
Pwn Lessons Made Easy With Docker: Towards an Undergraduate
Vulnerability Research Cybersecurity Class

TJ OConnor
toconnor@fit.edu

Florida Institute of Technology
Melbourne, FL, USA

Alex Schmith
aschmith2019@my.fit.edu

Florida Institute of Technology
Melbourne, FL, USA

Chris Stricklan
cstricklan@fit.edu

Florida Institute of Technology
Melbourne, FL, USA

Marco Carvalho
mcarvalho@fit.edu

Florida Institute of Technology
Melbourne, FL, USA

Sneha Sudhakaran
ssudhakaran@fit.edu

Florida Institute of Technology
Melbourne, FL, USA

ABSTRACT
Developing expertise in vulnerability research is critical to closing
the cybersecurity workforce shortage. However, very few institu-
tions have adopted vulnerability research into their cybersecurity
curriculum, and fewer have examined how to teach this skill to
students. The recent emergence of lightweight, container-based vir-
tualization presents a unique opportunity to address this challenge
by offering reproducible environments that ease course facilitation.
This paper presents an undergraduate vulnerability course design.
Our approach leverages a hands-on methodology that challenges
students to develop complex binary exploits over our lectures, labs,
and exams. We share our detailed design, labs, experiences, lessons
learned, and a lightweight virtual environment for this course for
others to build on our initial success.

CCS CONCEPTS
• Social and professional topics → Model curricula; Comput-
ing education programs.

KEYWORDS
cybersecurity education, vulnerability research, virtualization
ACM Reference Format:
TJ OConnor , Alex Schmith , Chris Stricklan , Marco Carvalho ,
and Sneha Sudhakaran . 2024. Pwn Lessons Made Easy With Docker:
Towards an Undergraduate Vulnerability Research Cybersecurity Class.
In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630911

1 INTRODUCTION
We exist in the proliferation era of offensive cyber weapons. Zero
days, or vulnerabilities unknown to vendors, comprise the core of
these nation-state weapon systems. While developing in-house gov-
ernment expertise is vital, nations rely on semi-regulated markets
to discover and disclose vulnerabilities and develop exploits [26].

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630911

Developing expertise in vulnerability research is critical to clos-
ing our workforce shortage. The NSA Cyber Operations Outcomes
and NICE Workforce Competencies capture Vulnerability Research
as a Knowledge Unit [27]. However, very few institutions have
adopted vulnerability research into their cybersecurity curricu-
lum [30, 36, 41, 42], and fewer have examined how to teach this
skill. Despite the workforce demand for vulnerability researchers,
few institutions present formal coursework. Instead, the topic is
studied orthogonally in cybersecurity clubs and applied capture-the-
flag competitions. However, there is strong evidence to support this
approach is failing to develop vulnerability researchers at scale. At
the 2022 US National Cyber League tournament [24], only twenty
(out of six thousand) college students solved the binary exploitation
problem. Despite the importance of vulnerability research, less than
one percent could solve a challenge that required overflowing a
buffer and chaining together return-oriented programming gadgets.

A lack of instructor expertise in a constantly evolving topic may
introduce significant barriers. In contrast to calculus, where an
instructor must master pre-defined rules, a vulnerability research
instructor must periodically examine how the continually evolving
mitigations depreciate techniques. The following work presents an
approach that helps overcome instructors’ expertise. Relying on
Docker lightweight virtualization, we provide a reproducible course
environment with lecture examples, challenges, and labs. Further,
our course approach follows best software development practices
by pushing the course environment to a continuous integration
environment where changes are automatically built, tested, and
integrated into a shared repository. The following paper shares our
experiences with a vulnerability research course. Developing com-
plex binary exploits is critical to closing the cybersecurityworkforce
shortage. We acknowledge that reverse engineering and binary ex-
ploitation are complex topics to present in the classroom. Therefore,
we share our systematic approach to inspire others to teach vul-
nerability research and build upon our work. This paper makes the
following contributions:

(1) We share our course design, labs, exams, and lessons learned
for a hands-on undergraduate vulnerability research course.

(2) To allow other instructors to build on our initial success,
we publish our classroom slides, labs, exams, solutions, and
virtualization containers at https://github.com/tj-oconnor/
undergrad-vr.

https://orcid.org/0000-0001-9707-1830
https://orcid.org/0000-0001-9707-1830
https://orcid.org/0009-0001-1373-6442
https://orcid.org/0000-0002-0750-5963
https://orcid.org/0000-0002-2354-9640
https://orcid.org/0000-0001-7942-0902
https://orcid.org/0000-0001-9707-1830
https://orcid.org/0009-0001-1373-6442
https://orcid.org/0000-0002-0750-5963
https://orcid.org/0000-0002-2354-9640
https://orcid.org/0000-0001-7942-0902
https://doi.org/10.1145/3626252.3630911
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626252.3630911
https://github.com/tj-oconnor/undergrad-vr
https://github.com/tj-oconnor/undergrad-vr

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA TJ OConnor, Alex Schmith, Chris Stricklan, Marco Carvalho, & Sneha Sudhakaran

2 PRIORWORK
Previous works [30, 36, 37, 41, 42] have explored teaching vulnera-
bility research. Due to the reliance on contemporary exploitation
materials, many of these courses have been student-driven and
focused on technical content instead of pedagogical approaches.
Modern Binary Exploitation: Eight years ago, Rochester Poly-
technic Institute students developed the Modern Binary Exploita-
tion course. Their course, taught entirely by students, focused on
developing skills in vulnerability research, reverse engineering,
and binary exploitation. For others to build upon their work, they
archived their materials on GitHub [36]. Unfortunately, their course
predominately focuses on the legacy x86 32-bit architecture and
has not been updated since its release.
Automated Exploitation Competition: Our previous course-
work developed an undergraduate reverse engineering course that
culminates in an automated exploitation competition [30]. While
our previuos work examines teaching initial stack-based buffer over-
flows and format string attacks, it fails to address more complex
exploit techniques in the stack, heap, and kernel.
How2Heap: The Shellphish team, aligned with the University of
California Santa Barbara and Arizona State University, created the
How2Heap heap exploitation repository [37]. The repository main-
tains the state of heap exploitation techniques, practical demon-
stration code, and capture-the-flag challenges. Further, their web
application implements a web-based debugger to demonstrate re-
quired adaptions for each glibc version. As we discuss in Section 4,
several of our students enjoyed referencing How2Heap when cre-
ating their heap exploitation presentations.
Pwn.College: As part of their CSE466 course, Arizona State Uni-
versity faculty created the Pwn.College [41] educational platform
to deliver modules on binary exploitation. By creating an open
forum, Pwn.college makes the topic of binary exploitation acces-
sible to students. Further, their approach allows other faculty to
incorporate their contributions. For example, we reference their
materials on shellcoding [38, 40] in our coursework and leverage
their pwn.kernel to introduce kernel exploitation [39].
Temple of Pwn: This North Dakota State University student-
driven Temple of Pwn [42] course examined vulnerability research
topics of stack-based buffer overflows, format string vulnerabilities,
heap exploits, file stream-oriented programming, and kernel ex-
ploits. The course archive provides the challenge binaries, exploit
scripts and fourteen lesson videos.

3 COURSE OVERVIEW AND DESIGN
The following section outlines the course model for our undergrad-
uate vulnerability course. The course consists of two 75-minute
lectures weekly for 16 weeks. It is the fifth course in a six-course
sequence for our cyber operations concentration, following a rigor-
ous reverse engineering course that culminates in an autonomous
exploitation competition [28, 30, 31, 43]. The prerequisite course-
work includes an assembly programming course. We designed the
course to satisfy the optional NSA CAE Cyber Operations Knowl-
edge Units for vulnerability research [27]. Based on this standard,
the student outcomes include the following:

Table 1: The course balances theory-based lessons with prac-
tical labs and contemporary research.

Lesson Lab References
Return to Libc Speciality ROP [3, 13]
Ret2CSU (The Universal Gadget) Speciality ROP [25]
Ret2DLResolve Speciality ROP [44, 49]
SigReturn Oriented Programming Speciality ROP [9, 51]
Jump Oriented Programming Advanced ROP [6, 47]
Blind Hacking Techniques Advanced ROP [5]
ROP on Aarch64 Architecture Advanced ROP [1, 8]
Integer Overflows Type Vulns [7]
Array Index Abuse Type Vulns [15, 45]
Type Confusion Type Vulns [48]
Shellcoding under Seccomp Shellcoding [38, 40]
Heap Overflows Beginner Heap [16, 37]
House of Force Beginner Heap [19, 32]
Fastbins Attack Beginner Heap [21]
Tcache Poisoning Advanced Heap [29, 50]
Unsafe Unlink Advanced Heap [20, 23]
Kernel Ret2Usr & Mitigations - [22, 35, 39]

(1) List the various types of vulnerabilities, their underlying
causes, their identifying characteristics, how they are ex-
ploited, and potential mitigation strategies; apply fundamen-
tal security design principles during system design, develop-
ment, and implementation to minimize vulnerabilities.

(2) Identify a vulnerability in a given context; develop and repli-
cate exploits to alternate contexts of vulnerabilities.

(3) Analyze existing source code for functional correctness; con-
struct test cases demonstrating vulnerabilities; apply indus-
try standard tools that analyze software for vulnerabilities.

The course topics, listed in Table 1, graduate students from the
basics of stack-based binary exploitation to advanced techniques in
the kernel and heap. These topics provide a comprehensive introduc-
tion into fundamentals for gaining arbitrary execution, corrupting
memory, and exploiting the design in complex data structures. In
each lecture, we deliver lessons that expose the technical under-
pinnings of exploit techniques. We follow lessons with hands-on
labs that require students to replicate the methods to construct
exploits. As recommended in [10, 17, 30], we incorporate materials
from academic publications, technical reports, industry-standard
documents, conference presentations, capture-the-flag competition
write-ups, and security influencer videos.

4 COURSE IMPLEMENTATION
The following section explains our design and decisions behind the
course’s infrastructure, labs, and exams.

4.1 Dockerized Student Environment
We also standardized the student environment by providing a
Docker container with all the appropriate course tools. We pushed
the course container image to Dockerhub to allow for rapidly dis-
tributing the image to students. As recommended in [18, 30], Docker
containers present an opportunity to baseline students and ensure

Pwn Lessons Made Easy With Docker: Towards an Undergraduate Vulnerability Research Cybersecurity Class SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

python3 pwn-resolve.py BIN=./resolve GDB
[*] '/root/workspace/ret2dlresolve/resolve' | pwndbg> x/1x 0x4004b8
[*] Loaded 14 cached gadgets for './resolve' | 0x4004b8: 0x00404018
[*] symbtab found at 0x4003c0 | pwndbg> x/1i 0x00404018
[*] strtab found at 0x400420 | 0x404018 <gets@got.plt>: push rax
[*] jmp_rel found at 0x4004b8 | pwndbg> got
[*] writeable_mem at 0x404e00 | [0x404018] gets@GLIBC_2.2.5 -> 0x7f40252a6060 (gets <- push r13
[+] The JMPREL stores the Reloc. Table, mapping each entry | pwndbg>
[+] to a symbol. Examine 0x4004b8 to see it pointing to the |
[+] GOT entry for the gets() function. |
[*] Paused (press any to continue) |

Listing 1: Our approach leverages Docker and annotated pwntools scripts to make reproducible teaching materials, easing the
facilitation of complex topics like dynamically resolving function addresses.

FROM tjoconnor/vr-hosting

Copy vulnerable binary, flag, and libc version
COPY flag.txt /home/ctf/flag.txt
COPY ./bin/chal.bin /home/ctf
COPY libc/libc.so.6 /opt/libc.so.6
COPY libc/ld-2.27.so /opt/ld.so

Set permissions to read-only for flag
RUN chown root:root /home/ctf/flag.txt
RUN chmod 644 /home/ctf/flag.txt

patch binary to run with specific libc version
RUN pwninit --bin /home/ctf/chal.bin --ld /opt/ld.so --libc

/opt/libc.so.6 --no-template
RUN mv /home/ctf/chal.bin_patched /home/ctf/chal.bin

Listing 2: Leveraging Docker allows other students and
faculty to share new reproducible examples.

consistency. This approach delivers common platforms that allow
better collaboration and support. We also provided exploit scripts
for each lesson that display verbose debugging information to help
students replicate our lectures. Listing 1 depicts an example script
that provides notes with appropriate breakpoints and debugging
information. Base-lining the environment ensured these scripts
would display similarly on the instructor and student workstations.
While Dockerhub routinely scans images for vulnerabilities, this
does not present any significant issues since our course relies on cus-
tom binaries and scripts. In contrast, Dockerhub scans for known
security issues with vulnerable applications, services, or operating
system deployments.

4.2 Hosting Vulnerable Binaries
As depicted in Listing 2, we hosted vulnerable binaries in standard-
ized Docker containers for the students to exploit as part of the lab
assignments. Each lab instantiated an instance of the binary via the
multipurpose network relay tool socat [33]. When appropriate to
the specific challenge, we patched the binary using pwninit [4] to
run with a particular version of glibc and loader. The binaries ran
with restricted permissions with read-only access to a text file that
contained a secret flag. As recommended by Burns [11], each lab

challenged students to exploit the binary and gain arbitrary exe-
cution. Students demonstrated success by leveraging the arbitrary
execution to read the contents of the secret flag file. We recorded
students’ progress by having them submit the flag to a CTFd [12]
server. Further, we had students submit their solution scripts to our
learning management system.

4.3 Course Infrastructure
We hosted our labs and exams on the CTFd capture the flag plat-
form [12]. CTFd provides an accessible user interface to host ser-
vices and challenges and collect student involvement statistics. To
mitigate the security impacts of hosting vulnerable binaries on
our university network, we leased CTFd hosting services for $60
monthly. This cost tier allowed us to host 30 remotely vulnerable
challenges and permitted three million views of our challenges per
month. We deployed our vulnerable binaries as Docker containers
to the leased environment. Using Docker, we restricted the target
environment to specific operating systems and dynamic library
versions, constraining the problems to specific intended solutions.
Further, we purchased $79 academic licenses for students for the
Binary Ninja reverse engineering framework [46]. Although our
students prefer the Python API and workflow for Binary Ninja, we
acknowledge that the freely available Ghidra could substitute and
offers similar disassembler, decompilation, and plugin support. To
support this argument, several students installed a Binary Ninja
Plugin that displayed the Ghidra high-level decompilation in a
separate window pane.

4.4 Course Labs
We leveraged the course labs to provide students with a process-
oriented assessment of their understanding of the course material.
During the semester, we assigned students six labs. Each lab con-
sisted of 2-4 vulnerable binaries for students to exploit based on
the lesson techniques presented in Table 1. We themed the chal-
lenges after well-known music songs. As depicted in Listing 3, we
themed the rather esoteric and complex JOP problem after the
classic song Jump Around by House of Pain. Students proved their
solutions by exploiting binaries on a remote server where we hosted
a unique flag. We required students to submit a write-up of their
solutions for their approach for each challenge. We focused our
assessment on the students’ problem-solving approach rather than

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA TJ OConnor, Alex Schmith, Chris Stricklan, Marco Carvalho, & Sneha Sudhakaran

<<< Welcome to JOP Binary #1

<<< Pack it up, pack it in, let me begin
<<< I came to win, battle me, that's a sin
<<< I won't ever slack up, punk, ya better back up
<<< Try and play the role and yo, the whole crew'll act up
<<< - Jump Around, House of Pain

<<< Stack: 0x7ffcd98259ac
So get out your seat and jump around >>>

Listing 3: Our course leveraged an active learning approach
by presenting students with binary exploitation problems
themed after well-known songs.

if students succeeded in exploiting the vulnerable binaries. While
we attempted to constrain the problems to narrow solutions that
reinforced the lectures, we awarded extra points to students who
identified unintended or particularly creative solutions.
Speciality ROP:We designed our Speciality ROP lab to develop the
building blocks for the course by forcing students to struggle with
debugging binaries, developing exploit strategies, and refining ex-
ploit scripts. As argued in [43], this struggle is essential to develop-
ing the workflows and mental models needed for reverse engineer-
ing and exploit development. The lab specifically tasked students to
develop exploits that leveraged Ret2Libc, Ret2CSU, Ret2DLResolve,
and SROP techniques. While pwntools provides functions to repli-
cate Ret2CSU, Ret2DLResolve, and SROP [14], we developed our
vulnerable binaries in ways that would cause pwntools functions
to fail, requiring students to demonstrate the technique manually.
For example, we rewrote the calling convention for the Ret2CSU
binary, forcing students to demonstrate an understanding of the
stack layout and register use.
Advanced ROP: The Advanced ROP lab forced students to apply
more esoteric exploit techniques, including blind ROP (remotely
developing exploits without the original binary), Jump Oriented
Programming (JOP), and applying ROP to the Aarch64 architecture.
These esoteric problems required greater thought and planning than
in the earlier lab. For example, the Blind ROP problem required
students to identify a crash using black box fuzzing, then attempt
to remotely discover the address space of the procedure linkage
table, .data, and .text sections by making hypotheses and testing
small experiments. Understanding and chaining their experiments’
results together allowed them to create a remote exploit without
having the original binary. As a further example, the JOP problem
required students to develop a dispatcher to chain a series of JMP
gadgets into attacker code. Students can only solve this problem by
developing a well-thought-out exploit plan.
Type Vulnerabilities: The Type Vulnerability Lab set the condi-
tions for the upcoming block of instruction on heap exploitation
with problems on integer overflows, array index abuse, and type
confusion. It forced students to specifically examine the types and
storage of variables, calculate address offsets, and begin working
with pwndbg’s visualization tools to understand the layout of struct
data types. These problems were more straightforward to complete

than the previous lab, allowing students to build confidence while
rehearsing the necessary skills to move on to future, more compli-
cated exploit techniques.
Shellcoding: The Shellcoding Lab served as an opportunity to
address overcoming protection mechanisms and input restrictions.
We provided students with two problems. First, students had to
craft shellcode to find a flag at a random memory address with
only the SYS_write system call enabled by seccomp. In the second,
we restricted the users’ input to only even-numbered bytes. This
input restriction forced students to examine and craft alternate
instructions. Instead of xor rdi, rdi to zero the RDI register, they had
to select alternate instructions that could leverage the stack and
arithmetic operations. We recognize the criticism of this block of
instruction and lab. Jump-to-Shellcode exploits have been reliably
defeated since implementing the hardware NX-bit and DEP/NX that
mark the stack as non-executable. However, learning to shellcode
under restricted conditions proves essential to process injection
techniques, virtual machine escapes, antivirus evasion, just-in-time
ROP, and some kernel exploit techniques.
Beginner Heap: The Beginner Heap lab introduced students to
the dynamic memory allocator using three problems. The first prob-
lem tasked students to perform a heap overflow by overwriting
the metadata and content of an adjacent memory chunk. The next
challenge forced students to overflow a chunk adjacent to the heap
wilderness to corrupt the top chunk size field, granting an arbitrary
write primitive. Finally, the last problem challenges students to
analyze how the glibc malloc() and free() algorithms manage dy-
namic memory. To succeed, students had to construct fake chunks
forcing the manager to free the memory, granting a use-after-free
vulnerability.
Advanced Heap: The Advanced Heap lab introduced students
more to nuanced heap exploitation techniques. First, we tasked
students to corrupt pointers in a thread-specific cache (tcache) on a
modern glibc implementation. This challenge required students to
overcome the safe-linking protection as we discuss in Section 5.1.
Next, we tasked students to write an exploit that benefited from the
heap memory manager coalescing memory for optimization. Both
exploits required a deep understanding of the protection mecha-
nisms and algorithms used by the modern heap memory manager.

4.5 Presentations
We assigned students three presentation subjects for the semes-
ter. This experiential learning approach allowed students to gain
hands-on experience with contemporary problems. Our first two
presentations required students to individually solve pwn problems
from capture-the-flag competitions. As we published our course
container to the DockerHub repository, students could easily build
upon this work to distribute reproducible examples for their peers
as depicted in Listing 2.
My Pwn Presentations: First, the My First Pwn lab tasked stu-
dents to find and present an archived capture-the-flag competition
with existing solutions. Second, the My First Solve lab challenged
students to develop and present a solution for a current compe-
tition. During the second lab, due to the timing and appropriate
difficulty, students solved challenges from the laCTF, diceCTF and

Pwn Lessons Made Easy With Docker: Towards an Undergraduate Vulnerability Research Cybersecurity Class SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

irisCTF competitions. The KnightCTF competition presented an
issue for students and an opportunity for our faculty. During this
competition, the organizers presented three problemswith intended
naive solutions. However, the competition organizers incorrectly
compiled the binaries with protection mechanisms that effectively
made the challenges unsolvable. Unfortunately, some of our stu-
dents committed inappropriate time efforts to these challenges.
Upon noticing, we patched the binaries to disable the protection
mechanisms and reissued the intended and solvable binaries to our
students. This pivot for the original presentation topic allowed us
to discuss binary patching with students.
House of Student: The final presentation, House of Student tasked
students to work in groups of 2-3 to present a modern heap ex-
ploitation technique in 20 minutes. The title, House of Student, pays
homage to theMallocMaleficarium [32] heap exploitation reference,
which named heap exploitation techniques after various houses.
During this presentation, our students explained complex topics
such as The House of Orange, which abuses the fast bins metadata
to create a File Stream Oriented Programming (FSOP) attack. Stu-
dents often cited and referenced the How2Heap [37] educational
repository when presenting complex heap exploitation techniques.
The reference, developed by the Shellphish CTF team, provides a
web-based debugger to demonstrate techniques across different
glibc versions. As the House of Student occurred near the end of
the course, it gave us an excellent assessment of students’ course-
long progress. In several cases, students excitedly exceeded the
20-minute reserved block.

4.6 Exams
We reserved two class periods for the course exam. We presented
students with a single binary to exploit during each period. We
permitted the use of notes and internet resources during both but
restricted any collaboration with other students. The first exam
question was a single binary written in assembly code. We directed
students to solve using a signal-return-oriented programming (SROP)
attack. The second exam, written in C and compiled with a legacy
libc version, directed students to solve using a house-of-force attack
heap exploitation technique. We provided students with accommo-
dations, an alternate distraction-free location to take the exam with
an appropriate time modification.

Both final questions required satisfying four primitives. For the
SROP attack, the student must 1) develop a buffer overflow, 2) set the
RAX register to 0xf, and 3) trigger a sigreturn system call, which
will 4) restore the state of the registers from a sigreturn frame.
For the house-of-force exploit, the student needed to 1) leak the
heap and libc base addresses, 2) overwrite the heap top chunk size
address, 3) perform an arbitrary write of the malloc hook with the
address of the libc system() call, and then 4) trigger malloc() on a
character pointer to a shell command.

While both challenges have similar difficulty levels based on
the number of primitives, our students performed better on the
SROP challenge than on the heap exploit. All students completed
the SROP challenge in the class period. In contrast, only two stu-
dents completed the heap challenge within the original class period.
We extended the class period by 30 minutes, allowing 70% of the
students to solve the heap challenge. We observed that students

Table 2: Maintaining vulnerable research classes requires
constant diligence to understand how software and hardware
mitigations complicate exploit approaches.

Patch Glibc Version Date
Top chunk size integrity check added 2.29 2/1/19
Safe-Linking pointer-mangling added 2.32 8/5/20
Lib_csu_init static code removed 2.32 8/5/20
Malloc_hook removed 2.34 8/2/21

struggled to correctly identify leaks, often confusing a stack ad-
dress leak with a libc address leak. Based on this observation, we
intend to dedicate more instruction on virtual address space layout
in future course offerings.

5 LESSONS LEARNED
This section shares the challenges and successes we encountered
developing our vulnerability research course.

5.1 Challenges

Course Material Maintenance:We hypothesize that one of the
reasons for limited formal vulnerability research classes is the con-
tinual cat-and-mouse game between novel exploit techniques and
mitigations. Ultimately, no instructor wants to be the aging profes-
sor teaching return-to-stack exploits twenty-two years after Intel
implemented hardware support for the non-executable bit. Main-
taining vulnerable research classes requires constant diligence to
understand how software and hardware mitigations complicate
exploit approaches. This challenge will only continue to grow as
Intel moves ahead with its Control-flow Enforcement Technology
(CET) that introduces a shadow stack and technology to prevent
control-flow deviations. However, exploit migitations are an oppor-
tunity to study the unique creativity of cybersecurity professionals.
Table 2 lists a set of the glibc patches that affected our course mate-
rials. During our course, we demonstrated the House of Force heap
exploitation technique that corrupts the top chunk size field to
create an arbitrary write-primitive outside the heap address space.
However, the glibc developers created a successful patch in 2019
that prevents the House of Force by ensuring the top chunk size
does not exceed the scope of available heap memory. We chose to
study this exploitation technique to demonstrate a successful patch.
In contrast, glibc version 2.32 introduces safe-linking that leverages
address space layout randomization to sign the tcache pointers.
During our lesson on tcache poisoning, we show how an attacker
can overcome this protection mechanism by leaking the head of the
tcache list, which XORs the randomness with zero. Some patches,
such as the lib_csu_init static code removal, prevented the Ret2CSU
technique but only introduced nominal changes to our approach for
Blind Return Oriented Programming (BROP).We hypothesize that
this very cat-and-mouse game is the essence of vulnerability re-
search and demands student study. As such, we believe in showing
four-year-old heap exploitation techniques that no longer succeed
on contemporary glibc versions.
Inappropriate cooperation: We provide a healthy collaborative
learning environment, allowing students to present in groups and

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA TJ OConnor, Alex Schmith, Chris Stricklan, Marco Carvalho, & Sneha Sudhakaran

seek peer support on problems. However, we are concerned about
inappropriate cooperation. We acknowledge that inappropriate stu-
dent cooperation presents a unique challenge for the course. In
healthy collaboration, a student may explain to their peer how an
exploit technique works at a high theoretical level. During inap-
propriate collaboration, students may give their peers a copy of
their write-up script and tell them to duplicate the exploit with
slightly different variable names. As examined in [43], unintended
and inappropriate student collaboration eliminates the struggle
to produce creative vulnerability research skills. This approach is
similar to calculus, where students must fight through comprehend-
ing basic rules, simplifying expressions, and determining which
rules apply in particular contexts. With inappropriate help that
skips the struggle, students may complete assignments but require
external help to solve problems on future assessments. For example,
we provided the students with a Sigreturn Oriented Programming
(SROP) challenge that required the primitive of the RAX register
to be set to 0xf. However, we did not give the students gadgets to
manipulate the RAX register. Instead, we intended for students to
struggle until they identified that they could call a function, such
as strlen(), that returned a value into the RAX register. We noticed
clusters of solutions times during this lab and other labs. It proved
challenging to ascertain the level of unintended cooperation. Still,
we grew concerned enough that we conducted the course exams in
person, constraining them to two separate class periods. While we
were pleasantly surprised with positive exam results that indicated
students comprehended the material, we still worried about the
impact of unintended collaboration. In future course offerings, we
reserve the right to and plan to work on autonomously creating
unique binary challenges for students.
It is All About the Heap:While students provided overwhelm-
ingly positive course feedback, they argued they would benefit
from additional and more advanced heap-based exploitation mate-
rials. As the course progresses over the next few years, adopting
Intel’s Control-Flow Enhancement Technology (CET) will signifi-
cantly mitigate stack-based exploit techniques. This paradigm shift
demands a course focus on the future domain rather than the cur-
rent problem. We hypothesize that Heap-based exploitation tech-
niques will offer solutions to these challenges. While CET will di-
minish the relevance of several ROP-based exploitation techniques,
it will increase the importance of esoteric exploit techniques such as
Function-Oriented-Programming (FOP). We agree with the student
responses that we must examine this impact as we look forward to
future course offerings.

5.2 Successes

Visualizing Exploit Techniques: Several students reported hav-
ing anxiety about heap exploitation before the class. Their fears
were justified as the dynamic memory allocator relies on complex
data structures and memory management algorithms. However,
students identified that pwndbg [34], a Python module loaded di-
rectly into the gdb debugger, significantly helped to visualize heap
exploitation techniques. As pwndbg color codes memory chunks,
students reported they could recognize when they had corrupted an
adjacent memory chunk. Further, students appreciated pwndbg’s
exploration analytical tools to inspect unallocated memory bins.

Leveraging pwndbg significantly benefitted in allowing students to
reproduce classroom lectures and explore additional heap exploita-
tion techniques during their presentations. While this finding did
not necessarily surprise us, we were interested that students did
not identify pwndbg’s contribution to their understanding of stack-
based overflows, type confusion attacks, or type confusion. During
these portions, students leveraged pwndbg analytical commands,
including canary, stack, got, context to view the binary state.
Delivering Workforce Opportunities: Early versions of the
course were taught by an adjunct faculty member who recruited
talented students to work in the vulnerability research career field.
This connection to industry is one of the strongest contributions
of our course. With later revisions, a tenure-track faculty member
took over the course, formalizing it in Docker, so instructors with
varying degrees of expertise could repeat it. During the course, we
invited several experts from local companies, including Vector35,
Cromulence, Raytheon, STR Inc., Research Innovations Inc., and
Red Lattice, to present their research and share experiences from
the workforce. We received positive feedback from the experts,
who observed that reverse engineering and binary exploitation are
rarely taught at universities, let alone at the undergraduate level [2],
and praised our approach. We asked the experts for recommenda-
tions for improving the course for students entering the workforce.
They consistently provided feedback about providing instruction
on emulation, embedded architectures, and fuzzing (both genera-
tive and symbolic.) We will look for opportunities to incorporate
this feedback into future course offerings. True to the origin of the
course, a majority of our students pursued internships or full-time
employment with vulnerability research companies.

6 CONCLUSION
In this paper, we presented our undergraduate course on vulnera-
bility research. Our approach relies on experiential learning and
process-oriented assessment labs. Despite limited adoption, vulner-
ability research is essential to closing the cybersecurity workforce
gap. We uncover that despite the challenges, vulnerability research
offers workforce opportunities. To take advantage of these opportu-
nities, we rely on lightweight virtualization. We demonstrate how
the recent emergence of lightweight, container-based virtualization
presents a unique opportunity by providing reproducible environ-
ments that ease course facilitation. We share our detailed design,
labs, virtual containers, and lessons learned from this course for
others to build on our initial success.

ACKNOWLEDGEMENTS
This material is based upon work supported in whole or in part
with funding from the Office of Naval Research (ONR) contract
#N00014-21-1-2732. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the ONR and/or any agency
or entity of the United States Government. The authors also thank
John Aycock for his suggestions and feedback to improve an earlier
draft of this paper.

Pwn Lessons Made Easy With Docker: Towards an Undergraduate Vulnerability Research Cybersecurity Class SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

REFERENCES
[1] ARM. 2019. Procedure Call Standard for the Arm® 64-bit Architecture. https:

//developer.arm.com/documentation/102374/0100/Procedure-Call-Standard. Ac-
cessed: May 9, 2023.

[2] John Aycock, Andrew Groeneveldt, Hayden Kroepfl, and Tara Copplestone. 2018.
Exercises for teaching reverse engineering. In Conference on Innovation and
Technology in Computer Science Education. ACM, Larnaca Cyprus, 188–193.

[3] Niklas B. 2015. libc-database: a collection of libc versions and corresponding off-
sets to be used in exploit development. https://github.com/niklasb/libc-database.
Accessed: May 9, 2023.

[4] Benjamin Levy. Year. pwninit: A tool for automating starting binary exploit
challenges. hhttps://github.com/io12/pwninit. Accessed: December 10, 2023.

[5] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking blind. In Symposium on Security and Privacy. IEEE, San Jose, CA,
227–242.

[6] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In Symposium on In-
formation, Computer and Communications Security. ACM, Hong Kong, China,
30–40.

[7] blexim. 2002. Basic Integer Overflows. Phrack Magazine, Volume 0x0b, Issue
0x3c, Phile #0x0a of 0x10.

[8] Perfect Blue. 2021. ROPing on Aarch64. https://blog.perfect.blue/ROPing-on-
Aarch64. Accessed: May 9, 2023.

[9] Erik Bosman and Herbert Bos. 2014. Framing signals-a return to portable shell-
code. In Symposium on Security and Privacy. IEEE, San Jose, CA, 243–258.

[10] Sergey Bratus. 2007. What hackers learn that the rest of us don’t: notes on hacker
curriculum. IEEE Security & Privacy 5, 4 (2007), 72–75.

[11] Tanner J Burns, Samuel C Rios, Thomas K Jordan, Qijun Gu, and Trevor Un-
derwood. 2017. Analysis and Exercises for Engaging Beginners in Online CTF
Competitions for Security Education. In 2017 USENIX Workshop on Advances in
Security Education (ASE 17). USENIX, Vancouver, BC, Canada.

[12] Kevin Chung. 2017. Live Lesson: Lowering the Barriers to Capture The Flag
Administration and Participation. In 2017 USENIX Workshop on Advances in
Security Education (ASE 17). USENIX, Vancouver, BC, Canada, 6 pages.

[13] Solar Designer. 1997. Return to Libc Exploit. Bugtraq mailinglist.
[14] Gallopsled et al. 2023. pwntools: CTF Framework and Exploit Development

Library. https://github.com/Gallopsled/pwntools. Accessed: June 14, 2023.
[15] Fabian Faessler. 2016. Global Offset Table (GOT) and Procedure Linkage Table

(PLT) - bin 0x12. https://youtu.be/kUk5pw4w0h4
[16] Fabian Faessler. 2016. The Heap: what does malloc() do? - bin 0x14. https:

//youtu.be/HPDBOhiKaD8
[17] Robert Fanelli and TJ OConnor. 2010. Experiences with Practice-Focused Under-

graduate Security Education. In Cyber Security Experimentation and Test (CSET).
USENIX, Washington, DC.

[18] Kourtnee Fernalld, TJ OConnor, Sneha Sudhakaran, and Nasheen Nur. 2023.
Lightweight Symphony: Towards Reducing Computer Science Student Anxiety
with Standardized Docker Environments. In Special Interest Group on Information
Technology Education (SIGITE). ACM, Marietta, GA.

[19] François Goichon. 2015. Glibc adventures: The forgotten chunks. Context
Information Security.

[20] Ir0nstone. 2021. Dream Diary: Chapter 1. https://ir0nstone.gitbook.io/
hackthebox/challenges/pwn/dream-diary-chapter-1. Accessed on May 9, 2023.

[21] Sajjad Jadium. 2017. 0CTF 2017 Quals: Babyheap. https://github.com/sajjadium/
ctf-writeups/tree/master/ctfs/0CTF/2017/Quals/babyheap. Accessed: May 9,
2023.

[22] Lkmidas. 2021. Linux Kernel Pwn - Part 1. https://lkmidas.github.io/posts/
20210123-linux-kernel-pwn-part-1/. Accessed on May 9, 2023.

[23] David Manouchehri. 2017. Overview of glibc Heap Exploitation Tech-
niques. https://0x434b.dev/overview-of-glibc-heap-exploitation-techniques/
#unsafe-unlink. Accessed on May 9, 2023.

[24] Daniel Manson and Anna Carlin. 2011. A league of our own: the future of cyber
defense competitions. In Communications of the IIMA, Vol. 11. IIMA, New Orleans,
LA, 1.

[25] Hector Marco-Gisbert and Ismael Ripoll. 2018. Return-to-csu: A new method to
bypass 64-bit Linux ASLR. Black Hat Asia.

[26] Charles Miller. 2007. The Legitimate vulnerability market: the secretive world of
0-day exploit sales.. In Workshop on the Economics of Information Security (WEIS).
Carnegie Mellon University, Hanover,NH.

[27] NSA. 2022. Academic Requirements for Designation as a CAE in Cyber Op-
erations Fundamental. https://www.nsa.gov/Resources/Students-Educators/
centers-academic-excellence/cae-co-fundamental/requirements/

[28] TJ OConnor. 2022. HELO DarkSide: Breaking Free From Katas and Embracing
the Adversarial Mindset in Cybersecurity Education. In Special Interest Group on
Cyber Security Education (SIGCSE). ACM, Virtual Event.

[29] TJ OConnor. 2022. NiteCTF 2022 : Elementary Tcache Write-Up. https://github.
com/tj-oconnor/ctf-writeups/tree/main/nitectf/heapchall. Accessed: May 9,
2023.

[30] TJ OConnor, Carl Mann, Tiffanie Petersen, Isaiah Thomas, and Chris Stricklan.
2022. Toward an Automatic Exploit Generation Competition for an Undergradu-
ate Binary Reverse Engineering Course. In Innovation and Technology in Computer
Science Education (ITiCSE). ACM, Dublin, Ireland.

[31] TJ OConnor and Chris Stricklan. 2021. Teaching a Hands-On Mobile and Wire-
less Cybersecurity Course. In Innovation and Technology in Computer Science
Education (ITiCSE). ACM, Virtual Event.

[32] Phantsmal Phantasmagoria. 2005. The malloc maleficarum. Bugtraq mailinglist.
[33] Gerhard Rieger. 2023. socat: Multipurpose relay for bidirectional data transfer.

http://www.dest-unreach.org/socat/. Accessed: December 10, 2023.
[34] Zach Riggle. 2018. pwndbg: Exploit Development and Reverse Engineering with

GDB. https://github.com/pwndbg/pwndbg. Accessed: June 14, 2023.
[35] Christopher Roberts. 2021. Linux Kernel Exploit Development.

https://breaking-bits.gitbook.io/breaking-bits/exploit-development/linux-
kernel-exploit-development. Accessed on May 9, 2023.

[36] RPISEC. 2015. MBE: Modern Binary Exploitation. https://github.com/RPISEC/
MBE. Accessed: June 14, 2023.

[37] Shellphish. 2018. how2heap. https://github.com/shellphish/how2heap. Accessed:
May 9, 2023.

[38] Yan Shoshitaishvili and Connor Nelson. 2021. Lesson 5: Common Challenges
Shellcoding. https://pwn.college/modules/shellcode. Accessed: May 9, 2023.

[39] Yan Shoshitaishvili and Connor Nelson. 2021. Module: Kernel Security. https:
//pwn.college/modules/kernel.html. Accessed: May 9, 2023.

[40] Yan Shoshitaishvili and Connor Nelson. 2021. Sandboxing: Escaping seccomp.
https://pwn.college/modules/sandbox.html. Accessed: May 9, 2023.

[41] Yan Shoshitaishvili and Connor Nelson. 2023. Pwn College. Arizona State Uni-
versity. Accessed: June 12, 2023.

[42] Logan Stratton. 2020. Temple of Pwn. North Dakota State University. Accessed:
June 12, 2023.

[43] Chris Stricklan and TJ OConnor. 2021. Towards Binary Diversified Challenges
For A Hands-On Reverse Engineering Course. In Innovation and Technology in
Computer Science Education (ITiCSE). ACM, Virtual Event.

[44] syst3mfailure. 2021. ret2dl_resolve - A Classic Technique for Modern Times.
https://syst3mfailure.io/ret2dl_resolve. Accessed: May 9, 2023.

[45] TIS Committee. 1993. Tool Interface Standard (TIS): Portable Formats Specifica-
tion Version 1.1. http://refspecs.linux-foundation.org/elf/TIS1.1.pdf

[46] Vector35. 2022. Binary Ninja. https://binary.ninja
[47] violenttestpen. 2022. CTF Writeup: CTFSG CTF 2021 - reverse. https://

violenttestpen.github.io/ctf/pwn/reverse/2022/03/11/ctfsg-ctf-21/. Accessed:
May 9, 2023.

[48] Caitlin Whitehead. 2021. Unionized Write-Up. https://blog.metactf.com/
unionized-cybergames-2021/. Accessed: May 9, 2023.

[49] Rafal Wojtczuk. 2001. The advanced return-into-lib (c) exploits: Pax case study.
Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e 70 (2001), 227–242.

[50] Dmitry Zakharov. 2020. [PATCH] Fix integer overflow in getaddrinfo. https:
//sourceware.org/pipermail/libc-alpha/2020-March/111631.html. Accessed: May
9, 2023.

[51] Michal Zalewski. 2001. Unix Signal Reference. https://lcamtuf.coredump.cx/
signals.txt. Accessed: May 9, 2023.

https://developer.arm.com/documentation/102374/0100/Procedure-Call-Standard
https://developer.arm.com/documentation/102374/0100/Procedure-Call-Standard
https://github.com/niklasb/libc-database
hhttps://github.com/io12/pwninit
https://blog.perfect.blue/ROPing-on-Aarch64
https://blog.perfect.blue/ROPing-on-Aarch64
https://github.com/Gallopsled/pwntools
https://youtu.be/kUk5pw4w0h4
https://youtu.be/HPDBOhiKaD8
https://youtu.be/HPDBOhiKaD8
https://ir0nstone.gitbook.io/hackthebox/challenges/pwn/dream-diary-chapter-1
https://ir0nstone.gitbook.io/hackthebox/challenges/pwn/dream-diary-chapter-1
https://github.com/sajjadium/ctf-writeups/tree/master/ctfs/0CTF/2017/Quals/babyheap
https://github.com/sajjadium/ctf-writeups/tree/master/ctfs/0CTF/2017/Quals/babyheap
https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/
https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/
https://0x434b.dev/overview-of-glibc-heap-exploitation-techniques/#unsafe-unlink
https://0x434b.dev/overview-of-glibc-heap-exploitation-techniques/#unsafe-unlink
https://www.nsa.gov/Resources/Students-Educators/centers-academic-excellence/cae-co-fundamental/requirements/
https://www.nsa.gov/Resources/Students-Educators/centers-academic-excellence/cae-co-fundamental/requirements/
https://github.com/tj-oconnor/ctf-writeups/tree/main/nitectf/heapchall
https://github.com/tj-oconnor/ctf-writeups/tree/main/nitectf/heapchall
http://www.dest-unreach.org/socat/
https://github.com/pwndbg/pwndbg
https://breaking-bits.gitbook.io/breaking-bits/exploit-development/linux-kernel-exploit-development
https://breaking-bits.gitbook.io/breaking-bits/exploit-development/linux-kernel-exploit-development
https://github.com/RPISEC/MBE
https://github.com/RPISEC/MBE
https://github.com/shellphish/how2heap
https://pwn.college/modules/shellcode
https://pwn.college/modules/kernel.html
https://pwn.college/modules/kernel.html
https://pwn.college/modules/sandbox.html
http://refspecs.linux-foundation.org/elf/TIS1.1.pdf
https://binary.ninja
https://violenttestpen.github.io/ctf/pwn/reverse/2022/03/11/ctfsg-ctf-21/
https://violenttestpen.github.io/ctf/pwn/reverse/2022/03/11/ctfsg-ctf-21/
https://blog.metactf.com/unionized-cybergames-2021/
https://blog.metactf.com/unionized-cybergames-2021/
https://sourceware.org/pipermail/libc-alpha/2020-March/111631.html
https://sourceware.org/pipermail/libc-alpha/2020-March/111631.html
https://lcamtuf.coredump.cx/signals.txt
https://lcamtuf.coredump.cx/signals.txt

	Abstract
	1 Introduction
	2 Prior Work
	3 Course Overview and Design
	4 Course Implementation
	4.1 Dockerized Student Environment
	4.2 Hosting Vulnerable Binaries
	4.3 Course Infrastructure
	4.4 Course Labs
	4.5 Presentations
	4.6 Exams

	5 Lessons Learned
	5.1 Challenges
	5.2 Successes

	6 Conclusion
	References

