Toward an Automatic Exploit Generation Competition for an
Undergraduate Binary Reverse Engineering Course

TJ OConnor
toconnor@fit.edu
Florida Institute of Technology
Melbourne, FL, USA

Isaiah Thomas
ithomas2018@my.fit.edu
Florida Institute of Technology
Melbourne, FL, USA

ABSTRACT

Analyzing binary programs without source code is critical for cyber-
security professionals. This paper presents an undergraduate binary
reverse engineering course design that culminates with a compre-
hensive binary exploitation competition. Our approach challenges
students to develop tools that automatically detect and exploit pro-
gram vulnerabilities. We hypothesize that this competition presents
a unique opportunity to exercise the core competencies of binary
reverse engineering. We share our detailed design, labs, experi-
ences, and lessons learned from this course for others to build on
our initial success.

CCS CONCEPTS

« Social and professional topics — Model curricula; - Software
and its engineering — Software reverse engineering.

ACM Reference Format:

TJ OConnor, Carl Mann, Tiffanie Petersen, Isaiah Thomas, and Chris Strick-
lan. 2022. Toward an Automatic Exploit Generation Competition for an
Undergraduate Binary Reverse Engineering Course. In Proceedings of the
27th ACM Conference on Innovation and Technology in Computer Science
Education Vol 1 (ITiCSE 2022), July 8-13, 2022, Dublin, Ireland. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.3524744

1 INTRODUCTION

We exist in an era where attackers can rapidly reverse engineer
binary code, identify vulnerabilities, and weaponize exploits in
days. Such rapid approaches rely heavily on automated reverse
engineering tools that detect bugs and suggest possible exploitation
approaches. For example, on June 8th, 2021, Microsoft released a rou-
tine patch that mitigated several low-risk vulnerabilities [34]. The
patch included a fix for a vulnerability in the Windows Print Spooler
that enabled a local low-privilege attacker to gain administrator
permissions [36]. Within a day of Microsoft’s patch, researchers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9201-3/22/07...$15.00
https://doi.org/10.1145/3502718.3524744

Carl Mann
cmann2013@my.fit.edu
Florida Institute of Technology
Melbourne, FL, USA

Tiffanie Petersen
tpetersen2018@my.fit.edu
Florida Institute of Technology
Melbourne, FL, USA

Chris Stricklan
cstricklan@fit.edu
Florida Institute of Technology
Melbourne, FL, USA

reverse-engineered the code to discover a similar vulnerability. The
new vulnerability existed in a nearly identical bug in a different
function in the Print Spooler service. By July 1st, cybersecurity
researchers published a proof-of-concept that enabled attackers
to exploit the bug remotely [37]. Due to the high risk of exploita-
tion in the wild, Microsoft pushed an out-of-band patch within a
week [35]. The new vulnerability was given the PrintNightmare
moniker due to the high risk and exposure. On September 29th,
The Cybersecurity and Infrastructure Security Agency (CISA) and
the Federal Bureau of Investigation (FBI) alerted that the Conti Ran-
somware Group was actively exploiting PrintNightmare against
victims [14]. Further, on November 3rd, CISA added PrintNight-
mare to the catalog of vulnerabilities in active exploitation against
the federal government [15].

As this previous example shows, analyzing binary code without
source code is a critical skill for cybersecurity professionals [4].
The NSA Cyber Operations outcomes and NICE Workforce Compe-
tencies both capture Reverse Engineering as a unique knowledge
unit [38, 41]. However, only limited works have examined how to
teach this skill to students in the classroom [4, 48, 51, 52]. Aycock
et al. argue that this is a direct result of the growing de-emphasis
on assembly programming in computing disciplines [4]. The 2020
ACM Curriculum Recommendations Computing Discipline further
strengthens their argument, failing to introduce any of the core
tasks of reverse engineering, including static analysis, dynamic
analysis, or symbolic execution. We agree with previous works
that argue that we must further examine effective and practical
approaches for teaching reverse engineering [4, 48, 51].

The following paper shares our experiences with an undergradu-
ate course and culminating competition that challenged students to
develop tools that automatically detect and exploit software vulner-
abilities. We hypothesize that developing automatic exploitation
tools exercises the core competencies of binary reverse engineering.
We acknowledge that developing these tools initially presents a
daunting task to undergraduate students. Therefore, we method-
ically design our course materials to inspire student confidence
before approaching this culminating task. This paper makes the
following contributions:

(1) We share our course design, lab materials, and lessons learned
for an undergraduate reverse engineering course that culmi-
nates in an automatic exploit generation competition.

https://doi.org/10.1145/3502718.3524744
https://doi.org/10.1145/3502718.3524744

(2) To allow other instructors to build on our initial success, we
publish all code, binaries, and virtualization containers for
our labs and competition at https://research.fit.edu/cyber.

Organization: Section 2 investigates previous work on reverse
engineering education and motivates the case for auto-exploit gen-
eration competitions. In Section 3, we provide an overview of our
course design and objectives. Section 4 examines our decisions
behind the course infrastructure and labs. Section 5 presents the
design, implementation, and student results from the competition.
Section 6 offers insight and examines future challenges. Section 7
summarizes our conclusions.

2 BACKGROUND

Our paper advocates for integrating an automatic exploitation com-
petition into a reverse engineering course. As such, we first review
previous approaches for teaching reverse engineering. Further, we
discuss the DARPA Cyber Grand Challenge results, the first entirely
autonomous cyber warfare exercise.

2.1 Reverse Engineering Education Approaches

Previous works [4, 48, 51, 52] have explored approaches for reverse
engineering education. These approaches predominately rely on
the Capture-The-Flag (CTF) challenges [12, 13]. In standard CTF
competitions, students race to solve computer security challenges
which reveal success in the form of a flag [12]. Burns et al. analyzed
3,600 capture-the-flag challenges over five years (2011-2016) to ob-
serve trends [11]. They documented that reverse engineering CTF
challenges required students to exercise static and dynamic anal-
ysis. The majority of static analysis challenges required students
to disassemble Linux ELF binary programs into x86 or AMD64 as-
sembly code and analyze the program’s intent. Further, dynamic
analysis challenges required the students to step through program
execution, observing and setting variables at various breakpoints
to alter execution. Aycock et al. presented a series of these chal-
lenges to teach reverse engineering that advances students from
tool familiarity to analyzing malicious code in sandbox environ-
ments [4]. However, Stricklan and O’Connor argued that leveraging
CTF challenges in the classroom can lead to unintended cooper-
ation in the era of virtual education and presented an approach
for dynamically creating unique binary challenges [51]. To this
end, Taylor and Collberg presented an online tool for obfuscat-
ing binaries to present unique CTF challenges [17, 52]. However,
these approaches have predominately focused exclusively on static
or dynamic analysis methods for reverse engineering. In contrast,
symbolic execution, as demonstrated by Springer and Feng, offers
great promise as a tertiary method for reverse engineering [48].
The next subsection reviews the Darpa Cyber Grand Challenge and
its results to understand the benefit of symbolic execution.

2.2 Darpa Cyber Grand Challenge

In August 2016, Darpa held the Cyber Grand Challenge competition
at the DEF CON security conference [47]. The contest pitted seven
teams against each other to build a cyber reasoning system capable
of automatically finding bugs, exploiting the bugs on other teams,

and formulating patches on their systems. Over 95 rounds, the com-
petition scored each team on the availability of services, security
of services (Whether the bug had been exploited on their systems),
and evaluation (whether the team successfully exploited the bug on
other teams’ systems). The winning prize of USD 2,000,000 attracted
top academic and industry researchers to develop novel approaches
for exploit development.

The winning team ForAllSecure, closely aligned with Carnegie
Melon University, demonstrated the practicality of concolic exe-
cution (the combination of symbolic execution with concrete exe-
cution) by generating fuzzing test cases to detect bugs [3]. Their
success also largely depended on their patching strategy, which
leveraged a Bayesian classifier to make reactive decisions based on
the probability of another team’s ability to develop an exploit [3].
Even in the crash of their exploit-throwing framework halfway
through the competition, this strategy succeeded. Shellphish, a
highly-competitive capture-the-flag team associated with UC Santa
Barbara, earned the third-place victory with the development of
several binary analysis tools [44]. Their work, which they open-
sourced as the angr Framework [46, 50, 58] successfully detected
and exploited the most vulnerabilities against other teams. The suc-
cess of both teams demonstrated the promise of symbolic execution
as a new analysis method for reverse engineers. Open-sourcing
angr has produced numerous derivative works that showcase the
power of symbolic and concolic execution [18, 19, 29, 59, 60]. How-
ever, it has seen limited adoption by cybersecurity curriculum. Both
the NSA Cyber Center of Excellence Knowledge Units and NICE
Cybersecurity Workforce Skills only focus on traditional static
and dynamic reverse engineering methods for analysis [38, 41].
However, Springer and Feng [48] provided an initial approach for
introducing symbolic execution into the curriculum, challenging
students to solve capture-the-flag problems with angr.

3 COURSE OVERVIEW

This section describes the course model for our undergraduate
binary reverse engineering course. The course meets twice weekly
for 75 minutes each class over 16 weeks. It is the fourth course in a
six-course sequence for our cyber operations concentration. Our
students are pursuing a variety of computing discipline degrees. The
course prerequisites include an introductory cybersecurity course
and an assembly programming course. We designed the course
to satisfy the mandatory NSA CAE Cyber Operations Knowledge
Units for reverse engineering. Based on this standard, the student
outcomes include the following:

(1) Use industry tools to safely perform static and dynamic anal-
ysis of software of unknown origin, including obfuscation,
to fully understand the software’s functionality.

(2) Analyze binaries using reverse engineering tools including
disassembling, debugging and virtualizing software in sand-
box environments.

(3) Describe the techniques specifying program behavior, the
classes of well-known defects, and how they manifest them-
selves in various languages.

The course topics, listed in Table 1, graduate students from the
basics of binary analysis to exploitation. We follow a lecture with
labs model where we balance theoretical lessons with practical labs.

Table 1: The course balances theory-based lessons with prac-
tical labs and contemporary research.

References
30, 32]
20, 22, 49]
21, 43]
32, 54]

Lesson

AMD64 Assembly Refresher [

Dynamic Analysis Approaches & Tools [

Static Analysis Approaches & Tools [

ELF Executable File Format [

Automating Binary Analysis [6-8]

Binary Obfuscation [16, 17, 27, 28, 52]

Anti Reverse Engineering Techniques [56]
[55
[
[
[
[

Reverse Engineering Network Functions [55]

Symbolic Execution 23, 44, 46, 50, 58]
ARMG64 Architecture 2, 31]

Reverse Engineering Windows Binaries 25, 33, 42]
Binary Exploitation 1, 26, 53]

In the following section, we expand on the design of these experi-
ential learning labs. We provide students with reference materials
from a broad array of sources. As mentioned in [4], the topic of
reverse engineering lacks the traditional computing discipline re-
sources. As recommended in [9], our materials span across technical
references, industry-standard documents, academic publications,
contemporary reverse engineer videos, blog posts, and security
conference presentations. We carefully chose these nontraditional
materials. In particular, we observed students enjoyed the technical
content from LiveOverflow, a Google-sponsored researcher who
produces reverse-engineering videos on YouTube [20-22].

4 COURSE IMPLEMENTATION

The following section describes the infrastructure and labs for the
course. Specifically, we examine how the labs exercised the core
competencies of reverse engineering and prepared the students for
the culminating competition.

4.1 Course Infrastructure

We hosted our labs and associated services on the CTFd [13] capture-
the-flag platform. CTFd provides an accessible user interface to host
binaries, challenges and provide immediate feedback to students
and instructors [13]. This approach also benefited remote students
as our university operated in a hybrid model due to the current
pandemic. To reduce the impact on our IT staff, we leased a CTFd
server that hosted our challenges and services for USD 20 per month.
Further, we purchased personal (academic) licenses of the Binary
Ninja [57] reverse engineering platform for students at the cost
of USD 79 per student. Although we prefer the user experience of
Binary Ninja, we concede the freely available Ghidra [43] offers
similar debugging, plugin, and intermediate language support and
can achieve the same outcomes. Additionally, Hex-Rays offers free
educational licenses for the IDA decompiler for x86, AMD64, ARM
and ARM64 architectures [24]. We also provided students with a
Docker image to standardize student environments and analyti-
cal tools. As we discuss in Section 6, standardizing environments
reduces the troubleshooting surface area for instructors. The fol-
lowing paragraphs expand on the specific labs.

4.2 Course Labs

The practice-based experiential labs in the following subsections
graduate students from the basics of binary analysis to exploitation.
We gradually increased lab difficulty during the course. Further, we
isolate the outcomes for each lab to emphasize a unique competency
of reverse engineering, including dynamic analysis, static analysis,
analysis automation, symbolic execution, and reversing different
architectures.

4.3 Dynamic Analysis Lab: Bomb-Lab

Our first lab, the bomb-lab, introduced students to dynamic analysis.
We based the bomb-lab on a traditional computer science program,
which familiarizes students with the basics of debugging [10]. Our
lab consisted of five levels, each that requested specific user input
to successfully disarm the bomb. We carefully crafted each level to
introduce students to the concepts of calling convention, memory
management, recognizing programming constructs, and tracing the
program execution. We primed the lab in the prior lecture, review-
ing these concepts. We found that the distribution mechanism of
the lab proved critical to producing student outcomes. Modern bi-
nary analysis frameworks (Binary Ninja, Ghidra, Ida) all de-compile
binaries to high-level intermediate language (HLIL). This represen-
tation, which represents pseudocode of the source code, defeats the
lab outcome of recognizing program constructs from assembly code.
As such, we changed the distribution to a web-based interface and
did not distribute the binary. This web interface, which provided
students with a command-line gdb session, protected students from
bypassing the outcomes. Further, we challenged students to solve
all the levels to earn their Binary Ninja license. With this additional
motivation, we observed that all the students solved the lab within
the class-allotted time.

4.4 Static Analysis Lab: Math Problems

Our next lab introduced students to static analysis. Modern de-
compilers present a challenge for reverse engineering educators.
Reversing a compiled program to a high-level representation was
previously a rite-of-passage for reverse engineering students. This
task requires a painstaking but necessary student effort to trace
the assembly code and maintain the state of the program stack and
memory registers (when possible). However, we must approach
this problem differently in an era of modern decompilers. Previous
works have addressed this challenge by adding substantial com-
plexity to the problem with obfuscated code [16]. Such approaches
rely on camouflaging the code’s intent with jump tables, opaque
predicates, and unreachable blocks. We shared concerns about pre-
maturely introducing complexity and obfuscation too early to un-
dergraduate students. Ultimately, we settled on a partial approach
by developing problems that would force students to understand
the underlying instructions. This approach required students to
trace the program memory through a combination of add, shi, sub,
imul, pop, and mov instructions. However, the decompiler resolves
the binary code to a representation similar to the source.

return zx.q((((arg1 + 0x65) « 8) - (arg1 + 0x65)) * 0x909090)

While the decompiler’s representation offers some clarity, we added
minor complexity to the problem. Specifically, we made the prob-
lem only solvable via an integer overflow. This approach forced
students to trace through the instructions, identify data types, and
understand how the specific math operations handle results that
exceed the data type.

4.5 Automation Lab: Networking Annotation

Next, we introduced students to automating the analysis of assem-
bly code. Specifically, we asked the students to develop a plugin
that annotated the networking calls from a disassembled binary.
We directed students to use the Binary Ninja reverse engineering
platform to add comments when a binary program made a network-
ing call via a wrapper function or system call. Listing 1 shows a
successful student solution that labels the Linux system call (0x31)
as a socket bind() call and parses the IP, Port, and address length
from memory registers. The Binary Ninja API provides a powerful
function that resolves memory register values at a program ad-
dress. Students leveraged this powerful feature to determine the
parameters for each networking call. To verify student solutions, we
generated twelve Linux Metasploit Meterpreter binaries. This dataset
of binaries proved ideal as it included both wrapper and system calls
for networking functions across TCP, HTTP, and ICMP channels.
We found that this lab served as an excellent bridge between the
analysis and automation aspects of reverse engineering. Further, we
challenged students to use documentation, specifically the Linux
man-pages, to determine how to resolve internet addresses from
their stored reverse network byte ordering. We observed that this
lab introduced greater anxiety and student apprehension than pre-
vious labs. Despite these observations, we argue that this lab proved
an essential element of our design as the culminating exploitation
competition requires substantial automation from students. In fu-
ture course offerings, we intend to introduce the Binary Ninja API
earlier in the course materials to reduce student anxiety about
interfacing with a new APL

4.6 Symbolic Execution Lab: AngrY Challenges

Halfway through the course, we introduced symbolic execution
as an analysis method. We hypothesize that introducing this con-
cept too early in a reverse engineering class presents challenges.
Like providing a calculator while initially learning addition, the
tool could prevent student growth. Waiting until the midway point
allowed us to ensure students could understand the how instead of
just applying the tool. Our AngrY Challengeslab introduced students
to symbolic execution as a tertiary analysis method for reverse en-
gineering. In a similar approach to [48], we presented students with
complex capture-the-flag binary programs. Each program prompted
the user for an input and then ran that input through a series of
permutations. The program then checked the final permutation
against a pre-calculated value. When the user entered the correct
input, the program outputted a flag. Instead of tracing or debug-
ging the complex series of permutations, we encouraged students
to leverage symbolic execution as a mechanism for solving the
problem. Our previous in-class lectures demonstrated the theory
behind symbolic execution and introduced the angr binary analysis
framework [58]. While students generally succeeded at this lab, we

Listing 1: Example student results that annotated the net-
working calls of a de-compiled binary.

00400084 4897 xchg rdi, rax

00400086 52 push rdx

00400087 7042402007269 mov dword [rsp], 0x69720002
0040008e 48896 mov rsi, rsp

00400091 6al10 push ox10

00400093 5a pop rdx

00400094 6a31 push 0x31

00400096 58 pop rax

00400097 0f05 syscall

// bind(fd=<RV>, sockaddr=[IP=0.0.0.0, Port=31337], addrlen=16)

believe we missed an opportunity to explore complex use-cases for
symbolic execution. Leveraging minimal knowledge of the input
constraints and conditional branches, students developed angr so-
lution scripts that symbolically solved valid inputs. We intend to
have students explore how to model memory registers and identify
unconstrained program execution paths in future class offerings.
We believe this misstep partially contributed to the limited adoption
of symbolic execution in the culminating competition.

4.7 Other Architectures Lab: ARM Challenges

We presented the students with similar CTF problems to the pre-
vious labs in the final lab but compiled the programs as ARM64
binaries. ARM64, also known as ARMvS, is a 64-bit reduced instruc-
tion set architecture. Smartphones and Internet-of-Things (IoT)
devices commonly leverage ARM64 processors due to the lower
power utilization. We lectured students on the instruction set in
the corresponding lesson, highlighting the unique differences be-
tween AMD64 and ARM64 architectures. We illustrated the dif-
ferences between the calling conventions, memory registers, page
tables, and system calls. However, we purposely spent minimal
time demonstrating how to use tools to statically, dynamically, or
symbolically analyze ARM64 binaries. Instead, we leveraged this
opportunity to challenge students to synthesize their understanding
of reverse engineering. By presenting students a different architec-
ture, we challenged them to demonstrate their ability to develop
architecture-independent reverse engineering analysis approaches.
This approach challenged the students to compose solutions rather
than walk through choreographed debugging steps. We observed
that student challenges revolved around creating debugging en-
vironments. While Docker can develop containers for different
architectures (ARM, MIPS), it does not fully implement the ptrace
capability required to run a debugger. After some significant stu-
dent struggles, we provided our students with a Docker image that
allowed Qemu user-mode to execute and debug ARMv8 binaries.

5 EXPLOIT GENERATION COMPETITION

5.1 Overview

The automatic exploit competition, which served as the final exam,
allowed students to synthesize reverse engineering concepts by ex-
ploring binary exploitation. We challenged students to write a tool
that automatically detected and exploited program vulnerabilities.

Listing 2: Example of a student solution that leveraged dy-
namic analysis, static analysis, and symbolic execution to
develop an exploit.

dynamic analysis: detect buffer overflow from coredump
padding = cyclic_find(core.read(core.rsp, 8), n=8)

static analysis: resolve execve() call from symbol table
execve = pb64(self.elf.sym['execve'])

symbolic execution: construct gadgets to populate parameters
angr_p = angr.Project(self.file)

angr_rop = angr_p.analyses.ROP()
angr_rop.find_gadgets_single_threaded()

chain = angr_rop.write_to_mem(data_section, b"/bin/sh\x@0")
chain += angr_rop.set_regs(rdi=data_section, rsi=0, rdx=0)

exploit is constructed from all analysis methods
self.exploit = b'a'#padding + chain.payload_str() + execve

To balance the potential negative impacts of competition [5, 45],
we divided the students into three balanced teams for the competi-
tion. We provided students with an initial sample of ten vulnerable
binaries. The competition tested the teams’ ability to automatically
analyze and exploit the original binaries and an additional 85 vul-
nerable binaries. As proof of vulnerability (PoV), students had to
redirect program execution to display the contents of a flag file.
The following section discusses the classes of vulnerabilities in the
programs.

5.2 Bug Classes and Exploit Techniques

We limited the scope of vulnerabilities to stack overflows and format
string specifier vulnerabilities, most commonly found in beginner
CTF competitions [11]. We avoided more complex vulnerability
types, including heap and type confusion bugs, introduced later in
our concentration. We compiled the 64-bit Linux ELF binaries with
non-executable (NX) stack protection to require students to lever-
age multiple exploitation techniques. However, we did not enable
stack canaries, address space layout randomization (ASLR), or full
relocation read-only (RELRO), which would require more complex
exploitation techniques. Additionally, we left the symbol tables in
the binary and provided students with a list of standardized variable
and function names. As an example, twelve binaries contained a
win() function that would display a flag if called. We crafted the pro-
gram vulnerabilities such that individual solutions might require
multiple exploitation techniques to succeed. For example, a sample
program could contain a stack-based buffer overflow and a format
string specifier vulnerability. The format string specifier vulnera-
bility might allow leaking the randomized base address of the libc
library. Subsequently, the stack buffer overflow can be leveraged
into overwriting the return pointer to redirect execution into the
one-gadget return-oriented programming (ROP) chain in the libc
library. The following list contains the scope of vulnerabilities and
exploitation techniques required for students to succeed.

Stack-Based Buffer Overflows:

(1) ret2win
(2) ret2execve

(3) ret2syscall

(4) ret2libc/one-gadget

(5) rop parameter-passing gadgets
(6)

6) rop write-what-where gadgets

Format String Specifier Vulnerabilities :

(1) arbitrary read of variable

(2) arbitrary read of libc address

(3) arbitrary write variable primtive
(4) arbitrary write of global offset table

5.3 Competition Environment

We provided students with a Docker container that standardized the
competition environment. The environment contained a limited set
of additional tools, including the pwntools exploit development li-
brary, one_gadget, ROPGadget, ropper, unicorn, capstone, z3-solver,
qiling, gdb, pwndbg, and angr. We also allowed students to submit
patches to the environment if their solution required additional
tooling. Initially, we implemented this environment on an Ubuntu
20.20 container. However, the default GNU Libc Library (GLIBC) in
Ubuntu 20.20 implements protection that requires a 16-bit aligned
stack before a call instruction. After listening to initial student
concerns about the complexity introduced by this protection, we
changed to a Kali container with a Libc version that did not imple-
ment this protection. While we installed angr, we did not explicitly
install the additional angrop tool for using symbolic execution to
construct ROP chains. We believe this misstep partially contributed
to the limited adoption of static analysis in student solutions. As the
winning team identified, angrop provides a powerful mechanism to
identify ROP gadgets for setting registers and write-primitives.

5.4 Student Results

Table 2 reports the student results of the competition. Student solu-
tions far exceeded our expectations for the initial course offering.
While students had initial reservations about the complexity of the
problem, they showed great enthusiasm and excitement in class.
Notably, students enjoyed running the competition live, watch-
ing their solutions exploit binaries and display flags. The winning
team leveraged a combination of static analysis, dynamic analysis,
and symbolic execution to identify and exploit over 80% of the
vulnerable programs. Listing 2 depicts a snippet of their solution
that demonstrates this approach for solving a stack-based buffer
overflow via a ret2execve exploit technique. First, the students dy-
namically sent incrementally sized input to detect buffer overflows
until a segmentation fault produced a core dump file that overwrites
the stack. Next, they statically analyzed the symbol table to see if
it contained an address for the execve call to execute a program.
Finally, they leveraged symbolic execution to identify a write prim-
itive and set memory registers for the call to execve("/bin/sh",0,0).
The two other teams followed similar approaches but failed to lever-
age symbolic execution to identify gadgets. Rather than leveraging
symbolic execution, they used the pwnlib.rop.rop library from pwn-
tools to statically identify ROP chains for setting memory registers

Table 2: The competition results, indicating that students
adopted a variety of techniques for exploiting the binaries.

Team Static Dynamic Symbolic Successfully
Analysis Analysis Execution Exploited
SADD3R v v R 40.0 % (38)
Oh Man! v v - 54.7 % (52)
Solar Panth3r v v v 82.1 % (78)

and write primitives. This limited approach yielded success for the
initial challenges. However, our competition binaries required more
complex ROP chains, requiring a symbolic execution approach. The
winning team’s only limiting factor was identifying functions to
overwrite in the global offset table (GOT). After the competition
(during the holiday break), the students enthusiastically submitted
a patch that successfully exploited all the vulnerable binaries.

6 LESSONS LEARNED
6.1 Successes

Students Enthusiasm & Confidence: A key insight of our work
is that binary exploitation offers an exciting framework to engage
reverse engineering students. Before the final exam, students ex-
pressed informal comments suggesting their uncertainty and anxi-
ety about writing an automatic exploit generation tool. Only limited
students had previous exposure to beginner CTF binary exploitation
challenges, favoring traditional reverse engineering or forensics
CTF challenges. While we extensively primed the students for suc-
cess, we also feared the competition complexity would challenge
students. However, binary exploitation excited students to learn
new tools and explore different analysis methods. We watched
as students gained enthusiasm for preparing their tools. We ob-
served that the cooperative approach yielded success as students
felt comfortable scoping a solution to a particular element. Individ-
ual students focused on different aspects of the problem, including
developing format string specifier harnesses or ROP chain con-
structors. Further, we observed that students took pride in their
solutions, publishing them to GitHub and developing them for fu-
ture CTF competitions. Notably, the winning team expanded their
tool to exploit 100% of the competition binaries.

Standardizing with Docker: We observed throughout the course
that standardizing our lab and competition environments on Docker
virtualization platforms offered substantial benefits to both instruc-
tors and students. Installing reverse engineering tools and frame-
works proves an often frustrating task of chasing library dependen-
cies while managing program version conflicts. Further, differences
between the instructor workstation and students’ layouts can sub-
stantially increase student anxiety about an already complex topic.
To this end, we discovered that baselining students on the same
Docker image for lessons and labs significantly reduced this frustra-
tion and stress. In previous offerings, we distributed virtual course
machines in OVF format. These images often exceed several GiB
of memory and occasionally require an update. In contrast, we
found that we could update and redistribute Dockerfiles as small
text-based files. These Dockerfiles allowed students to rapidly up-
date their environments to support a new tool, as in the ARM64

lab. Further, we could also quickly identify an issue in a student’s
solution when their workstations mirrored our environments.

6.2 Challenges

Greater Adoption of Symbolic Execution: We will emphasize
symbolic execution as a tertiary analysis method in future course
offerings. Reviewing the competition results, we realized the AngrY
Lab challenges did not provide students with enough context to
leverage symbolic execution. We believe that a more substantial
introduction to symbolic execution would result in greater adop-
tion in the competition. To this end, we identified opportunities for
holistic integration into the existing course materials. For example,
we could present angr’s claripy as an alternate approach to the
Math Challenges Lab. Further, we could use angr to identify opaque
predicates during our code-obfuscation topic. Additionally, we must
expand the AngrY Lab challenges to introduce modeling uncon-
strained paths and memory write primitives. Further, we intend to
provide students with an updated Docker image containing more
symbolic execution tools, including angrop and usage examples.

Ethical Concerns: As we have discussed in previous works [39, 40,
51], we incorporate a significant examination of professional behav-
iors, legal ramifications of abuse, and ethics into our concentration.
Initial coursework discusses the Computer and Fraud Abuse Act,
Electronic Communications Privacy Act, the Digital Millennium
Copyright Act, and our university’s acceptable use policy. While
we require students to resign an ethics contract every semester,
we believe our most powerful method to prevent abuse is frequent
deliberate dialogues with students.

Formal Evaluation: Our work examines the initial experience
report of the first iteration of our course. We did not capture user
surveys before or during the course. We acknowledge that a formal
evaluation would benefit a comprehensive analysis of the proposed
methods. We plan to conduct evaluations in future works, specifi-
cally examining the balance between confidence and anxiety in the
automatic exploit generation competition.

7 CONCLUSION

In this paper, we presented our undergraduate course on binary re-
verse engineering. Our approach balances theory-based instruction
with experiential learning. The course culminates with a binary
exploitation competition, which challenges students to develop
tools that automatically detect and exploit program vulnerabilities.
We argue that a binary exploitation competition provides a unique
opportunity to exercise modern reverse engineering techniques.
We share our detailed design, labs, experiences, and lessons learned
from this course for others to build on our initial success.

ACKNOWLEDGEMENTS

This material is based upon work supported in whole or in part
with funding from the Office of Naval Research (ONR) contract
#N00014-21-1-2732. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the ONR and/or any
agency or entity of the United States Government.

REFERENCES

(1]
(2]
(3]

(4]

[10]

[11]

[12]

[13]

[30]

[31

Aleph One. 1996. Phrack: Smashing the stack for fun and profit. http://www.
phrack.com/issues/49/14.html

Arm Limited. 2020. Arm Architecture Reference Manual Armv8.
//developer.arm.com/documentation/ddi0487/gb/

Thanassis Avgerinos, David Brumley, John Davis, Ryan Goulden, Tyler Nigh-
swander, Alex Rebert, and Ned Williamson. 2018. The mayhem cyber reasoning
system. IEEE Security & Privacy 16, 2 (2018), 52-60.

John Aycock, Andrew Groeneveldt, Hayden Kroepfl, and Tara Copplestone. 2018.
Exercises for teaching reverse engineering. In Conference on Innovation and
Technology in Computer Science Education. ACM, Larnaca Cyprus, 188-193.
César Morillas Barrio, Mario Mufioz-Organero, and Joaquin Sanchez Soriano.
2015. Can gamification improve the benefits of student response systems in
learning? An experimental study. In IEEE Transactions on Emerging Topics in
Computing, Vol. 4.3. IEEE, Piscataway, NJ, 429-438.

Binary Ninja. 2021. Using Plugins. https://docs.binary.ninja/guide/plugins.html
Binary Ninja. 2021. Binary Ninja Documentation: Working with Types, Structures,
and Symbols. https://docs.binary.ninja/guide/type html

Tim Blazytko. 2021. Automation in Reverse Engineering: String Decryption.
https://synthesis.to/2021/06/30/automating_string_decryption.html

Sergey Bratus. 2007. What hackers learn that the rest of us don’t: notes on hacker
curriculum. IEEE Security & Privacy 5, 4 (2007), 72-75.

Logan Brown, Gavin Hayes, and Tejas Rao. 2017. Reinventing Bomblab. Rein-
venting Bomblab. https://digital.wpi.edu/downloads/s7526g02j

Tanner] Burns, Samuel C Rios, Thomas K Jordan, Qijun Gu, and Trevor Un-
derwood. 2017. Analysis and Exercises for Engaging Beginners in Online CTF
Competitions for Security Education. In 2017 USENIX Workshop on Advances in
Security Education (ASE 17). USENIX, Vancouver, BC, Canada, 9 pages.

Peter Chapman, Jonathan Burket, and David Brumley. 2014. PicoCTF: A game-
based computer security competition for high school students. In 2014 USENIX
Summit on Gaming, Games, and Gamification in Security Education (3GSE 14).
USENIX, San Diego, CA, 10 pages.

Kevin Chung. 2017. Live Lesson: Lowering the Barriers to Capture The Flag
Administration and Participation. In 2017 USENIX Workshop on Advances in
Security Education (ASE 17). USENIX, Vancouver, BC, Canada, 6 pages.

CISA. 2021. Joint Cybersecurity Advisory: Conti Ransomware.

CISA. 2021. Known Exploited Vulnerabilities Catalog.. https://www.cisa.gov/
known-exploited-vulnerabilities- catalog

Christian Collberg. 2018. Code obfuscation: Why is this still a thing?. In Conference
on Data and Application Security and Privacy. ACM, Tempe,AZ, 173-174.
Christian Collberg. 2021. The Tigress C Obfuscator. https://tigress.wtf/

Shruti Dixit, TK Geethna, Swaminathan Jayaraman, and Vipin Pavithran. 2021.
AngErza: Automated Exploit Generation. In Conference on Computing Communi-
cation and Networking Technologies (ICCCNT). IEEE, West Bengal, India, 1-6.
Ruian Duan, Ashish Bijlani, Yang Ji, Omar Alrawi, Yiyuan Xiong, Moses Ike,
Brendan Saltaformaggio, and Wenke Lee. 2019. Automating Patching of Vulnera-
ble Open-Source Software Versions in Application Binaries.. In NDSS. Internet
Society, San Diego, CA, 15 pages.

Fabian Faessler. 2015. LiveOverflow: Reversing and Cracking First Simple Pro-
gram - Bin 0x05. https://www.youtube.com/watch?v=VroEiMOJPm8

Fabian Faessler. 2016. LiveOverflow: Simple Tools and Techniques for Reversing
a Binary - Bin 0x06. https://www.youtube.com/watch?v=3NTXFUxcKPc
Fabian Faessler. 2019. LiveOverflow: Patching Binaries. https://www.youtube.
com/watch?v=LyNyf3UM9Yc

John Hammond. 2020. Google CTF - Beginner Reverse Engineering with Angr.
https://www.youtube.com/watch?v=RCgEIBfnTEI

Hex Rays. 2022. IDA Educational Licenses. https://hex-rays.com/educational/
Mateusz Jurczyk. 2020. Windows System Call Tables. https://github.com/j00ru/
windows-syscalls

Max Kamper. 2021. ROP Emporium. https://ropemporium.com

Peter LaFosse. 2017. Automating Opaque Predicate Removal. https://binary.
ninja/2017/10/01/automated- opaque- predicate-removal.html

Xusheng Li. 2021. Winning The Grand Reverse Engineering Challenge. https:
//binary.ninja/2021/09/02/winning- the- grand- re- challenge html

Danjun Liu, Jingyuan Wang, Zelin Rong, Xianya Mi, Fangyu Gai, Yong Tang,
and Baosheng Wang. 2018. Pangr: A Behavior-Based Automatic Vulnerability
Detection and Exploitation Framework. In Conference On Trust, Security And
Privacy In Computing And Communications/12th IEEE International Conference
On Big Data Science And Engineering. IEEE, New York, NY, 705-712.

Chris Lomont. 2009. Introduction to x64 Assembly - Intel. https://www.intel.
com/content/dam/develop/external/us/en/documents/introduction-to-x64-
assembly-181178.pdf

Maria Markstedter. 2020. Introduction to ARM Assembly Basics. https://azeria-
labs.com/writing-arm-assembly-part-1/

https:

(32

@
)

(34

[35

[36

[37

(38

(39]

[40]

[41

[42

S
2,

o
=

o
=

Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. 2013. System V
ABL htttps://refspecs.linuxbase.org/elf/x86764—abi—0.994pdf
Microsoft. 2021." Visual Studio 2019: x64 Calling Convention. https://docs.

microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160
Microsoft. 2021. MSRC Customer Guidance Security Update Gude: Vulnerability
CVE-2021-1675. Windows Print Spooler Remote Code Execution Vulnerability..
https://msrc.microsoft.com/update- guide/vulnerability/CVE-2021-1675
Microsoft. 2021. MSRC Customer Guidance Security Update Gude: Vulnerability
CVE-2021-34527. Windows Print Spooler Remote Code Execution Vulnerability..
https://msrc.microsoft.com/update- guide/vulnerability/CVE-2021- 34527
MITRE. 2020. CVE-2021-1675. Available from MITRE, CVE-ID CVE-2021-1675..
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1675

MITRE. 2021. CVE-2021-34527. Available from MITRE, CVE-ID CVE-2021-34527..
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34527

NSA. 2022. Academic Requirements for Designation as a CAE in Cyber Op-
erations Fundamental. https://www.nsa.gov/Resources/Students-Educators/
centers-academic-excellence/cae- co- fundamental/requirements/

TJ OConnor. 2022. HELO DarkSide: Breaking Free From Katas and Embracing
the Adversarial Mindset in Cybersecurity Education. In Special Interest Group on
Cyber Security Education (SIGCSE). ACM, Virtual Event.

TJ OConnor and Chris Stricklan. 2021. Teaching a Hands-On Mobile and Wire-
less Cybersecurity Course. In Innovation and Technology in Computer Science
Education (ITiCSE). ACM, Virtual Event, 296-302.

Rodney Petersen, Danielle Santos, Matthew Smith, and Gregory Witte. 2020.
Workforce Framework for Cybersecurity (NICE Framework).

Matt Pietrek. 2002. An In-Depth Look into the Win32 Portable Executable
File Format. https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/
february/inside-windows-win32-portable-executable-file-format- in- detail
Roman Rohleder. 2019. Hands-on ghidra-a tutorial about the software reverse
engineering framework. In Proceedings of the 3rd ACM Workshop on Software
Protection. ACM, London,UK, 77-78.

Team Shellphish. 2017. Phrack: Cyber Grand Shellphish. http://www.phrack.
org/issues/70/4.html#article

Wei-Cheng Milton Shen, De Liu, Radhika Santhanam, and Dorla A Evans. 2016.
Gamified technology-mediated learning: The role of individual differences. In Pa-
cific Asia Conference on Information Systems (PACIS). Association For Information
System, Chiayi, Taiwan, 18 pages.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis. In
2016 IEEE Symposium on Security and Privacy (SP). IEEE, San Jose, CA, 138-157.
Jia Song and Jim Alves-Foss. 2015. The darpa cyber grand challenge: A competi-
tor’s perspective. IEEE Security & Privacy 13, 6 (2015), 72-76.

Jacob Springer and Wu-chang Feng. 2018. Teaching with angr: A Symbolic
Execution Curriculum and {CTF}. In 2018 Workshop on Advances in Security
Education (ASE 18). USENIX, Baltimore, MD, 8 pages.

Richard Stallman, Roland Pesch, and Stan Shebs. 2021. Debugging with GDB.
https://sourceware.org/gdb/current/onlinedocs/gdb/index.html

Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
NDSS. Internet Society, San Diego, CA, 16 pages.

Chris Stricklan and TJ OConnor. 2021. Towards Binary Diversified Challenges
For A Hands-On Reverse Engineering Course. In Innovation and Technology in
Computer Science Education (ITiCSE). ACM, Virtual Event, 102-107.

Clark Taylor and Christian Colberg. 2016. A tool for teaching reverse engineering.
In Workshop on Advances in Security Education. USENIX, Vancouver, BC, 8 pages.
Team Teso. 2001. Exploiting Format String Vulnerabilities. http://www.madchat.
fr/coding/c/c.seku/format_string/formatstring.pdf

TIS Committee. 1993. Tool Interface Standard (TIS): Portable Formats Specifica-
tion Version 1.1. http://refspecs.linux-foundation.org/elf/TIS1.1.pdf

Linus Torvalds. 2021. The Linux Kernel: Linux Networking. https://linux-kernel-
labs.github.io/refs/heads/master/labs/networking html

Yu-Jye Tung. 2021. Analysis of Anti-Analysis. https://github.com/yellowbyte/
analysis- of-anti-analysis/

Vector35. 2022. Binary Ninja. https://binary.ninja

Fish Wang and Yan Shoshitaishvili. 2017. Angr-the next generation of binary
analysis. In 2017 IEEE Cybersecurity Development. IEEE, Cambridge, MA, 8-9.
Shenglin Xu, Peidai Xie, and Yongjun Wang. 2020. AT-ROP: Using static analysis
and binary patch technology to defend against ROP attacks based on return
instruction. In International Symposium on Theoretical Aspects of Software Engi-
neering (TASE). IEEE, Shanghai, CN, 209-216.

Yao Yao, Wei Zhou, Yan Jia, Lipeng Zhu, Peng Liu, and Yuqing Zhang. 2019.
Identifying privilege separation vulnerabilities in IoT firmware with symbolic
execution. In European Symposium on Research in Computer Security. Springer,
Luxembourg, 638-657.

http://www.phrack.com/issues/49/14.html
http://www.phrack.com/issues/49/14.html
https://developer.arm.com/documentation/ddi0487/gb/
https://developer.arm.com/documentation/ddi0487/gb/
https://docs.binary.ninja/guide/plugins.html
https://docs.binary.ninja/guide/type.html
https://synthesis.to/2021/06/30/automating_string_decryption.html
https://digital.wpi.edu/downloads/s7526g02j
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://tigress.wtf/
https://www.youtube.com/watch?v=VroEiMOJPm8
https://www.youtube.com/watch?v=3NTXFUxcKPc
https://www.youtube.com/watch?v=LyNyf3UM9Yc
https://www.youtube.com/watch?v=LyNyf3UM9Yc
https://www.youtube.com/watch?v=RCgEIBfnTEI
https://hex-rays.com/educational/
https://github.com/j00ru/windows-syscalls
https://github.com/j00ru/windows-syscalls
https://ropemporium.com
https://binary.ninja/2017/10/01/automated-opaque-predicate-removal.html
https://binary.ninja/2017/10/01/automated-opaque-predicate-removal.html
https://binary.ninja/2021/09/02/winning-the-grand-re-challenge.html
https://binary.ninja/2021/09/02/winning-the-grand-re-challenge.html
https://www.intel.com/content/dam/develop/external/us/en/documents/introduction-to-x64-assembly-181178.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/introduction-to-x64-assembly-181178.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/introduction-to-x64-assembly-181178.pdf
https://azeria-labs.com/writing-arm-assembly-part-1/
https://azeria-labs.com/writing-arm-assembly-part-1/
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1675
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1675
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34527
https://www.nsa.gov/Resources/Students-Educators/centers-academic-excellence/cae-co-fundamental/requirements/
https://www.nsa.gov/Resources/Students-Educators/centers-academic-excellence/cae-co-fundamental/requirements/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
http://www.phrack.org/issues/70/4.html#article
http://www.phrack.org/issues/70/4.html#article
https://sourceware.org/gdb/current/onlinedocs/gdb/index.html
http://www.madchat.fr/coding/c/c.seku/format_string/formatstring.pdf
http://www.madchat.fr/coding/c/c.seku/format_string/formatstring.pdf
http://refspecs.linux-foundation.org/elf/TIS1.1.pdf
https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/networking.html
https://github.com/yellowbyte/analysis-of-anti-analysis/
https://github.com/yellowbyte/analysis-of-anti-analysis/
https://binary.ninja

	Abstract
	1 Introduction
	2 Background
	2.1 Reverse Engineering Education Approaches
	2.2 Darpa Cyber Grand Challenge

	3 Course Overview
	4 Course Implementation
	4.1 Course Infrastructure
	4.2 Course Labs
	4.3 Dynamic Analysis Lab: Bomb-Lab
	4.4 Static Analysis Lab: Math Problems
	4.5 Automation Lab: Networking Annotation
	4.6 Symbolic Execution Lab: AngrY Challenges
	4.7 Other Architectures Lab: ARM Challenges

	5 Exploit Generation Competition
	5.1 Overview
	5.2 Bug Classes and Exploit Techniques
	5.3 Competition Environment
	5.4 Student Results

	6 Lessons Learned
	6.1 Successes
	6.2 Challenges

	7 Conclusion
	References

