJXwIRchF08fY1cVyPiUNEhADAw0OBQERMVLR631St\nHIcMCn4eygsLFRjkpqYQBmKhjYpESmw08tMJT4Q7aXRVnKNDRlqCMhlCqSYYtZjq4HK0cB/TI58b\nJAiI2PcoKFhaGFaRguOEgfNnD/I3HsKpE3txgCC3yX2yTDiQqIFEBiYJCNOEt3HuU8nJGCBkzBIw\nlmYHsTQ/hL2EixPH9ygouHr1DG5y3505e1QBwb7966oa4uLiOMbGevl6p5oBIFAwNdqN5bkB7NuY\nJICt4fqVw7hx5QguniVIHlzAnrVxLE71YoLff4zeuwxbTNLrHxco6HMoKHDcBwWSY+Dzd/DcMKC9\nvZbPN9+NLrgwPuTBcL8Dfk8bOtqq0WIoRXtLJbxOE8YIGmJBwkcfX98r9RBUqWMDrHwf2W5y2IzX\nnp3Cd7556oH/ww/Dwjoctoe9bUPBtm3bI2AfFhT8/Z9exV9+5xZ+8hN7EOxpQ00ZPeb8PBTlZqva\n9jm6NAJBomqLrNNqkJ2qVV6lJBdWlxaqksaVJfnQ52ep2QUSURAoKJB6BAVZCgzqpBBQUw1ajHVo\nrK9EjRQVosnQgaW9Xo3tSoRAhgJkvF46C0rewFF6j6dO7FOh+tMUYJmB8OStC3j6qauqJ8LG2iy9\n1wGMj/RhaMAHaWLkdLRjjB7p3n0rWOXzwyM9cLk70NPnxghFJUiI8Pq66A2aQ8DA5xwUe5u9lXBg\nQjefm50bxekzh/HyK0/jvZ94C88+e13lDUjBojl+P4leXLl8UsGKAMHq8rSKBhw/soegcPhev4Zj\nRyhOh/Zg/941TI0H0WE2IofgpInZjbjoqFBbY2lYFK9VzYs0saEIgSyl/XFkhNQokMZH0iAp+h4Y\n7NgRiR2yVHAQQyiIxW6CQXRUbChSQLBI1SbxGOQS8IpVA6uCzEykJ8QjiZ+rjY5EqiYaeekpCu5q\nCGqVemnprEOZPgcN9aVoa62DhaBko2j201ueobguzAcJBQEepx4sStvqrVkem03V9ElMEkHlmO3Z\nnFf7ZXlpAis0OZ7Tk4MYHvRR0O1KNKfpUa8QLDbXJnFg7zxOndyLy5dO4Pr1MwrEDhIIN7YWsLI6\no3IJJBdBpjnKtFQJ00vi3wy/y8byKI7sX8D5M5t48sYxPHXzJK5fPIjjhxaxxeeWpnsxJwWlRrqx\nKPUiRn2YGHRj0NdJLz7kyUtSoMwSkdkJXl877BR6q7WRzzWip9tMMOjEIOGgt7sdHoJCh0QJjOWw\nmmsQ8BIgJRlRgICvDxAaBBykIZLkE3RZ6tR2fd0GXD7dj9/8xtEH/g8/DAvrcNge9rYNBdu2bY+A\nfRhQIFGCv/zOFV6ozmF9zo3G6hIUEwaKc3Mo7DrkZ2ZQ5AUKklQP/XRtHLJSE1FA8ZeQswwVhE2g\noCg3Q4GBVCyUYYJwRECgwNBQBVNzHUwEA0Njteqz39hQrsZ0eyS0O+ZXMwpWl8fpjc/g4H6K7NFN\n5Y2fPX1Qjd1fPH9MhefPnjqEwwc3KD5LWF+lV7owidnpEQpWUN2/ev0s3n7nFTz73E0cpLcvIBAc\n9hMK+lSkwO3pJAhY4Om2hYYHCAL+Hge3CWB5dVoBwXPP38Kn33sTn//Ce3jttWdUeFu8VCnQs2eL\nIkZY2b93mR70KL+zlDZeIQTsoSjuJUAs8PuMYmxkQBVg6u/phtXSisqyYqQlJyA2SqAgGgmxUjUw\nEYkagQLJLUgkEAgcJKjWydI2OdToSForyxTFaIJAJJ7YEUG7CwZ8bBef200wkOiCDD9I1CEtWaI1\nBSgvKlbRAil7nBwbjaSYaAJBrBoGkohPdWm+KuPcQKuqLICxuQrWTgMcjhZ0dDaio6MefordGL3y\nKYLB6Ag9bXrc83NBbErY/9AqTlPQT5/ap47XoQOh/AqBgY016VK4TOGfpYAP0pP20JMWKOhQYfY1\nirYAwZGDywoorl6hoBMKzpwj8HEfzy+OYWo6SLALqFwCqTLYRxMgkNyGxdkB7FmfxLFDSwoKbl47\nQig4gRuXD+Hk4SXsWRrB2mw/VggGK1N9WJrowYK01u53oo8g6uTvc/P863a1qt8YoJfvIQQ43S2w\n2w0U9Fr4ud7LxwKeVngJBE5rgxJ5a1s1X9+gnhsMSG0OC3oICGLyGndXk4IK6YHgpnm66rB31YGf\n+/x+/OOf38A/ff/Dr24Y1uGwPextGwq2bdseAfswoOCfCAV/9j+fxItPzsNYX4ayIvH48xQUZKel\nqjK5Ui433Ec/NSFWgYEMEQgYCAjIsIEsZXaBDBnIsoSPlRbnKiCokTa69ZVobqpRQNBirFdLY3Mt\nzG0NKmQrrY4FCKTFsMCAeJsiNOfPHcKliwQB2hV6kVcvn8Kl88dxaP8a9m4uKjA4eXy/arF8cN86\nweEYXnzhNj77uXfxi1//GfzMVz6DV19/FsdPHsAcvdXh0R709rnhozAJDAR6XQoSRscpHBSu02eP\n4NaTlxQQvPjSUypS8Pqbz+PO01eV2EmkYHDAjbXVKQUJAgMyfDE3M8znNwgtUkthlh5xgN5nJ9pb\nDWg1NqCpvhrl+kJkZ6QiIS76LhRIQqBUDUwgDISiBJqYeIp6yAQKxEKtlAUK3h8pCEOBDCMoKIiM\nu9syOQ5JiYnITNepSIHkFMgMhKQ4Pk4gkJkG0tpagEC6V9ZXFqNZEippDfV6HpM6Nd3S5TbDamuG\n292KwUEHJib8GKOQD9ArHqEgz0my4caUqlOwtSlNoBYIRosqorIwN6JsfWWaoh+CgrmpIYwNBTAS\n7Fbj9NPi5a9O8BhKTsImj90hXJbCRueP4hD37fz8KCYm+wl0PkKbDU5HKzxuKaVsxySFXXIR1pZG\n1ZTDA3tmcO70Bq5eOogbVw7jyvl9OHF4EQfWJ7CX4LFncRgb3H5lsldFDMZk6qCrDR4BAodJJQ5K\n3oRAgYvi3+VoRifF39Zeo2Cgz9cOv4v7hCJv76hT3r+jsx4egoNAQb/forbp8ZqVdTtNahhOrNth\n5H0j7HzNzFgnnr89gW/91knVNVESfB/0v/ygLKzDYXvY2zYUbNu2PQIWTjSUtuMP+k/9W9hffucy\nfuELRzAZbENRto4ikYvSfApJZoaqgZ+ZQiBIkg570mpXo/oYiGUkS+GfFOgLslBG8ZfEQv1dEJBk\nwqaGKiX+kmTY1tKIVkk2NAkM1KOV9zs7TBSedgKBTTUYmp7sw+oKL+77FultS1LhflwmCNyg1ygJ\nfTJ+L8l9krwnkQJJMBSv/NyZIwSF0xSUo4SIQ7hx7TxeeflpvPvpNxQY/OxXP4cvffmn8NbbL+Hc\nhWPYd2BVhaTX1udUSProsb04QxC4fOU0nnn2Bj7xyVfUaz/x9st4/oUncf3GeVzm5x4/vhfL9Fql\n7sAIRWpleZJiuIjF+XHeD2Bo0I/ggI/C4obDZoGxqQ6VZSUoys8hKGVTnLORpUtXLYsFBmKjoggA\nGgKClmCg5XriXePztNgogYKQRXM9QkFBKFKwk2Ag0YKQEQoEFmR4QaIKUdHQaDRIk6JF2TnIycpW\nnRETY/mZEbuhjYlUlQvzdKkEuUxU6fNVtUZjU4VK+DQZK2GjUHq7KYI9VnjEe+7tJEx5MDHVg1FC\nwWDQSUAIYIXHa//+Rezft4CN9Smsr9EIS/MzQUyN9RECgoSCKQr2EjYIT3OTQUyO9NJ6EOx3qGEI\nmdooUHD6JI/l2YM4c5qAd3hVVUUcHu5GP8+NgN+qyltLRMlL8R4OujE/O0D4GsUqoWCFgr+5No6z\np9YJjHsJBHtx8RRh8dACjm5N4fDGJA6ujGEvoWB1PIDZQTdG/fTsna3w2Y3odbdhQO7z9wb4e50U\ncAECC4HAZq5Wnn8fhd9LUBBI6KKJ5+/jdgF3i3q+n0AwQDCQxkwCCAIBLr6Hp6sJPQIVEn3obOC2\nzdiz5sYnX5nHf/8vx/C//+jDbacc1uGwPextGwq2bdseAfugZx/I0MG3v3kRz92YQXtTKaEgAyW5\nFLBMHT3LUHRAKuJJ2FnmuwsYSLKh9DBQUJCZonruyywDqUwoS6k5YKboe1xW9FEge3xOeN022G1m\nXmSN9EINBIIWXty76H36MTE+gNnpAQouPb51epX7lyj2EiXYh4sXjhAETuHJW+fx1JMXcY3CHY4W\nXL9yhs+d4WNnFBSIXb96DjevX8BTt68oT//lV5/GT/30J/EzP/sZBQZvvPUCXnjpNp574Raefva6\nGmIQEHjp5Tt4/Y3n8TaB4J13X8fb77yK116X7PfruHDxBA4RQFYoblJzQCIFw/R0ZXxcZj1IPYWA\nT6ZDdqCdv62uugwNtRUoKylAbpYOutRk6FKSuExBapJWTROU8X4NPfqEWBk2SCYYJCmTdbF4goJA\nQXSkDB/EKRMg2H0fFNxvuwgFAgQKCiKjEB8fD126TnWflGiBfGbM7l2I2rlD5RIoKEhPgZR+llLQ\nhvoytDRXEeCq0dZWo4r5BCiQwWE3giMeDA45MTLeraBgnEI+MRnA0tII9u6dx+FDK2pa6AaP3erK\nBCFpRO2nUYLT7NQgNrjf9hOeVhbGMU1QGCdACRhIXQnJUVijWEtnyZMnNmlb6v2k9sT4WAA9AZn1\nQYGlSbOlgEz3G/IogJSulIvztLvL9dUxnDq+jHOn13Hh9AbOHl/F8QNzIShYn8CB5RFszfA8G/Vh\nmkAy2t2BAUJBwGFCv8esxLwv0Ak/vXwZNujorEcHxd9uqUUvRV/E3ymPtVSopTw2GCAAEAbkOVkf\n7iMwSutkLtXwgYoSNCtYCPZ0qvs+twkTow4c3OrGFz69iu9+yE2Swjoctoe9bUPBtm3bI2AfJBT8\nIy9E//jnt/BfvnYW+1e8qpNgaW4WgSBdzVfXaRNUydvstBQFBpliaWJ8LlnD5xKQn5mKSn2BShqs\nkyGC2nIFBF4CwdgwPcXpUUyOBxEcDMDX7YDDIW2OzfC4KThBemyzYxSSGeVdSg6BjNNLIaDDB3lB\nPyo98fepOgASTr5EL1/yCk6fPKByC25eO6tmH0imvyT0hTP+b16ncXnnzlU8L1MXKfCf+9y7+MIX\n3lP5AZ9+7w18+tNv4JMEgBdfvK2iATJMIGAg959+5gaeeuoqbt68gIsEggMH1jAzM4LBAS+kIZPL\n0YregPTM96oZD1IUqb2tkV52Ler5+8spstUVehQX5iJLl4bkREki1FDsNYSAOAJBDKQUcXyMtCVO\nQlJCGp9PRVJ8GlK0OmXahFRCQQIid1PodxEGaAoKZJhAQcEPwEABwd0oQQgKokNQoNOpSEFaSor6\nTAGC6F07oY2JQppUL5Q6EznpkL4OzQ3laDPK1NFqtLZVq/n5forY8JgX07N9mJjuCRmhYGKyBwuL\nQ9i3fwHHjm3gyJE1NeSjgGBhhEI/wP3iQrDfjZmJARUh2CNRmZlhTAz3YCzox9SoiPogVggWmxtT\nqrXxsaNrBIJlFXGYnupTQwTSO8LrNsMv0w8p5JOSD7AwhOWlUVW2eHamX5kkPwoUHD4wg+NHFnDq\n6BJOHl7E0b0zOLQ+roBgLz9vQ6ZRjnRjps+BMULBoKsVPY4WNYzQ1y1dEPl5rhb+/qbQ0AHFX4S8\nhwIvHr+1rQoWU7kS+tGBLowHnRjqtcLvMikgmBh2YYoQNTHkUpEB2S5ACJBthvus6j1kpsJgfxeh\nyYbrF4bxy189gL/6EKcohnU4bA9724aCbdu2R8A+SCiQyoX/6w9u4JMvrdNTMqjWwmVSilhEXxuH\n9ESJBmiVSWOd3EzpaJilShTrUuJVPwNJKJQSxrUKCCpULQJnV7saT5+fGaP3P405Cv/YaD/6+7vh\n9zuVDXB9cmoYyyuzaqqZTCuUOf4ytW/vloxLL9N7XL1rKypRTR7b2pT6+qFtjh/dUrZ/r9QHmFXL\nC+eOEBTO4M5Tl1W/hLfefBGf/tTreJf2ibdewmuvPqN6KMjyheduKYC4dOGEGoIQsDhyeAsH9q8R\nTKR07zI91hmM0av1uDooEEZYOwxoa6khCEiPAxsFq0NVRawozVcwUFMp1Q/LuSxDSWG+Gi5Iik9E\nXFQMYiIiEb07ghaJ2MgYQoGGz6UiJTEDyQnpaqlLyYYuNVuBgUDBrp0x2PFEJHbuiLwHBwIF9+we\nEISgICJKoIDvHZ+AdGmNnJGJZG2SSmiM3r2L3yMSSXExSImPRSahThpD1VUWw2SoCAGBsQomil47\nvWO3txXBYSfmFgawtDrKZTAUKZgMYG1jEidP78H5C4dwgh7+OoV8cVEqGQ6qKaUyxNLf46D492J1\nYRzri5OYmxzEJKFgYogwOD7IY7qAQwcJgASBI4dX1HLP1owSeGkWJeP70iJbxvgHBwQIAliR3ABu\ns7U5rdbDUCDNjtYIBesrQezbGsehvVM4sncaBzfGsX9pCFuz/diY6sXGOL/7qB/z/U6MEwqCToEC\nE3oJBgHCgJfiLnUFbF2NypwOwpHLCL/TCAf3SQf3jbWtEv0+M6ZHPZghNI3025TwTww5+bu6MT/p\nx+xYN0GgEz2eFvRyPwoQyH23rQEOwobvbg7N2pIPLz89id/5lcMfWvfEsA6H7WFvHygUOH7/fz/w\nArht27Zt77cPEgqkUNHv/foFXDoxiq7WagUFlYXZKNAl04tMRGZyAlITNYgP9+aXhjlZmarToUQJ\nMtMSeT9VNTVSOQT1lehoM6jhgpnJYczPyhz1EUyMDWIoGMDAgCSo+TA01MMLfBCzc+NYXJrGEm12\nZkiF4menh1Qm/9pKqDKgiL2a1rbIbedHVTEcKXErS6ksKPPgV5elS98YX09PcG1GRRHu3L6sRP+9\nT7+Jz/70OwoMXnrxKTx586IaZpDpgocOrlNIZrG+NsvPHUZwoJsXaxsFzYH+Xjf6elyQgkVdtlZV\nEdHW2axqKVjMElaWpkgSHahGZbnUXMhSUy8L87OQl6NTEYL0lCTut3hVLyA2KvouFIQsJiJagYFW\nk4JUbSbhIAwFOYSCHAUF0ZHx2PHxSHz8YxEKDCRKEI4UKBiQyIEAAS3iLhBERMUhShINNQlISUkl\nGKRBm5AITXQM4iIjkRATrYAgNUESRZNUB0hDbRlaDFUEukoYm8rR1FQCI8WvkwLm77FgYjqAjT1T\nWFkbxzTFVcBgz745XLpyFE/ePocrV49T0FdVtGB+bghDgx56+BaeBzaMBrsxOzlAoQxSRPuUzY4P\nYGVujMfpAC4SKs6e2aeGDiRasCY9Cqb7FBQICAz029W6TH+UHIJ1Pr93z6yyjXUed8KAmPS/WFsZ\nxcIswWGxH5vLQexZGcYWl1tz/Vjnd14b92N9jL+FYPA+KJChEpokA7rsBop2CAjsBAIPxV5E3WuX\nKEElOlsr4LE1qjbN0oBJwGCUXn8w0IGZUa8CgoUpvj+XYwN2DPja0d9txlBPp1p3dNSizViG9rZq\n7icnRgkS+ze8+Ik3F/BX3730oYBBWIfD9rC3DwQKtlsnb9u2/ess3Dr5W791/IH/qR/VZAxT2iJ/\n7fOHsTjegfqybJTlpaOqKBOFmSkqWiAFirRxURSTnUghFGSmp1LsaHxO1SHgdtIGWVofCxSYmuhB\nd4kH1IuVpRllszOjGB3pQ2+vBz0BF/r76VmJOFCEZ2Yp5LTJySElyH0BJ4XETjGW3vw+wkSfsnF6\nm2MjPcpGh/1qPF/69o+P9aiKhyFo4PuM9/LzBunlL+L0iX04R+F/8dlbeOcTr9BexkvP31b5B1Jh\ncN/WEub53SQfQD6zq9PE71+tGh811ZejtbkWljbpj29UwwNSdrm/14W+XocqVSwdEhvq9KpfQnVF\nEZoaKnlf8gjykZ6qpWceqbxyDT30+BgpOywtiON4P46PExIo4jEUc4ECgYGE2BRlyQm60P24FETs\njMUTBIInCAa7dhIEwnZfhEAlH4aBgDAQyfeP5ufExyciOZnAQTAIQ0FsZASXUQoIMlO0KCK81BJo\nZNZBc2MZf3cJfwPhTkEBhaujBi6vCcERJ+aXh7C4Oop5et0SMdjcM4PTZ/fj6vWTuEwoOHlyjxpG\nWF+dxPjdSEEvoWBQjmW/h54yxZPHWKBgcWoI6wuTOH/uIKHgMM7xfY4fW1dCv7QgcNjLYymNpfyY\nppiHCybJUMP62gRhUbpiTimAWLwLBZKgKsCwstCHZdrqfB/W5ric68X6NIGA77Uy2o2VIS+Wg/Tw\nAzaMedoRdNCTJxAIGPjszSpKYO9sgI3C73A2w3vX03db62EzV8FJUR/wmVUkYIZAMD5oJxTYMD3i\nVo/dM8m/CDoULAgUiPUQMLr4Hu0ELotZok3NKmIwGrTizNE+/OrPH8Bff/eDH0a4X8/FHva2DQXb\ntm2PgP1b/O8eZDJ08JffuYmXnpyBr6sGpXmp0GenoJxgkJeWiKxkDdITY5EYG6nAIJueb4FMUcxI\nR05GiupwWJSXCX1hjipMVFuph9nUCL/Xrubm791a5kV+hR7cDMV7QA0ZeD02tQwO92CKUDA9M4IJ\nAsEIoWGwz6sq/dk6W9BpkS6HJiXGbqcFXreFnmcnAhQZGcuXUsNSVVDKIQsYSI19gQQpfDQmSWST\nkssgCWhjOHpwE9cvn8FTNy/h2uXTOHpoE+v8TlP0Vnv9DtU50dhUhfpqCnxZAUqLs+n1Z6oOigII\nrcZagk6bAgf5bGlq1G6uVxGCVlOt+q4efm9/t53bhWYcFBXkqGZECbExFPc4LjUKDOIo3CELgUFc\npOQUpKgoQVyUlpCQQNFO4rbJiIlMxM6PR6kowc4d0YiQ1sgPgoJ7EYIQEIjFyOcJFCQJFKQoKAgP\nHwgYpGk1yMtMUxUMG/gbm+vKUV9ThJrKPNRU5cPQrEcLPWKBAoe7GX2DNgxT5GYXg1hZH8fq+oSK\nGmztncOhI6s4ejyUV3D48Cr2bM6qmQdDPBb9Uoug24YeKQ/N4zjA+1M89ks89uuLEzhxfBOnT+9V\nww8HDy5R2MfUUICAwNwMxX1xSCUhbvLztjYmsbVOEyDgUh6X3ILpaR7rWUKDTEvk43s3RrG+MogV\nwsDytB9LU36s0WtfGfNhaciN+T47pv2dGPdYMOJsQ9BuQh+BoM9hgt9hhNsehoIG2J0GHm8TegkG\nAgP29mr4HAYFAkuSX0HRH+rpUFCwPEMgJQxMDbswSe9fIGEiSCDq7SQQtKn36OZ7W7lf25pLee5w\n/0qNA36+lGtenHXjhacm8Qe/fQr/8AFHC8LXlHvXloe8faBQ0PLFX3ngBXDbtm3b3m//Fv+7HzaZ\ncfAX376I3/z6KazNWNHaWIzinFTk67QozEhCRpLkE8TQo4xGcnyM6ppXUpBHoSxGocxMyElXdQhK\ni3JQoS+gmBZBWh7bLC0I9vmxujxP8d2L40elH8AaL/Ij8PmccDoscFFApS7AEMVheEQqCwZUjYDe\nHpeanmimd95MkZYmRbIU8RWv3GKWpK9mdFmN9ODrVaZ8Z3uD8todNiM9fQPcjlZeYDsJF21w8XEB\niWC/FLcZxdbaHDZWZ+l9DhBAPPBQpNpbG1FbVawAoFzP30fT8zcJ8OTRpOiSFFxqNdajw9ysuisa\nDRUqQmBurVeQIjMQVpam7g4/+Pi+nTC3NBEuCpCbqUNaskw3lMhAJKIjoijMYjJ0ILMP4gkPhIDY\nZETt1qjIgCyjIri+KxQlECgQEIiIIBQIDNyFgt1S5fC+oYNIGTaI0SA6Nh6xcfGEAi2StClISUpG\nQrxMb+Tn7tpF8NiN9KQEFOVkorqUx61Gj0YCUXV5HipKs7k/8tHaWgmLhcBD79jhMqC3XxoE2TAx\n3Ys1EWZ69Iv02ufmgxRmevD00tdWJ+nF07hckagNYS3Y50LA0wF3F49RJ71xwsHEkITXg1ieG8HW\n1iz271/APpnOSLGfmxvE5GQPz5deLBIINgkCe/fM8ByaJWTOqDLIkkuwvioJjUPcthejUplwogfz\nKtFwHAe3JrC5MoTVWcLHpA+LE91YIdAsjXgwJ3kJFOBhVwtG3G0Ycraiv6sZ/i4Deui1+50EPIq+\nFCay2xt5rjYrKJBph13ttWrYQIYBpLPj4lRAwcBQwEJI6MLaPGFmxIWxARtGaeNBuxo+CBIaJNLg\ncxnV+7abygiOJTyPSnkOVfF85nnL83WQ77V/sxe/9otH+d88/8D/7b+Vha8p964tD3n7QKBACrDI\ne0hBlgddALdt27btB9bxq99S/xeHtfiB/6cf1aRY0fe//SSevTlFMchBcUE2crPTkU7x16VqVbW9\nVHqTaUmSTCjlitNQSBHRF+SigmIndQmK8zOgp2jKNMSGaslcl4pwDnrgUp1uL86eOqXs0IH9FMwp\n+H1u2OlJd0okgCJuo2hLwxkpJWujp2aiyLa0NdBDpRdOD9xgIBg0lMPQWKG6E7aIZ26sUVPnGmuK\nUVdZgIoievSFGagry4Oxll49nzOpJS+4zZUwm2tUJT6Z2+5ytsDjMfMC3A4r4cLE96qhl6wvyUFp\nSR5KivKUh59P6MnJykC2VHHMyEROZhb3TQ7ycnL5HPdBSRZfW42A30ZR6qd4jWJhfhiTE70YGe5G\ncNCDgX6Kod+BxoYKZKRrEbl7B0X+CcRQmGMioxC5K5IAEEXvPV5VK9xFUAjbTumCSNshtjNC2ROy\n5P1dBAG15HYRkTEEgR+8Vu7HxiUgPoGQoQlZQrxMb5ShDMICgSR2dyQSY+KQnZICfW4OavQlaKoq\n5f4rQlVxLmrLCASEMaetmeec5FA0ENQM6CcQ9Pd0YVwaVM0NY3N1it74BNaWJFw/qh6bmZAS0xRF\n7oOFmSDmZwYxEvTwnDDDSnizdTSq95gcDWCW+022n5zsw+wct+X+k+U4xX18vAczfO0yQWOT0LC1\nhzBHGFhbmyJ8EAa4v2dngwQBAQI/RkZ8GBsLqPszhITVcR9WJ0K2wvVleu/zw25MD3RhjAId9LVh\nwGPCSG8HBrnusUn54QpCSw089gZ4nU0EA5k904ReXwsCXp6nnU0E0HrV02BFyjqvTWBq2KlgYHbU\nheWpbsyOODDaZ8FwjxnDvRZuK7UK2uAnEHjchCICh6WzHgZjOc9xAjQBocNSg3ZzNUG4SnVonJr0\n4/UX5vG7v3rkgf/bfyu7X8/FHva2DQXbtm0fsckwm/xfJML2oP/Tj2p/+Z1L+PkvHEaf30iPNgcZ\naVoFBJnp/3/2/gO6sfS60obX+r81ltQVmXPOCSAJECABEgTBgEASIMGccyjmyjl1dXWork7V1VHd\nrZysYNmWZUu27PGMxvaMLcvhc05ytpVsz+dx9ux/7xdEdVkujWsktSK51lkIRLi4uLj7Oec9Icd0\n2ystzEUJrxfnZ6Mkn/cV5BIM8lBVWghLRQnqCAP19Ki1bOCgt+lq0FCYNp70RygWO3jixg289Pzz\neOtLL+LW00/h8qXzFM15gkG/KUfslmcf7kA3T4TB7hbCQCNcFHSPhL/TDb/fQ0FXsyMNT3IYMBAM\nmFp6TwM6aK1NtXBQoOsq82GrKoTTUkJhIyTwtr2qAI5aesLOCjQ1VaG52ULIoIfWpsY8Dop1PRwN\n1bDUSPDzCAH5KOHnK+LnzM/NNr0EctWTIUvXc0yr4II8PqZYUwMLTRtgvU5PNz3JwQDGKHZqu6t+\n/Gq0MzmhpZJuM0hIUyDzcjKRmpyAlCQKc6I6GapxUZqBArUuNjBwFxAYKLgLCOKm++MAkJySjoxM\nin52HtLSs5CUnGYiBbqeRhCIQ0HGLhSYxMZdKCghFFjLyri/+N0RCBqtVdyXZWjmPgkQlgYIUP29\nBLdgMwHKTW+ZHvWuoB/dnL8DBce3F83tLYr0CoV5mp9/ivtBcDDD/TAx2kNRDBjT85eV9S/B53O2\nCRISckHA4hK97sURI/Krq5OmadE5jWK+egIPXjuF8xe2DRRsbc+b/+txs7ODxgQFeo1/AwU0AwRL\nQ9heGMD6bB9W6Ikv0KufGeJnibYRCDowFvWiL+hED6Eg2uumNy+wbSUUNaE3SKHubkR3gKLtc2B0\nSCH+aZw7uYrTxxbvRAWWp3sMEMgEBDMjHZgmDEzw9fV6feEWQmmLgQA/AdXX4TCVHX2KSkR9BgyC\nvN1POJ6dieLqpWn8tx8/g3/8wjP3/O1+I+xuPZfd798bAgWf/sQx8xrKqL7XSXDP9mzPXrfWH/60\n+b1cv9R7z9/T12q/89kH8fxTc2ikCNTQ689TM6KcDJSbeQVFsFSWoobiX0kIECAU5akkMYuAkI0y\nwkJFcQ7/X4Da6tigo0a7hd5gO0/6M7h25SJeefEFvOed78C73/k2vPTCs7j24CWTZzA+FuXJ0I8e\nCk6IgqqTZKe/EW3tDYSCOrR47BRuJ3y+Rni9FG9CgKvRCpfTgmZCQGuzDcEONz27FnS2OtFIz7a2\nsgDW8nx6vhTs0lxUFmSgqjAT1aXZqK7KQ3V1PsW/EFZrMepqCRG1ZWYccAUfX1RI0c9NR052OrIy\n05CZnor01Nj4YvURSFVioOk4qAmGmcjOSkdBfjrKy/LQYK9CR7uLJ3M/JggB01MDBIM+DA918zMS\nfELt/H8zGp31BI9ivm4SDh88bCzpMEVd0wxNieFXwMC9gGD/oTumZQMBgICgsKgU5RXVyC8oRiph\nQHkFqWkEEM1OSNUcBTVEEpCkIyUhCamHE+9AgaW0lPBUiYaacjRUlxMKyuHhvu7ubMaIegP0ddBD\nVoUFhZHf01CUHvB0FOsUZdNBcGseR7fmjGnC4frqBBZmBsw8Ag0qii3htPF5neY+CfYxirq6F6qt\n8TG+xhJhYHZuENMUQ5nAYIOvdfLkEVy4sIPLl48bEyAocrB6ZBIzfA/NPpBNET7U8TAeKTiyPGYi\nA7KdxUEDBBtz/TgyHcbSRAjzI35MCwoGfJgYUGJhCyKEgkhQbYzbCMkaYkRg5X3+jjoEOuoR7NSy\nWDM2j0zhopY7Th/B9tqkyRtYmOzG/HgAC7TVmR7CQAemhnyYHGrHCMGjr9uFoJ+v1eU0nRF1vHep\nPXK4lYDcRXhUZUusa2KI/1ML55mpbrz71SP4o1+/fs/f7jfC7tZz2f3+vSFQoLIqvcYeFOzZnv3H\n9kbMPVA+wX/++El6O1E0UbAs1WUoLsxBCU1AYK0qQ4MmHtLqaipQTu9Y0xELKJxKUNOUxPzsZFSU\n5KC+phRNBIK2FgfGh/tx9uRRPH/rSXzgPe/ER77/fQSDt+HZZ57A+XMnsbQ4yRN5Pz3ooBmyE6AX\n2s6TZXuXA+2dTngIBC0thABXLT38GthtFfSyS2DVEgGFvMlRA2+LHSECQY+/FV3eRtN0x1pRSBig\n+JcQCIoILRT58rwMVOg6wUBWWpJNL59QQysuykIBwUEwkJ2VSrFPQloKvejkRCQnJiDxcAISDh2m\n8Tq98iR52EoKpBALGLIykwgGmWbZoY3bEO0P0sMbxvychvVEEY0GEQy2mTbO7b5mNLscqK6s4POT\nsO8t+7HvzQdwaD9f+2Aq9ptSw1gE4CuB4A4U3AUEb3nggIkSSPjz8otQVW2Fze40YCBIEDBoCSE1\nJQYG6RqwFIeCxGSkEQyyUtIIBYS6EgJSRRnqyotRX1kCR205vK46hAOtGKNXLDCI9LYaQevsaKDX\n7DEJcRpAtElR3FybwtbuyGO1GN7emMbqEr392QEzzjjS04oggSLS48HMZNg85sJZiipNCYOCiUVC\ngGBgcqrPwIGWDY6fWMHZs5sGBM6c2cCpU2s4fnwFGxuzmF8YxuhoDwYELbsRGkGC7hcYaBbC1nzU\n2CZhYIPCvTYdMVECLR3M3YGCdoz1ezHU24wohXsowm0cC2B2IsjP3s7jqwFd7bXcfhuiYf5vIoLL\nar19aQcnd+axwNc0QEDQmBnpwtSgD/NjhMPBNgIBoWC4HcNRL3oVZeiwob3dhk7ChaCgm/s0qpbH\n4yEeNxETLdA+9rXpMU1mGeGhy2P4bz9+6g2biXC3nsvu9+8NgQINf4i/zr1Ognu2Z3v2ulWdu25+\nK5/4gfV7/p6+FvuXLz+LH/r+kzh1bJoCHTad9+qslaipLEW1kgctFXA56tHcaIfTZjVLBko0FBDk\nZqQgOy0JeVmJhIdC0y+/2+8lEERw5sQWnnvmJr7/ve/ED33kg/iBD70fr7z8PK5fu4TNjRVMTsrD\n68fYaBgDg374A274eKLsDDSatVZFBpqaLKivL0NVVQG9cYo5RbyMgl5dWUAwKIfbaYXPQ4jwECL4\n3rZqdV/MQSU9/iqNaSbYVOQrWTIXNWX5qKrMR3l5Hkr4GkWF/Ax5/Aw5qcgm1GRlJhMIkulNx4Ag\niUCQdPgwQUBAQKNHH4MChfoJBUlpfI5aB2cSLHJQXVWMpsZaenmtGB7qIRAoUhDF8HCYHp/fQIFm\nPLiaGlBZXm6A4y1vegBv/r592P8APf59hIQ3Uex5/W4QuNvuRApoDxAK3vTmfSaPIDMrF8WlFaiz\ncZ+5WgwcCAoEFoKClJSYGTDYhYI0Pi+dYJCdSijI4fYXEwDLSmApLUB9RQmctRVmGFY4GIMCmZYR\nFCUQFIT8Lnr/9GTVVZDiu0ovX97/1vqUEXhBgYYbCQwW5wYQjbShUxn2HU6M8PtWK+LLF7ZxSUmF\nx5exfmTizjLA3PyQiQIIAC5dOoaLl46afAItI2xtzeMIvXQtE0xQnAUEfX0d6O/vxBC3UffNEETM\nMoI6FVKwZYoOrE71YnWyF0v0yBd2ocDkFAx2GChQpGCEQKC1/8XpXszTSx+lwAsKeoIODEVbsUzA\nOH96DY9dP4uLBJrVhSEM9ysa0IFZgoTyEsb6WzFBCBjj4xUtmCEgjA22Ixxq5Odv4LFgN/tQx3mE\nzx0eJkAQCqa5feNjIbN84GmxootQMBDtwvZ6Hz76vm3zW73Xb/jrtbgGx+1+/94QKJDFX2evgdGe\n7dn/2b7RjYvUm+BLf3gTr724jeNHdWJeojcYQAu92TpLpYGCWpWpEQi8zY0UYZvJIVBeQRwMcuhZ\nlxSkodFegZ6AB3NTgzh7ch3P37qB973rrYSC1/Dqy8/i1lOPEgjOQZ0K1ZBIYd4Z4xVGMDIaRDii\nfAIXrQldficaG2sIBKWwWOj5VxfQEyegWClaNfSIK1QNoDLIPMIIPduaMljp3ZZxuwqz01GUk4HS\nvBzezkUZL6uKClBND7iqqgQVFUUopfAVFeYSCrIIBZm0DFoW8jTPQS2AU1Ip2slIohcuS6THnUgY\nSDycwttqPJROKMhAtkL2BfmmIVBhQR7KSou4nVVwuXji7/CiO9SFSDhICxEWOuFtbYHdVo+SohIK\ncyoO7U/EgX2JvExCwgFVG8TKDO8FBHdsN4IgMHjzW/Yb0S8oKkWNpQ7OpmY00hQpUC6BgYK0TJNv\nkGymLMbGLxsoSEpFBrchOy0DxfzclYWFsJQUw6oBWPyOG+sqDRRo+WAw0kFxVC6AH1ElgirhkB7/\n6JCWEAQFg1hSjf78gLm+ujyMZd6eVba9+v7Thim8PcEmwoSTgNBqHquBRedOqzphFitLygUYjXn4\nqxPY3lkwuQNXrpyIQcHpdewcXTSJhRL8kZFuAwHRgS70RzsRpXgqWqD7lcdhIga0BYrs0ni3AYHl\nyR5jixM9WKAIz/G4k2c/PdyFUULBSB/FnOI9Ox7EPD1/wcEAQaHH76Dwe7E814fTxxfwsNovX9gy\nywYaj6xWxapUUKnhFKFggiAxSjBQjsLseICA0YNpvmY00oLekAshin6Q+6K7u5lAzOdom1SyyH23\nMBdFP38LqkbQIKpwj5fg5ccrzy3hb/7kiTdkJkJcg+N2v39vGBTs9SrYsz27P4v/5hRhu9dv6f/W\n/vlLt/DHv/EIbj2xhrUjc9hYX8bUxDA6fC2w1VWbPAItHwgG2lqa0EIvt5a3VdNeVqjZB1kGDKrL\nc+FxWTEQ6cTmkRk8+dhlfOA9r+DDH3g7Xn3padOaWD0C1HVwRd0HV6awvDRmoGBsTCf3Lp4cO9DH\nE293r5uCaofDUYm6uhLU1hbDVl9GL7wG7iarWUZQpKCEnn4hPf2yomzTWllWwu0RFBRT6AUEGuCk\n0Hg5hbucYFBUlEsYyEFBAcU/Lxu5BJucbEEBPwcfW1RQSK+/COkUyuSkFIKBICBlFwhiUBCzVCQd\nTkNKkpYQ0pCRphyEDL4GQYRgYKmphN1ey222o9ntpNfXhDavB44GG8rLyvjYbPPaJoeAQHBwXxIv\nUwkF6YSC5H8j/vGlhH9ju4mISjLMzSuEtdaG5hYvvL5ONDhdKCopN7AQXz5IMqOWub2CgV1TS+XM\nFEFdJoqzc1DBfVRTTKgpK4Jd37mt2kCBv03JdW6TUzA6TNEd8lO0Yp3+RiiCM8rin+snHEj8ew0A\nzKtJD4VujGI70N9GkFBTng562j5zXfdNUag3jozh6NY0ttYnDBQoaVCmSICWB5Q3cEzlhgSBtfVp\nLK+Mm4oELRNoyamvv8PAgMAgvoQwPBy6k18wo2UIeuHzIxRmwYHAgNu4NMlt5nVBgYBgktsmUR/l\ndknYVTY4Qc9fQKCQv2xq1I+tI6MEXoKMyiW5LXOTYYwPdmGYoDQUJiTx+YKKKT53fKANY7S5iSCW\nZ7k/JlQa28p95yEkehBWh0TtQ27bGN9vTFELbtsYb4d7WtDepkqbOgKYx4DVjYdm8YufvoB/+PzT\n9/wtfz0WP6/E7X7/3jAoePbxYfM67g984p4nwj3bsz0Den7zS+Z30lCfd8/f0ddi//TFZ/C7v3wd\nNx9ZxdwsT7iLM5ibGUegqw1Ou9WUJmoZoamhzkQKBAV11RWoodetkkSVJmreQUNtKdo9NoxE/Ti5\ns4TXXn4Kn/z4h/Cxj74Xz996FJtrs5ie6Mf4SGwksjoNqsnM3GwUozwJRqMUDgpGhJ5ad4/LrLk6\nnVUEgDKKa4UBgla122228fNXoKo8D0X5GYSCdDN3QdtRUVKIMgpbCcVdl+X0fEvz88yI52JVC+Rk\nIyMjFZmyzJiIx0wJg1mm019RQRFKikuQQS87haKZbMQ01YCABhEdlmkQ0UFd6r5kJKjXgNb1U/Ta\nyk3IRXFxIcrVv6GqHDXVlYSEKtTX1aKsrJTvl2VA4zAFXa91cD8h4IEk7H9LCq+nxaCAwv9vgOAu\nCDBGsY/nElRWWdBGGIj0DaA3EoXd0WTyC9SfINbNMA2J+gw0jVw2UYKUDGTw/1mp6cjNEBRkoywv\nD1VFhajld+uoqUBLg9VAQXuLDe2tNoQpTsMUwLGRIAY1HZCCJqGfotjNEggm6QmPUzjHR1VZQJEz\nQEDIU5ldp52C6I39n+I3SuEdk1hTLFeXNV2SQLA8jHUKv4BA4q+IgXIDFBXQksLUNI8fiv3IqBI3\nO9BDD7o33Gaux6MEihwoUiBoULRgaiKMab7XLI+xBUKIgGCF27pMWyAUqKfABD/DGMVcUKCGQtPc\nvima8goEA91dDWY+geYZbK+N4djmlFkyGB8iIPUrgbDdjEFW2+M7YDDUztfyYZTHtaIOizOEFO6T\nAb6moiRR7ot+vl9/vw8T3A4lGGrfzEz1GNDSvg10ESaba9EdbME0AefMiXG8720r+OIf3PiGtz6+\nW89l9/v3hkFBvCzR+siz9zwZ7tme7RlMgy/9Tr6R5Yj/SCj4nV+6jscfXuEJdIiCPcIT+hBCgXa4\nG21m6aBa68u2WnhcDrOMUE/BULSgrpr/o1dZRs/brQY3FI4hnqBPHV3CB97zIv77p38MP/mJD+Ol\n5x4zSWhKSJtTb/e5KNZWx7C5MYkVCsHUZDdPjq0IKsPb3wB/oAEdnTaCQDWcfF0XgcDTXE9PuwHu\nplpYa0pQqoZK+ZkoK85FaWGeaQpURcGtLCkjIJSgorjUWFFuAXLSsoypi+ChQ4eQkJCA5OQUpPB2\nGkUxjZ60GvtkZeYiN7cQBfnFpnRP2fpK0EtOoqedQIE1DYRScegAxXvXBAkJaits4CDZAIRmDGRT\nZAsKFJkoIiAUm8v8/AJCSSbFWc+lsBtLwYH9KYSCZOwjFOx/IBUHDmja4eswcDcIxBoU0bSsQVHP\nL+R300gvfmgUi0urmJyaNVCQnZNvYEDLBso5UJmjRi0nq+wxDgX87Fo6yM3IQnFWtulVUFmoqo1i\nOC2VaG2shY9Q4OU+dxPQ/O0K+1PohgMUe5/xeIfpFQsGpvkdjo3QY6YQDtF0OUDA6w01oaujHp2+\nOvT1NhMIujDFx0+OUYwpgro+p6Y+8/0ExUEDBYoUxPMF5PVL5JVMqEuJf3c3wVHWE7OeXq+JGihS\nEAcCPdfYeK9pQawug4uTvabj4Opsv7mcpxDrfxLxQXrtajk8TUgwHQd5f3+328w2CBNqNMRoic8x\nrYpn+3ZHJjejnzYob1+vQSAY4OsMUfRHKPpabhjiPlCEYZbgNEr4CIc0HEwjxL0EKz6HrzsjSFkc\nwCo/vy7VtGiYkNETdMHbUotAZ6OZG7G0EMEjV0dNpdA3KlIYt7v1XHa/f28YFMQrEPInFu95Mtyz\nPduz1ysP3vHi1D1/R1+LmUjBLz2Eh6/O8YQdpcc3Ti+u30CBOhLarFUxKKi3mihBHAoULbBROJRf\noJJEu6UIjfWl8PscWFsaw3vf8Rx+/mc+if/yqR/Eqy/ejJWsbc/H2s6eUQe6RZw8uYRTtPX1cZ78\nO9HcXInGplJ6vVZ00jvTkkGDvcJ0C/R5HaZHQZPTisryfOTnpiEvO41wkGuaKxXl5xAMigwQlBUW\nGyvJLzSCl0qxTj6YiASF5PfvN2CQqKZBBANjagOcnEoASDfZ+YIDWWZGLm/n8P5sPiaTgp9xFxho\n7V/irhJCevn79NqHjfcv2MhS5IGet0yAoAmFKcpT4PslyXunOBtLyKBYExQOZ/J1M/m6GTh4kKBw\nFwzcAQGaogNxU5RAuQO+9i4sLK7g5KmzWD2yAQchIQ4FWjrQawhaXocCwhA/ayahIIdQkMd9VGSg\nQEsIebCWFZo+Bd6meviabaYxlMNWCl9rPcI99IYH5MlqOaD9jqjPTffS8+9EtM+DSK8bYeWG8Dv0\neS3obFcIvInPdRsxHBvpjIEEhVLP1+Usn2/AYDdCMD0dNRGBQXrjig6Y5MM5eue83tvbZiwc9hk4\nCNKTFhwo0VDwoMoFLR0ICsbHezBDoRcAqBWxWg5rPoHKB3WfogQCArUsnhjsxKKWFvg4RQsEBQIC\nib0mGq7wuQIDRRE0OjmiUkJ/o7E+ir2AIA4Gem4fP3M/P7MSDCcIQ6paCHTYzb6Iql2y4GmoA3OK\nlgg2FqJmf0wQYAQOvlZN16yG11NnumZG+9pw7uQ4/suPncXnf+/Re/6ev1a7W89l9/v3hkHBXgXC\nnu3Zf2zxJEP19rjX7+hrMUHB7//KQ3jo8jRGhiM8wU/whD3Ek3cvT+YeU4lQW10Oe20NGm1qfWs1\nUGCzVKGhtno3vyAP9dUFcNnK4W9roGfUg6sXdvDOV5/GO155Eo8+dApryyM4c2IZly5oxPEqtjc0\n2nYaW1uTFAKd7FW250SzuxItzVVm+UAdBhtslcaaXfXoanfz0maqITR1UE2VCvOykZOViezMTNNc\nKCcjG1kUy0x5//SIk+XF76co7k/AQYr2/v2HKLoJOKz8AOULJGmdPVayF6vjVwvgXBMdSFTfAEJA\n3A6r7fAhAgGhwIABLebpJ5tZBLHH838U4GQKb15uAQryi1BYUIQievT5vJ7B7dO6flIit02Nig6l\n8/GKQmRSsHMJCaoYSDaVBSo5VLQgvlRgPH4CReKuZWXnmaTCuXnC1ZnzOHX6HKam52BvaDRQoCiB\nwMHAhIlkxKIaWrpQ9YRyCgQFBQKCvFwCQQGqiwtRV1EMl9odOyxwN1QTCMvRaC+Ht7nWVA6YJMPe\nVh4jbRhROR+9fuUPyPNX9CCk5QL18/fVoZXfpZYOlEsQ946H6R3LBvl8hdLV4U/esRIVZ1W+SEE3\nywS7Xn/8tqIEAgC/342uLpe5DIUIIRG+1mDAAMG4eiIYGAhjdKyH94Xo/Qcp5AFzOTvejTm+l3IG\nYiH/ViPwShRUlECir/kEemx/Nz8nhX+k38f7+wwU6P6BnmYEeXwKJPpDFH8+Jhwg9PB2j9+JUGcD\ngupQyOuDfV4M8XP2EwhCAScCBKUIQUEwoGUXLZ+sLA1gdXmQUKDujxGztBLocsDjrub+s/C4b+A+\nbOLzvFiaj+Bdb13D5/7f66aU+F6/6a/F4vobt/v9e8OgQKa2rXqtvWTDPduze9sbMR1RiYZ/+GsP\n45GrM/T8NOBnkCf6PowOR9ET7ITLKRGuNKaogZ0goAhBAyHBUWeBraYSVaUUk5IsAwXdPHlN8+R8\ndH0GjxEGblw/jfOnV7E8P4Bzp1bw4OVtnD+7irWVYawsa6phFAvzyhTvpQh0orNDY3rp/bbVm9HE\n9roKM4K4wVbFE2TDnTyH8tLYKOLcrHQKuTxfNRVSmaAqA+j9U0QTJYT04tU+WFn+B5XpLzjQ7V2R\nlLcuAEhNySIUqBWwogO5FHiJtYQ/5SssBgNxMBAU7N9HKKBJ6PUcVQ8o07+kpAJVlRZYLHWoq7Px\neg3y8goNfOg9ZQKCQ6o6OMTbhILEw9ncNr7m3csHihIoOsDPJRiILwsob0BRgu2d4zh3/hI2t46a\nvIJ6m8MAwx2QkBEEzBKCPrMiJ7wuKNDyQf7u0sEdKCgnFNTXwG2v4XdahSZbBVqaauDz1KOjLTa0\np7e7JZYwSJPAy/MXGEj8g34H2jwWtLZUU9iqEKBIGijgYwUBEsgIPeEeetfKN5BXPDocS1iUsMeX\nCpQfINNtib5yCDo6GtHZ1WQuOzobDRQIFvR4gYCAQCChKMPwSIigq9bCAUyo5I82ReGfFhAMqqog\nNtNANkQvfJL/nxkLGRMwCApkur6gCgolxEa86Ol0IOirR4TbHhEM+BvNfd00P4/bTi/hidAQ4XP1\nmfV5ewkPgoLebpcBI+2vRR73ggH9FlYJBksEghWCwchgu4EqQUGbR8sHTgQJQd2BFgxHO/DQpQn8\n8s9c/oZ2OLxbz2X3+/eGQoE6tOm19pIN92zP/r3Fkwxt9fn3/P18rSYo+LPffgxPPrpEGAijLxzi\nyaeDJ6Y+M+FPSwi1NRWmo6EiBgIDRQic9RY01lvRYK2GBiGV5aca8ejvVtnWII5tzuHBizt4+Opx\nXD63gaObU7h0bh0PXzuGKxc3sLk+ZtaQF+b6jLe0MN9PLzGMSLgFnfQsVcet4US1ljIziKi6ogi2\n2kpUltHrzler4UxjmWn0epMowglK9os1FpLoyUy1gMRf6/67CYKCggOCAsEC71NIXWKekpx5Bwxk\nWi4QGMQiBDE40FKBWS4gCOh2PGqgnIB9D1C0DRBoOSEZmZm5qK21o4mevMfTBq/Xx++uAcXFpcjI\nyNmFAkFEWgwKDmrmQRafG3tPCblEXUBw9zKCoEBLAppnUFRcRmEMYH1jGztHT2BmdoGCGUQt30c9\nChRpeGDfQfMcQYreT8sHAgJFClSSqERDs3yQHQeDfFOS6LRWEgiq0eyogafJahINO9saDBR00nMN\nBVym+iBCL7uPXrYy51WaqCQ5ebnuxgo0Oct4/FTR07UjTIHUGnk3RbRbZYkUVCXSqWY/RFEVJGh9\nPRrtNHkEMi0HCAS0TBCO+MwSgYkS+F0GDHSp/8ehQDBggEBAQRjQ0sPQkB/jFHvZBOFgkp7+JMFA\nyYH93PYwt0lQoAFHigjocqCXsBB0myjBIK+PEwqmVHURaUOvBNpnIwg4Eebn7OZn021jvN7uscLX\nYjHLBEP9GszlMZ893EPAIBwIoLREsEAAMECwOox12soC4ZhgvMTfgqBASy9tfJ12b72BggBhO9DJ\nzxtswepiGD/xQyfxpc89fs/f9Ndid+u57H7/3lAoUDMWvZaas9zrpLhne/a9bPH2xt/omQfKYv7C\nHzyOF57ZwPTkIE/WHfRQnDzRB3miDsLb0mSgQJ0NVZ6opQPNNmi0WY3puo33qZ1wq7OWJ04/Npcn\ncXpnGY8+eArPP30NL99+GE89fh5PP37BXN545CTBQFPu1MVuCkeWh3iSJBRMhzHEE7DWrUP0itpb\nm80ExsLcbBTkZKE4PxfZGZoPoHkBiUhTPoAZJnSYwnqIxsuDWj9PorDGIgEx0Y+t32uq4L79idiv\niIGZLEgBFzAkKDs/HUkSasJBCuEglWCgS92n/+uxes5+AoV5LmHjEF//8GEK++FM7N8nIODrq7SQ\ncFBQUIqWFh8CgW70hvuMudwtqKisNl68RFrVAHp/5RAc0tLE4Qy+Tmx74gmCgoJ40qGgQPdL8HNy\nC0w+QXuHH9Mz82YJYWh4DN62DlRb6kyPAgFBvOOh3k/LJFq6UBllDApSTItjRQsKMjJQlJVFMIg1\nfbJVlZo+BVpCUPVBkKKkRMN2r83UzxswoDAH6a33BNwYGVACYa9JRNRjlINgrytGY0M5Wput6OB9\nPk+dyUswYOFTh0DHnUsl02muQoTPj0OBYMDncxhTZEBLBurwp+uCA+UT6DFKMIwnJOpSUQXdFytT\nJDAQVEaHVTWhyoeA6a0wQPGXWKtnQB/hYIhAIBjQ5MOgGixRjMO8Phz2YkIVF/TQ+whCfn72gLcW\n0WAjwoRXXffTDBR0cFsp5K3uGtOkaXigk6/P91BUpb/NVGXMzainw4ABgc21UWweGcbG6hChgHA8\n3Y1FgoGaJXX7HTz+rQSxel7X3IUWmhI3W01p6LteXsXv/fKD9/xNfy12t57L7vfvDYUChUT1WgqR\n3uukuGd79r1sqszR7+Mb2d5YJij44udu4rUXjuLI6hT6+7rR6Kjnid/NE3UbT+bNqLdWoaKkwJhp\nebwbKXDWWeCojUFBeUEmhaSYJ8lGzI5GDBhcOrOBp29cxEvPPoxnn7psoOD5W1fx1hcexssvXMfz\nzz6IRx46gVMnFk2NutaVVeomKPB3NKGpoR4lBXn0ZhXqTkQmLzXm97CSBWnxToMH9x/EAQrgAa3B\nGzBIuAMGmjgYgwKJdwwK7gUGh+WdJ7wOBunpuUhLyzFg8JVQIItDQVJSFh+Tx9fIoKXzMbovE2Vl\n1RSwkAnn90cH6en2o8XjRVW1ZTcJkNvDbRNAxICAEJCQSajYBRUCgSBAMKCeBbqUuCtKoIFHeQXF\nBgrczcrAj2BoZNxAgSIHJaUVpmFRvBxREQMBiPImBAXJvC7TLAc1L1K0ID8jHYWZmSghfFUUZKO2\nvAgNNaVw26vRoVbS9MqVTyBRb22hN0yxkrjrfoGAZhuM0jNXPwNlzDc3VaPFVQOXsxJumm6by0Yt\nAxEStAzB1wsKLGiCgiBfS9EBCbtEXfkDzc21cLut5rKFUOHx1BtI0P+US6AogZYY9BxdqjOmGhnp\nddTDoJ82pPwFLV9I+FUlQCCIRrzo7/WYpYsoLwd4WxGDbnrlnWoaRGEPtNlMdcEYX2OCcDHI47Kb\nABPkZ+/tsKG3vZ7XCQRtdejuaEBvgJ+DsNTJ5/k7HQQPH39PbSYxc2K824DvkRUNgBrD1vqYgQIB\nwfryIFYX+rE0FzbRgtGBGBR0eK3oImz08X2H+TnHhroxMhji7Q48+fA0/sdPnbnnb/prsbv1XHa/\nf28oFMgUGtXraTzsvU6Me7Zn36uWEYiY38Y3qpNh3AQFXyIUvP2lo9jeXDBTCxtsVtgp+q3NjfR4\nPGbmQXlxvhmEVFVahHo15rFW06rM2OS6qnIKSgrK87PQbLdgqLcTixOD2FqZxPmTR3D98nE8cu04\nHn/4NF589hre+dqTeM87nsHbX3kCzzx5GVcubvO9ZzA/E+XJW+Fnlxl2ZKmoMDX0qQmJSD54GCmK\nChw4hIMP7Dd2mNdlBwUDNF0e3IWCQ7vhdiUUxtfTD/F6HAriYGA8/4Py/PX/VIpxGhKT0pGuygNa\nSmoWBVWljBRoAwSx/gEHeduUBZrIAqGAXr6E/SBFPiU1G9U1FIruPkQHhylSAwj19KC5xYOKqmqK\neg4Fm++XEI846H0VOcg0UBG7T//TtsWiBCbZkKCQrKWDzBxkESwKi8vMnIO29i70DwxjcDdSkJNX\naCIKAgMtMyhpUVETLR/EKh4ILrRUvl4GtyN7FwqKsjJNpKBaiaOafWCJTUns8NhN2Lqb3rkiBG3e\nOrRTrDopzr1BCVYAU+MResYU8i43wcFurNPHbWupJxxY4VbjKWc1oaCGnnQtBa8BwU4XX7OZYEEA\nJQT62+l971YVSPS9Xi2/1MRMgOG2oKWlzkQM4hECk3ewu1SgyIB6Fpjlhl1T5EH9AMIUfk0l7Amp\nMkKh/FYTLZBFTW6BmhS5EKTotxNqWpwV8DRWmohBNNRioGBM/RC4XT0+O4KtFoQJBT20bh8vOxvQ\nT/EeCCtvgq/b345R5TNM9JpeHMuLw9hYG8fWxhR2NiexvT6OzSMjBIIBrC31Ewr6TE6BogWCAjMj\ngbDh53tp+8b5WlNjYajPR39vF84cH8HHP7SNf/4G9Su4W89l9/v3hkPBXl7Bnu3Zv7d4PsE38rcW\nt1ik4HG89tIOdrbmMTYyYICgqqLYVB4oUuDgbUFBUW6WGZlsqSg1JYnGCARW3i5IT0FhRqoRk5DP\nTe+qG7NjERyZH8GxDc2bX8L1K0dx64lLePXFx/Cutz2F116+idvPPEhgOIXTJ1bNGN2hqJ/v6YDN\nWo7i3EKKFkWMQpy4/zCSKcSJvH54n+YE0FQCuAsBqigwMLBrZh3+cAwMzLo87QCf/zoUJLxuEnsD\nBhRjiuVhhdbTs5GmSgGKsDzueBh/P+HkwCGJNF+bop6YlEHL5nPT+V5pvKQHnp4Di5WeZCSKgaFh\nhPsi6PR3wdnUiNLyMop6Jt9DUBFPIlQCIQWbgCFAOEh4EXBo243xejxp8O5EQ807iDcuEhSE+wZg\na2g00xHj5YiqPlCy4uHdpRSzpMLXVL5FCl8zDgVaPijOykJFfq6pPojlFFSZKYld/D76euRZt5nK\nAyUaat6/ojndfg9Fq5NebA8G+/1mOFWHl952WyO9fzc93SYCQgO8zTZCZr0xr2mGxOe3q2yxmUBA\n2ODjfR562XxNRQIUGVBHS5kiBYKBeJQgXm1wNxAoOhDPO1DyoUzLCz3qY9DTQshwmSFD2m7NFVBz\nIEWlhpRb0NtqQvShDif8bXa0ET6a6kvQYCmA216GIO8b7WvHJCFkRKDBz+9vrkJfl51GMCIQ9PJS\njYzU4XB5Xv0GRrCyNIr1tSlsEni3t2ZxdDtmgoKttTGsrw4ZIDiy2IfluTAWZ3r4/CDGh5Tv4EJI\nyxMdDYhy+0YH/TR+3v4uDPYFTULia8+v4Au/f+MbMiQpfn65c565z783HAr28gr2bM/+vQmS9bv4\nRo9LlpnZB5+7iVdf2MTa6iSGBiIGCspK8k3pn/ILHDYryggFeZqImJ2OiuICWCs1a4BGILCUl6A8\nLxuFBIPK/Gw022rQ0+HBeDSIpelYxOAET4rXLm7jkQeP4+ajZ/Di7YdoDxMKruHxR8/h/Ol1nkyH\n6XX6jWBoBLMaDqnHgEBAlkLRTuHtJNNzgHBAS5DgfYUpShBPzjPedtz4vP0HYmDwwL4E2uGY7YKB\n/h+LAKRQUDONpx3rCri7tm9eJwYcAoKYsFPED6bzNVP4/FSaRhXHoCAcGUB0cAjd4V54fW2os9Wj\noKiQr5vG5+k1YtulCEYi4Sc5hbCgskZCicT/Ky2+pGA+EwFF9xWXlJslg77+Qfg6/GZkciKBIP54\nPU6AoOUDAYEpTeTzE/k5k/la6V8BBWpepG6GHked6VPQ3qxEuiZ61PR8lbg3QPGl161lg05fo/mu\nJOg9wVaKa4eBAt0nCGhvpQjzuV3tu8brAgaJf1uL3VzGb3vcdXA5a9DorIbdTtC0FpmZFw0NFWht\ntb2eR0CRj1coCAoEBwICdTZUdEFRBFOh0Mn343UN2fL7CSkU7Q4KrElgJRyojbBZTujzIUzQ6aJH\n3unlNmuJorEK9hqN3c5AfZVyZarQz9dWpGBUSxYBF7rbrBjqbsJgt5v/a0I05MbseA+ObkzzWD6C\ni+e3cOHcJs6d3cCZ02s4eXIFx48tELwJCBsTZukgBgVRAwVLs70GCGbG/WbegpoeqcQxSIhRFYOA\nTFEZRVSG+bsaH+7Fw5dn8Qs/feEbEi24W89l9/v3hkPBlz732J3XvNfJcc/27HvR3ojJiHETFPz1\nHz+B117YwBK9eiUX2utrDBRUqd0tAcFeV42yojzkUPSzUpNQTABQm2NrZakxXa8syEd+agry+H9N\nJWysrULE34q58X5sLI1jc2UcZ48v48r5TVOq+NzTD+L5W9cJBo/g1lPXcO3ySawtT5mTnb/dbRIa\nM5PprdP7TqbQJh0gEBxKQ6qS8OhNJx6kuNG7T6LQKXfgMAVOdshEB+SBx+zA4YTXzYi6WggLDGJQ\n8JZ9h4zp9n5CgR4jAEhM5nvQBAR3vPoEAgHtkCyRUJIoYVe4P52wQSA4lMpLLSlkoLLaglBPBOH+\nfvhDQbg9LaiqqUZOXi6SuJ/0fJkgQ2aiDhTvw/LmKeASciPmuwJ/Bwro3cehQNEDJRw2ulpMtEBL\nCfHIhp6rx73pLfvNkoOgQ1BgEjAVcdmFgrTEZDM6OT89llNQkZ8He3UZvI0U4mZ67h561vTohyi8\nU2O9GB8JmcZFXR305ptq0dRgQXNjHcXdhZ6AlyKmSEGTGZ3t8zgJBw2Eg0YE2hURaDb/a3XZ4XJY\nzXM15VLXG+2Egbpy1NtKUUcvPQ4F9oZyfrYG4/mbJYGIz0QG7l4uUCMjM2Gz3QFPa73JPRBItLU1\n8D4CiK+e4OQwQ7b8qnoINCEUdKOnW2WRyp1xmtI/AUFbswUuQkl9dR6s5dmwVeejmbcDXjv6A80Y\n6vFimFA02uvGzKAP0+qxMNRpRibvEAh0fD/y0Gk89uh53HjsAq5ePYHzBITTp1Zx7Og8tjenDRRs\nr49hS4mGq4NYX45ieY5QMBHAzFgXpka7MDrQhr4eN0Lc7jC3MdJNECPo+FpsiPZ2GTDY4nPf+fIa\n/v7zT3/d0YK47sbtfv/ecCiQxfsVqKXrvU6Qe7Zn30umyaHx35mg+V6/ma/HBAX/80+fxNtf3jJj\nZntCXWYQkhoDlRXnwVJVZhINlU+QmZpIETmE/Kx00944DgWKFFRrzoDK2rIzUcXH2ni/n57iWH8A\nC5NRLM1EcWJrDo9eO4nnn7mGl24/jFtPXsVLzz2Kt75wk2BwHedObWBhZsSIhzolZiVlIyOBHjvF\nVmCQrNB8QjpSCAVJSsYjGCSbkLjKAXejBHdDgRHyu4wieAcKDhAK9r8OBbpuegPsQsEhgsBhCmYc\nCHQ7LuSCgbhJgBMSs/ieGRRpwoFgJTENpeWV6AyEEOrtRXtXJ5yuJpRVEnRyspGYwtdN4vNp+w/p\nfWNLEnots3xBEwDIlEcQv27ei2YgQdCQEmtOVFJWCYu1HhWVNQYK9H8tLwga3vzAgdhzFH3gvjLD\nnO6GAsKIKhDyUtNQQDBQToGV322rQ1ECetb04v2+RjMieXpca9ohkwjqba0lMFZSzGuM8Ic6WwkF\nbQh1taK7y4vegJLlvOZ/rW67gYHONhdF12EgwF5bgbqaMnPZUFdpLuutZSYy4KSnrmUDm+ZeEAq0\nZKAIQaSv3ZQgKiIgENBtXQYo1nqMlhiUf9DYWA2Xi7DSUgsPhb65xWKgIERx1VKCLgP+RhMx0Phi\nlf153DWEmDp43RY0EkwEAw2EEld9KfdFJdrdVnS3OUxOwXh/OxYp3qtT3Vid7sX6fBTHNyZx9eI2\nbjx8BjcJA48/fglP3LyCa9dOGShQpGBne9bkFAgKjm7GbGd9xIj7kYUIFqZDmB33YzoOBd1aQohF\nCqK9XoT53p1eJTTys3e38zFduHhqBH/064/g7//y62t7HD/HxO1+/74pUKAWrnrNvTkIe7Znr887\nECzf6/fy9Zo8jL/986eMx7E424cQTzjy4EoLs82gIzUmqlWzIAp9Tnoy0pMO8zLVTBy0VGj+QSW9\nqirUqlyxssSUstl5srdVl8LntmEw3EkgGKZXpLDqOp554kG89vKThIEbeOrmVbzIy7e98ixee+uz\nPJlewdHtFYpOp2lQlJeezfdLJQQkGdN11dZLzBIp3kbYtB7P24cJATEoiEUMJIgSV5PhL++a4KCl\ngYMEAiUWarlAywYGDGSCBELBA3yNfTK+3n4KpuyAjIAQA4UkCrSEP5lCS1NpYXIWhTeD75NqgCOB\nXnkxhbqV3ntHVwDNnlZY6+pRqB4FWTkU8zS+TixnQEsWSmDUtiXw+cop0Pq/EiS1rCDT9RgoEIbM\nMgPBiOJvogL8bKm8VMQgL7/QlCImUeSTkvXZVS2hWQ/cbsJQrC8Dny844PUkvmd8v+YQCnLT0lAo\nqCvORyPBsFURgBYKfoebAuTH3GQfJke6Tbi9pakKdms5mggF7Z5GhAkB4WC7AYIevwSt09wWBLQ0\n1pvogKzZWUfRrYHNUg5rVQmhspjHV4lZLqqrKSUUVMLlrkVzswTeAoezGl6KcXcPX7O/y1y2+Zxo\n71CfgmZ0drrR1ubk4+vNqO0GCrisyWUlENj4XEIJRb/L38TnetAbbkWQItvVydfwxcorVQ3R4uLn\nddXATSixWwp4LOdyHxTD46hAO0Gjk1AQ7iDkhn2YH+vBKkFgfWmQgj6GExR79eB47OFzeOLxy3iS\nx/hTTz2EZ289gkcePo9LF4/h1El18ZzG+uq4qT4QEBzfnsSxzVFsHSEUaAlhuseMWdasBCUbqkVy\niOCikslBAlA/31tJmSG/h/Dehu6AB7OTfvz4D53BX/zuo19XtOBuPZfd7983BQr2ShP3bM9et3gp\n4jdy3sHdphOJhiK96+VlLM4E6KW74HXVorKYHmhuKqqKsmEp1fS8PDOOODdNte0ppjVuZTGhoIYe\nY52NXmMFT/5Ws5bscfHEb6/idbW3DWJnYwEPXzuPJx+/hpdfeBqvvfIcXnz+KTz91KN4gZevvfYC\n3v72l/Dii8/gytVzGJ8YpDhYzPTDtORDFLH95jInMxUZqYoOUOgOHSQMHEbS4QQkUfQSaZpWGBM/\nijXFT7MKYp0J02DmFGhEsQR4N39AywUP0N5MCHgzL99E+0/GEvB9FMw3UTDfTEF+gLaPonzAeO7y\n1imsagREMyF/iTyFeD/f/wF6/IkU7eKyKjS6WwkE7bA73PTmqyncJUjPyEcyIcI0OtpP0ed2HT6Y\nxs/D1zqs2QraXrVK5v3GYmKu9snxnguxngN8f723QIjbm0g40MyF9HRVQ3AbtcRx6BCB4jDhhZ93\nXwLfT1UHmdyX2XwvPvcA9xshJpWfJ5NQkEXLy8xARVE+rIS8xroqk1MQCXoxPdyNhcl+TA2H0Bdw\nm3V2Zy3F12ZBm5ui3dGKni567b4WdHnpifMy2O6Br9mJFmc9XHYrnAQNWWN9jbm0adgWobOqJB81\nZYUEzFLU1VVQ0OvgaSVMtDagUde9Tgo5RZLHUi8hs5W33TzOXLvW2FRLECBo8Jirt1cSJCxoUb5C\nZzMCoVYat6W7FaEeAYEHXVpq8DXA01KHZpcF7sZqY846gglhoKYkA9bSDDRaC+ElYPiba9GjZEN6\n68vjYawvjmCJ4n5kfQo7x5Zx9vw2Hrx2Bo8Rap948jpu3bphjuu3vnTLHPMPXT1jomDba5quOIy1\npWEzbfHE9hSOb45hcyWK1bmIGdg0u9uSWV0UVXXQHXQhopLJqCZBdvDze83n6AlzX4c86Iu04qEr\n0/iNX7hqGpHd6zd+P3a3nsvu9++bAgWyvSWEPduzmL0RrY2/0gQG3/+OZZ6sAhRyelwUeHtNMSxl\n6nCXieriHFQW5qI4mx4poSAjKRm5SkyjZ1pZWkGPjyd6Oz06PrerrdFklZsMdCWoRbqwtjKNxx65\nhHe89jw+9P3vxIc/+C68992v4GVCgE6cr7z1Nl5++VmeTB/H5StnMTs3jtbWRlRXFJuhRxmpicay\nM1IoaOpceHAXChIoqId4Wy2G6b0rQkARjXcrjHUcjM0m2PcAIeABCuN9QUHiXVCQhLfQ9vE9Dpio\nQwwMTGkfxdSE/JMo2hRkRRQEBYd4X15hKexON9wen4GDGqsd2TnF9ORzTR8D0yKZ2yVYMS2TCQUJ\nu1AQ656YxEt9Jgp5ogBEjYc0VGm3AdEuFCQp54HbJyhI5vVUCntyMvcBgeDAgQM4ePCguS5ISknK\nRiqBIEXdGtWXga8fj7akJhIOCA/qBVGSn22WhxzWCngaaynyTkQCLRgKt2Owlx57oNlk5KsNsgTe\n3VCL1iY7YZJC22gz1wUDMsFAg7XSAIBM1x21VeayrqrUQIEBAl53EEJstioj+F4eR23tTQYMBAGd\n/haKoQ8BAooBBoq+TABhb6hGna3SAEGDswbNLXa0dxBM+Nju3nYjoKEeL/zBFrR3NvI1680EzgY7\nt4kgYLMWGbOUE3SL0lBRmEooyIS7vhSdbguBoAH9XU2YiLRjdSKC9YURLK5QzHfmceb8Fq49dBaP\n33wQzzzzGG4/dxMvvPCUObZlt556GI9ev4ALZ7YIAtNYERQsD2NnfQwnd6ZxfCsGBSuzYcyPa5Rz\n0LRZnhzxYzjqM0Bg2kkPtKOvX9UVHvQPdPGzNMPP76G/vwtTk0H85I+cwpe/jg6Hd+u57H7/vmlQ\nsLeEsGd79sYvHdxtP/GD2zi51Y16SzFcPMFWl2SbSEFpbhqBIAvl9NqLstORm5aMTIpOdhq9yqws\nFObk0aMvRAO9Rhe9e60fa+041OUx68v94S4szo3RWzqLd7/jJXzsh74fP/ojH8ZHP/JevI2Q8NKL\nT+P2s4/jSXpYjxAczl84jsWlSQRDPjjqq1FBLzI/J90AQWZaEgXtMEXsIJITeal1fYpeYoJAQQIq\nrzkeDZCoSlyTsX8fRd1AQfz/sSWEWG4BRZ+XsjfTvu+OxSBBwPAWCucDhI0DFGjTxZAeu+mCSFNY\nX0sLhynQB7gNWoI4cJj7KKcAljqKFoHA3dJGwWpCVnah6ZSYmJixCwXaFkGMAEaJgAIDzUIgLOzX\ntirikcrPnIG0lCykp8ZMY481/jiF76kJjwICfXZBUjKBTZbA64e4bw4SDA4TCkx7Y015VBSC+0em\nhMNkgkwqIScjmfs3NRW5mRkoLchBbWUZmmw1FPlYFYLGJ7dRgNvdtOaYuRti3n9c6HVdlwIFRQc8\nNCdv1xLuFA0QAFh5vbayxJhgIB4lqK8uM8sKDYRLt7sebYQCCXubj3DQ1oR2gmZnV7Px/r2EBI9H\nZYt2NDZaDRQ00BoJMLq/s6MZgQA96m6JaDt6Ix2EgjaCBZ/b5uDr18LRQFCpK0VtDWGgkttQkctt\nykd9VcyaakvQsZtH0NfpQpTPHScULYz24AiFfWN7DmfObeDa9TO4cfMKnnzqIdx65lE8//wTePml\np/HKy7cMFDyj4/qaqms2sX0kFinQ+OWj6+M4dXQGJ7YnTE6BoGCOMDCrrocT3ZgZD2FiuMs0WzLN\nlwY7EOlr4+/CjWC3AKnVQIFKOHt7vXj1+TX88s9cuOdv+37sbj2X3e/fNw0K9pYQ9mzPXq86eKOW\nDuKmaWu/+nNXcfVcFNXlOfQQS1FVnIXinGQUZ6spUQbK8jINFOSpAiElhVCQiux0inV6BnIyMulZ\nFsJSQY+vphTKSYiBQSv6ejsxPTGIs6e28BzF/4MfeAd+5Ic/aKDg1VdvmxPpo49expUrp3Du3A5O\nntrA8uq0CRW3uOw8aZeZ8ciKGMSg4BDSkhOQQTjJ4DZoCSGZXq6WEFRqZ6IA+xURIBTsCm58kqEJ\n11NoJcSaRHgvKHjTrgkK4mAQ//9+gkG8yZG6I2pGwUFCwn566ooO6FL5Cfv4nNSMHFRU18LucMHZ\n1IK6eifSM/KgXgTqnHhY2/VvoCD2enEo0AAnzWpIIhSkEgrSCQUZadm7xuupmbxPcCCxV16FRD62\nLzQcKoVgkJiQwNfjfUnab4QYbuvBfQnY/xbCArdTeRnqVaDOhlo6yCfkFeXloqwgF3XV5SYC4Gms\nRzPFv8FSSrGkR01zWEvgqq+Ay24xoq8IgET97miAy2bh82rN9RrCQCmPn9J8wmVhDiqL8widBXei\nBAIEu6XCQIHTUQOXlgwo7oIBn8+1a7oeMwGDgKCJoCIoEAzoto+PD/hb0U2glAWDbSZaEOxuQ1fA\nA58iDx49z0oo4HbXl6OWEGypzENVWQ63vYifpxSNtBZ7JToJPiGvA70EkzCfOxxqxXQ0YHpvnD67\ngYcePoMnnnoQTz1z3UCBwPb2szfw0gtPEgiexovPP4nHHr6IKwTdM8ePEAomDVAICnbWRnFiawon\nNsewHYeC0aCBgvmJHoJBjxneNEwYUJvmYQJCf7SdUNCMdvVJUL8IQQGBJRT04NLZaXz8Q0fxt3/2\n5D1/4/+R3a3nsvv9+6ZBgSy+hKCe7/c6Ye7Znn032xtddfCV9ie/eRO3b07vZl4X8kSeQxBIQ2Fm\nEkpyFDHIMFCQn5GGXMJAbgaBIC0dGVrHpgAV6H9ZKSjMSaN3n2dO8CpF6w36MDYcxtrKLC6eO4YX\nbt/E+977Kt77nlfw3O3H8egjF3HxwjGcOMGT5vYitnaWDBSMjIbR7nXBwdepKi9EIUUlKyOZQqhl\nhFTk52QhPzeHnnOKEcFUeroCg4MU5LsjBUZs5YWrlbC8ZHroul/9BFQ+eDcUGDCg96zIwJv4Gt9H\ni0FBDAxUWaDnCQxi6/709gkKSkwUEDxw4DDetO8gL+mxU7iVV1BjtcFa14DySgvUHVGdC2NDlmJR\njH8LBekUcv1f20xR19KBIgV8TloywYAgkJmehaz0bO6LHO4HAYLuz6Dopxgg0H7Izszi4xRdSDFw\nkMnvKy1FOQvc/n2HCAUHTI+HJG63Zkek8HmK/BTn5aGsiAJOKNBI7MZ6C9zKBaDwW8vyTcSoojAT\nNSU5qK8sRNNuboAEXeIvExzIdF3JinZCQhUhoJBQV5CVymMozQBCZVGeiRro/3oN5Sa4CB+upjpj\nihZ4WhoMAMRhQBGC1laHMQGBYxcgvOqH0NWC7m51Meyk59yJEKHA3+VBh8ogFV3g81taYiDhcHC7\ntNxQV7YLBfkGCuqqCrk9RcYaCT7Ntgp4+dh2NXBqrkdfhwtj4Q5CwSguXz1BILiK556/gdtKmn36\nOm7evIZnnn6E8HsDz926gacJCZcIuqcJBCd5XO+sTREIRrG2OIiN5SHCwAhBYQiby1GszPRifiwO\nBd0mWjDF2wICzWwYIzAMDfv5+bzo6Go0Fgy1INxL+Am0YG6mH297YQ1/8Ktf2zJj/FwTt/v9+6ZC\ngXq867U1Q/5eJ80927PvZos3LFqcdt3z9/GNtj//ncfwsQ+ewOx4Bz28Kp60MwkEiSjISDTRgpKc\ndAMFhVnpPLnzf9lZyMugSNHD1Hp0Br13VSboMpeiXV6UDwdFo7OtGdFIyEQLlhcmcfH8cTz91MPG\no3rk4QsEgqMEglVsbs3hCE+aG1uzWF2bxORUPwKdrXA5a2GpKkZxYTbyCBy5fP+ighyUlxahrKSY\n92UjN4cCmaWxx2rjK3GNJRvGE/SMB74LBkroU2LfQcKBoGD//mSKuASdRuF/gECwj899C4HgzTRd\n6n+CBz1ebYjVpOgQX0OmYUaCAi0bvOmBg/i+t+w3cJBMAc8vKkMJwaCouBzZ2flmKSDWK0AQIItF\nLmSCglhyZLrx6lMU7ufj4xMfzbp/chohIJOin4O87DwU5ObTKLh5+bwtSND/slCYX8D9krsLA8nI\n4fdlIEHgdDgBmhkhGEhOIBgcPsTbB00uQbGiBLtQUFlcaBpT1alBVXmJEfGy/GyUc9/Ly6+rLCUU\naFJmDAyUOyBhFxDI+48vFVjKisxzBAR5hDpZMQFTj9FzfW4HOjxNaG9pNJUKPi/Fm16/i+LdpOUA\nCnmbl/+jtWrJgLAgaHA6+N5Oq7kv4PdQHDvQF/EjEu4ycKCIQZd6JrS7+ZhGwoMdjgYL6qzlqObx\nVFlegIqyPFSU5qGyhJ+XVpKnYzyFlszjPQXlvF1TlA1bRQGa6ysR4jaM9HRidW4UFy8dwxNPPoiX\nXnoSr7zyDF568Qke04/h9q1H8cyTD+EGYffqxRM4trmAoxtzOLE1jxObM9haGSdUDGBlNoLlmTAv\ne3jZjeWpbiwSBAQGgoJZXpq8goF2M0hparIHExM9GB7qQn9/e6ySotfLz9sOX5sDIX8Lrp6fwE9/\n/OQ9f9//kd2t57L7/fumQsHdjYzU5vVeJ84927PvVovPOvj0J47d8/fxjbZ/+Pwt/P6vPoXLpwfp\nHZabaEFVURaKsnSCTCUYqDd+moGCIgpxMb30AgkRxUaRgoykBNPYSA2OBAXqZVCh0jaKRbDTi5HB\nXsxMDmFjbR7nzu7g2oNneLllIgRHjy5jZ2cRm5tz2NqZxzpPnrNzQ4jwBOxx21FnKefJu8D0TSjl\na1aWF6Omih5oRTkBIR8lxcUoKSIgUCDT6aEnKwGQwhsXXHnisXHHEuUMCnC6gQIJ/N1QsI9QICDY\nz+ea6MDdUMDXeR0K9HoxMNB1LRe8RVGCBw4QCg7w8RTblAxk5xYiR62aM3NN86CY+N8NK69Dgq7H\nEwqVM6DIgMDAjIAmqMQTArVkICjIJxAUFVBwS8tQXaGR0uXcNyVmP+g+gUEsWkAh5veVJUAgFCgq\nICBI5XeWvptHkJORboCgqqyUXnM5aspLUVVShAoDAjkoySVo8Pss5PdfkquSxTxCQQkcGqNtrYyF\n/nfhQGJfkkdoVFQgDpLZKnWMRQoEBFo+0HOUiNjr96Ev1IlwoB2hjlYE6N0LANyueoq+hWBgJQjY\nCAo2Ez3Qfco7EBAokiDRDwXb0NvTgZ5uvgav+wkJihLEwaCFsOF01qHWWsF9Q4DKTeP+SEBm2mEe\nvwk8jgVEOq5TuZ3JBgxKaKW8LTCwFGfDWVOCLsLKQKAN0yNhHDkyhQsXdkzp4StvfRrvePtzeNtr\ntwkHT+KJx6/i8oVj2CEQbK3NEAzmcZLH9yke29tHJggVUSxMdmNuPEjzEwA6sTgZwupMBEu8f4EA\nICiYGO7EUNRnoGB6Kozp6QhGRzVkK5ZwGFJVRUDllS5E+7qwvtyPd718BP/0pVum/8i9fudfzeJa\nG7f7/fumQoEsPgvB/uw77nni3LM9+260rp/5LXPca0DY3/3F19eU5H7tX//6Nv7nn72ID75zG2G/\nDa76Mnp5FIW8NGPF9NJ1oi/I5IlTY4zzcniZQ0EhFCQLChKRTW8zJz3N9DHITEkyYFBDb7GlyY7e\nkPrMd2NqYgCrK1M4qTVWek8Cge3tBRw7vkQ4WMTOsQVsbM1gYXHYgEQ7PceG+mpYq0tp9FprtA5c\nycvKO1BQTjGLCSEFOCNnFwpe98LjYKClA5Phr4mGEvRdKDCzECj+yjHQfAQlCkro1eDI3K8ogf7H\nx2s8suxuKBAE6HGm34G6I/K2KhRS07KRRlMJYXygkqmMkNAnxEoMNcXRTHLUMgG3W0Ag4U9PSTel\ngskJyaafQNLhJAq6lk+UdJllIgFF/LwVZWWEJivNAktVFfdJhbksLSokPGhpgSKXn4ccXScgmLHT\nCYf5nSWZpEJNoaypKEN9TRXstRbYrDWoraog0BXGwC8rg949wSGN3y2tIDOdoJDLY0PJgmpcVRSL\nCqjDJb9r5QwUZPKxqYnITed70PJ5W4BQVpBtEgtVaaCcA0UIBAOCgkiwwzRAkogLCpoJBY6GGtht\nVeZSuQOKHAgKHIQCgUK7z2UeLxAweQS8DAa8BizuQEFHC9w8/hoddagnwFQSWvK4Lekph7g/9yMt\n6QCy0xIMtFQUZqOG0GAtL0BteaFZMrGU5KG2NA8N1SXwOgi4PB4jfA8NY1paHDNge/PxK3jxhZt4\nlXDw/O3HcOORCzh/egObBIejG7M4yeP71A5taxZbK2M4MteP5alegoCiA0HMj/mxMt2DjYUBHCEY\nLE+HTYfEyV0omBjxEwp6DRhoGcHkFgQJQ6FmM0Cqs6MR4e42jA524NErU/j8793EP37h6Xv+zr+a\n3a3nsvv9+6ZDwWc/fca8/l7C4Z59L1m8N8Gzjw/f83fxRpiSDf/+88/hN37hBk5v95u58bUV9MqL\nNEo3g1BA7383/FuQzduadUA4kJeZnpSE9MREU6qoyoQMCk5aYgKy0pIpOrmop4h7WzQzX6NqOzE5\n3ocjq9NYWhrFyso4wWAWJ04u4/gJgsGJBaxvTWFhaRgzk4PmOVpCaKivglOJbfZa04bZWkPhojAV\nUqBKS0qM5eflI13Ne9RPgEIa88xjXrhC81qvTzycaaDALCHI6ycUvD4tMdE0EVLDIFOySHE39xMK\nzCTFeITAmDx/tTeOQYGgIZa4GAMMPV5VCrGxzTFIOUBoUM6DgQJuo5Y6tK2aWGhGGWt5IDUGBGm8\nrkZNAgElA+pS3r1yOLKU3JmZhYJcfvaiIoqdFfY6iZ4FtTXVsFHctW+Ud5GdSbErLUYxPf5cXs9M\nVbXBIXNZxO+wtroCzY0NaGl0oMlez++qGlV6fF6u6VmQk5YWSyol8GmEdR6/7xK+b3VpCQW+wEQF\nYrkC6SaRUOKvYyQnLdFcmuOF/9f/FEVQhEC5CC0UafU38Lc1m34GgbYWdLQ2wetxwLO7fCDxr7MS\nemrL0UA4EBQIFmR6nKIEXao08NNrDnrRQzCQGTggEPg1h6HNxeOHkEtrbKgj9FRxfxSaGR7q0JmR\nkkCI5b7IyTBQ46yrMlUVHgffi+DitFbAXlVirKm2Ei08Br1N3HZ1FqQQz04P4PjRZTz04Gk8dfMK\nnrhxCdevnsKF0+s4RuA9TdA9Qzu1NYdjaxPYWBzC2lwU6/P9hIAoNub5W5jpNZc7y8O8jBIa+rA0\n1YOZUT9GBtoJBV2E6W5M0kzCYb8Pvb0e9Pe1Y3gwgFBAkyab0RtowdG1CD77Xy/ib/7k5j1/51/N\n7tZz2f3+fdOhQLaXcLhn30t290TEb0aC4d32j194Bn/75y/iw+88iZmRdjRYSkxSWWVhpoGCPHl+\nabEIQLFCynEoIASkKstdPQMOHqQd4O1DZjmhICcTFSWFFKwKnpSt6PA1YaDfj7mZIUxN9WN+fgjr\n61MGCmQ7x+ZxZGPCRAqWFybQy5O8h15hE700VSPI62vgydpSrXC5vD6toeejgJaVlRVr6EOvOt6r\nwNTnJ2ciLTUbqSmKIuRQhLNiUKAhRrtQIC/eCD+hQGY6DcZt939mGcLkE8SiBDEoSDadEVWFoI6G\nphpBYLDvsHmulgZMF0JaDApUEaC+CqnmPlUOyFIIAGnJEipVFShKoKqDlDum0H96ipo3qQoj/d+A\ngbW6iiBAWKqzGiBoqK9FdWU5igvzuG9yCApVqKkoRVmRyjszDBDkZKSYrpROPrajld55s8tcrywp\nQm4G3yNlt/RUZYrpEvoMXqbR61cVgYYF8fXys434pyXsR3riAQMAigoIAuR5CwQEDbo0SwYEOSUu\nCgiaKdBuAl4zr7c4VOFQRyhRVUANvXqKsaOG8FfJ77nYmK2Oz5UYtzp5DLmMtatUkZedHW4EA63o\n7WlHX7gLESUa0pvXYwQYAkk3wafV3Wisie9nrSpDWWEuj+EMAwQl3EZFMLR9ba4GQnETOggtHpVd\nWsphqyxGfUURbDR7TQka7BUEFwuhpInCHMKR5UmcPbWGK+d3cPXCUVw+t4WLZzZw4dQRnD22FMsn\nIOgeERAsDODoyghO8Tg/uT7O60O0YRxfHcX20iDBIZZzoOWF0cF2jBMEJsaCGBsNmH4FPT0eM5J5\nZqoPo8MhjI9qnDLvD3gwP9mFj7xrDV/4/Ufv+Rv/ahY/58Ttfv++JVAQn5yoNdZ7nUT3bM++m6zx\ntQ+b4/3kdsc9fw9vpGkd8l//+mX8+s/fxEPnp9HVWg9Laa5ZPijJTUNBpk769P55Aq2mt6VxyiUU\nHoWgFSmIi4g8Si0npCXJI02MTVYs1dTFcoJBDb08O725VoyPhbG6OoGdHS0fLGJ7Z85ECVaOjBko\nWJofN5EFb0uDeZ7beIp2EymoKC9Cfp7C6JnIViKdljEolmo9fPDAIQrwIYp2Im9TbNOy+ZgCFBdp\n2cGBqop6EzV44C2HTBRB9fqHDlDE9x/Evgf24fv+0/fhwL5Yff/BAwfx5jc9wMfu522F/RVhIAi8\nRWWPhACCglleMNEElSzGTFByiJcCgFjOQDJB4QABRM2EDvN1EgkGSaZiwEQBKPoS/Ky0TBMNSEtS\nhCDJXCqZU7kb2fyMWfTclQeQRe+9ICeb4lYBS2UF9201HBT1poZ6wkGNgaZqgkANxa+WYlxrEgCL\nUKrwPr15NSjSICtHbQ2a5UXbak3LaoFCdhq3JTnRRIAyU7QklE4jTAhKaNlpGSafpDBboKDZCfye\nkw4SGGPRAYGBCccXqfafHjYhTg2NJP66Hm9e5JDxuqIHepyWImy1aihE46VmIdRZSvl5BJQ1Bg4l\n9IHOFmNd7W60extN1MDAQpsL/g6Ndm5BJ//na20kSNrQUGcx+8XjcqLd4yYENaPV5TCfXcdxcW4m\ntzkVZQU5JlFSPRb8rYSOZgchwQJbFeGYx291Sa6xmrI81FTmw1JVyNcuQ5vHhoFIJ44sjuL0sWVc\nOruBK2fXceHkKs6fWMKlU8u4fGoFF44t4MT6BE6sjePM5iQuHJ3Fue1pHFsexkke82e3prFNIFib\n6zPVCAYKBnwYjrZhbLgTE7wtG4i2Y2TYTxggEIx0Y2wkZCYoakbFSL8HT10fwx//+rV7/sa/mt2t\n57L7/fuWQIHWVLW2qvfRWuu9TqR7tmffDaYyxHgHw9/6zKV7/h7eSNMSwj998Ra+9Lnb+Oh7L/DE\n1M0TIsU/P51goJJEeoBZSsqi51dSYCYnlhcXoLq8hN5WjvEiJSCCAnmaqkQQFOTphFuca6IFDfT+\nmpw1PLk3mrG3SzyRHj26gFOnV83ywQZPjEv0oubmBzA7NYhwdztaW+xGFFxOq4ECB0/UVRQRecGC\ngpysLGTxvTP43urwd0gDhijyCtVrvT41RdCQh6KCcoplA59rQ0pyFiFAwpyGw/TeBQWH+bwkinW8\nzj+VgphGgVa3REHCAXr/WpIQSJjERUEBL/ftvxsKeL+BgJiZuQWCjkOKHuxCgXmfhFgJId9HUQAB\ngaoHcrOyKfjpBgZU1ZGerH4QFN9MRWXk5UuYU2JQkKvwP73pSgooocBJYW9y2CioysEov2M18cFV\nFWoiVEDhzzWXqi6w1VTCbq0yeQTVZSX0nvMp+PoeY3CXxfdTuaL6GGjMsqYqZnKf5GZkUfhVicLt\nMMsHaSaJ0EQGeHwotyAOBOp0aLob2qyoJ6RoGUGmpkY2bp8iCKbXQU0ZP0eZAQKBQGzJqJqfyUJx\nr6f4Oo3odwe85lIgIFAQLMr0GC1TCQbuLEM462ATMBEMXASD1ib+v7kJHl4KCgRKJdzegqw0s/QR\nT4Js4fOaHdyf9SqrJJxUqpIiH1XFOfxsmSguSEdpUQbBK5cwVo72VjuivW2Yote+PDeAjWUNOhrH\nyc1pnD06j/MEgnM7szi1MYnTm1MGCK6cXMTFo3MGCE6ujfH+CWzO9+PIbBjLmoMwFsAIgWCov5VQ\n0IGpiRBmpnsJ0yGTWzAx1o3pyQgWZgcJDwH0+lsw0NuCc0f78Tu/eAX/8n8xUvluPZfd79+3BApk\ne+WJe/a9YPEowTejg+FXM51I/vELz+NXfvZJPHp5Hq3OatPIqLwwiyf7dJNwWMSTf2lBNopVolac\nT0+00ohKeWEBwYDebKoiBmpwpM6HScijaAgK7HX0EAkFDs1F8DSgu7sV4+NhU4p48tQqTpxcwZH1\nScwSCCanIpgYDaMn6OWJ3k6Q4El9FwqaeMKuo5dZVlKIAkULcnOQS69Z0YJY3/9EE6Y36/cUZIXv\nBQbZmfkoLqoylp4WS0hUu2B1/VPjn5TERORSELU2b6mqNAl6mRRf1fsnHDxEKFDTH4X/1XiIAECL\nLT8oiXA3QkBgMI2NEmKVBabskECg+QT79u030YjDpslQookOaEkgk6Irwc/nZyjMyzMRAZO8Ka+c\nQJBHUMinyVvPEGzRstPTUMjPXUUhF5TVWyighIJGCp/WzesobHWKEFBslVyntsWWcgqbSQiMJQnW\nKYpAsxAOtGwgICjJz43lE2QpKsFtE+Ap8sN9oCoTVSxkpXFbs1V9km4gQBEBibwSDiWqlbytskUJ\nvRogyfMWHGjNXksOgof4koJKFhW2lxA7aithrSo2EQLBQHNTnak+aaW4x8Ve0YFgl8dECJRboGUl\nhy0GDzFwFCDUmUmMTnsNAaMCNdw/muSpLo12S6Xpv+AgOGmIlyostD2xCgnlPqhcMp+P4zbUabZD\nFVwCE5s6N5bxMxCGCwVpioAlobQwnfsvD06CgddlQcDnQFTh/aEuLE334ZgEnxBwinZ6Y8JAwbnt\nGVw+voCrJ5cMFJw6Mo4TR0Zx/MgI1mcjWJ3pxdIUAWC0C0MRDwYiLRgd6iAAdGNuJoy52T6TdDil\nJQRCwerSGOYm+zHcp8e3YXs5gl/92Uv4u/+LyYl367nsfv++ZVBwd3niXrRgz74b7e4owTerDPFe\npmiBKhH+5DefxXveegJ9gSaeuFW3TgCgh6STZlFuurECmsoE7XU8gTttPLmXU1Qo0BmpyMukN5lJ\nMMhIpvebQq8qm4+rNFDgbKg23n+bpt91ezHJE5opR9yeJxDQ6xnvxfBICCODIQMFPq/TCIQ54TfZ\nKAY2vkYtLBS94sJcFMm7pZhlUchS6dkmJcWGI0mItYRgQvhK5ktKNxGD7Kx8Wi4hQc1/0nFo/1sI\nBIcodklmKmR/Txemx6JoprhkpBzG4QMPQEOY1D1R0YSDFPbv+0/7sH9fAkWeQGA6EwoABAK7CY0m\nuVANjpSgyMcdOMzH78ehA7GZDaYkUEAgTzwjDXmEkaK8HJTws+RlZRoPXfMlClX+STgpEvhkqFlU\nErczmZCgdXD1FVC0Jt+skTsodk0NdWjg92EjNMnqLeUEBw0dKoCllAJMYWyoqYKD3rNdMMfbVYQr\n9SYoys2iaTpmLMkwM03Qou2MgUiGQI/blJeTY6o+5F1XFMZC7hJ9LQlI+FWyKNP1eEMjgYMiCjmp\nCWbJIZ5zoIoEwYG1vIiPI5yU5pmJiYoO+DxOdPncpjumr9WJNoKBlpJ0v6ICggCnxJrHlIFNwYFu\n8zhTZ82aCi1x5dwR/XgFRLVpuZwfa91NyC3ISub/1XhLcx9USptFkMiDzcLtsFei1VULH4/XlkbC\nRB33V2k2vwslKB7mcxP5u0jnftRkyWK0NlYh1G7HaJ+Xwt5rcgVOaPgR7dT6OM5uTeESQeAKoeDy\nsXmc35zGqdUxHNc8hKUBrE33YGU6VpUwNdROwHAbGxn0YXoihHlCwfLiAObn+jE13mNGWS/MDmBx\nZgBTI7w96Mf6fB9+/icv4K//6P6TDeP6Grf7/fuWQYFMmdh6r71owZ59N9q3Q5QgbhqQ9PnfexI/\n/fGHsDITpJAUmLVUhU4rKe7FeRkoUDWCPCuKgqBA4djGeiuFQAltFDF68LmZqciiAGRnJNHrpgdW\nWWQyygUEXR1ueFvt8PmciPR1YG5+CItLoxgjEAyNBDEy2o3x0TCikU4E/S1GFCQErsZ6tLgbjDkp\ngFX09spVhUCRyqKQCQpS6NUq5B8P25sxxGaNX4ODFB2gp5dNUcsrIBhkIeHgfgqeSvRSzUjf1YVJ\nvPPVJ3Biew51FKiEg/ug1soK9x86cAhvedMD+H/+f282oi8AULRASYgCgiTe1nTGJAKIWWbgexog\n2B/LT0g4pAFOu30CvgoUKAKglsPqMFheXEQvnh62ojDKnUglZBG4VNVRQe++VFCk5RzCjCIEbsJZ\nk9oL74KBoEAjirV2Lq+8nuDmtNagqU6dCmsoxBX8X5GBOVWVCDYEIgKQO5ECXmbztpog5WVnm+TG\nonxFFbKN4Gt5QBUEakCkfgUGDCi8cVM0QQmq2QQsJatKpAUJMl2XablBkYbyohwDBQKyTp8LwU6P\ngYJYsilFWSWKd0UG4qbW2rp01FeZ5wsGdIzmZNCjz4iVSCopMp7rIDDQe5bwWC7OFaBkmkv1KijJ\n4+2CdO73bNRWqclSbAKo20HgqNVSTAH/RzDiYwUFpfmphII8uBvK0dFSiwhBemKg3ZQWbi5E6bkP\n4tjqiIkUaNng8vF5AwQXtmdwdn0SZ2gnVkawpUqEqW6s0FSmOB71Ihx0Ghvq92Ji1I+ZSf5vtg9z\nMxGMDgcQ6WnFQF+7GWktKJgcChkY+S8fP4Uv/sH9Jyrfreey+/37lkLBXrRgz75b7dslSnC3/a8/\nv4Xf/IUn8cilabjUI74in6KShxolHhbSw8pLNyfdksIsqIeAk2Kg7PFGeowSojKe3HMzkyi2Sjak\nGGQno7ggw2SRK1ks3NOBQED15C3o7+vC7OwwFhbHMDEVNTYzO8QT3yA9oV6e9PwmMVFg4G6qh6e5\nAW2tTYSLJr6ekuoqUFxUgAyKq4AgLS0NyckU6QT1BBAIKM9ArY8TKNIK/ydR4LJN1YKWC1IT93Nb\n6S3SU/TQ03v06hF8+sefwyu3T6Ev5Dbwk5VG796AAZ9PYX/Lm/eZ1zp8WK+tiIBmC8SAQIOH1IjI\nRArM+8aSGDXRUVECNRBKSxYUKDSfTHBKMZ0aC3O1Vk2hKsijKOUbGLBWUtRpCu+rDFRAoFLCqrJi\n1NPTV66ABhhV0Nu2WSpMAl0zwcleq1wDtfAtprBpJHAZbFX0pi3VBIJauOvrzKW9pprfaQkFMcfk\nESjJUPCh5QNFLPK5f5S7UFSYx32s5ZcCFHH7CggRylFQAmFfsAMTQ30Y7us2DYh0nxIItSygZQWJ\nsJYN4n0KBA3KNxAElOXH8g+UZKiogs1abgTey+9YMNDhbUQLv3OJvfIN6pV4WFvBx9Twc/JzOK1w\nqbvhLhDo+RbCp6CgkCJfyGO0ksdiKcVfUa7q0jwz/VFLAk4ei3a+nq1GCZea31BkIKCuupCXir7k\nc58W8ZguJ/RaCCZWNDfVGDhQAmK9SUBUz4Zc7sciNDeUweeuQXe7DYPdbkwNtmNxPIAjMz0mCnB2\ncwKXjs2aSMGFrWkDBOfWp3Bxaxanj4xjcy5CKAhheTKEuZFOjERa0N1lR4+/AdFwM0b4eko4VDOj\nidEgBjU10e+iI+HB2AAhYjCAsWgXpof9+ORHjuIvfueRe/6272VxbY3b/f59S6FAFp+euBct2LPv\nJvt2ihLE7V++fBtf+IMX8MG3n0S4q9EMwbEKDMpjbWHLi7MpYJkGCirLCigQOnnWmBO41nOrywso\ndISClIMEg4P0NBOMVVUUmDa2pqa8u53mw+BAiFAwgsXFCczOKclwDEtLk1hZHMfs9CAmxyIYGgia\nsrMWt91AQXubGx30Tt1NDbDV16KUApqRHoOC9PR0aISwKhFkSUm7YXyTfHiI1xNMVKGAnnl+TiYF\n/5ARj9KCNPR02vC+107h937lJXzqYzdwbH0YNdxmPSYt+TCFXPMFtGSgpEGNJtYgIvU/IAgkvG6K\nSJicAkGBShH3HzIthmPJhUmvh+VTY8sBORT7ghyNo842jYPUVdBaWWGaCqkqQEmACvEXqsSzON8A\ngRLnXA11popAA6k0qdLbTChQzkVNKapMC988fjf8H1+nyUoBNUBQb+wOFJSU0IPOghpOpScnIptw\nICgoJHyUEgIUjam1aoAQhbDOAqulCpWEEQeBrMvrxnCEIjYxjNnxIQMG3Z1eEz1Q1ECRBMFBfFiS\nSSisUuvk4jv5B/GERCUjaolAMzNkui7Rjwu9TFCgJQIBgYfHmttZa8Z2CxQEDbVVAqEic/xpKaKK\nIGurLoGF15UoaOd+UZ+Bzla+D4/D1ia9jhW+Ftsda/fYuB9r+R4Uf2cVPC7N8ahHV7sD/g4taTjR\n0eJEK+HLzfd22Srgpnkc5WhzVSHgrUUfhXyEQj4z5MPKZBA7i1EDBRd2pnFucxKnV8dwcnkEp1fG\nDRicWhklFISxyscujvsxPcjfRU8Tgu113J829PW4CMeKCsi8ZnpiX68HvUHu/2gHxocCGOnrxEBP\nGyZ4+wffu4k//LX7n4Nwt57L7vfvWw4Fd1ci7PUt2LPvBvt2jBLE7W//7Hn8/H9+FBsLYbTRS9LA\nGK216kQrodFJV7kCJYUUD8KBnSfvFp5wBQZKGCvIlYd9mN7wIWQaUT2AfHpvtVZ6VPQA1YlOPeuH\nBnswMzNMEJgyY5OXlqewsjJtar8X50ewQFCYmRrgiTAQyzjfhYJAl4+v04ymRgcqK8pN9UGyEvQy\ntIyQRhhIMVCgEcPKK7gDBRTn9LRUEyXIp3eel5lILzyNXm0WZke9+K+fuIYv/eHL+O1feglvvX2K\nItFADz2BAh6bzphK4TykxENVEhA2khIzCQI0RQgEBIfTCR67SYaEgkOKUNBerzYQDMQsU8mYJlKg\nxEFCFr1+JcYJBuJ2pzKAHrrC/IKARpsVbc2N6OTnd1KsFSVQtMbjslMkawgUxYSHXFqO+Z4EBe66\nOgMDzTYb4aAeTqsFdQSPisICFCiHgFCQlsTPyEtBQWkRIbC63CzTeFvd6OpsM+bzedDM91YeSWer\nC/3dXSZSMD06QI81bDoU6n71IIiPVFZPAlUfKKFQyxiKHsQrFJSMqMf3dLXRK/aaJYMOQoGWECT0\nVRTzCpUCEs6UL6D7PS4bWnipiIGdXn5tdbHJIaghDAgKtISg5zYQFhqVY8D/Wcvz4SBU+Nz1CLQ1\noUtgsAsCKufr8TcjEvIY6/Yrl0H5C/UGCPztTnQHuI3BZoS6uC+4fX6VQHqd6PTY4XPVoq2pirBg\nQchXZ6BgsLsJUwNeLE8EsL3Qj1Nro8ZOLA/j6PwAduYGcGx+CMcXeHthABuzvVgmEMyNUOT7WtAf\ndCDgs3K/xKCgn5AR5mv2hlzGwt1uDIS9mJ0MY2qkG4O9PkQCzRiPduL737aO3/nslXv+ru9ld+u5\n7H7/vuVQIItXIuz1Ldiz7waLdy/8VvQl+I/s//vTp/Cnv3Ubtx5dRV/QZcKr1aW59MLocVHYzdot\nT9aFqkrIS6UQFdCLowfroIdooYgVZ9ETp+hlEAwEBSkHkJl+GCVFWaZDnY8nVYFBtD+EifFBQsE0\nVo/MY2V1jmAwjeXFMQMFK0sTtEnTIlkd7AQFPq8LAb+Pt1vh9bjpvVYb71+RAkFBmoYj3YEChfJV\nKXCIUHCQ9yUiNSXRTF3Mz9HI4MPc/mSKRwHOHYvg93/lCfz955/HX//JK/jFTz+H45tj/Gxq6ayK\ngUNIOLSPr5Fg3ktVDanJOUhJyjZgEAMCNTfazWM4kGgmEiYc0rLBbvmhlg3SYmWFBggy1XMgg3CV\nQ/HLR111BcXMQgGtNtdVHaBkQI00VsMdVQy4HfUUUjeCCtfTK5ewNtktBghU2meVZ70rkhUlFN/y\nMjiq+X8rxZlAoMv6ykpUFxejNFdJgISjDE2/VCWEchYIfgSCJgp/OyEgEglhdGQA44oGjPQj0hdC\nq5r7NPL/LY0mOiA4EBBoCUHdCk3yISFAJjAwiYgEmgp+BpmAQM8P+FrQw+frNULKIfCqZLAeDoq5\nPH4tBQhu9Jmc9fTc+T+BgT6rHlNP7z/+WWV6nO5T9ED/d1pL+TmzUF6QjuqSbDTVldPLt6DFSVhp\nqDSXHa02dBEC/IoG+Aid3np+Pi1REEKaKtHaUkMgtfJYozXXEgLsBAJ68r4mBLwOdLaot0Etejsd\niIaaCASN6A80YCzswtywD6tTQWzOhrGudsbTvdia6TNgcHRuEJtTfVifCmNtqhsLBIKpaCuGe5oQ\n7uRrtlnQ67ejv9eNPlp3wIFglwYgORHpbsZItAPzUxGMD/jRT5jpC7YQbEN4/6vr+O3PXL7n7/pe\ndreey+7379sCCu6OFijseq8T7Z7t2XeCBX/pj+/8hr4VfQn+I/vHL97C//zTF/GD7zuL2bEuntRL\nTBWCIgVOirpqyat4Ei5Uc6OCNFSVKkmsiCfjMth0Iq5QY6N05GUnIYswkEU4yMtJQRnBwlZfaUbe\nqj+9ptuNjUWxShjY2tbExBWsrMyYnALZ6vIkNtYICgtjplNdrFlNI5/bBj+9y472Vr6eFTnKD0hN\nRWZmpoECAYHyChQp0PLB/n0HsX//fsIC79NERzXbyVGlxGEU5iTS46vE7Ruz+OLnbvE88zT+5o+f\nwh//5rP42AevYnzQi9oaTWVMR7ra41JAExISTL5CWkquAYPkxEzCh/oeaEaClit2oeCgoEAjiuM9\nCWLNh1RWqBwBs2xQkG2AoKai2PQNcKg7Ib17a2UZQazYTJ0szc8hFOQRFMopZPTSvfRmab4WJ4XS\nRiiIAYGEUQmSEsQGfkeCuMoCvnahuvJRJC1WNFTXwFpahvL8fBRlZZucgjI+Ri2OrVXlcHB/trjp\nBXPf9nb7MTISxcz0GGZnxzExOYSBgV560E3cjnpjWi6QuCvhUEsKEntFCWzVKuNTKSS9d0KAqgwE\nBgIERQeGCBsj/T0UtE7T5ljev6tBWf67FQT8LFoGqS7LN0sDxvO3qe9AJWwWHmcmz0CzG0rNZ47D\nUNx0u4HfW3l+GgozE1BCSK0tV16BBjqVcDsUdSmDr7mOYm8lCFiMCQaaGsqMuRq5v91VaHZVotFR\nyvsIFc46tLsJp+qNQMBoddaY1uD9hOfBbnrxHfVoayxBqLUKUb8No71NmOrzYCbqxcpowADB+fVJ\n2jROLI4QEiJYnQhibtCHsUgzBoIO9HTUGSiI8PpAuNmAQchPcOm0Ew4aCQktGOrzYXSg00QIwn43\nhsI+LE1G8M7nF/Gbv3D/55T4eShu9/v3bQEFMoVZ9b4Kuyr8eq8T7p7t2be7KTdGx7EGf93rOP9W\nmzoc/tOXXsav/NwTOHtiFG30lqor6LWVqbyQJ2IrBaucHqwSuQrVzlihbXpqVUUm1KvbsnJlaudn\nUDj300NWpCAb9TyptyiZjJ5/hFAwSaE5ckQDkpaxsblEQJjB/NwQlnjC3NiYMV0PNZlucDe3QAmK\ngYCAoIVw4YKTnnMVBTQvNxtpqYoQqBRRop1IDz6JHrzW/lVeeND0HMhSy96cLJNIp+ZKpQVZGO5r\nxkfecxL/8IUX8E9ffIZQ9Ay+8AdP4g9/42U8++QOxbEFBfwcyckHkJ2ThqTkgwQMCn1qLsFDkQJN\nYFRjIy1VEAg0e+FgHApiCYamKRKhJC050UQLlNOgao2qMq2DF8WqCOSh19bAWUMvWE2HygpRVRLL\n5TC5Gw019GSd9BhbTBWHp1l9/VVtoDC66vFLUM/XaCBcqMJASwc1xYUxMCimOJdTqMtKUcX7NNyo\nLF/LQcoRsMDttNMzjlV2NLs0X6AV4XAQg4MRAwajYwMYHo0iOhhGgJ59K8FBFQ/NjXYeH01mSaOF\nQKClDC0V1FWrH4K2qdh0Bazl8eGqr6aH7cbkYC8WJgYwMdBDr9gDj7OWQCSQUVlhLLGwUksHhEgd\nTzreHLYKHnvqdliK+lpus43i7eBnJGTWCiK4f4yZJEtCAt+7rrIQNdx3muNRWZiFah6PSg6UWQkI\n9dWFBJgyuBvUk0DNnJTEWcD9UWKAodEuSCJA1BIw6rj/6wkJdquZjeCq53P43s3c/z5Chb/NDr/P\nhg5PDUGtDO0tlbyvBt0dtegL2DASdmGRgH10KYpzWxO4sDWJM2ujpmnRnCoO+r0Y6HEjHHAgRPEP\nahmivxUjwx0EMR9CwUb+Zuzo6iQ0hNwYiPgw2NeOiJ/QEPBgvK8TS2O9eOdzC99bUCBTuFXvXXXu\n+j1PuHu2Z9/OppwYHb/19YXf9BkH92umw+GXnsNf/N4LuP3UEUR6HbBa6LVV5cJez5O9hcJCKCin\nYKkiQWvYqomPg4ISERVJqOPJXeWIaRTRVOUV5KWjVlnmjbVmIl5PTwcmKA6LC5Mmr2BldRZH1uYI\nBuNmLsLOzjx2ji5ifWMaU1NRDA2F0Nenufntpve9RuO6ldhGj7Wcnq7W/A8fjLUpTqQ3LxhQsyAz\nNvjgYSTs02Q8ZaNz2+k9F+Zo+wuxtdyP//GfH8O//vULd0bP/v1fPo3/9Zdvxad/8hmcPjkDO0Up\nLe0gsrOTkJ55GGnpqTEoSMo2SwcqTTxo+hZwG0yb4yQTJRAYKNFQ5YiqYFAlQ2Z6CmEpm/uI3jM9\naolYeXEe6uhJN6l0kEBgp8DVEQokpvU1RaZu3ttqIxC50dPdystmtLTUoYH31/L7kDAKCFRtUFeh\nnv30bi1WWLlfKgvzUFGg5D617KVQlsYaGinyoHkAPo8LnT4PvLysryVkUPRaPE0IdXciHAkai/R3\no2+g11x2h7rM0kKL8gsIEIosaOiQvVaCXmHyHAQFJpRPs5TnE1BK6GHbMNjTjvmxPswO99Ir9qLL\nXU8QIqxwP5j3JhjUWsr5febTKOCKQFGMnQ2V/B9fT2LtqIK7iV69i5+fcFBTxc/IY88iCOF7m9fh\nttRyHzbwtRoJGqo8UHfCeImtaVtcmge1Lm7g/rPX8H+lOYSwLMJZEZyEXwfho66KQFOZB1tNIUGr\nDE0ErgaBV00Zb1cQKLTUUA0Xt6nJoTkNFYQ1goJXAFeDjjaCUIeFHn8jZsfbsbHYixPrQzi9MWxs\nfbHPlBxGwx70BLnPA/xddLvQR0gY1zCk6V4MjQYQ6mlGe3sDTcDQZLooDkbauQ8JDtynU/0BLA53\n413PLeK3vteg4I9/46E7779Xorhn30l2d3KhcmTudXx/u9g/fP5p/O1fvIAP0oOeGPNQzPN4Mq7k\nSa/G1IsLCrQufwcK1CNeoMDrpbyvuqKQJ2Y1l6k2+Qc5WcnIzU7hyZsiV8fXcdnM+FtFCwboMWoZ\nYWFpElvbS6btsYBge3sem1tzpvPh3NwwpqYH+LgIov1BdPK53tYmeFoaCRl2Aks5srNUGhiDAZUA\nGiBIlodOO8zrKiUkGORnZvOEX08PvMyEzh+5Mos//s3n+LmfM0Ckz/+vf/0s/vnLz+FPf+clfPC9\n1zA7049Kep7pGYeQm5eCnJwsmEFLiVl8P7U9jkcJ1EBJvQuSuQ0CgwTCwgFCQYIZZ6zphbmaNlmg\nREAJWUwQa+Td8nYdhdtKEbcoO7+0wIiqy0GRabHRU3QaKAgFWxAMetDZ5aKQazywxYBBTZmErYiC\nR4+5mNdplYX0uAkEcbPwMerq18J95qOH365EQgp8R1uLAawabUsNPWSCVkdnqwGD3nAA4b6QsZ5e\nP3p7AneSPT0Eg0aCRZ2lMibKhAG7BJiXCuHXVcnDrkQbQdDvoRfsa0K31uNbHfCpBwDF165yQIq5\nhd9hFWFFVS0S+Ro+t85aamYiCAZknuY6tLc50Mr90ejQ1MxiU9lSTcFX50zBiSYjmmZO3A6Pwv2q\nbNBSC6/rvjpChDoUxi1ecltVks19mEN4UNSmiCAgKyRs8ZiVcTvruX31FSUGCpTIqCqERkUxakt4\nvKsfR7EBAwMFbRbu1xpCQS36exwYH2jB4mQXNpfCOL4axc5SBKtzvZgcC6CHMNDVYUN3sBGDAz4e\n671YWBzE7HwUw/x/qMfNY94JfxehIdiMfoJhf48Xg91tGI90YnYwhKXhHrznheXvvUiBLF6iqKTD\nvWWEPftOMfuz7zDH7bdTCeJXM7U9/pe/egG/8OkbOHdqmF6hvB87xUdir7BqDQWgzPTTVza5yXgv\nyTNAUJSXYaIIGoTU5KiFRh+X0yvTOn5xYRaqKBaNztrYEkLYj/7+EEbH+rG4PI1jJ9Zw8dI2TpxY\nwRaBYG1tGiurE1hensDKyiQWF8cxOTFgogVdXa1oa3PDRTFTyZzq6TPowSccPmxMQKB5BpovkJOa\njvQEjXpOMl0DC3PoLZaVmdK0F59ewed/PxYhuNv++Uu38D//7Dl89mefw41HtuF0WlBYnInsXFU6\npPO1c0wFwuGDgoLdXAJCQTxSICjQ8sWhA3EoIEwQXApys7h/NFiH3rS1kiZBpLev9feSAlQRGDRz\noqoom+JUjGZ6xZ0+5VI0IxhqoVB7KNDtFAov2ni/JgxWEVi0FKEOhyZJsazUjDquLCpADSFBUYIi\nwkh5QS6FUQl2bnRT2P3trca62j1mOaaOnnA1X6OeHrvHw/cMtpvkwoHBCIaG+xBVtKA3QAHzmEZS\nLlUCKPxPQTZhfH63qgbQ8aDeAJof4CUA+r2N6KQ4tzqtaOLx00iIcdRQSLnddUpg5ftpiFMZ94ta\nY2sZIA4EigY0u6yEyCYMRLswOtLN46adoqtIhZY76uEjIIb8bQh3d6E31GU+k2YYqIQwxG3t5f96\nu7zmerDdbZIFVZrYou3h66tRUexSsxiUB7EbIbAUoYGCr6UFTQ9tquHjCDBNtTFzWmOPV4+DhroS\nfldV/K5ia/+ynoCT4u3CQKTZLFNNDrVhebobGwsRLE0EMKulg5EuhLocBC0HBqNtmJuN8LgfM7aw\nSBAeD/E78KIv0oahwU6MDHbxtToMGIxwP0z0+zEp623Hq0/P4df++8V/dyx/Nbtbz2X3+/dtBwVK\nOuztrjXboBPtvU7Ae7Zn306mqFb8d/PtmFz4lRbzmJ/H5379WTz39BH0hBrhbKigWBTHGsbYasxa\nuKBA0QLBQElBFgpz02MNgXgpj0+P0+hjS3WJWT6QlRTnwFZfhXafOwYEo/30jEYMFGzvrODy5WM4\neXLVQIHyCVZXJ2lTWF+f5YlyDgsLExgc7KbH2oUOnuSbmx1wOmwmWpBLDz4WLdCShaAgBcnKLzhw\niFBAT12AkK7pf+kGDCYGO/DJj17C3/zJvx8iow6P//jF2/iT33kZP/LRm5iY6EV+YRryCujt5+UQ\nQPKRnJQVyycwVQfqphirPjh8SLkNsbwGLRukaHpkSjKyMggkefRIK0vRQLBqctB7racgVtB71TyA\nUnrIRXn08LMp7PlmzdvjrqVo07v2uynSMTDojbSjJ9xG75FQ1FRHj1nr6vLUKVIWCrQpOSykKMfy\nC2orSlGg5EaaGh8pB0BQEOjwIsjLnmAnv+MuCr2D300N6mmCrS6/D/3RHpNTMDE5TIEapDgFTWmo\nZlE47OosaDUAWEEI0NJROWFG7YRtBIJmh9V46gICrwCC3rWdnrqsgRaDAgpqvcUMcaooKzRLB5bq\nGBA4d1tjh3vaMDMVxcrSOJaXxjA92Y9+esjhnnZE+wIYI7BMTwxhdmoMU+PDiEZC8PG46CQsBNtb\nEAn6MMJjbW5iECtzfI3ZMcwQRAfDXQgHWtHTxX3q9xAaXNw39SbHwEEYEBDEoECjk4vhJLg4CHAO\nRUSqBDUCiAITVXA5KtHRZiOYtKA/TE8+7OF2tGJ00GdsiGAw0teCmZEOLBIIxvs9GO3X/wle3W4C\ngc90LNxcH8fOzgw2NiawtDTI/d7D473DTEicnenD3HQfJoaDGOhtw8RAANODIYxHujBEaHz+sUn8\n1i88aCJdX3k838vi56S43e/ftx0UyHRijW/H3jLCnn07m6JZimrpWFWU617H87er/cXv3cKH3ncG\nUxOdJp9ApsFGEgGBgJrkyCuMRQjUEU8ldwnITk8yt2slDE128/hiPkYJe0WFWbBQxFooFOGwn2I7\niDmeqBcWp0xOwblzWyZSsL2zYGYjrK/PEA6meZKc420lHs5hamoIg/RagwGf8WhdTQ4TLdA8hJRk\nifIBQoEqEOitHzqEQ2/Zh/TEZORlZKIgW4OGNDY3HWePDuM3PvM0/vEL9/78yjH4wudu4zM/+wLO\nnVlBJT3I8op8lJQUIzuryCwhmMoD058g1qPgoOlREJ++mGTARFGCjLQU5PA91dK4nh65u9FmvG1F\nUqqVJFdagFqTR6Cwu8L8FWh2WtDWqvbQLvgJBf5AzLoChINuDyHBg/Z2FwW8jt8NxVzr6VaapYav\nUYXWJifaXE7YCQr5BJLs1CR+XwWmtLGrzUPYaKVH20Hx6sbIUB+C/nYDBk7CiovfW0en10QKVI5o\nkg152dPdQaF2UMh1HMTyGZQUWMzvVqZqARc/Uxs/W4fHSXFuMFn7Lls1PesKNFBQY0bBlbDKuN3W\n6gruBy0HUGgtyh2wmGiAxH9+dghHtxexs7WANQKiSlZHhroxOtxLQBjE4hwFdIHwuDSLhdlJjAyE\nTZRA1uV1UfgpoEMRbK3y+Dq5iYunt3FyewWr8+OEA4lsr7ExCmx/D2GJENbqUhRBiZuEl5pCMznU\noSoRfT8ENishyKIk0HJNWCzhd1VNKGhAD7+b3pB6C7QgGvZifKiTr8t93NOM/lAThiMeTETp+fs1\nRMnN9+3EOG1htg9bBIITx+ZwjLa1OYmV5WEe670GCkYJBYvzg1heGOI295powexID+ZGes0SQrSz\nEc8+PI7f+ezDd3Jj/iOLa2jc7vfv2xIKZPG5CHvLCHv27WzxngRaNlCU617H8rerfekPn8ZPf/Ih\nHN0cgNdTR++N3qjWcendqXmRWt7KNFK5JD+LYkvhSUskGCQiT/3mKXROu9WEybVOXFFWgHIlJVII\nGigcHR0t9ID6TMnb3PwEwWCSJ8RlYydOHsHJk2u8voK1tVnCAL2n9XlsbizyZDltehyEe/1o87rR\n7G400YKK8hJkUvwSDh80HrqxhMNIS0hARlKSqcsvppevMr9KCtkLTy3jC3/wIv73Xyun4N774Mt/\n9DT+3888h8ceOYoWTwPq6vlZ6Inn55UiPS0X8dbGMVNugfIINCr5oEkwzFAZYmYG8nPVKTAfNZWa\nBqjSvwZ46M020dM2cwq4X1TCZydAqYVvq9tGIGgwcyI6OpoMDAgE/MFmNPO7aKcIBLu96Al3IEQh\n87U3w62oiVPr7Xa4Gh0UNy+95WYDBbnpGomcZBolaV6C5lb4WlXu1o7Bvh6Mjw7S6+5BF0HA0+xE\ns4vv3Ub4CLaju7vL5Bf4CWFtrQ6+fjWPgyJUlqk9czoBMBUVJdmmZDXE77Sf4BDh8wJtKlOs3032\no/dNc1oULSijly1vu8wk7mnZQ/kVykuwEhZsdZUGCIYHu3FkZRInjq/gNI+HrY1ZLC+OEhIGMdDv\n5/9DmBzvx+zUMC8HMD8zhpnJEQwQclpdNnhdBBtCY08XxXkwjC0C5QUCwdULJ3i5haM8lpbnNG1w\nALMT/ZgZFyDQM490IMh93tKonggEmNoSNCpqU1sJl6IYhIKaomxUEYI0TVSVDs56QpzKFN1qslQL\nb0s9AnyN/l4v4aANvX4X942T29KIiL8JwTYbBnpasDgTxspCFDubEzhFGDh9YiEGBjszWD8yhmlC\nQX+k1bQ3Xpjt52OHMTcRxthAFxbGI8bG+7sQ5WvefnQCv/2L1793oeDuZQSdeO91Qt6zPftWWvun\nPnvn9/KdsGzwlfYP9KB/65eexmPX5wwUtLXyBK8EL54YBQamlIwCo3G8AoNigkGhptPRFCnQ+rDG\n+Nrrq+EgBDQ6atGohC9el7l50pawT0+PYnFpGssrMyaP4MSJVVy6dBzXHjqDS5ePY2trEaur0wSD\nWWxuLhkwmKd3qLp5iVhriwtuilwtxa8wPxfJSUo21MyBQ0g+fBiptGwNIaLHrjHPApmeLid+8mNX\n8L/+8mX873t89rj93edfwWd+5lmerGfQ2FSLqpoSlJWXoaiwggCiJYTYzAOZ+hfEoUBVECkEEUGB\npgvWVFVwH9TC5bTD3agSQJmNAFALB/dPQ20V1CJYM/01A8CrdrzNNngoLj6fAz0Ul+HREAaHg3A1\nWw0Y+Cg6Pb0dGBmNYHpmlF7lKCEryn0a4n7xUdja+Hp2lBfmITXhIDJTElCYk2GSHLXU4LSpRt+J\nQGcbhacbA4SC7lCngQFBQQvhoKWlES63Aw2OOtTb4sl9efxuM1GUn4ZiQkFDXTmhtx1rS1PYWVvA\n1Eif8c7lqbv4nAYdA7SGmgoDAhYeKzWa8lhaRDjgsUN4VJRASZcCAk3EHBoIYZMQeOnCUVw4v22A\nYHV5HIsL6nQZRXfQY2ZjRPj5+8Kak+HD8EAYI4N99NY7oJHMyitQkmF3J0U1HMD0GEV1fhwbPM42\nVqaxujCOhekhTHH/jQ4ECQOdJlLQG/AQqBqh1sed3gaEOl308DuxNBrFOI9XP7+fhsoilOWkokB9\nEHJTefwTkisLUCdYKuX1qnzCXwXaWurQ5WtAV5udgFZHSKk1vQ0EBVMjfpzYnsZxmgGC4/M4RTtJ\nO31y0UQLpid7qHNuAwWLc1GsLY9iaWYAE0MBzI31Yma4GyO9PvR1Og0U/NZnHvrehQLZ3csIOgHf\n68S8Z3v2rbCe3/zSnWqD77Rlg7j961/dxpf+6CV85P1nEehqoPhqjDFFTOKgEHBttWm3q3n11eXF\npva+gid8neQ12lfT/CRASiRzSwTpHSuhTdZKD06X4V6erAkFyyvKIZg3SwVnz27j8cev4tnbj+Hm\nzQdx6tSGySc4shqDgp3tFawsz2J8fBA99GLb6PGqRM7RUIfKilKKtSoADlCkDyIlUZEC2SEUZmdA\n4501JW9lzo9f/tlH8T//9Ol7fnblFPzrXz2Hz3/uFfzwRx7B+FiPiRLUKQegpoZQoBbLeWY0s4BA\nUxiTkzUhMZF2mPcpSpBmIgTVlRVooji3U2zVGEidGb0UK+VbNGtuhLPWtPD1tTai0+dGV7vbeMqt\nHv5fUNDuNMmFE1MU/9koeiM+k1PQ29dJSOjFHMXt2MktXLh0BufOn8bm1jomp8bpTfeaSoP87HQk\nHHgLMlMTkb87a0HfjfIQtJShjH0tJUR6gya3oMPXAlejIg51puRTywkNdisaGqyw1fJ7p/esMrw2\nimYPBXR6LIKdjQVcPLNjvO+BXn4n/K41QEgwUEvBr1UZJN+vjt+PtazYJEDKNNq5opSAoIx+vr4a\nVPV2d5imVefObOH6NYLhhW2sHZmk5zyJjfVp08vCT6HuIhQF1Lui07P7vE6TCNnR5jYVMaqEUGMk\n5RYoyTAS8lH4/RiJhggBIQz1B3g9iKE+P/q620wrYz9hQB5+mNAxHPVjdqKP3vkIjq3P4cqxdRwn\nvE72BdDeWIuawizkpSUQDJJQmp/OYz3PJFqWFKosN5/7KRY9aGuxw9/mpKkSoh5d3G8D3a3YWBrB\n1QtrOH9qEecIAbIzJxYMIJw8ymN9bQyzU70YMLkJnVieHyDMjGF1bhCTwwGMD3QRVnzoD7QgQsi9\n/djk93akIG7xFsg6AetEfK8T9J7t2Tfb8idix+XitOuex+13ginh8PN/8Ax+6seuY3RIZWixUbZK\njtOIXoWlnXVqWFMJ9eYXCFgqS40XKsFRC9+i/CwTLZDAOBQ2p/fZ2dFq2hUrNN3f300BG8HC4jRW\nVmaxrpPvlVN4/vmbeMc7XsCLLz6FixdP0GtaNPkEBgp2VrG+tojZmTFE+Xx5tq0eF6HDiXpuT26O\nugweoDCrzTLFOSkBSQf2IV/Z/znpsFbm4aELY/iz334Wf/eXz9zzs+vEqkTD3/zsc3jumZOmhLLG\nUg4bhc5isaCwoAzpaapASDNgkJqSQVPHw2TCiAYopSAnOxvqodBgU5SlGaFAO0VXY6G9FOFm7s8m\ntNLrbG6qg9dD0aBwyePVbAgNjdJEyY4uFzr9bgMCQyMhTM1EsbgyjlWK4yq95yObC9jcWcH5S6fx\n2M2H8cTTj+PhRx/CyTMnsLw4a0oONV8h6dA+5BEOBATqk1Co0ctlhaYcUnX9Hu47Ze4LCtrbWsz3\n1WBTdKfeRA28nibzvXVS3HqDLZgej+DEzhJF7SiunD+KM8ePYH15CmODPehodaJR0wvp+VsrilDF\n46KSwKg+CfWV5WjgcaPpjZbSElQU5puok3IrOnzNJnFwZmoIO1uLuHTxGKHgNC6e38ImP+/R7Xkc\nP7polhC6OujJU2Q729VnwW2qEAKdPK46vWbUdmGOum0KDMrNAKU27ueutiYE+T12+1sJAC3cN4SK\nDhdCnc3o5u1gp9sAQaTbi8nRXmytzeDsySO4cGYTF0+u48LWMk6uzGBhJIJenwuNihrlpaM0Nw1l\nBdyfJYQCfpZKvq+mhioK5OF2tXN/mGRGvafXgaDPiZmRHpw9tojHrh3j/juCS2dXafweCQiKHmwd\nGcWRxUEsTIcxOeLnfu3E4kw/1haHsTI7gPHBLgwRDPtDBAIeH9GQGy/cnNmLFMRNJ15tk07Ee/kF\ne/attnj5oVpzf7s2KbofExT80W/cwKc/9RhWl6I8ATvo9VdQ5MtMGZqgwCwfEAKqSguhHv0WeZ+E\nBIGBSu/kmZaXFMBCgZDJ81SCYLS/BwMDYUSjvSaJTWAwO0cvaHUaV6+ewssvP4X3vOcVvPWttwgJ\nZ3Ds6Cq9RArghiIFq4SEFSwvzWB0pN8sISi3QJEHV2ODyS3QEKOU5ASkEwoyaUkH9yGTt0vyM033\nube/uI6//Yu34p+/fO8TqMoy//YvnsPP/NRNnD45DbfbDjuhRs19LDU1KCmqMFCQmJBqwCAOBUmJ\nKUhOTDaDmgoLClBrUZSEIORrNaLbFw7Sm+2iV9tOOGilEDbBS09SUQKJWpj/U3XF8JCyzkPoi3Yh\n0teBcJ/vDhhsH1vCuYs7uHj1JGHgBAFgC2fPnyQMPIhnnn0Sz714G08/+xRF9QxGBiIU3SLuhwSU\nSpgJb+oHUKElBMJaPYHAYSOsuShWAjWaj/vSRAlorS2N9Mq9JqIzxO9rbKgba8vjuHbpON76wk28\n+uITuE6IW54bQbDDDZeqU3iM1FeXwEKBrCkrMDMPNEJZpZG26kq4CUlNdVbUERDUYVE9LVRWGO0L\nYn52FFsb9JhPbeDyxeN48MoJQsEmjlNAz5xeM7ayPMbt1MRMJ/dfI4HFQeBUpYKTkOU0r6eZFfqu\n5bnrmFU0pq3ZbsYyd7Y1wudpQEuTpiJqroHNbHs45MVAuANTY2FsrE7h4tktPMT3v679fOII1iYH\nsToRxSzBJ8rvrs1pNQ2m1AxJFRfqPCmr4+9DQGCmPwr2CC2RkATcSzAg+BA61hdGceXsOm48dJz7\ncgMPXdo0l5fOrODoxgRW56NYmolQ28KYm+zBaLQd85O93M9RLEyGMdJPoNYgp4AbfaFmjEXb8PJT\n8/gNVR/sQcFtc+KNz0bYyy/Ys2+lxbsWyj776TP3PF6/U+xfCQV/82cv4+d++insbI6b5QO1nRUU\nyLRebbdWEwiKzCS/guwMemiZ9JjUkEY1+FWmUY/xUJXgVltthHt4qA9zsxOYnhpDL8Um0teNId43\nOho1grhDz/fJJ68TDJ7BjRsP4syZHZw8sUkwWLsDBUd3dH3Z5BaoTE6tj31tavKidshtsFO8szJT\nkHDoAULBYaQnHkTyobegvDgLs+N+fOKjZ/GPX3qrAZ97ffZ/+tIz+OLnnsWH338RY6N+kwsRoKfv\npkdtt9thtdiQk11g8ghUdZCUmIqUlDTeJowkqSdBNsrLVLFB4XFTiNo1T6ALA4Shwf6Q8Yj7whT8\n3g5EetrRHWxDd6gdfRTGgYEQTW2GQxijQM3M0DOcCKM/2mmWDUbHKRQLI1g5Mo21jXmsbyxgi/vj\n7IVTuPHEo3j1Ha/iQx/9EG7ffopetToyWghJSagkHKjBTzyRUN5/gPuqO9gBvwYaebSs0WRaF7d7\nm029fzQcwuhgH2Gg3yTwzYxFcPb4Km4+fJ6Cdo6e6zj6uwkSFFZ3Q7WBAfUoqDSZ+RR8Hieag1Ct\ncssyZfJXxoxw0GCtQbPDji5+d/2RAGanh7G9uYgL547iQYLhQ9dO85JQcGETp06u4OqVY7h8aYdQ\nMIqRoSB61auh1U6wKedn0zCnYl6PQavKYtU7QxUSTo06JhS4nJY75qY1EwrccSjopLcd6cDMZD/W\nViZ5vM9he2MWx3cWcen8Ni6cWsfa9CBmBoMY4XcWJkR4CQVq41zN91Gbac2vqCNoyRrq1O1QI5lj\nFRABgkgv32OY0LEyHcUpvvbl0yu4dnENj1zZwhMPn8ANRQ3O8thWn4KFKFYIBXPjIVM6OzXUxdt9\ntH5MjwQxTEiM9raiT1UOvJwa7sILT87uQcHddnd+gfsDn/h3J+s927M32jTs6Ds9j+Bu+xeTU/Ai\nPvXxhyleLRSNerS4tQZeZ/IEnPVWnvhLTDa/gMCE59UkR535qjS0pooiXICCXCWlZfNkXUEhcmFi\nfAjra0tYO7JoEuMEBMMjUYyov340ZEYoX7lyGk888RCuX7+Ic+eO4ezZowYMtHywtbnMSxqhYO3I\nAuFiBJFwgDDgNSHuLoKB292A6upSMxXx4Fu+D1mpGpWcYXrbry0G8Cs/9wj+6o+fvCcU6L5/+fJz\n+JPffg4v3T5K8W5HK0/ubT6P6fYnKKivcyI/rxjJSRrRnBJbRkhONcOYkgkF2ZlZhAJ6jE0OPlc5\nAi3G49bygQRwSOvaQ70YGwljYjRC8BAU9ZvujiMjvdwPhIY+QsRAgPfTMx3oQjDYDG+bHR6vHd1q\ndTvcjfHJAczMjWJ5bQHHTx/FIzeu4x3veQc+9dOfwgc+8G563MfMPs/JSjWRGnUvHOzX+0YxNTFM\nz3wCywszWJqf5vb0o58QEOnhe/cGdy8DBgxk4VAXgaofG8sT2KInPT8ZRa+/BR0eO7wuwo9DS0mx\n1saKEGiUc12VbsehQOWW5QYKBJONBKZW7h8tmQxFe7AwN4ZTJ9bx2COXcPPGZTxy/SwuXTyKs2eO\n4By96rNn1rC9NcvjpwdhAoEaGqnLob2eIGBR1UKFWdqqt8ZKZsuKCGaEE63vW6rUVlpWzOOQAl6n\n8H4NPO46s5Qwzn2+TO99g6C1szWPo9sLBIN5nDi6hIvntnDx9Dq2+f/VqSjm+Z2NhjsR8jaaVspW\nwo8+p/Jr3Dw+ZJom6SN0+VocaCaQtBM8oiEvlggWp/nal04ewVV+JkHB9UsbBAJ+d1e2cen0Mo4e\nGX0dCsaCGIv6MNrfhtmxkLHR/nZEezwmQiATFEwSCp5/cga/+Zlre1Bwt33iB9bvbN9e/4I9+2ba\n3f0Ivh1HIn8t9i9fvo0//73n8eH3XeBJ2EPBddCTbNiFgirYKPqVxYUmOqAEPpnAoDhP0/8oAhWl\nPCkXmi5+sqqKEnqoDp7Uh+ntr1Pkd7C8NItZCtPE5AihYICAEObtMRw/tk4v8Rwevn4JDz98iXBw\nCZcuncaxY2sGCjRdUYmJ6+uLWF6OLSP09HSaSEFsYFITBdlmEtiUcV9WmIPi/HR43ZV47Oo4/vL3\nnsHf/vmTX+VzP0sgegm/9LM3cfHsNF/PbbondnS0oYnb73RSDOwuFBeVIS01E0lJqQQBWnIKoSCR\n15ORnZVpIgVulxMeet4SZiXw9YQ6MDTQjckxldKp4Q69T5XE0UuemRkxfRsUJegOtSHg382wD2so\nDoGgVUl/9LDt5aZMsafHR3DwIzrYjQmC0eLKHE6eOY6nbz+Nj3/y4/jA97+HXvZpPrYVuTnpqKTH\nrtbQ/RF6n2ODFGEl7y3ixLFNnD9zAqtLc5iZ4DZoXDJhTZGBbn+7aXIUaG9FwNeKAXrJwxTEPs0u\n8Djgoccta5EHbuMxQcGtNU19BASaYFiMmvIis9auoUW1FE9VrTTarGaoUpvZngC3J4ojK7M4f3YH\njz92BTceu2iiBFouOHF8EadPrfCYmcPC/AAGou0EQBfaWm1wNRJE1ImwVsOS6KUTCCxVxQYG1EzJ\njPgu0BJWjoGDarU31kwFQQG3WUsJI4MhwsAM98EmLpzb5jZs4iwh4OSxFRzbWeTlMo5tzhkPf5W2\nRDCYHtaUxzZCDSGR76nPpM+j6EpPoB19PX7093Qh7CekatZHB2E42oWtpTFcPLaAyyeWcPXMKh4i\nFMgeubyJa+fXcOE4gWR1BBuEglVBwWgAYxEvhns9mBjoICAQCLpbuP+1JOFGX3czvycvj6cYFPz2\nZ/dyCv6dxfsXyGOT53avE/ie7dk32uKJhd+J/Qi+mv3Tl27jD37tFp5/Zt14Zr3drfCpTt1uMclp\nNks1KkuKKLpZBIJ0AoGy+9ORZxL6MnkyzkVJYZ6ZCqie/6XFBbBTDIYG+ujxrVGwzvBkfww7OxtY\nWp43YCBRnJocNoJ/7txxPP74Q3jxhafx0ku38OSTj+D8+RM4unPEgMDSojoeaojSnAGJYQJFd3cH\nfD43vF4KcWsj1GjH7ajltpajvCiDJ2o7PvjOndhUxC/9+06G5nN/8Rb+11++hB/60HksL4bRxtdS\n9MHv70ALvX6XywVHgwulJRXISM+GxjQrSpCcrLHNCUhJSUZOdhYqygkFTQ0mAVIhe3UCVIb8+Ggf\nPfQReufjmJsZ4gk9gsmJKGFpAIMEBo2W1jq5x/QqUPOiJiOATQ2VqLNI0ErNfd0U5lCwDUFeDgyG\nTcfBpZV5XLhyAe95/7vxzne9houXzph2xfn5WSguzjMdC9sJJ8oREBisEMpOHNvCFX4Xm2vLWJyd\nxNzkKKZGB7mvAuhobTbevKexAV4CThtF0NNQg0YKsL26xLT6dduqzRwAB6+r8ZKWEGw1GigkICgw\nQCA4qOX9Wm93qtNlk91UYLR7XTweerg/xuihLxkouHLpJC6e3+axcYSivEAInMbmxhQBcpj7qBt9\nFMGuTu3TWtNps85K+KiJRQE0C0HDlO6GgiJCgTou6v/1tWWmdbKmLKpNcg+9d30Hp04cwbWrp3Dt\nyklcvXw89v705jfUaptCPjfVb7L958Z7scDrs+N9GBsIoTfQZkpIPS5+Tz6PWWqZnxrF4sw4HzdC\nzz6CCULb1GAAS3zu9uIQzm5O4OLODB48vYzrlwi/51cJBKu4cnoJZ3emsbM8hE1CwRFCwfwIoSDc\niuGeFgMHQ70tiASaCAUuAwQapjQU9WF6IoDnnpzGb/3idQO19zquv9Lu1nPZ/f59x0GBTsjxxMO9\nxkZ79s2weIMi5bVoaNe9jsvvRPu7zz+LX/nvN3DuZBQOW5lZx1UJmDLFtWbqrK/lyb6cXng+inKz\n7sBBVloyMlKTkJUeGxOcS0hQ3/9CTQesLKWX56Ogz+LSxbN47NGH8PAj13CScLDI+9TdUCOVFyn4\np0/v4PbtJ/DhD78XP/AD78c73vEyHn30Kk6c2MQaoUETFhfmJw0grK0tmOcMD0fQ3t5MIbZDY5pV\nqtbuaUQTt1lldOtLQXz6k1fxv//mpXt6VOpZ8M9ffgF//ru38cKtTb5+HyL0ZMNhCmRHG9zuJjQ2\nNhFunCgpJhRk5BACVJIYg4Ik05sgDQV5ufysFSafQFCgNXxtiyIFcShYnKP4TvTzpB5ApLcTQQqM\nAMRJ0a2jeNloTY5qs+btpkdss2o0MIWdUBDo0sREVSh4uT89/Nx9mJoeNVBwgl7/8y89h9fe/jIe\nvHbRVHiUlRagqIjbRE9dyZ6q2AhT9MdGBrC0MIPt9RXTDXCWQDA9NoTRgQj8FDmXvQ6O2hpjjfVW\n1Gu+QTG/R82x0HwGCr+GAzXVK+mUHjuF327hthMKNBSpypTpxZLvFF0yra+bbISBJnT6lLfg4XHV\nS+GdIgCs4MTxVazTa1c749XlMV6fwOrKKGamKa4EArX77e9TFKWJ368V9voy1FQVorpSVQwauZxH\n+MxGGaFAYKDbNZWFZknBpQmdhFold2oMtfpAqAmSyh9V7SAwkJ0+uYaTx1dMb4QZAoCO+/5wG8IB\nl8n6nx0PU/CjtEHuryEMR7vprYdMhEX78dzJHZw5voXjmys4tjaHY+vzFPoJbMwN4Ag/x7HlQVw5\nPodHLqzh4csbuHpuBZdPL+L88Vmc3BjH9tKggYK1mT4sjAYNFIzu2kDIjbC/EVFFCHh7kPtC5Yqz\nkyE8e3MKv/GZh3j83ht2v9Lu1nPZ/f59x0GBTGAgj03buVeRsGdvpMWBQPad2KDo/2R//SdP47/8\n+FUc2+5DKNDMkym9bp5YtW6roUiuBhsFoAbVZSUoLcgz3QLzszORlZqMtKTDtATkZMQmA6pev7hQ\nJ+xCNNHrHB6KmijBc7dv4dXXXsYTT9zA8ePbhIUZCsAo5ucmcfLENl544Rn86Md/EJ/6iY/jBz7y\nfty69biBgu3tFVOiqLHLGxuLsZyDk5uYp/et1r82eoN2exVa6G0H2jUN0IXONjsun53AL/3ME/iX\nv3rxq3pU//Tllw0MnT8zgZGREEUoZNoq9/eH4fO1weFworrKSu+7COlpmSZSIChITU1FGoFAUYIS\nfs5aaw062lt3uy42wE0vO1ZP76N3HKTY9BhRkrfa5nEQtmpMi1+Jm6yuphhuTUmkeHnUXa+WHnh1\nIZp530BvO0boqQ5RkEYGe0x+xenTR3H23Emcu3AWj998DC+/9Xlce+iSGWRUXJKH3LxMAwXNbocp\nCVWCoZIf1eZYiYRjw1FMjg5hnN9NX3fA9Diw1VSgliAXG8sc60RoLc5HeW4mijNTzaWVwOFQCR6P\nC2dtpRlTbFFWfhk/B0XZQlHWIC3NzWh218FHQTatm1UC2NmMwf6gKUNcWlBzolFMTvQRAML04KM8\nHoZ5LPTzeOnkd9BubICecU+3EkttPJaqCOMa4lRqIgB6D4l/C6FQJZ8dPrcpWdRlj/oUKJdDo5u5\n3/18b7VRHh3uIRz1mmFL46O9mJokYNFGhkPoi/iM9ffJvJjQuv50P5bmRwim0wSZIzjKY/H40TWc\nP3scT9y4jpuPXMW1S6dw9jjhYmMGpzfncGp9AidWhnB8eQBXjo7j1oPreOb6DqFgHVfOLOHiiTmc\n2ZrEsdVhbM71GVufCWNxNICJSCvGI16M9LSgP9CE3i4HBgwUeDDQ18pjqZ37LIBHHhzGZ//bZfzD\nF+5dZvuVFj9vxe1+/74joUAmjy1ekSAwuNcJfc/27OsxJbTGfw+f/sSxex6H38n2hT94Cj/60XM8\nOXegs90Jr6feDKnRZD/Nzm+y1aOh1gJrRTxakI2CnCzkpKchIyUJacmJBgryeV9Rfi69t0IDBfX0\nOoP+ThxZXcbtZ5/G+9//Hrz2trdSwK5gY33Z5BksLkzj6M46nn7qBn74hz6Mn/rJH8PHf+QH8Mpb\nb+PMmaMmt0D5BCvL9HK3lnGZJ+EL50+YJMV2QoDVWgaLhV5rfSWF1YJWVz2CnS56cdP4iR95BF/+\n4+dNH4KvTDQUKPx/f/Eifvxjl3GMJ+/BwSB6e7uMt93XF0Zrq0ZJ15p8gqzMXFNxoHyClJQYEGRm\nZqIgP88sHdTXWXd7KDSh2aXWw8r8b6AguglZHoT8HopVI+/jfuR2aspgBYW0gh6uhNTJ+3z8n7+t\nEe0tNrQ0VMFlq0BXawPGogHMjNNbnRnF1to8Hnn4Cp584lE8/PCDOHXmJE6eOo6HH3kQp88cM/ML\nSssKkJefhcrKEjMmWWWcSnw01QdmDTxgOhqODVKACT/dnT401lsMEKhqoKa0yIxithQXwFKUj+qC\nXDPRUVZdlGdmNjh4TCjxThn5lZqUyM9iqSg0n0VVAI08djTuWZ+5o52CTRMYqDyzP9JFwRYoSZjD\nRpRnCQUaWz05oRLNTmOjWmMfU2VGF8K9rQhqHgRfo4vfrfZnX2+nydkYHY6YPIWxkT4CQNAkM2qA\nkt5D7ZP7wp1o390Of1fs++jt9iLar/cJYmgwwNdvM6OqBQXDQ36M831nVSa4MMRjd4JAsIRLF0/i\n+kMXcPPGNdy+dRNvf/UF3Lr5MB66fBrnTxAK1qdximBwfmsal49O49qJWdw8v4jb19bx1LVNPHTh\nCC6enMfZnSkcXxvB5kIfViZCODLVgyOTPVgY8WNCUYJeAgCBINzRgO4OOwZ6mvmdNSOimQoRD/dJ\nBx68FMXP//RF/P3n792Q6ystfu6K2/3+fcdCgexuMNgrVdyzb6TdXXr43QgEEss/++2n8O63baG3\nx26AQGDgaoxNxbMq27qult6rFdbKCpQV5EODhgQFeVkZyBYYpCYbKNDtwrwclFNY1MxH7YhbW9wY\no1d6/aGreM973on3vPdduHXrSZynp6sIgeBge+sI/38ZH3j/u/ATP/FxEy34wPvfgWvXLuDUqW1T\nnri6MsvLRQMEF3mC3tpaooAH4Hbb0GCvpvdYhUZaAz3V9la7qfl+6tF1/Px/fQR/9/mX8c9f/rdg\n8A+ffwZ/+fu3+blPcBtGEYkQiDpb0dXlhcfTjPr6OpSWlCIrK9f0JUhM1JJBioGDjAx+7uxsFBUV\noKqy3EBBU6O8WSXEqQmQzeQ4yFP2eZUzUA+HvcKshysBrlJAoHA3vWxtr5cgE2p3IRJoRTcvuyio\n7XxON4VspM+P+clBHOU+eOyhi3jPO1/Fe979Ntx65gkDBEsrizh+cgfrmyuIEGis9OBL1ayohh59\nE71oXwsF0WOgQPMPlFCo4UiRUBd6/R3o8LhNkyFreYkBgirCQFleNioJdxZ+vvqyEjiqK2CvfL1t\nscCgXnMcSvIMFNTwM9kIAzWV/L+mCdaWEZBs/OwN5lLW0d5ISFIUSh0KBQhtxls3QECPfHK8hx68\nn8dKwMDBzHSY/5MnL3Dg9ekoFudHTYRhZWkS2zwWThAYj+2sYntzCcuLk2a5prenw/SFkGkJzNfG\nY7lJ34/FtJLuVOJmqBUaz6wIgcAgHFaZqIfHUwdhJIRJCvXCwgDW1ggExxZx/vw2Hn30Mp577gm8\n7bUX8N53v4b3v/dteIqAcOX8cZw5uoKTa5M4vTmDq8fn8OjZRTxxcQVPX1oy9tiFJVw5s4izR6cI\nD2PYWopiZSqEuaEOwkAXlkb9mBvswHhPC4aVVCggaKtDyFePQeUWdCv60YRIrxsjo+24erEf/+M/\nX8Df/eUeFPwfTWAQ3+Y9MNizb4TdDQRKbL3XcfedbDGR1OjkZ3Dj+gRPmhU8gSspy2PC3Fob1vCa\nBquFUFCL2ioKDqFAEQIDBtkxMMhM09TEVGSmqkQvNiGwkh60GvpoaE9XZzs21lZx+/YtvPNdb8er\nr75kIgOP33jYwIEiBRfOn8Jr9L4++Ykfxn/7bz+FH//kx3gSftJUIqhfwRElGhIMTpzYwAUNurlw\n3EQOxsf7EAp5KTb0SFudRpwc9ZraWIV+nkSfurGAX//MTfz9F17Ev/zVc2YdVjkGf/OnT+F3f/Vp\nPHljFRPjQYqncgjqCAPVKCwsRF5eHjIzs5CcHOtJcPhwogGDOBTk5OSguLjQjHKuq9WsAMFBNZwO\nhbSVOKiIix1uCpKy5qsqclFSlI7ykmxUaVhUeSHqa0rN2OFAWxOiwTYMy/sN+dCvrniEgx4KaDTg\nxRw94UtnjuL973grPv3Tn8KnPvlxitPLOHP2FOYXZgkEq1hZW8TQSD+am50EgyrU1degyWVHq9cF\ntV1WsyJ1Wuz0eUwDo2anje9NiLHXwUbRt5iWxPw8hIKKAgEBt6+MXn9NNVobbGix8XEEA0FBDR9T\nV1nC5xRCPQrqakrQRDCrrtCyUYb5rG6XBc1uKxyOCu7XKrR5CZythIRmu1nvDwZaMDJEAZ7opWce\nyyFQhGBiPGS89IX56K4NENqmcPbMBh65fg43Hr2IxynQt556BM8/+zhuPHYVly6cJBgs83kjFPuQ\nAYJWTwManTWw2zQKXM20asz7BwMeRMJamvCbZYSx0R4MDakstB1RQsHgkB8jPB7mlwhiJxZx+epx\n3Lh5Gbefv4l3v+cVfOQj78UP/sD7DRTcuH4B506s4/j6LI6tjOD89iwePr1gIgQ3z8/j5tkpPHFu\nCg+fmcG5YzM4sTGKoyuDWJvtxdwwIYCCP9XXitmoDzN9bRgjEAz6GxEmDIS8tYRCG4YjrYj0EAqC\nvJ+Xo2MduHIxip/9yXP42z+/v0Tn+Dksbvf79x0PBTJ5cvHt3gODPft67LsdCGSxeewv4Fd//ibO\nnxlEk7OMQl6Idl8DxcNlShJrePJvsFrRWF+P+uoqlObnIYvin5eZcQcK0lOSkJqUgMRDsRkEedmZ\npttgnbUGNnrRToJBtD+MK1cv4aWXX8A73vka3vuet+Mdb3+FYHAdp08dxZnTx0xewScJA5/9xf+O\nz3zmZ/CB97/TVCWcpSCqPHF5acrkGDz44Fk8e+sGXnzhKVzj9dXVGQz0B+BX10AKsre5jlBQTQ+9\nGlPj7Xjrc6v4tV94HH/9p8/jb//iFv75S7fxxT+8hZ/80StYPxKl99hAz7qYIJBOwU9CUVGRyRtI\nIAgkHE7CoYOJOHzo30JBbm6ugQJFCmqt1bBUCw6qzECoJjXQaazl9SpTQqcEOU0arCjNpuUaKFBS\nnhL2vC4bejrpIRIIxvuDGO+jWIU7MdLTjmF6vbIjc+N4ml7pz/zUJ/C53/1NfPYXfo775t24eOk8\nlpbU0GgDaxvLBgqcjfWoqi41EYMmNS5qcxNSHGYmhWBAVlWmJlTZZoCStYLwRlOUQO2JBQaydieh\npsFuoMBBGHTyu6/n4+r4vTYQhBoJQJqGaK8pM9GOlqY6AwMFuckoLkyDo6HCmNVKuKgvhoew2eJW\nm2ceWwQeQYHC+JGw1yQUKodgZLjLhO4VKZia7MHkZDdmZ/tMqeITFOb3vOtFfOj734YPf/Cd+NgP\nfgA/9vGP4MMfejdefvEZPPbIZZw/e9REDhbmx/mafnTwfQQHnVrGCaqLZDvfr8O8tyIXAX8z+iLc\nz0NBs5wQUZJhxIuoPPjlIVy8vINbtx/G29/5HN73gbfhRz7+YXzqJz6GT/7YD+ID73s7Hr12HsfV\nlnt+GOvcznNbM3jo5CweOjGJy9vDePTkKF68voonL6/g9NYEjh5RtUE/lieCmIp6MUyhHwm5MEE4\nkI0EmzBgoMBmIgVhvxPj3C/RiMcAQX+kBeOTAZw73Yef+vhp/NUfPfHvftP3svh5LG73+/ddAQWy\nPTDYs6/XvheAQKYWv0rE+6kfvYbl+SAsNUWw0+PTWr3ExNloQ42lgmBQaroW2ijyVgpCSUE+CnNz\nUJCTjfzsbORmZiI7PZ1wkIK05GRkUlCVW1BRSu+zqoyecg26OjxYo7f/9FOP4oPf/258/4c+gFdf\newXXrj+IYyd26PWexHOEgo/9yA/gv/+PT+OXfunn8GOf/CE8/8KTFL+T2FH74w1NlFvCxYun8Pxz\nT+EHPvI+eswv4uHrV7C1voyJ4X6Egx3o6Wo1gKBlhGCHA6v8bK/cXsPP/dSj+INfexl/+rtvw8//\n16fxzOMb9Cpb4LBVo5SimJWVhaTkFKSkZeNwYhoOHU7B4YQUXqoEMcksH6SmpCJDEZEMzRdQNz9B\nU5UZBlRHq68qpedNobSo978a+BC0CFbV9Kori/NQTlP0xU3x7mzT+ngr+ilU48MhzEyEMUWveWIk\nYDLNh/rbMD7She2NSdx6+go+9eMfwi9/9r/gxz/5YTx3+1EC0iLmZoewwX2ysbViJigGgj44CCW1\nhIJY5KIOzoY6NNRboO6TlooylBbkEu4IJyVaBqCwU/CtZWWoLi5GNYHIWlKCjqZGdLma0Gq3oYnf\ne0NVhbFGSxWabbVosfN1eV0TERv4utoH+ozlRTlmNoBKQxu4Dartb1DVgsNqhhZp1LHyPlqbNSug\ngZ/fTcHjPoj4EI2203MPYno6gsmpCAaH/Rga7cbKkSlcfvA0XnrlFj780ffiYz/2UXz8kz+MH/nR\nH8IP/9BH8YMf/Qje995346WXnsfNm4/h6pVLWF9fxeBgPzo6vKaapLNTFRwEgmCnuc/rbeZx3oqQ\nWlL3qRV3BKMjA5iencTy1hGc+P+z9x/gjabXeTd+Jdf/++Jod2bYO8HeQBAEiEKwgL33BhYQBHvv\nvQ05MySncHrvfWZnthftarW76rYkF9mSWz4nn504ThzHNU4cf3bi2Ln/93lArkbrkb3pK4m8rnO9\nIAiCeAvf+3fOc8rBJZy+cAb3H9/Hm59/Ax99+X383M//DH7hZ7+BrxAKHty+gmNrM/T8nRT5agy7\nyrE82oYjsy5szrdjc86JE0sunF7rwsa8m69rwUh3HXoJPR0U+tbaXNWToJUQ4qwvQFsd4URyJwjk\nVcU2NYJZZk+0Nsro6DJCbzEa6mR5oxLz0w344pvT+KPfPvnc/+tP2u69bNc+7dePDRSI7YHBnv33\n2k8KEIhJ9vKf/9treOXhEkWoEDodhS2NHnYuPe4CO7JyM2FOT0OSGqhDL5EiYNTrkEwhjFVgQM8w\nPByR4RpEhIYTDEIQLIl4vn4q6TA+RrLrKZQUBs+Y3EqsHZzBg/s38PJrr+Lmndu82R/G2OQYJmcm\ncfLMcXpkj/D1b3yE7xEKvv2zX8PjJ7dxfPsQ5hfG1IAk6XS4vDyDixdOUwxepef4BHdvX8fJ41uY\n4/v0dDjR7qhDU02pBw7y0lFdkoGRnkpcOjmCj945j+988yW8/GAbowOt9OQJBLFRarkgKDicUBCM\nAz4hePFAEPZ7BRIOAnCAYCBRAulREMj9C/H3Q1hgAOIiwpDK/bPxPawpiTBT/I08VqlxUSpTX0GC\nAJWWYEAxTiEkJSfEQrpEykCf3Qx5ycLv6W5EX28TBbEKTmcpb/4EBWcxenqqMTfXiTNnlvH6a9fx\nhfce4fatk1hZHqY3LZn0pRgY6MDwSK+aKVFXX4HcvAxYrQbV9thqMSDdbICJfzNVl4iUxHgk83Po\nE/i5CATWVD1sqXxtsg5piUkw0szaZBRl2lCanYkCmxVZxlQVHTBrExUIZEtLZ4KBTSJBfN7A60Gm\nIKpIA7dyTKSKQSoaBBbErDxG2Ra9MilrtEoZpkmrJjCWyjq/JPrVFajlhK6uBjUpsr6xBLUUxTZ3\nA4Yn+rBGz/z63St45e1X8A6F+d0P3sMHH3yAL3/5y3j33Xfx+PFjXLlyhcfqDFZWVtDb24va2lpU\nV1ejpKSEEFBIIJD+FgXqcWWltN12wOVy8TjL5M5hzCwsYPXocRw7fxE3HzzEq2+/jS9++Uv4mW9+\nA7/0S7+A7/wcoey9N3Dn6jkcXhjGRE8TBp0VGKEHPz/YiLXJVmwtuHBytRun1rpxdLEdy+PNGO1u\nQJ+zkkBQRADIp3Ffm0rgbi6Dy8F9bChGU3U+SvIJBaXZBIIcVJbloKG2WEXBpHpCohxNjRUYHazF\nK/eH8S9/ffO5/9eftN372a592q8fKygQexYM9soV9+zTmO3uGx9fMz/uQCAma5IyQfD8yWHUVObQ\nu0xSoWebzYT8whwUULgystMhg45ksE4Kb/R6eosCBfEx0YihkEYKFIRplIUFhyCInvYPQgFFIiVe\nlTdKgtlAfztOndzEoycv4fbdO9g4uomR8RH0DvRgaWVORQve/cKb+MVf+hZ++Vd+Hu9/8U1cvX4W\nB9fmFBRItECSD09ub+Klx3cVFLz5+it4/OAOzpzYwuLsJEb6O+FubUBjTYkaTCMT6wQMepzlOEwx\nfe2lGzh9fA2NtWWI42cMCeJnDgiEf0CwggIvn1AFBfu8Aj6GAu+PoSBQLZ+EBwUhPiKcYh+HDKMe\nORTejFR65wSBlJgIaKVXA7d6HjcjwUBmACijQEovg/oaesSuRshgoIE+J4aHnKrXv9tdjZaWYloR\nRa0WIyMO7m8Pjh2bxdWrm7h8aYOCN6wS8aqrJGM+jyLajF5JtGtvQm1dOYoJQ9KZUcZW27OtkJHJ\nEq2RmRTSc8LKzyuJo+k0m9GATKMRGQYR+VTuA783GFGclYESWr7kHRhSVKJhGoHCRLixcj/SJV8k\nVadGJGujI7ivMhvAAwXS7lgSF1N5bFSZo7TCJpBYUpP4dwkdevk+BiZ9HDKlP4OMGS6yUcDzuf91\ncHfWo6WtEnUUyup6AYMyOJx16BpwY3l9AZduXMJLrz/BO++/gw8//AAfffQh3nzzDdzl9XT+/Dmc\nPn0K64fWMTExjs5Ot7KGhnrCQZWChLq6Wh7fFgUNExMThK45LC4uYH19Dce2T+DM1au4fOcOHr3y\nCt567z18+JUv4ae/8VV861vfwDe+8kV8/tWHuHb+BJbGuzBGgBnpqMaYuwJTPTVYGmkkFHTg/MYQ\nzm8OYmOuFTODdRhwVaFLlkcIBBIZcBME+lw16Cf8dLVVKSior8xFZXEGaityCQUyCTJLgUFlWa6n\nioXPSfWGNDC6fKYTv/TTyyra97z/7Wdt9562a5/268cOCsQ+Wa64BwZ79sNMIkq71/yPwzyDv88k\nyfC//Ltb+Oe/dh2TI/WwWaUOPBkGYzJsGSbYczMUEOgNyYiNlq5x4UigR61NiIOO4pAYF4eYyCjC\nQDgiQsNUtECgQIDAz8sH4SGBiKYnLb+TIq1w9RItMKoysRV6+nfv3cODRw9x+uxpTM9OoaPThcHh\nXhzZOIiHj27RM/sS/p/f+C6+/XNfxcuv3Mex4+uYmh7G2EQ/ZmbHcOTwKq5cPocnLz3EB198D++/\n9w5uXbuMzcMHMTU2gK52B5oo+rW8kcqM+7zMVBRkpaKBN94Tm8uYm+xXk/TCggPg4/Wi6lDo4xtA\nKAiCt28o9nsHEQZ2IgVe34eCIMKDRAk0IcFIiNIoUcxM43tnmOk96xUUaKPCEBcehASCgY5AJV6z\nDAUSMZYWucWFdh6HGlWz391JQe9uRn8fRarHodbSW1tL0NZWgu7uGkJBM+bnerC+NoojRyhgs71q\nzb2yIhOlJen0HIsoevy9zhY0NdegiiBUWVVML1hGNxeo4VFZNrNaPrDI37eYkCVCb0qDjSBg0fNz\npaQoIBA4yE7jz41pKMpMR0E690kAIpmCLvtAEzhQgCCgw62Rwq9PIPjRZKuL5zUiyyTRvF54HBJ4\n3STy+kkiIEkLammFLEsL6aZkHotUlYwpFRpSvlhRYadYV6KxqYz7UYDyyjxui1BdQzioLUVdYzW6\nCXyrh1Zx7uI53L53C09ffqxKXe/du41Ll87j5MnjOHXqODY21lWjrJGRQWUTEyPq+0O8Po4THqVf\nxrlzZ9Ryw+bmYR7bdWxvH8OlKxdx+8Fd3OD73Xt4D09feQnvyPLBF9/BR++/jbcJBHevnMLR1WmM\n9zRhxF2Lie56WjVGO8ox219LKHDjyolJXDw2itXJJgx3lhMIShUQtNTkol0mITorMdrrwFhfM/oI\nQs4m7h/3v47XZwP3vYb7XlIozZesqgGTlFRKkmRDfZlaTpBGY196Z1pV0fxXlRv0/P9zsd372q59\n2q8fSygQexYMpPPhXkvkPXvWBBSTV45+fL3/OJYdPs+kxe+f/d4NfPHNI2htKlLd9Uz05qX5jSSp\npWdSSGwmJGop/ryxy1z+mMhwev9R9P7jkRQfj9jIaAUE4YSBCMJBFMFAw++D/AOU2GpCg9WAJK0M\nzUmJJ3joVd24tC++Qm/spadPcOuOJ69gYKgfPb1uCv44zp47gbffeRm/+EvfxC9991v44gdv8fVn\nsLI6g2kpQ5sZJVjM4cSJTdy6eQ1vvfkaPv/WG7h36zpOHtvE/NQo+jrb0NZUDUdtMWp4My3ONSPX\nloJ8wkF3ewOBoRjWNC3CQgLg73sAPj4+FH6KP8HAyzdEgYG3TzDNk1vwMRQEBnF/pdVzqErUkyhA\nBgU31yKethYGWVePDEW8JpgetEaF0s0pPJ4EB5usxWdaUFaSp6Cgg59DrNPdqJYPuul1SnJdu7MM\nzjbJji9Cf38997cTKytDWFrqx0B/E4VB6urpUVJg5HcGBlzo7G5Do6MaFZWFhIIiVBEKykrzVbTA\nKqOgCXcSpZDhRJnmNIKMEVYCQZo2ieIunr9eQYEAgUQLckxGZKbqYJLkQnr/6bok/oxQIZAgjY64\nX6oKgVBglUmZPA4CQAJCMeHBiAoN5FbmY4QgXuBAzaQIQSqvp0xLKgpz0+kJ21XPAWlwJOWL+RI6\nr8ojHOSgqDgT+YU2FJfYUVbB/a3meayvQru7FaMi8Eue5k1raysESZmXsYrl5QUsLMxidXWRx2uB\n3v8c5udneN0sKsG/SJC4QtG/cvUiLl++gAsXz+L0mW0cP75JSNjG7duyrPUUr73Na+nxA9y6exP3\nH97F62+8jC998Hl88N6beOXhTVw4sY6FsR4CQR3Guuox3deEKYnquMow01+DjXkXLmyN4dShPswO\nVqGvrRDupmLVvrilOkdFCrrbKjDMcy5g0C8lmc3lvFYL0FxfjJbGUoJBoYoU5NlNNLNKzpTlA2db\nHdwdjQTfejy5O4Q/+hcn8V9+SBvvXdu9t+3ap/36sYUCMQGD3ZbIMithb4jSnolV/dM/+XiWQVpa\n9E8MEIj95R/y/+KfXsG540MoLUxXnnxKchzCwgOhp7hlZtsIBlYkJSeouQZRhIIo6VYYFQFtfByS\n4jxQIBAQGhSM8JBQxEVFExpi+VyoAoIIGbFMgUyMj1TvLdPtpLuczDI4sX0CDx9J34LHuMQb9Mzs\nFLq62zE41I219QXcuXsFX/3a+/jlX/k5fOtnv6Kyv4+fOExvbxLT06O8+U8rb1C8w4cP7uFlvs9D\nencXzp7C+uoCJkf70d/tRBdFV3rXCxgU2imG5iSU5KcjJ8MAqakPp3gF+nvBz9cXPr6SO+APL58g\nggGBQIxQ4CVQIKOSCQXBgcEqShAVJtn7kSpSkG7QUWRTYOax0tFLFiCQSIF4zBI690zVowdOzzs3\n28pjIN3pquF2SY2+g0BAb7FXJhk2wtVepWr1W1ulRK+Iz1N0pjqxMN+HyYkOVbInywbVlXa0tVRg\ndNhFL7gPff0d9LCrUVpKD7MkVyV25udmwEoBlqmVBl0i0rg1S9ifgJIhvSc+hoIkFSnIUlBgRHqK\nnhBAoZdlAAq9IT4aNgp/Nvcj05gCC9/LINEBPm+S/SNsCCQkEh5jud/RoQEKCCRSkMRjkBwnHQ+l\nDDOGIEaA4jFQrY+LBQiyVUVCpk0PG6GtsIBeMSEhj+coKzsN2dkW5ObaUFBoR0lpERoaa+Hu7OD+\n9qG3r4cQ1aKuG7HOLqeywaEeTEwOY2FxBoePHMTZs9u4cfMKr6nranv5yjlec2dx9doFXL9+CVev\nnufzl/H4pXt4651X8e77b+Hxk/uEhCu4e+eqqjT44N1X8c5rj3D36mlsrUxgtKsJY511hIEmzA44\nMN1bh1F3JWYG6rA+48Sx1V6sz7Zh2F2MTkce3FJu2SAJhXlwNhASmkvR66rBAMGit6MOXc5qBQbt\nLZJoWglHQ6laOpCETJlYKhUUEiVwdzTxeiEYDTfg4ik3/tkvHSEU7EUK/rvs2VkJYntjl3+y7dnx\nxz9uswz+PpOlg//0x7fx3W+ewVh/g5oil5wUg/i4CASH+EOXkoiMrHQFBnp6i/GxkWopQPIEoiM0\nSIiJRkJsrFo+2IUCsVhCQUJsnFpKiNJIdCFcAYVWJucRClJT4pCTbVJd6JaXl3Dt2lU8ffoY9+7d\noqe3om7sHe4W3tAHcfrslooWSKTge7/ys/jwo3d4Mz9Lr2+OUDCGufkpeohruHDhLG/sV3Hn9k3c\npV3i91t8fpnQMEthGBvqRC+Ft1UmEtL7zLQkqdkIFqO0GY6AJiwQAX4HCAUy9dBfTUKUZYP9Kp8g\nkKCwCwW+KlIQzP38PhRIhz+Pp2wzJlNg46AVj1g8ZJoI4e5UvVweyzx7BvLpuZfSQ25qqFTzEAQK\nertbKP4UN7d05isnDJR4rFmWEOoxMtyGsdF2ikG9Kt+rqshGY30hf68J05M9mJkZwsBgJ6GgCkWF\nMmVR5jCYVXmkHPfkBOk2GEcwSCCkyNo+959wYErWwpgouQKJsOoIC3oKM82ipchT8PXSqIhQYEqK\nU1CQLp0MCQFGaV7E90vnvmVIhYNESPhcUnQY4iOCER8ZooBIz2tKKi/EUvk5rKZUyPTMvNxM5OfJ\n9MMM5NgtKoIkMyAMqXHIyEiFnZ5xFoXQYtHBbCKEmKWslUCXkU5xLKA41qG1pQWOpkaUluWhqroE\ntXVlqKsvJzRUqdyK/oFOXiMTOHrsEK5cPYfbd3mN3LuGm7cvEwbO4+atS4TS23j5lYd48vQe7t2/\nQbvO6/Ee3n33Zbz89A7u37mEe7cv4KUHV/DGk5t4ePMczm4tYWnMjf62Kkz1NGJuoFlBwRShYLKn\nFnNDjVieaFU20VeFnlYCQVMeOgkBHQQDV2ORx3h+3a3l6CYE9nbUUpvqeZ3Wo7Od0OOsQVtzJWqr\nCxQUZGUaVHllfX0p2gm5XV0tGOhrwOEVB376g3n81Z9c+YHGXJ+0Xc3btU/79WMPBbsmCWS7+ybr\nyHt5Bj959myFgYDin/zL7edeKz+u9jd/KvMO7uCNx6uoKslGmp4eLm/gCYSCoGA/1SZXJ2VmFDOT\nxcjno9QygEBBZHgYYggGAgACBbJkIMsHocqDlghBGMKCPZ0NZalBR9FMo2ikGbQKCmzWFFRVFmFw\ncADHjm3h/v07ePT4vlrn7e5xoaWVN8c+Fz28JT5/C9/81pfxK7/68/jmt7+Cew9uYP3QEqZnxjA/\nP42to0cIChd5k6f3d/kiLpw/g5MnjuHw2jJWl2axsjCFuakBjPTTk2yvQ2NNAXIy9bBTeDItFD5d\nLCIo3j5eL8Dby2unY6Enl+CF/X4EA39CQZAqS/wYCgKDdqAgVOUUyDq6mR64zAMwJcdDG+OBAokU\nyPq5RAnyCATSNKikKG/HQ7ajvrYUjsYK1e7X05O/Uq0VN9SJ6BVQ8ErQ0uJpuSs5BBI9qK3hexRb\nFRS0t1VibKQDc7MDmJoeRG+/i6JRobxqm82ANKMWOm0s4mLDIWWQKZL0J5EMlQgoeQBxSImLgY6A\nJyZliIb4eI/Fxau2xjL7QCoqJIHSKtEBQk4yoUcXo1GtjguzrCjItCgwkO9lhLKMUlZlmVKSmJoE\nEwHTIEAo78PrKYfHQtpB59hl+qFVNXqymqXPQyySEnk89bEwEtgEEvQpsUjl+4ilEGikJ4TZJDMV\n8lBZTsirLEcBIUjKMGtqy1SkRK4fV0ezipxMTA4piDx6bB3nL8iMiMu8pm7jlVcf4q23X8Z7X3gT\nX3j/Tbz62iNcv3ERZ84ex6VLpxQQPH1yG48eXCUUnMeta6dx48IxnNxYxMpkL0Y7G9DXWkkYaMbC\nUCtm+5sUEEwTsBdGHJgfacJ4zy4Q2NHpyEc3AaCrpUzBgTJ53FaBHlc1+vl+Q9JSua8ZXa46uAkG\n7a3VaKwrQa5Et2x61ZlR+iw0yjXTUqMiSjMTdXh6b/DvXULYvdft2qf9+omBArEP3xr9eP8kfLyX\nZ/CTYQKAzyYUHl2v/rEZf/zfYn/+by/iN37pAm9yAyjJz4ApNZEevXj8vvDx3oeYmAhYrSZkZKZD\np0tSA45E5AUKNKEyDTEEUZoItXwgcBCtiSQYhCHYn163r5/KKZCSRR29UJMhhWKQhgyrkWCQpLzC\nstI8tDtbsTA/g5s3ruK1157g2rWLGBnto5fXiK7uViwuTeLKtTN48+0n+No3PsDXv/Ehb+h3sLG1\nhvmFaSwuzyuQuH7zBm/2t3Dp8iWcIBCsrx/E9PQ4JsaH6EUPY2K0B4N97ejtbEI7vS9ZKsmn95WX\nZVQ9+hMomP6+++DltV/lFfjxs0ty4f4DfoQBmYgYTGAgHHj58nX+CA4gFBB6BAriIymQBKY0im0G\nPVozBTAlIQpJBAMdtxaKZQ6FU4BAJkaWFOejUA3tyUQFPVzJJpfksUpupe2vNPOpqc5TLXhbW2Q4\nEz3gGskfyKanSAHNNlBQjXyuAD3d9E4nZUmhBwMEgra2OopkAV9jVm2fBcBkvkJ8TJiKWKRJySTF\nXSoC5DNroyKQKOAmVSJh9PBDCTnh4dBGECCio6Gn8KclRiOdYmyj4JsIjSncr2ReJ1JuKWOUi+3c\nN4p7foYJ+Zkm1Ygpx2ZUZYe2NEJlqmeKYho/i4ngaSMUZGfLqOssHgc7972Q+1zM45KDzAwjwYCQ\nkhxNOIhEYnyEmoCo4+dNSSJsxccinp8rOSERNpMFuZl2FOTmIL8gA6U8fnUNZbx2GgiUTgwOd2J4\ntFvZ0EgXBockV2UYG5vLuHhpG7duX8TN2xdw49YFwoAsJZzCqTObOHHyMC5c2MLj++fx6pOrePnh\nRdy7sY0rZ9dxZnMOhxcGMT/sxGR3g0ounBtwKJvua8SEgoJGzI00Y2qwAQMdZWhvyoG7OR9drcW0\nMo8RBHop6AOddRgmCIz2t6jSWLGh3ma42qoIBLS2GkJiBWSkdqYkyRbYUFVVoBIvZV9drlqMDdXh\n5NFW/Ob3Nvk/ffa5/+tiu/e7Xfu0Xz9RUCAmk+52ExAljCze4/OEZM9+PEzAbzd/QEzA8HnXxY+7\nSZjxj36bYPz2Bj2UGhh1cfQkZUlAQ88/FIEBPggJ9odWMsuNqUjiDVmAQPIJIiiE4RTE0CCZcxCO\nuKgY/m48b9Zx/D4CoYESMaBohlKIJCytT6HwyiwAiyqLEyiQhEYJcTc11mF8bBjXr13Gu+++iadP\nH2J+cVIlzAkUTM8MYfvUEVy7cR6vvf4I73/wlgr3Hjt+BMurCyrJ7Pj2Md7cb+HO3bu8uV/HuXNn\ncejQOsbGhzEwQFEY6sHwQIcaXSzT7nrcDail8OZkGlTXQxmpa6TghQYLDB0gGHjBx9dX5RFIaaK/\nf8gOFATA5wChwGcXCiTRMET1KdASoERo043JMNOjFa9YzMrvZe1c1valvXBpqdTG59BDtqolFEkc\nKy2R9sN2VPEz1cnNvqYQ9XVFqie/iIKjsZRAYFctgjNt9MbNiQoMBBpk5PDEeA96uV+t9BxraqQp\nTxayMtMgw6H0PK/aRCkl5eejl24loGSapQQxRSVH6mKiFBQk8LwKEMSGBKutQIEhjt5+Ygwssh+6\neLU1xEdCHxeBtKRo2Hgec6ypyCMA5GekoTDbgtK8DJTlZ6I4Jx25fF6gwEwosBqTkMlznkNgsNsJ\nBHl21TyooryIXm812tubuL+1/D5fdYE0m5LVZ5fPHUegEWiL5zGOkWuQ0JIYE0vAkGTJdNgzMmDP\nMSOvIF1VKjiaq9Dd20q47Mb4RB9Gx3rQN9AOl7sR7R0NhAU3r50pbG6tKEDYOrqKE9uHcJLX2dax\ngzi8sYTjx1Zw/dIG7t0kPFzexPntJWyujmJtthfzI06KfwPG3DWY6KrDdG8DZggEU9yOd9diqo/f\nDzkw0V+PXmcJnI05hIAidDslMuCxbmcFBvm7E4OtmJvoxMJkN2bGOjE26ER/N4+FowytjnKef+lB\nUaWqMux2Xi/FWaipLVZQUFsvSagV6HZXYG6yGt/60hL+3e+c/qFLCLv3vF37tF8/cVAgJl7i/GTR\nx/sqWeh7ywk/fvbslEMBwR+30cef1qTn/1//6TX89q9dxfXzkyjjDSeJN17JEE+gFxhPMAgLCaRH\n7AWNhh5kQhwS4qX6III3ZAIBhSNEJgTSBAokUpAQI+OU4xCtieJz0sRIlhkioE0gVOj1SDebkGWz\nIMOapqDAnCZDkqz0iMsxNNCDC+dPq+mIH3zweZw5e4w39F50djZjlIK3yZv26TNbFP2rePX1x7hz\n7wZOnj6GQ0fWsHZoDVvHtnCVMHDn/j3cvX8fN27ewNFjRzE1PY5+QkFvrxtdfK8OVwO6O5vQ29UE\nZ3MlPfd0QkEacrPSVEviWHq/vtzn/fv3Kyjw9ycQBIQgQMw/FH6+/N43AAF+MvwpUM1+iAgRKKDn\nTK/bKOFyeuLS9ldgIMOSipJ8GfojDWfKUF1diipaKeEgP8/G/ZcJghkKCGro/Ukf/hZ+rmZHpZoH\nINMD29tq0cTnZYCPzE+QgUpWs1aV8MnzUsYoPR/a+NpaAkF5Wa5ad87mPomwGvTx0CfT89bGwJhC\nL92UAnt6GnIIZ9KBMDU+hl5/BJJkqiVhL47nNiEsTEUJLFrJHZBlgySaLBtIVCEQRkKG3Uyoy6YQ\nU8AzeS6z+X0+QaQohwCUa1PbXHr9GfwMu0BQwP0tLZS+CZnIz7erqElNdRlaWup5rlvQ1dWKdme9\n2g9JqLNZ9JBJkolxGiTFRfIa80CBdM9MiJaSRgPf38rjbIFNloKyDKpSoVqy81316Ot3YmCwQ0UN\nBAaaeGxraovgoMj2D7owOd2PqRl6/YtjOLg+i42tJV5Pc1hcmsDB1QmcObGAC6dXcPoYf7Y6jMXJ\nDswMNmO8p15NNZRmRcOuSozy8RjBeryLXjuhYII/nyAYjPTUore9DB0thehuFxAog3sHCnpdVRjp\nbcTceAfWFodweHkUy3MDmBwlvHY1EgRLUF9biMb6EoJzmepPIImXMt+jvqFMRQmqCQdqeFNzEQZ7\ny/HaozH87j/dVnM9nvd/v3vv27VP+/UTCQW79sbj73uQUra4V53w42FSXRA/Ov/xuRUA/ElcLti1\nv/rjC/iPv3cVX/vCccyOtdK7lZn4MSpDPDYylDfdQHrNsm7uh9CQIEREaBAXKzfnWEJBGGEgAIF+\n/qpzYWRYhAIBZeHSyCiGr4mEJiQcYcFSqaBBcmIiTNIgx5IGq0m66sksgCR+n4qy4nx6Ok4cXl/G\n44e38e1vfhVvv/UU62tz6OpuwcBQB2/WvDGfOYrrNy7g/oMbuHbzEs5eOIVj20dxeHMD60cO49zF\ni4SCB3j45AnuPLiP7TOnVRRhYnKU4tClwuqOpkq0URA6XXXo63agpakc0gLZZkmGzONPpTfs7+eN\nF154AX7cv6DgMEh5oq9vEIKDNAgJjuBx4f4HhSIkIAhhhCJPSWKkas5jkbC8NlYJb06GCYX0mFua\nPF6wo7mON/IqOFob0OCoJRwUqZ77pTICuDwH9XXFBAIJF9cpa2upVdbiqEZddQlyKMCy5i6tmO30\ntosprpKP4GyVkcEyLpgiUVnA98rl+9pVJr+MvTanJfHYJxLMJHwfj/Q0HbKtRuQSCqRawCglhdJc\nSpYReG4TwkKgpfAaea4z1LyDOOTw74olRwcjwn8fTNoolOZaUVuag7wMCrOIvkmLXFsqgUOgQ48c\nPhbL5veZ/Bw5FO2iXAuhIFPNX8ixywjjfNTVytjiGjjb6lUDp6EBt5p+KB0eC3LTkSYjsZOlG2aS\nqprQEVDjo6KQHC9TO9OQZUlHBoHTbNEi3cbjzvNZxuPZ0ETYoJfd1FxBj7oYFVV5KKvIQWk5AaxO\noIHXwIAsMbgxNtGDmbkhLC6PExBGMT7Zi9npXhw7PIqjh0ZwZGUAq7OdmBttwURvHYbdVWpuQV8r\nxb2lWG0944+rMUIwEBuiDRAU+vna7o5KdPL1nTKKmdbD1/Z31mJ8oBmL093YWJvA8Y1ZHFodx8xk\nt4oUNDeVEvBkRHQGKityKf4lvGYIUbxOmgQaCYHllfmoqswhQBTyeq7C+VPd+M43VvAf/83zZyHs\n3v927dN+/URDgZh4j7WV+o/323zpwV7U4EfYJDqwW10g5YY/qcsFuyahxb/502v0KK7g7pU5tNQV\nIJWenz5BysUiFRjERYVDExasOvyFBAdBown3QEG8RALCEarmGwSoSgOJCggEeCxKQYGAQhiFU0FD\nOL1oQoFFOuZRiDKs9FApTCpaYKTAZVlRTo+xr9uFU9ub+PCLb+Nb3/oKHjy4jqXlSfTQy1tencbR\n4+tqzffWncu4dPU8zpw/ie3T2zh+0mNXrl8nDDzA3YcPcOXGdZw4dVItKxw7volDh1cxMkwwoIBK\nQp8kcA30tsBJQJBogSRwSdTCSjHXhIfgwIEDKlqw/4APDnj5qkZGAgVBgWEEJQIB900TGo4YAk9S\nbCz0SZ4IgUCBJNZlWQ0oyEnnfuWisa4cjY1VKhu+obGGQtWIeoqgjHuuqcpXEYB8iqUM5qmgly/9\nGxrqSlXHulqpya8qQuVOSF1KOWU0dG62BVLCV1VRoF4jMCBdIqWxTTG9yZLiLAKJJxIh0whzCTyZ\n1lR67BLB0BJadMhIS1HzCqS/QGqcJBny/EdqoOX51UVGKCiwapOQTpDI4t/NMCQgNZ7nMiqYz8Wh\nMDMN5fwbxYSPEpl2yMflMmciW/IJBAgEDDxwIGCQLY8z6cnLz7PT+flkuaREAUEbQcnZ1qCmG/b1\ntqO3u1UlX8rIaZuFUJGeiqx0IzIsRtXjQYZyiWVZrHz/TNgzbLCk62DLTEVuPj9PGY9NDQGJIFBU\nksXnrLDnmtTP8gtliYHnRSYzuhvg7mriNUYYGXGryMHEVJ96LOOS56fasTDtwsJku4LnyYFGjHbV\nKCCQUcc9jiJ0NRV42hsTCEYJAaPddRjrqceYRAp6GzDE73sIBe62UnQ5ywkKBIZu/pxAMDPmwup8\nP7YOTeHYkRmsr4x9DAWScCqCX1aapaCgjjBQJYOcCAcS6XC21xMQStS45+amIvT3NGBtxYW3n47/\n0LbHu5q2a5/26yceCsTEi5Rudrv7LlGDwq9877mis2efTftkdECqC36Syg1/mP3nP7qI/+/3b+Cr\n721gcbIFZXlWpIvXTrMaZD1ci5REin+kiH/AM1AQiyRZQqBghIeE0FMO9OQN0HOWPILIMEJBmEQK\nYvl9JH8m3nQIH8tUwAQCgAHZGRYa/55qoqOFgUIq5XH52TY46UmvLE7h/p1r+IWf+zq+8fX3cf36\nOc+68GQ/1g8t4NSZLVy4eBKnzp7AuUtncPHqJdoVnLlwHtdu3cH9l57gwZMnuHrrFra2twkG2zh3\n8SxNeuDPoJeC43TW0ruugstJ75Q313LedHOy0yjMkgVvRrI2AcHBgdi370X81E+9QEDwhj+hICgg\nDIH+oYQhyaWQCEgktBROGSNtSvEcN0ngE5OmPAU5IvIyn1/EiULvqIGrsxXuHheaKIDNLdVquE1x\nkU0tC2RR0AQOpCKhXHoMFOVQOLPo8Yu4S+MhPWFKBDINhXmZqnpBTKIR+bk2lb2fYzchf6croHS/\nK8xPRykhoYwAIU2CsiTxzyhliImqlFCqJEzaeHj6EERDHx0JfVQkUqOjYCQEmuJjYdPHw5ZKrzwl\nFhZdNB/HwW5ORgEFvpRAUF2cjebaYsJlCeor8na6RhqQk6FHfpYBxdwn6QdRKuv9BKAygktuFiGI\n+1ZTWYxWOS5t9WgnsLnbG9DT6UC3W8LnZSgrzkTBTnQhn5Blz+A+ZlLY7ZnIzbQRNPi3sghAeTnI\nzjGrpYOSMjuPd76yQu57ZpZRAYNYpuSP8PiUyHKNeNyyVMPz4GyvQ1d3s4oaDA13qvyDnp4m5X0P\n9NZguL8eI331GO6tw2BnNXqdZehuKUaXQAFNJiNO9DRivJfWLwmGrZgadmJiqBXDfYQOt+xjObpl\nyUCSEYdaMDvuwtJsDw6tjODYxgyOb87i0MFxzE33Yqi/hddn9U5y6U6uCT+vLIvU87i08hrucDeh\nsakSTU1StlqEVkJKb1clrpztxHd/5uBzqxB274W79mm/9qDgGftk1EByDURsnidCe/bZsWdnF0h0\nQJaFnnd+f9JMcgn+9F+dw7/4tcu4cmZcJTtVFmbRw8tSCWKFFB87vXmzPlmVEYZRHEOCghAeFobY\n6GgFBVJNEMHvJUoQQigIo/iHB4dDExLhgQJNLCIJBWH0qgUKwoNDER8dC2OKCJpZQYFUIJjTZDBP\nPBJjNOpG31RfgbHhHpw4uo4vf/QOvvnTH+LRoxuYnBpAbz89tqVJbGyt0vM/jK3jG7hy4zLuPbqv\nIgOXrl3Fzbv38eS1N/DyG2/ixr172Dp5CttnT/Nnl3D1xhUc2VhReQpu3kxlfr6MyG2lt1hVIc19\nKDQUzUIeA5kkGBcbDV8fb/zjn/ocvLx8FBQE+oXA3zcYgb4CQ6Gq0iKZx8OoEyCg6KR6wEAqOCwq\nudBCL0/W97NRSk/f2dGM8alhjM2MwtVDOHE1qATCkmIbMm0psFG0silgBXk2WoaqVpDjJG2JTdIo\nyERwIFQV5AoQ2CmS8hpCViaPaaaJ72FUdewKcCjW0v1O2gaXUbSr+DlKC+hRpxuQIVGa5Dgkx4Sr\nPgPSb0DaFqclEHC430axuBi1TSUkWHUCBjTCQHZaIgoo9sX8G6W5ZlRQ7JuqCtDrqlfWSi+2mp65\nNIcSICiid15RnIEaWR6pzkdTXREaa4so5ISCXD5fUYg2RzXczga4CAWd9H57OinGXQ6Ved9IIayr\nLlDTIwVs8u1W7lc6ivLkcSb3P4OPc1BRWsRjzC0/i3jSIpwi+kXFWcjgMTVbd6EgTUFBUUk2Kvm+\ndQ2laGgsp+ddrXIOevra0Mdrrae3jaJbR3gshKu9BF0d5ejtrEJ/VzX66PV3i9dPEe4WIabYT0mP\nguE2mhOzox1YmOjC/GQXZsY7MDrQwt+V8sIqbmu/DwQzPVhbGsTm+gSBYA4ntuZwhI8X5voxOuTk\n361GXW0BKitzUcVjJ8sHdfWlCmQkX8Ld2UygqUFjI+GmsYCftRTtbWU4uNCED96cwb//12fU//uz\n//+798Rd+7Rfe1DwCZOowbO5BhKKFtHZW1L47JmjByOtAACzEUlEQVREcySqs3uuJHfgJ633wN9l\n/+kPL+L3//lVfOW9E1ic7ERXK73lBt5kGqvQVF2CyuI8FGSnQ3rzJ1IYpBthSBDBIDgYERqpTIhF\nXNRuT4JQBQUhAfScBQyCwgkDklcgywdRChQECuTn8vrkhHiY+b4CBuLtSrRAuidKYmO2LQ1V5QXo\ncDZiYXYUD+9fw2uv3seVK6dUlKCDQjE+OYBlevtrh5Zw5Ohh3L5/C6+8+Sqevv4qrt2+hbuPHuPN\nd7+At77wPm4/eoSTFy7i3OVLuHZLchCu4cjmCsYmBugBtqpIQTVvtCI6VRQTaa0rnrbyRrPSYUjV\nEYQ8ywiqL4FvAPx8gpQFEAp2IyDxUm7J/TImS4dAT5RAej1IQp+IdLF06aMXX1ldjOGxPmwcW8fB\nzYMYHB/gPjlUMllZCcWaAipLGNlK1D0iL8dHxlSriYbJify5hTCQy9cX0Mu2KxjI5HGT0cu7UJBp\nE3BIhZ3vI1sBhOJ8G4XZrkpOs60y/EiL1MRoxGuCkJoQpfoOpNPMSdwPGaEcH6vMIL0lIsJhSoxA\nBoEgx6xFPuGlhIJfRY+/jh55PYFKQGC4pwUjva3olDV8CdsX0WPPp4efb0Ul90/6+EvbXhePewdf\nU8RjUkoQra/icy216O5oQichSYBgsK+Vouiih96s8j4kaiC1+nVVBAPuh0QYBAoEjmQJoqJEqjXK\n0dBUodbaxfNv5nXd1FzF416I/MIMZNlNqitiDoEgj8ejiKBUUZmP2joKbUOZem0bgaSzuwXdPW1q\n2+6qQUtzPgGSYNBWws9XTo+/Ej2uCu5nGcGgDP2uSjUGeWHcjZWpbqxM92CVor6+MITV+QHMTXVh\nbEgqXhq5b3UY6mvCzFg7Fqe7KN4DOLw6iq1Dk89AwSQW5wYIx5I4WqmgoKo6DzW1hSpHQvavtU3G\nSTcSWnj9cF9leFRjfR66CRzdXfX8GxW4fqELv/m9DfzVJ6IFu/fFXfu0X3tQ8ENMQs8iMrvHQ8Rn\nr3zxs2GSEPrsUkF1pQHf++bSc8/jT7L92e9dx3e+cRoXTs6gx1nHm3kbBtzNaK0r500+D8X0PiUJ\nzUSBS4qjxx8WqrLsAyTpLiBANSlSjYo0EarcUKAg2D+YJiWIYdCERPJ3ogkB0Wo5QZ6TEcqyzCCT\nFHVJ9ErT6K1a02BTXnAKUrWSRZ6ADHMKKunRToz04NjWCo4cmsfszJDKIHfys/b0tWNiehgHCQXH\nTh0jBNxVvelffest3H38mHDwFt776Ct454OPcIuAcO3efdx/8gSPXn6KG3dvYf3IkoIC8QTd7gZ6\nWKWopKjJVD5pDCNr9VImmZlhgtViRFJiHIIJQ2oWguQVeAXAn1AQKEmHsoQQSFAKCVZ5BVrxrCms\nFpkrYEiimCfS8zegoDAL+fTQm+kJr/JzX75xEdsXTmJiYRLu7mY0NRSjokyWCChamanISE8hDOgJ\nT8kKCGQ8tcmgh9VEz7yogJ51OUWwGDmZGeoY2jOtKmKQS5BLt6RyH7T8fS1/poPNLIOGPBn/xXk2\neu4EDX42SSjVxoQhLiwAqfGRCghsKUmwyDIC98MUTzCIi4YhmsCjCYM+NgTZaQkoyTaiKCsVhfyc\n9eV2tPP4uShUbQ0lGOxsxPhAG0b6KKrtNWjlftVV5hAIZLnAivJiG0U9F05HGbr486aqQjTXFMPd\nXM3fdWC0z8nfbcX4UDvmJrqxTEFdnO3DEgVydqoHA30OuF3SvbBKJWTK8opEYWprSlU5Y0tzHUW8\nkYJZ/33jMZfBUDJAqYTXtpyHPIJRHreFhIuy8nyKbSnqGwgT/BzyO64OB8W2me/VREioRYuzFI7W\nEv6sFM72cjWPosNZoZYCulzVGOppwvRoBwVeqgfGcGRlHJtrU9han1L5AfPTfYSCdgz2t2B4sA2T\nYy4sznRjdaEfa8v8HULBxvo4to5MY+vwNNZWRjFLsBgaaIXDUaryBQRea7nPjhYCgbNWRTSktLKN\n23pHBRoaiwiXBWhRSwg8H63FfP9GfPW9+Z0hSd///9+9P+7ap/3ag4K/x6QvvojO7nGRmve9KoX/\nMyZLOc82IdpdKvhJrix4nkkY8S/+4DL+2fcu4fHtVd7AW9U6cFVRFortFlVrbpMMdW0c9IkxSI6n\nJxktpYUhCPTzg/cBL9oB1akwKjxCQYEMPhJhDJL1dr9ges+yjBChTCIFu9ECSUiUSgVJTpR5Cak6\nClCaHjaLgWKnp5jGq3r+NH08CnKs6Otqxdz0kLKZ6UFMTvYrKGhurcPAcDcObazi9IXTuHnvJh6/\n8gQvv/kG7U2888WP8P6Xv6ag4KU33sTj11/H0zdex+NXX+Zrb+P4yQ0src5ibLwXXV1NqKsrQlFh\nOgWZ3naGXjX5MdAk+dGUlooUfs6YmGj4+/sTCnzg5y0NmQSAPBbiH4QwgpKqPoiJ5D4kwKrW/CV3\nIg35Uq8vwlNXhlFp13x+G3ce3sKZy2cwtTiFTnrXEimoqpD+A9LzPwUmY6KqzZeukp7jlMr3SkdJ\nYQFqqypRVV7GY2TnZ/RUchTk8vwV5EA6AhpTKfh6fn4KuFRTZFh0hALposjPkm1WJYGSUJoYHYL4\niCAkRoTAIJECfm5PpCAOxtgoGLgvqdE8TzR9lAa66GDYTYkoyzURCPS8VrSoK81Gh6McndKbv6YA\nHc0VGKJXPznswhjhYKC7SYl/m3RmpKgJIDQTFLpctRjpb8UIYXS4uw1jvU5MSUOh0W5Mj7gVEKxS\nYDfoMR9Zm8CmCOXqGKYmujAx3o3xsS70ExKlkkR6MnR1tqKvz83nOgl7HXB3tqimV20EAqcS9kY1\nHKqqWpYS7MgVKKAVFmWrtsgyMEqBQWOlAogWXmNizVL10VaNNlc5mttK+LiU70UokITBdpqrivvY\noIBgfWkE2xtztHkcPzyL40fo9fP7DcLB8vwQpqT3wIhL7cMCQefg4oBaNji4a4SDdel/sDKChTlC\nxEi78vgbpWFVLc97bSE/X6n6PBIhcKtJmA60ttejvqkC1TW5qK7KRENdLjoIKr09DZgab8KNi734\n3X96An/5B+c/vg/s3id37dN+7UHBp7DdJYXdpkdi4qnuwcH/HvskDIhJ2+q9pYK/bTJn/T/+m7P4\nf793Ck/vLWJqpFmNEc7PlEE4cUhN0CA5JhQJmkBPW16NpxmPqjIIDKAYeuPAvv048OI+5fVrQsIU\nGHgqDEIUFHi8Z4kWyO948gsk2TA8WOOJNPj4KrjQhAYhKV7GJ2sVGEikQBr9SKmchVCST6+2lTdo\n6Ty4ODeCI4cXcJgmIX/x5rr5/Or6Ik6c2abXfQX3XnpI4X8Dr3/+8ypK8IUvfRWf//BLeOP99/Hy\n2+/gwctPcfP+XVy6fgWnzh3H2mGJFvShnV6grNUWSjZ6rgcKBAjEpImRQZ9MKNBCq9UilKIvywcS\nJRAoCJH9DAhR1RXSoyB2J1IgCZMCBSqXoCSHN+pienGVqgnT4a2DuHH3Kj/vXZy+dBrTS9Nq/Vo8\nu9qaPBQX2tTSgZQP6mW9n2BmSNHS2zfxmGSjsqwMNZXSV6GAgm+GXqYZmozIz5EkOztk4mKaRCkI\nFekWLbIIGBIlELOr7H89zKnxSIoO5TkOUEsHKbERMCZGw5IcTzCIh0mSDQkCOp57FSGQcdBxUdDH\nhSLblIBi6aKYrkVmWjwqCqxooVi11RejriwbjVW5cLdUYLi3WUULBAxGaYM9DgUHLv6sy1WDYf5s\nZrwLSwS9OQLe1GAHjYI55MIEPekZiuzKXL/ynmWtffPwFA6tjWNhvp82iAUCw9RUH/oHXOjpbcXo\nWB/m5saxtDytBmSNjUskyI2ubhmI1EZrVYBQV1+hWiAXFNkJBHYUl+QSCvJRXlGolnakNXJdg4xq\nrkaTo0aZLEG0uqvgcJahub0CTnc1z2U9r8VG9PcRgMY66O2P4syJVVw9v4mLpw/h1NFlHCMUHCcg\nbBEQ1lb42Wf7Cbe9FPwBrCwSAggFK/N9KmIwP91F68YS9295YQAzU90qStDBY+VwEKgIBmKNBLBW\nZ40Cgi7CpESZWl31aGiu5L4VEAhy0NJchI72Klo1+nvrCCUu/MLXDuJP/9X3mxk9e78U+7Rfe1Dw\n32C7cCAe6u5xEjjYq1T4X2PPg4G9vIEfbhIh+I+/dxa/80+28cqDWd60K5FHby89LRG62BAkRQVR\nIAIQE+KLqCBvRAb5ISokAFEUbxkLHOjrA58DB+BFKPDefwD+3j4Uw2ACgacM8QegwC+YYhlG0QxV\nYCBAICZLDNLy2N/Hh4/9VbQgRRtPz1arvPIMEz1zVT+vVR5tDb3rLncTDh2cwYVzR3HmzCampwfp\nqTWggzf5mfkJrG2s49zl87j3+KGKErz69tt4+4sf4d0Pv4LPf/RlvPXBh3jy1tu4dpcifPE8jkvp\n4qlNLEoFQp8T9RSzcoqZJPkVF3miBRJ6F5PZDHp6zrrkRBgMBsTGxiIkOEwBgSQbquTJIIIRoWi3\nXj5VS7AhTAgUFOTaVBliGz1Ol7sZ07MjuHTtHB4+vYe7j++o5YOZ1Vn0Uwhdzio0NhShosyu8hok\nJ0CWDqQqQ/IvMqySMGhHSWERgaCQYp8BY4oeyQkSRTAg22YlEEhJpQlS7pmdQeHOJizYJUvfgEy1\njMD9kvkBSZEqQhDH860lHJiSYlXLYos2DpakOKTFR0MXGY5EAbfQYOgjNbDIvIpEDTKNcci1ahUc\nZBhjUZilR7UsCfAYVhRalTVU5sDVXKaWDwQMJGowOdKhIgP9XY0Y6GnC2JATc5PdWOX5nB1yY0wy\n/jvqMSCNhgQaKLiqTG+xX3nTayvDWJVR0Qv9mKdwzhEYpiiwo2PdGBzu4LEdVrMxpLHV9slNrB9a\nVsOPBA5kQmJffyc63K1wNEtfiFKCQSFBoEiZPBarqCziz0roccsgJQEDCnJzHZolOtVJQHBVosVN\nQe4lDAw7MUJwmeA+rBAITh1fwe0bp/Ho7kXcvLJNQDiIrUOzOHp4DkePzGPj0AwOEgyWFoexvDRC\nKBjC8lwvj4Gbx6YN40OtmBhxYpYwIFGC6ckuDxR01KCtrQothCmHjFKm+Lc5awkDDoIxYYdA5JQK\nDWmBTLCU5kXO1hKaLB+Uo7uzjlDtwruvzuD3f+vkxwmHz943xT7t1x4U/HfY8+BgN+dgLyHxf9w+\nmTMgJjDwk9qR8NPaX/3xRfzb3zyN916bR09HEez09JLjZc69LzQBLyIu3E+BQWJk8MeRgpiwIESG\nBFLs/eB7QGBgP3y8vCnqvvzeS3n+snTggYLQj6FALSFIyR6FM1iBQRg0hIJQgkOgDBgiFAT5Ez7o\nhSbJMJ7kBJgNOuRlmGGgOJn08cjJMKKsMIteZSOOrM/j4oXjOHt2C1tbK/QOO+DqbMbASA8m5ybV\nEsKDp48JBG/h8auv4pW3Pq+WEN754Et4+Z3P4/4rr+L8tavY2D6O1SPrWFlboBB30fOi11hqpyef\nT8tDZQVFtygDdlU/L0N59EghFCRLMyKLBXp9CqIjY/jZQz1Q4B+CiBANgUD6EyQSaFIouilqX6xG\ngYIMOFvq0ENvtX+wE+uHFwkvtwkvT3D30S2cOH8C8+sLGB7rQhdv3jINUTrXSQMjmYXgqTowwGYV\nobdS6G38Pp3ibiF4GJCSlExLgilVr/INPPBgVMsIJTx2Ur5XUmBDbpYR6aYk/o4MIYqCNjYMCYQC\niRZIgmG6gAeBwCxwkBijogLa8FDEBfkjITgQ+ohw2LSytBADW2oMMgyxH5vdIlUIKSghTJXmmlCc\nY0RpngnVJRlw1BagmwI/0u8BA2nbK0DQ19WAge5G1dt/bqQTI+L1OirQJu2cqwvQXJuPjuZSDNIb\nnyYYiHDOTnViVjxqCun4uBvDI+0Y4nsOj3RhgFAlLbCPnziEm7cv4fadazh/8TSOHjuMldV5zMyO\nEx4G0NPbAWe7Q4m9NI+SqEFNbbmChIrKYlRWSf1/iXpOoKDJUYvWNlmzb0QLoaDZXQ1XTwP6pLXx\nDD3+BRmuNI5jR5dw7coJvPLkJt54+Tbu3zqHs9trOHJwCpvrMzi2uYDjtM2diMHq8hiWCDUz4y6M\nDxKGuJ8D3XUY7ndgesKtoGBmuhsjBKeuznq43ZInUcPPUkXhr/JECroIBQSCLpqrswltrgbuWyWa\nm6UzZBZamkswNNiKsbEOTI47cf/GMH77146paKHcD569f4p92q89KPgfsOctK0i1gjRA2itl/G8z\ngSlpPPRsNYHY3jLBp7O/+feX8Pu/eRIfvjmH8f5KZNJjlDG2cRGhhIJgFQ0Qi6RXGBkSAk1QMMLo\n1UuXvlAKf7C/iD3F3FvgwIdw4IP9+3zg4x2AAApjcFC4MmnoI98HEAoC6U3LNixYKhE8ywfiWQdK\na2C+TxDfT6oWYiIikShNf7RaZJjTKHhp9GrNqva8OD8Pbc2NmJuewIljGwSD08omJ4fVjHxpWTw8\nKn0LVnDpyjk8eukeXnntJbzy+lO8+sbLePLKE9x+8BA37z3Apes3cOr8eRzdPoFDG4cxPjXBm2k7\n6htrUFtfhbKKQhSX5qK4hIJamsOtHTm50jLXgHR67XY7vffsNEJCPAGHx8SPYOProxIMZShPUly8\nqsjQJydTxK309vNQVFSIvr4ezC/MYmllHoc31vD45ft478O38fo7L+Ps5RNY31rGAkViih7nAMWz\nuaWS4pSv/n5hMeGgJBc5edlIz7Ai1ZiKZL6/9ImIiYpS5Z16rQ5mwopJlwwLLctoQKk9C2W52SjK\ntsFuTUO6lDHqk9WIZF1CLCEmAgn8fV18PNL4O1ZCRZo2CamxMdBFapBEWEsOC4aOpg8PgYHXiTEq\nHGYCQ4YhSbU1zk5LhkkbA0NiBMzJ0bCbtCjOJhDkmFBOOKgqsMBRlYtORwn6KVbDnbUY623A1ACF\nb0jq9x2Y6CMYEA6GZcJgO4XOUQ5nXTGcMtzHUYnO1lr0uBwY6nVhqN9NkezmcRri+R/E+MSAigKM\njPWhj8A1Mt6HlfU5nL14EncePsC9Rzzvd+/g7KULWOf5npqdxtDIEL3rHrR3OOFoaaLwV9OqKP51\ncLY1ocPVAndHC7fN6CA8uLntdreq7oo9Pc0YHu5QeSgySOng2ixOndpUTbTUyOXHt/DGW7zuXn2I\nW7cu4uzpTWwfW8XZU4cJCAdVrsGRlTGsUfBXZJlgkpBDuBjoqEYvj8+Am/DUy+MhyxGEgQnaYHcT\nOp1VGO5rRS+PkUtyGwgFHe116JSqA4KAtLRudkgkoZqwIHkPkneQw+uoSOU9dElXRR7rS2eH8N2f\nWcN/+F1Ph8Nn76Nin/ZrDwr+J5jAgSQkPtvjQEy83b3owd9tEhX45BKBQJY0k9qDgU9n/5VAIDeC\nn/niEo4sOpCfkQpttIYwEIJo3vQFBiKCJVHOH6FSHSAQ4BegIEBMxFvq8QOkFI9i7kMgOPCiN/a9\n6AOvA/5qBkBgQBiBIByBO1DgTxgI8JWlgiCE8LlwetOhQVJ9wOd9PFAQ6ONPT5sQEiqetiQ0Jigw\nsKalIdtmU+vnxfn5qKupQl9PF72rBZw9cxI3b1zBwdVFCmg3OjpaFRzI2OTNzTVcuCg36Mu4e++6\nstt3b1IY7uEWoeDqjVs4e+Eijm2fVO2QZ+bn0DvQRw+rlTfSJlTXVaCc3qLAQUVVIbf5yKOXnWVP\nUyYd8HLyzGp+QESIHCcfQpMfoulRJ8ZEE2ziKNKSFJgCe1Y2KisqUFtbi6mpKXqsWzh97hSuXLuE\n9z/6PL7x7S8TDN7CxeuncPSURC4mMTvbh4mJLvT2typPsJbCWE7PtbgsH1k5mTCYDIhPikdkJAEr\nPBwR4Txu/HsCBSaCgjEpEcZEevPJWuSZTci1mJAtHf9S+XOdtK5OhJ4/lyUObVyc53gnamFISqaw\nJ0HHz58UQVgIDUE8QUfL6yKF10iqJgTGCI+lJUSrkck5ZkKSiSCiJZTEaWBIiFBNjfLSdSjM0BNK\njKgtSkdrTT666fELFAx2VGGksxqTBIPpgSZaI8Z7KG78eXdLOa0CHU1lcNYXo72xAm0NFWipK0NT\nTTlaCW5uZzP6e9wYGyEMjA1ieKRfLQv0DrjVUpLkmIxPDxIAVnH+yhVcu30H1+/cxcVr13D05DZW\n19cwv7yE6blZjE+Oo3+wH918v67uDvT0dqKPgNnd1a6gYBcG+ntcGOwjePJvjAx30oMf4bU3g42N\nZZzc3sCVq+c819v9G3j05B7eePsVvPT0Hm7cvIjz544rIDh3+ghOH1vCsfUpHF4axvpcL1Ym3Vgc\na8f0YMvOsanGuJQoDrdhYqAFIz0EJWVNamriSL8kbDrU8C43gaBDKg/apPU1QaC5SrWBbpPRyTzG\nrk4er/ZiPq5Q1t5egS53NdaWO/Duq9P4nV/fUveEZ++pYp/2aw8K/iebhLhlNO+zx1KiByJ8e7kH\nHpPJhRJN+WRUQLoQClwJZD3v2O7Z3zb555fZBr/8zTWcP+ZCfXkGkuMiP44OyNJARHAAgYCeu483\nhdqH5kvR9oWfZNlLsx4+9veWKIE/fL18PVGCF72+DwVSmhcQqqIEsv0kFATycXBAiLIgfz5HKPCX\nkcO0QD7WBIciNiKKwhpHT1sG9UhSXDryc+woorddWlwIR2M9RocHcXTrMG7dvIrtE1uYnBhBG8Vc\n1nxFHObmJtU68gnerAUOztMuXjmPGxSG2/cf4NpNgYIL2Dp+XM1HmFuUsP0Iuno7VcTA0VpPIa5C\nTV25qhKorC5Smek5uVbYcyyEgnTYc/m/SiiIDJXhRwGIomiK150kbZ+lyyPF1mQwojAvHw11Ml+h\niZ+LHuXpbVy/eQUvvfwI3/jml/EzP/dVvP2FV+nFHsPW9hqWV8cJBbJOPoCpaYodPVKXm55sYxWK\nSvNgsZmRSC8/IkqDkJAQlfAYRQEXENFT1I1J9PITpPUw/35CPGw6Hb33JMJCIoU7kcKfAF0cwYuf\nUUcYSE2SccnJfJyIpJhYxEdEIjaMoBgcjOjAQMQGBSIpOFBFCp6FAllWSE9Jgj1Nr6BAlhxSBQri\nNbDoYpFlTFBNjfLTk1GZZ4Kjwg53YxF6WsogjX1620oxQJEactP7JSAMuCrRVl8AVyNFrLFELR84\npLERj31dRQEqS3JQWiD9B/LRTDAQ0R4Z6iUQSIJhFzq72+F0N6OZ566lvQGdfW0Eg2Ec2trEyXPn\ncPHqVVy6fo3H+SJOnT2N7TOncPzkCWwd3cDaoYNYWp7HwuIM5uenMDU5QtDs4t9woqezDYP9bozz\n70yNS9LfIBbmR7FxeJHX3iGcPXsMly6dovhfwq3bV3CHAPrw8R28+sYTwug1XLt2FpcvbuPy+S2c\nJxSc3JzH1uoYoXwIhwkFy+MuzA63YrLfgdHuekwSBKS/wdJUN2ZG2jHYWYf+Tml/3IpZguJQXwut\nFYO9Lap/g/RqaG4qV2OUBQo8MzJq4eSxbXOVKCjocFei3UVAaC1VuQUjQ024fXkQ3/uZVXVPePbe\nKvZpv/ag4H+RiZcrffc/GT34SQWEHwYCEhWQJYK9lsT/ffaf/+gC/uifn8LdS/SI67PVen0sb/KR\nFDQBAjFNEL1efz+CgBeFWswbvvu9aAdU3oDvAW/CgZ8yGRXstc8b+1/wwv59fEwo8CUU+PuF/AAQ\nKCMQiPkJBNAC/Tw1/RJ1UMsQ++V9fSF9C6LDI5TXK2H4VK0n0z43KxP5djvy7NkoKy6Cq60Fi/Mz\nuHj+DL2wU1hanFVQUFtXic5OJ4YoFlPTo1g9uIDjJ46obocnTx3DFYrCrXt3cfXmDZw6d1ZFCVYp\nCAvLC5iQyYlDfeju7UK7uw0tfL+m5nqVjCbzCSQjvaAwG7l5GaqELSvbTChIQAyPoViCTBSMjVZQ\nIECjS0xEulnaE5fwht2Ehgbe8CcncOLEMQrIFbzy6kv4yte+iA++9Hk8eOkmjhxbxurhWSwsjSgg\nWOJ2aWkc09MDKm9CxE6WD9LomUfHRiGYICdAoNFoEMvjJUsWIux6SXCUCZSJCTDxM5gJCSn8XMn8\nHX18LFIIC4lRkbQoQqGUfeqQkqhVEZrIkDCEEdZC/QIR7uuHCD8/RAVILkEAtLJ8wP00CBBEhsIY\nGwGrNh5ZqcnINiTDkhQLg0ABzZwUBVtKjLKM1FjkWhJRnpuGxvJMtNXmoZ3i396Qj46mQnQ4CuFu\nLoLbwfPaRAFrLoWTYNAoeR1FGQSBDBTlSttis6qmkFbODTzPCgqG+zEy0o9eevDt9OqbWutQ76hC\nPcXRIQl4vfTAF2ZxmMJ/9tJ5XL99A7cf3MG9h3dx//F93Of2zp0buHrtIs6dP0lgO6YSEzc2VnhN\nTWF6agjTk4OYnx3FytIUVpensX5wFlubyzh9isB5/jguXz6Fq1fPqmWDW7cvEwqu4cHDm3j5lQe4\nfu0Mrlzaxo2r/L+7fgrXLx7F2aOLOH5wDBuLgzg8242lkRZM9TWq6MD8WAdWZnpxcK5fbaXqYrCr\ngdao8jBW5gYVEIwMODEy2I4+qTZwVKC+VuZilKj5HS5nnbIGHtuqukzCZA5apXyytRgOHuMWRyn6\ne5tw9vgAvvHFJfzZvznzA/dZsU/7tQcF/xtMBE/C4Z8EBDFppSxr6SKazxPTH1WTJRNZOhEA2h1Q\ntGu7ILDXcOh/zKT06A8JBK/fH0dXS77qPZAYFY5oiRDwhi9AEBUi0YIggkGgAoMgX/HeJbQvnryP\nx7x96d3vRAoIBd6EggOEggP7PVDg4x2owECNEiYM+AkI7ACBPwHAT6IMhAIpUwwLCiMEePIKJDfB\nh2AQxMcRFCYRKFk+0FPQ0vQpCgxyMjORm52Fovw81NfQs+zrxtrqEk4c38QyvTw3hVySwiQhTDLL\nh4Z76flN4/CRFRw6vIIjm4cUCMgo5UtXr2D79CmsHT6E5YMrmF+aJxRMYGConx6nm+aCi3DRQevu\ncallieaWelTX7Da8yUJmlklVJKjeDTyW2jgBgmjCQZSKFKQmJ6tEwJKiYgUFrQSZhYV5is8Z3H9w\nG6+9/hTvffA23njnKcXqItY3F7C8Po3ZeQrRVC9hoBcTE70YHORn6WhUUQt7rg06vRaayHCEhAYj\nLo4CT+HXJtDiEvj34yn8CTDrdMgwGJAlEyhTUpASFwMtoSU5JgpJ/HwJhALJI5DIgJZgEBcZhbBA\nQhrPbyDPs1iItw80vAY+hgL+vd0lBMkrSI3WwJQQg/TkBNh0BJCEaBhiwwkF4TtQEIsMvYxXljbI\ncSjKTEFNkQXNVXa4Ggt5HRarWQG9znL0yMwAerGdLWW0ctX4qK48ByV5ZhRKW2YCWH62AEEWqsoK\n0dbSgP6+LoyPD2F8YojQ1A0Xz7mjrZ5gUOsx8ZY7WzDG83rwyLqCgrsP7+HlN17Bm++8gXfeextv\nf/5NvP76y3jpyQMKOr366xdpF+jdn8OVy2cInds4e3oL28cP4fjWQRzbXOXjdZw7exQXzh2jHScY\nnMDFiydxhb8jYHDv/nU8enwbTwkF166ewdUrBIJb5/Hyg8t46d5F3Dh/BKePTOHIQh8OTrgwO9Co\nxiqP9zlwZGkYmyuE2dk+zI5KSab0a6ARCGYnCBCzAxgbcmGUQDDcL1GMJshET2n3LGDgaOSxa/Es\nH7Q5K+DsKON1XMHrWeY48H+jqQgNBDJnWwUWZ1rxyv1R/O5vHP2Be67Yp/3ag4L/zfZ3AYJ40T+q\nkCCJlQIBEg2QBk+f3Lc9EPifb3/4z7fx9fcW0dGQjSyzliIRqfoOSJQgIthfgYEnwZDP0TQy7Ehm\nGwRRvOm9Sx8CyS0IUhaohFxFC/b7wOtFb3jt91NQ4O0V8DEYeOBg1wgEYgSCAP6+5BREhMkYZUk4\nJDx4+SooCCCESOOjGE2kggItBU6XKBn1UmaXoSIFBbnS076EN74mtYxwkGCwQigYGuxDfT09+vJi\nFTEQMBDBmJ2bwPzCFJZXF7Bx9AjOXzqLC5fP4+SZbRwmKKweWsEifzY5M6EiBe6uDvRQcAb4eGxi\nhGAxq0LLMmq5u7cTDgpSRVWZSvjLsJlhMeropUfSCAQxkYiPjuTnjlPTH7NsAgWF9M4aKe59OH6c\n/9MP7+Cdz7+Gd997E59/73U8ffU+LtOjXD8yhzkZzzsuNelODPS3oqvLocYmV1TkI9tuhcGoRZI2\nDnECIvT69Sk6ZTrCkzY+nlAQByOPW2ZaGnKsVthNJpgJJzqJXkRqEBcRrvonxEcSCqKjCQPRiArT\nIJTnQI69WiISKCAchBIGNX7+aglBqg6kHFGnoIBAEBEGA0Eojftrjo+hRcMYoyEohMEYq4E1KQbZ\nxgTkmpORZ6FZk1FgS0FpjgE1JTY01+Sio7kEPe2V6O2oUtbdXoHWxiK00ZNtaSxRMxEqSrJQXmKn\nyTnPQ3UVf+aoQ6fbicGBHoyNDWGUYNA3INGdFkJBHRzOerS4GtDsqkdbpwODo/08v/PYPnMct+5e\nx8uvv4S3330d737hLR7/N/DGm0/x5OX7Ssxv35Hw/1U8fnwTr736AK+8fBf3716m8B8jDKzhxLGD\nOLl9mFBwDBcvnPg4SiAQcf36edy5cxmPH93C6689wDtvP8XTRzfw6N5lPCEQvPnSVbz++AruXtzA\n6UNjBIJ2LAzUY7qnGuOEgomBVtUG+eDcAObGO1WC4Zz0bpjp37EBLM0NYprPjQy0o7erCa62GgUF\nTfWlaKwrUdbUUEYIrYSDx7eppVA1WXISvFoIYQ5CQYujBJ0dNZgYbsb183345W+t/q178Kf92oOC\n/4O2u8QgOQjPVjA8a5KsKEIrgvtZaZYkwCLLHzITQj7fJyMBuyZlhFKdsbc08D/fZM3wez+9ivNb\nLpiSoulJirdIgSAURKk8AkKBRAp4048OC6VI0AgGUaFSc69RnrvAgYi1CLhUDUi5oUQLPEsInnyC\nZ80DBwEEA4EBDxT47oCBTBOUZMMoTTQipXwxOOzjaIE0M/I0QpJhSTGIpQcra+UGXQoy6XXnZElp\nXhaKCvLoGVWjp8uN+blprB1cxsL8DFyuVpSWFqKU3mRjU63y8mW9eXR0ANOz41hZW8T26WM4c/4U\noeCEGqB0ZItgsL6MmfkpDI4MKOGX7dTMJNYOH8S5C2fpBV7GydPbWFldxtDIIFqdrSivLEdhYS5y\ns6z01KXigB44RTJRBgbptKpXQJ6dolZajI72NiwuzFI8LuGdd17HV7/2AT786D28ReG49+AaTp/d\nxMLSmBrN29crGe5N6HI3oJVeX3VlPnLoLRsMSUhMjEIyPXOTKRXpVhOMqdJxUYcUbRKSEzyJg2bJ\nwzCbYbdYkK7XQxcTo5YLYjVhPM/SgjkEsRE8/zy20mwqJEDOpZ8nCrRjklAa5s/rIiAQ0YTDeEJi\nIq+PZEKBfgcKxIxRGqRFR8DI60m+18uyAuEgPSkW9rQkFKTrUZJlRKk9DUWZqaqPQVm+CbVlmWih\nx9rRUopOaQ0sCXACBQSC9pYKtDWXq/kT1eU5qCrPU6Oga6TpE6HP5WpBd7cLfQQ3iRD08vx2dDkJ\nBA2oc1ShQTLwCQQtHTx+HY3o7GlXA6fWj6zg3EV67fdv4Am9+Fdef4xXXn2Il57c4TmQRNTLuHXn\nEu7eu4KXnxLc3n6CN994iAf3r+DsmQ1sbS7h6NYyjhMMTpwgGJw7jhs3LuDevWu4T6AQILjPx688\nvYt333mKjz54Ex+8+xRvvXoHrz66gtcenMfTO2dw/dQythZ6MNtfj6nOcmWTvXWYGBQI6MS0dDkc\nlpHMnTi4MIxDS6PcjmB1fhir3M5M9GCQ14jbWUeAqoRT5jPQJK+gkXAgywiSX9BE8W9sLoSjtVjl\nEjQ3CxAUo721Aj2dUvbYgKNrLnzp7Wn8g3/wD37gfvxpv/ag4DNkIp67kGBJi/hb52TXJKIgYiyh\neRHmXWD4nwUNIvryXrvCvyv+z4sAPGu7ECDJlnvJgv9r7d/9zml84ZVpDHWUwKJLQAq9Om1MBD3H\nMJVTEBMWjFje7GN5sxfhiAkPV3AQHRam1vcjQ8NVAqA0JJJw/9+GAm8FAQIDB/b7qaWEAwf8+Jzk\nGDwDBT4BahtIsAgjFERqRJSioAmVRkbiqforbzXQ10+BgYSz5e/GRRFktMmwUeikaU8GPeDc7GwK\nRRncLiemp8ZxmOK9uXEIY/Qa6+qqUFZehOrqMpV42NJKYaBoyHLC9NwEIWAN26eOEgqO4wS3x7e3\ncGjjIOYXZzA6MYyB4X6MT44RICgiBIKXX31Kj/IdepNPcPHyRRxcX6N4D6OlrRW1NZUozs9WUKCl\nxyymlxp+sxFF+TkoKy7gjboaI0P9OH70CB4/vIuPCAPf+vbX8JWvfFGJ0pWrp3H4yKJqvNNOMetw\n1aFL+tg7a5XXV1qSDZtNyg9jkZgQSacgBQX5dpQU5ysg0OuSFRRIDkNKUqKCgnSDARZudbGxiKSo\nR6sIEGEsKIAmeRs8x+Ge4VWeCIGvArNgf0Ibt6HcagKDECWvDQ5GXHAgEggUyWGEAokSRHogwLBj\nCgh4LemlXDE6HNbEaGSnJiLfkoIyAk11oQ1lOSaU5BhRXmBGDaGgsUaGIRWgrbEI7fRq3YSDTlcN\nut08Bs4a7nupat5UKkObaDLXoKa6XJULylJRR0cb2pwOesKNqHfUoLKOx6qqkNsS1BOmmtprVV5B\nc1s9unrbMTktYLCEU/TyL187i+s3Lyi7eu0Mz+tJXL5Cr//6Gdy6fQGPHl0nGNzGwwdXcfnSCV5b\nCwTPaRw+NIcjPFeHDi3i5MkN3Lx5ES+9dAdPX76HB4S7hw9u4LVX7uP9d1/BVz56G9/40lt4780H\neHL3PO5c2sTV0wSK1SEsjTRjrKMc464STHVVYLq/EZND7RjqcagKg5lRN9YIAFuHZtTcBAUFtLXF\nMUwQHHs7m+BqrSYMyMwFGS0tyYU1FP0KtYTQKgOSKP7Sgtmpqg4kybCEkFkKV1slr69awlcl4aMW\nL90awk/9o//7B+7Pn/ZrDwo+wyaRBAm3i9AKKEh2/ifP099l4sGLmP999snkv7/PBFgEAGQZRKoF\n9iIB//vtd/7JGZzf6kBpNoVCG4/UREk2i4Yu7hnj98myJk5PNy4ygmAQhqhQade7EyWgNxlCoRDz\n9CnwlCRK9cEBQoEXoeAAIWAfgeDFfT7YpxIP/eBDKPDdgQIfQoEPhd/Pj8ITFIpwwkBEeCQ0YRqE\nUZyC+TdkFoKny6HHY5W/K6OItfGJqmOfUZ+qMvqzbBSZEnpAzQ6MjgypSMGxY5tYW19BX383mprq\nUFFZitIy6VBXRFCQ7OtmDI/2YnF5CjIZ8Ti9vW3e2LdPbuHIxioWl2YxMcWbLm16dgYbW5v0Hu/g\noy9/Gd/++Z/Hh1/+Ch49eRmnzpwjQPDvDA7zRttM4c/j54uiMEs75EQ1tyEvJ4MeviR/0SsjkBxe\nW8LN6xfwxmsv4atf/gJ+9ttfxde+8gUKym2cPr2BhYUxT+9+erkdznp6gfVwEAgqSnORn2OFzaJH\nmsEzUCnLZkJpUS7/bj6PiXQ51CI1WUsYSVJNk/SEA+k5IDkDEcEEOOk2GSCVHUE8n8GICJUBVTLJ\nUqpCAlQViT/PS6C/pzJEgE/gT8PzHkmLosUEBRIMgpFEWNRHhsMYE0UYCIeB14kyAqVYKqHAQNg0\nETqtSdHITIlHUYYRtcXZqCuxo6laIKAUHRQklwzyaaIH2yijqnfEqrNRRUlcFLk6inthYQbsdiuy\nsszIzraioCAHNbXSza8BjY56VFSVoqS8EIUEhtzCLGTlERiLMlFeW4RaRznqmysgUwRliJG0j56Y\n6sPyQTn/izh6bBVHj69i69gKNo8u4djxFZw5cwRXrmxT7M/g8uUT2N5ew/r6NBYXR7C8PIa1tSna\nDJaWZ3Do8BLOnj+uGiQ9IAzcvXNJTfF89cltvPPGA7z71iN8+PlHeO3RZVw/dwgn18dxaLYbc1J+\n6a7AqKsU0wSC2Z4qzEifhiEX+rnvE8MdOLg4iuP8jGJrS2NYnB3E4swgFqYHFBB08vi4d2CgmwAp\nEyPFOgmV7naPuaSNtLsGXV2y3FKDdskxaC0jTJTzd6vQxmPf5y7Dma127N/34g9ECz7t1x4U/Aia\niLB44wILu8AgIv3fCg0/zCTfQd5vV/jlbwic7HUU/D9vf/2nl/Cf/+gSfvr9VcwOVSGLoiJ97NNk\n6p2EoGXYjcwaSE2mSUthKU1LIBjEKDCIEOEQCJA8AulPoJIOpU9BgPLqJdFQogQHXvSCl3cA9hMK\nXiQUvPCiN15UJYqEgp0lBFk6ECjw9pIIAkWIYBBMMAgLCVeRgnDCh3Q4lCFJAgWyjBASELjTOjlc\nRQtUfkGSVoGBRAuKCqRvQbWKFkyMj+AgwWBz6zBm56bQQU9SlhAyM600C3Io0pVVJeihxzgxNYil\nFUlAXKYwrKvqBClfnF+cxtTMBGb4+wIFm0eP4sGjh/jpb34L3/uVX+X223jtjbdw4dIVrK4dxsj4\nFD2w9o+hYBcIJENeRLuxvoo3YXqA44O4cHYb9+5IaPk+Pv/Oq/jwg7fx7juv4Do91rW1WQwNuen5\neprPOOnxCRAUF9gI1Ul831ialDdKC+NkNTpZJiFmWk2wphH0jASlVBkglQxdQoKCAVn6CQ8kxBGy\ngnksdwc0xUYQ+CKjVNRHlgy893vD54AP/OWcSgdKmuSMyDJROC2C4BBJiw4MQGxQ0A4UaJAWG/19\nKNCEwRjhMQECAQNZRkiNlgoFDdJ1sci1pqAs14qWumL0uOpUnb0MQXLUU7wrc1BdYUdtVS6qKnNR\nX1ekJh5WVRagiAKfm2sjEFiQkWEiHKTzuTzUEPKkyVR+YQ6y+PPMnHSkZ5lgsumRnp2GwnI7KmX+\nAsGgiWAgQ4PcFFzpdjg51c9zPUphn+B1IDbuMZlmuDGPs+c2cOnycULmigKB6ek+zM4OYHV1Aofo\nua+tS47JjGqbvHJwDlvH1tRSwpVLJ3Hn9kU8fngNTx9dw/3b5/H4zjlcP38Ex9cnVemh5A4MOUsw\n7CzGVHcVlgYbsNBfh+kBQgFhQGxteRwnjy6r1sibh2axPDeMeX7m6bFujBAcW5vKVZSghxDQ392M\n3i6HSjjs62rGQE8rBnpbVVWCu6OO/weEoV4CQzchwSXXYznaaa42AoKjDO62MixM1iMkyO8HogWf\n9msPCn6MTSINIuR/n+15+j869p/+8Dx+/zdP4f6VIXQ05CFdDbeJ+RgKlO2AgdWQQtPzsY5gkITk\nuFjEaCJUCD9EhJpeu5+UJx4Qk54F0trYVy0feMtygReh4IBECvxUtEBMlhC8CAre3t+3AwIS/H1f\ngQuJPgSHIlSAgFvxXAN3oYAmUQIxAQPPFEYN4qJjkCyJh0YjsjNlbr60JK6gV9SG8bFhrKwsEgqm\nVRMagQI9gUfL/Tam6ZGbl4l6iq3MxZ8kGKzyhr4pGeXHj6jSxcmpUQwNS1e8IUxOT2Lr+DE8ePwY\nX/naN/ALv/Rd/Nx3vouPvvJ1PHryCo6fPIvZxVX09vWhtroMel08LKYU5GRZCCtSNplLYa9Cf087\nDq7M4Oa183jl5Xt447WHKrz8+NEN3CAQnKCgzM0Oo4c3cQn7Ssi8mdtaCmKWLRW6xAgkx0dQ8ONg\nM6cgy2qA1ahT45j1SXEwJCepNsrmVBk1nYT4qEgVHQgPlCRRWS7wWASBIFqjockUSw3hi5DGc+i1\n34dbP1UdEiAlojTJ+QgJlPcIQQThIYK/H0XAiCEUxIeEQEsQSJHlA8KAITxUgYEAQZpEEKI8lsrH\nKQSDlMgQ6KP5s6Qo2M06VBVno7VeIgXiqZajripPJROWFtpQQsunp1/IbXFxFi2bjzORl5tBGLCq\npM7MzHTkF+SivKJEWX5BDuz8eXaODRkEB6t0nMwyIk/er4KwQcBoovi1tFZSFOsokJ5OhBOT0olw\ngNfKEOYXKLo0+X5xaRRHjlDojy7xWppQQ5ZGR90YG+9Sj8UmJvpUb4ThkV4CJn9/cZKgMI/NI0vY\nPrGO82c2cPncJi6eOYJzJ5axdXAcixOdGO+px6CrAgNtpRhqL8V4VxXm+uuxMNiI+dF2LMwO4dDB\naZw8topTxw/i6MYiDi4RVggF0+M9FPsWOJslh6BSRQcGelpUboFAgTweG3ZjZpIAQxsb6kB3ZyPa\nndVodxGICAedNDcfd7RVKjBoaypRSzcDnWVIILx5e+3HP/yHnmjBp/3ag4I927MfEZNGRX/2u2fw\na9/ewOZSKyrzLKqOXIbbGBJjoU+IQUq8x4zaBFgIA+n0OMWkTa6BAiPlapJToKHISLRAvHdPEyPZ\niu30K6ApIFAmj2mEgf18/oCYwMGOHSAQCBT4EBD8KUyBBIFgCk8ILXgXCtQSgnQ4lGFKMmtB1roD\nID0MZLZCPD9XilYm/6Uh3WJFrl3yC+gBEQxE1Idprg4niksKkUjh1NBzla3ZrKfHaUJ9fRl6e9sp\nAqMqBCxQID3xJRnR7W6Hs71VtcCVHgY379zBO++9j29889v4zvd+DT/3i7+CL3z4VVy+fgdrR45j\nfGJSlceZ03SwWVORT6+1tDgHxYVZhIIKTIz1qIz1u/Qg33jtAd549T4e3LuM82c3cUjC0PMj6mYu\nSWN1VTIGmVZRQJHMQnpasgICfVI0gS0JObY0ZVZDMmSMdVIMgSEuWoFdmk4LXXycygURCJA8EEnS\nlAiLgIC0j5ax1prQMHWc/Xl8fSRSwPMguR7+fjz20nSKppYRAiWHJFQtIQgYREl+AU2iBZJbkCgR\nAwUEOybRAoKAJB2aYiKRxs+WGhUGXQQhQhMMLeFAhizJKO7SPBvhwI6q0hyUy4jufBsKc2XAk0QC\njBR+I7cm5NityONr7fZ0BQTp6SZk7EBBUXEBoaFAbQuLcvmctKEmHNjNyJJZFXlmFBTZUFaeg/q6\nQjQ1lsDZVoXOznr097XwGnFhbKwTk5M9KhIwM9OPcQq/mDyenRskJPbymujEoPQD6G8jTDbz9xsJ\nFzJXwEHwdGJwqAuj4/0KMqcn+XvTgzynw1hfHlMjktcXBlXvgTF669KoSWyQNkw4GHFXYbqvActj\nbTi0OISjm8s4tX2Ito6tjSXC5BQWeX3M8T1HBjtUjokkX0oUYHigXdlgX5uKFkjPAoGBZck9WBzF\n3FQ/+vh5W5or1L63EwR6uhoIEA3oIhi0t5QRCorhkJ4RTflIN2tVtOD/+r/+f3tQsGd79uNoMujk\nT/7lGXz4xiL624uRoU+AMS6SXpsGKbGR0MVFqVyCFMKBMTlBRQpsaQZlAgXGZBGZBCREx+5kqWvU\nWnQ4AUHWmyWvQLoR+lL0xdsUGPik7T/g+7FJhMBjhAIChTcFyVdC1gFBCJLkRQqQgEFQQOAOFPj9\nABSIyXJCeEioCn8nxsUrMJClBIvJhNwcikxVBT1CB9qcLWhorENBYS603Lew8GAFBjH0hrTaKOTm\nWlHfUK6WEmbnxrC5ta6WD8YnhtXvl5QWw+XuUC1wt0+fVnkEX/raNwgFv4rv/PKv48tf/ybuPnyK\n46fOY2FxCV3uNjUsyWLSISsjTU1DLCrIQGtzDeZmhgkAW3j04Bru3bmIW9fP4gK/3zw8j9mpAQz1\nO1WiWFN9CWor8xUYiEhmWlJgSuU508XBakxCdnoqcjNNyLYaYElNQioBT/JCZH6BWEpCnOqPEKMh\nNBEEkhMSIS2PdYlagkEMogkFAlRy/AQKAng8BQZ2kz9VlEABQQj8fQhr3MoSgkSKwmlShSBQ4IkW\neKDg+5ECPpZthEQJNAoIpFQxNToceoKBNiIYSTRpgWxOiUOWWYdcevR5WWnKcggBMsUxy6YnuGmV\nWbj/tnQ+x322EYTM5lSkpfHnljQCgw35+TkoIfSVlRWjtIxgUGiHPScdmXy/DIKFPdeEvAIrCosz\nUFaaieqqXDQ2FnvAwF2Prq5G9HQ3obfHgT5CgpR/yvc9/H5w0KmiCQNS9tfXiu5uBzolz8ElSatV\ncEimf0u9ylERMOjrl9e6MdhPkeb5lP4BYwNOjA+1Y3qkHWN9zWqmQU9LibL+tlJCQSUme+uxPNGO\nraUBXNheVU2ONgkDq8uTCggEGleWxjE86FLzDZwt/OyuekxP9GJqvAfjhEmJCEyMEG5GuzA11o0Z\n/mx+egArhINBgoyjqQyNDR4o6O0mmPRynzslH6ES7c2laK7Lp+WhojhLRQt8vA/gH/6Df7Cj9H//\n1x4U7Nme/YjYn//eWfzW947j9BEXaovTYZZhNfynlyE2UpIoUCCiok+IhUmXhHSjHpkmemlmGZhj\ngEnK3BITPe2Go2OUxymep/I4w2WgUbhKSBMokETDFwkB3zdfjxEWxPY9YwIFklPgxZ9LfoEfwUCW\nEYIJGyEhMjNBwtj+9Fz9CQQEBgqWZMPvZsbLuGXxdkXkZCkhQeBAp4PVYqGXnkvPsETBQaWUCxbl\nw2Q2IJoCFRYWjFDp3KgJVAl7+XkZKgmwv9eNgweXsLl5CDKoqKOjXQ0uKq+sQDvBYGl1FbfvP8RH\nX/06fvpnfwFf/ZmfxTvvf4R7L72Ki9fvYGPrKIYGuihgRhhTE2E2JSObwlRUaIO7oxFrq5O4fvUk\nnr50XbW5PXV8FRvrMypxTDrTSQi9tiIXlSXZqKbnXF2WS/GnCFL4LalaQpqOIJAKO2EgyyyDjBKR\nRiAwJEarjpSyFKQj5MVRoKWMVCIFUsIpwJRCKEiITSAMRKjcDVmiCSaABQaE8BgHwY/H10+6TQoI\nBIQR0ML5OBS+3oE8/gJ+kmAqfSpCoNnJL4gOCkZcSAgSeA5kWqKqOiAQpISFIEXgIDIcBilR5DE3\n8HMZCAgpUeFIjgyFTiCBYGrkNWjWJSDdoEVGWgqvO4/ZjPKZY6FLjkVqSgLPk47HUw+TMQUGfTL0\nOi0MKSkwp0miqZXwZUdZMc9VaSEK87Nhz/KMmJbjn59nUeegqCAd+XYDSgutqKm0E76KVLmjs5Wi\nSEBwOWt2BgrVK6+62VGhcjokGrBr7RIZoBgLDNTUlaC6tgQNMkaZYNDmbISrw4GOToJDR4N6L1nv\nd/G92h3l6OuoRa+rFp2tFXA5Smil6OLfHqJAz0104dihGVw5ewSXzh/FsaNrmJsbxcz0EJaWJrG6\nOo2pyQEKewWqKvLQwL/b19NKaJhQsCDLDRIdEBAQIJgiGEjewcLMgMpLGCUwSElrEwFYKg16OhvQ\nLyDkrkV3OwGjjc87iuBsKoKrpRy5WQZE8Tz9o3/0f+O//tf/uqP2f/fXHhTs2Z79CJine+FJfP0L\nS+hvL1TT6izJcTtQIH0KohUQ7EKB5BZIoqFECTIIBjbedC2GVNVNULxOaXAjQOCBAglHR6umQ9Km\nWDoUSp+CT0LBC1KFsAMFygQcJCmRP5NIwQEFCN4qhC3LCLtQEBxMjzVQPFdJbqTHSk/2WVMRA4KB\nlNKJ5xupiVBgkKrXI12a9dizkJeXg4LCPOVN2jKs0GopjBSvkGB/hAX78vUaGClIuXYb6gkGIyMD\nWFycxczsJL3CTgUVufn0nqqrMDgygnOXr+KdL3wRX/zy1xQQvPTaW7j98Cmu3LqP49vbGB3uVVCg\npxdsNCQqUSovtdP7dGLzyDxuXj+Flx5ewdmTaziyPqUa0EyMdKCHQlRXmYdSClcxRaysIAMleemw\n24w8D4Q0iwcGsrm18fOmUTBT4iiyPI8y4thIKEhNiEESRVdKSgUIJEE0KT5edTiMJ9BpwiMQREEX\n8FJGGJCogDIKvr+0o94BgoBAgYIwgpr8XHI8wiBdJ8NpGskvIBREEQpipUQxJFSVJgoUSJfD5NAg\nWjB0Gk91goFQYIzlZ6QJHOgFDqI1SFaRqggYEqJhSo6HleCTbkhWZtYnEWLkfEZAK/DK6zI1JUnB\nQIo2EbqkBDUaOpUQaNSnIN1sQkGOHSWFuaraI8uWhox0Pc+rGTLyurw0G2UlmSjONysoqCzNVEmN\nDbUFFMpiOOhBizXRGusJkwJntNqaQtRLMyCKsYBAi/Q9oNU1lKGM4lxank84qFDjlhubqgkHNWhp\noyfP17Q2V6K5oRRN/Bv1VbkU3VJ0O6UarI4gsDPQqK8FE0PtmJ/sxaGVCZzYXMTm4QVeg5OEgjEs\nLIxjfn4MY2O9FPUalVdRXJSpck7GhruwcWgeWxuLOLI2g+X5EUwSBCaG3QoIpELh4NKYsvGRLrgJ\nNGoeQmsVunm99XbW87qrUVAgzaI6W0tVE6lOZwWBNFMltPr6HMBf/MX/h7/5m7/ZUfwf/rUHBXu2\nZz8C9ld/fBG/9cvHcPfyAMpyZIJdMqyEAskEN8TQW5PyOQKBRAukH77kFRgonKYUvs5AcTVKMptB\nzR2QdsMCBrtRAikPVL0F6HkGU2ykZbE3hV6WCz4JBS9Q+JXtAIHYfrV84IP9+/l4n5d67OfnjyCK\njUCBDPgJChIB8wCB6l1A8BCTvgiqj4G8fidqECJJcDIMKCGBopwCkykNFosZNnqSkpSWkZGOVAJP\nDPczLFR+x5uf3R+xUfRw6a3as6wEA1lrbkdPTyc9w3YKQh1y8ig0hQVobmvD6uENPHjyFK+/8x5e\neevzePD0Vdx88BgXb9zB0RMnMDrSRyAx0MONUVAgjYZEWCZ4kz62tYhrV47j1o3TOHF0EcsLQ5gc\n7cBgj4PeGT3A0iwU5Uor3zQU5VgIASkKBHJsZuRk0KyENHrQAgDJ0WFIjAiGNooeebx43DyHFFst\nPXDVwjguBikJ8WrpQPIuZHKiLM1IVYFEZKTCQKo+doEgQKZYEgR2zV+2AgeEhOAgKRON4LES0yAi\niBAmywgqWiDLCAIABAJCgDYsCInBAbRANR9BJ7DAzyNgYBAw4HVmiCOA8rPqoggF3Kby+jNp42Gh\n6FtpFl0i9zGO1xnBhvuTSJBIJrDqkuKhk2mO0piJ5unFIJ0u41X5ZabVgvzsDGTzeNnMemRYUggK\nVpW8qBofldkpdlmokGWEwnTCQTrK+biqPFv9vFL1QZCEVclNMSEvVyIMmSgrIyBUFaK2rhT1jRVo\naKz8eCiWzL8oryxCRWUxqqpLCAh8Db1x6SkhHQXrqwtQU2FHJYGkub4I3a5atZwwR69+frofs1OS\nDNivcgUW50exvDiORQUCEyr5dXl5GiOjvXA4qgm46cjh/tTWFKG/14mVpUleR6s4eXxNJSKuLI6q\nJYSxQRffv1eVLx4+OKWWDyZHu9Hb3QpXWy062ggCHQ1q5HIvoaDHVaW6SXa1SdJnseoR0e4oQT6P\nQSyvs3/9r38H//k//6cdxf/hX3tQsGd79iNg//5fn8EvfO0wDs03w6qLVV0MJUKQRg9MR1GRcHMy\nLZE36AR6dWLSnyCFN2FjsoSt6YWpJQS9GpSTHE+RiY5V0wulA15EaIRaPpDwcoCPZLH7YR/tuVBA\nEPCYl7J9AgMHvLmVyYoHcEBK4ij0AYSAYKlECKWHSjAIpuioSIGsdxMMpHxOJTZKFYREF6REUsFB\nAEL5+igCi0QMkpOTlaWk6GAg4JjMaTAaU5FELzOCIhbkJ62UDyAkwI+AE6a8Tytfk5uTjdJSWXqo\nQk1NDQqKimCXqYyVlegdGsHpCxcJAy/j5TffxuNXX8fNh49x+vI1HN7axPBQDywUpORkHmPp4ldg\ng6OpFDO8+W9tzOHMqVWcPrmKw2vjmBrvQH93A9ytFWipL0QVBapEoCDbiPwMaTgUiyxTCvIyrQoM\nstJkJHEcxV+DJE2QMp1AgQCeeNRS+kfIM6sloFQFddLyWJZXZLlAlgqC6elLbwip+JD8AVkuCJAI\ngUAAxV/MP1ADvwDPNiiYvxsaDU1YNCJpEaGRiJTIjEQLAoIQSZP8gsTwECSFByMhJBBxQf7K4vk4\nic/reE2l8PrSEw5SY6KUpUTzGouSvBYBBV6XFHsLhV228n2K5ESES7SD16S0io6NgZbPS5dGyW9J\nSUiCPkGrLJGgmhQdzeOlR7YlDRlpqTvLEVoUZJlQUUjhLyYYlGSjQSocCm0o4DG22whdtPzsNMKD\nDNoidFkk8hCHtFS5Fjx5IXmSF0LxLyvLJxwUq3LWktJ8lcwouQuFRXZaDoqKc/i8LFvloVJZLipK\n7QSPTAUgTfXFqq/A1HgvVpYp1jSJCCwsTmFpeRZLBxdVi23ptCnzOQ4fWcXk1AhkCFdOng2WdD3/\ndhEGB904tD6Ps6c3cPbUEQUFG4fmsDAzqFoejw93YHFmAIdXJ3Hk4CSWZwcVFAz0tMPtbESXqwH9\nXc2E0WYMdNUpMOhuL0dHc5FKNOxylmN8sBmtjcWw8Bh+/Wsf4T/8h/+Av/7rv95R/ed/7UHBnu3Z\nj4D95vc28PjmCNrqcykgvEGT/GVynSk+QoFBMj0x6WYobY6lm6GMTo7njVgr7XkpkpJoKEsImRYL\nzQqLIQ2pydLfP56enAiFJ6dgFwokr2C/dwDBwF/BwceAoCIFBAKxHSh48RmTSIFAgbe3J1oglQgC\nBeHh4dDQyw0LJCRQ1KRuXsDAM5nRRzXbEThQDY4kITE4WHnFalIgBVErMxOkw59OC6MkTlpMMFAw\n4+lJB/v5IMCbUBDogYIk6UJIUZKugBazNMjJRn4+b/4EgqycHBSWlKLN3Ym1jU1cvnUb95++ouz6\n/Yc4d+0mNo5t8YbdBTOFXEcoMBEKpOFOi6Mc0+K5rY7j0JqsAQ9hasKNvu56OJtL0Fidq7r6lVM4\nBAoKsgzINktEIJJCl0Bx08NmTKHYJ6pQewqhIIXnMZXnzyglilKVEEuPOiJE5RhkSE4I4UaALiE2\nTuVdSH5GIIU8JESWBYJUYqfkEexCgX9gmIoOiPkG0Pz5mGDwSSiIDI36GAo0BIIIgpgkHiaEBtFk\ntDKPZYCPsliCgTwvYKDVhCI5Iozb71tyBPcjagcUKPoCCMmREQSMMMSrNtvBhE8ZiEVglaFNhINE\nir9McxQoSE1MJhQkKSiQKY8Gnm9rqg4WvRZmHjcrhT3bQtHPNPCYGtVxLcg28NgkIS1Fpm5GwJAc\nCWtaIq9t6ZKpJQwQJhNlySICKYRoM0Uxg2AgTZPy8jN3xD9XlbRmZJphyzApMLDn2GDPpSdPy6UV\n5FlRlJ+O4gKJSNhQVpShegpI4uHywhi2NldwjF7+0aPraqT3mbMncObCKZw8u40tVQEzp7pu1tVX\nqL8r0zjr6ssxMTmo8g0uXdzGtSunceHcURzdWFKVK5JkKAmH0vpYoGBlfgjLc9LoqB8Tw13o62pT\nUNDrblQ9DsYH2zHaL2BQj26CQFtDHpqqswioeehxSaljDRpqi3Dj6jn8+q//Kv6MYPB3fe1BwZ7t\n2WfYpAzxL//wPL7x/gLW5huQa6O3TPEQIUmV6XUx4QSDSCQRCOIjQgkCYbzxEgZ2ogRpO95mttVC\nTzUD+VnZyKNlWW0wpxohs/oTY+PphXpyCqTd8bNQoMDAW8DAHy+KqYjBD4LB5148oExBwX5CwQHp\nhugDHwq8P8VGogQRERGI5k0/RmYj0EuVdW1JatyFgl3zlaUHwoEsIYRLfoFECxIS/hYUWK1mFTHQ\nJsYTNAIIBr78/MGIo+iokDRfn2YwIsMmTXKykZmZCRst005vsLQUTW1OTM4v4Ojp0zh//QYu3bxN\nILhBu46t7WMYHu6BxSptiKNhNCRQIMxoqCvE6IgLc7N9mJvpxviIlI5Jp8JyOOryUV1qQ2m+iUBg\nQhE92FyrDjaKkykpSom8ai4llQVSPhobqSIFEh0wJUbDnET4SIhUkwhzCBJqrkCWGZkmA/TcRyk9\nDFPRlhAE8tgFEK78/WVqpQABtwIENL+AMA8McOvjT/PzbP0IB4GBEQglHISHyNCqSLV8EM7zHa6g\nIFBFDGKCAxBDIIgiDET4eyOSFh3oi1g+HxcSSJGXSoUg1SJZZickhEqPg3AkazTK5HFiSCjiZDmC\n5z6KYBjJ10aHhSCWkBArrZil4RKBLzEqBilxCUiVSEFcIrT8PikyCikyAIr7nJYkxy4OluRYHscE\nZBop+sYEPo6DSSdJmRrCRDiPj4bHNgpW/jyDx85mSoYpNZHQy/fj/0oyj61MvrSlpyEr00IwsFH0\nsyjQ2ci2ZxAILEi3mZCVbaFZ+Zy8RppjSaKrBcUEwsqyHNTXFKKlsQz9Pa1YIhCc3D7imb5Iu3j1\nPM5dPo9T58/g8ImjmFtdxrgM4xrsRn1jtRqPLcsTLncLlpancer0lprCeOHCCZw+vYmTJ9YJmrOY\nmx7A2HCHMhmSNDfZo5YQZJrijJRXDnXymvNECro7GjHU24bRASehwIFBXos9rgq0NxXAUZMNR22O\ngoKOtnI0N5SofgmvvfoUv/Vbv7mj+s//2oOCPduzz7DJ4KPf/62TeHRzCB3NubwZ8gZJ78lIAZEG\nMvqoUFoIvctQ3mR5c5YEMIqOVB/Y0lJhT7fQq8pESR5vSoUF3OYjN9MDBRItMCSnqHbDcVGxKloQ\nSrGR8L4vAeAA4WC/Mg8YKChQEYNnwIAg8I9f2I+f+tw+9XgXCLzU1hu+PvT6KWaRkZGI480+KTYJ\ncZFxCgwEQNSsBb6PF39XOvF58/cEDKS3gXjFsuQQRe9RwCApicKhTYRer0OayaiWEhLiYhUUhPj7\nqaFAcfw70iUxVULQ0gipoEBFCaxWK9IzMlSkoKC4BJX19egaGMDi+iEcO3MW2xcu4ujZszh+/jw2\neFMfGx/g6438exSplBhkZqSisiIbfb0OjI+6eNOWDnN1cLdXwNVaSijIQ2WxFYV2PYHAgHxbCrLS\nEmDWRlPUYnaqCyh2FDpDfIwCguSoMBUpMCVEIZ2vyeXrm8qsWJ1qxJGFZgx1lvO9zEiiBx5BMRWT\naEtIaAR8d2BAVR3IcVRAEApf/1AFAd6EgV3z8gmBl3cwfHxl6SGcwKVBKE0aGYUFEL78g6DZgYKo\nQD9E7gCBxs9LmXwfzedjgvxpAXzsj+gAPuZxl1LGpLAwBQNJoQRTni8FA758H8JdJMFQw9dGEiCi\ngqXFcjC/D1StluPCCXDRcQoIdDHx0EZGI4kQqKXpZEkilkCWEENQilFgYCGgWSj+piQCMWHAyK1Z\nF4N0QlumSYssSwoyLQQxQoHZIOO5CZM8tjr+vilNx3NoRnYWRT9b+iRkUvSz1DYz04aMTKuCgmy7\nRAlsqpdCfr5NAYEMr5L5A9JhUHoLLC9OYPvEIVy9dlZNaLxEINg+exIbhMmDWxuYXF5C18gw2ns6\n0eZqRlVtOWrrK9HT78baoWVCxHncun0ZFy+dxPHj61hfX8Ch9VlVtjg/I/kpXapHwdhQOyZHJNmw\nC9PSbGnQSevEUJ8bne1N6HTWo9fdpDpJChDIEkK/uwpdbVIRIYOpitHdXqZmUDiby/i+ndg4soqv\nfvVLO6r//K89KNizPfuMmkQJ/vzfnsUv/fQaDi020ANNVTXhdnOKgoKUmFCKCoEg3B9J0aHQxUdS\n5KUGPhnZViPysyUDPhsVRXmoKi1CTXkJSgvyYaf3LMlcZiOFVSd174mQHgGyjBAhg4xUsiHFmsLj\n7RcIL1+JGOwsI6gExB0jGLxI7/5zLxzAP/7cfhUpkPJEMYkY7N9/QC0jSMKhRAoECpLjk3fAIJYi\nHqGiBdJN0Zu/6wEDLwUJAgY+NF/+fgjFRKIM8vvxcXHQEg6kZFGblIQYikewvz/fx5dAE4go8VTF\n00ylMOfmoay0FEVFRbBYLMjIogjk5iJXQKGkBHXNDgxPTGL1yAY2t0/i0LFjOHT8GNY3D2FiYlDV\nxydThHT0StPp9ZcU21S5W19PE4GgQXWSk4YxYhIpkGWD3AwdctIJBKYkWGVNm15qOsXJnEwYIKxJ\nZYEkEiYLwBHoUmimxCjkmbXoqM/EmSNt+NmPDuIXvnIQty70w9mYr6I+0RppXBTJ/Y1CeFgE/P0C\nCE7BnsZEu1EC/xDCQgjPWwi8fQkCO3bAOwjSiMqLW39paMTXBfP1Mlo5lECgoECiBbRICn5EAIWc\nUBDuJ2DgTUDwIRj4IiqAQi/wxWMtFkWxl8ZHifT8xQQIov38oeE50xAII3j+IgiFoX5+BJBANbY7\njMCgWjTz80cHhyFBE0UYkAhBDMGW8EfoiZP3Cgvh8dEQoKJVgySxtMQIXvd8jpbKx1bCgD09lSBG\nb15C/dxK7wdrWjJknoTZqIWBx16iBBnpRkKATZlAQRb/N7JVxCAbefl2WjZyd5YVJJ+gtJTXThn/\nbwgEzQ7pB9CKqYk+rCxN4JhqgXxMefqnzp7A+uEVzC7NYXx2CsOT4+gaGoDD7YLD2QInocDlbsXE\n5LBqqHXz9hU1bOn6jQvY3j6CgwfnsDA//v3kxHmZmNgLGbM93N+G8WGXgoIpQsFQXwtGB920LnS5\nHITRGpVs2Nlew++r0OPmtdlVg95OWTKo4GNen5Jf0FzKn9eoRNguVxOuXDy7o/rP/9qDgj3bs8+o\nSbOiP/1XZ/DW41F0tWZT7KNhTo3mTY9io4+CXkthSSQMJIXzxhcFizkW6ekJyMpMhj1bj9wcEcY0\nFOSZUJBPL7bAqrZ5ORbkZJtgs8pAnkR61fGqhtyolxKxWJUpHhYagNBQig5v5n6+0jrXC/te2Id9\nL4rYS08CQoNXEHwoNAcOBGLfPkLDPj+88IK3ggS1nEAo2O/tTc/VF/70MCViEB0eDW2cFvokPXQJ\nOvV9MIXK74AffPYRBGjeL3rD6wUCArf+Xv4Ur1AVWYjRSNVEPBJjEtV7CGDERcVRFGVt3Q9+FJqw\n0HAkJCQiLc1EIbfBlm5TUQKBgvT0dGQRDHJzcygCeSgqLkRDA72r/l4sLS9i6+gGb9xb9NqWMDzQ\ngVxCQZo+HiYRnwwjyortqK8uQUNNKRz1FfS+6tDSUIWG6lKUF+epcctmQzJStZJFL+2KCQOpOqSn\npcKWSqFKINiEUhx9DyA5MoweMAFOF49MQzz62vJw71Iv/tl3NvBf/uQS/uIPLhAOVnBwuo6CGI1E\nTRASwoIQGxJA0famePtQ0Hl+/KS3RBgC/QgGBAA/Hx4LSRT1DoAXwc6Lx8WHouxHcBKTXhHSSCqQ\nj6XVdSi9ds88BPHiQxEdIubx6CN47sP5mjC+PozXQCgtTASdQh/mze9lKBO/j+DPxTR8HMrrJPjF\n/QjhudfwNfJ8gA8/K99PmmRJF0u/A3wNP1PYDihoAgkIYQSBiHDEh4ciiteKRCwSwkOQGsfrWioa\ntAQ9qbDhtZkUyddEhPHaTeF1LN58HspLClFSko/MDAtSU7XQ8XoWz18aIBWXSLdEySWxq0Q/aZts\nNCfDZE1BXlEWqutKUddURY+ecNdajxZnIxp5bqvrKpS1OpvQTyGemB7B7Dy9+aUZzHA7RqEfGO7F\nyJiM5B5T37u7XSoqUK0GPPHaole/tjqPmzcu4rVXH+F1mgzROnJ4CYsLE1hemuL1toAlAsHcLIFg\nehBTk/20PkzLbIRpPp7qw/h4N0aGOzAy1E5YaEWftDtur0ZrSwWaCaXNznK0uirR5q6CkyaPm1uK\naMVocxTDzdcMSCJiQwnWpgZ3VP/5X3tQsGd79hm1P/s3Z/DPfvEIThxqRnWpkVAQg0xzgmrcUkSh\nLymwoKwkQw2eqami1eSgtiYXdbV5qKfnKlZXm8/n8vjzfFRX5tJzziYc2AgGZmTSqxJvypiaQOHT\nqg5+0to3VZeAhLhIRPImHc6bdajczAPFwwykoFDAfYOV8HjtDyAk+O0AgT9e5OPPKSjw5BkoKKDH\n6OVLj59eZiAFQBLcRNglWiDiLkKvCdYo4Q+SyYuEgwOfO6CgwJfwEci/Iz8LD5JRzxoVXRCQSIgm\nwBAqEmITVYWDr7T4VRUP9HjpfSYlapGSokeqPpUi4TGBgwxZQsjKpLcovQ9yUVFZjrY2aZE7iNlZ\nmZw3zxvzGD0tB7J4fNLo7VuMSRR8E4U/B9XlBagskd7+uaipKERVWaECgqI8wkamFTazARaKlcCA\niSAgW2U8pgYKXJImBLqoMLVNjY1ASVYqlieq8cHrM/jtXz2GP/+9c6onxV//u0v4re8ewZMbg2gq\nt6kkxKSIEEJFAL13Ci7BIoTnIthPZh4QDPwFDMIo+gQDHkc5P948Hl40b4KBL0VYzJ+moIAWQoiS\nccq7UBBFKIiVVsoyXptwECXJnoESQaB4U8w1BAmNiL/AFwEghOIewvMbTjiIkOUCviaa7xfLayWB\nv6+l16+VXAgCQRivITFVcsr3C+O1oICEYBAfoUGW2YScdItKrkyT3gUxkQoIZNiXLSURGXotsghc\n2UYd7OZU1egoOzNdAUFttYwWrkNFeTHycrN4fq2w52SgoJAgUGRXyX0ZmSaCgA4phGCxNCkTzU9H\neTXBULoZOj0w4OygZ9/ZpqydHr6E/+W5zu529A91Y3RiCIMjfQoG5Pue/k70DnSp3IGu3g71+tZ2\nB3/Wg+XlWZza3sSFc9u4cukMLp4/iZMyqGttnkAwqYDgMIFgc2NZNTQSm50ZwsL8CCFhjK8Zxdzc\nkAIEac08NOTCUH8bBujx97jrPVAgFS9ttHYCQUc1nJ1iNQoM2pxlaGouQmNdHlp4L+gkGHTVFWKo\npWpH9Z//tQcFe7Znn0GTKMHv/sYxfOG1SfR35COP3n+GKQGFdiPFKEdNomtvrUQXbw4yVKWzoxYd\n7VVw0dqdnq2LNw2XkzeJtkq1JiqDeQQOSoqzVFZ1lo0CJqFWg0zq06kQq5hMBUzljVjW62NjolXI\nWsoDI8J5gw+NQDAFWsDgwH5/vPA5b5oPgcAXL74gSwkEAtoLhIIX9u3HPgrHAR8PGIinGk5hF68/\nisIuJgIvJo9F9AUCBAokSiCAEEiBC/GnmDxjAgixEbEqWpBIuAgL01DsCCkHPP0SBAw0FKNo6doY\nF7eTj5CEtDRprWtWZrVaFBgUFxeitpbHyNmKnp4uDA72Y7C/G+0ttRR4HQy6OLU+LZGC4vxMlFFk\ninIzkC8jf3NstAzkZafz54Qs6T9AwUo3pRIkUmDSJ8OQnAi91OVT4GTZQBIMZZ1cOgCW2lOxOF6F\nj96cwe/8+hb+4vc9QLB7Dfz7f3Ua3/3GGk4dcqKQ519aCsdKXwbvFxEtTZsCxPMOUyZQEOS/09JY\nEjh9CQUEJQUFNB+JGEg0heZPEzCQ2Rdq+UB6FRAIooLCEEMoEPNAwW7EQJYXBAw8cCCVCgIHnqiB\nLwFFIgKSnOiZuhjP35MhS2LSFEmiA1JmKhasgEBaLQchiL8bSKCIIXhmEgryM23IVWBAgNvpdZBO\ns+m5lRwZPs4kGOQQvPKkoVVOFirKitHcVM/rvAU1hIOS4nwU5AsIZKrkwXRbmjKrzQizle/L82jP\nk8FKBOWGcmUVtcWEgyJU1ZShvKpYRQwaHDUKEsTkcYOjVol9j6znExC6elyEALEOBQZ9hAKBA/le\ngGBuYQobGwdxcntDgcHRrTUVMZifG8P01DDm58exujyD9YNzOLg6QyjtwvhYL6FgmDAxgYMHp9V2\nbm4YkxO9/LkbgwMEk55mAkEDOttrCbP8v24pV5EChyQTOivQ3C5WTkgoRwfBoLmlREFBMx2FDkcJ\noaAInbUFO6r//K89KNizPfsM2l/+wXn8xnc2cWarFWUFUn6ViNwMPb3ULLQ2kfhddeoGMUrvYWq8\nm0LWovqgy4CUbloPH0sP+N5uh5qsJoNXpDNbPW+AZSV2FObbkMUbpNVELzZNi3SzXnWPy5SbqCUV\nJiNFSMb2yhClRIkcxKnywMiIaISGiAgLFPgRCAgABIMXX/CYBwiehYID2OflMW/xLun1K3HnNiww\nTHn+sZFxiI9OUFEDiQrsLiP4eUnoWcY8i0csPQ5kBHCweo1ARAJ/Jz5GehVEQVr8Sh7Diy/uV8mO\nUvUgHRXDwsJVPkNMTAz0er2ylJQUGAypyMiQZDJZOy5BTU0VHA4ZjOMkaMko22qKuw6pybFqVoE8\nzqG3WZCTzq0Z2YQnO0VHTGAgPU0Pi0FHGPCYRAlk+SA5PhqJ9HqlIiSZUCDNfKT6oCzXjKWJWrz3\nyiT+4Le2VULpJ68BGZP9R//iJL75wTLmRypQmmuANjoUAfs/h3hNiBpspI6LJByq/AKZMyHJh9Lm\nOBA+FH2JEnjxuMuxF5PETz+a9ISQGRQeKBDxDyMEhCMyOMxTqsj39pQrehIRw/naMFo4YUAsggAQ\nRQCIoeiLxUrlByEggQIvFsfvZTSzRmCQ50OGbsnwrUB+HgUJBAm//Qfgu28fQvg4ifBp5vWWbtCr\ncsR0PSFVZnfICHAeR9UoKVaqbiJVg6SMdDOv4RxCbjmaGuvQWF+jIgXFhAKJFlh5fhIIXrKMYOb1\nLFUFeQVZKCnLRy1BoMVZT2/aoaBAlhAyJB+BkGeVDoqy7CCRoLoK1PM6EEiQZMGm5jp0CwQQDMS6\nZUsgUEsI44MqijA81q8eyzLDAsFgfk6WCGbo+U9T8Mco8IPKZmdHMUebnhrC6EgPYbQDY2M9fF6g\nYFJBwdLSOGZmBvk8/78HXejvb+P/d5MCgo62arS1EgCay9DkKEUjBb+hqRh1TYWoaSzgtgCtbWVo\n5Pe7kQJpydxVX0woKNxR/ed/7UHBnu3ZZ9CkWdG3PlrGWF8h7NYkZFm0KM41ob4qD66WSnVj6KbH\nIDcJgYPBgVZaCwb6mtEvw1r6WzE06ORzbejrbYFbzfWvfgYK0hUUpFtSVHMXG2+cmbyRytYs3fak\nT7/JiDR6bSnJyUiMp2hH0ZsPj6TYSpg6GN4yWnmfRAgIBDtg4AGCnS2h4MX9+/HC/n3K9hMQJBLg\n7x2gTEQ+jF5/NGEgLkoSHT1VCSJ0kksgkQIFBnytwIEAgYIJ/s5ujkGMJCxGEAoCvg8F+/Z5Ehw9\nfRLoWVOsNBoNEhMTVdQgXloGE3bS6ZVK+2SJFpSWFqO6hp5Xq4PHqhVt9A6lk16qlsKSIPkbMTAb\ntMimaOxabpYFBXabemxNS0EaPdo0erNiqdoE/l4MgSAC8aoqJEolGqaJoBmSMDNUhfdfncYf//Yp\n/A3F/3nXgJhEjP7sd8/iWx+uYGPJgfyMZIq0Fz35AIRxnxUo0aTDobQ7FiiQjocCBn4EA0+0wBde\nPB5iPt4EA5o/wSDYV6o2PFAQsQMFUp4o4i8WKj/n74f47Ji3H41gR5OIQawsEURKZ8M4pPG4mpMS\nPzZjfJxqXBRPQJDx3P78nUC+l2y95fwQBnx5bfgf8EIArwv/A/v5t/0Ry9cnRmqgj4+h+CeoskSJ\nrsSHC3j4q5wMbZRG5RNIlECgQJYQLCYDr2NevzYzLBYjYSARcfE8b7yOM3meCqUhUXm+ssqaYop9\nJRqba1BWVYjsvHSkZ5uQJVCQIVBgJRTkqdwAmYXQJPMQXA4FAJMU9lmK/dTsOMbp8QsAjE+NqOdl\nK0sLChgID909FHI+niQsLPJ3BAwEEiYnBzE81E1453XWWodmR7WKFExO9hMChjA/P0KgGCUgDGFi\nJ0ogQCBDnOR/XhwC+f+XiKAsHzgcZahvLCLEyL7lcJ8IPxUZKCq2oLjEgqryDDTV5MLJ13TWFaK7\nvmhH9Z//tQcFe7Znn0H7nV/fxMt3B9BQaYYtLR6ZZi2kbW5VaTYaagrRVFcMR30pmunptDoqVDRA\nogLKehwEgWZum9HF5530KhrqSlRnttLibN5EM1WyYXYmxY1mzzIhz25FDm+eGekGFSUw6BN5o02F\niTdffXISkniTj42KoleuQSjFQPILZFSyzDvYL62OCQKy3bfPS5mnmZEnWvACBeCFfS9iH0VARN73\nGbGXZkmypCAd9naXFCLDo5TwCwQIPPjsp5DxdwQMQgLpxe68VmAiOiJGQYE0SfKm4EiUQLZ+IkAU\nrkBZwyYUSPOk2NhYREfz/SMpMtwf6XOQnc1jQTDIz5eM82KVeNjudKC1qQZZVgOMOmkxHKXMSK9T\nAEAiBQoIKCKlhXZV5ZHJ10qEQBINTXotoSAOWnq18dHhynQJsWo8cnmhGYcWHfjS2/M8x0fxV3/y\ntyMEz5pUoPwXlXB6Ft/5+iGcP+FGRWEa4iMlz4LHw18qL2Q5gKLr70coIGzRg5dyTr8AiRZ4lhAO\nyGwKmgyuktkUMklRSk89A5JCoQkMJxjw3PqFEAAIX7RgnyBlIXLcJWLD3wkRmODvh/H4RgdLJ03u\nV4oO2WlG2Hk8cyjOdl43GTL4iB5+CmFIqkJUdICfRSIGBz7Ha+GnfgpeL7xA+PNCKD+3mEBBRFCA\n6msQExqMOOmEGBbCx/w+xAMDAgo2g57QmoKi/DyUFhUih+fQoNfBkEqYNRLOjHoYJGJjNfLcZqG8\ngoJJT7+0ohB5hdkoKs1FVR097JZa1DZWoLymCNX8XoRfVQt0tqGTgq5yBYZ6Po4ETM2OqSRDDxCM\nYHxyWIGBJCCO0vsfIhBInsHAcA+GR/tVxcHM9Cimxfj6Cb7HEN+vq6sN7e1Nyjo7CfIDbr5mSNnU\nFP/OlCQXDigbG+ffH3TB3dlEAKjmtVmDTkKBgIHbRTBor0FrWyWamqV1cxFBJp/7kkvL47VcgDpu\nm/hcS730LshFU2kmGottO6r//K89KNizPfuMmXiOv/Gdw7h6xo38TC3M+hikGylIVh0KstNQTC+/\nTBqqlNpRU1mABnr/MgCmuYk3tpZKuOhFyIQ4t6seTt5IZDBMRVkOigpsKpegQHqv0zPKyTbzsQ0l\nRdmoKM3j1k5YSFdgIDkGZt5cjak6NbwmOTEBiZJjQFEVMJCRyNJ7X63jH5BqBD+1lW6Gu3AgUPDi\nLhTs36egQMRdmZefEnzJGRDxF3ESEIgIi1Tev4oA8LE8L68XMBCQkO8FCgQIJLIgr9NoIimEfB2F\nSjxhAYIAQotUJUg5pHRUlEiBwIBsBRCi6cWmpupVEyQZsCQz/XPz7KiolLG0NQSvMmTIMgo9Tb02\nVlkaQWkXCGQrlm9PJzwYFRBIpEBebxCQoJcaFxWKmAhpqBSmauddzfm4cKIDP/eVg/jdf3ocf/kH\n5557/p9nEjH4498+je/+zGFcOdON2jIr9EnSnVCgiqIbIEBAC9yBApr/c6DAi8fdmzAnUOCJvkie\nhjQxCicYCBSEIcQ3FCF+oXzssTA5N2I8T54oQgBCfSniBJIkgqJFl4ysNANyLGnItaYhL92kkgFt\nqVoVHUngNRPDcyQmbbXFJKcg0MdHWURwECEnAnE8N9GhIYgKCaZJX4NARAT6QxPgi8ggfyTHRKpl\nBbvFpKDAZExVA5Qy0i2wpZthFIBN0aptRgahrTAH1TyPUgXQ0tpAT7ocZQSDmnrJ1G+Cu7sNLe0N\nqKen3kqBHhkfwAw9+QUKv4j/NB+L+E9Q1AUIxCb52LNMMKBeLz+bXZhUOQSyZCBVCbIVcJDXjvF1\nfb0dcHe0wCXAocyBjo5mev8dKmqwtDSlcgxmZob5/QDGJ/oIFAIG/RgnFPQPtMPZXoc6/h/LyORW\nRznamivQ1lpJUJDoVgUBh9etWkIoUtYovQmcFWiUx3X5KlJQX5GloKC5LGtH9Z//tQcFe7ZnnzH7\nL39yEd/96TWcONSKdIM0IoomGIinGQ9bWiJs5mRkp+spSGaUFGahskwiAJmoLM9BQ12xAgEZ+SpL\nBjLlrbGhVEUJSopkSEw68qWFK39XtqXFUrnAGwlvmDVVxQoMcu1WlVugIgX0vHbBQKdNVNP6BAw0\nFFYJUcsatfTfl3a7EjkQT1TA4FkokCUEsf0HvDwCT3h4FgpEnGQIkzxWywn0/iVXIC46nqIXpZYM\n5Gdiu5EFiRTEROzAww4UCKTI55EhQR4ooOhRfGSOgsCAfOYwAoJYJEVIlhAMBIM0aZtsNqomNkVF\n+aiqKEFlST7STXrl+RtTEin0CRR8rQIBewaFyGJAeloKrIQnI3+WkhiDZGldLEOOCATx0WEUwSAC\nQQiBIQ4drfm4fr4Xv/ZzR/Af/vUZ5f0/79z/XbZbovrrP7+J8yc60VyXDXNqPOIJHRp602HB/oQ1\nyaUQKOAx/QEo8JiCAsKVlCz6+8gxlXwNir9/GMIIBqF+4QQCbv1lKUGMx42wIJEETSD/ToAnz0Ai\nBkHe3ogJC0NKnIxNTkJmWiryM8wozc1Eid1GODAiXeVW6KCTdsZaKc/k8bNl8pilEA4IaZKPEKFB\nalISkgmdUokQy/MkyYfRhINI7o+GsKMJ9FfLCqbkJDX1U5a2BFIT4+NUlCCdcJfCz5CUGA8DoSAv\nLxtVkm/QVIs2pycCUNdYheqdssOuPhf6hrrQQTBop7feN9iFheUZbEi74lNHcfTEBg4eWsac5ALs\nCL6CBHr/u4IvNr80zdctqV4Fa7TV9SUFFAIOff2dFP8WfoYaeuwV9Nyr0NbWqCIFAwNdqtWxzExY\nW1/A4hJhYpbvOTWooGB8QiIN/Rgd6+b7ONHaVoua2iLUVOejvqaAQk9HoKlULR04mrmfhIImSTps\nLVfVCO0d1fw9B/e9Ai1NxaqPRl1FNpor7HBW5+2o/vO/9qBgz/bsM2QSLv6LPziPr39hETOjVap9\nq0nHm25KHEwpkvQWwxtotEp+s6bJGrcR+ZL8Rs9flgUkZ0BGq/b3tqkJbN2dzQSDWjTWl1H0C1Fe\nKhEDWT6wEhAyCAv5/BlvJk1VBIMyVJTlqedzpLsbb/AZ9PyshAOZgy8jb2XYkNyMpWmQJky648ka\ntvTjl6E8UhboCeHLDARZ2xdTrY+9pDJAYIDgQK/fh3DgJ1BA7zOAYi/jmsUC/QgGwRSFyDhVbigm\ngCCgoAmNQGgQPdlACjtfowmNRKS0TdZEITgoVEUIPGvm30+mk3HN8hkFCAQOZKaCtAuOpPgkUFB0\nyVqk6ul1EgwyM9JRWJCHsuIC1fRJKgjEJAIgUCDbbJVYaFCAoNfGKQhIjKGQRYZQ3IIVDMTxsQBB\nQnSoEm13ax5uXerH//OdTQV8co6fd+4/jUl1wl/+4UX8xi8exdWz3Whv4uc0xPEYEXTCpU+D9IMI\nJBhQ9AMIapJoyONxgMddzOuATMDk816BPN7SpCqEYBBKMOBxJQgEEwikzDHEL4KQIBaJ8MAIaIJ2\nwSCU34ciSI7vgQP8ufQYCIY2JgIWHp8iezo9UnqnBM2q4hzkE6JkCJchORlWozTUykZFcTFybDZe\nwzokxcYSGOL5OJlQEIc4aXLFcxPPrZgAgkQONIScmPAwNVApja/NsFqRxN+T6zAmOlLNwIgiNMTG\nRCkoKCjMpRBXo76hGk0OiRQ0qp4DldWlFM86dPa0o3dAygk7VehfAcHWOs5eOInL187j/KUzCgxk\nqNHS6ryyZdmuzOHwxkEPBBAaDm+uqRkHR/i7AgfzhAiJIkilgupXUFOGquoy1NZJ34B6dHa1Y3ik\nD1MEipm5ccKGx6T18fzCBKZnZFlCYKAXI6M9GBxyo4f/y23t9Wh0VKCOYFBbXaDg39FUhpZmin5L\nJUGgin+zmjBQC3dXA/oGWjAz00v4aEFPZz3cssRQm48WAkFbTf6O6j//aw8K9mzPPkMmgiHe4DtP\np9DTXgBDUqQCAuneZklNgDFZPFENb47h3EYoUZK1bqs5mZ6/hTeMQnS086bQI5nKLWhvk8zsMop/\nnsonkCRDMQGD4sIsesVygylTUFBXU8Kf8UaeK5Bh4WvsBI5MZNnMailBn5yoZg0IFMTHxKiIQbR0\n2OONO5hiG0CBEE9dWhwrKHiRQMCtan1MsZY+AmosM6FATCAgiJ6/mL8PvVoVRfAjJAQiPESjIgW6\nJAq2wQxDihFJ8VqVbyDZ9gISshU4iIqIVlCg/ra0TN4xaZnsR0iRBkzh9GiDg6RtMqFjBwriuR/J\nO9ECq8WEHHsWSkuKCE5FKMzNglnWxXeqCFISY3msY2Ez8bVGKVX05BpIB0ltHIVMQCAiiHBAz5cW\nTyCwmZLQ6SzCS7fH8P9+75iCvf8RINg1WV76qz+5gt/6leO4c7kHrma7SoSMiw5BRHgQQkO5nyEe\nKJDqgwOSa8FjLeblxedoCgq8guBPMAggGATtgEGAdygtDIE+PF6+BAUCgkQNJJLgMU8XROlxIFUD\nHvMiLPgiMSoMmaYUVBRko7Iwm0BgQpo2lhDhyX2QNtQysltAIFYEX0Mw4zUkExPjRdx5HUkTIzGB\nAQUGsqzAcyUmQGAkxMlwL6mKSTNIEqyW16F0eQxBnAz/0utgkQmLmVbk50uTKl7v5YSUplpVPdDc\n2qCAYGi0D6OTQ5ihEB89cQTnLp7CmfMnce3mJdy8cw1Xrl/E9umjKlqwfHBBRQCOEACOERQOHVlV\nUCBwIEBwiFuJHki0wS1zCWgCBVK9IPkMAiZtziYCgRP9A10Yl8TDpRmsyvseJGgQSA6uEzpWZjA3\nP6agYEgGH/W7FBB0dbdQ6B3o6HSg3VmrIoEd7QQbt1QaNaG7uwldPQ50S5LxYBuGRtoxOu7GxESn\ngoKBXgd6CAuOOv6vl2Up+7u+9qBgz/bsM2Ryw/9X/+Q4bl8aQGN1JqEgWs07MKfEcxsHg2TDx8sI\n2gjeXCMgM+q1cVGqtFCWEkTc+3p485Eaancz2lokSlCO6koRu1yUFmXT7CqHQIBAlg7EqislipCr\nog25Up6VmYaC3AyUFuagOD9bRQ2kqVEaRVKSD1N1SbwZ8zMkSC+DKHqokvHu8cylFv7Afi987h+/\niBdf2O/JOZD17AMy7IjevBfFnyZRAz9Cgpjv7vOEAnks2fQSFZAIgTYhmTf/VAKJDrFRcQoEpPwu\nWCIGhAcBBfUcxUraM0ukQDLsJVog9fjSMEeWDCRKIFGDUG7D+XmjRXQoNMlJiUpMZI3aYqagSJ4B\nt3pVQSCebKzqNWBMSfJAAo+DLlHELBLSXz+RgJZEMNBroxEa6KW+t2ekYGygCu+/sYI//BeX8ef/\nVoDg+ef8v8f+hnDxH3/vLP7Jzx/G0zujaG/K5eeKQpQmGBEaWSKRLpP7FRQESBQlwGM+0l+CUHDg\ngBz3YI9J+2OaRAz8CQX+hIIAn3AFBgIJgT6hCPKTUlIBhyA+x/Pj5aOSBL0+9zn4vPg5RAQH0INP\nRGl+FuoohNW8vorsVqQbkyn+4ap7oXQxFAslrEgnw2gKv0DBLiREyQCs0DBogkOUyeMYTQRfI0sz\niWoZwmKQ/A0jz5lWVcVoExMJQ9EEQ4JDTLRqgS3nMi1NmlWZ1GyD8ooSetJN9J67MTjc93HS4PLa\nAjaPH8b2mWM4SyiQGQYXLp/B6XMncGx7Q0UBJBogALBOEDi0QeNWogViKnKwOqeAYHC4V1Uc/P/b\nO9PY1hLrvn+t572nfaUoShS1UPtGiqIoUhQpkuK+iyK1r0/729949vE8L2N7bI+zNW5QpG6KNkGT\nBk3RooXbIE2Tpg3iuEmbNmvr2E2QOM3WoE3yoTj9/88Vn98Yk2mAtMWMQQIH9/LykiLvvbrnd3YC\nwdZOWUqAgGw+Jek0LPQiLPWdChT9ody5ey4PHl5B7gAA7sijx3d15PKDh5dydfcECn0PIFCRLfzv\nbu+sKRDs7a/LDpab2wXZ3srj/xpyvdzfY24CQOB0U87Od+T8grIt55yVgOXZ2aacHK/LwW5ONtZW\nZT0TlHzcd6313/1Rg4Ka1OR9JKxN/6WffUPefK0iYf+MzIwyp4BT4aCUsD4BZaRAYOtRGBjnkB0o\naL93XjLJiGzhZnR8uCX7u2VYFFkAQUxzBWKry8J8gTAsOOYRxPGcIFAFAoYRjNCCW/MNWK4YWOKo\nWJ/EwrjB42bP5EMXE8jmpsQBa3kIf38CioDJXfQg9PUaSXz0GrAksAoFjddxbMIBFb4BAN+Eg3cT\n7tPK7HhWG0DpD/bbxT44okuGDLq7esRi7tVkRAqhoLPdBAiABQwYeBYKOtpgqQIGuqFkKPQUmOmS\nBigYysSKz+4H4Azocsw+JJOwREe5rd+KpU1LDAkFFEIB8whmxu3COROEAHoHhmxdYjE1Awgm5NGd\novzTH31Vfv9r3yN//nvfqUr83c73X0UIGX/y25+Tr/3Ht+WzH9+XSGBaxtkSGd/X1MGQQaM2Lmoh\nLLXB+u+w6MCkRoBAIyGgrRsQ14Vj1QEYY/iGYRxAAYCgrRkCKCAktNGLQC8BExEBY+2AOJYWtrAH\nxYc+JE23noNC78SxGJdYaAkwG5EsmwABDEJsIjQzpcdzmN4lKH96BGwWi65zgBXFambPClZUsBqC\nDava8fc6pAfna8AKAAMUcNT39Pgkjv8EzpUd198ggIBlqVZcewwj4DoZ6Fcw4NCsaUCe1+uR1WhI\nFTOB4N6DK00GZH7A4xceyGtPXpY3Pv4aIOCJzjF48rHX5AVY70we1H1g0dNT8CKEAMAcA7Y05msP\nqcyxH3MLmHTIKoUD5hEACorrOSmsZWV9vSCbm+tydLyvQPD48X1AAD6DSYiAk/MLJhaeyNWdEzk9\nOwAQbMrGVkHWy1kpb+RkE+uEg61t5kXkZAdgsL9bxDKvsof146MKgICegX181p6CwdnZllxieQkw\nIBTsbWdkoxSVSj4shVpOQU1q8sEQ3uT/1x9+t3z5J1+Xx1cpWXTCKgcQOFkeCJkZHVAvARPLhvos\nCgRzuPH5Fuah5NmkJC7lNfzzl/NSKqSg8MMAAJ8E/G5ZhoKnhAAF6jEAGLCXf3yVLZBXNHSQjAUA\nDp6nUBAKLEg4gP1xo6dnwe91ycL8NKAAFvUsSxU5bIbT55ziWXDB0p4Q+9CQWGAZssd+NYRQDxhg\nxjvl3QCA0lj/TlF4uPYisDGPxWzFTX9QoaDfNoR1NlMiiPRrroHhPegESLRJcwNzFhqxpGeiGdta\n8Blt0tttAVAQJpiTYHgMLF2wSC1mBRqbFQqrt0cGYXGOMt8AkMBjTC/BxPCQTIwMwlq1q7fAzVa7\nc9Pau4BeAnNHIyztG1BevWqR/eAXX5Lf/rW/Dhj4nvfsQ/BXFX72n/3e35Af+6EXZau0Ih7XlJ6T\nLlju7OrY3NImt+oa1UPQ2t4NQDBjG4cnmcVkYoImtjV1SMMthnRwLurpOTAbUNDMpdEt0dzRAwVt\n1WZTxiRNnBvOtairk7bGeuk1deAYDYjP7ZDoypKkokHJxEOSjq3IaiAgoaUlWfZ4ZJFzKKamcFyh\n1GHh01tgwIDR9phdFjuaWwEeLdLBKgd2WzQTupi82Q/wGoSw6gQg0MOcEnwvnFdOkGROwUC/TZtt\njY+P6hRNlpwyv4BgwFJDQsHDx/e0qoDlhhd3T+V5KPtXPvKi5gQQGNiAiB0Kj/E6Sw6p+JlQWO1P\ncAWFziUB4fkXH6hwH5YmEgy2dytSwv9geWMNVv62AsHF5Yncx99+/Px99Q7cvXcBRQ6QYMkj/hah\n4ARQsLtfkcpGXtbYv2A9rVIqZ6TMZkubBAE2IyvKNoCAicS7OwU5PFhXT8HFxS4EQABAUEi4xPPz\nLe1dsr2RxD0hLKVssAYFNanJB0V4g//T3/28/PMfeyx3bicBBZyKOASxAw6GZAo33bGBPh2lOwYr\ndnYcCnnOKcveRU0IdDmmZN45LQuuWc0DWHDN4PmUWvfsVrjMunpAAr0CzCcIshxR8wqWJZeJSDqJ\nG3iY1QeAgvlJWeH4WE6gAxyw9DGxihs7+xsAGPj6vJNdEKfFj89dXloASDg0xkvrm9Z5UxNnIjTI\njedgUd5s1A6IRvni/0GYkAil09jYouWNrGbgiGCLxSr9/UMyNDSiMmwfMzwH3VZY6BZNQGxvYSUD\noAJAYEBBE543Q7m1SA/d02aLdDPhsJ1lfG26NHd2ABQYj2eyHi1THF/ADZPjmABHoaVLMJgaZXOi\nEe1eyH4EPV2tYu+3qLdgwNoprtlReXBnR/7BD74hv/4Ln5c//YZRNfBu5/v/hvCa+aOvf15+5Afu\nyV4lBFgZl+mJUYDbLKzlKenp6cOx7JA65hFwamKjsd7Q2C5tOF6tACl6ExjuYS5I/S3AWz0HXbGy\nxBAOW+Ko5R5zn3plGNZp4bm5cRMwUQeQqJPWxgYxtbVAyZsARv0ApzGdA+HBtbjsWZAVn1eF6+7Z\nGZkAFDCnwAgrcOgVlq0skQQQ4FzxHLYRDpi/0MEwUbd0d1kAcTh/EDNAgrMUOJeDwnWCgQ2gQTAd\nu4aCWce0OJ2zsuCZl3Q2KbdPj+T86hRKf1/KmyU5gEJ+9OEH8srrL0G5P1SFX51rQOufCYgMG7zx\nsdc0mfBVwAMTEplP8PKrH1bvAYHh3kOjmdHJ+ZHchnJnEyOun12cwHKHXJ6qXN45U08DweQRAIFg\nwTJI9jXY3d8ASBS0qVK+mJQc83zyMZXCWlI2AAQ7DClgubWZk42NjGwBDPb22Kysok2Ozs6u5XRL\nLnS5KUcHBhSsF1dlnRULteZFNanJB0Oq3et+5Acu5Wg7gpsnFM8YrNNhm0yw3G2wD8t+mYZimsVN\nz8HY6QSUAJTWkK1XrBbcGM0dUMpd6tofxnvsLI/r79G58tMTw1D4rutQwZIqe4YL6B1gIiKrE2JQ\n/OxjwLkI7Pe/4BwX/+KsxLF/KhaQWMSnIBFY4j4EgjlxAz6csxNawsj4PF25RvkfR/x2GJ0On6PX\noAnK51uk3pBvBQOjvLEKBU3S1top3VBIfX0DMjAAKxNQMDI8jt9oTEq0sYmRmR4DM5Q9FRkrGyis\naGCDHwBAW4f23jf68DOswBI+QIGpE+81gMDaA+XeZ5WRAXoKmGBoBwzYAQV2HOcRAAEBYUhG2Ieg\nt0vDBj1dLTj+ZmEHxAiOzW1Ybk9eOZG/9YWH8jP/4g35+n96U/7H73zu/4nHgJ/5B7/5Ofmh77+Q\n3fWguGZGZRzfj22A3W6PzMw4ZRjHyWoblt4+u3SYeqWxuVNu1eP4NhEOWo1zAChgombdTR5zNqVi\nD4o2LOnd4SAs5nDw2DIpFIDBRM66eoWt9hZAVxO7FtZDoTcA0NpxXOjN6tEWz6P9/TIFqJolYAEa\nx66rDCyAMeYY0CvAUAGnKKqix3oHS0pxzhgOIhgwNNSFc0s4MJvMGg6idGJfI08E0EgosPbJ0OCg\njOJ/hCGE0bFhmZwaF8+iWxIpDg8qQvGWZK1ckFKlKEcAAELBy6+9qDkC1d4E7FDIioNPfOqJ5hmw\nIuE7vuuz8pm3PylvfuqjCgb0LPA9hAn2KaCngCBAqOBS5exYLq7OAQKXcu8Bexjck8f4ey+89FiX\nBATmI6xX8pLOxSWeCks8GdJeCqnsKr4znqdCCgYGFLDjZl42KhmplNnVMKPP9/fZBKkit29vGIOT\nsDylnGzI8SErEHKys5nWEcqb67Frrf/ujxoU1KQm7xNh7fofff2z8re/90Q2Cn71DkwP9wMGYLkO\n9KqXYNLO/IJRLcsa50wCWEaMx1pMvJHSMuaNugGKqgPKmYl6VHad0m81Q1kMiHfBIYlYUDLJsCYa\nsnERGxgxwTAZZ55BQFbDi7IEEHA7Ye3NjogXgBAOzAMMfJJLreC9QYkAJObxOkshZ6eHAQM2HaKk\nnQ+hVDknYQBWPWP/TbBM2Q65/hYt0meA4D2gwMhDaDG8BlBCHbAWu7s5uZGlZ0xuHIJFOKpQYGfZ\nYt+g2Hpt+K29UC7dsGY5X8GAAFqgFHoMGAtnD35CQdVL0MPcAiiUvh6Lhg8orKEf6LXq8WUsnOEE\ngoHmGgyxLbNZervatcqgr7tdkwxXAFP0pqwXorj5puXuxbq8/ckT+cc//Fh+7l++Kr/6lSfyW7/y\nCfn9r34aipzyli6rz//wa2+p8Hl12+9/9VMqf/xf3xI2O/rW/gbqKfja24CCSznYiIjHOallo+xC\n6XTMQeZlbs4jbs+yOFxeGRqZlK7uPmkCZHE2gtHDoBHHuUFaoKDpzamD1AMadJ3njSWkmhTaDljj\ntgbAQ72GaNrwGTyWrU1N0lxfr2ICbGlYBqDVgyUrCYYJWv1Q2FplAPjCa4QC7cjYzEFZ3L8b54+e\nHMBHeydAkGO7mbjKvhM4lx2EAgtg04LzCxC4BgMCAXNF2FSLngJCAXtQjI8DCgjQjmkJcJpiNglJ\nSTIdl0Q6JrliRnYPdwAB7DfAMMBDDR8wNEDrn1UFrEhgJcL3fOE7AQeflU995hPy5OOvKRAwbEBL\nv2rtX9w50ZAEOyFqV8OL29h2DsC4glzKJdbpLTi7PFFvxdHJgWztVCRXSEs4GtBuixTOXVA4YDUQ\n/0cB7ASFtXJWNughqGSlvJ6GpHS5uZEFLBTkAGBweFjWxEMCwing4Px0S06wTm/BwV5BDiE7AIP3\netSgoCY1eZ8Ia9jZzvZ73z6SfHJRJgEEE4P0EFifegkIBROwYEegqGy4gTIpqw2KztSOG2dzE6y3\nW7gx34KyaxerBQqLYAChx2B2ekwTEgkFa4WkFGmZRJcVCpb9cwoF7HPAskY2OlqA0vfMjYvPPSXL\nXo5qdkkxG5a1fESi4QWZmeyX+blRmRizydBAt4zYrTJos2psfsDWj23DsLxtsPi6pLmByWyEg0Yo\nHcP6r8pTGAAAUBQGrp8rELDKwAzL0mKFNchKhx4ogD4DDPA3hpmEyGZH1n7pY98CvN5NqxLWpYKB\nQgGT45pU6Dlg612GEeghsEJJ9THxjTBApaWZ8BaVPhxjJsSxZG4Iio0yCAt4AMeUnoIhW7cOTVoE\nOEVD7AzplWTUJ+m4H8cpLLf38/LCw3X5jk8fyd/7/jvyz370kfybH39Vfv6nnsi/++mPypf/1RsA\nhtex/Ih85aefqHz5Jz+iLY3Z+fBff+lF+ekvvSA/+xMvyy/+zKvyK19+Xb7679+Q3/m1N+W/AxT+\n7Buflz/46ufkh794V073kuJfcGqipE0TKDkdclycgIJINC3LKzGZcS5IP0CqE8ezw9QpLVq2CKu/\nuV5a2wBiTcz9wDYcdyaHEgiq50jbWgPgbtyoMxJIWfIJhc6yz8b6BiOUUNcASGhTi7+7EyCHJcsK\nRwEEBIN+HGt2MGQuAcXCUA7AjQmFVkuPkfPR1Y1zbgKktGkZK/8upz52tJuly4Rzawb4XSeNUiwE\nApwna28vrglcd4P4/xgZkbGxMZmYGNdulasxtgHOAAgSEo1HJBIDFAMOSpU12T/aUzBg4qE2KoLQ\nS8BGRvQMfP47PyOfBRwwGZENiph4yH4E9CrQo2DkGZxpLgKBgFUITDg8OT/G514CAM7l8PaBbG5X\npFjKSxYQkC1kJJVNyGo8LIGVJVnwusTlcYjbO6dgsMpqocSKtmReBriHmPuTjUpxLSnrpZSUsKRw\nvVLOaDhhd6coe7v4PaxIABxcXuzK5fmOnAEOjg/X5ZDtzyE7W5lrrf/ujxoU1KQm7xPhpLzf/Y1P\nydtv7ksu7pUJuw3K36Khg2kmuekIXsIAFB6sMY6dbdXSMCi6ZijQ+jqpv/GcNN66AUho1TDCAKsU\n7P3inBmXwNICLHwfFNeylIq4mZRwc0ozGRHWSWBekomAFHKrUsxHJY315cVZCXgdEvA5xL84A5mW\nLOcuZEMSDs7jc6EQx/tgmVqhnC0y2A9LDyDS3cVMf1iCWhVgAayYFAoa65h8+E4oqCr/qmeAeQRU\nAtVtLS3tYjJBeQAICAJUCLQYu2At0mNAxUdPwVDfoEKB7V2hAGABEOCy6qbuMVMJ4TMsUE4UKFFC\nwQAb4dDatNqg9PvUW2CUy0EBdbQDwlrVC8NBR+xfMDnSr5MTGVpJA6oIBskYEzM9srLslKB/VuKr\nHtlYi8rxfk4uTwvy0uNNefLKvnz0tUN58uqBvIH1T3zkWN76xLl87lN3VN76+Llue+OVPd3//mVe\nHl6l5Y2X1+RvfveJ/NSXXpdf/8qbgINPy3/+hY/J3//iPbk8ysqyZ05GBgdwLHpw/Jo17DI0NCYL\niwFxuZdkfMohtsERMffgWOI3d8KSb8W10tzaJG0dUL6sVGg14X0cwdyJc0HF3CbNUMoMBdFTwDwR\nNqRqwnXXCKln58rnbsiNv/YhuYUlwwrM5WBogYmDhIGJoQFcy33aqbAHx7EKWaxC4ChlK5MFzd0A\nNeYvsLy1A0BoXAdVIOF3MuF64jXAfTVHhDAAkGDSIb1TgwMDYh+yP4UCViCwU2UovKIeglQmqWAQ\nS0ZhgdNNn5BNWOsXd860JwGrDF565XnNHXjy8dflk299XD756Y9pVQJfY+5AtXqBQMAcBAIBvQQM\nFxwCCqoTFPcOd2RnfwfgUcLfi4nP75W5eQfAbFpcC3OyiP9Hf9AHpb+kQ5jmPU4dyrS84lUo4KyG\nYNgnS4EFFQJCCv+vxUJcZa2YUDCgt4BhBIIBQwmsSjjcL8m9u4dy53JfQwicicIx63s7WdnaSF5r\n/Xd/1KCgJjV5n8if/97n5b/9l8/K5z95LImwW8sOh/sIBTaZYUx72A6Lyya9uHF2AgJaOX0Oopna\nuAEbcd0GAEITFF8Hbpgm9RbYei0yOgwwmJ0Qj3tW5xuwRJEVBxSGEaKrPiz96iVgtzR6DGJhWCxB\ngETAJcEl9vqfAFTgvZEFPJ+VibFeFQWDEas2z7GY6dKlS5mei3YIewdAudS3S/3N5nd6CRg2oPKH\noqnCAD0DFN0GKDCUQaeOa1YLkaABpU+PQZ91QBMNh6+9Be8AA3oWFAzwfWCJssStFxZoHxQIPQEU\negcMKDCAwM6eBVBeTDCcGZuQ0UF8tg1KBtbnoNUKMGC5HGALv5GNjHxup+TTUYlH/BpayeOYlQBU\nbEMbX10EFDhkcX5UQgEnXl8AOHglk/BJIe2XylpEDnYycn68LpcnZTk7KsnpQVHOb5fkweWu3Dnf\nkquTipxz+yEswE1YhbmgVApB7JuTTz65ki987qH83e/7sPzIF1+W7//ux3J7Jy1hKJq56Skck35h\nOScVOysMLL2D0mMdEhOOWxuOSwuOSyd+TzsAp6UdSrcViry9CXDQdl3C2Ak46JRmJm7iOS13E95H\nrw0teA6gsnQDviia+MdOk/g8vGZUfxiJnm24Ni3tbdLfjeuQcxoAIF0tzdq7YBCWfS/gkdMTCWom\nfCYTRZlD0KZ/H2CA5024jprZH4E5DaYeMeMaoDehx8weFTiHPJ84P+qdGhyUYbZMxjnkiGx6CmZn\nZ2TB45bloF8iUcbsYxJPVaEgKTsH23L/8V1NJHz9ycsqXP8ooIDeAS7Zq+D5F4wcgLML5gmcyD0N\nM9xXDwNBgZ0R9w63tI1yPLUKhb4si/5FKHoPlP68uDwuhYG5BafM4dpxL7oUDHwBryxp6MArgdCS\nhPC/uZoISSQeVA9BIORVb0EAgBBL4P8zuyp5XGfFYlzWS0ltZb5xnV+wyeRDLNnD4PJ8V85Pt9VL\nsLudAzSkZXs7I5VK4lrrv/ujBgU1qcn7RP7sG2/L7/z6W/Lm63sSWZ4Tex9jsRYNHUyxpztLrXCz\n76eLlclYzNIGFBjz6hsABI2wiJs1Tq7KrqdboYBwYLOaNfFwirX1jnFhNcLKMuclLGvVAUMH0YgX\nsgg4WIJiW1HLNw4wiK64JRyY04Y8BIOAj5UM0zI3y5JEmzhm7FgOaQihrxc3aygAxnvZspjdCjvb\nugEGpnfmFFznETzrHVAgYEkhRd3Xxv7cT8EAykc9BrBy6SWw2dhdcVjG7OytPyojz8JBr036mIMA\n5WGhGxvWJy3/QeY6WPsAAb0aGjBCB5xkaFW3+8zEGJTqtDbJGekfhOJiTsGAjMP6ZIkiLVz2LZib\nmZDwslfWC7gpr6WkXITFtpaQDdykOcEynfBLAmBAiAoH53D8nACseUlGvbqdy3w6iP3jsrmewOes\nShmyWUrI3lZWDncLKgc7eX3OfXKAjSTem8Fn71TScnG4Jh998VS+8PbL8h2felF28N7UalBWV4Iy\n75jVfAu63NnFkP0JWJLYhHNSDwu8Hsq6FfDW0tEqja0NUt98U8GgHhY+QwgsZaRC5pIKmkDAsdnd\ngK1OHM8uHNdeHJs+lgkOAJ6GRnAu7LjeAB2sHNFERKMstLXulnS3tegERAJBJ+CVOQX0vpgAIY23\n6gAGRsUB+0tongIAgx6hzs5uaceS0gEgMJmtCgVmnlOACFttM+RAKBjs79fKg6qXgFAwNj4mUxyc\n5IIS9szDWl+UYGgZcAClG2MCX1r2j/c0ZMBGRexcWBV6DtR78MrzCgScf0DPAJX/1d0z9RZQdM7B\n8a5sbq9LrpjS/ACP1wXF74DMiXMeEAAYcC+6ZcHrlnnAgGN+Ftsduu4LACDZRyQWBAisAAgoIWMJ\nMIgA2kP4P10BIETjAUkDPrMAA3oLDCgAEAAKNPGQgABhx8Pjw7IKx6tvc0DaFmBhh1ULNU9BTWry\ngZD/+bufk9/8pTfllcdlnYY4bGNrVyYYWqGU+iEDxtAYKDV2e6MFrPPp6xo0ptvS1CQcnUsXrOFS\nNSxhow7frKEEggETDjnkh9UD7HCYxs2HnoFEdEnBILbK6YvLUG4RWLfLEgt7JcJOh/hOnvkJ8S5M\nic8zLe45VhyMiMs5ATAYl2E74/xQtlajdryLCX8qPVDqXVDyRu8Cw1vQCGV/7SlQj8CzQkBo1Xhy\nA93TAAOWN3LokZYl2liWOCx2+yj+5qiMQiZG2TdhQsaGx2Als8sd5zP0GfXsFlZm9GC/YRmBch+E\nRWljs5seCJZs2cy2uY4Z/qY5mXc6AQeTOiqa7m16ECa1FJEdDUdk0TUlIf+8Hpu1TBhWPJT4TkF2\naKWVWQ8OKy4XkQKn2kHiMZ/maLDKI4HjSo8Mp1ZySFUqwa6SUPa42WdSIW1JncVnlggYuMlv0vqj\na3gjK+trSQ33sMmUVozgvOxh+4sPz+Wlx3ekUkxLNhmVZGxVFt3zUIoTqswVwFTRd0gjrHK2Pa7D\ncW2Cgm5q4WuEgVtY1hlJh9ewxmNOMGhro5eAJYH0CsBSN+HcquemB3BmE/vgMK6pCZUhnBszFLhW\nKOBzmiEtuD5NLa1ibjPaI3fiO/Sa2J+AcxbapeEmExSZJEswYLVIh1437E2hIaNuq/4907WXgAmn\n2oCqC2DAhEWAHdtWcwbCwAC+D0MVI3ZNMhxmyG3MriOVZ2cndZyyxzMnAVjnq9GgFHDMOLiIzYQe\nPbqrPQQorCZ4iOfsPGh0IDSECYU6HIkeg/Nj2dvb1PbJnHEQja5IKOyXpWWPuBccsoC/4/N7xLvk\n1qWfbcODXvEBxhcWAQkMFwAelgIeVf5xJv/i/FK4HgesGxKSGMuFcY3EcP0kkxyJHJJiMQooSEh5\nnWDAMAIEz9cBmmVA5NZGWrY3ee1wmVYg2N/Ny+ZGLdGwJjX5QMif/NZntEf+w4uCeF0TAIAeGRvs\nU6F1OowbHi1atudlnfbTuCtdtbDO6G5lljab+LC2my5WKkPOKBjizXKQVh3WARoEA5cDVv8Srddl\nKUIZreWi6gJPQ2lpFj2sngKHusCiCq9wJgIHJc2Lx81RtbMy55wRJ+vAHTMyNTUJJT0kVrrZVWjN\n84beIx2w6lrxXZugDG7euCW3btZ9c1ASa+MhrJHXOnnAgsarqSCgMFo1A53Jb1AuUChmM5S0fUQm\nJ6fxN2dU8dFdPDk5KTMzM7q02+1iYyImZGAA1j1760OcUPZ8net9PCawKvneiQmOUJ4Trxc3bJ9P\n9xseHpKeHpa4MUmzF8BhAxRYxecehzXulvWsX8p5zqn3yWYxKLuVqLr4tytxKHPDpcsksOIaFHUu\nDst0RZZX/BIMByS8uqKygnVarRQ+ZwJcNBGRAPYL4XkssaoZ84W1nGztbMjewY7GvzP5FJTLkszj\nPHh9C1BIMalslKRUyuv6Eqxhtvntx7k2mTpw3AAAzWxgBMuduSeQJgAkhVUHlMZGWPYQ7TbJcsU6\nWO1YcopiB4CuE8Ixy1yyZ4GpnW2l2SuA3hYbAGoIcDWM65Pegn5sx3nH/m1NAIE2WPiQzlaLdLYx\nh6BXerps0mvul+5OKyDApH+zDX+rC59L4XTMASvOW98QwI2fx4oSegfYqAjXfzf2NQMeIFzvZjlu\nb5f02brxu3sABn04h8wx6ME13yMjw30yMTYgM1PDgNhxAK4DcMVrPCmHe2U5P9mTy/PbcufyRO5e\nnapw/erCeP7g3oU8D0h48cMP5YXn72PfY5zjgkRCfv1/YFnu4oJT+3WsBHwSCvokEgZkA/xihEBI\nHAo9RsjG+iqgMBRalBXAIiWO7clkUL0AGUBhGmCQSq3otkSCEtBlPLEESPDhuggAaACP6wCD9ZhK\niVMS1/B/XJVCWIp5jlpela1KUqsPDgAF25UaFNSkJh8IYQka5+Ufbq2KY2JI2xlrBQLH8lKZwxKy\nQVEx45r12ZwzQGvaUJhG7Jfd/6pQQHDgvpqQZWFiHUMKZljR3bCY+8QxPSJLHofEwoyH4wYCMCjg\nhpTlzQlWCYGArZLLpaykoawWYf3QIzDnmJJFj0sHCBlz7CfUMhtgaKO/X5XuENvQDkJBWG1i6rJI\nW7tJXdGsh6fSr05QZMfDKiAQbpgcx99D4W9rBhBw8iE9BnxuMpnVS+BwzMniIkBlOQBZloWFBViC\ns6r01W08xnI0I648PT2tSp/KnvvwOYUQQeG26na+h7/DyiqEfjbCYanlEABqXIK+GYmF3AoFmdi8\nZGNuyLzkEwtSSDEc4Fcp5MKyVoxrElienSXTUc0w9/jcsrjkgSXphdWI7w7FHgAQrESC6s4mBLCW\nXkvmsOTz1VhYX4sno5LJpSRfzGopHdfZpW8FAKFClzg+h+OC0+mELj0etwE3vVCkkMbGBvnQhz4k\nz3FeAYCAky25rKsjpN1SOODsCe1sCGlpgFUPxW9qY38CsypvKu4qJOhrUODdAAALux1CLCY2N7Lo\nPgQCzlQgBJg7rCqEAMJAn2VQerv7sW+PtDS2y63nGGoA9OG9fYCK0aExmRoHbI4Zg7DYNIk9Ephz\nwNbVzS0N0t7RAiDoAAhYZJiJuNNjMkflvOgSP5RzILCIa9QlXljkSz6XLLOzJyQIS53zP1LxFQXf\n3a01nRVyfLgDxbkJa3pDDve35fz0SO7fvZBHbI2M5cXZMfbblkwqqjBgNOyCtQ9Z8roBA17dHub5\nwDrbilP5v5dEIngPJBTySDi8qOsECQIEQYBQQDhIpULGMh2QVGZZsvkVQEFE1ggCz8AAwaBMSMAy\nnw2qsApmoxyXve2sHLBfQc1TUJOafDDkG7/xpvzEP3lRLU/nJCxYwACrDrhkD/5+AEFPl9GwpZ21\n4c1Qmk2Gm51QQC9BO4DAaPRyHXO9Ltlixz6tHWd+QS8Ua38vbrqD4p6blOCS0YOA7vBUFDejVdyU\nAArxaFDbJW+s57SFss8zp2WNjhkmLPJG65EF9xygYFyhgFJVwqpkp3BDhyXea+3TGHRHB5PHcEPH\n9+ZshIZ6AgKBoE7q6+uhlGDNNtGS5e9pfUYIB8Y2fga9EJOTAJNF3kCjuDkWcBONAQ78Mj/vkumZ\naUDBKP62Hcpi+Lq7neHJoFfAhX0WFz0ABcNzMDo6ot+d+3Ofvj7mLVhkhA1wxof1N3s9szg+S1D6\nK5JNQKFE5wEHAAMAASUFQIgDFuIRQENiWXLZiMZ8s7kErLswIGBR5nH83IApJp0REBjf9gMM6Cmg\nZ4DKnxBAGKDXgOtVKKAngcsoXkviXGTzaR22E8PrBAIfYQMSCkORpOKSy6Xxd6OyHKBHwQX44bmw\n6+8iDFQ9BlWvAb0EPAfaXroBAsudUMDR1swL4ZKTLCnVbbq9KthGr4KRWMqxzG2q5KnwTe0WgIXh\nWaAoSAAeCBLdzBNoB0Bchwxs1n4ZsY/K9CSgbWoGQDYpw4DA/j6ABHMYeq0yAPCc5ARL57R4AABB\nABfHE3MSIqcRbm2VZHenLLu7FdnG+jaU/u42k+1KsoP17U3W6hegJEty+3BLLs/25c7FESBgX+Fg\nb2ddhTNELs4O5OxkD8/LgL2ErML6Z6vwlQCONZb0oEUjDAlxsFhIjMFjfn0txOFj10qfsrpqQEJV\n6TMMYCj8FQCB56nXgIDAfQgFVc8BxYACADsUPaEgXwhL4VuEYLBeMqCgkMM+2RX1FpTxfBswwAZG\n9Bq816MGBTWpyftEfuuXPyb/6Ifuw+r0qadgctimrY2ZaMjucH3dUPSdzM5mpzcoyWsooLDBC93t\nhAIFgmeysw0xQ5h0yGoEswzaemQMnz8L+HA7J2UJSo8tjQOQZS9LEB3aFpnlixnccCnhoA8w4BAX\nWyfPTV/PPAAozE5p9ziWf7lcVLiw0Hw+cbvdUMZTMjjIsEKfWFh+xuQyE5QIFBOVPZVR1YX9rBub\nrxEgqkuOZeZ7Ojj6GJ/BEIHD4ZBgMCCZbBpKMIObbEKfz7mcgBN6CkZkdIxJZ1D6UPBU9gQEKkmv\nbxHfm4qS3w0KyoLjA2u6nyWfLJ2DMEFtdmZcqzZ8OB5Z3MTLxZiUcLPNJb2AgUWpFGFt5gOAhSVJ\nxtinwC2J+JJkcDPP52DdZ2HxQ1EsB3DsYE0SCuavwWDRt6BeA5akMWTAZXU9AIszBMu/CgkEAoYe\nqqEGNt9hqCBOeMDzIOCCY4LZ5z8Sods5hr+dUkkm41A6AIvwioZICEY8F9XwAZcKB+zh0GoodkOp\n4/hTwT9V8gYwKAAQErgfXmNjI51ZUdcsDbfYKwOfhecUvq+jje2n6WUwgIHvNXUQVjm7gJMdrbrs\n0/wEu0xNTOGYOwAF0zIxNq4TEbmcnZ6R+Tl6qLz47VEdSVxaz+sEwsOjXTk9O9QBQxw0dMElFP3l\n5bHcubotd++cyD3IXSYJXhzK1fkBQOBQ7t+5LY/un8njB+dy/+6JXGL76e0duX20pcvz0z1d39kq\nQrnGtVKHo8a5zomk60wyLXGccUaX3MappKzqSSVxntTtT6u/Kob1byQLhnHdrqoYIQWvegsohAJC\nQC4X0UqDLCCTz5PqKcA1nwtKDmCQy4ewD/czpIDna8WIlIpG+KCQCykU8HkFsLCxzvko0Wut/+6P\nGhTUpCbvE/nqf3gif+f7ziQRnlcgGB3olfEhTkVkdz2LZmwTCjhXgC5UxtrpXmc+gSaFYVmFAguT\nwDSRzqoJc/3Xw35Ynthv7VYoGB7E5xM8xgYBB0PimIKiVTHWmXPgnmNS4ZxEoKwYQohGAlCQLnE6\nJsUxOyleKDc3M6yds7pcWmKsdAUSEr9/Sa1xeg/s9mENKzC8wHh+D/MioNyp5A3vAUMGBiCoxYrn\nLUyEu1ZYBAJOXzSZKCb9DIYIHE4HIGQBN1taxxkoyahOxpuZmQI0zOj3ovInGNg5u2BqQqHBOedQ\nULACthh3b2trwXdpUzf7wGC/AoXDMau/04njsOiekQRu2pVSQrYrCdksRQAIITney8jRblp2KnEp\n4YacSfrUU5BO4aYP5ZHORAEFISj4gIYL6B0gHDALnVDgW16UpYBXvH6PPudr9CJQuD20ygS0qHoO\nWOLGsANr27mdn8mQQRTAEGNDHsABvQYrKwCHMEMJMSiTtBSLeSmV1qRSWcd6Ae+JqDenq6tLjzdD\nBzz2PA9adgglTuX9dGDVMwqf620KBO0AAWNb/c1GqbvJLoc4d1g39mu+hgrD20BPAN9D6QB4MEeA\nMyvoGRhg62obO2H245q0y8zktCZ7OhnWwfd0zs7gmluUVXzvTCoFpcfJgRuyt7+lMHD7ZB9AcCRn\n50cKBiccMnS8K0eH23IKK//iHBBweaRAYMgx5EjuYfkAIKBQ8PBc5RHg4NGDM3l4/xSQYOx75/IQ\nsLAvF2f4LJX9p8/PTnbl5HhLjg4qsr9LD4Mxm4DLzY0cjntCZW0toSWEhUJMhYreEKO8sKr043Hm\nHxheAkJDgUmrAFGCA19PJP2SSAEYGEKgJ6AA+LwGg2yW5YpBwKgBByWGFzjrAFBQvIYDXdZmH9Sk\nJh8M+bWvfES+660DCfsdCgRakgjlbYcSH+jpVk9BD5ViB/MGcINtaYPihAV3nYjHJVvDmjrY9tUo\n1SIY0OXKKYBGG18oPasFUIDPx99gD//RIUPG7BzFDGFS1ohNpifs6k2YGh8S74JTcrBOC9mERFl/\njedu16yEGBeHhboEhbYMhRcKBaCkIrixrV5bph5xuQgNDlXStL4nJye0fpyKd2hoUK1yTlbs7CQg\nMFTQdO0loCXL0EKdsNueqatT9+sF3DDuT28AlfwkhG5yKkHKygrAxbcIKIEChRAa+Lc5FGce4EJg\nsA8PKhDQQ2A2mxQMKN14Tu8BgWAW75ljoxl6ReZnJOCfkxJu6AcsF9xjL/kkFENZLs8qUAwlKAIo\nAVhkWZYkAgrS6QiggBY9LMFEWMJRWPRQ2vQOEA6qQLAERU8oqMICn3NZrWOn54BJiVwSCIxExKBm\nszNkEMD+DBtEY2H8/qjEmYuwynwD5lsw0S0q29tbUBxZfCeGHdLYL6GeHILZzZs35caNGwZ4dTCB\nlUof1xZA01gCOhsAAKwYYZlhIyChvkluPlcnt27UGTBwq0FfY04Ik0QZhuD7+P7WFmOENT1cDH11\nmTgO2yK9AEN2IWTlQA/OK0NcNpwT5qh4F924rnz4DbSgqfCYXV+Qrc112dpal8pGEbImG5sl2dyq\nCp8XZWOjAADKS6Wck02GCrbXoLDLUNwb1x6AbShzegHY8W9flf7dq0N5cO8IYHAqLzx/Li9++EI+\n/JiwcKLC56+/el8+9uR5ee2Ve/Lyi1fYdinPPzqVe3cOcR1s47PL2jTocJ85ClgerMsBhHMJOLRo\nd7eI757XQUbr60mAAiHBgAOuExDSaXp5GDaAwsdzAoEBBYSG60RDQIGRaBiREhMMIQwbMHxAIFAB\nHNBLQGEIIZcOAFj9KtnalMSa1OT9LxyG9Ms/94Y8eXlHlj3TMk5FTaXd36tgMAhlbqNCxI2Tvd7V\nW8BGM7jpMnxQTcyj96CdbX0BDvQY6DQ5lQ5YZx36/v5eDv1hs54qFMDqtvep14Ate6eZpQ0QmJnk\nDPtBLV/kxEXCQDoJiyUBpQ+lFIWVmmKMGxKPYVsUSgmWOhPdstkUlkmFg0gkJGFKOKTufUOWNQeA\nngU2liE0MO5PUGBcn9LfT1hgrToUSRezyy3YZtPYOMGCXgi3e1471rndLlX6hAEqQva6X/J7dduc\ny/F0Wh4hwm4HEFgND0F7e6t0A7ZYvsb3rq6G9bu55ucUCtxueiLosnZJYMmJG2xElf/hXl62NxJy\nfFiQUwDB7cM13V4u4QaOfTKZiHoKWHmQycZh7QOSYNGvwLrXUAFgShMNsc5QAcMG9AIQEphnQEDQ\nHAT+bQAE9yNQVPdlJQPL3BbpWVicB3xBieL99BQQEPT3Ly0qlIVCsB7zOT0PKysrOCe0VPNQNDkN\n8zDvg14YemVUiV+LMaGQw4cAClinZ4AzDwgBhIEbz93SdscsM9UKGMBAFSToEeAwI66zXLaeeSPX\n0tjQoJDQZTIBCnBtA/CGcU4o42MjMj/vlBV8f15T6RSUZS4FJVqAgi8BbspQ8hXZ2gYcQAgDG5uE\ngW8K4WCLuQPbzCcoKhTswYo/3K/gfG0C4AwouDjd03wChhLuXh7I/buH8vD+sTx6cFuF6wQFbqdw\nndsIC4SEl16gXOpzvnZ1satDiAgE7CC4DyEM/EVCSKBwbgEhgYBA7wCBgGKEDuhJWMU1xJyCoHoK\nkullyRVCsl6O47em8FvTODYpKeO5ViAAFggG6eSSZFIAAUgKMJGMeYUNtGpQUJOafADkT7/xtvzi\nzzyRq5OCzE3ZtRyRCYaTzCkYgiK0MdEQ1hWtWnoKAAStuLFq+OAaCtRbwKE/zbDM8DrBobOdiV64\nueuSPQw6pM/C6X4WTTYcYbkjPn/c3i8T2r8AVvLkML7DqDgokyPinB6TBSfnH8wbYACrNwcLuJDj\n/ISUFPNpvXGnmTmv2e9xKMQkFGPCiHsTGrBdrVhAA5dVicefsWph1bOigVnzC1DyrjmHWvXj4yMy\nOmKXsbFhVepsREMFTjc54+dUetymo3Jnp/D+efETCBZcmow2PTMhM7OT6h3o6+sFXMAq7TFLRyfz\nFFplcLBf//7BwZ6cnt7GzTmP97o1IZHK1k+lzAYzQbd6AFgTzu5wG+UElA7rv7NQPFnZ3EjjhhzF\nzZxCxQuFVkgqGPAYEAqYD8BcAVr+WpKI40nR5wCGqieBVQoaSoAoFDAswP35OsCB270+N4AFQLQw\np+WJHo/rGhJw/LBOICIUMIyzshLEbwBUBAKAszCsUVqqawoG3MaqC83faOF1ZUiHWvWcN2DW8ldW\ngdTdqjNKSlVuyS08Z0UJ2x3z2iOU8rrk+9mEiOsNbL9df0ulsaFOPUBdXZ0KfRMTozh3Dj3OPt8C\nvisT7pYkysS9FKAqm8D5SOG7ZqD0YGVv0touvQMIDK9B4akY+xAK6MIHTGzkcb4KsqseA1rybOpD\nrwEAgXK8Jecn23Lnckfl7tUuIGAfiv4AcEAQIBTs6/ari225PN/S/e7f3dPXHj88Vqnud3UB4Djb\nlOMjJjtS8Reg+Jn7kFcA2AMs0IPAoUUnJ1uQTXzfLH6f4T0gBBAIKNlcGEBAr5PhQUhQwWeWJV8M\nS5lhLFx/7FJIMGBTIoIBkwyLBZzjuFfBgJKK+yQRZQtuQEFq+Vrrv/ujBgU1qcn7QP7465+Rf/vj\nH5ESbgB04Y/BgndMDItrakxmxqAQB9mL36LhAzYoYl95TTQkFECYuU9hVn8zhGDACgVOCexich4s\nwW681wJhBUMfLHAO9hkeYA+EfhkbAhRAaU7jbzkmcaOehiUOGHDNjovbMSkLc9PinZ+VFf8Cbi4s\ndYJVUkzLejGDZUYBIRkPyyoU3CqUW5Sd9bBfiEqPyXNBuoKXJBLGdibQQTlSGA+PAgpWody5PQLF\nFw4FJARLOASlH6IyhOXMSgcqjmUoe3UnAzqKxSwsowKWVGxL4nTOqPKfcxn5DazV5+hclquN4ndZ\nAEOdAIGurg7ptVq0tt2KJUMKO7tb8tLLL8iduxdQQjlNllxagkW+7MNnX3/3iA8Q80zjGEDBWonu\n2ziWccPNS8uOvenXcIMvpaVQBCwBoKI4NtXqgmpFQRUOCAVc1234bV5AgBFWgDA0A6FXgfvRY8BQ\nA3voEwgoBAL+Zi75W1ywtJ1zM6ps6UWh0KtShYNgMIjftYxjT8s0i98Uh3U+r3kezDNgGIGJnRTm\nfPA5wznMO2C+x7O5H1xWhdurOSDVBFGGg1paG6WtvVl7CvT1GeWDs7imFgGZ4ciylmyydJONhAhR\nzMNIMlGP4ZcsSzGZsGkc17USLGJOCazkcfzzOPY5CK4DFVyLLKEtZ6VSYec+7INt6zgPnA/AwUGb\neO/2Zh6AAOW8A2t+h6Cwpi7/k+M1WPolOT8tQ7Fvyr07O/Lo/j7A4EAe3tuT+3h+55JTB9fUQ8Tl\n2ck6IGFD932IfR8/PJTnHzEMcSh3ABFHRxUAQEmBgGGDSiWFZVohgWBwG0Bwerolh4fr6j3gdu7H\nPIRCgVAU0oqDZHJZEpRrKGCCIXsUEAwqgAG2LiYQsByRQm9BMuGTTJpDzpgs7Dc8BYADdsZ8r0cN\nCmpSk/eB/PavvClf+ocvSwhKd3K4T5yw0H1Qwl7XjMzPjKvCJhQw0ZBAQMXPbHEjZNCGGzRv0nTj\nNkgTWx/DamMMl+2GLWZjAh2797GtL8csW7u7NLdgyNarYDCicGB7BxgoFOBvz89OAAqmxOue1YoE\nDlVKxUNapriWTykgJPA8uLxo5Brge89DXBCHc1KmpkdlHIAzSdiYw/ZrYY8D97WF6/PSSqRF7oPS\nggKEkicoZNJxKeTT6nWgByKXS+EGuCYH+ztycvtQzs+YaX4Ka2kDrycAIH61kgkEVD7MG+gGDHSZ\nmY/QJWYsu7tNMoDfax8ewPebwQ02I89/+JFCQQp/g54KAgET8uiNMKDAB+uViX3cjpsrbtRl3OAL\ngIN8AVZdnhadIYW1BBQWlBEUExVdIsnyQgABwICVBNXEQXoNqoqecMDnFIYH6DXgNsIA8wqqlQoM\nMdBzMM+BOgCCBfbSBwAQAvicHhI/QIbHgCGTyclxzb1guIVlmPQW8LcRAli9wSV7PHDJng1MBO3u\n7lYQ0IoEKPlnIYDPCQvV5FA+r75WFe5fBYP2diZvmvVc8DsyvJEvQDlvQQkyUZC9AQ63sb4p+web\nUJ7rClMZwsC1pDOrOIZMslvBOq3nmIIWwzIUemJy+aQCGIUNo0r4jFIpA+XIxEQAGoQdIcuAig1O\nFeS44S16D1iaSMnK7lZSDnbTcnSQf6rwLwAIF2cVVfwEBUIBhdtuHwEqdjOAizSgIqfv4X737+4q\nSDx6dCwPHp7I5dW+HB6VZXMzK2trBMeIXjfr6wnZ2MyoJ+GccwrOcU0DEggI29s5fT2XY9ggAHBb\nkhgFip45BQYYsFdBGDAaeSraq2CNIQTmtgSkCHig5DNBSSeYLLxUg4Ka1OSDIL/682/ID//AY4mH\n/dqwiNUHdOG7oZCncEO1Q3nbWDYHS84E662ZVlsdLLV63qTxHKCgtf+4QTdgO+O4VTBg+MDMUbYm\njgnu1mFAXLLn/0Bvj06r45x7Dqlh3sJAD2CBLWN7urSB0tTIgDih2BlCWISiX/a6JBxg//6g5GDl\n5WDZZWjVJcNan+31QNnMTULpcHTtgAwPW2V01CZTU8PimGVp2ZhM47fN4DOdjnFhNzjPgkNlAeDh\ncrHccVbj+EH8nQiOSXQVN8bYCqwfxuphCbEmvZTDTb0CS+sYN9092d/flt29LSicMpRFUj0LExMj\nMjDYp939hoYAPRMsSXRCyfuh3IMSpjLGkkl6zOAnADAx0ePxqDXN0ASTJwkbOu8+4IHC5o15RbLF\nmCQzIUmkVyQFGMhxQA0UTnkjJ2uwUHNq9RoKjDkF7LWvcu0xIBgQEqpNiggEBIFqnkE1f0ATERlO\n8LllgZ4BggD75uN3EArYTldDB3iNoRN6SeglYC6FIU71FDAkQjCgF4RJhoQCloyyVwOrEaqQwGoR\nJiDyWmIPiaqSr0JAFQT4WlWqwEDPAitD+BksT/X7/fj9ALsiIKlcULf/LhsEAQAODgkF23J0TNnR\n5cHhhuzsrUNZ8himoPh4/MKwkFmOByjAcc7mGGOPY3sUcLYqyRQTOpm/QYVLSMB7cD0mk6zxx/Wi\nOR4ANtb8Q3JY5zTQEs5XdU4Aa/i3N1jLHwMsJKDo2QEQgLCfhfIvyNntNQACvQJluXsFOLjYADTQ\nw5CRnc24bJZXZbOyCrBIyPFBTs5PSnJ5AYC4cyAPH96WBw9uy/nFLuCnCFhhiMAIDWRzIZU8KwOg\nzMuVJI5RFtcywPewhOPEMAirGPC7GEaAomdOAeEgkYSCBxhUmxZprwIAAL0EDCFwWfUU5AAFTDak\nt4Bg8F6PvxAKalKTmvz/k1u3bopnntP0AjJuZxmiRcFgFlY7cwoGeqmwzTrNj4NfeqDUmTfAbG+G\nD9jYR2/auIETCL7pLWg1Mr6ZeAjh3HpOBeQc+x4meuHmz/7+NnxeD0MMHe1i6ewQaxde62qXwd4u\nLYtkKMPN0jwo7CUPlKp/QWIR3PATuNGmcHPDTZhwwAFLgWU3FDqV/AwgYARAwJazvTI+1g8gMGCA\nwnUnIME1NwUIMMBgEZ9dFXahCyx7JByClb66DCgIqkciBcubYMBmMmuwxNnel9YnwwlMSCuXi7hZ\npjX0wBg7Y+5eWNou16wqTlqrCShiCvfR16BkjbCDU+fv03qmRc1cA4IBoYA96ilBQEGUneaysPqh\nqGJYj0FppaB8CrBGi7BSv+kGNxRYIhV9qviroQJCAb0GFL5W9QxUPQI6VhfPuc6QQjX5kIN2nIAz\nWt70EtAjM4/vX/0NxnZuIwgAFBYNGGBCJ8GAir/a8pm5BBTCQbXHBD0GbBFNj0AVAihVjwGlCgqE\nAPY8YLlptV00kxfpZUmlYLkX8hr7394py85uBUDAUkIofqzv7HJbWXb3K7J3wO1cp6xjOxMG87Je\nwXldg8VcgMJnpj4FMFbN1WAfCPUoXAOBQgGeEwoSCSbsEQTCkub5SRhzJjgJNIvzVsixnj+mOSLs\n+LexHlGpKngCwu5WXPZ3Uqr8jw8ACIc5uTxblyvAwTmggACwtw1FXolevzeiYECgODwoyPFxWS44\n9fLugVxdMWeFnoASfl8e1yk9AYDKpB/HahngwoRQti6OyxaHF+0VFAoOIMxD2OXcgq20rJXxm3OA\nJHoM0n4ch6B6CQgGJfUUEHgABliyCiEHkKCngFUIDB9kalBQk5q8/6UOUOCFMopAERAIBno6ZdjW\nrQqZo5PZ0dDezyqBIXHMcGzxuFh7rYABhg6MZj8UtegamxQImOHNnAJ6FugpIBR0AwR6AQIcVWuB\n0PPQZ+4GAGAb94Mi6G5vByDA4jN3yJDVLOODVpkdt8s8FPgirHr/4pxCwSqUdQLKOhUPKhiwaUsq\nwbwAL5TpggSDhAP2CWCSYB+Uj1V7z8/OGB4C19ykzAMI3K4p8QAKfGyc5HfLCizywPKCSmjFqx3i\nYlF6CggF9Baw5I9gQA+FUYIXWcXfpcUPZRtPRLQFMBsGcQ4A8xk4rMa/bKxzX3oFVrGNngF2xWN7\nXA7LUQULS5tQQOXGLP4gQwhYcrStf8UHKFjSsbYxDq6BrELRhGOcchcAHIRhyRnWK8MGFMbME4AD\nhg9YSljNISAIVKGAkEDPAMsUGSqgZ4BhgmpOgUIBtrP5kUIBlD/j8jOzTK6kV2YKz6c0p4LicOC3\nuAzAWfQCZliaiSU9BFTcVPy05jlRkFBATwFhweNZ0N4P7OFg6bEADFqlsQkw0AgQwLKl1QgJdNOj\nNDigUwjpiWAVSTgCiz6ZgHJLQzkzdFKQtVJRY//sNFh5pkKACYHMCyhv5LG9AGVXlI2tgsrWTlG2\n92AhEwx2+D7AXgXwV05BIUJg3TNEUFwzwgUqgLFCMQFYMDwFGe0REX7qIahCQVKhIIDrlTX9dK1T\ngca0oU95LfQOqZTCTyGBXoSdTQMSCAKnRwU5Ocrr+uFuWkGAYEAo4P66Xonjd6ZUmR8BDk7PNgEI\nOwoHBAV6AggGhAHCQRZKO431DHsNaHdCfCe8ThDY3y/KycmGHJ9UZP8Qx2Ub4FnEtZbyKxywTwHn\nHzCvgB4CegzYxVB7FQA0ni1NpLzXowYFNalJTWpSk5p8m8tf9lGDgprUpCY1qUlNvs3lL/v4y+9Z\ne9QetUftUXvUHrXHt/WjBgW1R+1Re9QetUftUXvoowYFtUftUXvUHrVH7VF74CHyvwEPslKFvVLh\nPAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "disp.Image(\"A-complement.PNG\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A. In other words, if U is the universe that contains all the elements under study, and there is no need to mention it because it is obvious and unique, then the absolute complement of A is the relative complement of A in U. Formally,\n", "\n", "$${\\displaystyle A^{\\complement }=\\{x\\in U\\mid x\\notin A\\}.}$$" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S is the set of even numbers between 0 and 100: {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100}\n" ] } ], "source": [ "S=set([x for x in range (101) if x%2==0])\n", "print (\"S is the set of even numbers between 0 and 100:\", S)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S_complement is the set of odd numbers between 0 and 100: {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99}\n" ] } ], "source": [ "S_complement = set([x for x in range (101) if x%2!=0])\n", "print (\"S_complement is the set of odd numbers between 0 and 100:\", S_complement)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** You can take the union of two sets and if that is equal to the universal set (in the context of your problem), then you have found the right complement **" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Is the union of S and S_complement equal to all numbers between 0 and 100? True\n" ] } ], "source": [ "print (\"Is the union of S and S_complement equal to all numbers between 0 and 100?\", \n", " S.union(S_complement)==set([x for x in range (101)]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** De Morgan's laws:**\n", "\n", "$${\\displaystyle \\left(A\\cup B\\right)^{\\complement }=A^{\\complement }\\cap B^{\\complement }.}$$\n", "$${\\displaystyle \\left(A\\cap B\\right)^{\\complement }=A^{\\complement }\\cup B^{\\complement }.}$$\n", "\n", "** Complement laws **\n", "\n", "$${\\displaystyle A\\cup A^{\\complement }=U.}$$\n", "$${\\displaystyle A\\cap A^{\\complement }=\\varnothing .}$$\n", "$${\\displaystyle \\varnothing ^{\\complement }=U.}$$\n", "$${\\displaystyle U^{\\complement }=\\varnothing .}$$\n", "$${\\displaystyle {\\text{If }}A\\subset B{\\text{, then }}B^{\\complement }\\subset A^{\\complement }.}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Just an example of De Morgan's laws" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "U: {-4, 3, 4, 5, -6, 12, 13, -2}\n" ] } ], "source": [ "A={-6,3,4,5}\n", "B={-6,5,13}\n", "U=A|B|{12,-2,-4}\n", "print(\"U:\",U)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def complement_of_union(S1,S2,S3):\n", " Su = S1|S2\n", " S4 = set()\n", " for item in S3:\n", " if item not in Su:\n", " S4.add(item)\n", " return S4\n", "\n", "def intersection_of_complement(S1,S2,S3):\n", " S1C = set()\n", " S2C = set()\n", " for item in S3:\n", " if item not in S1:\n", " S1C.add(item)\n", " for item in S3:\n", " if item not in S2:\n", " S2C.add(item)\n", " return (S1C & S2C)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "complement_of_union(A,B,U) == intersection_of_complement(A,B,U)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{-4, -2, 12}" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "complement_of_union(A,B,U)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{-4, -2, 12}" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "intersection_of_complement(A,B,U)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Difference between sets" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If A and B are sets, then the relative complement of A in B, also termed the set-theoretic difference of B and A, is the **set of elements in B but not in A**.\n", "\n", "$${\\displaystyle B\\setminus A=\\{x\\in B\\mid x\\notin A\\}.}$$\n", "\n", "![Set difference](https://upload.wikimedia.org/wikipedia/commons/5/5a/Venn0010.svg)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Set S1: {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30}\n" ] } ], "source": [ "S1 = set([x for x in range(31) if x%3==0])\n", "print (\"Set S1:\", S1)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Set S2: {0, 5, 10, 15, 20, 25, 30}\n" ] } ], "source": [ "S2 = set([x for x in range(31) if x%5==0])\n", "print (\"Set S2:\", S2)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Difference of S1 and S2 i.e. S2\\S1: {25, 10, 20, 5}\n", "Difference of S2 and S1 i.e. S1\\S2: {3, 6, 9, 12, 18, 21, 24, 27}\n" ] } ], "source": [ "S_difference = S2-S1\n", "print(\"Difference of S1 and S2 i.e. S2\\S1:\", S_difference)\n", "\n", "S_difference = S1.difference(S2)\n", "print(\"Difference of S2 and S1 i.e. S1\\S2:\", S_difference)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** Following identities can be obtained with algebraic manipulation: **\n", "\n", "$${\\displaystyle C\\setminus (A\\cap B)=(C\\setminus A)\\cup (C\\setminus B)}$$\n", "$${\\displaystyle C\\setminus (A\\cup B)=(C\\setminus A)\\cap (C\\setminus B)}$$\n", "$${\\displaystyle C\\setminus (B\\setminus A)=(C\\cap A)\\cup (C\\setminus B)}$$\n", "$${\\displaystyle C\\setminus (C\\setminus A)=(C\\cap A)}$$\n", "$${\\displaystyle (B\\setminus A)\\cap C=(B\\cap C)\\setminus A=B\\cap (C\\setminus A)}$$\n", "$${\\displaystyle (B\\setminus A)\\cup C=(B\\cup C)\\setminus (A\\setminus C)}$$ \n", "$${\\displaystyle A\\setminus A=\\emptyset}$$\n", "$${\\displaystyle \\emptyset \\setminus A=\\emptyset }$$\n", "$${\\displaystyle A\\setminus \\emptyset =A}$$\n", "$${\\displaystyle A\\setminus U=\\emptyset }$$" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Symmetric difference" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In set theory, the ***symmetric difference***, also known as the ***disjunctive union***, of two sets is the set of elements which are in either of the sets and not in their intersection.\n", "$${\\displaystyle A\\,\\triangle \\,B=\\{x:(x\\in A)\\oplus (x\\in B)\\}}$$ \n", "\n", "$${\\displaystyle A\\,\\triangle \\,B=(A\\smallsetminus B)\\cup (B\\smallsetminus A)}$$\n", "\n", "$${\\displaystyle A\\,\\triangle \\,B=(A\\cup B)\\smallsetminus (A\\cap B)}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Symmetric difference](https://upload.wikimedia.org/wikipedia/commons/4/46/Venn0110.svg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Some properties,**\n", "\n", "$${\\displaystyle A\\,\\triangle \\,B=B\\,\\triangle \\,A,}$$\n", "$${\\displaystyle (A\\,\\triangle \\,B)\\,\\triangle \\,C=A\\,\\triangle \\,(B\\,\\triangle \\,C).}$$\n", "\n", "**The empty set is neutral, and every set is its own inverse:**\n", "\n", "$${\\displaystyle A\\,\\triangle \\,\\varnothing =A,}$$\n", "$${\\displaystyle A\\,\\triangle \\,A=\\varnothing .}$$" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "S1 {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30}\n", "S2 {0, 5, 10, 15, 20, 25, 30}\n", "Symmetric difference {3, 5, 6, 9, 10, 12, 18, 20, 21, 24, 25, 27}\n", "Symmetric difference {3, 5, 6, 9, 10, 12, 18, 20, 21, 24, 25, 27}\n" ] } ], "source": [ "print(\"S1\",S1)\n", "print(\"S2\",S2)\n", "print(\"Symmetric difference\", S1^S2)\n", "print(\"Symmetric difference\", S2.symmetric_difference(S1))" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Cartesian Product" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In set theory (and, usually, in other parts of mathematics), a Cartesian product is a mathematical operation that returns a set (or product set or simply product) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B.\n", "\n", "$${\\displaystyle A\\times B=\\{\\,(a,b)\\mid a\\in A\\ {\\mbox{ and }}\\ b\\in B\\,\\}.}$$\n", "\n", "More generally, a Cartesian product of n sets, also known as an n-fold Cartesian product, can be represented by an array of n dimensions, where each element is an *n-tuple*. An ordered pair is a *2-tuple* or couple. The Cartesian product is named after [René Descartes](https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes) whose formulation of analytic geometry gave rise to the concept" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": true }, "outputs": [], "source": [ "A = set(['a','b','c'])\n", "S = {1,2,3}" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cartesian product of A and S\n", "{'a', 'c', 'b'} X {1, 2, 3}:{('b', 3), ('b', 2), ('a', 1), ('a', 2), ('a', 3), ('c', 3), ('c', 2), ('b', 1), ('c', 1)}\n" ] } ], "source": [ "def cartesian_product(S1,S2):\n", " result = set()\n", " for i in S1:\n", " for j in S2:\n", " result.add(tuple([i,j]))\n", " return (result)\n", "\n", "C = cartesian_product(A,S)\n", "print(\"Cartesian product of A and S\\n{} X {}:{}\".format(A,S,C))" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Length of the Cartesian product set: 9\n" ] } ], "source": [ "print(\"Length of the Cartesian product set:\",len(C))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** Note that because these are ordered pairs, same element can be repeated inside the pair i.e. even if two sets contain some identical elements, they can be paired up in the Cartesian product **" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cartesian product of {1, 2, 3, 4} and {2, 3, 4} is:\n", "{(1, 2), (3, 2), (1, 3), (3, 3), (4, 4), (1, 4), (2, 3), (4, 3), (2, 2), (4, 2), (3, 4), (2, 4)}\n" ] } ], "source": [ "A = {1,2,3,4}\n", "B = {2,3,4}\n", "\n", "print (\"Cartesian product of {} and {} is:\\n{}\".format(A,B,cartesian_product(A,B)))" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "** Instead of writing functions ourselves, we could use the *itertools* library of Python. Remember to turn the resulting product object into a list for viewing and subsequent processing **" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from itertools import product as prod" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)]\n" ] } ], "source": [ "A = {1,2,3,4}\n", "B = {2,3,4}\n", "p=list(prod(A,B))\n", "print (p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cartesian Power\n", "\n", "The Cartesian square (or binary Cartesian product) of a set X is the Cartesian product $X^2 = X × X$. An example is the 2-dimensional plane $R^2 = R × R$ where _R_ is the set of real numbers: $R^2$ is the set of all points (_x_,_y_) where _x_ and _y_ are real numbers (see the [Cartesian coordinate system](https://en.wikipedia.org/wiki/Cartesian_coordinate_system)).\n", "\n", "The cartesian power of a set X can be defined as:\n", "\n", "${\\displaystyle X^{n}=\\underbrace {X\\times X\\times \\cdots \\times X} _{n}=\\{(x_{1},\\ldots ,x_{n})\\ |\\ x_{i}\\in X{\\text{ for all }}i=1,\\ldots ,n\\}.}$\n", "\n", "The [cardinality of a set](https://en.wikipedia.org/wiki/Cardinality) is the number of elements of the set. Cardinality of a Cartesian power set is $|S|^{n}$ where |S| is the cardinality of the set _S_ and _n_ is the power.\n", "\n", "__We can easily use itertools again for calculating Cartesian power__. The _repeat_ parameter is used as power." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cartesian power 2 with length 9: [(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)]\n", "\n", "\n", "Cartesian power 3 with length 27: [(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1), (1, 3, 2), (1, 3, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 1, 1), (3, 1, 2), (3, 1, 3), (3, 2, 1), (3, 2, 2), (3, 2, 3), (3, 3, 1), (3, 3, 2), (3, 3, 3)]\n" ] } ], "source": [ "A = {1,2,3} # 3 element set\n", "p2=list(prod(A,repeat=2)) # Power set of power 2\n", "print(\"Cartesian power 2 with length {}: {}\".format(len(p2),p2))\n", "print(\"\\n\")\n", "p3=list(prod(A,repeat=3)) # Power set of power 3\n", "print(\"Cartesian power 3 with length {}: {}\".format(len(p3),p3))" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tuples in {1, 2, 3}^2: \n", "(1, 2)\n", "(3, 2)\n", "(1, 3)\n", "(3, 3)\n", "(3, 1)\n", "(2, 1)\n", "(2, 3)\n", "(2, 2)\n", "(1, 1)\n", "Size = 9\n" ] } ], "source": [ "A = {1, 2, 3}\n", "k = 2\n", "cartesian_power = set([i for i in prod(A, repeat = k)])\n", "print(\"Tuples in %s^%i: \" %(A,k))\n", "for i in cartesian_power:\n", " print(i)\n", "print;\n", "print(\"Size = \", len(cartesian_power))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }