
Towards Binary Diversified Challenges For A Hands-On Reverse
Engineering Course

Christopher Stricklan, TJ OConnor
{cstricklan,toconnor}@�t.edu
Florida Institute of Technology

ABSTRACT
The balance of a practical hands-on and theoretical approach for
reverse engineering coursework o�ers a strong approach for cyber-
security education. This balance is key to helping students build the
skills necessary to contribute to the industry upon graduation. How-
ever, the remote learning demands of the current pandemic present
a challenge to this approach. Inappropriate collaboration between
students poses a threat to the educational bene�ts of practice-based
learning. Speci�cally, inappropriate collaboration can threaten the
development of critical problem skills gained during individual
work. Further, relying on instructors to create unique challenges
for each student fails to scale. To overcome these challenges, we
have implemented a binary diversi�cation system that produces
unique reverse engineering challenges per student. In this paper, we
present the technical details and lessons learned implementing this
approach. We believe that sharing our approach will bene�t cyber-
security education instructors looking to overcome the challenges
of remote-learning cybersecurity coursework.

CCS CONCEPTS
• Social and professional topics!Model curricula; Comput-
ing education programs; • Software and its engineering !
Software reverse engineering.
ACM Reference Format:
Christopher Stricklan, TJ OConnor. 2021. Towards Binary Diversi�ed Chal-
lenges For A Hands-On Reverse Engineering Course. In 26th ACM Con-
ference on Innovation and Technology in Computer Science Education V. 1
(ITiCSE 2021), June 26-July 1, 2021, Virtual Event, Germany. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3430665.3456358

1 INTRODUCTION
In this paper, we share a description of the design of a binary
diversi�cation build system for use in reverse engineering (RE)
course education. Our goal is to demonstrate a balanced approach
to mitigate student collaboration while not being cumbersome to
implement. The RE course is hands-on and emphasizes the build-
ing of a work�ow for analyzing binaries that scale in di�culty.
During this course, we strive to present the values, practices, and
approaches of a hacker focused curriculum [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8214-4/21/06. . . $15.00
https://doi.org/10.1145/3430665.3456358

Our approach leverages a jeopardy-based capture-the-�ag (CTF)
competition. This approach provides a valuable tie between security
concepts while presenting an exemplar environment for their appli-
cation [8]. This teaching approach of a hands-on RE course becomes
challenging due to the necessity and demand for novel challenges
each semester. The presented CMake build system facilitates cre-
ating a set of diverse binaries to alleviate this demand. In addition
we have employed this as a framework to elicit student created
challenges for a class head-to-head CTF. This provides the students
with another view of the RE process; requiring them to evaluate
their challenges to prove they apply a valid and appropriate RE
work�ow.

Our university implemented a hybrid learning environment dur-
ing the recent novel coronavirus, with students participating re-
motely and in-class. Recent anecdotes of remote-learning cheating
scandals at the US Military and Naval Academies demonstrate the
problem of inappropriate collaboration[5, 10]. Unintended and in-
appropriate student collaboration eliminates the necessary struggle
to develop the critical problem solving skills in reverse engineering.
Instructor-produced challenges cannot be distributed to multiple
students or reused in di�erent semesters without the risk of a
student inappropriately using the solution of a classmate. Once
challenges and solutions are given out as soft copies we have little
control over where they end up and how they are used. Our chal-
lenges and their solutions are dumped into the wild. As a smaller
university, we do not have the faculty available to create a corpus
of challenges for one-time use.

Using the solution presented in this paper o�ers control over the
type of RE challenges we wish to create while being randomly mod-
i�ed for an added anti-cheat e�ect. Our binary diversity approach
allows students to study past binaries, but not copy solutions re-
quiring them to still follow through using the skill sets presented
during the RE course. In the end we can manage the level of dif-
�culty of each binary, provide an enjoyable learning experience,
and minimize the time to generate the supporting meta-�les. This
paper makes the following contributions:

(1) We share our experiences, lessons learned, and materials
for embracing a take home RE examination with a level of
con�dence of limiting student collaboration.

(2) We present a means to create binary diversity and supported
meta-�les for reverse engineering education.

Organization: Section 2 investigates previous work related to bi-
nary diversi�cation in learning and CTF focused environments.
Section 3 gives an overview of our build system. In Section 4, we
provide a detailed description of our approach of using CMake as
methodology for binary diversi�cation. Section 5 o�ers insight and
examines future challenges. Section 6 summarizes our conclusions.

Figure 1: CMake Build System Flow for Binary Diversi�cation (left) top-level CMake script generates diverse binaries (right)

2 PRIORWORK
Binary analysis courses (e.g. binary RE and vulnerability research)
typically require a corpus of compiled binaries for analysis. A sim-
ple solution is to present crackeme challenges [2]. Crackmes with
their popularity in the hacker domain have an encyclopedia of
published solutions available for students to �nd and use. However,
readily available solutions make such challenges an invalid resource
for grading opportunities like examinations. Automated tooling
can lessen educators’ burden from the time-consuming process of
creating unique challenges. An initial step forward is the Tigress
system [15] that obfuscates the source code through an automated
means. This technique doesn’t change the overall set of available
solutions but does obfuscate the program’s inner meaning similar to
the international obfuscated C code contest [9]. In trying to create
an anti-cheat environment this only presents a minimal barrier to
student collaboration. In addition, we need to make sure that we
provide a ramp in di�culty when presenting challenges to students
[3] to allow time for the students to build a work�ow in performing
analysis. To go a bit further metamorphic code injection [6] has
been used as an anti-cheating technique that produces binary diver-
si�cation. This technique is the closest research to our goal but falls
short in providing unique functionality changes to the challenges
required to be solved.

PicoCTF [7] has shown great promise creating learning engage-
ment in the classroom by leveraging a CTF approach. Typical CTF
competitions consist of static binaries that are the same between
competitors. As time and resource constraints limit the ability to
both create and distribute unique binaries fairly among competi-
tions. Our paper presents a dynamic method to develop underlying
content for course based CTFs.

3 METHODOLOGY OVERVIEW
Our approach leverages the CMake build system version 3.0 [1] to
construct unique challenges. Figure 1 illustrates the creation of our
unique challenges. We �rst generate the challenge source code. This
source code contains the compiler de�nitions that the build system
uses to specify the speci�c cases for binary diversi�cation. The
CMake build system processes these de�nitions to create diverse
binaries, startup con�guration �les, answer keys, and �ags (i.e.,
challenge solutions) for each student. The code listed in the �gure
is the top-level loop that performs each task to create unique data
sets.

The following subsection discuss the key aspects of our approach
including the creation of the binary compilation, answer �les, �ag
�les and con�guration �les. While the answer �les and xinetd
con�guration use similar techniques for �le generation, they each
perform a speci�c goal in the overall build system. In addition,
we do use the build system to generate �ags for each challenge
binary. While multiple methods exist to generate these �ags, we
use this system for simplicity. In the following sections, we limit
our discussion of our tooling to use just a single source base for
generating a single challenge binary and meta-�les per student.
We have used this approach to generate multiple unique challenge
binaries for each student using the template presented here.

4 METHODOLOGY IMPLEMENTATION
4.1 Binary Compilation
Our compilation approach supports creating binaries for unique
CPU architectures. Currently, we use this approach to present x86,
x86_64, and ARM binaries to our students. On deployment to our

xinetd server we use qemu-user to emulate the ARM binaries. For
reverse engineering challenges this provides a host of di�erent
combinations to evaluate our students learned skill set. The builds
CMakeLists.txt Figure 1 contains the top-level loop that iterates
over the STUDENTS environment variable. We create a new bi-
nary name using the aggregation of student and NAME passed to
the add_executable CMake function. This will create a separate
compiled binary for each student. In our initial system we create
a diverse binary per student using the following three techniques:
function ordering, source code modi�cations, and obfuscation.

Function Ordering: The order of functions allow us to create a
layer of randomness. We can include multiple challenges in the
same binary and then perform a function call on a subset of those
or a single challenge (e.g. Key Validator) could randomly choose an
order given no order of operations dependencies. We demonstrate
the result in Figure 2 that randomizes three di�erent stage function
(Stage 1, Stage 2, Stage 3) into di�erent call graph orders. This is
done by creating multiple environment variables FUNCPTRx that
get string substituted during compilation. This example is pulled
from our MidTerm exam at which point we haven’t rigorously
introduced the concept of CTFs to the students. As a result we
typically compile multiple challenges into a single binary. We can
see in Figure 3 where the compiler de�nitions are used to make
the randomly ordered function calls. The other way we use this
technique is in a key validator binary where we will evaluate user
input as a key. In that case wewould evaluate the key for correctness
in random order.

Source Code Modi�cations:We also include source code modi�-
cations as apart of the compiler de�nitions. As a simple example we
randomly choose between subtraction and addition mathematical
operations Figure 4. We also choose how many times the student
will have to successfully execute their responses to our input re-
quests. While this is not an in depth example; it illustrates the
technique. Source code modi�cation is not limited to mathematical
operations, other examples include using #de�ne sections of code to
include, change the operands of a function call, and set conditional
expression values to be evaluated.

Function Obfuscation: Finally, obfuscating functions can be in-
corporated into source �les. Though not as valuable as the prior
techniques it still adds to the binary diversi�cation. These func-
tions are inline declared functions designed to lead the student
away from the answer they should be solving. This noise requires
the students to quickly �gure out that this data is not valuable in
solving the overall challenge. Specially it requires them to evaluate
the disassembly graph view to �nd dead code paths. To implement
we randomly choose an available function and set a compiler def-
inition to be called during execution. These compiler de�nitions
are string substituted during compile time. We can place them any
where within our challenge to delay the students from getting to
the core challenge code. We could interleave the functions amongst
the challenge itself to make it a more di�cult reversing task or
simply place it at the start and end of the challenge.

Figure 2: Disassembly view of Function Ordering results be-
tween two di�erent binaries

Figure 3: Function ordering source

#define FP1 FUNCPTR1

#define FP2 FUNCPTR2

#define FP3 FUNCPTR3

FP1()

FP2()

FP3()

Figure 4: Source code modi�cation of mathmatical opera-
tions. (left) Performs +,+,-,- (right) Performs -,+,-,+

4.2 Answer Files
To validate that our challenge is able to obtain a �ag we generate a
set of answer key �les. Each answer �le that is generated contains
the customized settings used for generating the challenge binary.
In Listing 5 we demonstrate our template for the answer key for the
challenge. To facilitate features such as debugging, local, and remote
connection we use the Python library PwnTools [13]. This allows
us to perform debugging locally as we are building our challenges,
but also use the same script to connect to our deployed binary to
obtain this students �ags. This �le acts as the template with the
following environment variables.

• ${BINARY}: The name of our current binary.
• ${student}: The student we are current compiling for.
• ${STUDENT_ID}: Internal ID we generated for this student.
• ${CHALLENGE_PORTNUM}: Port number to use for this
challenge.

• ${STAGE1OP(1,2,3,4)}: The randomly generated operation
used for this line of math

Using the con�gure_�le function in the CMake script Listing 5
all of the required environmental variables to generate a custom
answer key are populated to a �nal student answer key �e installed
into the students release directory.

4.3 xinetd Con�guration
The challenge binaries presented are hosted on a cloud environ-
ment using the xinetd service. This provides a signi�cant advantage
since the binaries being generated aren’t required to manually open
listening sockets to be hosted. Xinetd performs the heavy lifting
here to create a network service. Since our goal is to create a unique
challenge binary per student we also need to generate the corre-
sponding service �le based on our template in Listing 7. At the
top level CMakeLists.txt we set the environment variable CHAL-
LENGE_PORTNUM to the lower hundred digits (e.g. 110, 506) of
our 65535 port space. Aggregating the ID_${student} and CHAL-
LENGE_PORTNUM we can generate a full port number to be
used in our xinetd con�guration �le. Assuming using port numbers
above 10000; we can have 55 students and 1000 challenges for each.
This is more than su�cient for our purposes, but we could use
any combination of decimal number places to add more students or
challenges if needed. Using this information we can �ll in the xinetd
con�guration template using a similar CMake script as our answer
�les to generate the students unique binary con�guration �le. Us-
ing the con�gure_�le function all of the required environmental
variables below will be �lled in and generate a new con�guration
�le to be installed in the release directory for the student.

• ${BINARY}: The name of our current binary.
• ${student}: The student we are current compiling for.
• ${STUDENT_ID}: Internal ID we generated for this student.
• ${CHALLENGE_PORTNUM}: Port number to use for this
challenge.

4.4 Flags
In our �nal step of the process we generate a unique �ag per student
per binary. We use a universally unique identi�er (UUID) as the �ag.

Figure 5: Python answer script template

from pwn import *

DEBUGMODE = 0

LOCAL = 0

BINARY=�./${student}-${BINARY}�

QUIETMODE = 1

HOST=<redacted>

PORT=${STUDENT_ID}${CHALLENGE_PORTNUM}

Open our Connection

conn = remote(HOST, PORT)

conn.recvline();

conn.sendline(�${student}�);

loopcount = ${STAGE1STEPS}

for i in range(0, loopcount):

values = conn.recvline();

arrvalues = values.decode(�utf-8�)[:-1].split(�,�)

value1 = int(arrvalues[0])
value2 = int(arrvalues[1])

if not QUIETMODE:

print(�%d�,�%d� % (value1, value2))

result = value1 ${STAGE1OP1} value2

result = result + (value1 ${STAGE1OP2} value2)

result = result + (value1 ${STAGE1OP3} value2)

result = result + (value1 ${STAGE1OP4} value2)

conn.sendline(str(result))

conn.recvline()

print(conn.recvline().decode(�utf-8�)[:-1])

This allows us to randomly generate the �ag using the CMake func-
tion string(UUID flagNAMESPACE${UUID_DNS_NAMESPACE}
NAME "${name}-${student}-${stage}" TYPE MD5) which will
generate a random UUID. We can then save this string into a unique
�ag �le with a name formatted by ${student}-${BINARY}.

5 LESSONS LEARNED

Successes: Though not a rigorous study; we have observed that
the students have taken di�erent approaches in solving their chal-
lenge binaries. Each student turns in a detailed work�ow analysis
write up and answer �les. From the course the students each have
been taught the same work�ow process, using binary diversity the
students demonstrate unique results in how they have obtained
their �ags. In addition their answer python scripts that exercise the

Figure 6: CMake script for python answer �le generation

configure_file(answer/answer.py ${student}_answer.py)

LIST(APPEND ANSWERFILES

�${CMAKE_CURRENT_BINARY_DIR}/${student}_answer.py�)

set(data �python3�./${student}_answer.py\n�)

file(APPEND ${CMAKE_CURRENT_BINARY_DIR}/allflags.sh

�${data}�)

Figure 7: xinetd con�guration �le template

service ${BINARY}

{

id = ${BINARY}

user = ${student}

server = /home/${student}/${BINARY}

disable = no

port = ${STUDENT_ID}${CHALLENGE_PORTNUM}

socket_type = stream

protocol = tcp

wait = no

type = UNLISTED

}

challenge contain unique approaches to the solutions despite given
a template script �le during the course. Our approach has provided
a practical approach for anti-cheating.

We have found that our students enjoy the format of our RE
course and speci�cally the challenges presented to them. Even after
the course the students reach out to provide their experiences and
overall just want to discuss the challenges further. We recently
hosted a CTF where two students tied for the top spot. In order to
break the tie a real-time head to head tie-breaker was performed.
We gave the students two challenges to solve and the �rst to solve
them both was declared the winner. This was well received by the
entire class. The tie-breaker was hosted on discord and everyone in
the class logged in and participated in the discussion as they watch
their fellow classmates solve the challenges.

Challenges and Next Steps: One challenge found with using
CMake is how themeta-�les are created. These �les are only created
when the build system is generated; not when a binary is built. So
during binary testing if you make source code changes and update
your answer template �les these �les will not always be in sync. The
build system doesn’t update on source modi�cations. In contrast
if you make a change to the CMakeLists.txt �le your build system
might get updated which in turns updates the meta-�les. This can
cause an out of sync issue when you have released your binaries
to the students and your service server. During development the

integrated development environment you choose may or may not
present these challenges.

We need to extend the binary diversi�cation by incorporating a
code template system to modify the individual code blocks. The use
of �ow-based programming [11] could provide an approach. This
has been demonstrated [14] with using it to generate challenges for
SQL injection and cross-site scripting vulnerabilities. In addition,
for our vulnerability research course we will evaluate the use of au-
tomated bug insertion [12] to enable further binary diversi�cation
for vulnerable challenges.

Finally, we are interested in extending the CTFd framework
to provide a more dynamic game system. The CTFd framework
presents a static game to the students. Being able to incorporate
a dynamic game based on the binary diversi�cation will be a par-
adigm shift in CTF competitions. Our focus would be to couple
binaries and �ags to a speci�c user allowing them to only view
their unique set of challenges.

6 CONCLUSION
In this paper, we presented our technique to provide binary diver-
sity for reverse engineering challenges. The goal was to provide a
level of anti-cheat protections without having to manually create
a unique set of examination binaries for each student. We have
used this technique over three terms of classes thus far. It has been
clear in the challenge analysis write ups, answer �les, and post dis-
cussions with students that this provides a reasonable expectation
to minimizing collaboration amongst the students. The use of the
CMake build system demonstrates a practical means to incorporate
randomness to generate an environment for binary diversi�cation.

REFERENCES
[1] Website. CMake build system. http://www.cmake.org
[2] Website. crackmes.one. http://crackmes.one
[3] John Aycock, Andrew Groeneveldt, Hayden Kroep�, and Tara Copplestone. 2018.

Exercises for teaching reverse engineering. In 23rd Annual ACM Conference on
Innovation and Technology in Computer Science Education. ACM, Larnaca Cyprus,
188–193.

[4] Sergey Bratus. 2015. What Hackers Learn that the Rest of Us Dont́. (2015).
[5] Tom Vanden Brook. Dec 21, 2020. West Point accuses more than 70 cadets of

cheating in worst academic scandal in nearly 45 years. USA Today (Dec 21,
2020). https://www.usatoday.com/story/news/politics/2020/12/21/west-point-
catches-70-cadets-worst-cheating-scandal-50-years/5856130002/

[6] Wu chang Feng. 2015. A Sca�olded,Metamorphic CTF for Reverse Engineering. In
2015 USENIX Summit on Gaming, Games, and Gami�cation in Security Education
(3GSE 15). USENIX Association, Washington, D.C. https://www.usenix.org/
conference/3gse15/summit-program/presentation/feng

[7] Peter Chapman, Jonathan Burket, and David Brumley. 2014. PicoCTF: A Game-
Based Computer Security Competition for High School Students. In 2014 USENIX
Summit on Gaming, Games, and Gami�cation in Security Education (3GSE 14).
USENIX Association, San Diego, CA. http://www.usenix.org/conference/3gse14/
summit-program/presentation/chapman

[8] R. Fanelli and TJ OConnor. 2010. Experiences with Practice-Focused Under-
graduate Security Education. Workshop on Cyber Security Experimentation and
Test. In 2010 USENIX 3rd Workshop on Cyber Security Experimentation and Test.
USENIX, Washington, DC.

[9] S Cooper L Broukhis and LC Noll. Website. International Obfuscation C Code
Contents. http://www.ioccc.org

[10] Heater Mongilio. Dec 22, 2020. Naval Academy reviewing �nal physics
exam after ‘inconsistencies’. Capital Gazette (Dec 22, 2020). https:
//www.capitalgazette.com/education/naval-academy/ac-cn-naval-academy-
test-inconsistencies-20201222-llyhwrq5a5grxnkp4utupnwjla-story.html

[11] J. Paul Morrison. 2010. . CreateSpace.
[12] Jannik Pewny and Thorsten Holz. 2020. EvilCoder: Automated Bug Insertion.

arXiv:2007.02326 [cs.CR]
[13] pwntools Website. PwnTools CTF Toolkit. https://github.com/Gallopsled/

pwntools

[14] Marina Ribaudo and Andrea Valenza. 2019. Semi-Automatic Generation of
Cybersecurity Exercises: A Preliminary Proposal. In Proceedings of the 2nd ACM
SIGSOFT International Workshop on Ensemble-Based Software Engineering for
Modern Computing Platforms (Tallinn, Estonia) (EnSEmble 2019). Association for
Computing Machinery, New York, NY, USA, 16–21. https://doi.org/10.1145/

3340436.3342728
[15] Clark Taylor and Christian Collberg. 2016. A Tool for Teaching Reverse Engi-

neering. In 2016 USENIX Workshop on Advances in Security Education. USENIX,
Austin,TX.

