
(Ed.) Thorsten Jolitz

PicoLisp Works

– References, Tutorials, Articles, Essays –

Version 1.01
August 26, 2012

1

Copyright (c) 2012 Thorsten Jolitz

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the chapter entitled "GNU

Free Documentation License".

”Perfection is attained not
when there is nothing left to add

but when there is nothing left to take away”
(Antoine de Saint-Exupéry)

Preface

PicoLisp Works 1 is a compilation of (almost) all available information about
the technological gem PicoLisp - a programming language and environment
that definitely deserves wider attention.

Built on the unique characteristics of Lisp (almost no syntax, code is equiv-
alent to data), PicoLisp combines powerful abstractions with simplicity and
purity.

In a software world that is driven by hypes and desillusions, a language like
PicoLisp almost appears as timeless as mathematics. With its roots in the
very beginning of programming language development (Lisp was, together
with Fortran, among the very first of its kind), PicoLisp may well represent
the future too – as a candidate for being the ”hundred-year language”, that
all programming languages finally converge into.

As Paul Graham puts it in his famous essay 2:

The hundred-year language could, in principle, be designed today, and
such a language, if it existed, might be good to program in today.

This book consists of references, tutorials, articles and essays about PicoLisp.
The reader should consider all documents written by Alexander Burger, the
creator of PicoLisp, as the “official” references for the language. While the
community tutorials and articles might be very helpful and a great source
of information, they are just that - documents written by members of the
PicoLisp community at various stages of “PicoLisp Enlightment”. When in
doubt about substantive or style questions, always refer to the offcial docs as
last instance.

1The booktitle ’PicoLisp Works’ was contributed by Yiorgos Adamopoulos
2Paul Graham: “The Hundred-Year Language” http://paulgraham.com/

hundred.html, 2003

http://paulgraham.com/hundred.html
http://paulgraham.com/hundred.html

VIII Preface

One of the official articles, A Unifying Language for Database And User Inter-
face Development, has been written as early as 2002 and is therefore slightly
out of date in some technical details. It describes the old Java-Applet GUI
that is not supported anymore. However, since the conceptual reasoning in
this article is still valid and of fundamental importance, it was included in
this book anyway.

PicoLisp Works is accompanied by a second volume, PicoLisp by Example,
with more than 600 PicoLisp solutions to a wide range of programming tasks
as well as the full PicoLisp function reference. Both volumes are freely avail-
able as pdf files, e.g. on Scribd 3 4. They are published under the GNU Free
Documentation Licence, their source code is available in public Github repos-
itories 5 6.

Berlin, August 2012 Thorsten Jolitz

3http://www.scribd.com/doc/103733857/PicoLisp-by-Example
4http://www.scribd.com/doc/103732688/PicoLisp-Works
5https://github.com/tj64/picolisp-works
6https://github.com/tj64/picolisp-by-example

Contents

Part I Philosophy and Concepts of PicoLisp

1 A Radical Approach to Application Development
Alexander Burger . 3
1.1 Introduction . 3
1.2 A Radical Approach . 4

1.2.1 Myth 1: Lisp Needs a Compiler . 4
1.2.2 Myth 2: Lisp Needs Plenty of Data Types 7
1.2.3 Myth 3: Dynamic Binding is Bad . 8
1.2.4 Myth 4: Property Lists are Bad . 9

1.3 The Application Server . 9
1.3.1 Locality Principle . 10
1.3.2 Lisp . 10

1.4 Conclusion . 11
References . 12

2 A Unifying Language for Database And User Interface
Development
Alexander Burger . 13
2.1 Introduction . 13
2.2 Traditional DB and GUI Development . 14
2.3 A Unified Approach . 15

2.3.1 Object Architecture . 16
2.3.2 Database . 17
2.3.3 Relation Daemons . 18

Relation Prefix Usage . 19
Entity Linkage . 19

2.3.4 Query Language . 20
2.3.5 GUI Integration . 20

+E/R (Entity/Relation) . 21
+Obj (Object) . 21

X Contents

2.4 An Example . 22
2.5 Discussion . 25
2.6 Conclusion . 25
2.7 Download . 26
References . 26

Part II PicoLisp References

3 The PicoLisp Reference
Alexander Burger . 29
3.1 Introduction . 29
3.2 The PicoLisp Machine . 30

3.2.1 The Cell . 30
3.2.2 Data Types . 31

Numbers . 32
Symbols . 33
Lists . 36

3.2.3 Memory Management . 37
3.3 Programming Environment . 37

3.3.1 Installation . 38
3.3.2 Invocation . 38
3.3.3 Input/Output . 40

Numbers . 40
Symbols . 41
Lists . 43
Read-Macros . 44

3.3.4 Evaluation . 45
3.3.5 Coroutines . 50
3.3.6 Interrupt . 50
3.3.7 Error Handling . 51
3.3.8 @ Result . 51
3.3.9 Comparing . 52
3.3.10 OO Concepts . 53
3.3.11 Database . 54

Transactions . 54
Entities / Relations . 55

3.3.12 Pilog (PicoLisp Prolog) . 56
3.3.13 Naming Conventions . 57
3.3.14 Breaking Traditions . 58
3.3.15 Bugs . 59

References . 59

4 The Equivalence of Code and Data
Alexander Burger . 61

Contents XI

4.1 The Equivalence of Code and Data . 61

5 First Class Environments
Alexander Burger . 65
5.1 Dynamic Binding vs Lexical Scoping . 65
5.2 First Class Data Type . 66
5.3 First Class Environments . 66

5.3.1 Creation . 67
5.3.2 Activation . 67

6 Even small details make a difference!
Alexander Burger . 71
6.1 Even small details make a difference! . 71

7 The Dual Nature of NIL
Alexander Burger . 75
7.1 The Dual Nature of NIL . 75

8 Array Abstinence
Alexander Burger . 77
8.1 Introduction . 77
8.2 What is an Array? . 77
8.3 Lists . 78
8.4 Are Arrays Really Needed? . 78
8.5 Relative Performance Consideration . 79

9 Coroutines
Alexander Burger . 83
9.1 Introduction . 83
9.2 Using a Generator . 85
9.3 Using a Coroutine . 85
9.4 Efficiency . 86
9.5 Inspecting and Stopping Coroutines . 87
9.6 A Tree Example . 88

10 Transient Namespaces
Alexander Burger . 91
10.1 Introduction . 91
10.2 Using transient symbols . 91
10.3 Using internal symbols . 92
10.4 Using transient namespaces . 93

10.4.1 Implementation . 93
10.4.2 Drawback . 94

11 Native C Calls
Alexander Burger . 95
11.1 Overview . 95

XII Contents

11.2 Syntax . 96
11.2.1 Libraries . 96
11.2.2 Functions . 97
11.2.3 Return Value . 98

Primitive Types . 98
Arrays and Structures . 98

11.2.4 Arguments . 99
Primitive Types . 99
Arrays and Structures . 100

11.3 Memory Management . 102
11.3.1 Fast Fourier Transform. 104
11.3.2 Constant Data . 106

11.4 Callbacks . 107
11.4.1 Call by Name . 107
11.4.2 Function Pointer . 107

12 The ’select’ Predicate
Alexander Burger . 109
12.1 Syntax . 109
12.2 First Example . 109
12.3 Unification Variables . 111
12.4 Generator Clauses . 111

12.4.1 B-Tree Stepping . 111
12.4.2 Interaction of Generator Clauses . 112
12.4.3 Combined Indexes . 112
12.4.4 Indirect Object Associations . 113
12.4.5 Nested Pilog Queries . 114

12.5 Filter Clauses . 115
12.5.1 A Little Report . 115
12.5.2 Filter Predicates . 116

13 Using ’edit’
Alexander Burger . 119
13.1 Introduction . 119
13.2 PicoLisp Symbols . 119
13.3 Editing a Symbol . 120
13.4 Browsing . 122
13.5 Transient Symbols . 124
13.6 Browsing the Database . 125
13.7 Debugging . 128
13.8 Distributed Database . 130

14 Bash Completion
Alexander Burger . 133
14.1 Bash Completion . 133

Contents XIII

15 The Need for Speed
Alexander Burger . 135
15.1 Introduction . 135
15.2 Fibonacci . 136
15.3 List Operations . 136
15.4 Binary Trees . 137
15.5 Fannkuch . 139

16 GUI Scripting
Alexander Burger . 145
16.1 Introduction . 145
16.2 A Simple Example . 146

16.2.1 Using the Browser GUI . 146
16.2.2 Using GUI Scripting . 148

16.3 The Scrape Library . 150

17 Manual Page
Alexander Burger . 153
17.1 NAME . 153
17.2 SYNOPSIS . 153
17.3 DESCRIPTION . 153
17.4 INVOCATION . 154
17.5 FILES . 155
17.6 BUGS . 155
17.7 AUTHOR . 155
17.8 RESOURCES . 156

18 README
Alexander Burger . 157
18.1 The PicoLisp System . 157

18.1.1 Programming Language . 157
18.1.2 Application Server Framework . 158

19 INSTALL
Alexander Burger . 161
19.1 PicoLisp Installation . 161
19.2 Local Installation . 162

19.2.1 Unpack the distribution . 162
19.2.2 Change the directory . 162
19.2.3 Compile the PicoLisp interpreter . 162

19.3 Global Installation . 163
19.4 Invocation . 163
19.5 Documentation . 164

Part III PicoLisp Tutorials

XIV Contents

20 A PicoLisp Tutorial
Alexander Burger . 169
20.1 Now let’s start . 169
20.2 Command Line Editing . 170

20.2.1 VI-like editing . 170
20.2.2 Conclusion . 173

20.3 Browsing . 173
20.3.1 Basic tools . 173
20.3.2 Inspect a symbol with show . 173
20.3.3 Inspect and edit with edit . 174
20.3.4 Built-in pretty print with pp . 175
20.3.5 Inspect elements one by one with more 176
20.3.6 Search through available symbols with what 177
20.3.7 Search through values or properties of symbols with who . . 177
20.3.8 Inspect dependencies with dep . 178

20.4 Defining Functions . 179
20.4.1 Functions with no argument . 179
20.4.2 Functions with one argument . 179
20.4.3 Preventing arguments evaluation and variable number of

arguments . 180
20.4.4 Mixing evaluated arguments and variable number of

unevaluated . 181
20.4.5 Variable number of evaluated arguments 181
20.4.6 Anonymous functions without the lambda keyword 182

20.5 Debugging . 183
20.5.1 Tracing . 183
20.5.2 Single-stepping . 185

20.6 Functional I/O . 188
20.7 Scripting . 190

20.7.1 Command line arguments for the PicoLisp interpreter 190
20.7.2 PicoLisp scripts . 191
20.7.3 Grab command line arguments from PicoLisp scripts 192
20.7.4 Run scripts from arbitrary places on the host file system . . 193
20.7.5 Editing scripts . 194
20.7.6 Editing scripts with vi . 194

20.8 Objects and Classes . 195
20.9 Persistence (External Symbols) . 201
20.10 Database Programming . 204
20.11 User Interface (GUI) Programming . 208
20.12 Pilog — PicoLisp Prolog . 211
20.13 Poor Man’s SQL . 215

20.13.1select . 215
20.13.2update . 216

References . 218

Contents XV

21 PicoLisp Application Development
Alexander Burger . 219
21.1 Introduction . 219
21.2 Static Pages . 219

21.2.1 Hello World . 220
Start the application server . 220
How does it work? . 220

21.2.2 URL Syntax . 221
21.2.3 Security . 222

The “.pw” File . 222
21.2.4 The html Function . 223
21.2.5 CSS Attributes . 225
21.2.6 Tag Functions . 225

Simple Tags . 226
(Un)ordered Lists . 227
Tables . 227
Menus and Tabs . 229

21.3 Interactive Forms . 231
21.3.1 Sessions . 232
21.3.2 Action Forms . 233

The gui Function . 234
Control Flow . 235
Switching URLs . 236
Alerts and Dialogs . 237
A Calculator Example . 239

21.3.3 Charts . 240
Scrolling . 242
Put and Get Functions . 243

21.4 GUI Classes . 245
21.4.1 Input Fields . 247

Numeric Input Fields . 248
Time & Date . 249
Telephone Numbers . 251
Checkboxes . 252

21.4.2 Field Prefix Classes . 252
Initialization . 253
Disabling and Enabling . 253
Formatting . 254
Side Effects . 255
Validation . 256
Data Linkage . 257

21.4.3 Buttons . 258
Dialog Buttons . 259
Active JavaScript . 259

21.5 A Minimal Complete Application . 260

XVI Contents

21.5.1 Getting Started . 260
Localization . 261
Navigation . 261
Choosing Objects . 261
Editing . 262
Buttons vs. Links . 263

21.5.2 The Data Model . 264
21.5.3 Usage . 268

Customer/Supplier . 269
Item . 271
Order . 273
Reports . 276

Part IV PicoLisp Community Articles

22 VizReader’s distributed word index
Henrik Sarvell . 281
22.1 Introduction . 281
22.2 Setup . 281
22.3 Implementation . 282

23 Asynchronous Programming in PicoLisp
Henrik Sarvell . 287
23.1 Introduction . 287
23.2 Asynchronous Evaluation in PicoLisp . 287
23.3 HTTP only . 288

23.3.1 Using call . 288
23.3.2 Using in . 289

24 PicoLisp Ticker
Alexander Burger . 291
24.1 Producing an endless stream of pseudo-text . 291
24.2 Implementing a ticker page . 291
24.3 Googlebot in action . 292

25 The many uses of @ in PicoLisp
Thorsten Jolitz . 299
25.1 The @ mark in PicoLisp . 299

26 Wacky Stuff with circular Lists
José Ignacio Romero . 301
26.1 Example 1 with walk-through . 301
26.2 Example 2 with graphical depiction . 302

27 Speedtest PicoLisp vs Elisp
Thorsten Jolitz, José Ignacio Romero . 303

Contents XVII

27.1 The Tests . 303
27.1.1 Function Call/Arithmetic Cost . 303

Shell Script Approach . 303
Command Line Approach . 304

27.1.2 List Manipulation Cost . 305
27.2 Results . 306

27.2.1 32bit . 306
System Information . 306
Function Calls . 306
List Manipulation . 306

27.2.2 64bit . 307
System Information . 307
Function Calls . 307
List Manipulation . 308

27.2.3 32bit vs 64bit . 308

Part V PicoLisp Community Tutorials

28 PicoLisp at first glance
Henrik Sarvell . 311
28.1 PicoLisp at first glance . 311

29 Registers and Quoting in PicoLisp
Henrik Sarvell . 313
29.1 Install and Start . 313
29.2 The car and the cdr . 313
29.3 Quoting . 315

30 Working with tables in PicoLisp
Henrik Sarvell . 317
30.1 Example Data . 317
30.2 Retrieving data from the table . 317
30.3 Sort the table . 319

31 Simple OO in PicoLisp
Henrik Sarvell . 323
31.1 Defining classes . 323
31.2 Creating instances . 324
31.3 Fetch from and sort a list of objects . 325

32 More OO in PicoLisp
Henrik Sarvell . 327
32.1 Simple single inheritance . 327
32.2 Multiple inheritance . 329
32.3 Class extension on demand . 330

XVIII Contents

33 Simple OODB in PicoLisp
Henrik Sarvell . 333
33.1 Walk through a simple example . 333
33.2 External symbols . 334

34 Advanced OODB in PicoLisp
Henrik Sarvell . 337
34.1 Assumptions . 337
34.2 Using select . 337
34.3 Pilog example . 338

34.3.1 Select and insert . 338
34.3.2 Updating and Deleting . 340

35 Registration Form in PicoLisp
Henrik Sarvell . 343
35.1 Prerequisites . 343
35.2 Walk through the main.l library . 344
35.3 Walk through the er.l library . 345
35.4 Walk through the global-helpers.l library 346
35.5 The registration form . 348

36 Explicit Scope Resolution in PicoLisp
Henrik Sarvell . 353
36.1 Extending the html function . 353
36.2 FEXPRs and scoping rules . 354
36.3 Explicit scoping with run and eval . 354

36.3.1 Using run . 354
36.3.2 Using eval . 355

37 Pilog Solve and the +Aux Relation
Henrik Sarvell . 357
37.1 ’Doctrine for dummies’ example . 357
37.2 Querying . 359

37.2.1 Simple queries . 359
37.2.2 Using the +Aux relation . 359
37.2.3 Pilog solve with parallel scanning . 360
37.2.4 Pilog solve using the +Aux relation . 361

38 PicoLisp and JSON
Henrik Sarvell . 363
38.1 Introduction . 363
38.2 The tests . 363

38.2.1 PicoLisp to JSON . 363
38.2.2 JSON to PicoLisp . 365

38.3 The library . 365
38.3.1 JSON to PicoLisp . 365

Contents XIX

38.3.2 PicoLisp to JSON . 367

39 Factorials, Permutations and Recursion in PicoLisp
Henrik Sarvell . 371
39.1 Simulating stock trading strategies . 371
39.2 Factorials and Permutation . 371

39.2.1 First try . 371
39.2.2 Using recur and recurse . 372
39.2.3 Second try . 373
39.2.4 Using permute . 373

40 Prolog as a Dating Aid
Henrik Sarvell . 375
40.1 A Prolog presentation . 375
40.2 Set up a Prolog environment . 375
40.3 The database . 377

40.3.1 Generate the database . 377
40.3.2 Query the database . 378

41 jQuery and PicoLisp
Henrik Sarvell . 381
41.1 Problem . 381
41.2 Solution . 381

41.2.1 Description . 381
41.2.2 Implementation . 382

Part VI PicoLisp FAQ

42 Frequently Asked Questions (FAQ)
Alexander Burger . 387
42.1 Why did you write yet another Lisp? . 387
42.2 Who can use PicoLisp? . 387
42.3 What are the advantages over other Lisp systems? 388

42.3.1 Simplicity . 388
42.3.2 A Clear Model . 388
42.3.3 Orthogonality . 388
42.3.4 Object System . 389
42.3.5 Pragmatism . 389
42.3.6 Persistent Symbols . 390
42.3.7 Application Server . 390
42.3.8 Localization . 391

42.4 How is the performance compared to other Lisp systems? 391
42.5 What means “interpreted”? . 391
42.6 Is there (or will be in the future) a compiler available? 392
42.7 Is it portable? . 393

XX Contents

42.8 Is PicoLisp a web server? . 393
42.9 I cannot find the LAMBDA keyword in PicoLisp 393
42.10 Why do you use dynamic variable binding? . 393
42.11 Are there no problems caused by dynamic binding? 394
42.12 But with dynamic binding I cannot implement closures! 395
42.13 Do you have macros? . 397
42.14 Why are there no strings? . 397
42.15 What about arrays? . 398
42.16 How to do floating point arithmetics? . 398
42.17 What happens when I locally bind a symbol which has a function

definition? . 399
42.18 Would it make sense to build PicoLisp in hardware? 399
42.19 I get a segfault if I . 400
42.20 Where can I ask questions? . 400

43 Some technical questions and answers
Alexander Burger . 401
43.1 Can there be more than one copy of the symbol T? 401
43.2 Why is the symbol T not protected like NIL? 402
43.3 Why does the REPL exit when NIL is typed? 403
43.4 PicoLisp indicated that ’be’ was undefined - why? 404

Part VII PicoLisp 64-bit Version

44 README 64-bit
Alexander Burger . 407
44.1 64-bit PicoLisp . 407

44.1.1 Building the Kernel . 407
44.1.2 Reasons for the Use of Assembly Language 408
44.1.3 Differences to the 32-bit Version . 409

45 Generic VM/Assembler
Alexander Burger . 411
45.1 CPU Registers . 411
45.2 Instruction Set . 413
45.3 Naming Conventions . 416

46 Internal Structures 64-bit Version
Alexander Burger . 417
46.1 Primary Data Types . 417
46.2 Heap . 420
46.3 Stack . 420
46.4 Memory . 423
46.5 Database File . 424
46.6 Assumptions . 425

Contents XXI

Part VIII Ersatz PicoLisp

47 README Ersatz-PicoLisp
Alexander Burger . 429
47.1 Ersatz PicoLisp . 429

47.1.1 Invocation . 430
47.1.2 Building the JAR file . 430

48 Ersatz PicoLisp Java Reflection API
Alexander Burger . 431
48.1 Introduction . 431
48.2 Important functions . 431

48.2.1 The java function . 431
48.2.2 The public function . 433
48.2.3 The interface function . 433
48.2.4 Type conversion functions . 434

GNU Free Documentation License . 435

List of Contributors

Yiorgos Adamopoulos
Greece
adamo@ieee.org

Alexander Burger
Germany
abu@software-lab.de

Thorsten Jolitz
Germany

tjolitz@gmail.com

José Ignacio Romero
Argentina
jir@2.71828.com.ar

Henrik Sarvell
Sweden
hsarvell@gmail.com

Part I

Philosophy and Concepts of PicoLisp

1

A Radical Approach to Application
Development

Alexander Burger

abu@software-lab.de

Summary. Criteria for productive application development are considered (yet
again), and a point is made why we regard Lisp as the only language suited for
that task. Pico Lisp is presented as a successful example, used in commercial appli-
cations for many years, and adapted to this task (arguably) better than any other
Lisp.

1.1 Introduction

I am working as a consultant and free software developer. During the past
twenty years my partners and I worked on projects as diverse as pre-press
image processing, computer aided design, simulations, and various financial
and business applications.

For almost all these projects we used Lisp.

My daily job is to listen to customer requests, to analyze business processes,
and develop software according to those needs.

Typically – in business applications like ERP or CRM – this is a process of
permanent change. At the beginning of a new project, neither the developer
nor the customer know for sure what is needed, nor how exactly the final
product should look.

It will be found by an iterative process (some call it “extreme programming”):
The customer evaluates each new version, then we discuss further strategies.
It is not uncommon that unanticipated requirements may cause large parts
of the project to be rewritten. This does not necessarily imply bad planning,
because the process I describe here is the planning. In an ideal world, software
development is only planning – the time spent for actually writing code should
converge towards zero.

4 Alexander Burger

We need a programming language which lets us directly express what we
want the program to do, in a pragmatic and flexible way. And we believe that
everything should be as simple as possible, so that the programmer is able to
understand at any time what is going on under the hood.

Over the years, the Pico Lisp [1] system evolved from a minimalist Lisp im-
plementation to a dedicated application server. Please note that we are not
talking of a rapid prototyping tool. At each development step, the result is
always a fully functional program, not a prototype, growing towards the (pos-
sibly final) production version. Instead, you may call it a power tool for the
professional programmer, who likes to keep in control of his evironment, and
wants to express his application logic and data structures in a concise nota-
tion.

First we want to introduce Pico Lisp, explain why Pico differs in its lower levels
quite radically from other Lisps or development systems, and then show its
benefit at the higher levels.

1.2 A Radical Approach

The (Common-) Lisp community will probably not be enthusiastic about Pico
Lisp, because it disposes of several traditional Lisp beliefs and dogmas. Some
are just myths, but they can cause Lisp to become too complicated, heavy and
slow. The practical experience with Pico Lisp proves that a lightweight and
fast Lisp is optimal for many kinds of productive application development.

1.2.1 Myth 1: Lisp Needs a Compiler

This is in fact the most significant myth. If you listen to Lisp discussion
groups, the compiler plays a central role. You might get the impression that it
is almost a synonym for the execution environment. People worry about what
the compiler does to their code, and how effective it is. If your Lisp program
appears to be slow, you are supposed to get a better compiler.

The idea of an interpreted Lisp is regarded as an old misconception. A modern
Lisp needs a compiler; the interpreter is just a useful add-on, and mainly an
interactive debugging aid. It is too slow and bloated for executing production
level programs.

We believe that the opposite is true. For one thing (and not just from a philo-
sophical point of view) a compiled Lisp program is no longer Lisp at all. It
breaks the fundamental rule of “formal equivalence of code and data”. The re-
sulting code does not consist of S-Expressions, and cannot be handled by Lisp.

1 A Radical Approach to Application Development 5

The source language (Lisp) was transformed to another language (machine
code), with inevitable incompatibilities between different virtual machines.

Practically, a compiler complicates the whole system. Features like multiple
binding strategies, typed variables and macros were introduced to satisfy the
needs of compilers. The system gets bloated, because it also has to support
the interpreter and thus two rather different architectures.

But is it worth the effort? Sure, there is some gain in raw execution speed,
and compiler construction is interesting for academic work. But we claim that
in daily life a well-designed “interpreter” can often outperform a compiled
system.

You understand that we are not really talking about “interpretation”. A Lisp
system immediately converts all input to internal pointer structures called “S-
Expressions”. True “interpretation” would deal with one-dimensional charac-
ter codes, considerably slowing down the execution process. Lisp, however,
“evaluates” the S-Expressions by quickly following these pointer structures.
There are no searches or lookups involved, so nothing is really “interpreted”.
But out of habit we’ll stick to that term.

A Lisp program as an S-Expression forms a tree of executable nodes. The
code in these nodes is typically written in optimized C or assembly, so the
task of the interpreter is simply to pass control from one node to the other.
Because many of those built-in lisp functions are very powerful and do a lot
of processing, most of the time is spent in the nodes. The tree itself functions
as a kind of glue.

A Lisp compiler will remove some of that glue, and replace some nodes with
primitive or flow functionality directly with machine code. But because most
of the time is spent in built-in functions anyway, the improvements will not
be as dramatic as for example in a Java byte code compiler, where each node
(a byte code) has just a comparatively primitive functionality.

Of course, the compilation itself is also quite time-consuming. An application
server often executes single-pass Lisp source files on the fly, and immediately
discards the code when it is done. In these cases, either the inherently slower
interpreter of a compiler-based Lisp system, or the additional time spent by
the compiler will noticeable degrade the overall performance.

Pico Lisp’s internal structures were designed for convenient interpretation
from the beginning. Though it is completely written in C, and was not spe-
cially optimized for speed, a lack of performance was never an issue: The first
commercial production system written in Pico Lisp was an image processing,
retouch, and page layout program for the printing and pre-press industry, in
1988, on a Mac II with a 12 MHz CPU and 8 MB of RAM. No Lisp compiler,
of course, just the low level pixel manipulations and bezier routines were writ-

6 Alexander Burger

ten in C. Even then, on a hardware hundreds of times slower than today’s,
nobody complained about the performance.

Just out of interest I installed CLisp the other day, and compared it with
Pico Lisp for some simple benchmarks. Of course, the results are not meant
to reflect the usefulness of either system as an application server, but they
give a rough indication about the relative performances.

First I tried the simple recursive fibonacci function:

(defun fibo (N)

(if (< N 2)

1

(+

(fibo (- N 1))

(fibo (- N 2)))))

When called as (fibo 30), I get the following execution times (on a 266 MHz
Pentium-I notebook):

Pico (interpreted) 12 sec
CLisp interpreted 37 sec
CLisp compiled 7 sec

The CLisp interpreter is about three times slower, the compiler roughly twice
as fast as Pico Lisp.

However, the fibonacci function is not a good example of a typical Lisp pro-
gram. It consists only of primitive flow and arithmetic functions, is easy for a
compiler to optimize, and might be written directly in C if it were time-critical
(in that case, it would take only 0.2 sec).

Therefore, I went to the other extreme, with a function doing extensive list
processings:

(defun tst ()

(mapcar

(lambda (X)

(cons

(car X)

(reverse (delete (car X) (cdr X)))))

’((a b c a b c) (b c d b c d) (c d e c d e) (d e f d e f))))

When called1 one million times, I got:

1For a Pico Lisp version, replace defun with de and lambda with quote

1 A Radical Approach to Application Development 7

Pico (interpreted) 31 sec
CLisp interpreted 196 sec
CLisp compiled 80 sec

Now the CLisp interpreter is more than six times slower, but to my surprise
the compiled code is still 2.58 times slower than Pico Lisp.

Perhaps CLisp comes with a particularly slow Lisp compiler? And probably
the code can be sped up using some tricks. But still these results leave a lot of
doubt whether the overhead for a compiler can be justified. Fiddling around
with compiler optimization is the last thing I want to do when I’m concerned
about the application logic, and when the user anyway doesn’t notice any
delays.

1.2.2 Myth 2: Lisp Needs Plenty of Data Types

The fibonacci function in the above benchmark can probably be sped up by
declaring the variable N to some integer. But this shows how much Lisp got
influenced by the demands of compiler support. A compiler can produce more
efficient code when data types are statically declared. Common Lisp supports
a whole zoo of types, including various integer, fixed/floating point, or rational
number types, characters, strings, symbols, structs, hash tables, and vectored
types in addition to lists.

Pico Lisp, on the other hand, supports only three built-in data types – num-
bers, symbols and lists – and can get along with them remarably well. A Lisp
system works faster with fewer data types, because fewer options have to be
checked at runtime. There may be some cost for less efficient memory usage,
but fewer types can also save space because fewer tag bits are required.

The main reason for using only three data types is simplicity, an advantage
which by far outweighs the speed and space considerations.

At the lowest level, in fact, Pico Lisp consists of only a single data type,
the cell, which is used internally to construct numbers, symbols and lists.
A small number or a minimal symbol occupies only a single cell in memory,
growing dynamically on demand. This memory model also allows for efficient
garbage collection and completely avoids fragmentation (as would be the case,
for example, with vectors).

At the higher levels it is always possible to emulate other data types using
these three primitive types. So we emulate trees by lists, and strings, classes
and objects by symbols. As long as we observe no performance problems why
should we make it more complicated?

8 Alexander Burger

1.2.3 Myth 3: Dynamic Binding is Bad

Pico Lisp employs a straightforward implementation of dynamic, shallow bind-
ing: The content of a symbol’s value cell is saved when a lambda body or
binding environment is entered, then set to its new value. Upon return, the
original value is restored. As a result, the current value of a symbol is de-
termined dynamically by the history and state of execution, not by static
inspection of the lexical environment.

For an interpreted system, this is probably the simplest and fastest strategy.
Looking up the value for a symbol does not require any searches (just access
to the value cell), and all symbols (local or global) are treated uniformly.
A compiler, on the other hand, can produce more efficient code for lexical
bindings, so compiled Lisps usually complicate things by supporting several
several types of binding strategies.

Dynamic binding is a very powerful mechanism. The current value of any
symbol can be accessed from any place, both the symbol and its value are
always the “real thing”, physically existent, not something that it just “looks
like” (as is the case with lexical binding, and – to some degree in Pico Lisp –
the use of transient symbols (see below)).

Unfortunately, power is not available without danger. The programmer must
be familiar with the underlying principles to use their advantages and avoid
their pitfalls. As long as we stick to the conventions recommended by Pico
Lisp, the risks can be minimized, however.

We can see two types of situation where the results of a computation involving
dynamic binding may come out unexpected for the programmer:

• A symbol is bound to itself and we try to modify the symbol’s value

• The funarg problem, when a symbol’s value got dynamically modified by
pass-through code that is invisible in the current source environment.

Both situations are defused when we resort to transient symbols in such cases.

Transient symbols are symbols in Pico Lisp which look like strings (and are
often used as such2), and which are interned only temporarily during execution
of a single source file (or just a part of it). Thus, they have a lexical scope,
comparable to static identifiers in C programs, though their behavior is still
completely dynamic, because they are normal symbols in all other respects.

So the rules are simple: Whenever a function has to modify the value of a
passed-in symbol, or to evaluate (directly or indirectly) a passed-in Lisp ex-
pression, its parameters should be written as transient symbols. Actual expe-
rience shows, however, that these cases are rare in the top levels of application
development, and occur mostly in the support libraries and system tools.

2perhaps an unfortunate design decision

1 A Radical Approach to Application Development 9

1.2.4 Myth 4: Property Lists are Bad

Properties are a nice, clean way to associate information with symbols in
addition to the value/function cell. They are extremely flexible, because the
amount and type of data is not statically fixed.

Most people seem to believe that property lists are too ancient and primitive
to be used today. More advanced data structures should be used instead.
While this is true in some cases, depending on the total number of properties
in a symbol, the break-even point might be higher than expected.

Previous versions of Pico Lisp experimented with hash tables and self-
adjusting binary trees to store properties, but we found the plain list simply to
be more effective. We must take into account the net effect of the total system,
and the overhead both for maintaining many internal data types (see above)
and more complicated lookup algorithms is often larger than that involved
with simple linear lookup. And when we are also concerned about memory
efficiency, the advantages of property lisps are clearly winning.

Pico Lisp implements properties in lists of key-value pairs. The only concession
to speed optimization is a last-recently-used scheme, accelerating repeated
accesses a little, but we have no concrete evidency whether this was actually
necessary.

Another argument against properties is their alleged global scope. This is true
to the same extend as an item in a C-structure, or an instance variable in a
Java object, is global.

A property in a global symbol is global, of course, but in typical application
programming properties are stored in anonymous symbols, objects or database
entities, all of which are accessible only in a well-defined context. Therefore, a
property named ‘‘color’’ can be used with a certain meaning in one context,
and with a completely different meaning in another, without any interference.

1.3 The Application Server

On top of that simple Pico Lisp machine we developed a vertically structured
application server. It unifies a database engine (based on Pico’s implementa-
tion of persistent objects as a first class data type) and an abstracted GUI
(generating, for example, HTML and generic Java Applets).

The crucial element in that unified system is a Lisp-based markup language,
which is used to implement the individual application modules.

Whenever a new database view, an editor mask, a document, a report or
some other service is requested from the application server, a Lisp source

10 Alexander Burger

file is loaded, and executed on the fly. This is similar to a request for an
URL, followed by sending a HTML file, in a traditional web server. The Lisp
expressions evaluated in that course, however, usually have the side effect of
building and handling an interactive user interface.

These Lisp expressions describe the layout of GUI components, their behavior
in response to user actions, and their connection and interaction with database
objects. In short, they contain the complete specification of that application
module. To make this possible, we found it important to strictly adhere to
the Locality Principle, and to use the mechanisms of “Prefix Classes” and
“Relation Maintenance Daemons” (the latter two are described elsewhere,
see [2]).

1.3.1 Locality Principle

As we said, business application development is a process of permanent
change. The Locality Principle proved to be of great help for the mainte-
nance of such projects. It demands that all relevant information concerning
a single module should be kept together in a single place. It allows for the
programmer to keep a single focus of attendance.

This sounds quite obvious, of course, but opposed to this, current software
design methologies recommend to encapsulate behavior and data, and hide
them from the rest of the application. This usually results in a system where
the application logic is written in some place (source file), but the functions,
classes and methods implementing the functionality are defined somewhere
else. To be sure, in general this is a good recommendation, but it gives a lot
of problems in a permanently changing environment: Context switches and
modifications have to be done simultaneously in several places. If a feature
is obsolete, some modules may become obsolete too, but we often forget to
remove them.

So we think that the optimal way is to build an abstracted library of functions,
classes, and methods – as general-purpose as possible, and virtually constant
over time and between individual applications – and to use that to build a
tailored markup language with high expressive power to actually write the
applications.

That language should have a compact syntax and allow the description of all
static and dynamic aspects of the application. Locally, in one single place.
Without need to define behavior in separate class files.

1.3.2 Lisp

And this is the main reason why we said in the beginning that Lisp is the only
language suitable for us. Only Lisp allows a uniform treatment of code and

1 A Radical Approach to Application Development 11

data, and this is the foundation of the Pico Lisp application programming
model. It makes heavy use of functional bodies and evaluatable expressions,
mixed freely with static data and passed around – and stored in – the internal
runtime data structures.

To our knowledge, this is not possible with any other programming language,
at least not with similar simplicity and elegance. To a certain degree it might
be done in scripting languages, using interpretable text strings, but only rather
limited and clumsy. And – as described above – compiler-dependent Lisp
systems might be a bit too heavy and inflexible. In order for all these data
structures and code fragments to work together smoothly, Pico Lisp’s dynamic
shallow binding strategy is of great advantage, because expressions can be
evaluated without the need of binding environment setup.

Another reason is Lisp’s ability to directly manipulate complex data strucures
like symbols and nested lists, without having to explicitly declare, allocate,
initialize, or de-allocate them. This also contributes to the compactness and
readability of the code and gives expressive power to the programmer, letting
him do things in-line – at the snap of a finger – where other languages would
require him to program a separate module.

Additionally, as Pico Lisp makes no formal distinction between database ob-
jects and internal symbols, all these advantages apply to database program-
ming as well, resulting in a direct linkage of GUI and database operations in
the same local scope, using identical syntax.

1.4 Conclusion

The Lisp community seems to suffer from a paranoia of “inefficient” Lisp.
This is probably due to the fact that for decades they had to defend their
language against claims like “Lisp is slow” and “Lisp is bloated”.

Partly, this used to be true. But on today’s hardware raw execution speed
doesn’t matter for many practical applications. And in those cases where it
does, just coding a few critical functions in C usually solves the problem.

Now let’s turn our focus to more practical aspects. Some people might be
surprised how small and fast a supposedly “ancient” Lisp system can be. So
we should be careful not to make Lisp really “bloated” by overloading the core
language with more and more features, but dare to employ simple solutions
which give their full flexibility to the programmer.

Pico Lisp can be seen as a proof of “Less may be More”.

12 Alexander Burger

References

1. Pico Lisp Download, http://www.software-lab.de/down.html
2. A Unifying Language for Database And User Interface Development, A.Burger

2002, http://www.software-lab.de/dbui.html

2

A Unifying Language for Database And User
Interface Development

Alexander Burger

abu@software-lab.de

Summary. A language framework is presented which closes the semantic gap be-
tween database, application logic, and user interface. We introduce the concepts
of Prefix Classes and Relation Maintenance Daemon Objects to suggest a unified
development style reducing software development time and cost.

2.1 Introduction

Ever since computers were used in commercial applications, there was a grow-
ing demand to reduce software development time and cost.

Business models are quite different from each other. Off-the-shelf software
usually does not fit the individual needs for enterprise workflow data process-
ing, real world modeling, and multimedia applications. For that reason, many
companies are forced to develop their own solutions. Software is a significant
cost factor.

Due to the competitive nature of business, the redundancy inherent in such
individual developments can hardly be avoided. Concerning the development
costs, however, there seems to be a lot of room for improvements.

Typically, these projects implement some kind of database and a set of appli-
cation programs. The task of these programs is to manipulate the data in the
database, implement the general application logic, and provide for some kind
of user interface.

We observe a large semantic gap between the database structure, and the ap-
plication logic with its user interface. The current standard database language
is SQL, which operates on the table level, while general-purpose programming
languages like Cobol, C/C++ or Java are used to implement the application
logic and user interface.

14 Alexander Burger

In numerous attempts to remedy the situation, object-oriented paradigms are
applied to both ends, by extending the relational database to object-oriented
databases, and by building user interface frameworks in object-oriented lan-
guages.

There’s no doubt that object-oriented databases provide for more intuitivity
and productivity, and modern graphical user interfaces (GUI) cannot not be
imagined without those frameworks.

But the semantic gap does not appear to diminish significantly. Databases
and user interfaces are separate worlds: Existing class libraries are concerned
about visual effects and event handling, but not about application logic and
database maintenance. It is the programmer’s responsibility to write glue code
that displays data in corresponding GUI fields, detects modifications by the
user, validates them, writes changes back to the database, and does other
housekeeping.

This paper introduces a language and programming environment that closes
the semantic gap, by unifying database and user interface into a single appli-
cation server framework.

2.2 Traditional DB and GUI Development

The mainstream database format today is still the relational model, which
packs the application data into two-dimensional tables, and relies on the ap-
plication program logic to correctly access these data and to maintain their
integrity via proper SQL statements.

A single data record on the application level (like, for example, a customer or
an article) - which is presented to the user within a single GUI window - is
usually spread out over several tables in the database.

The application program has to select these data, explicitly supplying knowl-
edge about the relations between the tables, the data types and sizes, then
have them copied to variables in the application scope, and move them to
the GUI window. (Note: There are tendencies to “hide” this code into the
methods of an object-relational database. This serves well for better structur-
ing the application program design, but does not decrease the actual amount
of programming work. The correct select-statements still have to be writ-
ten, and a change in the relations or table structures may require individual
modifications.)

The GUI components have access to these variables in the application scope;
they are notified after a successful select to display these data.

2 A Unifying Language for Database And User Interface Development 15

Now comes the most tedious part. The user interface cannot simply wait until
a user has done all his changes to the data record and hits some “submit”-
button. It is necessary to provide immediate feedback on field entry, field exit,
and often on every key stroke or mouse click. Depending on the context and
the internal state of the application, individual GUI components or program
features have to be enabled or disabled.

When the focus leaves a GUI component, its data have to be validated (pos-
sibly displaying error messages to the user), certain side-effects carried out
(which might influence other GUI components), and modifications written to
the database. A simple change in a single text field can cause an update to
several database tables.

All these things involve SQL statements which again must contain extensive
knowledge about the database structure. And they cannot easily be abstracted
into reusable DB- or GUI-classes, because the requirements tend to differ for
each view on the data record and each combination of GUI components. Thus,
they have to be written individually for each GUI window.

2.3 A Unified Approach

We use the PicoLisp interpreter to build a vertical, unified solution to these
problems. It allows to describe a direct mapping between application struc-
tures and database objects, so that the underlying machine can handle most
of the above issues automatically.

The solution is “vertical”, because it extends from the virtual machine level
up into the application and GUI levels. And it “unifies”, in a consistent way,
the Lisp interpreter with

• a flexible object architecture

• an object-oriented database

• relation maintenance daemon objects

• a Prolog-equivalent query language. (Note: “Unified” is also a pun here,
as it is fundamental to the Prolog terminology.)

• and a user interface strategy

by using the same syntax and philosophy all along the way. We will describe
its details in the following sections, and give some practical examples.

It turned out that certain requirements for the virtual machine are not met
by existing languages like C++ and Java. These requirements include dynamic
I/O of persistent objects, and a garbage collector handling these objects ac-
cordingly.

16 Alexander Burger

PicoLisp was chosen as the base language, because its interpreter is simple
and completely written in C. This makes it easy to incorporate the necessary
extensions to the virtual machine. Besides this, two other features (of Lisp

in general)

• dynamic data types and structures

• and formal equivalence of code and data

are considered essential. They are both needed for the intended descriptive
syntax of the resulting application development system.

2.3.1 Object Architecture

PicoLisp employs a very simple object architecture. It uses symbols for the
implementation of both classes and objects. There are many ways to imple-
ment symbols in Lisp [1]; in PicoLisp each symbol has a value cell, a property
list, and a name.

For a symbol representing an object, the value cell holds a list of the object’s
classes, the property list holds the object’s attributes (instance variables), and
the name is usually empty (anonymous symbol).

For a symbol representing a class, the value cell holds an association list with
the class’ methods, concatenated with a list of the class’ superclasses, the
property list may hold some class attribues (class variables), and the symbol’s
name is the name of the class.

When a message (also a symbol) is sent to an object, that object’s list of
classes - and recursively those classes’ superclasses - is searched from left
to right (in a depth-first manner) for that message, and the corresponding
method body is executed. (In effect, this is a multiple-inheritance late-binding
strategy.)

In that way, a class +MyCls can be defined to inherit from three classes +Cls1,
+Cls2 and +Cls3 (by convention, class names start with a ‘+’):

(class +MyCls +Cls1 +Cls2 +Cls3)

Then, an object can be created with

(new ’(+MyCls))

or another object with equivalent behavior:

2 A Unifying Language for Database And User Interface Development 17

(new ’(+Cls1 +Cls2 +Cls3))

In both cases the resulting objects will inherit method definitions from +Cls1,
+Cls2 and +Cls3. Because of the depth-first and left-to-right search order,
however, methods in the class hierarchy of +Cls1 will override methods with
the same name anywhere in the class hierarchies of +Cls2 and +Cls3.

This is a “horizontal” inheritance, as opposed to - and in addition to - the
normal “vertical” inheritance. +Cls1 and +Cls2 can surgically alter the be-
havior of +Cls3, in a very fine-grained manner. Thus - as +Cls3 will typically
define the general behavior - +Cls1 and +Cls2 are called Prefix Classes of
+Cls3.

This object architecture is used throughout the whole system, including the
DB and GUI. And prefix classes are an essential part of it: The expressive
power of Lisp’s equivalence of code and data is augmented in combination
with prefix classes.

2.3.2 Database

The PicoLisp database is built upon that object architecture.

On the lowest level, a database is a collection of persistent objects. PicoLisp
supports persistent symbols, called external symbols, as a first-class data type.
These symbols are known to - and handled in special ways by - the interpreter.

External symbols are stored in a file, in linked blocks of fixed size, where each
symbols’s starting block address is computable from the symbols’s name.

A read or write access to an external symbol’s value or properties causes
that symbol to be automatically fetched from the database file. At the end
of any transaction, modified symbols are written back (commit) or reverted
(rollback). The garbage collector knows about the state of external symbols,
and purges currently unused symbols from memory (Note: These symbols are
only temporarily removed from memory, not from the database. The latter is
done separately by a DB-level garbage collector.).

On the higher levels, these external symbols are organized into class hierar-
chies, reflecting the application’s organizational structures.

As opposed to simple two-dimensional tables, they form arbitrary data struc-
tures like lists, stacks, trees and graphs.

The connections (relations) between objects in the database are not estab-
lished by index lookup, but by explicit inclusion. That is, an object referring
to another object can explicitly hold (i.e. contain a pointer to) that object,
and can get access to it very rapidly. There is no explicit select operation,
everything is simply available when it is needed.

18 Alexander Burger

2.3.3 Relation Daemons

Generally, instances of persistent database objects are called “Entities”. In
our system, there is an additional separate class hierarchy of “Relations”:
Instances of these classes we call “relation maintenance daemon objects”.

Relation daemons are a kind of metadata, controlling the interactions between
entities, and maintaining database integrity. They are the concrete realization
of an abstract Entity/Relationship.

Like other classes, relation classes can be extended and refined, and in combi-
nation with proper prefix classes a fine-grained description of the application’s
structure can be produced.

Besides some primitive relation classes, like +Number, +String or +Date, there
are

• relations between entities, like +Link (uni-directional link), +Joint (bi-
directional link) or +Hook (object-local index root)

• relations that bundle other relations into a single unit (+Bag)

• a +List prefix class

• prefix classes that maintain index trees, like +Key (unique index), +Ref
(non-unique index) or +Idx (full text index)

• prefix classes which in turn modify index class behavior, like +Sn (soundex
algorithm for tolerant searches) [2]

• a +Need prefix class, for existence checks

• a +Dep prefix class controlling dependencies between other relations

A defining function rel is provided, which is used in the context of an entity
class to assign relation daemon objects to that class:

(rel attr (+Cls ..) Arg ..)

rel is called with an attribute name attr, a list of relation classes (+Cls ..)

and - depending on these classes - other optional arguments. Basically, this
function simply does a

(new ’(+Cls ..) Arg ..)

and assigns the resulting daemon object to the attr-property of the current
entity class.

2 A Unifying Language for Database And User Interface Development 19

Relation Prefix Usage

For example, a simple entity “Person” can be defined, having just a “name”
attribute:

(class +Person +Entity) # class ’+Person’

(rel name (+String)) # relation ’name’

If the name relation needs a unique index, it is written as:

(rel name (+Key +String))

And - for an extended example of prefix classes - if name should be a manda-
tory list of names, each with an index using the soundex algorithm:

(rel name (+Need +List +Sn +Idx +String))

This demonstrates the power of combined prefix classes, which allow to define
complex object behavior “on the fly”, without the need to leave the current
programming focus. This is even more important in user interface program-
ming (see section 2.3.5 on the following page).

Entity Linkage

A uni-directional link to another entity might be, for example, the person’s
address:

(rel adr (+Link) (+Address))

This assumes that some entity class +Address is defined:

(class +Address +Entity)

In reality, the relation will probably be bi-directional, with several persons
living at some address:

20 Alexander Burger

(class +Person +Entity)

(rel adr (+Joint) prs (+Address))

(class +Address +Entity)

(rel prs (+List +Joint) adr (+Person))

This says: The adr-attribute of +Person (a +Joint) is an address (connected
to the prs-attribute of +Address), while the prs-attribute of +Address (a
+List +Joint) is a list of persons (connected to the adr-attribute of each
person).

So, when a person’s adr is assigned to some address, the +Joint relation
daemon will take care of updating the list of persons in that address, and vice
versa.

2.3.4 Query Language

For extensive searches in the database, as they are needed for reports or user-
specified queries, a Prolog engine was incorporated into PicoLisp. Prolog is
similar to SQL, due to its declarative nature, but much more powerful because
of its rule-deriving and backtracking capabilities.

Prolog is easy to implement in Lisp [3]. We extended the basic infer-
ence machine to iterate also through facts in the database, and the basic
search/backtracking algorithm to a self-optimizing parallel search through
multiple index trees.

The details of the query language are beyond the scope of this paper. It is
mentioned here because our production system would be incomplete without
it.

2.3.5 GUI Integration

The connection between database objects and GUI components is established
with only two prefix classes: +E/R and +Obj.

Normally, GUI components are created at runtime with the gui function, e.g.

(gui ’(+TextField) "Text" 8)

(gui ’(+NumField) "Number" 8)

for a text field and a numeric field, each 8 characters wide.

2 A Unifying Language for Database And User Interface Development 21

+E/R (Entity/Relation)

The +E/R prefix connects the GUI field with a given relation of an entity:

(gui ’(+E/R +NumField) ’(n . Obj) "Number" 8)

The specification (n . Obj) is passed as an additional argument. It indicates
that this numeric field is “connected” to the n-property of the database object
Obj.

Nothing else has to be done by the programmer. The field will automatically
display the value of n from the database, and modifications entered by the
user into this field will be written automatically to the database value of n,
in the object Obj.

+Obj (Object)

The +Obj prefix extends the GUI field types, from primitives like numbers or
strings, to database objects.

That is, a GUI field can “contain” a database object, just like a text field
contains a string, and a numeric field contains a number. An object can be
“set” into (assigned to) the field, and retrieving the value of the field will
result in that object.

The field cannot, of course, directly display the complete database object. But
it can show a typical attribute of that object, e.g. the object’s name in a text
field, or the object’s ID number in a numeric field:

(gui ’(+Obj +NumField) ’(id +Cls) "ID" 8)

The +Obj prefix extends the capabilities of the basic field type (here a
+NumField), in such a way that

• a proper attribute value is displayed when an object is assigned to the field

• the field is set to the corresponding object when a legal attribute value is
entered

• the field performs keyboard auto-expansion to legal attribute values di-
rectly out of the database

• the field can display a choice list for matching attribute values

• the fields opens an editor for that object when it is double-clicked (Hyper-
Link)

22 Alexander Burger

As a consequence, when +E/R and +Obj are combined

(gui ’(+E/R +Obj +NumField) ’(x . Obj) ’(id +Cls) "Number" 8)

they effectively establish the GUI for an entity linkage (+Link, +Joint etc.),
as described in section 2.3.3 on page 19.

2.4 An Example

Putting it all together, the total effect of the described concepts can best be
explained with the help of a detailed and complete example.

Assuming a simple family database, we represent a network of family rela-
tionships. For each person, we have attribues for name, sex, date of birth, and
we want to have links to father, mother, husband/wife and children.

For a better understanding, we first present the traditional, relational repre-
sentation (Note that we have to introduce a unique ID number for each record.
Also, in such a tabular representation, it is more convenient to store the ID
of father and mother (instead of the children).):

ID nm sex dat mate pa ma
1 John M 22jan1954 2
2 Mary F 01feb1958 1
3 Thomas M 26jan1988 1 2
4 Claudia F 15jul1989 1 2
5 Michael M 03jan1992 1 2

When viewing the these family members as a graph, we get the following
object structure:

2 A Unifying Language for Database And User Interface Development 23

Fig. 2.1. Family Members

In the figure, we omitted the date of birth attribute.

The bi-directional relations, connecting the parents to the children and to each
other, lend themselves to the +Joint entity linkage, resulting in the following
definition for a person:

(class +Person +Entity)

(rel nm (+Key +String)) # Name

(rel pa (+Joint) kids (+Man)) # Father

(rel ma (+Joint) kids (+Woman)) # Mother

(rel mate (+Joint) mate (+Person)) # Partner

(rel dat (+Date)) # born

From this base class, we can derive two classes +Man and +Woman:

(class +Man +Person)

(rel kids (+List +Joint) pa (+Person))

(class +Woman +Person)

(rel kids (+List +Joint) ma (+Person))

To produce a corresponding GUI

24 Alexander Burger

Fig. 2.2. GUI

allowing to view and edit the family members in the database, the following
code is sufficient:

(row

(gui ’(+E/R +TextField) ’(nm : home obj) "Name" 20)

(gui ’(+E/R +DateField) ’(dat : home obj) "born" 10)

(gui ’(+ClassField)

’(: home obj) "Sex"

’(("Male" +Man) ("Female" +Woman))))

(----)

(row

(gui ’(+E/R +Obj +TextField)

’(pa : home obj) ’(nm +Man)

"Father" 20)

(gui ’(+E/R +Obj +TextField)

’(ma : home obj) ’(nm +Woman)

"Mother" 20))

(gui ’(+E/R +Obj +TextField)

’(mate : home obj) ’(nm +Person)

"Partner" 20)

(---- T)

2 A Unifying Language for Database And User Interface Development 25

(gui ’(+E/R +Chart)

’(kids : home obj)

4 ’("Children" "born" "Father" "Mother")

(quote

(gui ’(+Obj +TextField) ’(nm +Person) "" 15)

(gui ’(+Skip +Lock +DateField) "" 10)

(gui ’(+ObjView +TextField) ’(: nm) "" 15)

(gui ’(+ObjView +TextField) ’(: nm) "" 15)))

The above block of code will produce exactly the layout and functionality of
the example GUI display. Without explaining all details here, suffice it to say
that the row function arranges the components horizontally (while otherwise
the default is vertically), (----) groups components into separate panels, and
a +Chart creates an array of its argument components.

The point is that this is the complete program, not just some important details.
It specifies the whole database and GUI application.

2.5 Discussion

The previous sections and the example show that application programming
does not need to involve any concerns about database access (select, insert,
update etc.) and database integrity maintenance.

The advantages are derived from the use of prefix classes and relation dae-
mons. They allow to specify the complete program behavior and appearance
in a single place of definition, and in a very concise form. Typically, the names
of prefix classes are simply chained together, and intermix freely with Lisp’s
formal indifference of code and data.

This removes the need of maintaining separate resource files, class and data
declarations, and program code.

2.6 Conclusion

Achieving low program development costs is an old claim. It has been stated
for manyfold methodologies and paradigms.

The system described in this paper has proven its practical value in commer-
cial applications during several years. Among them are sales, accounting, re-
port, and logistics applications. Research projects include graphics/animation
and speech synthesis systems.

26 Alexander Burger

This shows that it is possible to employ the concepts of prefix classes and
relation maintenance daemons successfully to commercial application devel-
opment.

We observed a significant decrease in program development time. What used
to be the major part of a project’s development effort showed to reduce to
about 5 percent.

2.7 Download

The PicoLisp system can be downloaded from the PicoLisp Download
Page [4].

References

1. John Allen: “Anatomy of Lisp”, McGraw-Hill, 1978
2. Donald E. Knuth: “The Art of Computer Programming”, Vol.3, Addison-Vesley,

1973, p. 392
3. J. A. Campbell: Implementations of Prolog, Ellis Horwood Limited, 1984
4. Pico Lisp Download, http://www.software-lab.de/down.html

http://www.software-lab.de/down.html

Part II

PicoLisp References

3

The PicoLisp Reference

Alexander Burger

abu@software-lab.de

Summary. This document describes the concepts, data types, and kernel functions
of the PicoLisp system.

This is not a Lisp tutorial. For an introduction to Lisp, a traditional Lisp book
(like [1]) is recommended. Note, however, that there are significant differences be-
tween PicoLisp and Maclisp (and even greater differences to Common Lisp).

Please take a look at the PicoLisp Tutorial for an explanation of some aspects of
PicoLisp, and scan through the list of Frequently Asked Questions (FAQ).

3.1 Introduction

PicoLisp is the result of a language design study, trying to answer the question
“What is a minimal but useful architecture for a virtual machine?”. Because
opinions differ about what is meant by “minimal” and “useful”, there are
many answers to that question, and people might consider other solutions
more “minimal” or more “useful”. But from a practical point of view, PicoLisp
has proven to be a valuable answer to that question.

First of all, PicoLisp is a virtual machine architecture, and then a program-
ming language. It was designed in a “bottom up” way, and “bottom up” is also
the most natural way to understand and to use it: Form Follows Function.

PicoLisp has been used in several commercial and research programming
projects since 1988. Its internal structures are simple enough, allowing an
experienced programmer always to fully understand what’s going on under
the hood, and its language features, efficiency and extensibility make it suit-
able for almost any practical programming task.

In a nutshell, emphasis was put on four design objectives. The PicoLisp system
should be

http://software-lab.de/down.html

30 Alexander Burger

Simple The internal data structure should be as simple as possible. Only one
single data structure is used to build all higher level constructs.

Unlimited There are no limits imposed upon the language due to limitations
of the virtual machine architecture. That is, there is no upper bound in
symbol name length, number digit counts, stack depth, or data structure
and buffer sizes, except for the total memory size of the host machine.

Dynamic Behavinor should be as dynamic as possible (“run”-time vs. “compile”-
time). All decisions are delayed until runtime where possible. This in-
volves matters like memory management, dynamic symbol binding, and
late method binding.

Practical PicoLisp is not just a toy of theoretical value. It is in use since
1988 in actual application development, research and production.

3.2 The PicoLisp Machine

An important point in the PicoLisp philosophy is the knowledge about the
architecture and data structures of the internal machinery. The high-level con-
structs of the programming language directly map to that machinery, making
the whole system both understandable and predictable.

This is similar to assembly language programming, where the programmer
has complete control over the machine.

3.2.1 The Cell

The PicoLisp virtual machine is both simpler and more powerful than most
current (hardware) processors. At the lowest level, it is constructed from a
single data structure called “cell”:

+-----+-----+

| CAR | CDR |

+-----+-----+

A cell is a pair of machine words, which traditionally are called CAR and
CDR in the Lisp terminology. These words can represent either a numeric
value (scalar) or the address of another cell (pointer). All higher level data
structures are built out of cells.

The type information of higher level data is contained in the pointers to
these data. Assuming the implementation on a byte-addressed physical ma-
chine, and a pointer size of typically 4 bytes, each cell has a size of 8 bytes.

3 The PicoLisp Reference 31

Therefore, the pointer to a cell must point to an 8-byte boundary, and its
bit-representation will look like:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx000

(the ‘x’ means “don’t care”). For the individual data types, the pointer is
adjusted to point to other parts of a cell, in effect setting some of the lower
three bits to non-zero values. These bits are then used by the interpreter to
determine the data type.

In any case, bit(0) - the least significant of these bits - is reserved as a mark
bit for garbage collection.

Initially, all cells in the memory are unused (free), and linked together to
form a “free list”. To create higher level data types at runtime, cells are taken
from that free list, and returned by the garbage collector when they are no
longer needed. All memory management is done via that free list; there are no
additional buffers, string spaces or special memory areas, with two exceptions:

• A certain fixed area of memory is set aside to contain the executable code
and global variables of the interpreter itself, and

• a standard push down stack for return addresses and temporary storage.
Both are not directly accessible by the programmer).

3.2.2 Data Types

On the virtual machine level, PicoLisp supports

• three base data types: Numbers, Symbols and Cons Pairs (Lists),

• the three scope variations of symbols: Internal, Transient and External,
and

• the special symbol NIL.

They are all built from the single cell data structure, and all runtime data
cannot consist of any other types than these three.

The following diagram shows the complete data type hierarchy, consisting of
the three base types and the symbol variations:

32 Alexander Burger

cell

|

+--------+--------+

| | |

Number Symbol List

|

|

+--------+--------+--------+

| | | |

NIL Internal Transient External

Numbers

A number can represent a signed integral value of arbitrary size. The CARs
of one or more cells hold the number’s “digits” (each in the machine’s word
size), to store the number’s binary representation.

Number

|

V

+-----+-----+

| DIG | | |

+-----+--+--+

|

V

+-----+-----+

| DIG | | |

+-----+--+--+

|

V

...

The first cell holds the least significant digit. The least significant bit of that
digit represents the sign.

The pointer to a number points into the middle of the CAR, with an offset of
2 from the cell’s start address. Therefore, the bit pattern of a number will be:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx010

Thus, a number is recognized by the interpreter when bit(1) is non-zero.

3 The PicoLisp Reference 33

Symbols

A symbol is more complex than a number. Each symbol has a value, and
optionally a name and an arbitrary number of properties. The CDR of a
symbol cell is also called VAL, and the CAR points to the symbol’s tail. As a
minimum, a symbol consists of a single cell, and has no name or properties:

Symbol

|

V

+-----+-----+

| / | VAL |

+-----+-----+

That is, the symbol’s tail is empty (points to NIL, as indicated by the /

character).

The pointer to a symbol points to the CDR of the cell, with an offset of 4
from the cell’s start address. Therefore, the bit pattern of a symbol will be:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx100

Thus, a symbol is recognized by the interpreter when bit(2) is non-zero.

A property is a key-value pair, represented as a cell in the symbol’s tail. This
is called a “property list”. The property list may be terminated by a number
representing the symbol’s name. In the following example, a symbol with the
name ’’abc’’ has three properties: A KEY/VAL cell, a cell with only a KEY,
and another KEY/VAL cell.

34 Alexander Burger

Symbol

|

V

+-----+-----+

| | | VAL |

+--+--+-----+

| tail

|

V name

+-----+-----+ +-----+-----+ +-----+-----+ +-----+-----+

| | | ---+---> | KEY | ---+---> | | | ---+---> |’cba’| / |

+--+--+-----+ +-----+-----+ +--+--+-----+ +-----+-----+

| |

V V

+-----+-----+ +-----+-----+

| VAL | KEY | | VAL | KEY |

+-----+-----+ +-----+-----+

Each property in a symbol’s tail is either a symbol (like the single KEY above,
then it represents the boolean value T), or a cell with the property key in its
CDR and the property value in its CAR. In both cases, the key should be
a symbol, because searches in the property list are performed using pointer
comparisons.

The name of a symbol is stored as a number at the end of the tail. It contains
the characters of the name in UTF–8 encoding, using between one and three
8-bit-bytes per character. The first byte of the first character is stored in the
lowest 8 bits of the number.

All symbols have the above structure, but depending on scope and accessibility
there are actually four types of symbols: NIL, internal, transient and external
symbols.

NIL

NIL is a special symbol which exists exactly once in the whole system. It is
used

• as an end-of-list marker

• to represent the empty list

• to represent the boolean value “false”

• to represent the absolute minimum

• to represent a string of length zero

3 The PicoLisp Reference 35

• to represent the value “Not a Number”

• as the root of all class hierarchies

For that, NIL has a special structure:

NIL: /

|

V

+-----+-----+-----+-----+

| / | / | / | / |

+-----+--+--+-----+-----+

The reason for that structure is NIL’s dual nature both as a symbol and as a
list:

• As a symbol, it should give NIL for its VAL, and be without properties

• For the empty list, NIL should give NIL both for its CAR and for its CDR

These requirements are fulfilled by the above structure.

Internal Symbols

Internal Symbols are all those “normal” symbols, as they are used for function
definitions and variable names. They are “interned” into an index structure,
so that it is possible to find an internal symbol by searching for its name.

There cannot be two different internal symbols with the same name.

Initially, a new internal symbol’s VAL is NIL.

Transient Symbols

Transient symbols are only interned into a index structure for a certain time
(e.g. while reading the current source file), and are released after that. That
means, a transient symbol cannot be accessed then by its name, and there
may be several transient symbols in the system having the same name.

Transient symbols are used

• as text strings

• as identifiers with a limited access scope (like, for example, static iden-
tifiers in the C language family)

• as anonymous, dynamically created objects (without a name)

36 Alexander Burger

Initially, a new transient symbol’s VAL is that symbol itself.

A transient symbol without a name can be created with the box or new func-
tions.

External Symbols

External symbols reside in a database file (or a similar resources, see *Ext),
and are loaded into memory - and written back to the file - dynamically
as needed, and transparently to the programmer. They are kept in memory
(“cached”) as long as they are accessible (“referred to”) from other parts of
the program, or when they were modified but not yet written to the database
file (by commit).

The interpreter recognizes external symbols internally by an additional tag
bit in the tail structure.

There cannot be two different external symbols with the same name. External
symbols are maintained in index structures while they are loaded into memory,
and have their external location (disk file and block offset) directly coded into
their names (more details here).

Initially, a new external symbol’s VAL is NIL, unless otherwise specified at
creation time.

Lists

A list is a sequence of one or more cells, holding numbers, symbols, or lists.

|

V

+-----+-----+

| any | | |

+-----+--+--+

|

V

+-----+-----+

| any | | |

+-----+--+--+

|

V

...

Lists are used in PicoLisp to emulate composite data structures like arrays,
trees, stacks or queues.

3 The PicoLisp Reference 37

In contrast to lists, numbers and symbols are collectively called “Atoms”.

Typically, the CDR of each cell in a list points to the following cell, except for
the last cell which points to NIL. If, however, the CDR of the last cell points
to an atom, that cell is called a “dotted pair” (because of its I/O syntax with
a dot ‘.’ between the two values).

3.2.3 Memory Management

The PicoLisp interpreter has complete knowledge of all data in the system, due
to the type information associated with every pointer. Therefore, an efficient
garbage collector mechanism can easily be implemented. PicoLisp employs a
simple but fast mark-and-sweep garbage collector.

As the collection process is very fast (in the order of milliseconds per
megabyte), it was not necessary to develop more complicated, time-consuming
and error-prone garbage collection algorithms (e.g. incremental collection). A
compacting garbage collector is also not necessary, because the single cell data
type cannot cause heap fragmentation.

3.3 Programming Environment

Lisp was chosen as the programming language, because of its clear and simple
structure.

In some previous versions, a Forth-like syntax was also implemented on top
of a similar virtual machine (Lifo). Though that language was more flexible
and expressive, the traditional Lisp syntax proved easier to handle, and the
virtual machine can be kept considerably simpler. PicoLisp inherits the major
advantages of classical Lisp systems like

• Dynamic data types and structures

• Formal equivalence of code and data

• Functional programming style

• An interactive environment

In the following, some concepts and peculiarities of the PicoLisp language and
environment are described.

38 Alexander Burger

3.3.1 Installation

PicoLisp supports two installation strategies: Local and Global.

Normally, if you didn’t build PicoLisp yourself but installed it with your op-
erating system’s package manager, you will have a global installation. This
allows system-wide access to the executable and library/documentation files.

To get a local installation, you can directly download the PicoLisp tarball,
and follow the instructions in the INSTALL file.

A local installation will not interfere in any way with the world outside its
directory. There is no need to touch any system locations, and you don’t have
to be root to install it. Many different versions - or local modifications - of
PicoLisp can co-exist on a single machine.

Note that you are still free to have local installations along with a global
installation, and invoke them explicitly as desired.

Most examples in the following apply to a global installation.

3.3.2 Invocation

When PicoLisp is invoked from the command line, an arbitrary number of
arguments may follow the command name.

By default, each argument is the name of a file to be executed by the inter-
preter. If, however, the argument’s first character is a hyphen ‘-’, then the
rest of that argument is taken as a Lisp function call (without the surrounding
parentheses), and a hyphen by itself as an argument stops evaluation of the
rest of the command line (it may be processed later using the argv and opt

functions). This whole mechanism corresponds to calling (load T).

A special case is if the last argument is a single ‘+’. This will switch on debug
mode (the *Dbg global variable) and discard the ‘+’.

As a convention, PicoLisp source files have the extension ‘ .l ’.

Note that the PicoLisp executable itself does not expect or accept any com-
mand line flags or options (except the ‘+’, see above). They are reserved for
application programs.

The simplest and shortest invocation of PicoLisp does nothing, and exits
immediately by calling bye:

$ picolisp -bye

$

3 The PicoLisp Reference 39

In interactive mode, the PicoLisp interpreter (see load) will also exit when
Ctrl-D is entered:

$ picolisp

: $ # Typed Ctrl-D

To start up the standard PicoLisp environment, several files should be loaded.
The most commonly used things are in “lib.l” and in a bunch of other files,
which are in turn loaded by “ext.l”. Thus, a typical call would be:

$ picolisp lib.l ext.l

The recommended way, however, is to call the “pil” shell script, which includes
“lib.l” and “ext.l”. Given that your current project is loaded by some file
“myProject.l” and your startup function is main, your invocation would look
like:

$ pil myProject.l -main

For interactive development it is recommended to enable debugging mode,
to get the vi-style command line editor, single-stepping, tracing and other
debugging utilities.

$ pil myProject.l -main +

This is - in a local installation - equivalent to

$./dbg myProject.l -main

or

$./pil myProject.l -main +

In any case, the directory part of the first file name supplied (normally, the
path to “lib.l” as called by ‘pil’ or ‘dbg’) is remembered internally as the
PicoLisp Home Directory. This path is later automatically substituted for
any leading ‘ @ ’ character in file name arguments to I/O functions (see path).

40 Alexander Burger

3.3.3 Input/Output

In Lisp, each internal data structure has a well-defined external representation
in human-readable format. All kinds of data can be written to a file, and
restored later to their original form by reading that file.

In normal operation, the PicoLisp interpreter continuously executes an infinite
“read-eval-print loop”. It reads one expression at a time, evaluates it, and
prints the result to the console. Any input into the system, like data structures
and function definitions, is done in a consistent way no matter whether it is
entered at the console or read from a file.

Comments can be embedded in the input stream with the hash # character.
Everything up to the end of that line will be ignored by the reader.

: (* 1 2 3) # This is a comment

-> 6

A comment spanning several lines may be enclosed between #{ and }#.

Here is the I/O syntax for the individual PicoLisp data types (numbers, sym-
bols and lists) and for read-macros:

Numbers

A number consists of an arbitrary number of digits (‘0’ through ‘9’), optionally
preceded by a sign character (‘+’ or ‘-’). Legal number input is:

: 7

-> 7

: -12345678901245678901234567890

-> -12345678901245678901234567890

Fixpoint numbers can be input by embedding a decimal point ‘.’, and setting
the global variable *Scl appropriately:

3 The PicoLisp Reference 41

: *Scl

-> 0

: 123.45

-> 123

: 456.78

-> 457

: (setq *Scl 3)

-> 3

: 123.45

-> 123450

: 456.78

-> 456780

Thus, fixpoint input simply scales the number to an integer value correspond-
ing to the number of digits in *Scl.

Formatted output of scaled fixpoint values can be done with the format and
round functions:

: (format 1234567890 2)

-> "12345678.90"

: (format 1234567890 2 "." ",")

-> "12,345,678.90"

Symbols

The reader is able to recognize the individual symbol types from their syntactic
form. A symbol name should - of course - not look like a legal number (see
above).

In general, symbol names are case-sensitive. car is not the same as CAR.

NIL

Besides for standard normal form, NIL is also recognized as (), [] or "".

: NIL

-> NIL

: ()

-> NIL

: ""

-> NIL

42 Alexander Burger

Output will always appear as NIL.

Internal Symbols

Internal symbol names can consist of any printable (non-whitespace) charac-
ter, except for the following meta characters:

" ’ () , [] ‘ ~ { }

It is possible, though, to include these special characters into symbol names
by escaping them with a backslash ‘\’.

The dot ‘.’ has a dual nature. It is a meta character when standing alone,
denoting a dotted pair, but can otherwise be used in symbol names.

As a rule, anything not recognized by the reader as another data type will be
returned as an internal symbol.

Transient Symbols

A transient symbol is anything surrounded by double quotes ‘""’. With that,
it looks - and can be used - like a string constant in other languages. However,
it is a real symbol, and may be assigned a value or a function definition, and
properties.

Initially, a transient symbol’s value is that symbol itself, so that it does not
need to be quoted for evaluation:

: "This is a string"

-> "This is a string"

However, care must be taken when assigning a value to a transient symbol.
This may cause unexpected behavior:

: (setq "This is a string" 12345)

-> 12345

: "This is a string"

-> 12345

The name of a transient symbol can contain any character except the null-
byte. A double quote character can be escaped with a backslash ‘\’, and a
backslash itself has to be escaped with another backslash. Control characters
can be written with a preceding hat ‘^’ character.

3 The PicoLisp Reference 43

: "We^Ird\\Str\"ing"

-> "We^Ird\\Str\"ing"

: (chop @)

-> ("W" "e" "^I" "r" "d" "\\" "S" "t" "r" "\"" "i" "n" "g")

The index for transient symbols is cleared automatically before and after
loading a source file, or it can be reset explicitly with the ==== function.
With that mechanism, it is possible to create symbolsb with a local access
scope, not accessible from other parts of the program.

A special case of transient symbols are anonymous symbols. These are symbols
without name (see box, box? or new). They print as a dollar sign ($) followed
by a decimal digit string (actually their machine address).

External Symbols

External symbol names are surrounded by braces (‘’ and ‘’). The characters
of the symbol’s name itself identify the physical location of the external object.
This is

• in the 32-bit version: The number of the database file, and - separated by a
hyphen - the starting block in the database file. Both numbers are encoded
in base–64 notation (characters ‘0’ through ‘9’, ‘:’, ‘;’, ‘A’ through ‘Z’ and
‘a’ through ‘z’).

• in the 64-bit version: The number of the database file minus 1 in “hax”
notation (i.e. hexadecimal/alpha notation, where @ is zero, ‘A’ is 1 and O is
15 (from “alpha” to “omega”)), immediately followed (without a hyphen)
the starting block in octal (‘0’ through ‘7’).

In both cases, the database file (and possibly the hypen) are omitted for the
first (default) file.

Lists

Lists are surrounded by parentheses ((and)).

(A) is a list consisting of a single cell, with the symbol A in its CAR, and NIL

in its CDR.

(A B C) is a list consisting of three cells, with the symbols A, B and C respec-
tively in their CAR, and NIL in the last cell’s CDR.

(A . B) is a “dotted pair”, a list consisting of a single cell, with the symbol
A in its CAR, and B in its CDR.

44 Alexander Burger

PicoLisp has built-in support for reading and printing simple circular lists. If
the dot in a dotted-pair notation is immediately followed by a closing paren-
thesis, it indicates that the CDR of the last cell points back to the beginning
of that list.

: (let L ’(a b c) (conc L L))

-> (a b c .)

: (cdr ’(a b c .))

-> (b c a .)

: (cddddr ’(a b c .))

-> (b c a .)

A similar result can be achieved with the function circ. Such lists must be
used with care, because many functions won’t terminate or will crash when
given such a list.

Read-Macros

Read-macros in PicoLisp are special forms that are recognized by the reader,
and modify its behavior. Note that they take effect immediately while reading
an expression, and are not seen by the eval in the main loop.

The most prominent read-macro in Lisp is the single quote character ’ which
expands to a call of the quote function. Note that the single quote character
is also printed instead of the full function name.

: ’(a b c)

-> (a b c)

: ’(quote . a)

-> ’a

: (cons ’quote ’a) # (quote . a)

-> ’a

: (list ’quote ’a) # (quote a)

-> ’(a)

A comma , will cause the reader to collect the following data item into an
idx tree in the global variable *Uni, and to return a previously inserted equal
item if present. This makes it possible to create a unique list of references to
data which do normally not follow the rules of pointer equality. If the value
of *Uni is T, the comma read macro mechanism is disabled.

A single backquote character ‘ will cause the reader to evaluate the following
expression, and return the result.

3 The PicoLisp Reference 45

: ’(a ‘(+ 1 2 3) z)

-> (a 6 z)

A tilde character ~ inside a list will cause the reader to evaluate the following
expression, and (destructively) splice the result into the list.

: ’(a b c ~(list ’d ’e ’f) g h i)

-> (a b c d e f g h i)

When a tilde character is used to separate two symbol names (without sur-
rounding whitespace), the first is taken as a namespace to look up the second
(64-bit version only).

: ’libA~foo # Look up ’foo’ in namespace ’libA’

-> "foo" # "foo" is not interned in the current namespace

Reading libA~foo is equivalent to switching the current namespace to libA

(with symbols), reading the symbol foo, and then switching back to the
original namespace.

Brackets (‘[’ and ‘]’) can be used as super parentheses. A closing bracket will
match the innermost opening bracket, or all currently open parentheses.

: ’(a (b (c (d]

-> (a (b (c (d))))

: ’(a (b [c (d]))

-> (a (b (c (d))))

Finally, reading the sequence ‘’ will result in a new anonymous symbol with
value NIL, equivalent to a call to box without arguments.

: ’({} {} {})

-> ($134599965 $134599967 $134599969)

: (mapcar val @)

-> (NIL NIL NIL)

3.3.4 Evaluation

PicoLisp tries to evaluate any expression encountered in the read-eval-print
loop. Basically, it does so by applying the following three rules:

• A number evaluates to itself.

46 Alexander Burger

• A symbol evaluates to its value (VAL).

• A list is evaluated as a function call, with the CAR as the function and
the CDR the arguments to that function. These arguments are in turn
evaluated according to these three rules.

: 1234

-> 1234 # Number evaluates to itself

: *Pid

-> 22972 # Symbol evaluates to its VAL

: (+ 1 2 3)

-> 6 # List is evaluated as a function call

For the third rule, however, things get a bit more involved. First - as a special
case - if the CAR of the list is a number, the whole list is returned as it is:

: (1 2 3 4 5 6)

-> (1 2 3 4 5 6)

This is not really a function call but just a convenience to avoid having to
quote simple data lists.

Otherwise, if the CAR is a symbol or a list, PicoLisp tries to obtain an exe-
cutable function from that, by either using the symbol’s value, or by evaluating
the list.

What is an executable function? Or, said in another way, what can be applied
to a list of arguments, to result in a function call? A legal function in PicoLisp
is either a

number When a number is used as a function, it is simply taken as a pointer
to executable code that will be called with the list of (unevaluated) ar-
guments as its single parameter. It is up to that code to evaluate the
arguments, or not. Some functions do not evaluate their arguments (e.g.
quote) or evaluate only some of their arguments (e.g. setq).

or a

lambda expression A lambda expression is a list, whose CAR is either a
symbol or a list of symbols, and whose CDR is a list of expressions. Note:
In contrast to other Lisp implementations, the symbol LAMBDA itself
does not exist in PicoLisp but is implied from context.

A few examples should help to understand the practical consequences of
these rules. In the most common case, the CAR will be a symbol defined
as a function, like the * in:

3 The PicoLisp Reference 47

: (* 1 2 3) # Call the function ’*’

-> 6

Inspecting the VAL of * gives

: * # Get the VAL of the symbol ’*’

-> 67318096

The VAL of * is a number. In fact, it is the numeric representation of a C-
function pointer, i.e. a pointer to executable code. This is the case for all
built-in functions of PicoLisp.

Other functions in turn are written as Lisp expressions:

: (de foo (X Y) # Define the function ’foo’

(* (+ X Y) (+ X Y)))

-> foo

: (foo 2 3) # Call the function ’foo’

-> 25

: foo # Get the VAL of the symbol ’foo’

-> ((X Y) (* (+ X Y) (+ X Y)))

The VAL of foo is a list. It is the list that was assigned to foo with the de

function. It would be perfectly legal to use setq instead of de:

: (setq foo ’((X Y) (* (+ X Y) (+ X Y))))

-> ((X Y) (* (+ X Y) (+ X Y)))

: (foo 2 3)

-> 25

If the VAL of foo were another symbol, that symbol’s VAL would be used
instead to search for an executable function.

As we said above, if the CAR of the evaluated expression is not a symbol but
a list, that list is evaluated to obtain an executable function.

: ((intern (pack "c" "a" "r")) (1 2 3))

-> 1

Here, the intern function returns the symbol car whose VAL is used then.
It is also legal, though quite dangerous, to use the code-pointer directly:

48 Alexander Burger

: *

-> 67318096

: ((* 2 33659048) 1 2 3)

-> 6

: ((quote . 67318096) 1 2 3)

-> 6

: ((quote . 1234) (1 2 3))

Segmentation fault

When an executable function is defined in Lisp itself, we call it a lambda
expression. A lambda expression always has a list of executable expressions
as its CDR. The CAR, however, must be a either a list of symbols, or a single
symbol, and it controls the evaluation of the arguments to the executable
function according to the following rules:

When the CAR is a list of symbols For each of these symbols an argu-
ment is evaluated, then the symbols are bound simultaneously to the
results. The body of the lambda expression is executed, then the VAL’s of
the symbols are restored to their original values. This is the most common
case, a fixed number of arguments is passed to the function.

Otherwise, when the CAR is the symbol @ All arguments are evaluated
and the results kept internally in a list. The body of the lambda expres-
sion is executed, and the evaluated arguments can be accessed sequentially
with the args, next, arg and rest functions. This allows to define func-
tions with a variable number of evaluated arguments.

Otherwise, when the CAR is a single symbol The symbol is bound to
the whole unevaluated argument list. The body of the lambda expression
is executed, then the symbol is restored to its original value. This allows to
define functions with unevaluated arguments. Any kind of interpretation
and evaluation of the argument list can be done inside the expression
body.

In all cases, the return value is the result of the last expression in the body.

: (de foo (X Y Z) # CAR is a list of symbols

(list X Y Z)) # Return a list of all arguments

-> foo

: (foo (+ 1 2) (+ 3 4) (+ 5 6))

-> (3 7 11) # all arguments are evaluated

3 The PicoLisp Reference 49

: (de foo X # CAR is a single symbol

X) # Return the argument

-> foo

: (foo (+ 1 2) (+ 3 4) (+ 5 6))

-> ((+ 1 2) (+ 3 4) (+ 5 6)) # the whole unevaluated list is returned

: (de foo @ # CAR is the symbol ’@’

(list (next) (next) (next))) # Return the first three arguments

-> foo

: (foo (+ 1 2) (+ 3 4) (+ 5 6))

-> (3 7 11) # all arguments are evaluated

Note that these forms can also be combined. For example, to evaluate only the
first two arguments, bind the results to X and Y, and bind all other arguments
(unevaluated) to Z:

: (de foo (X Y . Z) # CAR is a list with a dotted-pair tail

(list X Y Z)) # Return a list of all arguments

-> foo

: (foo (+ 1 2) (+ 3 4) (+ 5 6))

-> (3 7 ((+ 5 6))) # Only the first two arguments are evaluated

Or, a single argument followed by a variable number of arguments:

: (de foo (X . @) # CAR is a dotted-pair with ’@’

(println X) # print the first evaluated argument

(while (args) # while there are more arguments

(println (next)))) # print the next one

-> foo

: (foo (+ 1 2) (+ 3 4) (+ 5 6))

3 # X

7 # next argument

11 # and the last argument

-> 11

In general, if more than the expected number of arguments is supplied to a
function, these extra arguments will be ignored. Missing arguments default to
NIL.

50 Alexander Burger

3.3.5 Coroutines

Coroutines are independent execution contexts. They may have multiple entry
and exit points, and preserve their environment between invocations.

They are available only in the 64-bit version.

A coroutine is identified by a tag. This tag can be passed to other functions,
and (re)invoked as needed. In this regard coroutines are similar to “continu-
ations” in other languages.

When the tag goes out of scope while it is not actively running, the coroutine
will be garabage collected. In cases where this is desired, using a transient
symbol for the tag is recommended.

A coroutine is created by calling co. Its prg body will be executed, and unless
yield is called at some point, the coroutine will “fall off” at the end and
disappear.

When yield is called, control is either transferred back to the caller, or to
some other - explicitly specified, and already running - coroutine.

A coroutine is stopped and disposed when

• execution falls off the end

• some other (co)routine calls co with that tag but without a prg body

• a throw into another (co)routine environment is executed

• an error occurred, and error handling was entered

In the current implementation, not more than 64 coroutines can exist at the
same time. Reentrant coroutines are not supported, a coroutine cannot resume
itself directly or indirectly.

3.3.6 Interrupt

During the evaluation of an expression, the PicoLisp interpreter can be in-
terrupted at any time by hitting Ctrl-C. It will then enter the breakpoint
routine, as if ! were called.

Hitting ENTER at that point will continue evaluation, while (quit) will abort
evaluation and return the interpreter to the top level. See also debug, e, ^ and
*Dbg

Other interrupts may be handled by alarm, sigio, *Hup and *Sig[12].

3 The PicoLisp Reference 51

3.3.7 Error Handling

When a runtime error occurs, execution is stopped and an error handler is
entered.

The error handler resets the I/O channels to the console, and displays the
location (if possible) and the reason of the error, followed by an error message.
That message is also stored in the global *Msg, and the location of the error
in ^. If the VAL of the global *Err is non-NIL it is executed as a prg body. If
the standard input is from a terminal, a read-eval-print loop (with a question
mark ‘ ? ’ as prompt) is entered (the loop is exited when an empty line
is input). Then all pending finally expressions are executed, all variable
bindings restored, and all files closed. If the standard input is not from a
terminal, the interpreter terminates. Otherwise it is reset to its top-level state.

: (de foo (A B) (badFoo A B)) # ’foo’ calls an undefined symbol

-> foo

: (foo 3 4) # Call ’foo’

!? (badFoo A B) # Error handler entered

badFoo -- Undefined

? A # Inspect ’A’

-> 3

? B # Inspect ’B’

-> 4

? # Empty line: Exit

:

Errors can be caught with catch, if a list of substrings of possible error mes-
sages is supplied for the first argument. In such a case, the matching substring
(or the whole error message if the substring is NIL) is returned.

An arbitrary error can be thrown explicitly with quit.

3.3.8 @ Result

In certain situations, the result of the last evaluation is stored in the VAL
of the symbol @. This can be very convenient, because it often makes the
assignment to temporary variables unnecessary.

This happens in two - only superficially similar - situations:

load In read-eval loops, the last three results which were printed at the con-
sole are available in @@@, @@ and @, in that order (i.e the latest result is
in @).

52 Alexander Burger

: (+ 1 2 3)

-> 6

: (/ 128 4)

-> 32

: (- @ @@) # Subtract the last two results

-> 26

Flow functions Flow- and logic-functions store the result of their controlling
expression - respectively non-NIL results of their conditional expression -
in @.

: (while (read) (println ’got: @))

abc # User input

got: abc # print result

123 # User input

got: 123 # print result

NIL

-> 123

: (setq L (1 2 3 4 5 1 2 3 4 5))

-> (1 2 3 4 5 1 2 3 4 5)

: (and (member 3 L) (member 3 (cdr @)) (set @ 999))

-> 999

: L

-> (1 2 3 4 5 1 2 999 4 5)

Functions with controlling expressions are case, prog1, prog2, and the bod-
ies of *Run tasks.

Functions with conditional expressions are and, cond, do, for, if, if2, ifn,
loop, nand, nond, nor, not, or, state, unless, until, when and while.

@ is generally local to functions and methods, its value is automatically saved
upon function entry and restored at exit.

3.3.9 Comparing

In PicoLisp, it is legal to compare data items of arbitrary type. Any two items
are either

Identical They are the same memory object (pointer equality). For example,
two internal symbols with the same name are identical. In the 64-bit
version, also short numbers (up to 60 bits plus sign) are pointer-equal.

3 The PicoLisp Reference 53

Equal They are equal in every respect (structure equality), but need not to be
identical. Examples are numbers with the same value, transient symbols
with the same name or lists with equal elements.

Or they have a well-defined ordinal relationship Numbers are compa-
rable by their numeric value, strings by their name, and lists recursively
by their elements (if the CAR’s are equal, their CDR’s are compared). For
differing types, the following rule applies: Numbers are less than symbols,
and symbols are less than lists. As special cases, NIL is always less than
anything else, and T is always greater than anything else.

To demonstrate this, sort a list of mixed data types:

: (sort ’("abc" T (d e f) NIL 123 DEF))

-> (NIL 123 DEF "abc" (d e f) T)

See also max, min, rank, <, = > etc.

3.3.10 OO Concepts

PicoLisp comes with built-in object oriented extensions. There seems to be a
common agreement upon three criteria for object orientation:

Encapsulation Code and data are encapsulated into objects, giving them
both a behavior and a state. Objects communicate by sending and receiv-
ing messages.

Inheritance Objects are organized into classes. The behavior of an object is
inherited from its class(es) and superclass(es).

Polymorphism Objects of different classes may behave differently in re-
sponse to the same message. For that, classes may define different methods
for each message.

PicoLisp implements both objects and classes with symbols. Object-local data
are stored in the symbol’s property list, while the code (methods) and links
to the superclasses are stored in the symbol’s VAL (encapsulation).

In fact, there is no formal difference between objects and classes (except that
objects usually are anonymous symbols containing mostly local data, while
classes are named internal symbols with an emphasis on method definitions).
At any time, a class may be assigned its own local data (class variables),
and any object can receive individual method definitions in addition to (or
overriding) those inherited from its (super)classes.

PicoLisp supports multiple inheritance. The VAL of each object is a (possibly
empty) association list of message symbols and method bodies, concatenated

54 Alexander Burger

with a list of classes. When a message is sent to an object, it is searched in
the object’s own method list, and then (with a left-to-right depth-first search)
in the tree of its classes and superclasses. The first method found is executed
and the search stops. The search may be explicitly continued with the extra

and super functions.

Thus, which method is actually executed when a message is sent to an object
depends on the classes that the object is currently linked to (polymorphism).
As the method search is fully dynamic (late binding), an object’s type (i.e.
its classes and method definitions) can be changed even at runtime!

While a method body is being executed, the global variable This is set to the
current object, allowing the use of the short-cut property functions , : and
::.

3.3.11 Database

On the lowest level, a PicoLisp database is just a collection of external symbols.
They reside in a database file, and are dynamically swapped in and out of
memory. Only one database can be open at a time (pool).

In addition, further external symbols can be specified to originate from arbi-
trary sources via the *Ext mechanism.

Whenever an external symbol’s value or property list is accessed, it will be au-
tomatically fetched into memory, and can then be used like any other symbol.
Modifications will be written to disk only when commit is called. Alterna-
tively, all modifications since the last call to commit can be discarded by
calling rollback.

Transactions

In the typical case there will be multiple processes operating on the same
database. These processes should be all children of the same parent process,
which takes care of synchronizing read/write operations and heap contents.
Then a database transaction is normally initiated by calling (dbSync), and
closed by calling (commit ’upd). Short transactions, involving only a single
DB operation, are available in functions like new! and methods like put!>

(by convention with an exclamation mark), which implicitly call (dbSync)
and (commit ’upd) themselves.

A transaction proceeds through five phases:

1. dbSync waits to get a lock on the root object *DB. Other processes con-
tinue reading and writing meanwhile.

3 The PicoLisp Reference 55

2. dbSync calls sync to synchronize with changes from other processes. We
hold the shared lock, but other processes may continue reading.

3. We make modifications to the internal state of external symbols with
put>, set>, lose> etc. We - and also other processes - can still read the
DB.

4. We call (commit ’upd). commit obtains an exclusive lock (no more read
operations by other processes), writes an optional transaction log, and
then all modified symbols. As upd is passed to ‘commit’, other processes
synchronize with these changes.

5. Finally, all locks are released by ‘commit’

Entities / Relations

The symbols in a database can be used to store arbitrary information struc-
tures. In typical use, some symbols represent nodes of search trees, by holding
keys, values, and links to subtrees in their VAL’s. Such a search tree in the
database is called index.

For the most part, other symbols in the database are objects derived from the
+Entity class.

Entities depend on objects of the +relation class hierarchy. Relation-objects
manage the property values of entities, they define the application database
model and are responsible for the integrity of mutual object references and
index trees.

Relations are stored as properties in the entity classes, their methods are
invoked as daemons whenever property values in an entity are changed. When
defining an +Entity class, relations are defined - in addition to the method
definitions of a normal class - with the rel function. Predefined relation classes
include

• Primitive types like +Symbol Symbolic data +String Strings (just a gen-
eral case of symbols) +Number Integers and fixpoint numbers +Date Calen-
dar date values, represented by a number +Time Time-of-the-day values,
represented by a number +Blob “Binary large objects” stored in separate
files

• Object-to-object relations +Link A reference to some other entity +Hook

A reference to an entity holding object-local index trees +Joint A bi-
directional reference to some other entity

• Container prefix classes like +List A list of any of the other primitive or
object relation types +Bag A list containing a mixture of any of the other
types

56 Alexander Burger

• Index prefix classes +Ref An index with other primitives or entities as
key +Key A unique index with other primitives or entities as key +Idx A
full-text index, typically for strings +Sn Tolerant index, using a modified
Soundex-Algorithm

• Booleans +Bool T or NIL

• And a catch-all class +Any Not specified, may be any of the above relations

3.3.12 Pilog (PicoLisp Prolog)

A declarative language is built on top of PicoLisp, that has the semantics of
Prolog, but uses the syntax of Lisp.

For an explanation of Prolog’s declarative programming style, an introduction
like [2] is recommended.

Facts and rules can be declared with the be function. For example, a Prolog
fact ‘likes(john,mary).’ is written in Pilog as:

(be likes (John Mary))

and a rule ‘likes(john,X) :- likes(X,wine), likes(X,food).’ is in Pi-
log:

(be likes (John @X) (likes @X wine) (likes @X food))

As in Prolog, the difference between facts and rules is that the latter ones
have conditions, and usually contain variables.

A variable in Pilog is any symbol starting with an at-mark character (‘ @

’). The symbol @ itself can be used as an anonymous variable: It will match
during unification, but will not be bound to the matched values.

The cut operator of Prolog (usually written as an exclamation mark (!)) is
the symbol T in Pilog.

An interactive query can be done with the ? function:

(? (likes John @X))

This will print all solutions, waiting for user input after each line. If a non-
empty line (not just a ENTER key, but for example a dot (.) followed by
ENTER) is typed, it will terminate.

3 The PicoLisp Reference 57

Pilog can be called from Lisp and vice versa:

• The interface from Lisp is via the functions goal (prepare a query from
Lisp data) and prove (return an association list of successful bindings),
and the application level functions pilog and solve.

• When the CAR of a Pilog clause is a Pilog variable, the CDR is executed
as a Lisp expression and the result unified with that variable.

• Within such a Lisp expression in a Pilog clause, the current bindings of
Pilog variables can be accessed with the -> function.

3.3.13 Naming Conventions

It was necessary to introduce - and adhere to - a set of conventions for PicoLisp
symbol names. Because all (internal) symbols have a global scope (there are
no packages or name spaces), and each symbol can only have either a value
or function definition, it would otherwise be very easy to introduce name
conflicts. Besides this, source code readability is increased when the scope of
a symbol is indicated by its name.

These conventions are not hard-coded into the language, but should be so into
the head of the programmer. Here are the most commonly used ones:

• Global variables start with an asterisk “*”

• Functions and other global symbols start with a lower case letter

• Locally bound symbols start with an upper case letter

• Local functions start with an underscore “ ”

• Classes start with a plus-sign “+”, where the first letter

– is in lower case for abstract classes

– and in upper case for normal classes

• Methods end with a right arrow “>”

• Class variables may be indicated by an upper case letter

For historical reasons, the global constant symbols T and NIL do not obey
these rules, and are written in upper case.

For example, a local variable could easily overshadow a function definition:

: (de max-speed (car)

(.. (get car ’speeds) ..))

-> max-speed

58 Alexander Burger

Inside the body of max-speed (and all other functions called during that
execution) the kernel function car is redefined to some other value, and will
surely crash if something like (car Lst) is executed. Instead, it is safe to
write:

: (de max-speed (Car) # ’Car’ with upper case first letter

(.. (get Car ’speeds) ..))

-> max-speed

Note that there are also some strict naming rules (as opposed to the voluntary
conventions) that are required by the corresponding kernel functionalities, like:

• Transient symbols are enclosed in double quotes (see Transient Symbols)

• External symbols are enclosed in braces (see External Symbols)

• Pattern-Wildcards start with an at-mark ‘ @ ’ (see match and fill)

• Symbols referring to a shared library contain a colon ‘ lib:sym ’

With that, the last of the above conventions (local functions start with an
underscore) is not really necessary, because true local scope can be enforced
with transient symbols.

3.3.14 Breaking Traditions

PicoLisp does not try very hard to be compatible with traditional Lisp sys-
tems. If you are used to some other Lisp dialects, you may notice the following
differences:

Case Sensitivity PicoLisp distinguishes between upper case and lower case
characters in symbol names. Thus, CAR and car are different symbols,
which was not the case in traditional Lisp systems.

QUOTE In traditional Lisp, the QUOTE function returns its first unevaluated
argument. In PicoLisp, on the other hand, quote returns all (unevaluated)
argument(s).

LAMBDA The LAMBDA function, in some way at the heart of traditional
Lisp, is completely missing (and quote is used instead).

PROG The PROG function of traditional Lisp, with its GOTO and ENTER
functionality, is also missing. PicoLisp’s prog function is just a simple
sequencer (as PROGN in some Lisps).

Function/Value In PicoLisp, a symbol cannot have a value and a function
definition at the same time. Though this is a disadvantage at first sight,
it allows a completely uniform handling of functional data.

3 The PicoLisp Reference 59

3.3.15 Bugs

The names of the symbols T and NIL violate the naming conventions. They
are global symbols, and should therefore start with an asterisk “*”. It is too
easy to bind them to some other value by mistake:

(de foo (R S T)

...

However, lint will issue a warning in such a case.

References

1. Winston/Horn: “Lisp”, Addison-Wesley, 1981
2. Clocksin/Mellish: “Programming in Prolog”, Springer-Verlag, 1981

4

The Equivalence of Code and Data

Alexander Burger

abu@software-lab.de

Summary. This article demonstrates how the equivalence of code and data, as
a powerful abstraction instrument, supports the “locality principle of structure,
content and behavior” in PicoLisp.

4.1 The Equivalence of Code and Data

Why does PicoLisp make so much fuss about that equivalence of code and
data? Answer: Because it is such a powerful abstraction instrument! It sup-
ports the “locality principle of structure, content and behavior”.

Let me try to explain this using a GUI example, though the same principle
also applies to most other libraries and applications. Take a simple GUI page:

(action

(html 0 "Increment" "lib.css" NIL

(form NIL

(gui ’(+Var +NumField) ’*Num 9)

(gui ’(+JS +Button) "+" ’(inc ’*Num)))))

This page shows two components, a numeric input field and a button labeled
“+“. You can either enter a value into that field, or increment its value with
the button.

The page has a structure, namely a HTML body containing a form, which in
turn contains the two components. It has content, the numeric value shown in
the field. And it has behavior, as the numeric field handles string conversion
and error checking, and the button increments the number.

Note that a fourth attribute of the page, the layout and style, is not discussed
here. It is maintained separately in the CSS file.

62 Alexander Burger

The three attributes structure, content and behavior, however, cannot be sep-
arated. This may be contrary to some schools of thought, which advocate a
separation of structure and content, and behavior anyway. But obviously the
HTML structure also holds content like the “Increment” page title or the “+“
button label. And this content might also be subject to behavior, for example
the button label may change dynamically:

(gui ’(+JS +Button)

(if *VerboseDisplay "Increment" "+")

’(inc ’*Num))

Or the button may prompt a confirmation dialog to the user:

(gui ’(+JS +Button) "+"

’(ask "Increment value?"

(inc ’*Num)))

The equivalence of code and data makes the development of functions like
html, form, gui or ask particularly simple. The list

(ask "Increment value?" (inc ’*Num))

is data for the gui function. gui constructs a component of the class +Button,
and simply stows away that list into the new component. Later, when the
button is pressed, it is executed. It is just that simple.

gui itself doesn’t understand anything about buttons and what they do with
these arguments. It is all data. From the view of the button, however, that
list is a piece of code, to be executed when the button is pressed.

Later, when ask is executed, the situation is similar. A dialog is shown which
displays the question “Increment value?”, and a “Yes” and a “No” button. The
“Yes” button receives the expression (inc ’*Num), to increment the number
when pressed.

The example can be modified, to operate on database entities instead. Instead
of connecting the numeric field to a variable (with the +Var prefix class),
we connect it to the count property of the database object, and instead of
incrementing the variable, the button increments that object’s count attribute:

(gui ’(+E/R +NumField) ’(count : home obj) 9)

(gui ’(+JS +Button) "+" ’(inc!> (: home obj) ’count))

4 The Equivalence of Code and Data 63

No need to write some separate database “select” or “update” functionality!
It is all in a single place.

This shows how easily any kind of application logic can be implemented using
this style. In a typical application hundreds or thousands of such components
are put together, so it is essential that this can be done with as little noise
and redundancy as possible.

This becomes especially evident if you compare this style with the GUI and
application strategies of other languages, for example in the RosettaCode
tasks GUI component interaction1 and GUI enabling/disabling of controls2.

In other environments, you usually end up defining constants, components
and functions in separate locations. This is the opposite of what PicoLisp
advocates, the “locality principle of structure, content and behavior”.

1http://rosettacode.org/wiki/GUI component interaction#PicoLisp
2http://rosettacode.org/wiki/GUI enabling/disabling of controls#PicoLisp

5

First Class Environments

Alexander Burger

abu@software-lab.de

Summary. This article discusses the advantages and technical details of first class
environments in PicoLisp. First, the differences between dynamic binding and lexical
scoping are highlighted, then first class data types and first class environments are
discussed.

5.1 Dynamic Binding vs Lexical Scoping

PicoLisp uses dynamic binding for symbolic variables. This means that the
value of a symbol is determined by the current runtime context, not by the
lexical context in the source file.

This has advantages in practical programming. It allows you to write inde-
pendent code fragments as data which can be passed to other parts of the
program to be later executed as code in that context.

For example, the major part of the PicoLisp GUI framework consists of code
snippets, which are installed as event handlers, button actions or update man-
agers in GUI components.

In a lexically scoped language, you can’t separate code from its environment.
A call like (foo X Y) has no meaning by itself (unless X and Y are treated as
“free” variables, i.e. dynamically, not lexically). Instead, you must write a let

or lambda expression, or pass around full function definitions as closures. All
this is much more noisy (consider the typical case of dozens of such fragments
in a single GUI page).

PicoLisp tries to be as dynamic as possible. This involves also (and much
more important than just variable bindings) things like I/O-channels, ’make1’
environments, the place of the currently executed method in the inheritance

1http://software-lab.de/doc/refM.html#make

66 Alexander Burger

hierarchy (for ’super2’ and ’extra3’) or the current ’This4’ object. A running
code fragment can always assume to have access to these environments.

This article is only concerned about variable bindings.

5.2 First Class Data Type

In programming languages, a first class data type can be created and manipu-
lated separately within the language, independent from its intended purpose.

For a function, for example, the intended purpose is to call it. If it is a first
class function, it can be build, passed around etc., independent from that. The
two tasks (creating and calling the function) can be handled independently
within the language.

For an environment, the intended purpose is to

1. activate it

2. execute one or more expressions in it

3. deactivate it, possibly restoring the previous environment

If it is a first class environment it, can also be created and manipulated within
the language.

5.3 First Class Environments

To make such an environment useful, it is important that the three tasks
(creation, activation/deactivation and execution) can be controlled indepen-
dently.

Let us consider the expression (foo X Y) again. Assume we want to execute
it in an environment where X is 3 and Y is 4. The direct way is

(let (X 3 Y 4)

(foo X Y))

This handles the three tasks all at once. It creates and activates the environ-
ment, immediately executes the code, and then deactivates the environment.

2http://software-lab.de/doc/refS.html#super
3http://software-lab.de/doc/refE.html#extra
4http://software-lab.de/doc/refT.html#This

5 First Class Environments 67

If the expression (foo X Y) is supplied from the application code, stand-alone
in one part of the application, and is supposed to run in some other part of
the application in an environment active there at that moment, it is also no
problem. It can simply be executed:

(foo X Y)

If, however, that application environment supposed to be manipulated sepa-
rately, for example because it is passed over across a HTTP transaction or
appears in an RPC call, then the

• creation of that environment is typically done in the application

• activation of that environment is done in the GUI framework

• execution of the expression(s) is done in the application

• deactivation is done in the GUI framework again

5.3.1 Creation

The environment is represented by a list of symbol-value pairs. It can be
created with the direct, explicit lisp operations, or more conveniently with
the ’env5’ function.

If the environment is intended as a subset of the current environment, i.e. if
you simply want to create it with the current values of X and Y, you may write

: (setq Env (env ’(X Y)))

-> ((Y . 4) (X . 3))

Otherwise, you may pass explit values

: (setq Env (env ’X 3 ’Y 4))

-> ((Y . 4) (X . 3))

5.3.2 Activation

The simplest way to activate an environment would be to to iterate over the
list and ’set6’ each symbol to its value. This is normally not recommended,
because it would not restore the previous environment when done.

5http://software-lab.de/doc/refE.html#env
6http://software-lab.de/doc/refS.html#set

68 Alexander Burger

In most cases either ’bind7’ or ’job8’ are used. The main difference between
these two functions is that job modifies the environment destructively, to store
modified values before restoring the previous environment.

: (bind Env (* X Y))

-> 12

: (job Env (* X Y))

-> 12

If the environment is to be modified by the expression, use ’job’:

: Env

-> ((Y . 4) (X . 3))

: (job Env (* X (inc ’Y)))

-> 15

: Env

-> ((Y . 5) (X . 3))

These examples don’t show the separation of activation and execution, as this
cannot be simply done in an isolated example. For a real-world use case, take
a look at the top-level GUI function in “@lib/form.l“. The relevant part can
be reduced to

(with "*App" # Point ’This’ to the current form

(job (: env) # Activate environment of that form

(<post> ...

(<hidden> ...)

...

(if *PRG

(let gui

...

(htPrin "Prg")) # Execute the GUI code

...

(let gui

...

(htPrin "Prg")) # Execute the GUI code

7http://software-lab.de/doc/refB.html#bind
8http://software-lab.de/doc/refJ.html#job

5 First Class Environments 69

The GUI code which actually builds the page is in "Prg". When it runs, This
and the desired environment (from the form’s env property) are properly
activated.

A similar case can be found more down in “@lib/form.l“ in ’postGui’ to handle
HTTP POST and XMLHttpRequest events.

6

Even small details make a difference!

Alexander Burger

abu@software-lab.de

Summary. This article discusses how it’s unique implementation of the quote func-
tion makes PicoLisp more efficient than other Lisp’s in terms of both space and time.

6.1 Even small details make a difference!

In Lisp, the single quote character plays a central role. It is actually a read
macro, which expands to the built-in function quote. Its purpose is to inhibit
the evaluation of the following argument, and quote is one of the most often
called functions.

But it is remarkable that almost all Lisp implementations handle this in a
somewhat suboptimal way. They define quote to return its first argument,
without evaluating it. So far so good. But when you think about that for a
moment, you may ask: “Why only the first argument?”

This is inefficient, both in terms of space and time, and has no benefit at all.
Yet almost all Lisp implementations stick to it.

PicoLisp breaks with that bad habit, and defines quote to return all argu-
ments, without evaluating them.

Let’s look at some examples: Quoted expressions like

’a

’(a b)

’(a . x)

expand in traditional Lisps to

72 Alexander Burger

(quote a)

(quote (a b))

(quote (a . x))

while in PicoLisp, they expand to

(quote . a)

(quote a b)

(quote a . x)

This makes quite a difference, as it uses only half the space (two cells in
traditional Lisp, but only one in PicoLisp):

(quote a)

+-------+-------+ +-------+-------+

| quote | ----+----> | a | NIL |

+-------+-------+ +-------+-------+

(quote . a)

+-------+-------+

| quote | a |

+-------+-------+

(quote (a b))

+-------+-------+ +-------+-------+

| quote | ----+----> | | | NIL |

+-------+-------+ +---+---+-------+

|

V

+-------+-------+ +-------+-------+

| a | ----+----> | b | NIL |

+-------+-------+ +-------+-------+

(quote a b)

+-------+-------+ +-------+-------+ +-------+-------+

| quote | ----+----> | a | ----+----> | b | NIL |

+-------+-------+ +-------+-------+ +-------+-------+

6 Even small details make a difference! 73

(quote (a . x))

+-------+-------+ +-------+-------+

| quote | ----+----> | | | NIL |

+-------+-------+ +---+---+-------+

|

V

+-------+-------+

| a | x |

+-------+-------+

(quote a . x)

+-------+-------+ +-------+-------+

| quote | ----+----> | a | x |

+-------+-------+ +-------+-------+

The runtime code for a traditional quote has more work to do. It needs two
pointer dereferences to get the data, while PicoLisp needs only one.

For that reason, quote is the shortest of all functions in PicoLisp, being

any doQuote(any x) {return cdr(x);}

in C, or

(code ’doQuote 2)

ld E (E CDR) # Get CDR

ret

in asm.

7

The Dual Nature of NIL

Alexander Burger

abu@software-lab.de

Summary. In this article, the dual nature of NIL as symbol and cons pair, a basic
design requirement of PicoLisp, is discussed.

7.1 The Dual Nature of NIL

NIL is a very fundamental piece of data. It has a dual nature, being both a
symbol and a cons pair of the form (NIL . NIL). From the beginning, this
has been a basic design requirement of PicoLisp.

As shown in “doc64/structures“ (similar also in ”doc/structures“):

NIL: /

|

V

+-----+-----+-----+-----+

|’LIN’| / | / | / |

+-----+--+--+-----+-----+

Physically, the pointer to NIL (shown with the ’V’ in the above diagram) is a
true symbol, as it points at an offset of a pointer size into the memory heap.
Taken as such, NIL is a normal symbol,

NIL: /

|

V

+-----+-----+

|’LIN’| / |

+-----+--+--+

76 Alexander Burger

having a tail with the characters ’N’, ’I’ and ’L’ (the name), and a value which
in turn points to NIL (symbolized with the ’/’).

However, when this pointer is boldly used as a cell pointer (by ignoring the
pointer tags caused by the pointer size offset)

NIL: /

|

V

+-----+-----+

| / | / |

+--+--+-----+

then it is a normal cons pair, with NIL in its CAR and NIL in its CDR, which
just happens to be misaligned in memory (i.e. at the place of a symbol).

This structure has great advantages. Any proper list (ending with NIL) be-
comes sort of “infinite”, allowing to take the CDR as often as possible and
still obtain NIL again and again.

Therefore, a function doesn’t need to check whether it actually received an
argument or not. It can simply take the next argument with CDR from the
argument list, and doesn’t see any difference between (foo NIL) and (foo).
This makes interpretation both simpler and faster.

8

Array Abstinence

Alexander Burger

abu@software-lab.de

Summary. The differences between lists and arrays as well as the question if arrays
are really needed are discussed, followed by relative performance considerations.

8.1 Introduction

Some people are unhappy with the situation that PicoLisp has no built-
in array (or vector) data type. As described in the reference manual, the
PicoLisp Machine1 supports exactly three data types2: Numbers, Symbols
and Lists.

But what about arrays? After all, any other language supports arrays! We are
so very much used to them.

If we look at a typical Fortran, C or Java program, we find almost every
second statement to be something like (e.g. in Java):

for (i = 0; i < Arr.length; ++i)

doSomething(Arr[i]);

It is nearly impossible to survive in such languages without arrays.

8.2 What is an Array?

An array is a wonderful data structure.

1http://software-lab.de/doc/ref.html#vm
2http://software-lab.de/doc/ref.html#data

78 Alexander Burger

It implements a mapping of numeric keys (integers) to arbitrary data. Given
a number, the associated data can be found in O(1) time. And the keys them-
selves do not take up any memory space, they exist implicit in the data offsets
form the array’s start address.

8.3 Lists

PicoLisp has lists.

A list can simulate an array, albeit less efficiently. It takes up twice the space,
and indexed access to its data takes O(N/2) time on the average.

But lists have a lot of advantages, and are also more efficient than arrays in
many other cases. We do not need to discuss these advantages here in detail,
any Lisp programmer will know them.

As PicoLisp strives for simplicity, there is no room for an additional data
type - also for hard physical reasons, as the number of precious tag bits is
limited. To fully support an array data type, all those powerful built-in list
manipulation functions would need array counterparts, and the programmer
would permanently need to make design decisions whether to use lists or
arrays for the problem at hand.

If there is a choice between arrays or lists, lists will clearly win.

8.4 Are Arrays Really Needed?

My short answer would be “No”. The advantages in efficiency do not outweigh
the disadvantages of increased complexity.

I would even say that the proponents of arrays in PicoLisp misunderstand
some aspects of PicoLisp programming.

The predominance of arrays in other languages, as shown with the above
example

for (i = 0; i < Arr.length; ++i)

doSomething(Arr[i]);

does not carry over to PicoLisp. Such constructs are simply not used. Instead,
you have a large number of mapping functions at your disposal:

(mapc doSomething Arr)

8 Array Abstinence 79

In fact, it is the lack of functionality for the direct manipulation of compound
data, which requires the excess indexing into arrays in other languages.

The mistake is mixing up two separate concepts:

1. Sequential access to certain pieces of data

2. Mapping integer keys to data items

What arrays are really needed for is point (2): You have an integer, and want
to get the corresponding piece of data.

Point (1), however, can and should be handled directly and elegantly with
mapping and other access functions.

So back to point (2). When in our programming life do we really need to map
integers to data?

These cases are surprisingly rare. We have to keep in mind that for arrays
only the mapping of continuous integer ranges makes sense. Most practical
tasks of mapping numbers to other data involve sparse or non-linear input
data, or non-integers, or no numeric keys at all.

Sure, there are typical cases like image rasterization. But when did you the
last time implement Bresenham’s line algorithm in application programming?
Instead, you resort to a library, or write it in C or even assembly if a library
is not available.

In other cases - like two-dimensional maps - there are better ways. Look for
example how the board in the PicoLisp chess program (and other games and
many rosetta code solutions) is implemented with direct connection attributes
(north, west etc.) between the fields instead of integer arithmetics for array
indexes.

For more flexible (not only integer, or even numeric) key mapping, built-
in mechanisms like association lists, symbol properties or binary ’idx3’ trees
can be used. Agreed, these mechanisms are less efficient than simple integer-
indexed arrays, but the difference is not very dramatic.

8.5 Relative Performance Consideration

What would be the performance penalty for using lists instead of arrays, if
we would really need a mapping of a continuous integer range to other data?

Let’s assume an integer array of length 100, initialized to increasing values:

3http://software-lab.de/doc/refI.html#idx

80 Alexander Burger

int Arr[100];

for (i = 0; i < 100; ++i)

Arr[i] = i;

In PicoLisp, this is equivalent to

(setq List (range 1 100))

Now let’s increment each element:

for (i = 0; i < 100; ++i)

++Arr[i];

The PicoLisp version would be

(map inc List)

but let’s assume for a moment we have no mapping function, and insist on
indexed access instead:

(for N 100

(inc (nth List N)))

’nth4’ is PicoLisp’s idea of an indexed array access.

Let’s compare that to an analog O(1) access, by repeatedly accessing the first
list element:

(for N 100

(inc (nth List 1)))

The time difference will be the relative overhead for the O(N/2) access to
indexed list elements.

To get measurable timing results, we do each test ten thousand times. First
the accesses to all list elements:

4http://software-lab.de/doc/refN.html#nth

8 Array Abstinence 81

: (bench

(do 10000

(for N 100

(inc (nth List N)))))

0.282 sec

Then the “simulation of an array data type”, by accessing only the first ele-
ment:

: (bench

(do 10000

(for N 100

(inc (nth List 1)))))

0.121 sec

We can see, the results are in the same order of magnitude. The difference of
161 milliseconds was the time actually spent in list traversals.

In fact, the greatest part of execution time is taken by the interpreter overhead
anyway. Compare this to a full-list increment using ’map5’:

: (bench

(do 10000

(map inc List)))

0.076 sec

Of course the difference gets bigger if the list gets longer, but typically there
will be also much more processing of the data than simple increments.

Regarding all that, it should become clear that wasting tag bits and efforts
for such a data type and its associated functions is not a good idea.

5http://software-lab.de/doc/refM.html#map

9

Coroutines

Alexander Burger

abu@software-lab.de

Summary. This article introduces application examples for coroutines, comparing
their use and relative efficiency with a possible solution via generators.

9.1 Introduction

With picoLisp-3.0.3, the 64-bit version of PicoLisp has support for coroutines1.
This article tries to show their basic usage.

Assume we need all Pythagorean triples (i.e. all numbers A, B and C, such
that A + B = C with elements between 1 and N. A straightforward way to
print them is:

(de pythag (N)

(for A N

(for B (range A N)

(for C (range B N)

(when (= (+ (* A A) (* B B)) (* C C))

(println (list A B C)))))))

We get:

1http://software-lab.de/doc/ref.html#coroutines

84 Alexander Burger

: (pythag 20)

(3 4 5)

(5 12 13)

(6 8 10)

(8 15 17)

(9 12 15)

(12 16 20)

However, just printing the triples is not very useful if they were needed in
various situations for further processing. The lispy way for a general tool is
passing a function to pythag and decide later what to do with the data:

(de pythag (N Fun)

(for A N

(for B (range A N)

(for C (range B N)

(when (= (+ (* A A) (* B B)) (* C C))

(Fun (list A B C)))))))

(note that for a truly general tool, we would write Fun and the local variables
as transient symbols to avoid conflicts)

Now we can print them again

: (pythag 20 println)

(3 4 5)

(5 12 13)

(6 8 10)

(8 15 17)

(9 12 15)

(12 16 20)

collect them into a list if we like

: (make (pythag 20 link))

-> ((3 4 5) (5 12 13) (6 8 10) (8 15 17) (9 12 15) (12 16 20))

or do with them whatever we like.

Still, this method has its limits. What if we need to pass a very large number
for N, and we want to access the values one by one, perhaps in the course of
some other involved calculation? Pre-generating the list of all values might
not be feasible.

9 Coroutines 85

9.2 Using a Generator

One way to solve this problem is a generator. This function returns the next
value each time it is called:

(de pythag (N)

(job ’((A . 1) (B . 1) (C . 0))

(loop

(when (> (inc ’C) N)

(when (> (inc ’B) N)

(setq B (inc ’A)))

(setq C B))

(T (> A N))

(T (= (+ (* A A) (* B B)) (* C C))

(list A B C)))))

: (pythag 20)

-> (3 4 5)

: (pythag 20)

-> (5 12 13)

: (pythag 20)

-> (6 8 10)

...

Now we can call it whenever we need a new value. The function encapsulates
the state of its local variables in a job2 environment.

A major disadvantage, however, is that it does not reflect the flow of control.
The three nested for loops above had to be unfolded and programmed man-
ually. This is hard to read, even for this simple case, and may be difficult or
impossible to program in more complicated cases.

9.3 Using a Coroutine

A coroutine preserves the local environment, as well as the state of control of
a function. It may have multiple exit points, and continue execution where it
left off the last time.

This is done via two new functions: co3 and yield4.

2http://software-lab.de/doc/refJ.html#job
3http://software-lab.de/doc/refC.html#co
4http://software-lab.de/doc/refY.html#yield

86 Alexander Burger

(de pythag (N)

(co ’pythag

(for A N

(for B (range A N)

(for C (range B N)

(when (= (+ (* A A) (* B B)) (* C C))

(yield (list A B C))))))))

: (pythag 20)

-> (3 4 5)

: (pythag 20)

-> (5 12 13)

: (pythag 20)

-> (6 8 10)

...

So this is a generator equivalent to the one above, but with cleanly nested
for loops.

The function co is called with a tag argument, and an executable body (a
prg), similar to catch5. When called the first time, a new coroutine for that tag
is created, and the body gets executed. If called again later, and an existing
coroutine for that tag is found, execution will continue at the point where it
left off last time with yield.

yield stops executing the coroutine’s body, and immediately returns to the
caller (or to some other coroutine if desired). When a coroutine is resumed
with co, it will continue at the point of the last call to yield. If it is resumed
by a call to yield in another coroutine, the return value of the first yield is
the value given as an argument to the second yield.

9.4 Efficiency

In terms of memory usage, coroutines are rather expensive, because each of
them requires its own stack segment. For that reason (and also due to internal
structures) the maximum number of coroutines in the system is limited to 64.

To my surprise, however, coroutines are quite efficient in terms of runtime
overhead. Measuring the context switch to and from an empty coroutine (an
endless loop with just a (yield))

5http://software-lab.de/doc/refC.html#catch

9 Coroutines 87

: (bench (do 1000000 (co ’bench (loop (yield)))))

0.380 sec

-> NIL

shows that it needs just 0.38 / 2 = 0.19 microseconds per switch operation.

This is in the same order of magnitude of a normal function call:

: (bench (do 1000000 ((quote (X Y) (+ X Y)) 3 4)))

0.162 sec

-> 7

Comparing the implementations of pythag above - as a generator using job

and a coroutine - shows that the coroutine version is about 10 percent faster.

9.5 Inspecting and Stopping Coroutines

The function stack6 can be used to see which coroutines are currently run-
ning (in addition to its primary task of setting or returning the current stack
segment size).

Let’s say we called pythag like in the example above, and then started two
more coroutines as

: (co "routine1" (yield 1))

-> 1

: (co "routine2" (yield 2))

-> 2

Now there must be three coroutines running. stack returns them:

: (stack)

-> ("routine2" "routine1" pythag . 4)

When co is called with only a tag, but without a body, the corresponding
coroutine is stopped.

6http://software-lab.de/doc/refS.html#stack

88 Alexander Burger

: (co "routine1")

-> T

: (co "routine2")

-> T

: (co ’pythag)

-> T

: (stack)

-> 4

Now all coroutines are gone, and stack returns only the remaining segment
size (in megabytes).

9.6 A Tree Example

A typical example of a situation where a coroutine can simplify things a lot,
is a recursive algorithm.

For testing, let’s generate a balanced binary tree:

(balance ’*Tree (range 1 15))

As you may know, you can display it with the view7 function

: (view *Tree T)

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

It is easy to traverse such a tree, e.g. to print its nodes:

7http://software-lab.de/doc/refV.html#view

9 Coroutines 89

: (de printNodes (Tree)

(when Tree

(printNodes (cadr Tree))

(println (car Tree))

(printNodes (cddr Tree))))

-> printNodes

: (printNodes *Tree)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

But what if you want to get the nodes returned, one by one, as in a generator
function? For example, to compare the nodes of two trees and see of they are
equal? If you think about it, you’ll see that it is not trivial.

With a coroutine, it is straightforward. We can write a function that returns
another node upon each call:

(de nextLeaf (Rt Tree)

(co Rt

(recur (Tree)

(when Tree

(recurse (cadr Tree))

(yield (car Tree))

(recurse (cddr Tree))))))

With that, we can write a function to compare two trees

90 Alexander Burger

(de cmpTrees (Tree1 Tree2)

(prog1

(use (Node1 Node2)

(loop

(setq

Node1 (nextLeaf "rt1" Tree1)

Node2 (nextLeaf "rt2" Tree2))

(T (nor Node1 Node2) T)

(NIL (= Node1 Node2))))

(co "rt1")

(co "rt2")))

The last two calls to co stop the two coroutines, independent of the result.

10

Transient Namespaces

Alexander Burger

abu@software-lab.de

Summary. This articles is about using use a transient symbol (instead of an inter-
nal symbol) for a temporary namespace.

10.1 Introduction

A few days ago I hit upon an interesting concept: Transient Namespaces.

With Transient Namespaces I do not mean namespaces for transient symbols
(there is always only one single namespace for transient symbols at any mo-
ment), but to use a transient symbol (instead of an internal symbol) for a
temporary namespace.

It turns out that this makes quite some sense.

10.2 Using transient symbols

Last week I added an example for the Common-Lisp-style DO* function to
macros1

(de do* "Args"

(bind (mapcar car (car "Args"))

(for "A" (car "Args")

(set (car "A") (eval (cadr "A"))))

(until (eval (caadr "Args"))

(run (cddr "Args"))

(for "A" (car "Args")

1http://software-lab.de/doc/faq.html#macros

92 Alexander Burger

(and (cddr "A") (set (car "A") (run @)))))

(run (cdadr "Args"))))

It can be used as

: (do* ((A 123) (B ’abc) (C 1 (inc C)))

((> C 7) (pack A B))

(println C))

1

2

3

4

5

6

7

-> "123abc"

As you see, the above implementation of do* uses transient symbols for "A"

and "Args". This is the recommended way, to avoid symbol conflicts (“cap-
tures” in CL-terminology).

10.3 Using internal symbols

An implementation with internal symbols

(de do* Args

(bind (mapcar car (car Args))

(for A (car Args)

(set (car A) (eval (cadr A))))

(until (eval (caadr Args))

(run (cddr Args))

(for A (car Args)

(and (cddr A) (set (car A) (run @)))))

(run (cdadr Args))))

looks better, but gives a wrong result: Because the symbol A is captured, the
function returns "abc" instead of "123abc".

So it is wise to use transient symbols, as in the first version.

10 Transient Namespaces 93

10.4 Using transient namespaces

10.4.1 Implementation

However, as PicoLisp has namespaces for internal symbols (in the 64-bit ver-
sion since 3.0.7.9, and in Ersatz PicoLisp since 3.1.0.10), there is a third way:

Define do* in a separate namespace, and keep A and Args locally:

(symbols ’flow ’pico)

(local Args A)

(de pico~do* Args

(bind (mapcar car (car Args))

(for A (car Args)

(set (car A) (eval (cadr A))))

(until (eval (caadr Args))

(run (cddr Args))

(for A (car Args)

(and (cddr A) (set (car A) (run @)))))

(run (cdadr Args))))

The ’symbols2’ call in (symbols ’flow ’pico) creates a new namespace flow

as a copy of the pico3 namespace, and activates it.

(local Args A) ensures that Args and A are local4 to the new namespace.

pico do* refers to the existing or newly created symbol do* in the pico

namespace.

Now, back in the pico namespace (e.g. after hitting EOF), do* is available

: (pp ’do*)

(de do* "Args"

(bind (mapcar car (car "Args"))

(for "A" (car "Args")

(set (car "A") (eval (cadr "A"))))

(until (eval (caadr "Args"))

(run (cddr "Args"))

(for "A" (car "Args")

(and (cddr "A") (set (car "A") (run @)))))

(run (cdadr "Args"))))

-> do*

2http://software-lab.de/doc/refS.html#symbols
3http://software-lab.de/doc/refP.html#pico
4http://software-lab.de/doc/refL.html#local

94 Alexander Burger

As you see, "Args" and "A" are transient symbols relative to the pico names-
pace, as the symbols Args and A are internal to the flow namespace.

10.4.2 Drawback

There is just one serious drawback to this approach. The call

(symbols ’flow ’pico)

creates the new namespace flow as a copy of pico. For a typical namespace,
this eats up about 25 kB of memory. If you get into the habit of creating a
lot of such namespaces, it could become quite wasteful.

Here Transient Namespaces come into play: Just create the namespace as

(symbols "flow" ’pico)

i.e. use the transient symbol "flow" instead of the internal symbol flow.
While it still creates a full copy of pico, it will become garbage as soon as
"flow" goes out of scope, and no space is wasted in the long term!

Normally, you would create a library for such flow functions in a separate
source file, containing more than a single function definition. To be sure to
avoid symbol conflicts also between those function, you may use more than
one call to local5 (analog to ’====6’ calls for separating transient symbols):

(symbols "flow" ’pico)

(local Args A)

(de pico~do* Args

(bind (mapcar car (car Args))

(for A (car Args)

(set (car A) (eval (cadr A))))

(until (eval (caadr Args))

(run (cddr Args))

(for A (car Args)

(and (cddr A) (set (car A) (run @)))))

(run (cdadr Args))))

(local X Y Prg)

(do pico~mumble (X Y . Prg)

...)

...

5http://software-lab.de/doc/refL.html#local
6http://software-lab.de/doc/ref .html#====

11

Native C Calls

Alexander Burger

abu@software-lab.de

Summary. This article describes how to call C functions in shared object files
(libraries) from PicoLisp, using the built-in native function – possibly with the help
of the struct and lisp functions. It applies only to the 64-bit version of PicoLisp.

11.1 Overview

native calls a C function in a shared library. It tries to

1. find a library by name

2. find a function by name in the library

3. convert the function’s argument(s) from Lisp to C structures

4. call the function’s C code

5. convert the function’s return value(s) from C to Lisp structures

The direct return value of native is the Lisp representation of the C function’s
return value. Further values, returned by reference from the C function, are
available in Lisp variables (symbol values).

struct is a helper function, which can be used to manipulate C data structures
in memory. It may take a scalar (a numeric representation of a C value) to
convert it to a Lisp item, or (more typically) a pointer to a memory area to
build and extract data structures. lisp allows you to install callback functions,
callable from C code, written in Lisp.

In combination, these three functions can interface PicoLisp to almost any C
function.

The above steps are fully dynamic; native doesn’t have (and doesn’t require)
a priory knowledge about the library, the function or the involved data. No

96 Alexander Burger

need to write any glue code, interfaces or include files. All functions can even
be called interactively from the REPL.

11.2 Syntax

The arguments to native are

1. a library

2. a function

3. a return value specification

4. optional arguments

The simplest form is a call to a function without return value and without
arguments. If we assume a library “lib.so”, containing a function with the
prototype

void fun(void);

then we can call it as

(native "lib.so" "fun")

11.2.1 Libraries

The first argument to native specifies the library. It is either the name of a
library (a symbol), or the handle of a previously found library (a number).

As a special case, a transient symbol "@" can be passed for the library name.
It then refers to the current main program (instead of an external library),
and can be used for standard functions like "malloc" or "printf".

native uses dlopen(3) internally to find and open the library, and to obtain
the handle. If the name contains a slash (’/’), then it is interpreted as a
(relative or absolute) pathname. Otherwise, the dynamic linker searches for
the library according to the system’s environment and directories. See the
man page of dlopen(3) for further details.

If called with a symbolic argument, native automatically caches the handle
of the found library in the value of that symbol. The most natural way is to
pass the library name as a transient symbol ("lib.so" above): The initial
value of a transient symbol is that symbol itself, so that native receives the

11 Native C Calls 97

library name upon the first call. After successfully finding and opening the
library, native stores the handle of that library in the value of the passed
symbol ("lib.so"). As native evaluates its arguments in the normal way,
subsequent calls within the same transient scope will receive the numeric
value (the handle), and don’t need to open and search the library again.

11.2.2 Functions

The same rules applies to the second argument, the function. When called with
a symbol, native stores the function pointer in its value, so that subsequent
calls evaluate to that pointer, and native can directly jump to the function.

native uses dlsym(3) internally to obtain the function pointer. See the man
page of dlsym(3) for further details.

In most cases a program will call more than one function from a given library.
If we keep the code within the same transient scope (i.e. in the same source
file, and not separated by the ==== function), each library will be opened –
and each function searched – only once.

(native "lib.so" "fun1")

(native "lib.so" "fun2")

(native "lib.so" "fun3")

After "fun1" was called, "lib.so" will be open, and won’t be re-opened for
"fun2" and "fun3". Consider the definition of helper functions:

(de fun1 ()

(native "lib.so" "fun1"))

(de fun2 ()

(native "lib.so" "fun2"))

(de fun3 ()

(native "lib.so" "fun3"))

After any one of fun1, fun2 or fun3 was called, the symbol "lib.so" will hold
the library handle. And each function function "fun1", "fun2" and "fun3"

will be searched only when called the first time.

Warning: It should be avoided to put more than one library into a single
transient scope if there is a chance that two different functions with the same
name will be called in two different libraries. Because of the function pointer
caching, the second call would otherwise (wrongly) go to the first function.

98 Alexander Burger

11.2.3 Return Value

The (optional) third argument to native specifies the return value. A C func-
tion can return many types of values, like integer or floating point numbers,
string pointers, or pointers to structures which in turn consist of those types,
and even other structures or pointers to structures. native tries to cover most
of them.

As described in the result specification, the third argument should consist of
a pattern which tells native how to extract the proper value.

Primitive Types

In the simplest case, the result specification is NIL like in the examples so
far. This means that either the C function returns void, or that we are not
interested in the value. The return value of native will be NIL in that case.

If the result specification is one of the symbols B, I or N, an integer number
is returned, by interpreting the result as a char (8 bit unsigned byte), int
(32 bit signed integer), or long number (64 bit signed integer), respectively.
Other (signed or unsigned numbers, and of different sizes) can be produced
from these types with logical and arithmetic operations if necessary.

If the result specification is the symbol C, the result is interpreted as a 16 bit
number, and a single-char transient symbol (string) is returned.

A specification of S tells native to interpret the result as a pointer to a C
string (null terminated), and to return a transient symbol (string).

If the result specification is a number, it will be used as a scale to convert
a returned double (if the number is positive) or float (if the number is
negative) to a scaled fixpoint number.

Examples for function calls, with their corresponding C prototypes:

(native "lib.so" "fun" ’I) # int fun(void);

(native "lib.so" "fun" ’N) # long fun(void);

(native "lib.so" "fun" ’N) # void *fun(void);

(native "lib.so" "fun" ’S) # char *fun(void);

(native "lib.so" "fun" 1.0) # double fun(void);

Arrays and Structures

If the result specification is a list, it means that the C function returned a
pointer to an array, or an arbitrary memory structure. The specification list

11 Native C Calls 99

should then consist of either the above primitive specifications (symbols or
numbers), or of cons pairs of a primitive specification and a repeat count, to
denote arrays of the given type.

Examples for function calls, with their corresponding pseudo C prototypes:

(native "lib.so" "fun" ’(I . 8)) # int *fun(void); // 8 integers

(native "lib.so" "fun" ’(B . 16)) # unsigned char *fun(void); // 16 bytes

(native "lib.so" "fun" ’(I I)) # struct {int i; int j;} *fun(void);

(native "lib.so" "fun" ’(I . 4)) # struct {int i[4];} *fun(void);

(native "lib.so" "fun" ’(I (B . 4))) # struct {

int i;

unsigned char c[4];

} *fun(void);

(native "lib.so" "fun" # struct {

’(((B . 4) I) (S . 12) (N . 8))) # struct {unsigned char c[4]; int i;}

char *names[12];

long num[8];

} *fun(void);

If a returned structure has an element which is a pointer to some other struc-
ture (i.e. not an embedded structure like in the last example above), this
pointer must be first obtained with a N pattern, which can then be passed to
struct for further extraction.

11.2.4 Arguments

The (optional) fourth and following arguments to native specify the argu-
ments to the C function.

Primitive Types

Integer arguments (up to 64 bits, signed or unsigned char, short, int or
long) can be passed as they are: As numbers.

(native "lib.so" "fun" NIL 123) # void fun(int);

(native "lib.so" "fun" NIL 1 2 3) # void fun(int, long, short);

100 Alexander Burger

String arguments can be specified as symbols. native allocates memory for
each string (with strdup(3)), passes the pointer to the C function, and re-
leases the memory (with free(3)) when done.

(native "lib.so" "fun" NIL "abc") # void fun(char*);

(native "lib.so" "fun" NIL 3 "def") # void fun(int, char*);

Note that the allocated string memory is released after the return value is
extracted. This allows a C function to return the argument string pointer,
perhaps after modifying the data in-place, and receive the new string as the
return value (with the S specification).

(native "lib.so" "fun" ’S "abc") # char *fun(char*);

Also note that specifying NIL as an argument passes an empty string (“”,
which also reads as NIL in PicoLisp) to the C function. Physically, this is a
pointer to a NULL-byte, and is not a NULL-pointer. Be sure to pass 0 (the
number zero) if a NULL-pointer is desired.

Floating point arguments are specified as cons pairs, where the value is in
the CAR, and the CDR holds the fixpoint scale. If the scale is positive, the
number is passed as a double, otherwise as a float.

(native "lib.so" "fun" NIL # void fun(double, float);

(12.3 . 1.0) (4.56 . -1.0))

Arrays and Structures

Composite arguments are specified as nested list structures. native allocates
memory for each array or structure (with malloc(3)), passes the pointer to
the C function, and releases the memory (with free(3)) when done.

This implies that such an argument can be both an input and an output value
to a C function (pass by reference).

The CAR of the argument specification can be NIL (then it is an input-only
argument). Otherwise, it should be a variable which receives the returned
structure data.

The CADR of the argument specification must be a cons pair with the total
size of the structure in its CAR. The CDR is ignored for input-only arguments,
and should contain a result specification for the output value to be stored in
the variable.

11 Native C Calls 101

For example, a minimal case is a function that takes an integer reference, and
stores the number ‘123’ in that location:

void fun(int *i) {

*i = 123;

}

We call native with a variable X in the CAR of the argument specification,
a size of 4 (i.e. sizeof(int)), and I for the result specification. The stored
value is then available in the variable X:

: (native "lib.so" "fun" NIL ’(X (4 . I)))

-> NIL

: X

-> 123

The rest (CDDR) of the argument specification may contain initialization
data, if the C function expects input values in the structure. It should be a
list of initialization items, optionally with a fill-byte value in the CDR of the
last cell.

If there are no initialization items and just the final fill-bye, then the whole
buffer is filled with that byte. For example, to pass a buffer of 20 bytes,
initialized to zero:

: (native "lib.so" "fun" NIL ’(NIL (20) . 0))

A buffer of 20 bytes, with the first 4 bytes initialized to 1, 2, 3, and 4, and
the rest filled with zero:

: (native "lib.so" "fun" NIL ’(NIL (20) 1 2 3 4 . 0))

and the same, where the buffer contents are returned as a list of bytes in the
variable X:

: (native "lib.so" "fun" NIL ’(X (20 B . 20) 1 2 3 4 . 0))

For a more extensive example, let’s use the following definitions:

102 Alexander Burger

typedef struct value {

int x, y;

double a, b, c;

int z;

char nm[4];

} value;

void fun(value *val) {

printf("%d %d\n", val->x, val->y);

val->x = 3;

val->y = 4;

strcpy(val->nm, "OK");

}

We call this function with a structure of 40 bytes, requesting the returned
data in V, with two integers (I . 2), three doubles (100 . 3) with a scale of
2 (1.0 = 100), another integer I and four characters (C . 2). If the structure
gets initialized with two integers 7 and 6, three doubles 0.11, 0.22 and 0.33,
and another integer 5 while the rest of the 40 bytes is cleared to zero

: (native "lib.so" "fun" NIL

’(V (40 (I . 2) (100 . 3) I (C . 4)) -7 -6 (100 11 22 33) -5 . 0))

then it will print the integers 7 and 6, and V will contain the returned list

((3 4) (11 22 33) 5 ("O" "K" NIL NIL))

i.e. the original integer values 7 and 6 replaced with 3 and 4.

Note that the allocated structure memory is released after the return value is
extracted. This allows a C function to return the argument structure pointer,
perhaps after modifying the data in-place, and receive the new structure as
the return value – instead of (or even in addition to) to the direct return via
the argument reference.

11.3 Memory Management

The preceding Arguments section mentions that native implicitly allocates
and releases memory for strings, arrays and structures.

Technically, this mimics automatic variables in C.

11 Native C Calls 103

For a simple example, let’s assume that we want to call read(2) directly, to
fetch a 4-byte integer from a given file descriptor. This could be done with
the following C function:

int read4bytes(int fd) {

char buf[4];

read(fd, buf, 4);

return *(int*)buf;

}

buf is an automatic variable, allocated on the stack, which disappears when
the function returns. A corresponding native call would be:

(native "@" "read" ’N Fd ’(Buf (4 . I)) 4)

The structure argument (Buf (4 . I)) says that a space of 4 bytes should
be allocated and passed to read, then an integer I returned in the variable
Buf (the return value of native itself is the number returned by read). The
memory space is released after that.

(Note that we use "@" for the library here, as read resides in the main pro-
gram.)

Instead of a single integer, we might want a list of four bytes to be returned
from native:

(native "@" "read" ’N Fd ’(Buf (4 B . 4)) 4)

The difference is that we wrote (B . 4) (a list of 4 bytes) instead of I (a single
integer) for the result specification (see the Arrays and Structures section).

Let’s see what happens if we extend this example. We’ll write the four bytes
to another file descriptor, after reading them from the first one:

void copy4bytes(int fd1, int fd2) {

char buf[4];

read(fd1, buf, 4);

write(fd2, buf, 4);

}

104 Alexander Burger

Again, buf is an automatic variable. It is passed to both read and write. A
direct translation would be:

(native "@" "read" ’N Fd ’(Buf (4 B . 4)) 4)

(native "@" "write" ’N Fd (cons NIL (4) Buf) 4)

This work as expected. read returns a list of four bytes in Buf. The call to
cons builds the structure

(NIL (4) 1 2 3 4)

i.e. no return variable, a four-byte memory area, filled with the four bytes
(assuming that read returned 1, 2, 3 and 4). Then this structure is passed to
write.

But: This solution induces quite some overhead. The four-byte buffer is al-
located before the call to read and released after that, then allocated and
released again for write. Also, the bytes are converted to a list to be stored
in Buf, then that list is extended for the structure argument to write, and
converted again back to the raw byte array. The data in the list itself are
never used.

If the above operation is to be used more than once, it is better to allocate
the buffer manually, use it for both reading and writing, and then release it.
This also avoids all intermediate list conversions.

(let Buf (native "@" "malloc" ’N 4) # Allocate memory

(native "@" "read" ’N Fd Buf 4) # (Possibly repeat this several times)

(native "@" "write" ’N Fd Buf 4)

(native "@" "free" NIL Buf)) # Release memory

11.3.1 Fast Fourier Transform

For a more typical example, we might call the Fast Fourier Transform using
the library from the FFTW package. With the example code for calculating
Complex One-Dimensional DFTs:

http://fftw.org

11 Native C Calls 105

#include <fftw3.h>

...

{

fftw_complex *in, *out;

fftw_plan p;

...

in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);

out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);

p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);

...

fftw_execute(p); /* repeat as needed */

...

fftw_destroy_plan(p);

fftw_free(in); fftw_free(out);

}

we can build the following equivalent:

(load "@lib/math.l")

(de FFTW_FORWARD . -1)

(de FFTW_ESTIMATE . 64)

(de fft (Lst)

(let

(Len (length Lst)

In (native "libfftw3.so" "fftw_malloc" ’N (* Len 16))

Out (native "libfftw3.so" "fftw_malloc" ’N (* Len 16))

P (native "libfftw3.so" "fftw_plan_dft_1d" ’N

Len In Out FFTW_FORWARD FFTW_ESTIMATE))

(struct In NIL (cons 1.0 (apply append Lst)))

(native "libfftw3.so" "fftw_execute" NIL P)

(prog1 (struct Out (make (do Len (link (1.0 . 2)))))

(native "libfftw3.so" "fftw_destroy_plan" NIL P)

(native "libfftw3.so" "fftw_free" NIL Out)

(native "libfftw3.so" "fftw_free" NIL In))))

This assumes that the argument list Lst is passed as a list of complex numbers,
each as a list of two numbers for the real and imaginary part, like

(fft ’((1.0 0) (1.0 0) (1.0 0) (1.0 0) (0 0) (0 0) (0 0) (0 0)))

106 Alexander Burger

The above translation to Lisp is quite straightforward. After the two buffers
are allocated, and a plan is created, struct is called to store the argument
list in the In structure as a list of double numbers (according to the 1.0

initialization item). Then fftw execute is called, and struct is called again
to retrieve the result from Out and return it from fft via the prog1. Finally,
all memory is released.

11.3.2 Constant Data

If such allocated data (strings, arrays or structures passed to native) are
constant during the lifetime of a program, it makes sense to allocate them
only once, before their first use. A typical candidate is the format string of
a printf call. Consider a function which prints a floating point number in
scientific notation:

(load "@lib/math.l")

: (de prf (Flt)

(native "@" "printf" NIL "%e^J" (cons Flt 1.0)))

-> prf

: (prf (exp 12.3))

2.196960e+05

As we know that the format string "%e^J" will be converted from a Lisp sym-
bol to a C string with strdup – and then thrown away – on each call to prf,
we might as well perform a little optimization and delegate this conversion to
the program load time:

: (de prf (Flt)

(native "@" "printf" NIL ‘(native "@" "strdup" ’N "%e^J") (cons Flt 1.0)))

-> prf

: (prf (exp 12.3))

2.196960e+05

If we look at the prf function, we see that it now contains the pointer to the
allocated string memory:

: (pp ’prf)

(de prf (Flt)

(native "@" "printf" NIL 24662032 (cons Flt 1000000)))

-> prf

11 Native C Calls 107

This pointer will be used by printf directly, without any further conversion
or memory management.

11.4 Callbacks

Sometimes it is necessary to do the reverse: Call Lisp code from C code. This
can be done in two ways – with certain limitations.

11.4.1 Call by Name

The first way is actually not a callback in the strict sense. It just allows to
call a Lisp function with a given name.

The limitation is that this function can accept only maximally five numeric
arguments, and returns a number.

The prerequisite is, of course, that you have access to the C source code. To
use it from C, insert the following prototype somewhere before the first call:

long lisp(char*,long,long,long,long,long);

Then you can call lisp from C:

long n = lisp("myLispFun", a, b, 0, 0, 0);

The first argument should be the name of a Lisp function (built-in, or defined
in Lisp). It is searched for at runtime, so it doesn’t need to exist at the time
the C library is compiled or loaded.

Be sure to pass dummy arguments (e.g. zero) if your function expects less
than five arguments, to keep the C compiler happy.

This mechanism can generally be used for any type of argument and return
value (not only long). On the C side, appropriate casts or a adapted prototype
should be used. It is then up to the called Lisp function to prepare and/or
extract the proper data with struct and memory management operations.

11.4.2 Function Pointer

This is a true callback mechanism. It uses the Lisp-level function lisp (not to
confuse with the C-level function with the same name in the previous section).
No C source code access is required.

http://en.wikipedia.org/wiki/Callback_(computer_programming)
http://en.wikipedia.org/wiki/Callback_(computer_programming)

108 Alexander Burger

lisp returns a function pointer, which can be passed to C functions via
native. When this function pointer is dereferenced and called from the C
code, the corresponding Lisp function is invoked. Here, too, only five numeric
arguments and a numeric return value can be used, and other data types
must be handled by the Lisp function with struct and memory management
operations.

Callbacks are often used in user interface libraries, to handle key-, mouse-
and other events. Examples can be found in "@lib/openGl.l". The following
function mouseFunc takes a Lisp function, installs it under the tag mouseFunc

(any other tag would be all right too) as a callback, and passes the resulting
function pointer to the OpenGL glutMouseFunc() function, to set it as a
callback for the current window:

(de mouseFunc (Fun)

(native ‘*GlutLib "glutMouseFunc" NIL (lisp ’mouseFunc Fun)))

(The global *GlutLib holds the library "/usr/lib/libglut.so". The back-
quote (‘) is important here, so that the transient symbol with the library
name (and not the global *GlutLib) is evaluated by native, resulting in the
proper library handle at runtime).

A program using OpenGL may then use mouseFunc to install a function

(mouseFunc

’((Btn State X Y)

(do-something-with Btn State X Y)))

so that future clicks into the window will pass the button, state and coordi-
nates to that function.

12

The ’select’ Predicate

Alexander Burger

abu@software-lab.de

Summary. The Pilog select/3 predicate is rather complex, and quite different from
other predicates. This article tries to explain it in detail, and shows some typical
use cases.

12.1 Syntax

select takes at least three arguments:

• A list of unification variables,

• a list of generator clauses

• and an arbitrary number of filter clauses

We will describe these arguments in the following, but demonstrate them first
on a concrete example.

12.2 First Example

The examples in this document will use the demo application in “app/*.l”
(see also “A Minimal Complete Application”). To get an interactive prompt,
start it as

$ pil app/main.l -main +

:

As ever, you can terminate the interpreter by hitting Ctrl-D.

110 Alexander Burger

For a first, typical example, let’s write a complete call to solve that returns a
list of articles with numbers between 1 and 4, which contain “Part” in their
description, and have a price less than 100:

(let (Nr (1 . 4) Nm Part Pr ’(NIL . 100.00))

(solve

(quote

@Nr Nr

@Nm Nm

@Pr Pr

(select (@Item)

((nr +Item @Nr) (nm +Item @Nm) (pr +Item @Pr))

(range @Nr @Item nr)

(part @Nm @Item nm)

(range @Pr @Item pr)))

@Item))

This expression will return, with the default database setup of “app/init.l”, a
list of exactly one item ({3-2}), the item with the number 2.

The let statement assigns values to the search parameters for number Nr,
description Nm and price Pr. The Pilog query (the first argument to solve)
passes these values to the Pilog variables @Nr, @Nm and @Pr. Ranges of val-
ues are always specified by cons pairs, so (1 . 4) includes the numbers 1
through 4, while (NIL . 100.00) includes prices from minus infinite up to
one hundred.

The list of unification variables is

(@Item)

The list of generator clauses is

((nr +Item @Nr) (nm +Item @Nm) (pr +Item @Pr))

The filter clauses are

(range @Nr @Item nr)

(part @Nm @Item nm)

(range @Pr @Item pr)

12 The ’select’ Predicate 111

12.3 Unification Variables

As stated above, the first argument to select should be a list of variables.
These variables communicate values (via unify) from the select environment
to the enclosing Pilog environment.

The first variable in this list (@Item in the above example) is mandatory, it
takes the direct return value of select. Additional optional variables may be
unified by clauses in the body of select, and return further values.

12.4 Generator Clauses

The second argument to select is a list of “generator clauses”. Each of these
clauses specifies some kind of database B-Tree +index, to be traversed by
select, step by step, where each step returns a suitable single database object.
In the simplest case, they consist like here just of a relation name (e.g. nr),
a class (e.g. +Item), an optional hook specifier (not in this example), and a
pattern (values or ranges, e.g. (1 . 4) or “Part”).

The generator clauses are the core of ‘select’. In some way, they behave analog
to or/2, as each of them generates a sequence of values. However, the generator
clauses behave different, as they will not generate an exhaustive set of values
upon backtracking, one after the other, where the next gets its turn when
the previous one is exhausted. Instead, all clauses will generate their values
quasi-parallel, with a built-in optimization so that successful clauses will be
called with a higher probability. “Successful” means that the returned values
successfully pass select’s filter clauses.

12.4.1 B-Tree Stepping

In its basic form, a generator clause is equivalent to the db/3 predicate, step-
ping through a single B-Tree. The clause

(nr +Item @Nr)

generates the same values as would be produced by a stand-alone Pilog clause

(db nr +Item @Nr @Item)

as can be seen in the following two calls:

112 Alexander Burger

: (? (db nr +Item (1 . 4) @Item))

@Item={3-1}

@Item={3-2}

@Item={3-3}

@Item={3-4}

-> NIL

: (? (select (@Item) ((nr +Item (1 . 4)))))

@Item={3-1}

@Item={3-2}

@Item={3-3}

@Item={3-4}

-> NIL

12.4.2 Interaction of Generator Clauses

select is mostly useful if more than one generator clause is involved. The tree
search parameters of all clauses are meant to form a logical AND. Only those
objects should be returned, for which all search parameters (and the associated
filter clauses) are valid. As soon as one of the clauses finishes stepping through
its database (sub)tree, the whole call to select will terminate, because further
values returned from other generator clauses cannot be part of the result set.

Therefore, select would find all results most quickly if it could simply call
only the generator clause with the smallest (sub)tree. Unfortunately, this is
usually not known in advance. It depends on the distribution of the data in
the database, and on the search parameters to each generator clause.

Instead, select single-steps each generator clause in turn, in a round-robin
scheme, applies the filter clauses to each generated object, and re-arranges the
order of generator clauses so that the more successful clauses will be preferred.
This process usually converges quickly and efficiently.

12.4.3 Combined Indexes

A generator clause can also combine several (similar) indexes into a single
one. Then the clause is written actually as a list of clauses.

For example, a generator clause to search for a customer by phone number is

(tel +CuSu @Tel)

If we want to search for a customer without knowing whether a given number
is a normal or a mobile phone number, then a combined generator clause
searching both index trees could look like

12 The ’select’ Predicate 113

((tel +CuSu @Tel mob +CuSu @Tel))

The generator will first traverse all matching entries in the +Ref tree of the
tel relation, and then, when these are exhausted, all matching entries in the
mob index tree.

12.4.4 Indirect Object Associations

But generator clauses are not limited to the direct B-Tree interaction of db/3.
They can also traverse trees of associated objects, and then follow +Link /
+Joint relations, or tree relations like +Ref to arrive at database objects with
a type suitable for return values from select.

To locate appropriate objects from associated objects, the generator clause
can contain - in addition to the standard relation/class/pattern specification
(see Generator Clauses above) - an arbitrary number of association specifiers.
Each association specifier can be

1. A symbol. Then a +Link or +Joint will be followed, or a +List of those
will be traversed to locate appropriate objects.

2. A list. Then this list should hold a relation and a class (and an optional
hook) which specify some B-Tree +index to be traversed to locate appro-
priate objects.

In this way, a single generator clause can cause the traversal of a tree of object
relations to generate the desired sequence of objects. An example can be found
in “app/gui.l”, in the ‘choOrd’ function which implements the search dialog
for +Ord (order) objects. Orders can be searched for order number and date,
customer name and city, item description and supplier name:

(select (@@)

((nr +Ord @Nr) (dat +Ord @Dat)

(nm +CuSu @Cus (cus +Ord))

(ort +CuSu @Ort (cus +Ord))

(nm +Item @Item (itm +Pos) ord)

(nm +CuSu @Sup (sup +Item) (itm +Pos) ord))

While (nr +Ord @Nr) and (dat +Ord @Dat) are direct index traversals, (nm
+CuSu @Cus (cus +Ord)) iterates the nm (name) index of customers/suppliers
+CuSu, and then follows the +Ref +Link of the cus relation to the orders. The
same applies to the search for city names via ort.

The most complex example is (nm +CuSu @Sup (sup +Item) (itm +Pos)

ord), where the supplier name is searched in the nm tree of +CuSu, then the

114 Alexander Burger

+Ref tree (sup +Item) tree is followed to locate items of that supplier, then
all positions for those items are found using (itm +Pos), and finally the ord

+Joint is followed to arrive at the order object(s).

12.4.5 Nested Pilog Queries

In the most general case, a generator clause can be an arbitrary Pilog query.
Often this is a query to a database on a remote machine, using the remote/2

predicate, or some other resource not accessible via database indexes, like
iterating a +List of +Link or +Joint .

Syntactically, such a generator clause is recognized by the fact that its CAR
is a Pilog variable to denote the return value.

The second argument is a list of Pilog variables to communicate values (via
unify) from the surrounding select environment.

The third argument is the actual list of clauses for the nested query.

Finally, an arbitrary number of association specifiers may follow, as described
in the Indirect Object Associations section.

We can illustrate this with a somewhat useless (but simple) example, which
replaces the standard generators for item number and supplier name

(select (@Item)

(

(nr +Item @Nr)

(nm +CuSu @Sup (sup +Item))

)

...

with the equivalent form

(select (@Item)

(

(@A (@Nr) ((db nr +Item @Nr @A)))

(@B (@Sup) ((db nm +CuSu @Sup @B)) (sup +Item))

)

That is, a query with the db/3 tree iteration predicate is used to generate
appropriate values.

12 The ’select’ Predicate 115

12.5 Filter Clauses

The generator clauses produce - independent from each other - lots of objects,
which match the patterns of individual generator clauses, but not necessarily
the desired result set of the total select call. Therefore, the filter clauses
are needed to retain the good, and throw away the bad objects. In addition,
they give feedback to the generator for optimizing its traversal priorities (as
described in Generator Clauses).

select then collects all objects which passed through the filters into a unique
list, to avoid duplicates which would otherwise appear, because most objects
can be found by more than one generator clause.

Technically, the filters are normal Pilog clauses, which just happen to be
evaluated in the context of select. Arbitrary Pilog predicates can be used,
though there exist some predicates (e.g. isa/2, same/3, bool/3, range/3,
head/3, fold/3, part/3 or tolr/3) especially suited for that task.

12.5.1 A Little Report

Assume we want to know how many pieces of item #2 were sold in the year

1. Then we must find all +Pos (position) objects referring to that

item and at the same time belonging to orders of the year 2007 (see the class
definition for +Pos in “app/er.l”). The number of sold pieces is then in the
cnt property of the +Pos objects.

As shown in the complete select below, we will hold the item number in the
variable @Nr and the date range for the year in @Year.

Now, all positions referred by item #2 can be found by the generator clause

(nr +Item @Nr (itm +Pos))

and all positions sold in 2007 can be found by

(dat +Ord @Year pos)

However, the combination of both generator clauses

(select (@Pos)

((nr +Item @Nr (itm +Pos)) (dat +Ord @Year pos)))

116 Alexander Burger

will probably generate too many results, namely all positions with item the
full search expression will be:

(?

@Nr 2 # Item number

@Year (cons (date 2007 1 1) (date 2007 12 31)) # Date range 2007

(select (@Pos)

((nr +Item @Nr (itm +Pos)) (dat +Ord @Year pos)) # Generator clauses

(same @Nr @Pos itm nr) # Filter item number

(range @Year @Pos ord dat))) # Filter order date

For completeness, let’s calculate the total count of sold items:

(let Cnt 0 # Counter variable

(pilog

(quote

@Nr 2

@Year (cons (date 2007 1 1) (date 2007 12 31))

(select (@Pos)

((nr +Item @Nr (itm +Pos)) (dat +Ord @Year pos))

(same @Nr @Pos itm nr)

(range @Year @Pos ord dat)))

(inc ’Cnt (get @Pos ’cnt))) # Increment total count

Cnt) # Return count

12.5.2 Filter Predicates

As mentioned under Filter Clauses, some predicates exists mainly for select
filtering.

Some of these predicates are of general use: isa/2 can be used to check for a
type, same/3 checks for a definite vaue, bool/3 looks if the value is non NIL

These predicates are rather independent of the +relation type.

range/3 checks whether a value is within a given range. This could be used
with any +relation type, but typically it will be used for numeric (+Number)
or time (+Date and +Time) relations.

Other predicates make only sense in the context of a certain +relation type:

• head/3 is mainly intended for (+Key +String) or (+Ref +String) rela-
tions,

• fold/3 is useful for (+Fold +Ref +String) relations,

• part/3 for (+Fold +Idx +String) relations, and

12 The ’select’ Predicate 117

• tolr/3 for (+Sn +Idx +String) relations.

13

Using ’edit’

Alexander Burger

abu@software-lab.de

Summary. This articles is about browsing the database or arbitrary data structures
and definitions with the powerful edit function.

13.1 Introduction

A quite powerful - but little known - function in PicoLisp is ‘edit’. It allows
you to edit any Lisp symbol (intern, transient or extern), by pretty-printing
its value and properties to a temporary file, calling an external editor, and
‘read’ing back the changes when done. For the external editor, currently ‘vim’
is supported. The clou: You can “click” on any other symbol somewhere em-
bedded in the nested structures of the value or property list, to have it added
to the editor screen, and thus browse through potentially the whole system.
This works transparently not only for internal symbols, but also for transient
(which are normally not directly accessible) and external (database) symbols.
In the case of external symbols, it doesn’t even matter whether these are
objects in a local database, or whether they reside on remote machines in a
distributed system (except that remote objects cannot be modified).

13.2 PicoLisp Symbols

A symbol in PicoLisp consists of three - possibly empty - components: A
value, a property list and a name. Of those, usually only the value and the
properties are modified during programming. The value is nothing more than a
special property, used implicitly for prominent purposes like variable bindings
or function definitions. There exist a large number of functions to access,
set or modify a symbol’s value or property list. Setting the value and a few
properties of the symbol X:

http://software-lab.de/doc/refE.html#edit
http://software-lab.de/doc/refP.html#pretty
http://software-lab.de/doc/refR.html#read

120 Alexander Burger

: (setq X "Hello")

-> "Hello"

: (put ’X ’a 1)

-> 1

: (with ’X

(=: b 2)

(push (:: lst) "OK" ’(a b c d) 17))

-> 17

These data can be accessed individually

: X

-> "Hello"

: (val ’X)

-> "Hello"

: (get ’X ’lst)

-> (17 (a b c d) "OK")

or looked at as a whole, using the function ‘show’:

: (show ’X)

X "Hello"

lst (17 (a b c d) "OK")

b 2

a 1

-> X

show displays the symbol’s name (here “X”), then the value (here “Hello”)
on the same line, followed by all properties, each on its own line indented by
three spaces.

13.3 Editing a Symbol

Instead of just showing the symbol to the console, you can use edit to get a
similar display in a ‘vim’ session:

: (edit ’X)

http://software-lab.de/doc/refS.html#show

13 Using ’edit’ 121

The editor’s window will appear as:

X "Hello"

a 1

b 2

lst (17 (a b c d) "OK")

(********)

The difference to a plain show is that you can change the value or properties.
The pattern (********) is used by edit internally as a delimiter, and should
not be modified. For example, change the e in the value “Hello” to a, and the
a in the lst property to x:

X "Hallo"

a 1

b 2

lst (17 (x b c d) "OK")

(********)

then exit ‘vim’ in the normal way, e.g. with “:x”. On your console you see

: (edit ’X)

X redefined

X lst redefined

-> NIL

You can use show or other commands to see that X was indeed changed

: X

-> "Hallo"

: (get ’X ’lst)

-> (17 (x b c d) "OK")

It is even possible to start with an empty - or “nonexistent” - symbol

: (edit ’Y)

It displays, as expected

122 Alexander Burger

Y NIL

(********)

Now add a value and some properties

Y (This is a value)

bar (and this is a property)

foo 17

(********)

After exiting the editor:

: (show ’Y)

Y (This is a value)

foo 17

bar (and this is a property)

-> Y

13.4 Browsing

Now let’s try the “browsing” capability mentioned above. When edit starts
up the ‘vim’ editor, it defines two key mappings for that edit session:

• Once you edit a symbol, you can move the cursor to the first character
of some other symbol appearing in the value or properties, and press an
upper-case ‘K’. This will cause that symbol to be added to the edit session,
separated by another (********)

• Pressing an upper-case ‘Q’ goes one step back to the previous view

We can try this while editing X. Moving the cursor to the x in the lst property,
and hitting ‘K’ gives:

13 Using ’edit’ 123

x NIL

(********)

X "Hallo"

a 1

b 2

lst (17 (x b c d) "OK")

(********)

Now we see both x and X being edited. Unfortunately, x is not very interesting
here, as it has only the default value of NIL and no properties. The same effect
can be achieved by calling

(edit ’x ’X)

You can pass any number of symbols to edit. A little more happens if we move
down to lst again, and hit ‘K’ on the symbol d:

d (NIL (let *Dbg NIL (dbg ^)))

*Dbg ((216 . "/usr/lib/picolisp/lib/debug.l"))

(********)

x NIL

(********)

X "Hallo"

a 1

b 2

lst (17 (x b c d) "OK")

(********)

Indeed, now we found something! This is not surprising, though, as ‘d’ has a
definition in the debugger context. The value is the function

(() (let *Dbg NIL (dbg ^)))

and the ‘*Dbg’ property contains the file and line number of its source.

http://software-lab.de/doc/refD.html#d
http://software-lab.de/doc/refD.html#*Dbg

124 Alexander Burger

13.5 Transient Symbols

We can use edit to inspect itself.

: (edit ’edit)

The result looks meager

edit (@

(let *Dbg NIL

(setq "*F" (tmp ’"edit.l"))

(catch NIL ("edit" (rest)))))

*Dbg ((6 . "lib/edit.l"))

(********)

because - as can be seen in the fourth line - edit is a short function wich calls
“edit” (defined in a transient symbol) to do the actual work. The transient
symbol “edit” is not directly reachable. In the REPL

: (pp ’"edit")

(de "edit" . "edit")

-> "edit"

we see just the string “edit”. But if we edit edit, place the cursor on the first
double quote character of “edit” in line four, and press ‘K’, we get

13 Using ’edit’ 125

"edit" (("Lst")

(let "N" 1

(loop

(out "*F"

(setq

"*Lst" (make

(for "S" "Lst"

("loc" (printsp "S"))

("loc" (val "S"))

...

(********)

edit (@

(let *Dbg NIL

(setq "*F" (tmp ’"edit.l"))

(catch NIL ("edit" (rest)))))

*Dbg ((6 . "lib/edit.l"))

(********)

BTW, you can see another transient function in line 8: “loc”. You may click
on that one to see its definition. In contrast, if you look at the ‘locale’ function

(edit ’locale)

you’ll find in there another, completely different, “loc” function. This is an
example for the locality of transient symbols. The two “loc”’s have nothing
to do with each other, and don’t conflict in their definitions, yet you can see
- and possibly change - them both (separately) in the editor.

13.6 Browsing the Database

For the following examples we use the demo application in the PicoLisp dis-
tribution. Start it as described in the Getting Started section:

$ ln -s /usr/share/picolisp/app

$ pil app/main.l -main -go +

Then connect with a browser to ‘http://localhost:8080’ to get a PicoLisp
REPL prompt in your terminal window. Log in as “admin” / “admin” in the

http://software-lab.de/doc/refL.html#locale
http://software-lab.de/doc/app.html#minApp
http://software-lab.de/doc/app.html#getStarted
http://localhost:8080

126 Alexander Burger

browser GUI. Now you can navigate through the whole database. Start at an
arbitrary object. For a first overview, the ‘*DB’ root object is just fine.

(edit *DB)

You see the external symbol {1}, pointing to the base objects of the entity
classes.

{1} NIL

+Role {3}

+User {7}

+Sal {16}

+CuSu {31}

+Item {32}

+Ord {33}

+Pos {34}

(********)

The first one, {3}, is the base of the +Role entity. Move to the opening brace
and press ‘K’.

{3} NIL

nm (3 . {D1})

(********)

{1} NIL

+Role {3}

+User {7}

+Sal {16}

+CuSu {31}

+Item {32}

+Ord {33}

+Pos {34}

(********)

We see that {3} contains only a single index, the nm (name) property of roles.
The number 3 tells us that this index tree has three nodes, and its root node
is {D1}. If we inspect that index root node, by clicking on {D1}

http://software-lab.de/doc/refD.html#*DB

13 Using ’edit’ 127

{D1} (NIL ("Accounting" NIL . {4}) ("Administration" NIL . {2}) ("Assistance" NIL . {5}))

...

The first role in that list is “Accounting”, the object {4}. {4} in turn leads
us to

{4} (+Role)

nm "Accounting"

usr ({12} {11} {10})

perm (Customer Item Order Report Delete)

...

We see an object of class +Role (as expected), with the name “Accounting”,
the users in the usr list, and a list of permissions. Again, we might click on
the first user, {12}

{12} (+User)

role {4} # (+Role)

nam "Sandra Bullock"

nm "sandy"

pw "sandy"

...

The role of that user points back to {4}, as we have a +Joint - a bi-directional
relation. We might verify this, by exiting edit with “:q” and call (vi ‘+User)
to inspect the sources

...

Role

(class +Role +Entity)

(rel nm (+Need +Key +String)) # Role name

(rel perm (+List +Symbol)) # Permission list

(rel usr (+List +Joint) role (+User)) # Associated users

User

(class +User +Entity)

(rel nm (+Need +Key +String)) # User name

(rel pw (+String)) # Password

(rel role (+Joint) usr (+Role)) # User role

...

128 Alexander Burger

showing that role of +User points to a +Role object, and the usr property of
+Role has a list of +User objects. A similar information can also be obtained
directly from the runtime system. Go back to the user {4} again

(edit ’{4})

then click on the first character of +Role (i.e. the ‘+’ character) in the classes
list of {4}.

+Role ((url> (Tab) (and (may RoleAdmin) (list "app/role.l" ’*ID This)))

+Entity)

nm $53165764545663 # (+Need +Key +String)

perm $53165764545716 # (+List +Symbol)

usr $53165764545754 # (+List +Joint)

Dbf (1 . 512)

*Dbg ((39 . "lib/adm.l")

(url> 26 . "app/er.l")

(usr 43 . "lib/adm.l")

(perm 42 . "lib/adm.l")

(nm 41 . "lib/adm.l"))

...

Note that now we are no longer in a database object, but in the class definition.
It shows that +Role defines a single method url¿, is a subclass of +Entity,
and has relations nm, perm and usr. The property Dbf used for database
maintenance, and *Dbg holds debug information. You may experiment more.
You can click on the ‘$’ of a relation maintenance daemon object, and even
on a commented symbol like +List or +Joint.

13.7 Debugging

edit comes in handy also during debugging. You can easily do on-the-fly
changes to a function, like inserting a call to print a ‘msg’, or setting some
explicit breakpoint with ‘!’, without actually touching the source code. To edit
a certain object in a large database, it is often easier to find it by going to that
object in the GUI. In the demo app, click on the “Orders” menu item to the
left, then on the ‘@’ link in the leftmost column of the first order. You should
get a form with that order. Now, in the REPL, you can access the form that
is currently shown in the browser via the *Top global variable. You may look
at it with (show *Top), or edit it with (edit *Top). You get an awful lot of
data, mostly for the GUI components in that form. As before, you can click

http://software-lab.de/doc/refM.html#msg
http://software-lab.de/doc/ref_.html#!

13 Using ’edit’ 129

on any of them to see what they contain. Scrolling down a bit, there is an obj
property. This is the database object held by that form.

...

evt 0

obj {B7} # (+Ord)

gui ($53165764713535

$53165764713635

$53165764713747

...

Here, it is {B7}. Again, you can click on that,

{B7} (+Ord)

nr 1

dat 733027 # 2007-02-14

cus {C3} # (+CuSu)

pos ({A1} {A2} {A3})

...

and again you are “in” the database. You can follow the links to the customer
(the +CuSu object {C3}), or the three positions in that order pos. Let’s pick
the first position {A1}

{A1} (+Pos)

cnt 1

pr 29900

itm {B1} # (+Item)

ord {B7} # (+Ord)

...

and see a link to the item {B1}, and back to the order {B7}. The item {B1}
leads us to

{B1} (+Item)

nr 1

inv 100

pr 29900

sup {C1} # (+CuSu)

nm "Main Part"

...

130 Alexander Burger

in turn pointing to sup, the item’s supplier {C1}, and so on. The database
objects can be modified here in any conceivable way, but you should be very
sure about what you do, if you don’t want an inconsistent database. Relations
involving index trees or “joint”ed objects need corresponding changes in other
objects, and are better avoided. In any case, a change to a DB object will only
be manifest if you enter (commit) after exiting from the editor.

13.8 Distributed Database

Though the demo app doesn’t really make use of remote objects, it contains a
hook to experiment with them. If the demo application was started as above,
it automatically also listens on port 4040 for remote requests. A distributed
database requires some setup and administration. We don’t go into the details
here, but a simple setup can be made by starting (in addition to the app server
above) a stand-alone PicoLisp interpreter in another terminal window

$ pil +

and initialize the *Ext variable as described in ‘remote/2’

(setq *Ext

(mapcar

’((@Host @Ext)

(cons @Ext

(curry (@Host @Ext (Sock)) (Obj)

(when (or Sock (setq Sock (connect @Host 4040)))

(ext @Ext

(out Sock (pr (cons ’qsym Obj)))

(prog1 (in Sock (rd))

(unless @

(close Sock)

(off Sock))))))))

’("localhost")

’(20)))

to let the system know where where to fetch remote objects from. If you started
the remote server on another machine (you didn’t forget to open port 4040 in
the firewall, did you?), supply its name or IP address instead of “localhost”.
Then request the order with the number 1, and edit it:

http://software-lab.de/doc/refR.html#remote/2

13 Using ’edit’ 131

: (let Sock (connect "localhost" 4040)

(ext 20

(out Sock (pr ’(pr (db ’nr ’+Ord 1))))

(prog1 (in Sock (rd)) (close Sock))))

-> {AF7}

: (edit @)

From here on, continue as with the local database. Just that the (now remote)
order object {B7} appears locally as {AF7}.

{AF7} (+Ord)

nr 1

dat 733027 # 2007-02-14

cus {AG3} # (+CuSu)

pos ({AE1} {AE2} {AE3})

The same holds for the customer and the positions. Clicking on the first
position {AE1} gives

{AE1} (+Pos)

cnt 1

pr 29900

itm {AF1} # (+Item)

ord {AF7} # (+Ord)

...

Except for the fact that the names of all external symbols appear with an
offset, everything else behaves like in the local case.

27oct11 abu

14

Bash Completion

Alexander Burger

abu@software-lab.de

Summary. This article describes how Bash completion works in PicoLisp.

14.1 Bash Completion

Since picoLisp-3.0.9 there is support for Bash completion.

While it is not precisely the absolute killer-feature, bash completion is quite
handy when developing PicoLisp applications from the shell command line.

If you installed PicoLisp locally (i.e. not from a distribution package), you
need to copy two files

$ cp lib/complete.l /usr/lib/picolisp/lib/

$ cp lib/bash_completion /etc/bash_completion.d/pil

As ever, source . /etc/bash completion in your .bashrc

Per default, if you hit the TAB key during command line input, Bash com-
pletes things it knows about, like commands and path names.

PicoLisp – in addition to normal path/file name arguments – accepts two
particular types of arguments:

1. If the argument’s first character is ’-’, then the rest of that argument is
taken as a Lisp function call (without the surrounding parentheses).

2. If the argument’s first character is ’@’, then it is interpreted as a path
into the interpreter’s installation directory.

For (1), the expansion actually searches all built-in function names of the
given invocation. For example, entering

134 Alexander Burger

$ pil -ver

and then hitting TAB will expand to “-version“.

The expansion also honors single or double quotes, to allow for function ar-
guments:

$ pil -’pri

or

$ pil -"pri

This expands to the printing functions.

For (2), the intended path name is properly expanded. This works regardless
of whether it is a global or a local installation, as it always searches the invoked
interpreter’s environment.

$ pil @lib/xh

and

$ <somePath>/pil @lib/xh

both will expand to “@lib/xhtml.l“.

As an extra goody, an empty argument expands to ’+’ (the trailing debug
flag – perhaps the most often needed command line argument).

15

The Need for Speed

Alexander Burger

abu@software-lab.de

Summary. This article discusses why relative speed of a language implementation
is overrated in comparison to features like expressiveness, flexibility and orthogonal-
ity.

15.1 Introduction

One of the greatest mysteries in the history of computer language compar-
isons is to me the question why most people are more interested in the relative
speed of a language implementation, rather than in features like expressive-
ness, flexibility and orthogonality.

Several years ago I wrote an article1 where - among other things - I compared
PicoLisp with a “compiled” Lisp (CLisp). After that, postings appeared who
claimed that picking CLisp was an unfortunate choice, because it compiles
only to bytecode, and that SBCL would have been better.

Contrary to the intention of those postings, I see this quite as an assertion
of my argument. After all, why go through the troubles and disadvantages of
supporting a compiler, when the resulting speed is lower than without?

And while I still believe that raw execution speed is a relatively unimportant
issue, I feel I should supply an update.

I did a local install of SBCL on a Linux x86-64 System with two Dual-Core 1-
GHz Opterons, and compared that with the current 64-bit version of PicoLisp.

1http://software-lab.de/radical.pdf

136 Alexander Burger

15.2 Fibonacci

In the above article, the fibonacci function was called with an argument of
30. As today’s machines are faster, I took 40 instead, and got:

(fibo 40)

PicoLisp 34.8 sec

sbcl 5.1 sec

sbcl(i) 33:45 min

(sbcl(i) means “SBCL interpreted” – More than half an hour is beyond good
and evil, of course)

The relation of SBCL (5.1 sec) to PicoLisp (34.8 sec) looks reasonable. Fi-
bonacci on compiled SBCL runs about 6.8 times faster than on (interpreted)
PicoLisp. And can probably be even improved with some declaration magic.
PicoLisp, on the other hand, is not designed for arithmetic speed, it is always
handicapped by its bignum-only number type.

But, as I also wrote in the above article, integer primitive operations can be
easily optimized by a compiler. They are, however, not typical for a Lisp pro-
gram, where direct list mappings are used instead of array index calculations.

BTW, out of interest I also tried an equivalent Python program. It took
1:45 minutes. In general I can say that on most occasions where I compared
PicoLisp to Python I observed such a factor of 1 to 3.

15.3 List Operations

So I tried the second example from that article, the tst function doing ex-
tensive list operations.

(load "tst.l")

PicoLisp 2.0 sec

sbcl 1.8 sec

sbcl(i) 72.8 sec

The difference is negligible. Not much to say here.

15 The Need for Speed 137

15.4 Binary Trees

Some people claimed the above examples are not “real” benchmarks. Let’s
move to the Alioth Benchmarks Game platform, where the Binary Trees2

benchmark does things quite similar to the above tst (though also a certain
amount of arithmetics). The SBCL version is

(defun build-btree (item depth)

(declare (fixnum item depth))

(if (zerop depth) (list item)

(let ((item2 (+ item item))

(depth-1 (1- depth)))

(declare (fixnum item2 depth-1))

(cons item

(cons (build-btree (the fixnum (1- item2)) depth-1)

(build-btree item2 depth-1))))))

(defun check-node (node)

(declare (values fixnum))

(let ((data (car node))

(kids (cdr node)))

(declare (fixnum data))

(if kids

(- (+ data (check-node (car kids)))

(check-node (cdr kids)))

data)))

(defun loop-depths (max-depth &key (min-depth 4))

(declare (type fixnum max-depth min-depth))

(loop for d of-type fixnum from min-depth by 2 upto max-depth do

(loop with iterations of-type fixnum = (ash 1 (+ max-depth min-depth (- d)))

for i of-type fixnum from 1 upto iterations

sum (+ (the fixnum (check-node (build-btree i d)))

(the fixnum (check-node (build-btree (- i) d))))

into result of-type fixnum

finally

(format t "~D trees of depth ~D check: ~D~%"

(the fixnum (+ iterations iterations)) d result))))

2http://shootout.alioth.debian.org/u64q/performance.php?test=binarytrees

138 Alexander Burger

(defun main (&optional (n (parse-integer

(or (car (last #+sbcl sb-ext:*posix-argv*

#+cmu extensions:*command-line-strings*

#+gcl si::*command-args*))

"1"))))

(declare (type (integer 0 255) n))

(format t "stretch tree of depth ~D check: ~D~%" (1+ n) (check-node (build-btree 0 (1+ n))))

(let ((*print-pretty* nil) (long-lived-tree (build-btree 0 n)))

(purify)

(loop-depths n)

(format t "long lived tree of depth ~D check: ~D~%" n (check-node long-lived-tree))))

The corresponding PicoLisp program is

(de buildTree (Item Depth)

(cons Item

(and

(n0 Depth)

(cons

(buildTree

(dec (setq Item (>> -1 Item)))

(dec ’Depth))

(buildTree Item Depth)))))

(de checkNode (Node)

(if2 (cadr Node) (cddr Node)

(- (+ (car Node) (checkNode (cadr Node))) (checkNode @))

(+ (car Node) (checkNode @))

(- (car Node) (checkNode @))

(car Node)))

15 The Need for Speed 139

(let (N (format (opt)) Min 4)

(prinl

"stretch tree of depth "

(inc N)

"^I check: "

(checkNode (buildTree 0 (inc N))))

(let LongLivedTree (buildTree 0 N)

(for (D Min (>= N D) (+ 2 D))

(let (Sum 0 Iterations (>> (- D Min N) 1))

(for I Iterations

(inc ’Sum

(+

(checkNode (buildTree I D))

(checkNode (buildTree (- I) D)))))

(prinl

(* 2 Iterations)

"^I trees of depth "

D

"^I check: "

Sum)))

(prinl

"long lived tree of depth "

N

"^I check: "

(checkNode LongLivedTree))))

When called with an argument of 20, we get

PicoLisp 4:03 min

sbcl 1:02 min

If we optimize the PicoLisp version, by calling (gc 100) at the beginning, the
time is reduced to three and a half minutes, but this seems be forbidden by
the benchmark rule.

In any case, here a factor of 4 is also not really overwhelming.

15.5 Fannkuch

Finally, I looked at the Alioth Fannkuch3 benchmark. The SBCL version is

3http://shootout.alioth.debian.org/u64q/performance.php?test=fannkuch

140 Alexander Burger

(defun write-permutation (perm)

(loop for i across perm do

(princ (1+ i)))

(terpri))

(defun fannkuch (n)

(declare (optimize (speed 3) (safety 0) (debug 0)) (fixnum n))

(assert (< 1 n 128))

(let ((perm (make-array n :element-type ’fixnum))

(perm1 (make-array n :element-type ’fixnum))

(count (make-array n :element-type ’fixnum))

(flips 0) (flipsmax 0) (r n) (check 0) (k 0)

(i 0) (perm0 0))

(declare ((simple-array fixnum (*)) perm perm1 count)

(fixnum flips flipsmax check k r i perm0))

(dotimes (i n) (setf (aref perm1 i) i))

(loop

(when (< check 30)

(write-permutation perm1)

(incf check))

(loop while (> r 1) do

(setf (aref count (1- r)) r)

(decf r))

(unless (or (= (aref perm1 0) 0)

(= (aref perm1 (1- n)) (1- n)))

(setf flips 0)

(dotimes (i n) (setf (aref perm i) (aref perm1 i)))

(setf k (aref perm1 0))

(loop while (/= k 0) do

(loop for j fixnum downfrom (1- k)

for i fixnum from 1

while (< i j) do (rotatef (aref perm i) (aref perm j)))

(incf flips)

(rotatef k (aref perm k)))

(setf flipsmax (max flipsmax flips)))

(loop do

(when (= r n)

(return-from fannkuch flipsmax))

(setf i 0 perm0 (aref perm1 0))

(loop while (< i r) do

(setf k (1+ i)

(aref perm1 i) (aref perm1 k)

i k))

(setf (aref perm1 r) perm0)

(when (> (decf (aref count r)) 0) (loop-finish))

(incf r)))))

15 The Need for Speed 141

(defun main ()

(let ((n (parse-integer (second *posix-argv*))))

(format t "Pfannkuchen(~D) = ~D~%" n (fannkuch n))))

Wow, what a piece! Compare that to the equivalent PicoLisp program:

(let (N (format (opt)) Lst (range N 1) L Lst M)

(recur (L) # Permute

(if (cdr L)

(do (length L)

(recurse (cdr L))

(rot L))

(let I 0 # For each permutation

(and (ge0 (dec (30))) (prinl (reverse Lst)))

(for (P (copy Lst) (> (car P) 1) (flip P (car P)))

(inc ’I))

(setq M (max I M)))))

(prinl "Pfannkuchen(" N ") = " M))

But at last we can find some significance:

(fannkuch 10)

PicoLisp 6.4 sec

sbcl 1.0 sec

sbcl(i) > 30 min (aborted)

(fannkuch 11)

PicoLisp 71.1 sec

sbcl 5.0 sec

We see a factor of 14.2.

But at what a price! I’m not only talking about the discussed disadvantages
of the compiler per se, but of that mess of code. I would not want to write my
production code in such a style, and always prefer simplicity and succinctness
over a bureaucratic monster.

If we remove the (declare (optimize ..)) statement, the execution time of SBCL
doubles - from 5.0 to 10.0 seconds - and the factor goes down to 7.1.

BTW, the speed advantage is melting down if we use this parallized PicoLisp
version (using the later4 function):

4http://software-lab.de/doc/refL.html#later

142 Alexander Burger

(let (N (format (opt)) Lst (range N 1) L Lst)

(let (Res (need N) M)

(for (R Res R (cdr R))

(later R

(let L (cdr Lst)

(recur (L) # Permute

(if (cdr L)

(do (length L)

(recurse (cdr L))

(rot L))

(let I 0 # For each permutation

(for (P (copy Lst) (> (car P) 1) (flip P (car P)))

(inc ’I))

(setq M (max I M)))))

M))

(rot Lst))

(wait NIL (full Res))

(prinl "Pfannkuchen(" N ") = " (apply max Res))))

Then we get on the above 4-core machine

(fannkuch 10)

PicoLisp 1.9 sec

sbcl 1.0 sec

(fannkuch 11)

PicoLisp 18.4 sec

sbcl 5.0 sec

Up to N this scales almost linearly with the number of cores. With an 8-core
machine it would well outperform SBCL.

Note: The printing of the first 30 results - as required by the Alioth benchmark
- was omitted here, because their order is unpredictable for parallel execution
and thus would not match the Alioth byte-by-byte comparison. A conformant
solution (it shows no measurable timing difference) would be:

15 The Need for Speed 143

(let (N (format (opt)) Lst (range N 1) L Lst)

(catch NIL

(recur (L) # Print the first 30 permutations

(cond

((cdr L)

(do (length L)

(recurse (cdr L))

(rot L)))

((ge0 (dec (30)))

(prinl (reverse Lst)))

(T (throw)))))

(let (Res (need N) M)

(for (R Res R (cdr R))

(later R

(let L (cdr Lst)

(recur (L) # Permute

(if (cdr L)

(do (length L)

(recurse (cdr L))

(rot L))

(let I 0 # For each permutation

(for (P (copy Lst) (> (car P) 1) (flip P (car P)))

(inc ’I))

(setq M (max I M)))))

M))

(rot Lst))

(wait NIL (full Res))

(prinl "Pfannkuchen(" N ") = " (apply max Res))))

16

GUI Scripting

Alexander Burger

abu@software-lab.de

Summary. This article explains how to programmatically control the standard
PicoLisp GUI.

16.1 Introduction

The standard PicoLisp GUI (in “@lib/xhtml.l“ and ”@lib/form.l“) can be
completely driven under program control. A set of functions in “@lib/scrape.l“
allows you to write scripts for automated

• unit-tests

• database queries and updates

• stress-tests

• debugging

This is possible because all GUI functionality is available via plain HTML
components and HTTP transactions. Though there exist some extensions and
enhancements in JavaScript, which run in parallel to speed up certain user
interactions or provide additional conveniences like drag and drop, they are
never mission-critical, nor an exclusive way to do the job.

146 Alexander Burger

16.2 A Simple Example

Let’s use the demo application1 that comes with the PicoLisp distribution.

You can start it locally, and access it as http://localhost:80802 (recom-

mended), or – if this is not an option – try the online demo at http://app.7fach.de3.

The demo application is a simplified ERP system, containing things like cus-
tomers, articles and orders. For the following example, we want to find the
price of an article with the name “Spare Part”.

16.2.1 Using the Browser GUI

Normally, you would connect to the server with a browser,

log in on the first page (by typing user name and password, and pressing the
“login” button),

1http://software-lab.de/doc/app.html#minApp
2http://localhost:8080
3http://app.7fach.de

16 GUI Scripting 147

then search for that article in the “Items” search dialog (after clicking on the
“Items” link in the “Data” submenu),

and read the price on the page of that item (here: 12.50).

148 Alexander Burger

16.2.2 Using GUI Scripting

The same result can be obtained without a browser, by interacting on the
REPL with the remote application. We assume that the demo application is
still running locally at http://localhost:80804.

Start PicoLisp, and load the necessary libraries:

$ pil +

: (load "@lib/http.l" "@lib/scrape.l")

Call scrape to connect to the server

: (scrape "localhost" 8080)

-> "PicoLisp App"

If you must use the online demo server, call (scrape "7fach.de" 80 "8080")

instead, telling scrape to connect to port 80 of that server (where ’httpGate’
is running), and then to dispatch to 8080 (the application’s address).

Now log in:

4http://localhost:8080

16 GUI Scripting 149

: (expect "’admin’ logged in"

(enter 3 "admin")

(enter 4 "admin")

(press "login"))

-> NIL

(Caveat: Keep in mind a fundamental feature of the PicoLisp server: When-
ever a second log in of the same user from the same IP address is detected,
the first session of that user is automatically terminated. This means that you
cannot run a GUI and a scrape session with user “admin” at the same time.
If you already had a gui session open, it will be dead now.)

expect takes a string argument – a pattern which is to be expected on the
resulting page after the body (the remaining arguments) was executed. This
body enters two values (the user name and the password) into the appropriate
fields, and presses the “login” button.

enter takes a field specification and a value. The first call with 3 refers to
the “Name” field, as this is the third field on the form (the first field is the
“TimeOut” indicator, and the second one is the language selector). The next
field, field number 4, is the password field.

Finally, press simulates a press of the corresponding button, and the message
“’admin’ logged in” appears on the page, satisfying expect.

Then, just as in the GUI, click on the “Items” link to open the dialog. We
forgo the expect here, and assume that the dialog can’t fail:

: (click "Items")

-> "Item"

We also assume that “Spare Part” readily appears in the result list of the
search dialog (it was on the second line). A real script would interact with the
dialog to find the desired item. So we just click on it:

: (click "Spare Part")

-> "Item"

Now the page of that article is open. Counting the fields, we find that the
price is in the 8th one. We can read that field’s value, and get the same result
as in the GUI session above:

: (value 8)

-> "12.50"

150 Alexander Burger

Note that you can also get an overview of the current page with display:

: (display)

###############

click "Home" "logout" "Data" "Orders" "Items" "Customers/Suppliers"

"Salutations" "Report" "Inventory" "Sales" "System" "<<<" ">>>" "obj"

press "Edit" "Delete" "Select" "+" "Install" "Edit"

value "TimeOut 12:11" "2" "Spare Part" "Seven Oaks UnLtd." "Winterburg" "100"

"98" "12.50"

-> "Item"

This helps you to find the positions of links, buttons and fields.

Finally, we should log out:

: (click "logout")

-> "PicoLisp App"

16.3 The Scrape Library

To use the GUI scripting functionality, you need to load “@lib/http.l“ and
“@lib/scrape.l“. It implements the following functions:

• (scrape ’host ’port ’how) -> sym | lst Sets up an environment for
further operations on an application, which can be connected on a server
at host and port, and an optional URL argument how. Returns the title
of the page if no errors occurred, otherwise a list of error messages.

• (expect ’sym . prg) Executes a prg body (holding calls to the functions
explained below), and checks for an expected pattern sym in the server
output.

• (click ’label [’cnt]) -> sym | lst Simulates the click on a link.
The first (or cnt’th) link found on the page which has label as a pre-
fix is used. Returns the result of scrape.

• (press ’label [’cnt]) -> sym | lst Simulates the press of a button.
The first (or cnt’th) button found on the page which has label as a prefix
is used. Returns the result of scrape.

• (value ’field [’cnt]) -> sym Returns the current value of the GUI
field. The field argument may be either a positive number (to specify

16 GUI Scripting 151

the cnt’th field on the page), a negative number (to specify the -cnt’th
last field on the page), or the field’s name. If the name is given, then cnt

may specify the form if more than one form is on the page.

• (enter ’field ’sym [’cnt]) -> sym Enters a value sym into the GUI
field. The field argument may be either a positive number (to specify the
cnt’th field on the page), a negative number (to specify the -cnt’th last
field on the page), or the field’s name. If the name is given, then cnt may
specify the form if more than one form is on the page.

• (display) -> sym Display the state of the current page. First a line
############### is printed as a visual separator, then all available links
and buttons, and the values of all GUI fields is printed.

All these functions can be used interactively (e.g. during development and
debugging of a script), and in stand-alone programs. In the latter case, they
can be used as building-blocks of higher-level functions, to interact flexibly
with forms, dialogs and alerts.

Let your imagination fly!

17

Manual Page

Alexander Burger

abu@software-lab.de

Summary. This is the PicoLisp Manual Page.

17.1 NAME

pil, picolisp - a fast, lightweight Lisp interpreter

17.2 SYNOPSIS

pil [arguments . . .] [-] [arguments . . .] [+] /installpath/bin/picolisp [argu-
ments . . .] [-] [arguments . . .] [+]

17.3 DESCRIPTION

PicoLisp is a Lisp interpreter with a small memory footprint, yet relatively
high execution speed. It combines an elegant and powerful language with
built-in database functionality.

pil is the startup front-end for the interpreter. It takes care of starting the
binary base system and loading a useful runtime environment.

picolisp is just the bare interpreter binary. It is usually called in stand-alone
scripts, using the she-bang notation in the first line, passing the minimal
environment in lib.l and loading additional files as needed:

154 Alexander Burger

(load ‘‘@ext.l’’ ‘‘myfiles/lib.l’’ ‘‘myfiles/foo.l’’)

(do \ldots{} something \ldots{})

(bye)

17.4 INVOCATION

PicoLisp has no pre-defined command line flags; applications are free to de-
fine their own. Any built-in or user-level Lisp function can be invoked from the
command line by prefixing it with a hyphen. Examples for built-in functions
useful in this context are version (print the version number) or bye (exit the
interpreter). Therefore, a minimal call to print the version number and then
immediately exit the interpreter would be:

$ pil -version -bye

Any other argument (not starting with a hyphen) should be the name of a
file to be loaded. If the first character of a path or file name is an at-mark, it
will be substituted with the path to the installation directory.

All arguments are evaluated from left to right, then an interactive read-eval-
print loop is entered (with a colon as prompt).

A single hyphen stops the evaluation of the rest of the command line, so that
the remaining arguments may be processed under program control.

If the very last command line argument is a single plus character, debug-
ging mode is switched on at interpreter startup, before evaluating any of the
command line arguments. A minimal interactive session is started with:

$ pil +

Here you can access the reference manual

(doc)

and the online documentation for most functions,

(doc ’vi)

17 Manual Page 155

or directly inspect their sources:

(vi ’doc)

The interpreter can be terminated with

(bye)

or by typing Ctrl-D.

17.5 FILES

Runtime files are maintained in the ˜/.pil directory:

~{}/.pil/tmp/<pid>/

Process-local temporary directories

~{}/.pil/history

The line editor’s history file

17.6 BUGS

PicoLisp doesn’t try to protect you from every possible programming error
(“You asked for it, you got it”).

17.7 AUTHOR

Alexander Burger abu@software-lab.de

mailto:abu@software-lab.de

156 Alexander Burger

17.8 RESOURCES

Home page: http://home.picolisp.com

Download: http://www.software-lab.de/down.html

http://home.picolisp.com
http://www.software-lab.de/down.html

18

README

Alexander Burger

abu@software-lab.de

Summary. This is the README file of the PicoLisp distribution.

18.1 The PicoLisp System

_PI_co Lisp is not _CO_mmon Lisp

PicoLisp can be viewed from two different aspects: As a general purpose pro-
gramming language, and a dedicated application server framework.

18.1.1 Programming Language

As a programming language, PicoLisp provides a 1-to-1 mapping of a clean
and powerful Lisp derivate, to a simple and efficient virtual machine. It sup-
ports persistent objects as a first class data type, resulting in a database
system of Entity/Relation classes and a Prolog-like query language tightly
integrated into the system.

The virtual machine was designed to be

Simple The internal data structure should be as simple as possible. Only one
single data structure is used to build all higher level constructs.

Unlimited There are no limits imposed upon the language due to limitations
of the virtual machine architecture. That is, there is no upper bound in
symbol name length, number digit counts, or data structure and buffer
sizes, except for the total memory size of the host machine.

158 Alexander Burger

Dynamic Behavior should be as dynamic as possible (”run”-time vs. ”compile”-
time). All decisions are delayed till runtime where possible. This involves
matters like memory management, dynamic symbol binding, and late
method binding.

Practical PicoLisp is not just a toy of theoretical value. PicoLisp is used
since 1988 in actual application development, research and production.

The language inherits the major advantages of classical Lisp systems like

• Dynamic data types and structures

• Formal equivalence of code and data

• Functional programming style

• An interactive environment

PicoLisp is very different from any other Lisp dialect. This is partly due to
the above design principles, and partly due to its long development history
since 1984.

You can download the latest release version at http://software-lab.de/down.html

18.1.2 Application Server Framework

As an application server framework, PicoLisp provides for

NoSQL Database Management

• Index trees

• Object local indexes

• Entity/Relation classes

• Pilog (PicoLisp Prolog) queries

• Multi-user synchronization

• DB Garbage collection

• Journaling, Replication

User Interface

• Browser GUI

• X)HTML/CSS

• XMLHttpRequest/JavaScript

18 README 159

Application Server

• Process management

• Process family communication

• XML I/O

• Import/export

• User administration

• Internationalization

• Security

• Object linkage

• Postscript/Printing

PicoLisp is not an IDE. All program development in Software Lab. is done
using the console, bash, vim and the Lisp interpreter.

The only type of GUI supported for applications is through a browser via
HTML. This makes the client side completely platform independent. The GUI
is created dynamically. Though it uses JavaScript and XMLHttpRequest for
speed improvements, it is fully functional also without JavaScript or CSS.

The GUI is deeply integrated with - and generated dynamically from - the
application’s data model. Because the application logic runs on the server,
multiple users can view and modify the same database object without con-
flicts, everyone seeing changes done by other users on her screen immediately
due to the internal process and database synchronization.

PicoLisp is free software, and you are welcome to use and redistribute it under
the conditions of the MIT/X11 License (see ”COPYING”).

It compiles and runs on current 32-bit GNU/Linux, FreeBSD, Mac OS X (Dar-
win), Cygwin/Win32 (and possibly other) systems. A native 64-bit version is
available for x86-64/Linux, x86-64/SunOS and ppc64/Linux.

19

INSTALL

Alexander Burger

abu@software-lab.de

Summary. This is the INSTALL file from the PicoLisp distribution.

19.1 PicoLisp Installation

There is no ’configure’ procedure, but the PicoLisp file structure is simple
enough to get along without it (we hope). It should compile and run on
GNU/Linux, FreeBSD, Mac OS X (Darwin), Cygwin/Win32, and possibly
other systems without problems.

PicoLisp supports two installation strategies: Local and Global.

The default (if you just download, unpack and compile the release) is a local
installation. It will not interfere in any way with the world outside its directory.
There is no need to touch any system locations, and you don’t have to be root
to install it. Many different versions - or local modifications - of PicoLisp can
co-exist on a single machine.

For a global installation, allowing system-wide access to the executable and
library/documentation files, you can either install it from a ready-made dis-
tribution, or set some symbolic links to one of the local installation directories
as described below.

Note that you are still free to have local installations along with a global
installation, and invoke them explicitly as desired.

162 Alexander Burger

19.2 Local Installation

19.2.1 Unpack the distribution

$ tar xfz picoLisp-XXX.tgz

19.2.2 Change the directory

$ cd picoLisp-XXX

19.2.3 Compile the PicoLisp interpreter

$ (cd src; make)

Or - if you have an x86-64 system (under Linux or SunOS), or a ppc64 system
(under Linux) - build the 64-bit version

$ (cd src64; make)

In both cases the executable bin/picolisp will be created.

To build the 64-bit version the first time (bootstrapping), you have the fol-
lowing three options:

1. If a Java runtime system (version 1.6 or higher) is installed, it will build
right out of the box.

2. Otherwise, download one of the pre-generated ”*.s” file packages

• http://software-lab.de/x86-64.linux.tgz

• http://software-lab.de/x86-64.sunOs.tgz

• http://software-lab.de/ppc64.linux.tgz

3. Else, build a 32-bit version first, and use the resulting bin/picolisp to
generate the ”*.s” files:

$ (cd src; make)

$ (cd src64; make x86-64.linux)

19 INSTALL 163

After that, the 64-bit binary can be used to rebuild itself.

Note that on the BSD family of operating systems, ’gmake’ must be used
instead of ’make’.

19.3 Global Installation

The recommended way for a global installation is to use a picolisp package
from the OS distribution.

If that is not available, you can (as root) create four symbolic links from
/usr/lib, /usr/share and /usr/bin to a local installation directory

ln -s /<installdir> /usr/lib/picolisp

ln -s /<installdir> /usr/share/picolisp

ln -s /usr/lib/picolisp/bin/picolisp /usr/bin/picolisp

ln -s /usr/lib/picolisp/bin/pil /usr/bin/pil

19.4 Invocation

In a global installation, the ’pil’ command should be used. You can either
start in plain or in debug mode. The difference is that for debug mode the
command is followed by single plus (’+’) sign. The ’+’ must be the very last
argument on the command line.

$ pil # Plain mode

:

$ pil + # Debug mode

:

In both cases, the colon ’:’ is PicoLisp’s prompt. You may enter some Lisp
expression,

: (+ 1 2 3)

-> 6

To exit the interpreter, enter

: (bye)

164 Alexander Burger

or just type Ctrl-D.

For a local invocation, specify a path name, e.g.

$./pil # Plain mode

:

$./pil + # Debug mode

:

or

$ /home/app/pil # Invoking a local installation from some other directory

A shortcut for debug mode is the ’dbg’ script:

$./dbg

:

It is available only for local installaions, and is eqivalent to

$./pil +

Note that ’pil’ can also serve as a template for your own stand-alone scripts.

If you just want to test the ready-to-run Ersatz PicoLisp (it needs a Java
runtime system), use

$ ersatz/pil +

:

instead of ’./dbg’ or ’./pil +’.

19.5 Documentation

For further information, please look at ”doc/index.html”. There you find the
PicoLisp Reference Manual (”doc/ref.html”), the PicoLisp tutorials (”doc/tut.html”,
”doc/app.html”, ”doc/select.html” and ”doc/native.html”), and the frequently
asked questions (”doc/faq.html”).

19 INSTALL 165

For details about the 64-bit version, refer to ”doc64/README”, ”doc64/asm”
and ”doc64/structures”.

As always, the most accurate and complete documentation is the source code
;-) Included in the distribution are many utilities and pet projects, including
tests, demo databases and servers, games (chess, minesweeper), 3D animation
(flight simulator), and more.

Any feedback is welcome! Hope you enjoy :-)

Part III

PicoLisp Tutorials

20

A PicoLisp Tutorial

Alexander Burger

abu@software-lab.de

Summary. This article demonstrates some aspects of the PicoLisp system in detail
and example. For a general description of the PicoLisp kernel please look at the
PicoLisp Reference.

This is not a Lisp tutorial, as it assumes some basic knowledge of programming, Lisp,
and even PicoLisp. Please read these sections in the PicoLisp Reference before com-
ing back here: Introduction and The PicoLisp Machine. This tutorial concentrates
on the specificities of PicoLisp, and its differences with other Lisp dialects.

20.1 Now let’s start

If not stated otherwise, all examples assume that PicoLisp was started from
a global installation (see Installation) from the shell prompt as

$ pil +

:

It loads the PicoLisp base system and the debugging environment, and waits
for you to enter input lines at the interpreter prompt (:). You can terminate
the interpreter and return to the shell at any time, by either hitting the Ctrl-D
key, or by executing the function (bye).

Please note that special handling is done during character input. This one is
incompatible with rlwrap for example but is more powerful.

• vi-like command-line editing (typos fixes and history with ESC, h, j, k
and l but not arrows),

• auto-formating (underlined) of double-quoted strings (don’t try and strug-
gle to make " appear).

ref.html#inst

170 Alexander Burger

If you prefer to use Emacs, please use the picolisp-mode bundled in “@lib/el”.

If you feel that you absolutely have to use an IDE, rlwrap or another input
front-end, please remove the entry “@lib/led.l” from “lib.l” and “dbg.l”. Note
that in this case, however, you will not have the TAB symbol completion
feature available during command line editing.

20.2 Command Line Editing

PicoLisp permanently reads input from the current input channel (i.e. the
console in interactive mode), evaluates it, and prints the result to the current
output channel. This is called a “read-eval-print-loop” (REPL).

20.2.1 VI-like editing

It is very helpful - though not absolutely necessary - when you know how to
use the vi editor.

To alleviate the task of manual line input, a command line editor is provided
which is similar to (though much simpler than) the readline feature of the
bash shell. Only a subset of the vi mode is supported, which is restricted to
single-key commands (the “real” vi supports multi-key commands and the
modification of most commands with count prefixes). It is loaded at startup
in debug mode, you find its source in “lib/led.l”.

You can enter lines in the normal way, correcting mistypes with the BACKSPACE
key, and terminating them with the ENTER key. This is the Insert Mode.

If you hit ESC, you get into Command Mode. Now you can navigate horizon-
tally in the current input line, or vertically in the history of previously entered
lines, with key commands borrowed from the vi editor (only h, j, k and l

and not arrows). Note, however, that there is always only a single line visible.

Let’s say you did some calculation

: (* (+ 2 3) (- 7 2))

-> 25

:

If you want to repeat a modified version of this command, using 8 instead of
7, you don’t have to re-type the whole command, but type

• ESC to get into Command Mode

• k to get one line “up”

20 A PicoLisp Tutorial 171

• f and 7 to “find” the character 7

• r and 8 to “replace” with 8

Then you hit ENTER to execute the modified line. Instead of jumping to the
7 with the “find” command, you may also type l (move “right”) repeatedly
till you reach the correct position.

The key commands in the Command Mode are listed below. Some commands
change the mode back to Insert Mode as indicated in parentheses. Deleting
or changing a “word” take either the current atom (number or symbol), or a
whole expression when the cursor is at a left parenthesis.

• k - Go up one line

• j - Go down one line

• l - Go right one character

• h - Go left one character

• w - Go right one word

• b - Go back (left) one word

• 0 - Go to the beginning of the line

• $ - Go to the end of the line

• i - Enter Insert Mode at the cursor position

• a - Append (Insert Mode) after the cursor position

• A - Append (Insert Mode) at the end of the line

• I - Insert (Insert Mode) at the beginning of the line

• x - Delete the character at the cursor position

• X - Delete the character left of the cursor position

• r - Replace the character at the cursor position with the next key

• s - Substitute the character at the cursor position (Insert Mode)

• S - Substitute the whole line (Insert Mode)

• d - Delete the word at the cursor position (Insert Mode)

• D - Delete the rest of the line

• c - Change the word at the cursor position (Insert Mode)

• C - Change the rest of the line (Insert Mode)

• f - Find next key in the rest of the current line

• p - Paste data deleted with x, X, d or D after the cursor position

172 Alexander Burger

• P - Paste data deleted with x, X, d or D before the cursor position

• / - Accept an input pattern and search the history for it

• n - Search for next occurrence of pattern (as entered with /)

• N - Search for previous occurrence of pattern

• % - Go to matching parenthesis

• ~ - Convert character to opposite (lower or upper) case and move right

• u - Undo the last change (one level only)

• U - Undo all changes of the current line

• g - Display current contents of cut buffer (not in vi)

Notes:

• The d command corresponds to the dw command of the vi editor, and c

corresponds to cw.

• Search patterns may contain ‘ @ ’ characters as wildcards.

• Lines shorter than 3 characters, lines beginning with a space character, or
duplicate lines are not entered into the history.

• The history is stored in the file “.pil/history” in the user’s home directory.
The length of the history is limited to 1000 lines.

The following two key-combinations work both in Insert and Command Mode:

• Ctrl-D will immediately terminate the current process.

• Ctrl-X discards all input, abandons further processing, and returns to the
interpreter’s top level (equivalent to invoking quit). This is also useful
when the program stopped at a breakpoint (see single-stepping Debug-
ging), or after program execution was interrupted with Ctrl-C.

Besides these two keys, in Insert Mode only the following keys have a special
meaning:

• BACKSPACE (Ctrl-H) and DEL erase the character to the left

• Ctrl-V inserts the next key literally

• TAB performs symbol and/or path completion: When a symbol (or path)
name is entered partially and TAB is pressed subsequently, all internal
symbols (and/or path names in the file system) matching the partial input
are shown in sequence.

• ESC terminates Input Mode and enters Command Mode

20 A PicoLisp Tutorial 173

20.2.2 Conclusion

Please take some time to experiment and to get used to command line editing.
It will make life much easier in the future :-)

20.3 Browsing

PicoLisp provides some functionality for inspecting pieces of data and code
within the running system.

20.3.1 Basic tools

The really basic tools are of course available and their name alone is enough
to know: print, size . . .

But you will appreciate some more powerful tools like:

• match, a predicate which compares S-expressions with bindable wildcards
when matching,

20.3.2 Inspect a symbol with show

The most commonly used tool is probably the show function. It takes a sym-
bolic argument, and shows the symbol’s name (if any), followed by its value
cell, and then the contents of the property list on the following lines (assign-
ment of such things to a symbol can be done with set, setq, and put).

: (setq A ’(This is the value)) # Set the value cell of ’A’

-> (This is the value)

: (put ’A ’key1 ’val1) # Store property ’key1’

-> val1

: (put ’A ’key2 ’val2) # and ’key2’

-> val2

: (show ’A) # Now ’show’ the symbol ’A’

A (This is the value)

key2 val2

key1 val1

-> A

show accepts an arbitrary number of arguments which are processed according
to the rules of get, resulting in a symbol which is showed then.

174 Alexander Burger

: (put ’B ’a ’A) # Put ’A’ under the ’a’-property of ’B’

-> A

: (setq Lst ’(A B C)) # Create a list with ’B’ as second argument

-> (A B C)

: (show Lst 2 ’a) # Show the property ’a of the 2nd element of ’Lst’

A (This is the value) # (which is ’A’ again)

key2 val2

key1 val1

-> A

20.3.3 Inspect and edit with edit

Similar to show is edit. It takes an arbitrary number of symbolic arguments,
writes them to a temporary file in a format similar to show, and starts the
vim editor with that file.

: (edit ’A ’B)

The vim window will look like

A (This is the value)

key1 val1

key2 val2

(********)

B NIL

a A # (This is the value)

(********)

Now you can modify values or properties. You should not touch the parenthe-
sized asterisks, as they serve as delimiters. If you position the cursor on the
first character of a symbol name and type K (“Keyword lookup”), the editor
will be restarted with that symbol added to the editor window. Q (for “Quit”)
will bring you back to the previous view.

edit is also very useful to browse in a database. You can follow the links
between objects with K , and even - e.g. for low-level repairs

• modify the data (but only if you are really sure about what you are

doing, and don’t forget to commit when you are done).

20 A PicoLisp Tutorial 175

20.3.4 Built-in pretty print with pp

The pretty-print function pp takes a symbol that has a function defined (or
two symbols that specify message and class for a method definition), and
displays that definition in a formatted and indented way.

: (pp ’pretty)

(de pretty (X N . @)

(setq N (abs (space (or N 0))))

(while (args) (printsp (next)))

(if (or (atom X) (>= 12 (size X)))

(print X)

(while (== ’quote (car X))

(prin "’")

(pop ’X))

(let Z X

(prin "(")

(cond

((memq (print (pop ’X)) *PP)

(cond

((memq (car Z) *PP1)

(if (and (pair (car X)) (pair (cdar X)))

(when (>= 12 (size (car X)))

(space)

(print (pop ’X)))

(space)

(print (pop ’X))

(when

(or

(atom (car X))

(>= 12 (size (car X))))

(space)

(print (pop ’X)))))

((memq (car Z) *PP2)

(inc ’N 3)

(loop

(prinl)

(pretty (cadr X) N (car X))

(NIL (setq X (cddr X)) (space))))

176 Alexander Burger

((or (atom (car X)) (>= 12 (size (car X))))

(space)

(print (pop ’X)))))

((and (memq (car Z) *PP3) (>= 12 (size (head 2 X))))

(space)

(print (pop ’X) (pop ’X))))

(when X

(loop

(T (== Z X) (prin " ."))

(T (atom X) (prin " . ") (print X))

(prinl)

(pretty (pop ’X) (+ 3 N))

(NIL X))

(space))

(prin ")"))))

-> pretty

The style is the same as we use in source files:

• The indentation level is three spaces

• If a list is too long (to be precise: if its size is greater than 12), pretty-print
the CAR on the current line, and each element of the CDR recursively on
its own line.

• A closing parenthesis a preceded by a space if the corresponding open
parenthesis is not on the same line

20.3.5 Inspect elements one by one with more

more is a simple tool that displays the elements of a list one by one. It stops
after each element and waits for input. If you just hit ENTER, more continues
with the next element, otherwise (usually I type a dot (.) followed by ENTER)
it terminates.

: (more (1 2 3 4 5 6))

1 # Hit ENTER

2. # Hit ’.’ and ENTER

-> T # stopped

Optionally more takes a function as a second argument and applies that func-
tion to each element (instead of the default print). Here, often show or pp

(see below) is used.

20 A PicoLisp Tutorial 177

: (more ’(A B)) # Step through ’A’ and ’B’

A

B

-> NIL

: (more ’(A B) show) # Step through ’A’ and ’B’ with ’show’

A (This is the value) # showing ’A’

key2 val2

key1 val1

Hit ENTER

B NIL # showing ’B’

a A

-> NIL

20.3.6 Search through available symbols with what

The what function returns a list of all internal symbols in the system which
match a given pattern (with @ wildcard characters).

: (what "prin@")

-> (prin print prinl print> printsp println)

20.3.7 Search through values or properties of symbols with who

The function can returns a list which indicates which classes can accept a
given message. Again, this list is suitable for iteration with pp:

: (can ’del>) # Which classes accept ’del>’ ?

-> ((del> . +List) (del> . +Entity) (del> . +relation))

: (more (can ’del>) pp) # Inspect the methods with ’pp’

(dm (del> . +List) (Obj Old Val)

(and ((<> Old Val) (delete Val Old)))

(dm (del> . +Entity) (Var Val)

(when

(and

Val

(has> (meta This Var) Val (get This Var)))

178 Alexander Burger

(let Old (get This Var)

(rel>

(meta This Var)

This

Old

(put This Var (del> (meta This Var) This Old @)))

(when (asoq Var (meta This ’Aux))

(relAux This Var Old (cdr @)))

(upd> This Var Old))))

(dm (del> . +relation) (Obj Old Val)

(and ((<> Old Val) Val))

20.3.8 Inspect dependencies with dep

dep shows the dependencies in a class hierarchy. That is, for a given class it
displays the tree of its (super)class(es) above it, and the tree of its subclasses
below it.

To view the complete hierarchy of input fields, we start with the root class
+relation:

: (dep ’+relation)

+relation

+Bag

+Any

+Blob

+Link

+Joint

+Bool

+Symbol

+String

+Number

+Time

+Date

-> +relation

If we are interested in +Link:

: (dep ’+Link)

+relation

+Link

+Joint

-> +Link

20 A PicoLisp Tutorial 179

This says that +Link is a subclass of +relation, and has a single subclass
(+Joint).

20.4 Defining Functions

Most of the time during programming is spent defining functions (or methods).
In the following we will concentrate on functions, but most will be true for
methods as well except for using dm instead of de.

20.4.1 Functions with no argument

The notorious “Hello world” function must be defined:

: (de hello ()

(prinl "Hello world"))

-> hello

The () in the first line indicates a function without arguments. The body of
the function is in the second line, consisting of a single statement. The last
line is the return value of de, which here is the defined symbol. From now on
we will omit the return values of examples when they are unimportant.

Now you can call this function this way:

: (hello)

Hello world

20.4.2 Functions with one argument

A function with an argument might be defined this way:

: (de hello (X)

(prinl "Hello " X))

hello redefined

-> hello

PicoLisp informs you that you have just redefined the function. This might
be a useful warning in case you forgot that a bound symbol with that name
already existed.

180 Alexander Burger

: (hello "world")

Hello world

: (hello "Alex")

Hello Alex

20.4.3 Preventing arguments evaluation and variable number of
arguments

Normally, PicoLisp evaluates the arguments before it passes them to a func-
tion:

: (hello (+ 1 2 3))

Hello 6

: (setq A 1 B 2) # Set ’A’ to 1 and ’B’ to 2

-> 2

: (de foo (X Y) # ’foo’ returns the list of its arguments

(list X Y))

-> foo

: (foo A B) # Now call ’foo’ with ’A’ and ’B’

-> (1 2) # -> We get a list of 1 and 2, the values of ’A’ and ’B’

In some cases you don’t want that. For some functions (setq for example) it
is better if the function gets all arguments unevaluated, and can decide for
itself what to do with them.

For such cases you do not define the function with a list of parameters, but give
it a single atomic parameter instead. PicoLisp will then bind all (unevaluated)
arguments as a list to that parameter.

: (de foo X

(list (car X) (cadr X))) # ’foo’ lists the first two arguments

: (foo A B) # Now call it again

-> (A B) # -> We don’t get ’(1 2)’, but ’(A B)’

: (de foo X

(list (car X) (eval (cadr X)))) # Now evaluate only the second argument

: (foo A B)

-> (A 2) # -> We get ’(A 2)’

20 A PicoLisp Tutorial 181

20.4.4 Mixing evaluated arguments and variable number of
unevaluated

arguments

As a logical consequence, you can combine these principles. To define a func-
tion with 2 evaluated and an arbitrary number of unevaluated arguments:

: (de foo (X Y . Z) # Evaluate only the first two args

(list X Y Z))

: (foo A B C D E)

-> (1 2 (C D E)) # -> Get the value of ’A’ and ’B’ and the remaining list

20.4.5 Variable number of evaluated arguments

More common, in fact, is the case where you want to pass an arbitrary number
of evaluated arguments to a function. For that, PicoLisp recognizes the symbol
@ as a single atomic parameter and remembers all evaluated arguments in an
internal frame. This frame can then be accessed sequentially with the args,
next, arg and rest functions.

: (de foo @

(list (next) (next))) # Get the first two arguments

: (foo A B)

-> (1 2)

Again, this can be combined:

: (de foo (X Y . @)

(list X Y (next) (next))) # ’X’ and ’Y’ are fixed arguments

: (foo A B (+ 3 4) (* 3 4))

-> (1 2 7 12) # All arguments are evaluated

These examples are not very useful, because the advantage of a variable num-
ber of arguments is not used. A function that prints all its evaluated numeric
arguments, each on a line followed by its squared value:

182 Alexander Burger

: (de foo @

(while (args) # Check if there are some args left

(println (next) (* (arg) (arg))))) # Call the last arg (next) returned

: (foo (+ 2 3) (- 7 1) 1234 (* 9 9))

5 25

6 36

1234 1522756

81 6561

-> 6561

This next example shows the behaviour of args and rest:

: (de foo @

(while (args)

(next)

(println (arg) (args) (rest))))

: (foo 1 2 3)

1 T (2 3)

2 T (3)

3 NIL NIL

Finally, it is possible to pass all these evaluated arguments to another function,
using pass:

: (de foo @

(pass println 9 8 7) # First print all arguments preceded by 9, 8, 7

(pass + 9 8 7)) # Then add all these values

: (foo (+ 2 3) (- 7 1) 1234 (* 9 9))

9 8 7 5 6 1234 81 # Printing ...

-> 1350 # Return the result

20.4.6 Anonymous functions without the lambda keyword

There’s no distinction between code and data in PicoLisp, quote will do what
you want (see also this FAQ entry).

: ((quote (X) (* X X)) 9)

-> 81

20 A PicoLisp Tutorial 183

: (setq f ’((X) (* X X))) # This is equivalent to (de f (X) (* X X))

-> ((X) (* X X))

: f

-> ((X) (* X X))

: (f 3)

-> 9

20.5 Debugging

There are two major ways to debug functions (and methods) at runtime:
Tracing and single-stepping.

In this section we will use the REPL to explore the debugging facilities, but
in the Scripting section, you will learn how to launch PicoLisp scripts with
some selected functions debugged:

$ pil app/file1.l -"trace ’foo" -main -"debug ’bar" app/file2.l +

20.5.1 Tracing

Tracing means letting functions of interest print their name and arguments
when they are entered, and their name again and the return value when they
are exited.

For demonstration, let’s define the unavoidable factorial function (or just load
the file “@doc/fun.l”):

(de fact (N)

(if (=0 N)

1

(* N (fact (dec N)))))

With trace we can put it in trace mode:

: (trace ’fact)

-> fact

Calling fact now will display its execution trace.

184 Alexander Burger

: (fact 3)

fact : 3

fact : 2

fact : 1

fact : 0

fact = 1

fact = 1

fact = 2

fact = 6

-> 6

As can be seen here, each level of function call will indent by an additional
space. Upon function entry, the name is separated from the arguments with a
colon (:), and upon function exit with an equals sign = from the return value.

trace works by modifying the function body, so generally it works only for
functions defined as lists (lambda expressions, see Evaluation). Tracing a C-
function is possible, however, when it is a function that evaluates all its argu-
ments.

So let’s trace the functions =0 and *:

: (trace ’=0)

-> =0

: (trace ’*)

-> *

If we call fact again, we see the additional output:

20 A PicoLisp Tutorial 185

: (fact 3)

fact : 3

=0 : 3

=0 = NIL

fact : 2

=0 : 2

=0 = NIL

fact : 1

=0 : 1

=0 = NIL

fact : 0

=0 : 0

=0 = 0

fact = 1

* : 1 1

* = 1

fact = 1

* : 2 1

* = 2

fact = 2

* : 3 2

* = 6

fact = 6

-> 6

To reset a function to its untraced state, call untrace:

: (untrace ’fact)

-> fact

: (untrace ’=0)

-> =0

: (untrace ’*)

-> *

or simply use mapc:

: (mapc untrace ’(fact =0 *))

-> *

20.5.2 Single-stepping

Single-stepping means to execute a function step by step, giving the program-
mer an opportunity to look more closely at what is happening. The function

186 Alexander Burger

debug inserts a breakpoint into each top-level expression of a function. When
the function is called, it stops at each breakpoint, displays the expression it is
about to execute next (this expression is also stored into the global variable
^) and enters a read-eval-loop. The programmer can then

• inspect the current environment by typing variable names or calling func-
tions

• execute (d) to recursively debug the next expression (looping through
subexpressions of this expression)

• execute (e) to evaluate the next expression, to see what will happen with-
out actually advancing on

• type ENTER (that is, enter an empty line) to leave the read-eval loop and
continue with the next expression

Thus, in the simplest case, single-stepping consists of just hitting ENTER
repeatedly to step through the function.

To try it out, let’s look at the stamp system function. You may need to have
a look at

• =T (T test),

• date and time (grab system date and time)

• default (conditional assignments)

• pack (kind of concatenation), and

• dat$ and tim$ (date and time formats)

to understand this definition.

: (pp ’stamp)

(de stamp (Dat Tim)

(and (=T Dat) (setq Dat (date T)))

(default Dat (date) Tim (time T))

(pack (dat$ Dat "-") " " (tim$ Tim T)))

-> stamp

20 A PicoLisp Tutorial 187

: (debug ’stamp) # Debug it

-> T

: (stamp) # Call it again

(and (=T Dat) (setq Dat (date T))) # stopped at first expression

! # ENTER

(default Dat (date) Tim (time T)) # second expression

! # ENTER

(pack (dat$ Dat "-") " " (tim$... # third expression

! Tim # inspect ’Tim’ variable

-> 41908

! (time Tim) # convert it

-> (11 38 28)

! # ENTER

-> "2004-10-29 11:38:28" # done, as there are only 3 expressions

Now we execute it again, but this time we want to look at what’s happening
inside the second expression.

: (stamp) # Call it again

(and (=T Dat) (setq Dat (date T)))

! # ENTER

(default Dat (date) Tim (time T))

! # ENTER

(pack (dat$ Dat "-") " " (tim$... # here we want to look closer

! (d) # debug this expression

-> T

! # ENTER

(dat$ Dat "-") # stopped at first subexpression

! (e) # evaluate it

-> "2004-10-29"

! # ENTER

(tim$ Tim T) # stopped at second subexpression

! (e) # evaluate it

-> "11:40:44"

! # ENTER

-> "2004-10-29 11:40:44" # done

The breakpoints still remain in the function body. We can see them when we
pretty-print it:

188 Alexander Burger

: (pp ’stamp)

(de stamp (Dat Tim)

(! and (=T Dat) (setq Dat (date T)))

(! default Dat (date) Tim (time T))

(! pack

(! dat$ Dat "-")

" "

(! tim$ Tim T)))

-> stamp

To reset the function to its normal state, call unbug:

: (unbug ’stamp)

Often, you will not want to single-step a whole function. Just use edit (see
above) to insert a single breakpoint (the exclamation mark followed by a
space) as CAR of an expression, and run your program. Execution will then
stop there as described above; you can inspect the environment and continue
execution with ENTER when you are done.

20.6 Functional I/O

Input and output in PicoLisp is functional, in the sense that there are not
variables assigned to file descriptors, which need then to be passed to I/O
functions for reading, writing and closing. Instead, these functions operate
on implicit input and output channels, which are created and maintained as
dynamic environments.

Standard input and standard output are the default channels. Try reading a
single expression:

: (read)

(a b c) # Console input

-> (a b c)

To read from a file, we redirect the input with in. Note that comments and
whitespace are automatically skipped by read:

: (in "@doc/fun.l" (read))

-> (de fact (N) (if (=0 N) 1 (* N (fact (dec N)))))

20 A PicoLisp Tutorial 189

The skip function can also be used directly. To get the first non-white char-
acter in the file with char:

: (in "@doc/fun.l" (skip "#") (char))

-> "("

from searches through the input stream for given patterns. Typically, this
is not done with Lisp source files (there are better ways), but for a simple
example let’s extract all items immediately following fact in the file,

: (in "@doc/fun.l" (while (from "fact ") (println (read))))

(N)

(dec N)

or the word following “(de” with till:

: (in "@doc/fun.l" (from "(de ") (till " " T)))

-> "fact"

With line, a line of characters is read, either into a single transient symbol
(the type used by PicoLisp for strings),

: (in "@doc/tut.html" (line T))

-> "<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://..."

or into a list of symbols (characters):

: (in "@doc/tut.html" (line))

-> ("<" "!" "D" "O" "C" "T" "Y" "P" "E" " " "H" "T" "M" "L" ...

line is typically used to read tabular data from a file. Additional argu-
ments can split the line into fixed-width fields, as described in the reference

manual. If, however, the data are of variable width, delimited by some special
character, the split function can be used to extract the fields. A typical way
to import the contents of such a file is:

(load "@lib/import.l")

(in ’("bin/utf2" "importFile.txt") # Pipe: Convert to UTF-8

(until (eof) # Process whole file

(let L (split (line) "^I") # TAB-delimited data

... use ’getStr’, ’getNum’ etc ... # process them

190 Alexander Burger

Some more examples with echo:

(in "a" # Copy the first 40 Bytes

(out "b" # from file "a" to file "b"

(echo 40)))

(in "@doc/tut.html" # Show the HTTP-header

(line)

(echo "<body>"))

(out "file.mac" # Convert to Macintosh

(in "file.txt" # from Unix or DOS format:

(while (char)

(prin

(case @

("^M" NIL) # ignore CR

("^J" "^M") # convert CR to LF

(T @)))))) # otherwise no change

(out "c" # Merge the contents of "a"

(in "b" # and "b" into "c"

(in "a"

(while (read) # Read an item from "a",

(println @ (in -1 (read))))))) # print it with an item from "b"

20.7 Scripting

There are two possibilities to get the PicoLisp interpreter into doing useful
work: via command line arguments, or as a stand-alone script.

20.7.1 Command line arguments for the PicoLisp interpreter

The command line can specify either files for execution, or arbitrary Lisp
expressions for direct evaluation (see Invocation): if an argument starts with
a hyphen, it is evaluated, otherwise it is load d as a file. A typical invocation
might look like:

$ pil app/file1.l -main app/file2.l +

It loads the debugging environment, an application source file, calls the main
function, and then loads another application source. In a typical development

20 A PicoLisp Tutorial 191

and debugging session, this line is often modified using the shell’s history
mechanisms, e.g. by inserting debugging statements:

$ pil app/file1.l -"trace ’foo" -main -"debug ’bar" app/file2.l +

Another convenience during debugging and testing is to put things into the
command line (shell history) which would otherwise have to be done each
time in the application’s user interface:

$ pil app/file1.l -main app/file2.l -go -’login "name" "password"’ +

The final production release of an application usually includes a shell script,
which initializes the environment, does some bookkeeping and cleanup, and
calls the application with a proper command line. It is no problem if the
command line is long and complicated.

For small utility programs, however, this is overkill. Enter full PicoLisp scripts.

20.7.2 PicoLisp scripts

It is better to write a single executable file using the mechanisms of “inter-
preter files”. If the first two characters in an executable file are ‘ #! ’, the
operating system kernel will pass this file to an interpreter program whose
pathname is given in the first line (optionally followed by a single argument).
This is fast and efficient, because the overhead of a subshell is avoided.

Let’s assume you installed PicoLisp in the directory “/home/foo/picolisp/”,
and put links to the executable and the installation directory as:

$ ln -s /home/foo/picolisp /usr/lib/picolisp

$ ln -s /usr/lib/picolisp/bin/picolisp /usr/bin/picolisp

Then a simple hello-world script might look like:

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(prinl "Hello world!")

(bye)

If you write this into a text file, and use chmod to set it to “executable”, it can
be executed like any other command. Note that (because # is the comment
character in PicoLisp) the first line will not be interpreted, and you can still

192 Alexander Burger

use that file as a normal command line argument to PicoLisp (useful during
debugging).

20.7.3 Grab command line arguments from PicoLisp scripts

The fact that a hyphen causes evaluation of command line arguments can be
used to simulate something like command line options. The following script
defines two functions a and f, and then calls (load T) to process the rest of
the command line (which otherwise would be ignored because of the (bye)

statement):

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(de a ()

(println ’-a ’-> (opt)))

(de f ()

(println ’-f ’-> (opt)))

(load T)

(bye)

(opt retrieves the next command line option)

Calling this script (let’s say we named it “testOpts”) gives:

$./testOpts -f abc

-f -> "abc"

$./testOpts -a xxx -f yyy

-a -> "xxx"

-f -> "yyy"

We have to be aware of the fact, however, that the aggregation of arguments
like

$./testOpts -axxx -fyyy

or

$./testOpts -af yyy

20 A PicoLisp Tutorial 193

cannot be achieved with this simple and general mechanism of command line
processing.

20.7.4 Run scripts from arbitrary places on the host file system

Utilities are typically used outside the context of the PicoLisp environment.
All examples above assumed that the current working directory is the PicoLisp
installation directory, which is usually all right for applications developed
in that environment. Command line file arguments like “app/file1.l” will be
properly found.

To allow utilities to run in arbitrary places on the host file system, the concept
of home directory substitution was introduced. The interpreter remembers
internally at start-up the pathname of its first argument (usually “lib.l”), and
substitutes any leading ‘ @ ’ character in subsequent file names with that
pathname. Thus, to run the above example in some other place, simply write:

$ /home/foo/picolisp/dbg @app/file1.l -main @app/file2.l

that is, supply a full path name to the initial command (here ‘p’), or put it
into your PATH variable, and prefix each file which has to be loaded from the
PicoLisp home directory with a @ character. “Normal” files (not prefixed by
@) will be opened or created relative to the current working directory as usual.

Stand-alone scripts will often want to load additional modules from the Pi-
coLisp environment, beyond the “lib.l” we provided in the first line of the
hello-world script. Typically, at least a call to

(load "@lib/misc.l")

(note the home directory substitution) will be included near the beginning of
the script.

As a more complete example, here is a script which extracts the date, name
and size of the latest official PicoLisp release version from the download web
site, and prints it to standard output:

194 Alexander Burger

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(load "@lib/misc.l" "@lib/http.l")

(use (@Date @Name @Size)

(when

(match

’(@Date " " "-" " " @Name " " "(" @Size ")")

(client "software-lab.de" 80 "down.html"

(from "Release Archive")

(from ".tgz">")

(till "")))

(prinl @Name)

(prinl @Date " -- " @Size)))

(bye)

20.7.5 Editing scripts

We recommend that you have a terminal window open, and try the examples
by yourself. You may either type them in, directly to the PicoLisp interpreter,
or edit a separate source file (e.g. ’’@doc/fun.l’’) in a second terminal
window and load it into PicoLisp with

: (load "@doc/fun.l")

each time you have modified and saved it.

20.7.6 Editing scripts with vi

Once a function is loaded from a source file, you can call ‘vim’ directly on
that function with

: (vi ’fact)

The function ‘vi’ opens the appropriate source file, and jumps to the right
line where ‘fact’ is defined. When you modify it, you can simply call ‘ld’ to
(re)load that source file

: (ld)

20 A PicoLisp Tutorial 195

20.8 Objects and Classes

The PicoLisp object model is very simple, yet flexible and powerful. Objects
as well as classes are both implemented as symbols. In fact, there is no formal
difference between objects and classes; classes are more a conceptual design
consideration in the head of the programmer than a physical reality.

Having said this, we declare that normally:

1. A Class

• Has a name (interned symbol)

• Has method definitions and superclass(es) in the value cell

• May have class variables (attributes) in the property list

2. An Object

• Has no name (anonymous symbol) or is an external symbol

• Has class(es) (and optionally method definitions) in the value cell

• Has instance variables (attributes) in the property list

So the main difference between classes and objects is that the former ones
usually are internal symbols. By convention, their names start with a + .
Sometimes it makes sense, however, to create named objects (as global sin-
gletons, for example), or even anonymous classes.

Both classes and objects have a list in their value cell, consisting of method
definitions (often empty for objects) and (super)class(es). And both classes
and objects have local data in their property lists (often empty for classes).
This implies, that any given object (as an instance of a class) may have private
(object-local) methods defined.

It is rather difficult to contrive a simple OOP example. We constructed a
hierarchy of geometric shapes, with a base class +Shape and two subclasses
+Rectangle and +Circle.

The source code is included as “@doc/shape.l” in the PicoLisp distribution,
so you don’t have to type it in. Just load the file, or start it from the shell as:

$ pil @doc/shape.l +

Let’s look at it piece by piece. Here’s the base class:

196 Alexander Burger

(class +Shape)

x y

(dm T (X Y)

(=: x X)

(=: y Y))

(dm move> (DX DY)

(inc (:: x) DX)

(inc (:: y) DY))

The first line ‘(class +Shape)’ defines the symbol +Shape as a class without
superclasses. The following method definitions will go to that class.

The comment # x y in the second line is just a convention, to indicate what
instance variables (properties) that class uses. As PicoLisp is a dynamic lan-
guage, a class can be extended at runtime with any number of properties, and
there is nothing like a fixed object size or structure. This comment is a hint
of what the programmer thinks to be essential and typical for that class. In
the case of +Shape, x and y are the coordinates of the shape’s origin.

Then we have two method definitions, using the keyword dm for “define
method”. The first method is special, in that its name is T. Each time a new
object is created, and a method with that name is found in its class hierarchy,
that method will be executed. Though this looks like a “constructor” in other
programming languages, it should probably better be called “initializer”. The
T method of +Shape takes two arguments X and Y, and stores them in the
object’s property list.

The second method move> changes the object’s origin by adding the offset
values DX and DY to the object’s origin.

Now to the first derived class:

20 A PicoLisp Tutorial 197

(class +Rectangle +Shape)

dx dy

(dm T (X Y DX DY)

(super X Y)

(=: dx DX)

(=: dy DY))

(dm area> ()

(* (: dx) (: dy)))

(dm perimeter> ()

(* 2 (+ (: dx) (: dy))))

(dm draw> ()

(drawRect (: x) (: y) (: dx) (: dy)))

+Rectangle is defined as a subclass of +Shape. The comment # dx dy in-
dicates that +Rectangle has a width and a height in addition to the origin
coordinates inherited from +Shape.

The T method passes the origin coordinates X and Y to the T method of the
superclass (+Shape), then stores the width and height parameters into dx and
dy.

Next we define the methods area> and perimeter> which do some obvious
calculations, and a method draw> which is supposed to draw the shape on the
screen by calling some hypothetical function drawRect.

Finally, we define a +Circle class in an analog way, postulating the hypothet-
ical function drawCircle:

198 Alexander Burger

(class +Circle +Shape)

r

(dm T (X Y R)

(super X Y)

(=: r R))

(dm area> ()

(*/ (: r) (: r) 31415927 10000000))

(dm perimeter> ()

(*/ 2 (: r) 31415927 10000000))

(dm draw> ()

(drawCircle (: x) (: y) (: r)))

Now we can experiment with geometrical shapes. We create a rectangle at
point (0,0) with a width of 30 and a height of 20, and keep it in the variable
R:

: (setq R (new ’(+Rectangle) 0 0 30 20)) # New rectangle

-> $134432824 # returned anonymous symbol

: (show R)

$134432824 (+Rectangle) # Show the rectangle

dy 20

dx 30

y 0

x 0

We see that the symbol $134432824 has a list of classes ‘(+Rectangle)’ in
its value cell, and the coordinates, width and height in is property list.

Sending messages to that object

: (area> R) # Calculate area

-> 600

: (perimeter> R) # and perimeter

-> 100

will return the values for area and perimeter, respectively.

Then we move the object’s origin:

20 A PicoLisp Tutorial 199

: (move> R 10 5) # Move 10 right and 5 down

-> 5

: (show R)

$134432824 (+Rectangle)

y 5 # Origin changed (0,0) -> (10,5)

x 10

dy 20

dx 30

Though a method move> wasn’t defined for the +Rectangle class, it is inher-
ited from the +Shape superclass.

Similarly, we create and use a circle object:

: (setq C (new ’(+Circle) 10 10 30)) # New circle

-> $134432607 # returned anonymous symbol

: (show C)

$134432607 (+Circle) # Show the circle

r 30

y 10

x 10

-> $134432607

: (area> C) # Calculate area

-> 2827

: (perimeter> C) # and perimeter

-> 188

: (move> C 10 5) # Move 10 right and 5 down

-> 15

: (show C)

$134432607 (+Circle) # Origin changed (10,10) -> (20,15)

y 15

x 20

r 30

It is also easy to send messages to objects in a list:

200 Alexander Burger

: (mapcar ’area> (list R C)) # Get list of areas

-> (600 2827)

: (mapc

’((Shape) (move> Shape 10 10)) # Move all 10 right and down

(list R C))

-> 25

: (show R)

$134431493 (+Rectangle)

y 15

x 20

dy 20

dx 30

-> $134431493

: (show C)

$134431523 (+Circle)

y 25

x 30

r 30

Assume that we want to extend our shape system. From time to time, we
need shapes that behave exactly like the ones above, but are tied to a fixed
position. That is, they do not change their position even if they receive a
move> message.

One solution would be to modify the move> method in the +Shape class to a
no-operation. But this would require to duplicate the whole shape hierarchy
(e.g. by defining +FixedShape, +FixedRectangle and +FixedCircle classes).

The PicoLisp Way is the use of Prefix Classes through multiple inheritance. It
uses the fact that searching for method definitions is a depth-first, left-to-right
search of the class tree. We define a prefix class:

: (class +Fixed)

(dm move> (DX DY)) # A do-nothing method

We can now create a fixed rectangle, and try to move it:

20 A PicoLisp Tutorial 201

: (setq R (new ’(+Fixed +Rectangle) 0 0 30 20)) # ’+Fixed’ prefix class

-> $134432881

: (move> R 10 5) # Send ’move>’ message

-> NIL

: (show R)

$134432881 (+Fixed +Rectangle)

dy 20

dx 30

y 0 # Did not move!

x 0

We see, prefix classes can surgically change the inheritance tree for selected
objects or classes.

Alternatively, if fixed rectangles are needed often, it might make sense to
define a new class +FixRect:

: (class +FixRect +Fixed +Rectangle)

-> +FixRect

and then use it directly:

: (setq R (new ’(+FixRect) 0 0 30 20))

-> $13455710

20.9 Persistence (External Symbols)

PicoLisp has persistent objects built-in as a first class data type. With “first
class” we mean not just the ability of being passed around, or returned from
functions (that’s a matter of course), but that they are a primary data type
with their own interpreter tag bits. They are, in fact, a special type of symbolic
atoms (called “External Symbols”), that happen to be read from pool file(s)
when accessed, and written back automatically when modified.

In all other aspects they are normal symbols. They have a value cell, a property
list and a name.

The name cannot be directly controlled by the programmer, as it is assigned
when the symbol is created. It is an encoded index of the symbol’s location in
its database file. In its visual representation (output by the print functions
and input by the read functions) it is surrounded by braces.

To make use of external symbols, you need to open a database first:

202 Alexander Burger

: (pool "test.db")

If a file with that name did not exist, it got created now. Also created at the
same moment was {1}, the very first symbol in the file. This symbol is of
great importance, and is handled especially by PicoLisp. Therefore a global
constant *DB exists, which points to that symbol {1}, which should be used
exclusively to access the symbol {1}, and which should never be modified by
the programmer.

: *DB # The value of ’*DB’

-> {1} # is ’{1}’

: (show *DB)

{1} NIL # Value of ’{1}’ is NIL, property list empty

Now let’s put something into the value cell and property list of {1}.

: (set *DB "Hello world") # Set value of ’{1}’ to a transient symbol (string)

-> "Hello world"

: (put *DB ’a 1) # Property ’a’ to 1

-> 1

: (put *DB ’b 2) # Property ’b’ to 2

-> 2

: (show *DB) # Now show the symbol ’{1}’

{1} "Hello world"

b 2

a 1

Note that instead of ‘(set *DB "Hello world")’, we might also have written
‘(setq 1 "Hello world")’, and instead of ‘(put *DB ’a 1)’ we might have
written ‘(put ’1 ’a 1)’. This would have the same effect, but as a rule ex-
ternal symbols should never be be accessed literally in application programs,
because the garbage collector might not be able to free these symbols and
all symbols connected to them (and that might well be the whole database).
It is all right, however, to access external symbols literally during interactive
debugging.

Now we can create our first own external symbol. This can be done with new

when a T argument is supplied:

: (new T)

-> {2} # Got a new symbol

We store it in the database root {1}:

20 A PicoLisp Tutorial 203

: (put *DB ’newSym ’{2}) # Literal ’{2}’ (ok during debugging)

-> {2}

: (show *DB)

{1} "Hello world"

newSym {2} # ’{2}’ is now stored in ’{1}’

b 2

a 1

Put some property value into ‘{2}’

: (put *DB ’newSym ’x 777) # Put 777 as ’x’-property of ’{2}’

-> 777

: (show *DB ’newSym) # Show ’{2}’ (indirectly)

{2} NIL

x 777

-> {2}

: (show ’{2}) # Show ’{2}’ (directly)

{2} NIL

x 777

All modifications to - and creations of - external symbols done so far are not
written to the database yet. We could call rollback (or simply exit PicoLisp)
to undo all the changes. But as we want to keep them:

: (commit) # Commit all changes

-> T

: (bye) # Exit picolisp

$ # back to the shell

So, the next time when ..

$ pil + # .. we start PicoLisp

: (pool "test.db") # and open the database file,

-> T

: (show *DB) # our two symbols are there again

{1} "Hello world"

newSym {2}

b 2

a 1

-> {1}

: (show *DB ’newSym)

{2} NIL

x 777

-> {2}

204 Alexander Burger

20.10 Database Programming

To a database, there is more than just persistence. PicoLisp includes an en-
tity/relation class framework (see also Database) which allows a close mapping
of the application data structure to the database.

We provided a simple yet complete database and GUI demo application in
@doc/family.tgz and @doc/family64.tgz. Please unpack the first one if
you use a 32-bit system, and the second one on a 64-bit system. Both con-
tain the sources in @doc/family.l, and an initial database in the “family/”
subdirectory.

To use it, please unpack it first in your current working directory, then start
it up in the following way:

$ pil family.l -main +

:

This loads the source file, initializes the database by calling the main function,
and prompts for user input.

The data model is small and simple. We define a class +Person and two
subclasses +Man and +Woman.

(class +Person +Entity)

+Person is a subclass of the +Entity system class. Usually all objects in a
database are of a direct or indirect subclass of +Entity. We can then define
the relations to other data with the rel function.

(rel nm (+Need +Sn +Idx +String)) # Name

This defines the name property (nm) of a person. The first argument to rel is
always a list of relation classes (subclasses of +relation), optionally followed
by further arguments, causing relation daemon objects be created and stored
in the class definition. These daemon objects control the entity’s behavior
later at runtime.

Relation daemons are a kind of metadata, controlling the interactions between
entities, and maintaining database integrity. Like other classes, relation classes
can be extended and refined, and in combination with proper prefix classes a
fine-grained description of the application’s structure can be produced.

Besides primitive relation classes, like +Number, +String or +Date, there are

20 A PicoLisp Tutorial 205

• relations between entities, like +Link (unidirectional link), +Joint (bidi-
rectional link) or +Hook (object-local index trees)

• relations that bundle other relations into a single unit (+Bag)

• a +List prefix class

• a +Blob class for “binary large objects”

• prefix classes that maintain index trees, like +Key (unique index), +Ref
(non-unique index) or +Idx (full text index)

• prefix classes which in turn modify index class behavior, like +Sn (modified
soundex algorithm [1] for tolerant searches)

• a +Need prefix class, for existence checks

• a +Dep prefix class controlling dependencies between other relations

In the case of the person’s name (nm) above, the relation object is of type
(+Need +Sn +Idx +String). Thus, the name of each person in this demo
database is a mandatory attribute (+Need), searchable with the soundex al-
gorithm (+Sn) and a full index (+Idx) of type +String.

(rel pa (+Joint) kids (+Man)) # Father

(rel ma (+Joint) kids (+Woman)) # Mother

(rel mate (+Joint) mate (+Person)) # Partner

The attributes for father (pa), Mother (ma) and partner (mate) are all defined
as +Joints. A +Joint is probably the most powerful relation mechanism in
PicoLisp; it establishes a bidirectional link between two objects.

The above declarations say that the father (pa) attribute points to an object
of type +Man, and is joined with that object’s kids attribute (which is a list
of joints back to all his children).

The consistency of +Joint is maintained automatically by the relation dae-
mons. These become active whenever a value is stored to a person’s pa, ma,
mate or kids property.

For example, interesting things happen when a person’s mate is changed to a
new value. Then the mate property of the old mate’s object is cleared (she has
no mate after that). Now when the person pointed to by the new value already
has a mate, then that mate’s mate property gets cleared, and the happy new
two mates now get their joints both set correctly.

The programmer doesn’t have to care about all that. He just declares these
relations as +Joint .

The last four attributes of person objects are just static data:

206 Alexander Burger

(rel job (+Ref +String)) # Occupation

(rel dat (+Ref +Date)) # Date of birth

(rel fin (+Ref +Date)) # Date of death

(rel txt (+String)) # Info

They are all searchable via a non-unique index (+Ref). Date values in PicoLisp
are just numbers, representing the day number (starting first of March of the
year zero).

A method url> is defined:

(dm url> ()

(list "!person" ’*ID This))

It is needed later in the GUI, to cause a click on a link to switch to that
object.

The classes +Man and +Woman are subclasses of +Person:

(class +Man +Person)

(rel kids (+List +Joint) pa (+Person)) # Children

(class +Woman +Person)

(rel kids (+List +Joint) ma (+Person)) # Children

They inherit everything from +Person, except for the kids attribute. This
attribute joins with the pa or ma attribute of the child, depending on the
parent’s gender.

That’s the whole data model for our demo database application.

It is followed by a call to dbs (“database sizes”). This call is optional. If it is
not present, the whole database will reside in a single file, with a block size of
256 bytes. If it is given, it should specify a list of items, each having a number
in its CAR, and a list in its CDR. The CARs taken together will be passed
later to pool, causing an individual database file with that size to be created.
The CDRs tell what entity classes (if an item is a symbol) or index trees (if
an item is a list with a class in its CAR and a list of relations in its CDR)
should be placed into that file.

A handful of access functions is provided, that know about database relation-
ships and thus allows higher-level access modes to the external symbols in a
database.

For one thing, the B-Trees created and maintained by the index daemons can
be used directly. Though this is rarely done in a typical application, they form
the base mechanisms of other access modes and should be understood first.

20 A PicoLisp Tutorial 207

The function tree returns the tree structure for a given relation. To iterate
over the whole tree, the functions iter and scan can be used:

(iter (tree ’dat ’+Person) ’((P) (println (datStr (get P ’dat)) (get P ’nm))))

"1770-08-03" "Friedrich Wilhelm III"

"1776-03-10" "Luise Augusta of Mecklenburg-Strelitz"

"1797-03-22" "Wilhelm I"

...

They take a function as the first argument. It will be applied to all objects
found in the tree (to show only a part of the tree, an optional begin- and
end-value can be supplied), producing a simple kind of report.

More useful is collect; it returns a list of all objects that fall into a range of
index values:

: (collect ’dat ’+Person (date 1982 1 1) (date 1988 12 31))

-> ({2-M} {2-L} {2-E})

This returns all persons born between 1982 and 1988. Let’s look at them with
show:

: (more (collect ’dat ’+Person (date 1982 1 1) (date 1988 12 31)) show)

{2-M} (+Man)

nm "William"

dat 724023

ma {2-K}

pa {2-J}

job "Heir to the throne"

{2-L} (+Man)

nm "Henry"

dat 724840

ma {2-K}

pa {2-J}

job "Prince"

{2-E} (+Woman)

nm "Beatrice"

dat 726263

ma {2-D}

job "Princess"

pa {2-B}

208 Alexander Burger

If you are only interested in a certain attribute, e.g. the name, you can return
it directly:

: (collect ’dat ’+Person (date 1982 1 1) (date 1988 12 31) ’nm)

-> ("William" "Henry" "Beatrice")

To find a single object in the database, the function db is used:

: (db ’nm ’+Person "Edward")

-> {2-;}

If the key is not unique, additional arguments may be supplied:

: (db ’nm ’+Person "Edward" ’job "Prince" ’dat (date 1964 3 10))

-> {2-;}

The programmer must know which combination of keys will suffice to specify
the object uniquely. The tree search is performed using the first value (“Ed-
ward”), while all other attributes are used for filtering. Later, in the Pilog
section, we will show how more general (and possibly more efficient) searches
can be performed.

20.11 User Interface (GUI) Programming

The only types of GUI supported by the PicoLisp application server framework
is either dynamically generated (but static by nature) HTML, or an interactive
XHTML/CSS framework with the optional use of JavaScript.

Before we explain the GUI of our demo database application, we present a
minimal example for a plain HTML-GUI in @doc/hello.l. Start the appli-
cation server as:

$ pil @lib/http.l -’server 8080 "@doc/hello.l"’ -wait

Now point your browser to the address ‘http://localhost:8080’. You should
see a very simple HTML page. You can come back here with the browser’s
BACK button.

You can call the page repeatedly, or concurrently with many clients if you like.
To terminate the server, you have to send it a TERM signal (e.g. ‘killall
pil’), or type the Ctrl-C key in the console window.

http://localhost:8080

20 A PicoLisp Tutorial 209

In our demo database application, a single function person is responsible for
the whole GUI. Again, please look at @doc/family.l.

To start the database and the application server, call:

$ pil family.l -main -go +

As before, the database is opened with main. The function go is also defined
in @doc/family.l:

(de go ()

(server 8080 "!person"))

It starts the HTTP server listening on TCP port 8080 (we did a similar thing
in our minimal GUI example above directly on the command line). Each
connect to that port will cause the function person to be invoked.

Again, point your browser to the address ‘http://localhost:8080’.

You should see a new browser window with an input form created by the
function person. We provided an initial database in “family/[1–4]”. You can
navigate through it by clicking on the pencil icons besides the input fields.

The chart with the children data can be scrolled using the down (v) and up
(^) buttons.

A click on the button “Select” below opens a search dialog. You can scroll
through the chart as before. Again, a click on a pencil will jump to that person.
You can abort the dialog with a click on the “Cancel”-button.

The search fields in the upper part of the dialog allow a conjunctive search.
If you enter “Edward” in the “Name” field and click “Search”, you’ll see all
persons having the string “Edward” in their name. If you also enter “Duke”
in the “Occupation” field, the result list will reduce to only two entries.

To create a new person, press the “New Man” or “New Woman” button. A
new empty form will be displayed. Please type a name into the first field, and
perhaps also an occupation and birth date. Any change of contents should
be followed by a press on the “Done” button, though any other button (also
Scroll or Select-buttons) will also do.

To assign a father attribute, you can either type a name directly into the field
(if that person already exists in the database and you know the exact spelling),
or use the “Set”-button (->) to the left of that field to open the search dialog.
If you type in the name directly, your input must exactly match upper and
lower case.

http://localhost:8080

210 Alexander Burger

Alternatively, you may create a new person and assign a child in the “Chil-
dren” chart.

On the console where you started PicoLisp, there should a prompt have ap-
peared just when the browser connected. You can debug the application in-
teractively while it is running. For example, the global variable *Top always
contains the top level GUI object:

: (show *Top)

To take a look at the first field on the form:

: (show *Top ’gui 1)

A production application would be started in a slightly different way:

$ pil family.l -main -go -wait

In that case, no debug prompt will appear. In both cases, however, two pil

processes will be running now. One is the initial server process which will
continue to run until it is killed. The other is a child process holding the state
of the GUI in the browser. It will terminate some time after the browser is
closed, or when (bye) or a Ctrl-D is entered at the PicoLisp prompt.

Now back to the explanation of the GUI function person:

(de person ()

(app)

(action

(html 0 (get (default *ID (val *DB)) ’nm) "@lib.css" NIL

(form NIL

(<h2> (<id> (: nm)))

For an in-depth explanation of that startup code, please refer to the guide to
PicoLisp Application Development.

All components like fields and buttons are controlled by form. The function
gui creates a single GUI component and takes the type (a list of classes) and
a variable number of arguments depending on the needs of these classes.

(gui ’(+E/R +TextField) ’(nm : home obj) 40 "Name")

20 A PicoLisp Tutorial 211

This creates a +TextField with the label “Name” and a length of 40 charac-
ters. The +E/R (: Entity/Relation) prefix class connects that field to a database
object, the nm attribute of a person in this case, so that the person’s name
is displayed in that text field, and any changes entered into that field are
propagated to the database automatically.

(gui ’(+ClassField) ’(: home obj) ’(("Male" +Man) ("Female" +Woman)))

A +ClassField displays and changes the class of an object, in this case the
person’s sex from +Man to +Woman and vice versa.

As you see, there is no place where explicit accesses to the database have to
be programmed, no select or update. This is all encapsulated in the GUI
components, mainly in the +E/R prefix class. The above function person is
fully functional as we present it and allows creation, modification and deletion
of person objects in the database.

The two buttons on the bottom right generate simple reports:

The first one shows all contemporaries of the person that is currently dis-
played, i.e. all persons who did not die before, or were not born after that
person. This is a typical PicoLisp report, in that in addition to the report’s
HTML page, a temporary file may be generated, suitable for download (and
import into a spread sheet), and from which a PDF can be produced for
print-out.

In PicoLisp, there is not a real difference between a plain HTML-GUI and a
report. Again, the function html is used to generate the page.

The second report is much simpler. It produces a recursive structure of the
family.

In both reports, links to the person objects are created which allow easy
navigation through the database.

20.12 Pilog — PicoLisp Prolog

This sections explains some cases of using Pilog in typical application pro-
gramming, in combination with persistent objects and databases. Please refer
to the Pilog section of the PicoLisp Reference for the basic usage of Pilog.

Again, we use our demo application @doc/family.l that was introduced in
the Database Programming section.

Normally, Pilog is used either interactively to query the database during de-
bugging, or in applications to generate export data and reports. In the follow-

212 Alexander Burger

ing examples we use the interactive query front-end functions ? and select.
An application will use goal and prove directly, or use convenience functions
like pilog or solve.

All Pilog access to external symbols is done via the two predicates db/3 and
select/3.

• db/3 corresponds to the Lisp-level functions db and collect, as it derives
its data from a single relation. It can be used for simple database queries.

• select/3 provides for self-optimizing parallel access to an arbitrary num-
ber of relations. There is also a Lisp front-end function select, for conve-
nient calls to the Pilog select predicate.

A predicate show/1 is pre-defined for debugging purposes (a simple glue to the
Lisp-level function show, see Browsing). Searching with db/3 for all persons
having the string “Edward” in their name:

: (? (db nm +Person "Edward" @P) (show @P))

{2-;} (+Man)

nm "Edward"

ma {2-:}

pa {2-A}

dat 717346

job "Prince"

@P={2-;}

{2-1B} (+Man)

nm "Albert Edward"

kids ({2-1C} {2-1D} {2-1E} {2-1F} {2-1G} {2-1H} {2-1I} {2-g} {2-a})

job "Prince"

mate {2-f}

fin 680370

dat 664554

@P={2-1B}

... # more results

To search for all persons with “Edward” in their name who are married to
somebody with occupation “Queen”:

20 A PicoLisp Tutorial 213

: (? (db nm +Person "Edward" @P) (val "Queen" @P mate job) (show @P))

{2-1B} (+Man)

mate {2-f}

nm "Albert Edward"

kids ({2-1C} {2-1D} {2-1E} {2-1F} {2-1G} {2-1H} {2-1I} {2-g} {2-a})

job "Prince"

fin 680370

dat 664554

@P={2-1B}

-> NIL # only one result

If you are interested in the names of “Albert Edward”’s children:

: (? (db nm +Person "Albert Edward" @P) (lst @K @P kids) (val @Kid @K nm))

@P={2-1B} @K={2-1C} @Kid="Beatrice Mary Victoria"

@P={2-1B} @K={2-1D} @Kid="Leopold George Duncan"

@P={2-1B} @K={2-1E} @Kid="Arthur William Patrick"

@P={2-1B} @K={2-1F} @Kid="Louise Caroline Alberta"

@P={2-1B} @K={2-1G} @Kid="Helena Augusta Victoria"

@P={2-1B} @K={2-1H} @Kid="Alfred Ernest Albert"

@P={2-1B} @K={2-1I} @Kid="Alice Maud Mary"

@P={2-1B} @K={2-g} @Kid="Victoria Adelaide Mary"

@P={2-1B} @K={2-a} @Kid="Edward VII"

-> NIL

db/3 can do a direct index access only for a single attribute (nm of +Person

above). To search for several criteria at the same time, select/3 has to be
used:

: (?

(select (@P)

((nm +Person "Edward") (nm +Person "Augusta" pa)) # Generator clauses

(tolr "Edward" @P nm) # Filter clauses

(tolr "Augusta" @P kids nm))

(show @P))

{2-1B} (+Man)

kids ({2-1C} {2-1D} {2-1E} {2-1F} {2-1G} {2-1H} {2-1I} {2-g} {2-a})

mate {2-f}

nm "Albert Edward"

job "Prince"

fin 680370

dat 664554

@P={2-1B}

-> NIL

214 Alexander Burger

select/3 takes a list of generator clauses which are used to retrieve objects
from the database, and a number of normal Pilog filter clauses. In the example
above the generators are

• (nm +Person "Edward") to generate persons with “Edward” in their
names, and

• (nm +Person "Augusta" pa) to find persons with “Augusta” in their
names and generate persons using the pa (“father”) attribute.

All persons generated are possible candidates for our selection. The nm in-
dex tree of +Person is traversed twice in parallel, optimizing the search in
such a way that successful hits get higher priority in the search, depending
on the filter clauses. The process will stop as soon as any one of the genera-
tors is exhausted. Note that this is different from the standard Prolog search
algorithm.

The filter clauses in this example both use the pre-defined predicate tolr/3

for tolerant string matches (according either to the soundex algorithm (see the
section Database Programming) or to substring matches), and filter objects
that

• match “Edward” in their name: (tolr "Edward" @P nm), and

• match “Augusta” in one of their kids’ names: (tolr "Augusta" @P kids

nm)

A more typical and extensive example for the usage of select can be found
in the qPerson function in @doc/family.l. It is used in the search dialog of
the demo application, and searches for a person with the name, the parents’
and partner’s names, the occupation and a time range for the birth date. The
relevant index trees in the database are searched (actually only those trees
where the user entered a search key in the corresponding dialog field), and a
logical AND of the search attributes is applied to the result.

For example, press the “Select” button, enter “Elizabeth” into the “Mother”
search field and “Phil” in the “Partner” search field, meaning to look for all
persons whose mother’s name is like “Elizabeth” and whose partner’s name
is like “Phil”. As a result, two persons (“Elizabeth II” and “Anne”) will show
up.

In principle, db/3 can be seen as a special case of select/3. The following
two queries are equivalent:

20 A PicoLisp Tutorial 215

: (? (db nm +Person "Edward" @P))

@P={2-;}

@P={2-1B}

@P={2-R}

@P={2-1K}

@P={2-a}

@P={2-T}

-> NIL

: (? (select (@P) ((nm +Person "Edward"))))

@P={2-;}

@P={2-1B}

@P={2-R}

@P={2-1K}

@P={2-a}

@P={2-T}

-> NIL

20.13 Poor Man’s SQL

20.13.1 select

For convenience, a select Lisp glue function is provided as a front-end to
the select predicate. Note that this function does not evaluate its arguments
(it is intended for interactive use), and that it supports only a subset of the
predicate’s functionality. The syntax resembles SELECT in the SQL language,
for example:

SELECT * FROM Person

: (select +Person) # Step through the whole database

{2-o} (+Man)

nm "Adalbert Ferdinand Berengar Viktor of Prussia"

dat 688253

ma {2-j}

pa {2-h}

fin 711698

{2-1B} (+Man)

nm "Albert Edward"

dat 664554

job "Prince"

mate {2-f}

kids ({2-1C} {2-1D} {2-1E} {2-1F} {2-1G} {2-1H} {2-1I} {2-g} {2-a})

fin 680370

...

216 Alexander Burger

SELECT * FROM Person WHERE nm LIKE "%Edward%"

: (select +Person nm "Edward") # Show all Edwards

{2-;} (+Man)

nm "Edward"

dat 717346

job "Prince"

ma {2-:}

pa {2-A}

{2-1B} (+Man)

nm "Albert Edward"

dat 664554

job "Prince"

kids ({2-1C} {2-1D} {2-1E} {2-1F} {2-1G} {2-1H} {2-1I} {2-g} {2-a})

mate {2-f}

fin 680370

...

SELECT nm, dat FROM Person WHERE nm LIKE "%Edward%"

: (select nm dat +Person nm "Edward")

"Edward" "1964-03-10" {2-;}

"Albert Edward" "1819-08-26" {2-1B}

"George Edward" NIL {2-R}

"Edward Augustus Hanover" NIL {2-1K}

...

SELECT dat, fin, p1.nm, p2.nm

FROM Person p1, Person p2

WHERE p1.nm LIKE "%Edward%"

AND p1.job LIKE "King%"

AND p1.mate = p2.mate -- Actually, in a SQL model we’d need

-- another table here for the join

: (select dat fin nm (mate nm) +Person nm "Edward" job "King")

"1894-06-23" "1972-05-28" "Edward VIII" "Wallace Simpson" {2-T}

"1841-11-09" NIL "Edward VII" "Alexandra of Denmark" {2-a}

-> NIL

20.13.2 update

In addition (just to stay with the SQL terminology ;-), there is also an update

function. It is a front-end to the set!> and put!> transaction methods, and
should be used when single objects in the database have to be modified by
hand.

20 A PicoLisp Tutorial 217

In principle, it would also be possible to use the edit function to modify a
database object. This is not recommended, however, because edit does not
know about relations to other objects (like Links, Joints and index trees) and
may easily cause database corruption.

In the most general case, the value of a property in a database object is
changed with the put!> method. Let’s look at “Edward” from the previous
examples:

: (show ’{2-;})

{2R} (+Man)

job "Prince"

nm "Edward"

dat 717346

ma {2-:}

pa {20A}

-> {2-;}

We might change the name to “Johnny” with put!>:

: (put!> ’{2-;} ’nm "Johnny")

-> "Johnny"

However, an easier and less error-prone prone way - especially when more
than one property has to be changed - is using update. It presents the value
cell (the list of classes) and then each property on its own line, allowing the
user to change it with the command line editor.

Just hitting ENTER will leave that property unchanged. To modify it, you’ll
typically hit ESC to get into command mode, and move the cursor to the
point of change.

For properties with nested list structures (+List +Bag), update will recurse
into the data structure.

: (update ’{2-;})

{2-;} (+Man) # ENTER

nm "Johnny" # Modified the name to "Johnny"

ma {2-:} # ENTER

pa {2-A} # ENTER

dat 1960-03-10 # Modified the year from "1964" to "1960"

job "Prince" # ENTER

-> {2-;}

218 Alexander Burger

All changes are committed immediately, observing the rules of database syn-
chronization so that any another user looking at the same object will have his
GUI updated correctly.

To abort update, hit Ctrl-X.

If only a single property has to be changed, update can be called directly for
that property:

: (update ’{2-;} ’nm)

{2-;} nm "Edward"

...

References

1. Donald E. Knuth: “The Art of Computer Programming”, Vol.3, Addison-
Wesley, 1973, p. 392

21

PicoLisp Application Development

Alexander Burger

abu@software-lab.de

Summary. This article presents an introduction to writing browser-based applica-
tions in PicoLisp.

It concentrates on the XHTML/CSS GUI-Framework (as opposed to the previous
Java-AWT, Java-Swing and Plain-HTML frameworks), which is easier to use, more
flexible in layout design, and does not depend on plug-ins, JavaScript or cookies.

21.1 Introduction

A plain HTTP/HTML GUI has various advantages: It runs on any browser,
and can be fully driven by scripts (“@lib/scrape.l”).

To be precise: CSS can be used to enhance the layout. And browsers with
JavaScript will respond faster and smoother. But this framework works just
fine in browsers which do not know anything about CSS or JavaScript. All
examples were also tested using the w3m text browser.

For basic informations about the PicoLisp system please look at the PicoLisp
Reference and the PicoLisp Tutorial. Knowledge of HTML, and a bit of CSS
and HTTP is assumed.

The examples assume that PicoLisp was started from a global installation (see
Installation).

21.2 Static Pages

You can use PicoLisp to generate static HTML pages. This does not make
much sense in itself, because you could directly write HTML code as well, but

220 Alexander Burger

it forms the base for interactive applications, and allows us to introduce the
application server and other fundamental concepts.

21.2.1 Hello World

To begin with a minimal application, please enter the following two lines into
a generic source file named “project.l” in the PicoLisp installation directory.

##

(html 0 "Hello" "@lib.css" NIL

"Hello World!")

##

(We will modify and use this file in all following examples and experiments.
Whenever you find such a program snippet between hash (‘#’) lines, just copy
and paste it into your “project.l” file, and press the “reload” button of your
browser to view the effects)

Start the application server

Open a second terminal window, and start a PicoLisp application server

$ pil @lib/http.l @lib/xhtml.l @lib/form.l -’server 8080 "project.l"’ +

No prompt appears. The server just sits, and waits for connections. You can
stop it later by hitting Ctrl-C in that terminal, or by executing killall pil

in some other window.

(In the following, we assume that this HTTP server is up and running)

Now open the URL ‘http://localhost:8080’ with your browser. You should
see an empty page with a single line of text.

How does it work?

The above line loads the debugger (via the ‘+’ switch), the HTTP server code
(“@lib/http.l”), the XHTML functions (“@lib/xhtml.l”) and the input form
framework (“@lib/form.l”, it will be needed later for interactive forms).

Then the server function is called with a port number and a default URL.
It will listen on that port for incoming HTTP requests in an endless loop.

21 PicoLisp Application Development 221

Whenever a GET request arrives on port 8080, the file “project.l” will be
(load)ed, causing the evaluation (= execution) of all its Lisp expressions.

During that execution, all data written to the current output channel is sent
directly to to the browser. The code in “project.l” is responsible to produce
HTML (or anything else the browser can understand).

21.2.2 URL Syntax

The PicoLisp application server uses a slightly specialized syntax when com-
municating URLs to and from a client. The “path” part of an URL - which
remains when

• the preceding protocol, host and port specifications,

• and the trailing question mark plus arguments

are stripped off - is interpreted according so some rules. The most prominent
ones are:

• If a path starts with an exclamation-mark (‘!’), the rest (without the ‘!’) is
taken as the name of a Lisp function to be called. All arguments following
the question mark are passed to that function.

• If a path ends with “.l” (a dot and a lower case ‘L’), it is taken as a Lisp
source file name to be (load)ed. This is the most common case, and we
use it in our example “project.l”.

• If the extension of a file name matches an entry in the global mime type
table *Mimes, the file is sent to the client with mime-type and max-age
values taken from that table.

• Otherwise, the file is sent to the client with a mime-type of “application/octet-
stream” and a max-age of 1 second.

An application is free to extend or modify the *Mimes table with the mime

function. For example

(mime "doc" "application/msword" 60)

defines a new mime type with a max-age of one minute.

Argument values in URLs, following the path and the question mark, are
encoded in such a way that Lisp data types are preserved:

• An internal symbol starts with a dollar sign (‘$’)

• A number starts with a plus sign (‘+’)

222 Alexander Burger

• An external (database) symbol starts with dash (‘-’)

• A list (one level only) is encoded with underscores (‘ ’)

• Otherwise, it is a transient symbol (a plain string)

In that way, high-level data types can be directly passed to functions encoded
in the URL, or assigned to global variables before a file is loaded.

21.2.3 Security

It is, of course, a huge security hole that - directly from the URL - any Lisp
source file can be loaded, and any Lisp function can be called. For that reason,
applications must take care to declare exactly which files and functions are
to be allowed in URLs. The server checks a global variable *Allow, and -
when its value is non NIL - denies access to anything that does not match its
contents.

Normally, *Allow is not manipulated directly, but set with the allowed and
allow functions

(allowed ("app/")

"!start" "@lib.css" "customer.l" "article.l")

This is usually called in the beginning of an application, and allows access
to the directory “@img/”, to the function ‘start’, and to the files “@lib.css”,
“customer.l” and “article.l”.

Later in the program, *Allow may be dynamically extended with allow

(allow "!foo")

(allow "newdir/" T)

This adds the function ‘foo’, and the directory “newdir/”, to the set of allowed
items.

The “.pw” File

For a variety of security checks (most notably for using the psh function,
as in some later examples) it is necessary to create a file named “.pw” in
the PicoLisp installation directory. This file should contain a single line of
arbitrary data, to be used as a password for identifying local resources.

The recommeded way to create this file is to call the pw function, defined in
“@lib/http.l”

21 PicoLisp Application Development 223

$ pil @lib/http.l -’pw 12’ -bye

Please execute this command.

21.2.4 The html Function

Now back to our “Hello World” example. In principle, you could write
“project.l” as a sequence of print statements

##

(prinl "HTTP/1.0 200 OK^M")

(prinl "Content-Type: text/html; charset=utf-8")

(prinl "^M")

(prinl "<html>")

(prinl "Hello World!")

(prinl "</html>")

##

but using the html function is much more convenient.

Moreover, html is nothing more than a printing function. You can see this
easily if you connect a PicoLisp Shell (psh) to the server process (you must
have generated a “.pw” file for this), and enter the html statement

$ /usr/lib/picolisp/bin/psh 8080

: (html 0 "Hello" "@lib.css" NIL "Hello World!")

HTTP/1.0 200 OK

Server: PicoLisp

Date: Fri, 29 Dec 2006 07:28:58 GMT

Cache-Control: max-age=0

Cache-Control: no-cache

Content-Type: text/html; charset=utf-8

224 Alexander Burger

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lan="en" lang="en">

<head>

<title>Hello</title>

<base href="http://localhost:8080/"/>

<link rel="stylesheet" type="text/css" href="http://localhost:8080/@lib.css"/>

</head>

<body>Hello World!</body>

</html>

-> </html>

: # (type Ctrl-D here to terminate PicoLisp)

These are the arguments to html:

1. 0: A max-age value for cache-control (in seconds, zero means “no-cache”).
You might pass a higher value for pages that change seldom, or NIL for
no cache-control at all.

2. ’’Hello’’: The page title.

3. "@lib.css": A CSS-File name. Pass NIL if you do not want to use any
CSS-File, or a list of file names if you want to give more than one CSS-File.

4. NIL: A CSS style attribute specification (see the description of CSS At-
tributes below). It will be passed to the body tag.

After these four arguments, an arbitrary number of expressions may follow.
They form the body of the resulting page, and are evaluated according to a
special rule. This rule is slightly different from the evaluation of normal Lisp
expressions:

• If an argument is an atom (a number or a symbol (string)), its value is
printed immediately.

• Otherwise (a list), it is evaluated as a Lisp function (typically some form
of print statement).

Therefore, our source file might as well be written as:

##

(html 0 "Hello" "@lib.css" NIL

(prinl "Hello World!"))

##

The most typical print statements will be some HTML-tags:

21 PicoLisp Application Development 225

##

(html 0 "Hello" "@lib.css" NIL

(<h1> NIL "Hello World!")

(
 "This is some text.")

(ht:Prin "And this is a number: " (+ 1 2 3)))

##

<h1> and
 are tag functions. <h1> takes a CSS attribute as its first argu-
ment.

Note the use of ht:Prin instead of prin. ht:Prin should be used for all direct
printing in HTML pages, because it takes care to escape special characters.

21.2.5 CSS Attributes

The html function above, and many of the HTML tag functions, accept a CSS
attribute specification. This may be either an atom, a cons pair, or a list of
cons pairs. We demonstrate the effects with the <h1> tag function.

An atom (usually a symbol or a string) is taken as a CSS class name

: (<h1> ’foo "Title")

<h1 class="foo">Title</h1>

For a cons pair, the CAR is taken as an attribute name, and the CDR as the
attribute’s value

: (<h1> ’(id . bar) "Title")

<h1 id="bar">Title</h1>

Consequently, a list of cons pairs gives a set of attribute-value pairs

: (<h1> ’((id . "abc") (lang . "de")) "Title")

<h1 id="abc" lang="de">Title</h1>

21.2.6 Tag Functions

All pre-defined XHTML tag functions can be found in “@lib/xhtml.l”. We
recommend to look at their sources, and to experiment a bit, by executing
them at a PicoLisp prompt, or by pressing the browser’s “Reload” button
after editing the “project.l” file.

226 Alexander Burger

For a suitable PicoLisp prompt, either execute (in a separate terminal window)
the PicoLisp Shell (psh) command (works only if the application server is
running, and you did generate a “.pw” file)

$ /usr/lib/picolisp/bin/psh 8080

:

or start the interpreter stand-alone, with “@lib/xhtml.l” loaded

$ pil @lib/http.l @lib/xhtml.l +

:

Note that for all these tag functions the above tag body evaluation rule applies.

Simple Tags

Most tag functions are simple and straightforward. Some of them just print
their arguments

: (
 "Hello world")

Hello world

: ("Hello world")

Hello world

while most of them take a CSS attribute specification as their first argument
(like the <h1> tag above)

: (<div> ’main "Hello world")

<div class="main">Hello world</div>

: (<p> NIL "Hello world")

<p>Hello world</p>

: (<p> ’info "Hello world")

<p class="info">Hello world</p>

All of these functions take an arbitrary number of arguments, and may nest
to an arbitrary depth (as long as the resulting HTML is legal)

21 PicoLisp Application Development 227

: (<div> ’main

(<h1> NIL "Head")

(<p> NIL

(
 "Line 1")

"Line"

(<nbsp>)

(+ 1 1)))

<div class="main"><h1>Head</h1>

<p>Line 1

Line2</p>

</div>

(Un)ordered Lists

HTML-lists, implemented by the and tags, let you define hierar-
chical structures. You might want to paste the following code into your copy
of “project.l”:

##

(html 0 "Unordered List" "@lib.css" NIL

(NIL

(NIL "Item 1")

(NIL

"Sublist 1"

(NIL

(NIL "Item 1-1")

(NIL "Item 1-2")))

(NIL "Item 2")

(NIL

"Sublist 2"

(NIL

(NIL "Item 2-1")

(NIL "Item 2-2")))

(NIL "Item 3")))

##

Here, too, you can put arbitrary code into each node of that tree, including
other tag functions.

Tables

Like the hierarchical structures with the list functions, you can generate two-
dimensional tables with the <table> and <row> functions.

228 Alexander Burger

The following example prints a table of numbers and their squares:

##

(html 0 "Table" "@lib.css" NIL

(<table> NIL NIL NIL

(for N 10 # A table with 10 rows

(<row> NIL N (prin (* N N)))))) # and 2 columns

##

The first argument to <table> is the usual CSS attribute, the second an
optional title (“caption”), and the third an optional list specifying the column
headers. In that list, you may supply a list for a each column, with a CSS
attribute in its CAR, and a tag body in its CDR for the contents of the column
header.

The body of <table> contains calls to the <row> function. This function is
special in that each expression in its body will go to a separate column of the
table. If both for the column header and the row function an CSS attribute is
given, they will be combined by a space and passed to the HTML <td> tag.
This permits distinct CSS specifications for each column and row.

As an extension of the above table example, let’s pass some attributes for the
table itself (not recommended - better define such styles in a CSS file and then
just pass the class name to <table>), right-align both columns, and print each
row in an alternating red and blue color

##

(html 0 "Table" "@lib.css" NIL

(<table>

’((width . "200px") (style . "border: dotted 1px;")) # table style

"Square Numbers" # caption

’((align "Number") (align "Square")) # 2 headers

(for N 10 # 10 rows

(<row> (xchg ’(red) ’(blue)) # red or blue

N # 2 columns

(prin (* N N))))))

##

If you wish to concatenate two or more cells in a table, so that a single cell
spans several columns, you can pass the symbol - for the additional cell data
to <row>. This will cause the data given to the left of the - symbols to expand
to the right.

You can also directly specify table structures with the simple <th>, <tr> and
<td> tag functions.

21 PicoLisp Application Development 229

If you just need a two-dimensional arrangement of components, the even sim-
pler <grid> function might be convenient:

##

(html 0 "Grid" "@lib.css" NIL

(<grid> 3

"A" "B" "C"

123 456 789))

##

It just takes a specification for the number of columns (here: 3) as its first
argument, and then a single expression for each cell. Instead of a number,
you can also pass a list of CSS attributes. Then the length of that list will
determine the number of columns. You can change the second line in the above
example to

(<grid> ’(NIL NIL right)

Then the third column will be right aligned.

Menus and Tabs

The two most powerful tag functions are <menu> and <tab>. Used separately
or in combination, they form a navigation framework with

• menu items which open and close submenus

• submenu items which switch to different pages

• tabs which switch to different subpages

The following example is not very useful, because the URLs of all items link
to the same “project.l” page, but it should suffice to demonstrate the func-
tionality:

230 Alexander Burger

##

(html 0 "Menu+Tab" "@lib.css" NIL

(<div> ’(id . menu)

(<menu>

("Item" "project.l") # Top level item

(NIL (<hr>)) # Plain HTML

(T "Submenu 1" # Submenu

("Subitem 1.1" "project.l")

(T "Submenu 1.2"

("Subitem 1.2.1" "project.l")

("Subitem 1.2.2" "project.l")

("Subitem 1.2.3" "project.l"))

("Subitem 1.3" "project.l"))

(T "Submenu 2"

("Subitem 2.1" "project.l")

("Subitem 2.2" "project.l"))))

(<div> ’(id . main)

(<h1> NIL "Menu+Tab")

(<tab>

("Tab1"

(<h3> NIL "This is Tab 1"))

("Tab2"

(<h3> NIL "This is Tab 2"))

("Tab3"

(<h3> NIL "This is Tab 3")))))

##

<menu> takes a sequence of menu items. Each menu item is a list, with its
CAR either

• NIL: The entry is not an active menu item, and the rest of the list may
consist of arbitrary code (usually HTML tags).

• T: The second element is taken as a submenu name, and a click on that
name will open or close the corresponding submenu. The rest of the list
recursively specifies the submenu items (may nest to arbitrary depth).

• Otherwise: The menu item specifies a direct action (instead of opening
a submenu), where the first list element gives the item’s name, and the
second element the corresponding URL.

<tab> takes a list of subpages. Each page is simply a tab name, followed by
arbitrary code (typically HTML tags).

Note that only a single menu and a single tab may be active at the same time.

21 PicoLisp Application Development 231

21.3 Interactive Forms

In HTML, the only possibility for user input is via <form> and <input>

elements, using the HTTP POST method to communicate with the server.

“@lib/xhtml.l” defines a function called <post>, and a collection of input tag
functions, which allow direct programming of HTML forms. We will supply
only one simple example:

##

(html 0 "Simple Form" "@lib.css" NIL

(<post> NIL "project.l"

(<field> 10 ’*Text)

(<submit> "Save")))

##

This associates a text input field with a global variable *Text. The field dis-
plays the current value of *Text, and pressing the submit button causes a
reload of “project.l” with *Text set to any string entered by the user.

An application program could then use that variable to do something useful,
for example store its value in a database.

The problem with such a straightforward use of forms is that

1. they require the application programmer to take care of maintaining lots of
global variables. Each input field on the page needs an associated variable
for the round trip between server and client.

2. they do not preserve an application’s internal state. Each POST request
spawns an individual process on the server, which sets the global variables
to their new values, generates the HTML page, and terminates thereafter.
The application state has to be passed along explicitly, e.g. using <hidden>

tags.

3. they are not very interactive. There is typically only a single submit but-
ton. The user fills out a possibly large number of input fields, but changes
will take effect only when the submit button is pressed.

Though we wrote a few applications in that style, we recommend the GUI
framework provided by “@lib/form.l”. It does not need any variables for the
client/server communication, but implements a class hierarchy of GUI compo-
nents for the abstraction of application logic, button actions and data linkage.

232 Alexander Burger

21.3.1 Sessions

First of all, we need to establish a persistent environment on the server, to
handle each individual session (for each connected client).

Technically, this is just a child process of the server we started above, which
does not terminate immediately after it sent its page to the browser. It is
achieved by calling the app function somewhere in the application’s startup
code.

##

(app) # Start a session

(html 0 "Simple Session" "@lib.css" NIL

(<post> NIL "project.l"

(<field> 10 ’*Text)

(<submit> "Save")))

##

Nothing else changed from the previous example. However, when you connect
your browser and then look at the terminal window where you started the
application server, you’ll notice a colon, the PicoLisp prompt

$ pil @lib/http.l @lib/xhtml.l @lib/form.l -’server 8080 "project.l"’ +

:

Tools like the Unix ps utility will tell you that now two picolisp processes
are running, the first being the parent of the second.

If you enter some text, say “abcdef”, into the text field in the browser window,
press the submit button, and inspect the Lisp *Text variable,

: *Text

-> "abcdef"

you see that we now have a dedicated PicoLisp process, “connected” to the
client.

You can terminate this process (like any interactive PicoLisp) by hitting
Ctrl-D on an empty line. Otherwise, it will terminate by itself if no other
browser requests arrive within a default timeout period of 5 minutes.

To start a (non-debug) production version, the server is commonly started
without the ‘+’ flag, and with -wait

21 PicoLisp Application Development 233

$ pil @lib/http.l @lib/xhtml.l @lib/form.l -’server 8080 "project.l"’ -wait

In that way, no command line prompt appears when a client connects.

21.3.2 Action Forms

Now that we have a persistent session for each client, we can set up an active
GUI framework.

This is done by wrapping the call to the html function with action. Inside
the body of html can be - in addition to all other kinds of tag functions - one
or more calls to form

##

(app) # Start session

(action # Action handler

(html 0 "Form" "@lib.css" NIL # HTTP/HTML protocol

(form NIL # Form

(gui ’a ’(+TextField) 10) # Text Field

(gui ’(+Button) "Print" # Button

’(msg (val> (: home a)))))))

##

Note that there is no longer a global variable like *Text to hold the contents
of the input field. Instead, we gave a local, symbolic name a to a +TextField

component

(gui ’a ’(+TextField) 10) # Text Field

Other components can refer to it

’(msg (val> (: home a)))

(: home) is always the form which contains this GUI component. So (: home

a) evaluates to the component a in the current form. As msg prints its argu-
ment to standard error, and the val> method retrieves the current contents
of a component, we will see on the console the text typed into the text field
when we press the button.

An action without embedded forms - or a form without a surrounding action

- does not make much sense by itself. Inside html and form, however, calls to

234 Alexander Burger

HTML functions (and any other Lisp functions, for that matter) can be freely
mixed.

In general, a typical page may have the form

(action # Action handler

(html .. # HTTP/HTML protocol

(<h1> ..) # HTML tags

(form NIL # Form

(<h3> ..)

(gui ..) # GUI component(s)

(gui ..)

..)

(<h2> ..)

(form NIL # Another form

(<h3> ..)

(gui ..) # GUI component(s)

..)

(
 ..)

..))

The gui Function

The most prominent function in a form body is gui. It is the workhorse of
GUI construction.

Outside of a form body, gui is undefined. Otherwise, it takes an optional alias
name, a list of classes, and additional arguments as needed by the constructors
of these classes. We saw this example before

(gui ’a ’(+TextField) 10) # Text Field

Here, a is an alias name for a component of type (+TextField). The numeric
argument 10 is passed to the text field, specifying its width. See the chapter
on GUI Classes for more examples.

During a GET request, gui is basically a front-end to new. It builds a com-
ponent, stores it in the internal structures of the current form, and initializes
it by sending the init> message to the component. Finally, it sends it the
show> message, to produce HTML code and transmit it to the browser.

During a POST request, gui does not build any new components. Instead,
the existing components are re-used. So gui does not have much more to do
than sending the show> message to a component.

21 PicoLisp Application Development 235

Control Flow

HTTP has only two methods to change a browser window: GET and POST.
We employ these two methods in a certain defined, specialized way:

• GET means, a new page is being constructed. It is used when a page is
visited for the first time, usually by entering an URL into the browser’s
address field, or by clicking on a link (which is often a submenu item or
tab).

• POST is always directed to the same page. It is triggered by a button
press, updates the corresponding form’s data structures, and executes that
button’s action code.

A button’s action code can do almost anything: Read and modify the contents
of input fields, communicate with the database, display alerts and dialogs, or
even fake the POST request to a GET, with the effect of showing a completely
different document (See Switching URLs).

GET builds up all GUI components on the server. These components are ob-
jects which encapsulate state and behavior of the HTML page in the browser.
Whenever a button is pressed, the page is reloaded via a POST request. Then
- before any output is sent to the browser - the action function takes control.
It performs error checks on all components, processes possible user input on
the HTML page, and stores the values in correct format (text, number, date,
object etc.) in each component.

The state of a form is preserved over time. When the user returns to a previous
page with the browser’s BACK button, that state is reactivated, and may be
POSTed again.

The following silly example displays two text fields. If you enter some text into
the “Source” field, you can copy it in upper or lower case to the “Destination”
field by pressing one of the buttons

236 Alexander Burger

##

(app)

(action

(html 0 "Case Conversion" "@lib.css" NIL

(form NIL

(<grid> 2

"Source" (gui ’src ’(+TextField) 30)

"Destination" (gui ’dst ’(+Lock +TextField) 30))

(gui ’(+JS +Button) "Upper Case"

’(set> (: home dst)

(uppc (val> (: home src)))))

(gui ’(+JS +Button) "Lower Case"

’(set> (: home dst)

(lowc (val> (: home src))))))))

##

The +Lock prefix class in the “Destination” field makes that field read-only.
The only way to get some text into that field is by using one of the buttons.

Switching URLs

Because an action code runs before html has a chance to output an HTTP
header, it can abort the current page and present something different to the
user. This might, of course, be another HTML page, but would not be very
interesting as a normal link would suffice. Instead, it can cause the download
of dynamically generated data.

The next example shows a text area and two buttons. Any text entered into
the text area is exported either as a text file via the first button, or a PDF
document via the second button

21 PicoLisp Application Development 237

##

(load "@lib/ps.l")

(app)

(action

(html 0 "Export" "@lib.css" NIL

(form NIL

(gui ’(+TextField) 30 8)

(gui ’(+Button) "Text"

’(let Txt (tmp "export.txt")

(out Txt (prinl (val> (: home gui 1))))

(url Txt)))

(gui ’(+Button) "PDF"

’(psOut NIL "foo"

(a4)

(indent 40 40)

(down 60)

(hline 3)

(font (14 . "Times-Roman")

(ps (val> (: home gui 1))))

(hline 3)

(page))))))

##

(a text area is built when you supply two numeric arguments (columns and
rows) to a +TextField class)

The action code of the first button creates a temporary file (i.e. a file named
“export.txt” in the current process’s temporary space), prints the value of the
text area (this time we did not bother to give it a name, we simply refer to
it as the form’s first gui list element) into that file, and then calls the url

function with the file name.

The second button uses the PostScript library “@lib/ps.l” to create a tempo-
rary file “foo.pdf”. Here, the temporary file creation and the call to the url

function is hidden in the internal mechanisms of psOut. The effect is that the
browser receives a PDF document and displays it.

Alerts and Dialogs

Alerts and dialogs are not really what they used to be ;-)

They do not “pop up”. In this framework, they are just a kind of simple-to-
use, pre-fabricated form. They can be invoked by a button’s action code, and

238 Alexander Burger

appear always on the current page, immediately preceding the form which
created them.

Let’s look at an example which uses two alerts and a dialog. In the beginning,
it displays a simple form, with a locked text field, and two buttons

##

(app)

(action

(html 0 "Alerts and Dialogs" "@lib.css" NIL

(form NIL

(gui ’(+Init +Lock +TextField) "Initial Text" 20 "My Text")

(gui ’(+Button) "Alert"

’(alert NIL "This is an alert " (okButton)))

(gui ’(+Button) "Dialog"

’(dialog NIL

(
 "This is a dialog.")

(

"You can change the text here "

(gui ’(+Init +TextField) (val> (: top 1 gui 1)) 20))

(
 "and then re-submit it to the form.")

(gui ’(+Button) "Re-Submit"

’(alert NIL "Are you sure? "

(yesButton

’(set> (: home top 2 gui 1)

(val> (: home top 1 gui 1))))

(noButton)))

(cancelButton))))))

##

The +Init prefix class initializes the “My Text” field with the string “Initial
Text”. As the field is locked, you cannot modify this value directly.

The first button brings up an alert saying “This is an alert.”. You can dispose
it by pressing “OK”.

The second button brings up a dialog with an editable text field, containing a
copy of the value from the form’s locked text field. You can modify this value,
and send it back to the form, if you press “Re-Submit” and answer “Yes” to
the “Are you sure?” alert.

21 PicoLisp Application Development 239

A Calculator Example

Now let’s forget our “project.l” test file for a moment, and move on to a more
substantial and practical, stand-alone, example. Using what we have learned
so far, we want to build a simple bignum calculator. (“bignum” because Pi-
coLisp can do only bignums)

It uses a single form, a single numeric input field, and lots of buttons. It can
be found in the PicoLisp distribution (e.g. under “/usr/share/picolisp/”) in
“misc/calc.l”, together with a directly executable wrapper script “misc/calc”.

To use it, change to the PicoLisp installation directory, and start it as

$ misc/calc

or call it with an absolute path, e.g.

$ /usr/share/picolisp/misc/calc

If you like to get a PicoLisp prompt for inspection, start it instead as

$ pil misc/calc.l -main -go +

Then - as before - point your browser to ‘http://localhost:8080’.

The code for the calculator logic and the GUI is rather straightforward. The
entry point is the single function calculator. It is called directly (as described
in URL Syntax) as the server’s default URL, and implicitly in all POST
requests. No further file access is needed once the calculator is running.

Note that for a production application, we inserted an allow-statement (as
recommended by the Security chapter)

(allowed NIL "!calculator" "@lib.css")

at the beginning of “misc/calc.l”. This will restrict external access to that
single function.

The calculator uses three global variables, *Init, *Accu and *Stack. *Init
is a boolean flag set by the operator buttons to indicate that the next digit
should initialize the accumulator to zero. *Accu is the accumulator. It is always
displayed in the numeric input field, accepts user input, and it holds the results
of calculations. *Stack is a push-down stack, holding postponed calculations

240 Alexander Burger

(operators, priorities and intermediate results) with lower-priority operators,
while calculations with higher-priority operators are performed.

The function digit is called by the digit buttons, and adds another digit to
the accumulator.

The function calc does an actual calculation step. It pops the stack, checks
for division by zero, and displays an error alert if necessary.

operand processes an operand button, accepting a function and a priority as
arguments. It compares the priority with that in the top-of-stack element, and
delays the calculation if it is less.

finish is used to calculate the final result.

The calculator function has one numeric input field, with a width of 60
characters

(gui ’(+Var +NumField) ’*Accu 60)

The +Var prefix class associates this field with the global variable *Accu. All
changes to the field will show up in that variable, and modification of that
variable’s value will appear in the field.

The square root operator button has an +Able prefix class

(gui ’(+Able +JS +Button) ’(ge0 *Accu) (char 8730)

’(setq *Accu (sqrt *Accu)))

with an argument expression which checks that the current value in the ac-
cumulator is positive, and disables the button if otherwise.

The rest of the form is just an array (grid) of buttons, encapsulating all
functionality of the calculator. The user can enter numbers into the input field,
either by using the digit buttons, or by directly typing them in, and perform
calculations with the operator buttons. Supported operations are addition,
subtraction, multiplication, division, sign inversion, square root and power
(all in bignum integer arithmetic). The C button just clears the accumulator,
while the A button also clears all pending calculations.

All that in 53 lines of code!

21.3.3 Charts

Charts are virtual components, maintaining the internal representation of
two-dimensional data.

21 PicoLisp Application Development 241

Typically, these data are nested lists, database selections, or some kind of
dynamically generated tabular information. Charts make it possible to view
them in rows and columns (usually in HTML tables), scroll up and down, and
associate them with their corresponding visible GUI components.

In fact, the logic to handle charts makes up a substantial part of the whole
framework, with large impact on all internal mechanisms. Each GUI compo-
nent must know whether it is part of a chart or not, to be able to handle its
contents properly during updates and user interactions.

Let’s assume we want to collect textual and numerical data. We might create
a table

##

(app)

(action

(html 0 "Table" "@lib.css" NIL

(form NIL

(<table> NIL NIL ’((NIL "Text") (NIL "Number"))

(do 4

(<row> NIL

(gui ’(+TextField) 20)

(gui ’(+NumField) 10))))

(<submit> "Save"))))

##

with two columns “Text” and “Number”, and four rows, each containing a
+TextField and a +NumField.

You can enter text into the first column, and numbers into the second. Pressing
the “Save” button stores these values in the components on the server (or
produces an error message if a string in the second column is not a legal
number).

There are two problems with this solution:

1. Though you can get at the user input for the individual fields, e.g.

: (val> (get *Top ’gui 2)) # Value in the first row, second column

-> 123

there is no direct way to get the whole data structure as a single list.
Instead, you have to traverse all GUI components and collect the data.

2. The user cannot input more than four rows of data, because there is no
easy way to scroll down and make space for more.

242 Alexander Burger

A chart can handle these things:

##

(app)

(action

(html 0 "Chart" "@lib.css" NIL

(form NIL

(gui ’(+Chart) 2) # Inserted a +Chart

(<table> NIL NIL ’((NIL "Text") (NIL "Number"))

(do 4

(<row> NIL

(gui 1 ’(+TextField) 20) # Inserted ’1’

(gui 2 ’(+NumField) 10)))) # Inserted ’2’

(<submit> "Save"))))

##

Note that we inserted a +Chart component before the GUI components which
should be managed by the chart. The argument ‘2’ tells the chart that it has
to expect two columns.

Each component got an index number (here ‘1’ and ‘2’) as the first argument
to gui, indicating the column into which this component should go within the
chart.

Now - if you entered “a”, “b” and “c” into the first, and 1, 2, and 3 into the
second column - we can retrieve the chart’s complete contents by sending it
the val> message

: (val> (get *Top ’chart 1)) # Retrieve the value of the first chart

-> (("a" 1) ("b" 2) ("c" 3))

BTW, a more convenient function is chart

: (val> (chart)) # Retrieve the value of the current chart

-> (("a" 1) ("b" 2) ("c" 3))

chart can be used instead of the above construct when we want to access the
“current” chart, i.e. the chart most recently processed in the current form.

Scrolling

To enable scrolling, let’s also insert two buttons. We use the pre-defined classes
+UpButton and +DnButton

21 PicoLisp Application Development 243

##

(app)

(action

(html 0 "Scrollable Chart" "@lib.css" NIL

(form NIL

(gui ’(+Chart) 2)

(<table> NIL NIL ’((NIL "Text") (NIL "Number"))

(do 4

(<row> NIL

(gui 1 ’(+TextField) 20)

(gui 2 ’(+NumField) 10))))

(gui ’(+UpButton) 1) # Inserted two buttons

(gui ’(+DnButton) 1)

(----)

(<submit> "Save"))))

##

to scroll down and up a single (argument ‘1’) line at a time.

Now it is possible to enter a few rows of data, scroll down, and continue.
It is not necessary (except in the beginning, when the scroll buttons are still
disabled) to press the “Save” button, because any button in the form will send
changes to the server’s internal structures before any action is performed.

Put and Get Functions

As we said, a chart is a virtual component to edit two-dimensional data.
Therefore, a chart’s native data format is a list of lists: Each sublist represents
a single row of data, and each element of a row corresponds to a single GUI
component.

In the example above, we saw a row like

("a" 1)

being mapped to

(gui 1 ’(+TextField) 20)

(gui 2 ’(+NumField) 10)

Quite often, however, such a one-to-one relationship is not desired. The inter-
nal data structures may have to be presented in a different form to the user,
and user input may need conversion to an internal representation.

244 Alexander Burger

For that, a chart accepts - in addition to the “number of columns” argument
- two optional function arguments. The first function is invoked to ‘put’ the
internal representation into the GUI components, and the second to ‘get’ data
from the GUI into the internal representation.

A typical example is a chart displaying customers in a database. While the
internal representation is a (one-dimensional) list of customer objects, ‘put’
expands each object to a list with, say, the customer’s first and second name,
telephone number, address and so on. When the user enters a customer’s
name, ‘get’ locates the matching object in the database and stores it in the
internal representation. In the following, ‘put’ will in turn expand it to the
GUI.

For now, let’s stick with a simpler example: A chart that holds just a list of
numbers, but expands in the GUI to show also a textual form of each number
(in German).

##

(app)

(load "@lib/zahlwort.l")

(action

(html 0 "Numerals" "@lib.css" NIL

(form NIL

(gui ’(+Init +Chart) (1 5 7) 2

’((N) (list N (zahlwort N)))

car)

(<table> NIL NIL ’((NIL "Numeral") (NIL "German"))

(do 4

(<row> NIL

(gui 1 ’(+NumField) 9)

(gui 2 ’(+Lock +TextField) 90))))

(gui ’(+UpButton) 1)

(gui ’(+DnButton) 1)

(----)

(<submit> "Save"))))

##

“@lib/zahlwort.l” defines the utility function zahlwort, which is required later
by the ‘put’ function. zahlwort accepts a number and returns its wording in
German.

Now look at the code

21 PicoLisp Application Development 245

(gui ’(+Init +Chart) (1 5 7) 2

’((N) (list N (zahlwort N)))

car)

We prefix the +Chart class with +Init, and pass it a list of numbers (1 5 7)

for the initial value of the chart. Then, following the ‘2’ (the chart has two
columns), we pass a ‘put’ function

’((N) (list N (zahlwort N)))

which takes a number and returns a list of that number and its wording, and
a ‘get’ function

car)

which in turn accepts such a list and returns a number, which happens to be
the list’s first element.

You can see from this example that ‘get’ is the inverse function of ‘put’. ‘get’
can be omitted, however, if the chart is read-only (contains no (or only locked)
input fields).

The field in the second column

(gui 2 ’(+Lock +TextField) 90))))

is locked, because it displays the text generated by ‘put’, and is not supposed
to accept any user input.

When you start up this form in your browser, you’ll see three pre-filled lines
with “1/eins”, “5/fünf” and “7/sieben”, according to the +Init argument (1
5 7). Typing a number somewhere into the first column, and pressing ENTER
or one of the buttons, will show a suitable text in the second column.

21.4 GUI Classes

In previous chapters we saw examples of GUI classes like +TextField,
+NumField or +Button, often in combination with prefix classes like +Lock,
+Init or +Able. Now we take a broader look at the whole hierarchy, and try
more examples.

246 Alexander Burger

The abstract class +gui is the base of all GUI classes. A live view of the class
hierarchy can be obtained with the dep (“dependencies”) function:

: (dep ’+gui)

+gui

+JsField

+Button

+UpButton

+PickButton

+DstButton

+ClrButton

+ChoButton

+Choice

+GoButton

+BubbleButton

+DelRowButton

+ShowButton

+DnButton

+Img

+field

+Checkbox

+TextField

+FileField

+ClassField

+numField

+NumField

+FixField

+BlobField

+DateField

+SymField

+UpField

+MailField

+SexField

+AtomField

+PwField

+ListTextField

+LinesField

+TelField

+TimeField

+HttpField

+Radio

-> +gui

21 PicoLisp Application Development 247

We see, for example, that +DnButton is a subclass of +Button, which in turn
is a subclass of +gui. Inspecting +DnButton directly

: (dep ’+DnButton)

+Tiny

+Rid

+JS

+Able

+gui

+Button

+DnButton

-> +DnButton

shows that +DnButton inherits from +Tiny, +Rid, +Able and +Button. The
actual definition of +DnButton can be found in “@lib/form.l”

(class +DnButton +Tiny +Rid +JS +Able +Button)

...

In general, “@lib/form.l” is the ultimate reference to the framework, and
should be freely consulted.

21.4.1 Input Fields

Input fields implement the visual display of application data, and allow

• when enabled - input and modification of these data.

On the HTML level, they can take the form of

• Normal text input fields

• Textareas

• Checkboxes

• Drop-down selections

• Password fields

• HTML links

• Plain HTML text

Except for checkboxes, which are implemented by the Checkbox class, all these
HTML representations are generated by +TextField and its content-specific
subclasses like +NumField, +DateField etc. Their actual appearance (as one
of the above forms) depends on their arguments:

248 Alexander Burger

We saw already “normal” text fields. They are created with a single numeric
argument. This example creates an editable field with a width of 10 characters:

(gui ’(+TextField) 10)

If you supply a second numeric for the line count (‘4’ in this case), you’ll get
a text area:

(gui ’(+TextField) 10 4)

Supplying a list of values instead of a count yields a drop-down selection
(combo box):

(gui ’(+TextField) ’("Value 1" "Value 2" "Value 3"))

In addition to these arguments, you can pass a string. Then the field is created
with a label:

(gui ’(+TextField) 10 "Plain")

(gui ’(+TextField) 10 4 "Text Area")

(gui ’(+TextField) ’("Value 1" "Value 2" "Value 3") "Selection")

Finally, without any arguments, the field will appear as a plain HTML text:

(gui ’(+TextField))

This makes mainly sense in combination with prefix classes like +Var and
+Obj, to manage the contents of these fields, and achieve special behavior as
HTML links or scrollable chart values.

Numeric Input Fields

A +NumField returns a number from its val> method, and accepts a number
for its set> method. It issues an error message when user input cannot be
converted to a number.

Large numbers are shown with a thousands-separator, as determined by the
current locale.

21 PicoLisp Application Development 249

##

(app)

(action

(html 0 "+NumField" "@lib.css" NIL

(form NIL

(gui ’(+NumField) 10)

(gui ’(+JS +Button) "Print value"

’(msg (val> (: home gui 1))))

(gui ’(+JS +Button) "Set to 123"

’(set> (: home gui 1) 123)))))

##

A +FixField needs an additional scale factor argument, and accepts/returns
scaled fixpoint numbers.

The decimal separator is determined by the current locale.

##

(app)

(action

(html 0 "+FixField" "@lib.css" NIL

(form NIL

(gui ’(+FixField) 3 10)

(gui ’(+JS +Button) "Print value"

’(msg (format (val> (: home gui 1)) 3)))

(gui ’(+JS +Button) "Set to 123.456"

’(set> (: home gui 1) 123456)))))

##

Time & Date

A +DateField accepts and returns a date value.

250 Alexander Burger

##

(app)

(action

(html 0 "+DateField" "@lib.css" NIL

(form NIL

(gui ’(+DateField) 10)

(gui ’(+JS +Button) "Print value"

’(msg (datStr (val> (: home gui 1)))))

(gui ’(+JS +Button) "Set to \"today\""

’(set> (: home gui 1) (date))))))

##

The format displayed to - and entered by - the user depends on the current
locale (see datStr and expDat). You can change it, for example to

: (locale "DE" "de")

-> NIL

If no locale is set, the format is YYYY-MM-DD. Some pre-defined locales use
patterns like DD.MM.YYYY (DE), YYYY/MM/DD (JP), DD/MM/YYYY
(UK), or MM/DD/YYYY (US).

An error is issued when user input does not match the current locale’s date
format.

Independent from the locale setting, a +DateField tries to expand abbreviated
input from the user. A small number is taken as that day of the current month,
larger numbers expand to day and month, or to day, month and year:

• “7” gives the 7th of the current month

• “031” or “0301” give the 3rd of January of the current year

• “311” or “3101” give the 31st of January of the current year

• “0311” gives the 3rd of November of the current year

• “01023” or “010203” give the first of February in the year 2003

• and so on

Similar is the +TimeField. It accepts and returns a time value.

21 PicoLisp Application Development 251

##

(app)

(action

(html 0 "+TimeField" "@lib.css" NIL

(form NIL

(gui ’(+TimeField) 8)

(gui ’(+JS +Button) "Print value"

’(msg (tim$ (val> (: home gui 1)))))

(gui ’(+JS +Button) "Set to \"now\""

’(set> (: home gui 1) (time))))))

##

When the field width is ‘8’, like in this example, time is displayed in the
format HH:MM:SS. Another possible value would be ‘5’, causing +TimeField

to display its value as HH:MM.

An error is issued when user input cannot be converted to a time value.

The user may omit the colons. If he inputs just a small number, it should
be between ‘0’ and ‘23’, and will be taken as a full hour. ‘125’ expands to
“12:05”, ‘124517’ to “12:45:17”, and so on.

Telephone Numbers

Telephone numbers are represented internally by the country code (without
a leading plus sign or zero) followed by the local phone number (ideally sep-
arated by spaces) and the phone extension (ideally separated by a hyphen).
The exact format of the phone number string is not enforced by the GUI,
but further processing (e.g. database searches) normally uses fold for better
reproducibility.

To display a phone number, +TelField replaces the country code with a single
zero if it is the country code of the current locale, or prepends it with a plus
sign if it is a foreign country (see telStr).

For user input, a plus sign or a double zero is simply dropped, while a single
leading zero is replaced with the current locale’s country code (see expTel).

252 Alexander Burger

##

(app)

(locale "DE" "de")

(action

(html 0 "+TelField" "@lib.css" NIL

(form NIL

(gui ’(+TelField) 20)

(gui ’(+JS +Button) "Print value"

’(msg (val> (: home gui 1))))

(gui ’(+JS +Button) "Set to \"49 1234 5678-0\""

’(set> (: home gui 1) "49 1234 5678-0")))))

##

Checkboxes

A +Checkbox is straightforward. User interaction is restricted to clicking it on
and off. It accepts boolean (NIL or non NIL values, and returns T or NIL.

##

(app)

(action

(html 0 "+Checkbox" "@lib.css" NIL

(form NIL

(gui ’(+Checkbox))

(gui ’(+JS +Button) "Print value"

’(msg (val> (: home gui 1))))

(gui ’(+JS +Button) "On"

’(set> (: home gui 1) T))

(gui ’(+JS +Button) "Off"

’(set> (: home gui 1) NIL)))))

##

21.4.2 Field Prefix Classes

A big part of this framework’s power is owed to the combinatorial flexibility
of prefix classes for GUI- and DB-objects. They allow to surgically override
individual methods in the inheritance tree, and can be combined in various
ways to achieve any desired behavior.

Technically, there is nothing special about prefix classes. They are just normal
classes. They are called “prefix” because they are intended to be written before
other classes in a class’s or object’s list of superclasses.

21 PicoLisp Application Development 253

Usually they take their own arguments for their T method from the list of
arguments to the gui function.

Initialization

+Init overrides the init> method for that component. The init> message is
sent to a +gui component when the page is loaded for the first time (during
a GET request). +Init takes an expression for the initial value of that field.

(gui ’(+Init +TextField) "This is the initial text" 30)

Other classes which automatically give a value to a field are +Var (linking the
field to a variable) and +E/R (linking the field to a database entity/relation).

+Cue can be used, for example in “mandatory” fields, to give a hint to the
user about what he is supposed to enter. It will display the argument value, in
angular brackets, if and only if the field’s value is NIL, and the val> method
will return NIL despite the fact that this value is displayed.

Cause an empty field to display “<Please enter some text here>”:

(gui ’(+Cue +TextField) "Please enter some text here" 30)

Disabling and Enabling

An important feature of an interactive GUI is the context-sensitive disabling
and enabling of individual components, or of a whole form.

The +Able prefix class takes an argument expression, and disables the compo-
nent if this expression returns NIL. We saw an example for its usage already in
the square root button of the calculator example. Or, for illustration purposes,
imagine a button which is supposed to be enabled only after Christmas

(gui ’(+Able +Button)

’(>= (cdr (date (date))) (12 24))

"Close this year"

’(endOfYearProcessing))

or a password field that is disabled as long as somebody is logged in

(gui ’(+Able +PwField) ’(not *Login) 10 "Password")

254 Alexander Burger

A special case is the +Lock prefix, which permanently and unconditionally
disables a component. It takes no arguments

(gui ’(+Lock +NumField) 10 "Count")

(‘10’ and “Count” are for the +NumField), and creates a read-only field.

The whole form can be disabled by calling disable with a non NIL argument.
This affects all components in this form. Staying with the above example, we
can make the form read-only until Christmas

(form NIL

(disable (> (12 24) (cdr (date (date))))) # Disable whole form

(gui ..)

..)

Even in a completely disabled form, however, it is often necessary to re-enable
certain components, as they are needed for navigation, scrolling, or other
activities which don’t affect the contents of the form. This is done by prefixing
these fields with +Rid (i.e. getting “rid” of the lock).

(form NIL

(disable (> (12 24) (cdr (date (date)))))

(gui ..)

..

(gui ’(+Rid +Button) ..) # Button is enabled despite the disabled form

..)

Formatting

GUI prefix classes allow a fine-grained control of how values are stored in -
and retrieved from - components. As in predefined classes like +NumField or
+DateField, they override the set> and/or val> methods.

+Set takes an argument function which is called whenever that field is set to
some value. To convert all user input to upper case

(gui ’(+Set +TextField) uppc 30)

+Val is the complement to +Set. It takes a function which is called whenever
the field’s value is retrieved. To return the square of a field’s value

21 PicoLisp Application Development 255

(gui ’(+Val +NumField) ’((N) (* N N)) 10)

+Fmt is just a combination of +Set and +Val, and takes two functional argu-
ments. This example will display upper case characters, while returning lower
case characters internally

(gui ’(+Fmt +TextField) uppc lowc 30)

+Map does (like +Fmt) a two-way translation. It uses a list of cons pairs for
a linear lookup, where the CARs represent the displayed values which are
internally mapped to the values in the CDRs. If a value is not found in this
list during set> or val>, it is passed through unchanged.

Normally, +Map is used in combination with the combo box incarnation of text
fields (see Input Fields). This example displays “One”, “Two” and “Three”
to the user, but returns a number 1, 2 or 3 internally

##

(app)

(action

(html 0 "+Map" "@lib.css" NIL

(form NIL

(gui ’(+Map +TextField)

’(("One" . 1) ("Two" . 2) ("Three" . 3))

’("One" "Two" "Three"))

(gui ’(+Button) "Print"

’(msg (val> (field -1)))))))

##

Side Effects

Whenever a button is pressed in the GUI, any changes caused by action in
the current environment (e.g. the database or application state) need to be
reflected in the corresponding GUI fields. For that, the upd> message is sent
to all components. Each component then takes appropriate measures (e.g.
refresh from database objects, load values from variables, or calculate a new
value) to update its value.

While the upd> method is mainly used internally, it can be overridden in ex-
isting classes via the +Upd prefix class. Let’s print updated values to standard
error

256 Alexander Burger

##

(app)

(default *Number 0)

(action

(html 0 "+Upd" "@lib.css" NIL

(form NIL

(gui ’(+Upd +Var +NumField)

’(prog (extra) (msg *Number))

’*Number 8)

(gui ’(+JS +Button) "Increment"

’(inc ’*Number)))))

##

Validation

To allow automatic validation of user input, the chk> message is sent to all
components at appropriate times. The corresponding method should return
NIL if the value is all right, or a string describing the error otherwise.

Many of the built-in classes have a chk> method. The +NumField class checks
for legal numeric input, or the +DateField for a valid calendar date.

An on-the-fly check can be implemented with the +Chk prefix class. The fol-
lowing code only accepts numbers not bigger than 9: The or expression first
delegates the check to the main +NumField class, and

• if it does not give an error - returns an error string when the

current value is greater than 9.

##

(app)

(action

(html 0 "+Chk" "@lib.css" NIL

(form NIL

(gui ’(+Chk +NumField)

’(or

(extra)

(and (> (val> This) 9) "Number too big"))

12)

(gui ’(+JS +Button) "Print"

’(msg (val> (field -1)))))))

##

21 PicoLisp Application Development 257

A more direct kind of validation is built-in via the +Limit class. It controls the
maxlength attribute of the generated HTML input field component. Thus, it
is impossible to type to more characters than allowed into the field.

##

(app)

(action

(html 0 "+Limit" "@lib.css" NIL

(form NIL

(gui ’(+Limit +TextField) 4 8)

(gui ’(+JS +Button) "Print"

’(msg (val> (field -1)))))))

##

Data Linkage

Although set> and val> are the official methods to get a value in and out of a
GUI component, they are not very often used explicitly. Instead, components
are directly linked to internal Lisp data structures, which are usually either
variables or database objects.

The +Var prefix class takes a variable (described as the var data type - either
a symbol or a cell - in the Function Reference). In the following example, we
initialize a global variable with the value “abc”, and let a +TextField operate
on it. The “Print” button can be used to display its current value.

##

(app)

(setq *TextVariable "abc")

(action

(html 0 "+Var" "@lib.css" NIL

(form NIL

(gui ’(+Var +TextField) ’*TextVariable 8)

(gui ’(+JS +Button) "Print"

’(msg *TextVariable)))))

##

+E/R takes an entity/relation specification. This is a cell, with a relation in its
CAR (e.g. nm, for an object’s name), and an expression in its CDR (typically
(: home obj), the object stored in the obj property of the current form).

258 Alexander Burger

For an isolated, simple example, we create a temporary database, and access
the nr and nm properties of an object stored in a global variable *Obj.

##

(when (app) # On start of session

(class +Tst +Entity) # Define data model

(rel nr (+Number)) # with a number

(rel nm (+String)) # and a string

(pool (tmp "db")) # Create temporary DB

(setq *Obj # and a single object

(new! ’(+Tst) ’nr 1 ’nm "New Object")))

(action

(html 0 "+E/R" "@lib.css" NIL

(form NIL

(gui ’(+E/R +NumField) ’(nr . *Obj) 8) # Linkage to ’nr’

(gui ’(+E/R +TextField) ’(nm . *Obj) 20) # Linkage to ’nm’

(gui ’(+JS +Button) "Show" # Show the object

’(out 2 (show *Obj)))))) # on standard error

##

21.4.3 Buttons

Buttons are, as explained in Control Flow, the only way (via POST requests)
for an application to communicate with the server.

Basically, a +Button takes

• a label, which may be either a string or the name of an image file

• an optional alternative label, shown when the button is disabled

• and an executable expression.

Here is a minimal button, with just a label and an expression:

(gui ’(+Button) "Label" ’(doSomething))

And this is a button displaying different labels, depending on the state:

(gui ’(+Button) "Enabled" "Disabled" ’(doSomething))

To show an image instead of plain text, the label(s) must be preceeded by the
T symbol:

21 PicoLisp Application Development 259

(gui ’(+Button) T "img/enabled.png" "img/disabled.png" ’(doSomething))

The expression will be executed during action handling (see Action Forms),
when this button was pressed.

Like other components, buttons can be extended and combined with prefix
classes, and a variety of predefined classes and class combinations are available.

Dialog Buttons

Buttons are essential for the handling of alerts and dialogs. Besides buttons for
normal functions, like scrolling in charts or other side effects, special buttons
exist which can close an alert or dialog in addition to doing their principal
job.

Such buttons are usually subclasses of +Close, and most of them can be
called easily with ready-made functions like closeButton, cancelButton,
yesButton or noButton. We saw a few examples in Alerts and Dialogs.

Active JavaScript

When a button inherits from the +JS class (and JavaScript is enabled in the
browser), that button will possibly show a much faster response in its action.

The reason is that the activation of a +JS button will - instead of doing a
normal POST - first try to send only the contents of all GUI components via
an XMLHttpRequest to the server, and receive the updated values in response.
This avoids the flicker caused by reloading and rendering of the whole page, is
much faster, and also does not jump to the beginning of the page if it is larger
than the browser window. The effect is especially noticeable while scrolling in
charts.

Only if this fails, for example because an error message was issued, or a dialog
popped up, it will fall back, and the form will be POSTed in the normal way.

Thus it makes no sense to use the +JS prefix for buttons that cause a change
of the HTML code, open a dialog, or jump to another page. In such cases,
overall performance will even be worse, because the XMLHttpRequest is tried
first (but in vain).

When JavaScript is disabled int the browser, the XMLHttpRequest will not be
tried at all. The form will be fully usable, though, with identical functionality
and behavior, just a bit slower and not so smooth.

260 Alexander Burger

21.5 A Minimal Complete Application

The PicoLisp release includes in the “app/” directory a minimal, yet complete
reference application. This application is typical, in the sense that it imple-
ments many of the techniques described in this document, and it can be easily
modified and extended. In fact, we use it as templates for our own production
application development.

It is a kind of simplified ERP system, containing customers/suppliers, prod-
ucts (items), orders, and other data. The order input form performs live up-
dates of customer and product selections, price, inventory and totals calcu-
lations, and generates on-the-fly PDF documents. Fine-grained access per-
missions are controlled via users, roles and permissions. It comes localized in
six languages (English, Spanish, German, Norwegian, Russian and Japanese),
with some initial data and two sample reports.

21.5.1 Getting Started

For a global installation (see Installation), please create a symbolic link to
the place where the program files are installed. This is necessary because the
application needs read/write access to the current working directory (for the
database and other runtime data).

$ ln -s /usr/share/picolisp/app

As ever, you may start up the application in debugging mode

$ pil app/main.l -main -go +

or in (non-debug) production mode

$ pil app/main.l -main -go -wait

and go to ‘http://localhost:8080’ with your browser. You can login as user
“admin”, with password “admin”. The demo data contain several other users,
but those are more restricted in their role permissions.

Another possibility is to try the online version of this application at app.7fach.de.

http://app.7fach.de

21 PicoLisp Application Development 261

Localization

Before or after you logged in, you can select another language, and click on the
“Change” button. This will effect all GUI components (though not text from
the database), and also the numeric, date and telephone number formats.

Navigation

The navigation menu on the left side shows two items “Home” and “logout”,
and three submenus “Data”, “Report” and “System”.

Both “Home” and “logout” bring you back to the initial login form. Use
“logout” if you want to switch to another user (say, for another set of per-
missions), and - more important - before you close your browser, to release
possible locks and process resources on the server.

The “Data” submenu gives access to application specific data entry and main-
tenance: Orders, product items, customers and suppliers. The “Report” sub-
menu contains two simple inventory and sales reports. And the “System”
submenu leads to role and user administration.

You can open and close each submenu individually. Keeping more than one
submenu open at a time lets you switch rapidly between different parts of the
application.

The currently active menu item is indicated by a highlighted list style (no
matter whether you arrived at this page directly via the menu or by clicking
on a link somewhere else).

Choosing Objects

Each item in the “Data” or “System” submenu opens a search dialog for that
class of entities. You can specify a search pattern, press the top right “Search”
button (or just ENTER), and scroll through the list of results.

While the “Role” and “User” entities present simple dialogs (searching just by
name), other entities can be searched by a variety of criteria. In those cases,
a “Reset” button clears the contents of the whole dialog. A new object can
be created with bottom right “New” button.

In any case, the first column will contain either a “@”-link (to jump to that
object) or a “@”-button (to insert a reference to that object into the current
form).

262 Alexander Burger

By default, the search will list all database objects with an attribute value
greater than or equal to the search criterion. The comparison is done arith-
metically for numbers, and alphabetically (case sensitive!) for text. This
means, if you type “Free” in the “City” field of the “Customer/Supplier”
dialog, the value of “Freetown” will be matched. On the other hand, an entry
of “free” or “town” will yield no hits.

Some search fields, however, show a different behavior depending on the ap-
plication:

• The names of persons, companies or products allow a tolerant search,
matching either a slightly misspelled name (“Mhler” instead of “Miller”)
or a substring (“Oaks” will match “Seven Oaks Ltd.”).

• The search field may specify an upper instead of a lower limit, resulting in
a search for database objects with an attribute value less than or equal to
the search criterion. This is useful, for example in the “Order” dialog, to
list orders according to their number or date, by starting with the newest
then and going backwards.

Using the bottom left scroll buttons, you can scroll through the result list
without limit. Clicking on a link will bring up the corresponding object. Be
careful here to select the right column: Some dialogs (those for “Item” and
“Order”) also provide links for related entities (e.g. “Supplier”).

Editing

A database object is usually displayed in its own individual form, which is
determined by its entity class.

The basic layout should be consistent for all classes: Below the heading (which
is usually the same as the invoking menu item) is the object’s identifier (name,
number, etc.), and then a row with an “Edit” button on the left, and “Delete”
button, a “Select” button and two navigation links on the right side.

The form is brought up initially in read-only mode. This is necessary to pre-
vent more than one user from modifying an object at the same time (and
contrary to the previous PicoLisp Java frameworks, where this was not a
problem because all changes were immediately reflected in the GUIs of other
users).

So if you want to modify an object, you have to gain exclusive access by
clicking on the “Edit” button. The form will be enabled, and the “Edit”
button changes to “Done”. Should any other user already have reserved this
object, you will see a message telling his name and process ID.

21 PicoLisp Application Development 263

An exception to this are objects that were just created with “New”. They
will automatically be reserved for you, and the “Edit” button will show up as
“Done”.

The “Delete” button pops up an alert, asking for confirmation. If the object
is indeed deleted, this button changes to “Restore” and allows to undelete the
object. Note that objects are never completely deleted from the database as
long as there are any references from other objects. When a “deleted” object
is shown, its identifier appears in square brackets.

The “Select” button (re-)displays the search dialog for this class of entities.
The search criteria are preserved between invocations of each dialog, so that
you can conveniently browse objects in this context.

The navigation links, pointing left and right, serve a similar purpose. They
let you step sequentially through all objects of this class, in the order of the
identifier’s index.

Other buttons, depending on the entity, are usually arranged at the bottom
of the form. The bottom rightmost one should always be another “Edit” /
“Done” button.

As we said in the chapter on Scrolling, any button in the form will save changes
to the underlying data model. As a special case, however, the “Done” button
releases the object and reverts to “Edit”. Besides this, the edit mode will also
cease as soon as another object is displayed, be it by clicking on an object link
(the pencil icon), the top right navigation links, or a link in a search dialog.

Buttons vs. Links

The only way to interact with a HTTP-based application server is to click
either on a HTML link, or on a submit button (see also Control Flow). It is
essential to understand the different effects of such a click on data entered or
modified in the current form.

• A click on a link will leave or reload the page. Changes are discarded.

• A click on a button will commit changes, and perform the associated ac-
tion.

For that reason the layout design should clearly differentiate between links
and buttons. Image buttons are not a good idea when in other places images
are used for links. The standard button components should be preferred; they
are usually rendered by the browser in a non-ambiguous three-dimensional
look and feel.

Note that if JavaScript is enabled in the browser, changes will be automatically
committed to the server.

264 Alexander Burger

The enabled or disabled state of a button is an integral part of the application
logic. It must be indicated to the user with appropriate styles.

21.5.2 The Data Model

Source Code

21jul11abu

(c) Software Lab. Alexander Burger

Entity/Relations

#

nr nm nr nm nm

| | | | |

+-*----*-+ +-*----*-+ +--*-----+

| | sup | | | |

str --* CuSu O-----------------* Item *-- inv | Role @-- perm

| | | | | |

+-*-*--O-+ +----O---+ +----@---+

| | | | | usr

nm tel -+ | | | |

| | | | itm | role

+-*-----+ | | +-------+ +---*---+ +----*---+

| | | | | | ord | | | |

| Sal +---+ +---* Ord @--------* Pos | nm --* User *-- pw

| | cus | | pos | | | |

+-*---*-+ +-*---*-+ +-*---*-+ +--------+

| | | | | |

hi sex nr dat pr cnt

(extend +Role)

(dm url> (Tab)

(and (may RoleAdmin) (list "app/role.l" ’*ID This)))

21 PicoLisp Application Development 265

(extend +User)

(rel nam (+String)) # Full Name

(rel tel (+String)) # Phone

(rel em (+String)) # EMail

(dm url> (Tab)

(and (may UserAdmin) (list "app/user.l" ’*ID This)))

Salutation

(class +Sal +Entity)

(rel nm (+Key +String)) # Salutation

(rel hi (+String)) # Greeting

(rel sex (+Any)) # T:male, 0:female

(dm url> (Tab)

(and (may Customer) (list "app/sal.l" ’*ID This)))

(dm hi> (Nm)

(or (text (: hi) Nm) ,"Dear Sir or Madam,"))

Customer/Supplier

(class +CuSu +Entity)

(rel nr (+Need +Key +Number)) # Customer/Supplier Number

(rel sal (+Link) (+Sal)) # Salutation

(rel nm (+Sn +Idx +String)) # Name

(rel nm2 (+String)) # Name 2

(rel str (+String)) # Street

(rel plz (+Ref +String)) # Zip

(rel ort (+Fold +Idx +String)) # City

(rel tel (+Fold +Ref +String)) # Phone

(rel fax (+String)) # Fax

(rel mob (+Fold +Ref +String)) # Mobile

(rel em (+String)) # EMail

(rel txt (+Blob)) # Memo

(dm url> (Tab)

(and (may Customer) (list "app/cusu.l" ’*Tab Tab ’*ID This)))

(dm check> ()

(make

(or (: nr) (link ,"No customer number"))

(or (: nm) (link ,"No customer name"))

(unless (and (: str) (: plz) (: ort))

(link ,"Incomplete customer address"))))

266 Alexander Burger

Item

(class +Item +Entity)

(rel nr (+Need +Key +Number)) # Item Number

(rel nm (+Fold +Idx +String)) # Item Description

(rel sup (+Ref +Link) NIL (+CuSu)) # Supplier

(rel inv (+Number)) # Inventory

(rel pr (+Ref +Number) NIL 2) # Price

(rel txt (+Blob)) # Memo

(rel jpg (+Blob)) # Picture

(dm url> (Tab)

(and (may Item) (list "app/item.l" ’*ID This)))

(dm cnt> ()

(-

(or (: inv) 0)

(sum ’((This) (: cnt))

(collect ’itm ’+Pos This))))

(dm check> ()

(make

(or (: nr) (link ,"No item number"))

(or (: nm) (link ,"No item description"))))

Order

(class +Ord +Entity)

(rel nr (+Need +Key +Number)) # Order Number

(rel dat (+Need +Ref +Date)) # Order date

(rel cus (+Ref +Link) NIL (+CuSu)) # Customer

(rel pos (+List +Joint) ord (+Pos)) # Positions

(dm lose> ()

(mapc ’lose> (: pos))

(super))

(dm url> (Tab)

(and (may Order) (list "app/ord.l" ’*ID This)))

(dm sum> ()

(sum ’sum> (: pos)))

(dm check> ()

(make

(or (: nr) (link ,"No order number"))

(or (: dat) (link ,"No order date"))

(if (: cus)

(chain (check> @))

(link ,"No customer"))

(if (: pos)

(chain (mapcan ’check> @))

(link ,"No positions"))))

21 PicoLisp Application Development 267

(class +Pos +Entity)

(rel ord (+Dep +Joint) # Order

(itm)

pos (+Ord))

(rel itm (+Ref +Link) NIL (+Item)) # Item

(rel pr (+Number) 2) # Price

(rel cnt (+Number)) # Quantity

(dm sum> ()

(* (: pr) (: cnt)))

(dm check> ()

(make

(if (: itm)

(chain (check> @))

(link ,"Position without item"))

(or (: pr) (link ,"Position without price"))

(or (: cnt) (link ,"Position without quantity"))))

Database sizes

(dbs

(3 +Role +User +Sal) # 512 Prevalent objects

(0 +Pos) # A:64 Tiny objects

(1 +Item +Ord) # B:128 Small objects

(2 +CuSu) # C:256 Normal objects

(2 (+Role nm) (+User nm) (+Sal nm)) # D:256 Small indexes

(4 (+CuSu nr plz tel mob)) # E:1024 Normal indexes

(4 (+CuSu nm)) # F:1024

(4 (+CuSu ort)) # G:1024

(4 (+Item nr sup pr)) # H:1024

(4 (+Item nm)) # I:1024

(4 (+Ord nr dat cus)) # J:1024

(4 (+Pos itm))) # K:1024

vi:et:ts=3:sw=3

Discussion

The data model for this mini application consists of only six entity classes
(see the E/R diagram at the beginning of “app/er.l”):

• The three main entities are +CuSu (Customer/Supplier), +Item (Product
Item) and +Ord (Order).

268 Alexander Burger

• A +Pos object is a single position in an order.

• +Role and +User objects are needed for authentication and authorization.

The classes +Role and +User are defined in “@lib/adm.l”. A +Role has a
name, a list of permissions, and a list of users assigned to this role. A +User

has a name, a password and a role.

In “app/er.l”, the +Role class is extended to define an url> method for it.
Any object whose class has such a method is able to display itself in the GUI.
In this case, the file “app/role.l” will be loaded - with the global variable *ID

pointing to it - whenever an HTML link to this role object is activated.

The +User class is also extended. In addition to the login name, a full name,
telephone number and email address is declared. And, of course, the ubiquitous
url> method.

The application logic is centered around orders. An order has a number, a
date, a customer (an instance of +CuSu) and a list of positions (+Pos objects).
The sum> method calculates the total amount of this order.

Each position has an +Item object, a price and a quantity. The price in the
position overrides the default price from the item.

Each item has a number, a description, a supplier (also an instance of +CuSu),
an inventory count (the number of these items that were counted at the last
inventory taking), and a price. The cnt> method calculates the current stock
of this item as the difference of the inventory and the sold item counts.

The call to dbs at the end of “app/er.l” configures the physical database
storage. Each of the supplied lists has a number in its CAR which determines
the block size as (64 ¡¡ N) of the corresponding database file. The CDR says
that the instances of this class (if the element is a class symbol) or the tree
nodes (if the element is a list of a class symbol and a property name) are to
be placed into that file. This allows for some optimizations in the database
layout.

21.5.3 Usage

When you are connected to the application (see Getting Started) you might
try to do some “real” work with it. Via the “Data” menu (see Navigation)
you can create or modify customers, suppliers, items and orders, and produce
simple overviews via the “Report” menu.

21 PicoLisp Application Development 269

Customer/Supplier

Source Code

05nov09abu

(c) Software Lab. Alexander Burger

(must "Customer/Supplier" Customer)

(menu ,"Customer/Supplier"

(ifn *ID

(prog

(<h3> NIL ,"Select" " " ,"Customer/Supplier")

(form ’dialog (choCuSu)))

(<h3> NIL ,"Customer/Supplier")

(form NIL

(<h2> NIL (<id> (: nr) " -- " (: nm)))

(panel T (pack ,"Customer/Supplier" " @1") ’(may Delete) ’(choCuSu) ’nr ’+CuSu)

(<hr>)

(<tab>

(,"Name"

(<grid> 3

,"Number" NIL (gui ’(+E/R +NumField) ’(nr : home obj) 10)

,"Salutation"

(gui ’(+Hint) ,"Salutation"

’(mapcar ’((This) (cons (: nm) This)) (collect ’nm ’+Sal)))

(gui ’(+Hint2 +E/R +Obj +TextField) ’(sal : home obj) ’(nm +Sal) 20)

,"Name" NIL (gui ’(+E/R +Cue +TextField) ’(nm : home obj) ,"Name" 40)

,"Name 2" NIL (gui ’(+E/R +TextField) ’(nm2 : home obj) 40)))

(,"Address"

(<grid> 2

,"Street" (gui ’(+E/R +TextField) ’(str : home obj) 40)

NIL NIL

,"Zip" (gui ’(+E/R +TextField) ’(plz : home obj) 10)

,"City" (gui ’(+E/R +TextField) ’(ort : home obj) 40)))

(,"Contact"

(<grid> 2

,"Phone" (gui ’(+E/R +TelField) ’(tel : home obj) 40)

,"Fax" (gui ’(+E/R +TelField) ’(fax : home obj) 40)

,"Mobile" (gui ’(+E/R +TelField) ’(mob : home obj) 40)

,"EMail" (gui ’(+E/R +MailField) ’(em : home obj) 40)))

((pack (and (: obj txt) "@ ") ,"Memo")

(gui ’(+BlobField) ’(txt : home obj) 60 8)))

(<hr>)

(<spread> NIL (editButton T)))))

vi:et:ts=3:sw=3

270 Alexander Burger

Discussion

The Customer/Supplier search dialog (choCuSu in “app/gui.l”) supports a lot
of search criteria. These become necessary when the database contains a large
number of customers, and can filter by zip, by phone number prefixes, and so
on.

In addition to the basic layout (see Editing), the form is divided into four
separate tabs. Splitting a form into several tabs helps to reduce traffic, with
possibly better GUI response. In this case, four tabs are perhaps overkill, but
ok for demonstration purposes, and they leave room for extensions.

Be aware that when data were modified in one of the tabs, the “Done” button
has to be pressed before another tab is clicked, because tabs are implemented
as HTML links (see Buttons vs. Links).

New customers or suppliers will automatically be assigned the next free num-
ber. You can enter another number, but an error will result if you try to use
an existing number. The “Name” field is mandatory, you need to overwrite
the “¡Name¿” clue.

Phone and fax numbers in the “Contact” tab must be entered in the correct
format, depending on the locale (see Telephone Numbers).

The “Memo” tab contains a single text area. It is no problem to use it for
large pieces of text, as it gets stored in a database blob internally.

21 PicoLisp Application Development 271

Item

Source Code

09aug10abu

(c) Software Lab. Alexander Burger

(must "Item" Item)

(menu ,"Item"

(ifn *ID

(prog

(<h3> NIL ,"Select" " " ,"Item")

(form ’dialog (choItem)))

(<h3> NIL ,"Item")

(form NIL

(<h2> NIL (<id> (: nr) " -- " (: nm)))

(panel T (pack ,"Item" " @1") ’(may Delete) ’(choItem) ’nr ’+Item)

(<grid> 4

,"Number" NIL (gui ’(+E/R +NumField) ’(nr : home obj) 10) NIL

,"Description" NIL (gui ’(+E/R +Cue +TextField) ’(nm : home obj) ,"Item" 30) NIL

,"Supplier" (gui ’(+ChoButton) ’(choCuSu (field 1)))

(gui ’(+E/R +Obj +TextField) ’(sup : home obj) ’(nm +CuSu) 30)

(gui ’(+View +TextField) ’(field -1 ’obj ’ort) 30)

,"Inventory" NIL (gui ’(+E/R +NumField) ’(inv : home obj) 12)

(gui ’(+View +NumField) ’(cnt> (: home obj)) 12)

,"Price" NIL (gui ’(+E/R +FixField) ’(pr : home obj) 2 12))

(--)

(<grid> 2

,"Memo" (gui ’(+BlobField) ’(txt : home obj) 60 8)

,"Picture"

(prog

(gui ’(+Able +UpField) ’(not (: home obj jpg)) 30)

(gui ’(+Drop +Button) ’(field -1)

’(if (: home obj jpg) ,"Uninstall" ,"Install")

’(cond

((: home obj jpg)

(ask ,"Uninstall Picture?"

(put!> (: home top 1 obj) ’jpg NIL)))

((: drop) (blob! (: home obj) ’jpg @))))))

(<spread> NIL (editButton T))

(gui ’(+Img)

’(and (: home obj jpg) (allow (blob (: home obj) ’jpg)))

,"Picture"))))

vi:et:ts=3:sw=3

272 Alexander Burger

Discussion

Items also have a unique number, and a mandatory “Description” field.

To assign a supplier, click on the “+” button. The Customer/Supplier search
dialog will appear, and you can pick the desired supplier with the “@” button
in the first column. Alternatively, if you are sure to know the exact spelling
of the supplier’s name, you can also enter it directly into the text field.

In the search dialog you may also click on a link, for example to inspect a
possible supplier, and then return to the search dialog with the browser’s back
button. The “Edit” mode will then be lost, however, as another object has
been visited (this is described in the last part of Editing).

You can enter an inventory count, the number of items currently in stock. The
following field will automatically reflect the remaining pieces after some of
these items were sold (i.e. referenced in order positions). It cannot be changed
manually.

The price should be entered with the decimal separator according to the cur-
rent locale. It will be formatted with two places after the decimal separator.

The “Memo” is for an arbitrary info text, like in Customer/Supplier above,
stored in a database blob.

Finally, a JPEG picture can be stored in a blob for this item. Choose a file with
the browser’s file select control, and click on the “Install” button. The picture
will appear at the bottom of the page, and the “Install” button changes to
“Uninstall”, allowing the picture’s removal.

21 PicoLisp Application Development 273

Order

Source Code

03sep09abu

(c) Software Lab. Alexander Burger

(must "Order" Order)

(menu ,"Order"

(ifn *ID

(prog

(<h3> NIL ,"Select" " " ,"Order")

(form ’dialog (choOrd)))

(<h3> NIL ,"Order")

(form NIL

(<h2> NIL (<id> (: nr)))

(panel T (pack ,"Order" " @1") ’(may Delete) ’(choOrd) ’nr ’+Ord)

(<grid> 4

,"Date" NIL

(gui ’(+E/R +DateField) ’(dat : home obj) 10)

(gui ’(+View +TextField)

’(text ,"(@1 Positions)" (length (: home obj pos))))

,"Customer" (gui ’(+ChoButton) ’(choCuSu (field 1)))

(gui ’(+E/R +Obj +TextField) ’(cus : home obj) ’(nm +CuSu) 30)

(gui ’(+View +TextField) ’(field -1 ’obj ’ort) 30))

(--)

(gui ’(+Set +E/R +Chart) ’((L) (filter bool L)) ’(pos : home obj) 8

’((Pos I)

(with Pos

(list I NIL (: itm) (or (: pr) (: itm pr)) (: cnt) (sum> Pos))))

’((L D)

(cond

(D

(put!> D ’itm (caddr L))

(put!> D ’pr (cadddr L))

(put!> D ’cnt (; L 5))

(and (; D itm) D))

((caddr L)

(new! ’(+Pos) ’itm (caddr L))))))

274 Alexander Burger

(<table> NIL NIL

’((align) (btn) (NIL ,"Item") (NIL ,"Price") (NIL ,"Quantity") (NIL ,"Total"))

(do 8

(<row> NIL

(gui 1 ’(+NumField))

(gui 2 ’(+ChoButton) ’(choItem (field 1)))

(gui 3 ’(+Obj +TextField) ’(nm +Item) 30)

(gui 4 ’(+FixField) 2 12)

(gui 5 ’(+NumField) 8)

(gui 6 ’(+Sgn +Lock +FixField) 2 12)

(gui 7 ’(+DelRowButton))

(gui 8 ’(+BubbleButton))))

(<row> NIL NIL NIL (scroll 8 T) NIL NIL

(gui ’(+Sgn +View +FixField) ’(sum> (: home obj)) 2 12)))

(<spread>

(gui ’(+Rid +Button) ,"PDF-Print"

’(if (check> (: home obj))

(note ,"Can’t print order" (uniq @))

(psOut 0 ,"Order" (ps> (: home obj)))))

(editButton T)))))

vi:et:ts=3:sw=3

Discussion

Oders are identified by number and date.

The number must be unique. It is assigned when the order is created, and
cannot be changed for compliance reasons.

The date is initialized to “today” for a newly created order, but may be
changed manually. The date format depends on the locale. It is YYYY-MM-
DD (ISO) by default, DD.MM.YYYY in the German and YYYY/MM/DD
in the Japanese locale. As described in Time & Date, this field allows input
shortcuts, e.g. just enter the day to get the full date in the current month.

To assign a customer to this order, click on the “+” button. The Cus-
tomer/Supplier search dialog will appear, and you can pick the desired cus-
tomer with the “@” button in the first column (or enter the name directly
into the text field), just as described above for Items.

Now enter order the positions: Choose an item with the “+” button. The
“Price” field will be preset with the item’s default price, you may change it
manually. Then enter a quantity, and click a button (typically the “+” button

21 PicoLisp Application Development 275

to select the next item, or a scroll button go down in the chart). The form
will be automatically recalculated to show the total prices for this position
and the whole order.

Instead of the “+” or scroll buttons, as recommended above, you could of
course also press the “Done” button to commit changes. This is all right, but
has the disadvantage that the button must be pressed a second time (now
“Edit”) if you want to continue with the entry of more positions.

The “x” button at the right of each position deletes that position without
further confirmation. It has to be used with care!

The “̂’’ button is a “bubble” button. It exchanges a row with the row above
it. Therefore, it can be used to rearrange all items in a chart, by “bubbling”
them to their desired positions.

The “PDF-Print” button generates and displays a PDF document for this or-
der. The browser should be configured to display downloaded PDF documents
in an appropriate viewer. The source for the postscript generating method is
in “app/lib.l”. It produces one or several A4 sized pages, depending on the
number of positions.

276 Alexander Burger

Reports

Source Code

08mar10abu

(c) Software Lab. Alexander Burger

(must "Inventory" Report)

(menu ,"Inventory"

(<h3> NIL ,"Inventory")

(form NIL

(<grid> "-.-"

,"Number" NIL

(prog

(gui ’(+Var +NumField) ’*InvFrom 10)

(prin " - ")

(gui ’(+Var +NumField) ’*InvTill 10))

,"Description" NIL (gui ’(+Var +TextField) ’*InvNm 30)

,"Supplier" (gui ’(+ChoButton) ’(choCuSu (field 1)))

(gui ’(+Var +Obj +TextField) ’*InvSup ’(nm +CuSu) 30))

(--)

(gui ’(+ShowButton) NIL

’(csv ,"Inventory"

(<table> ’chart NIL

(<!>

(quote

(align)

(NIL ,"Description")

(align ,"Inventory")

(NIL ,"Supplier")

NIL

(NIL ,"Zip")

(NIL ,"City")

(align ,"Price")))

(catch NIL

(pilog

(quote

@Rng (cons *InvFrom (or *InvTill T))

@Nm *InvNm

@Sup *InvSup

(select (@Item)

((nr +Item @Rng) (nm +Item @Nm) (sup +Item @Sup))

(range @Rng @Item nr)

(tolr @Nm @Item nm)

(same @Sup @Item sup)))

21 PicoLisp Application Development 277

(with @Item

(<row> (alternating)

(<+> (: nr) This)

(<+> (: nm) This)

(<+> (cnt> This))

(<+> (: sup nm) (: sup))

(<+> (: sup nm2))

(<+> (: sup plz))

(<+> (: sup ort))

(<-> (money (: pr)))))

(at (0 . 10000) (or (flush) (throw))))))))))

vi:et:ts=3:sw=3

08mar10abu

(c) Software Lab. Alexander Burger

(must "Sales" Report)

(menu ,"Sales"

(<h3> NIL ,"Sales")

(form NIL

(<grid> "-.-"

,"Date" NIL

(prog

(gui ’(+Var +DateField) ’*SalFrom 10)

(prin " - ")

(gui ’(+Var +DateField) ’*SalTill 10))

,"Customer" (gui ’(+ChoButton) ’(choCuSu (field 1)))

(gui ’(+Var +Obj +TextField) ’*SalCus ’(nm +CuSu) 30))

(--)

(gui ’(+ShowButton) NIL

’(csv ,"Sales"

(<table> ’chart NIL

(<!>

(quote

(align)

(NIL ,"Date")

(NIL ,"Customer")

NIL

(NIL ,"Zip")

(NIL ,"City")

(align ,"Total")))

278 Alexander Burger

(catch NIL

(let Sum 0

(pilog

(quote

@Rng (cons *SalFrom (or *SalTill T))

@Cus *SalCus

(select (@Ord)

((dat +Ord @Rng) (cus +Ord @Cus))

(range @Rng @Ord dat)

(same @Cus @Ord cus)))

(with @Ord

(let N (sum> This)

(<row> (alternating)

(<+> (: nr) This)

(<+> (datStr (: dat)) This)

(<+> (: cus nm) (: cus))

(<+> (: cus nm2))

(<+> (: cus plz))

(<+> (: cus ort))

(<-> (money N)))

(inc ’Sum N)))

(at (0 . 10000) (or (flush) (throw))))

(<row> ’nil

(,"Total") - - - - -

((prin (money Sum)))))))))))

vi:et:ts=3:sw=3

Discussion

The two reports (“Inventory” and “Sales”) come up with a few search fields
and a “Show” button.

If no search criteria are entered, the “Show” button will produce a listing of
the relevant part of the whole database. This may take a long time and cause
a heavy load on the browser if the database is large.

So in the normal case, you will limit the domain by stating a range of item
numbers, a description pattern, and/or a supplier for the inventory report, or
a range of order dates and/or a customer for the sales report. If a value in a
range specification is omitted, the range is considered open in that direction.

At the end of each report appears a “CSV” link. It downloads a file with the
TAB-separated values generated by this report.

Part IV

PicoLisp Community Articles

22

VizReader’s distributed word index

Henrik Sarvell

hsarvell@gmail.com

Summary. This article is about managing a simple distributed index with the
id function.

22.1 Introduction

After having used VizReader1 as a single local application for a while it quickly
became clear that the full word index that are mapping words to articles - in
order to enable word searches - was growing at an alarming rate. Something
needed to be done and I started looking into the ext2 functionality. It is overkill
for managing a simple distributed index though, the id3 function however is
a good fit.

22.2 Setup

Currently the remotes all reside on the same machine so the speedup is
achieved by querying a bunch of smaller files in parallel as opposed to having
only one process go through one big file. Had this been done “properly” by us-
ing different machines the speedup would probably be much bigger, especially
if said machines were located in the same data center.

1http://vizreader.com
2http://www.software-lab.de/doc/refE.html#ext
3http://www.software-lab.de/doc/refI.html#id

282 Henrik Sarvell

22.3 Implementation

Before we start looking at the actual code let’s first list what is happening
from start to finish:

1. When an article is imported all words are counted and the count, the
resultant numbers from calling id on the article and the word object, and
the article’s date are all sent to and saved in a remote. Which remote
to send to is inferred from the aid number of the article which is not to
be confused with the result returned by the id function, aid is created
explicitly as an auto incremented key.

2. When a search is performed all remotes are queried at the same time.
Since we are storing the article’s date in the index too it is possible for
each remote to return results sorted by date. The logic that is responsible
for querying the remotes will then store the first result from each remote
in a hash that is continuously sorted by date in order to link only the
newest articles from the parallel query, more on that later.

3. To build the result sent for display in the GUI is now just a simple matter
of calling id on our list of numbers in order to fetch the real articles on
disc.

(class +Aword +Entity)

(rel word (+Need +Key +String))

(class +Article +Entity)

(rel aid (+Key +Number))

(rel title (+String))

(rel htmlUrl (+Key +String))

(rel body (+Blob))

(rel picoStamp (+Ref +Number))

. . .

22 VizReader’s distributed word index 283

(dm setArticleWords> (A Ws)

(let Idx (idx> (; A words))

(put> A ’common

(eval> ’+Agent A ’setArticleWords

(lit

(make

(for Wstr Ws

(unless (common?> This Wstr)

(link

(list

(id A)

(id (request ’(+Aword) ’word Wstr))

(val (car (idx ’Idx (lowc Wstr))))

(; A picoStamp)))))))))))

The +Agent class that is responsible for communicating with the remotes
will call ’setArticleWords on the remote that is inferred from the article A
in question, that’s why it’s the first argument to the eval> function. Ws is a
list of all words in the article, Idx is an index tree4 mapping words to their
counts, this tree has been generated earlier and is now simply rebuilt. We loop
through each word and filter out common words. Each element in the list we
then send to the remote is generated by calling id on the article and the word,
getting the count from the index tree and the date from the article.

I will not explain the eval> method of my +Agent class since it contains a
lot of logic that doesn’t have anything to do with what this article is about,
the main thing happening there is simply using pr5 to send (setArticleWords

Lst) to the remote which simply uses eval6 to execute.

(class +WordCount +Entity)

(rel article (+Ref +Number))

(rel word (+Aux +Ref +Number) (article))

(rel count (+Number))

(rel picoStamp (+Ref +Number))

4http://www.software-lab.de/doc/refI.html#idx
5http://www.software-lab.de/doc/refP.html#pr
6http://www.software-lab.de/doc/refE.html#eval

284 Henrik Sarvell

(de setArticleWords (Lst)

(dbSync)

(let Res

(mapcar id

(tail 20

(by ’((Wc)(; Wc count)) sort

(make

(for Wc Lst

(link

(request

’(+WordCount)

’article (car Wc)

’word (cadr Wc)

’count (caddr Wc)

’picoStamp (last Wc))))))))

(commit ’upd)

(pr Res)))

The above is the remote ER and the function we just called, note that in
addition to storing the words here we are also returning the 20 most common
words for local storage, yet again using id but here on the remote instead.

(dm getAsByWd> (W Start)

(mapcar ’((A)(id (db: +Article) A))

(extArticles> ’+Agent Start 25 ’getArticles (lit (id W)))))

. . .

(dm rd1> (Sock)

(or

(in Sock (rd))

(nil

(close Sock))))

(dm extArticles> (Start Count . @)

(let (End (+ Start Count) Socks (getSocks> This))

(for S Socks

(out S (pr (peel> ’+Gh (rest)))))

22 VizReader’s distributed word index 285

(let Q (new ’(+Hash) (extract ’((S)(let A (rd1> This S) (when A (list S A)))) Socks))

(tail Count

(make

(until (empty?> Q)

(let Cur (car (sort> Q T ’cdadr))

(link (caadr Cur))

(let A (rd1> This (car Cur))

(if A

(set> Q (car Cur) A)

(del> Q (car Cur))))

(when (<= End (length (made)))

(empty> Q)))))))))

Here we query the remotes for all articles containing a certain word, the first
result set will use a Start value of 1, the Count will always be 25. We use id
to get the word’s number for the remote and then id again to fetch the local
articles for the result we send to the GUI. In extArticles> we first figure out
when to stop by adding Start and Count, in our case it will be 26. We then
get all the sockets to the remotes and send the code for execution by way
of pr. Next we build a hash using our sockets as keys with the article info
in the value. Then we continue with reading from the sockets until the hash
is empty which can happen if all the remotes have finished sending articles
or if we have reached our goal, in this case fetching 25 articles. The hash is
repeatedly sorted by date and the newest article is linked, the spot where that
article came from will then be filled by the next article from the remote in
question and so on until we meet one of the end conditions.

(de go ()

. . .

(rollback)

(task (port (+ *IdxNum 4040))

(let? Sock (accept @)

(unless (fork)

(in Sock

(while (rd)

(sync)

(out Sock

(eval @))))

(bye))

(close Sock)))

(forked))

286 Henrik Sarvell

(de getArticles (W)

(let Goal

(goal

(quote

@Word W

@Date (cons (- (stamp> ’+Gh) (* 6 31 86400)) (stamp> ’+Gh))

(select (@Wcs)

((picoStamp +WordCount @Date) (word +WordCount @Word))

(same @Word @Wcs word)

(range @Date @Wcs picoStamp))))

(do 25

(NIL (prove Goal))

(bind @

(pr (cons (; @Wcs article) (; @Wcs picoStamp)))

(unless (flush) (bye)))))

(bye))

The above is all on the remote, note that the go method is built to be able to
receive repeated use of pr from the local/master of which there is no example
yet in VizReader, anyway because of that fact we need to finish getArticles
with a bye in order to stop execution. The getArticles function will repeatedly
pr all articles that are newer than half a year and which at the same time
contain the word in question, we will stop after having printed 25 of them. It
won’t make sense printing more since the receiving end only wants a maximum
of 25 anyway.

23

Asynchronous Programming in PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article briefly describes the standard way of Asynchronous Eval-
uation in PicoLisp before explaining how the functions call and in can be used in
a http only setting.

23.1 Introduction

If you’ve been using PicoLisp for some time doing nitty gritty stuff like in-
terfacing with such horrible things as PHP and other abominations you can
probably infer from the headline that the pitfall here is quite trivial. However,
it’s the journey that is the important part, not the somewhat anticlimactic
end to this whole adventure. Having said that, let’s get to it.

23.2 Asynchronous Evaluation in PicoLisp

In PicoLisp there is a clever way of asynchronous evaluation, it can be useful
if you:

1. Have a very computationally heavy problem, you fork the execution to
utilize multiple cores and all that cheap RAM.

2. Need to query X services and don’t care to wait for each call to finish
before making the next one.

This “strategy” involves

later1 and wait2, see documents for later3 in particular.

1http://software-lab.de/doc/refL.html#later
2http://software-lab.de/doc/refW.html#wait
3http://software-lab.de/doc/refL.html#later

288 Henrik Sarvell

My interest is web development so #2 is standard for me and up until now
I’ve used sockets4 in combination with pr5 and rd6. The “standard” PicoLisp
way to do these things if you will.

23.3 HTTP only

However, at the moment I’m working on something new and I want to work
solely with HTTP, not with PLIO, despite it being faster/more efficient than
HTTP. Let’s just say that HTTP is the only allowed way of communication
in my “spec”.

23.3.1 Using call

So I went happily on my way coding up all this communication with the help
of CURL and the call7 function.

Let’s have a code listing:

(de callAll (Func Data)

(let Result

(make

(for S (collect ’id ’+Server)

(later (chain (cons "void"))

(list (; S id) (callOne Func Data S)))))

(wait 30000 (not (memq "void" Result)))

Result))

Here you can see the core of the strategy, we loop through a list of nodes
(+Server) to query each and every for some arbitrary data. What you don’t
see in the above listing is the contents of callOne but it doesn’t matter, we’ll
get to that soon enough. In essence what we’re doing here is getting all the
nodes in my massive distributed database (there are at the time of this writing
two of them running on my laptop but whatever).

These nodes might be more or less busy doing other stuff so response times
might vary and can you imagine if the first one takes 10 seconds to reply and
the second one takes 5 seconds? In a non-asynch world that would add up to
a grand total of 15 seconds for the query.

4http://software-lab.de/doc/refC.html#connect
5http://software-lab.de/doc/refP.html#pr
6http://software-lab.de/doc/refR.html#rd
7http://software-lab.de/doc/refC.html#call

23 Asynchronous Programming in PicoLisp 289

Luckily we use later and wait to avoid that and query them in parallel for a
grand total of 10 seconds. What’s happening here is that we add the results
to a list, each entry in the list will start with “void”, then we fork8. Each fork
will return a result (or not but we’ll get to that very very soon).

The second (list ...) argument there is supposed to return a list with the id

of the node in the car and the result of the query in the cdr. If a node times
out one or more positions in the list will still be “void” instead of something
useful.

Finally the wait call will wait for 30 seconds or until all nodes have returned
something (i.e not timed out). After that wait we return the list which I
expected would look something like this for my specific case (counting the
objects in each node): ((1 “1“) (2 “0”)).

The problem was, the result didn’t look like that, it looked more like (NIL

NIL). I was using call like this:

(call ’curl ’-m 30 ’-d

‘‘key1=value1\&key2=value2‘‘ ’’http://localhost:8081/@exec‘‘)

The reason for that is ye old copy paste problem, not even that in this case
actually. Just checking code from an old project9 and seeing call in action
without realizing that in that case it was actually used correctly (I wasn’t
interested in the returned content).

23.3.2 Using in

Yep, call returns T, not the actual result which makes it useless in this case.
I now use in, like this:

(in (list ‘‘curl’’ ‘‘-m‘‘ Timeout ’’-d‘‘ ’’key1=value1\&key2=value2‘‘

’’http://localhost:8081/@exec‘‘) (till NIL T))

and all is well.

So now you don’t have make the same mistake and spend two hours of your
life before you actually RTFM. However, by now you should’ve realized that
asynchronous logic can be indispensible when you don’t want to wait for too
long for something good.

8http://software-lab.de/doc/refP.html#pipe
9http://vizreader.com

24

PicoLisp Ticker

Alexander Burger

abu@software-lab.de

Summary. This article describes how a PicoLisp Ticker page is set up to pro-
duce an endless stream of pseudo-text, and how the Googlebot reacts to such “non-
sensical” data.

24.1 Producing an endless stream of pseudo-text

Around end of May, I was playing with an algorithm I had received from Bengt
Grahn, many years ago. A small program - it was even part of the PicoLisp
distribution (“misc/crap.l“) for many years - which when given an arbitrary
sample text in some language, produces an endless stream of pseudo-text
which strongly resembles that language.

It was fun, so I decided to set up a PicoLisp “Ticker” page, producing a stream
of “news”: http://ticker.picolisp.com1

24.2 Implementing a ticker page

The source for the server is simple:

(allowed ()

*Page "!start" "@lib.css" "ticker.zip")

(load "@lib/http.l" "@lib/xhtml.l")

(load "misc/crap.l")

(one *Page)

1http://ticker.picolisp.com

292 Alexander Burger

(de start ()

(seed (time))

(html 0 "PicoLisp Ticker" "@lib.css" NIL

(<h2> NIL "Page " *Page)

(<div> ’em50

(do 3 (<p> NIL (crap 4)))

(<spread>

(<href> "Sources" "ticker.zip")

(<this> ’*Page (inc *Page) "Next page")))))

(de main ()

(learn "misc/ticker.txt"))

(de go ()

(server 21000 "!start"))

The sample text for the learning phase, “misc/ticker.txt“, is a plain text ver-
sion of the PicoLisp FAQ2. The complete source, including the text generator,
can be downloaded via the “Sources” link as “ticker.zip”.

Now look at the “Next page” link, appearing on the bottom right of the page.
It always points to a page with a number one greater than the current page,
providing an unlimited supply of ticker pages.

I went ahead, and installed and started the server. To get some logging, I
inserted the line

(out 2 (prinl (stamp) " {" *Url "} Page " *Page " [" *Adr "] " *Agent))

at the beginning of the start function.

24.3 Googlebot in action

On June 18th I announced it on Twitter, and watched the log files. Immedi-
ately, within one or two seconds (!), Googlebot accessed it:

2011-06-18 11:22:04 Page 1 [66.249.71.139] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Wow, I thought, that was fast! Don’t know if this was just by chance, or if
Google always has such a close watch on Twitter.

2http://software-lab.de/doc/faq.html

24 PicoLisp Ticker 293

Anyway, I was curious about what the search engine would do with such
nonsense text, and how it would handle the infinite number of pages. During
the next seconds and minutes, other bots and possibly human users accessed
the ticker:

2011-06-18 11:22:08 Page 1 [65.52.23.76] Mozilla/4.0 (compatible;

MSIE 7.0; Windows NT 6.0)

2011-06-18 11:22:10 Page 1 [65.52.4.133] Mozilla/4.0 (compatible;

MSIE 7.0; Windows NT 6.0)

2011-06-18 11:22:20 Page 1 [50.16.239.111] Mozilla/5.0 (compatible;

Birubot/1.0) Gecko/2009032608 Firefox/3.0.8

2011-06-18 11:29:52 Page 1 [174.129.42.87] Python-urllib/2.6

2011-06-18 11:30:34 Page 1 [174.129.42.87] Python-urllib/2.6

2011-06-18 11:33:54 Page 1 [89.151.99.92] Mozilla/5.0 (compatible;

MSIE 6.0b; Windows NT 5.0) Gecko/2009011913 Firefox/3.0.6

TweetmemeBot

2011-06-18 11:33:5n4 Page 1 [89.151.99.92] Mozilla/5.0 (compatible;

MSIE 6.0b; Windows NT 5.0) Gecko/2009011913 Firefox/3.0.6

TweetmemeBot

2011-06-18 13:47:21 Page 1 [190.175.174.220] Mozilla/5.0 (X11; U;

Linux i686; en-US; rv:1.9.2.17) Gecko/20110428 Fedora/3.6.17-1.fc14

Firefox/3.6.17

2011-06-18 13:49:13 Page 2 [190.175.174.220] Mozilla/5.0 (X11; U;

Linux i686; en-US; rv:1.9.2.17) Gecko/20110428 Fedora/3.6.17-1.fc14

Firefox/3.6.17

2011-06-18 13:49:21 Page 3 [190.175.174.220] Mozilla/5.0 (X11; U;

Linux i686; en-US; rv:1.9.2.17) Gecko/20110428 Fedora/3.6.17-1.fc14

Firefox/3.6.17

2011-06-18 19:43:36 Page 1 [24.167.162.218] Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.n742.91

Safari/534.30

294 Alexander Burger

2011-06-18 19:43:54 Page 2 [24.167.162.218] Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91

Safari/534.30

2011-06-18 19:44:11 Page 3 [24.167.162.218] Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91

Safari/534.30

2011-06-18 19:44:13 Page 4 [24.167.162.218] Mozillan/5.0 (X11; Linux

x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91

Safari/534.30

2011-06-18 19:44:16 Page 5 [24.167.162.218] Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91

Safari/534.30

2011-06-18 19:44:18 Page 6 [24.167.162.218] Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91

Safari/534.30

2011-06-18 19:44:20 Page 7 [24.167.162.218] Mozilla/5.0 (X11; Linux

x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91

Safari/534.30

Mr. Google came back the following day:

2011-06-19 00:25:57 Page 2 [66.249.67.197] Mozilla/5.0 (compatible;

Googlebot/2.1; +http://www.google.com/bot.html)

2011-06-19 01:03:13 Page 3 [66.249.67.197] Mozilla/5.0 (compatible;

Googlebot/2.1; +http://www.google.com/bot.html)

2011-06-19 01:35:57 Page 4 [66.249.67.197] Mozilla/5.0 (compatible;

Googlebot/2.1; +http://www.google.com/bot.html)

2011-06-19 02:39:19 Page 5 [66.249.67.197] Mozilla/5.0 (compatible;

Googlebot/2.1; +http://www.google.com/bot.html)

2011-06-19 03:n43:39 Page 6 [66.249.67.197] Mozilla/5.0 (compatible;

Googlebot/2.1; +http://www.google.com/bot.html)

2011-06-19 04:17:02 Page 7 [66.249.67.197] Mozilla/5.0 (compatible;

Googlebot/2.1; +http://www.google.com/bot.html)

24 PicoLisp Ticker 295

In between (not shown here) were also some accesses, probably by non-bots,
who usually gave up after a few pages.

Mr. Google, however, assiduously went through “all” pages. The page numbers
increased sequentially, but he also re-visited page 1, going up again. Now there
were several indexing threads, and by June 23rd the first one exceeded page
150.

I felt sorry for poor Googlebot, and installed a “robots.txt” the same day,
disallowing the ticker page for robots. I could see that several other bots
fetched “robots.txt”. But not Google. Instead, it kept following the pages of
the ticker.

Then, finally, on July 5th, Googlebot looked at “robots.txt”:

"robots.txt" 2011-07-05 07:03:05 Mozilla/5.0 (compatible;

Googlebot/2.1; +http://www.google.com/bot.html) ticker.picolisp.com

"robots.txt: disallowed all"

The indexing, however, went on. Excerpt:

2011-07-05 04:27:46 {!start} Page 500 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-05 04:58:50 {!start} Page 501 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-05 05:30:24 {!start} Page 502 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-05 06:02:10 {!start} Page 503 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-05 06:32:14 {!start} Page 504 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-05 07:02:41 {!start} Page 505 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-05 08:02:31 {!start} Page 506 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-05 08:45:52 {!start} Page 507 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

296 Alexander Burger

2011-07-05 09:20:06 {!start} Page 508 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-05 09:51:49 {!start} Page 509 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Strange. I would have expected the indexing to stop after Page 505.

In fact, all other robots seem to obey “robots.txt”. Mr. Google, however, even
started a new thread five days later again:

2011-07-10 02:22:52 {!start} Page 1 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

I should feel flattered, if the PicoLisp news ticker is so interesting!

How will that go on? As of today, we have reached

2011-07-15 09:42:36 {!start} Page 879 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

I’ll stay tuned ...

Now ... 8 hours later (17:10):

As I wrote in the mailing list, I’ve extended “robots.txt/default“ to exclude
also “/21000/“ from ”picolisp.com“. This was 14:58, two hours ago. Mean-
while,

2011-07-15 15:29:59 {!start} Page 800 [74.125.94.84] Mozilla/5.0

(X11; Linux x86_64) AppleWebKit/534.24 (KHTML, like Gecko; Google

Web Preview) Chrome/11.0.696 Safari/534.24

2011-07-15 15:43:58 {!start} Page 889 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-15 16:13:54 {!start} Page 890 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

2011-07-15 16:27:24 {!start} Page 1 [66.249.71.203] Mozilla/5.0

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)

24 PicoLisp Ticker 297

we still have accesses, and even a restart from page one (which I wouldn’t
have expected now).

As I wrote, “robots.txt/default“ now looks like this:

(prinl "User-Agent: *")

(prinl "Disallow:"

(cond

((= *Host ’‘(chop "ticker.picolisp.com")) " /")

((= *Host ’‘(chop "picolisp.com")) " /21000/")))

Looking at the returned contents:

: (client "ticker.picolisp.com" 80 "robots.txt" (out NIL (echo)))

User-Agent: *

Disallow: /

and

: (client "picolisp.com" 80 "robots.txt" (out NIL (echo)))

User-Agent: *

Disallow: /21000/

... next morning

Good! This helped. Googlebot seems to have stopped all traversals.

The log entry at 16:27 yesterday is the last one.

In summary, I can’t blame Google. It was actually my fault not to explicitly
disallow /21000/, because for a bot the links looks like pointing to a different
site. Just disabling the “root” of the traversal is not enough; there is no
garbage collector involved.

25

The many uses of @ in PicoLisp

Thorsten Jolitz

tjolitz@gmail.com

Summary. This article gives an overview over the many uses of @ in PicoLisp.

25.1 The @ mark in PicoLisp

The AT-mark @ is everywhere in PicoLisp source code, and sometimes it is
not obvious, at least for beginners, what the meaning of @ in the context at
hand is.

Here is a table that summarizes all uses of @ in PicoLisp, giving examples
and explanations, as well as links to related docs with more information. It is
probably necessary to read the docs first to understand the compact informa-
tion in the table. This summary serves only as a quick overview, helping to
find out the context and meaning of an otherwise mysterious @ mark in some
PicoLisp code.

300 Thorsten Jolitz

All (?) possible uses of @ with examples and explanations

+--+

| context | use | meaning | reference |

|-----------------+--------------------+---------------------------------------+-----------------|

| CAR of a lambda | | all arguments are evaluated and kept | http:// |

| expression | (de foo @ ...) | internally in a list | software-lab.de |

| | | | /doc/ref.html |

|-----------------+--------------------+---------------------------------------+-----------------|

| | | the result of the last (3) evaluation | http:// |

| read-eval-loops | (- @ @@ @@@) | (s) stored in the VAL of symbol | software-lab.de |

| | | | /doc/ref.html |

|-----------------+--------------------+---------------------------------------+-----------------|

| flow- and logic | (while (read) | | |

| functions with | (println @)), (and | store result of (the last) | http:// |

| conditional | and (@ (min @ 5) | conditional expression | software-lab.de |

| expressions | (prinl @) (gt0 | | /doc/ref.html |

| | (dec @)) .)) | | |

|-----------------+--------------------+---------------------------------------+-----------------|

| flow- and logic | (case @ ("^M" NIL) | | http:// |

| functions with | ("^J" "^M") (T @) | store result of controlling | software-lab.de |

| controlling |) | expression | /doc/ref.html |

| expressions | | | |

|-----------------+--------------------+---------------------------------------+-----------------|

| ’match’ and | (match ’(@A Zeit) | | http:// |

| ’fill’ | ’(Keine)) | Pattern Wildcard | software-lab.de |

| | | | /doc/ref.html |

|-----------------+--------------------+---------------------------------------+-----------------|

| | | replacing all occurrences of an | http:// |

| | (text "abc @1 def | at-mark "@", followed by one of the | software-lab.de |

| ’text’ | @2" ’XYZ 123) | letters "1" through "9", and "A" | /doc/refT.html# |

| | | through "Z", with the corresponding | text |

| | | any argument. | |

|-----------------+--------------------+---------------------------------------+-----------------|

| | (load "@lib/ | | http:// |

| path names | misc.l") | home directory substitution | software-lab.de |

| | | | /doc/tut.html |

|-----------------+--------------------+---------------------------------------+-----------------|

| | (be likes (John | | http:// |

| Pilog | @X)) | Pilog variable | software-lab.de |

| | | | /doc/ref.html |

|-----------------+--------------------+---------------------------------------+-----------------|

| | (be likes (John | | http:// |

| Pilog | @)) | Anonymous Pilog variable | software-lab.de |

| | | | /doc/ref.html |

|-----------------+--------------------+---------------------------------------+-----------------|

| | (native "@" | (64-bit version only) Calls a native | http:// |

| shared object | "getenv" ’S | C function. The first argument should | software-lab.de |

| libraries | "TERM") # Same as | specify a shared object library, e.g. | /doc/refN.html# |

| | (sys "TERM") | "@" (here @ as transient symbol | native |

| | | stands for the current main program). | |

+--+

26

Wacky Stuff with circular Lists

José Ignacio Romero

jir@2.71828.com.ar

Summary. This article demonstrates and explains cirular lists in PicoLisp.

26.1 Example 1 with walk-through

(and and (@ (min @ 5) (prinl @) (gt0 (dec @)) .))

I’m eval. I see a list, look inside, I see a symbol called ’and. I look at it’s
val. It’s a number, thus a function pointer, I call it with the rest of the list
unevaluated.

I’m doAnd, I look at the list I was passed, I see a symbol called ’and, I evaluate
it, a number came out, it’s not NIL, so I shove it in @ and look at the next
cadr. It’s a list, I evaluate it, has a symbol called @ in it’s car, that symbol
resolves to a number, a pointer to doAnd, i call it with the rest of the list
unchanged.

I’m doAnd, I look at the list I was passed, the first argument, evaluating it
results in a function call that returns 5, it’s not NIL, so I shove it to @ and go
on. The next element is another list, a call to prinl happens, it returned 5,
it’s not NIL, so I shove it to @ and go on. Look at the next element, a call to
(gt0 (dec @)), returns 4, that is not NIL, so I shove the 4 in @ and go on.
Looking at the next cadr I see @ again (but I don’t realize, because I don’t
know wether a list is circular or not), it evaluates to 4, so I shove it to @ keep
going.

I see (min @ 5) again.........

... 3

... 2

... 1

... (gt0 (dec @)) returns NIL here

302 José Ignacio Romero

so I stop evaluating and return NIL

Back in the first doAnd, I see the previous call returned NIL, so I stop evalu-
ating right there and return NIL.

26.2 Example 2 with graphical depiction

Example 1 could be written with only one ’and using the right syntax (and
losing part of it’s rube-goldberg appeal):

(and 5 . ((prinl @) (gt0 (dec @)) .))

This is how that S-expression should look in memory, I omitted the technically
correct representation of numbers and symbols to keep it simple:

,-----------------------,

+---+---+ +---+---+ ’->+---+---+ +---+---+ |

| | ---->| ------>| | ---->| | ----’

+ | +---+ + | +---+ + | +---+ + | +---+

v v | ,--------’

and 5 | | +---+---+ +---+---+

| ’->| | ---->| | / |

,-----------’ + | +---+ + | +---+

| v |

| gt0 | +---+---+ +---+---+

| ’->| | ---->| | / |

| +---+---+ +---+---+ + | +---+ + | +---+

’-->| | ---->| | / | v v

+ | +---+ + | +---+ dec @

v v

prinl @

27

Speedtest PicoLisp vs Elisp

Thorsten Jolitz1 and José Ignacio Romero2

1 tjolitz@gmail.com
2 jir@2.71828.com.ar

Summary. This article compares the speed of (compiled and interpreted) Emacs
Lisp with (always interpreted) PicoLisp, testing the costs of function calls/arithmetic
as well as list manipulation.

27.1 The Tests

27.1.1 Function Call/Arithmetic Cost

Shell Script Approach

The classic Fibonacci function was used for measuring function call/arithmetic
cost.

Here is the PicoLisp script:

#!/usr/bin/picolisp

(de fibo (N)

(if (> 2 N)

1

(+ (fibo (dec N)) (fibo (- N 2)))))

(fibo 35)

(bye)

Here is the (uncompiled) Emacs Lisp script:

304 Thorsten Jolitz and José Ignacio Romero

#!/usr/bin/emacs --script

(defun fibo (N)

(if (> 2 N)

1

(+ (fibo (1- N)) (fibo (- N 2)))))

(fibo 35)

Here is the script that calls a byte-compiled Emacs Lisp file with the above
function definition and call:

#! /bin/sh

":"; exec emacs --no-site-file --script

"/home/tj/shellscripts/tj-fibo-compiled.elc" # -*-emacs-lisp-*-

The following shell command was used to measure the performance:

[tj@arch]$ time script

with script being one of the three scripts above.

Command Line Approach

This is an alternative, more elegant and efficient way to run the tests. Just
produce these two files:

$ cat > fibo.el << .

(defun fibo (N)

(if (> 2 N)

1

(+ (fibo (1- N)) (fibo (- N 2)))))

(fibo 35)

.

$ cat > fibo.l << .

(de fibo (N)

(if (> 2 N)

1

(+ (fibo (dec N)) (fibo (- N 2)))))

(fibo 35)

.

27 Speedtest PicoLisp vs Elisp 305

Then byte-compile fibo.el and run the following commands:

$ time emacs --no-site-file --script fibo.el

$ time emacs --no-site-file --script fibo.elc

$ time pil fibo.l -bye

As a side note: Emacs can be invoked noninteractively from the shell to do
byte compilation with the aid of the function batch-byte-compile. In this case,
the files to be compiled are specified with command-line arguments. Use a shell
command of the form

emacs -batch -f batch-byte-compile files...

for example

$ emacs --no-site-file -batch -f batch-byte-compile fibo.el

27.1.2 List Manipulation Cost

The costs of list manipulation were tested with the “extensive list manipula-
tions“ code from Alexander Burger:

$ cat > tst.l << .

(de tst ()

(mapcar

(quote (X)

(cons

(car X)

(reverse (delete (car X) (cdr X)))))

’((a b c a b c) (b c d b c d) (c d e c d e) (d e f d e f))))

(do 1000000 (tst))

.

306 Thorsten Jolitz and José Ignacio Romero

$ cat > tst.el << .

(defun tst ()

(mapcar

(lambda (X)

(cons

(car X)

(reverse (delete (car X) (cdr X)))))

’((a b c a b c) (b c d b c d) (c d e c d e) (d e f d e f))))

(dotimes (i 1000000) (tst))

.

27.2 Results

27.2.1 32bit

System Information

$ uname -a

Linux icz 2.6.32-5-686 #1 SMP Mon Jan 16 16:04:25 UTC 2012 i686

GNU/Linux

$ cat /proc/cpuinfo |grep "model name" | cut -d: -f2

Pentium(R) Dual-Core CPU T4200 @ 2.00GHz

Pentium(R) Dual-Core CPU T4200 @ 2.00GHz

Function Calls

These are the results for running fibo (N) with N=35:

| PicoLisp | 0m5.662s | 1x |

| Elisp | 0m13.854s | ca 2.5x |

| Elisp (compiled) | 0m5.882s | ca 1x |

PicoLisp is 2.5x faster than interpreted Emacs Lisp and as fast as compiled
Emacs Lisp.

List Manipulation

These are the results for running tst with (do 1000000 (tst) or (dotimes
(i 1000000) (tst)):

27 Speedtest PicoLisp vs Elisp 307

| PicoLisp | 0m1.208s | 1x |

| Elisp | 0m8.311s | ca 7x |

| Elisp (compiled) | 0m5.622s | ca 4.5x |

PicoLisp is 7x faster than interpreted Emacs Lisp and 4.5x faster than com-
piled Emacs Lisp. Looks like the Emacs compiler can’t improve much in that
function and it’s still 4.6-6.9x slower than PicoLisp.

27.2.2 64bit

System Information

$ uname -a

Linux arch 3.3.2-1-ARCH #1 SMP PREEMPT Sat Apr 14 09:48:37 CEST 2012

x86_64 AMD Athlon(tm) 64 X2 Dual Core Processor 5000+ AuthenticAMD

GNU/Linux

$ cat /proc/cpuinfo |grep "model name" | cut -d: -f2

AMD Athlon(tm) 64 X2 Dual Core Processor 5000+

AMD Athlon(tm) 64 X2 Dual Core Processor 5000+

Function Calls

These are the results for running fibo (N) with N=35:

| PicoLisp | 0m3.191s | 1x |

| Elisp | 0m12.731s | ca 4x |

| Elisp (compiled) | 0m6.635s | ca 2x |

PicoLisp is 4x faster than interpreted Emacs Lisp and 2x faster than compiled
Emacs Lisp.

These are the results for running fibo (N) with N=40:

| PicoLisp | 0m35.982s | 1x |

| Elisp | 2m14.352s | ca 4x |

| Elisp (compiled) | 1m13.304s | ca 2x |

Again PicoLisp is ca. 2x faster than compiled Elisp and 4x faster than inter-
preted Elisp.

308 Thorsten Jolitz and José Ignacio Romero

List Manipulation

These are the results for running tst with (do 1000000 (tst) or (dotimes
(i 1000000) (tst)):

| PicoLisp | 0m1.635s | 1x |

| Elisp | 0m9.582s | ca 6x |

| Elisp (compiled) | 0m7.129s | ca 4.5x |

PicoLisp is 6x faster than interpreted Emacs Lisp and 4.5x faster than com-
piled Emacs Lisp.

Just to remind you - PicoLisp is always interpreted, but the interpreter is
designed with the need for speed3.

27.2.3 32bit vs 64bit

All other things equal, 64-bit PicoLisp is usually slower than the 32-bit version,
due to a poorer memory cache performance (the cells are twice as large size).
On the other hand, arithmetics are faster, due to the additional short number
type in pil64.

3http://picolisp.com/5000/!wiki?needforspeed

Part V

PicoLisp Community Tutorials

28

PicoLisp at first glance

Henrik Sarvell

hsarvell@gmail.com

Summary. This is the first in a series of articles for absolute PicoLisp beginners.
The series will contrast PicoLisp against PHP in the examples to make it easier for
C-people to understand.

28.1 PicoLisp at first glance

As I announced earlier, the plan was to create some small proof of concept
web-thing in c-lisp but it didn’t work out. Instead I ended up doing just that in
PicoLisp instead, I guess me and c-lisp was not meant to be. Anyway, PicoLisp
is created by Alex Burger without whose help and patience I wouldn’t have
gone very far.

Actually at first PicoLisp seemed too good to be true, just a few things:

• Good documentation (rare in the Lisp world).

• Object persistence/database.

• Totally dynamically interpreted (no need for macros).

• UTF–8 support out of the box.

• Built in webserver.

• GUI framework to render HTML.

• Mailing function with attachments (SMTP).

• File uploads.

OK so maybe it was a little too good to be true, the documentation is good
but covers far from everything, and the reference is what it is, a reference for
people who already know the language to some extent. The GUI framework is

http://www.software-lab.de/down.html

312 Henrik Sarvell

tailored to Alex’s work which is administrative programs for big corporations
which differs from what we do here. Most of the stuff you might want to
change is made in PicoLisp though so it won’t be very hard to change, no
need to touch C. As far as the documentation goes; I will try and remedy the
situation somewhat in the near future, the more I learn the more I can teach.

For some time now I’ve struggled with PicoLisp and it gets easier every day,
my C-mind is slowly expanding. It has been painful, and still is, but it is worth
it http://www.prodevtips.com/wp-includes/images/smilies/icon smile.gif

So having said the above I could go directly to fast-explaining what I’ve done
so far which is ye old registration form. Just like I do with my PHP stuff.
That would, understandably, be totally useless since we’re talking about a
language with an extremely small adoption, even counting all the people who
are fluent in other Lisps.

This will instead be a new series for absolute PicoLisp beginners, just like I
was. I will contrast PicoLisp against PHP in the examples to make it easier for
c-people to understand. At the end of this series will be the explanation of how
the registration form works, hopefully by then it will be easily understood.

Disclaimer : This series will only be about PicoLisp, the content in the tutorials
might or might not be applicable to other Lisps.

http://www.prodevtips.com/2007/10/15/the-c-dominion/
http://www.prodevtips.com/wp-includes/images/smilies/icon_smile.gif

29

Registers and Quoting in PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article explains how to use the fundamental Lisp functions car

and cdr in PicoLisp.

29.1 Install and Start

By now you should have compiled and installed PicoLisp as per the install
instructions. We will start the interpreter with ./dbg. You can create a file
and just copy paste the tutorial snippets and run them in the interpreter with
: (load “tutorial.l”). To rerun you hit “Esc” followed by “k” to step through
prior commands, hit “Enter” when you see the load command.

29.2 The car and the cdr

As in other Lisps the Contents of Address Register (CAR) and Contents

of Decrement Register (CDR) is at the heart of the language. You might
also want to check out Lisp on Wikipedia before you continue. Also be sure
to check out the naming conventions.

Let’s try it out:

(setq *Greeting (list "Hello" "how" "are" "you" "doing?"))

(prin (car *Greeting))

Setq will put the list created with list in the variable Greeting. Now run the
above code again but substitute car Greeting with cdr Greeting. As you
see this is basically the key =>value system of PHP.

http://www.software-lab.de/INSTALL
http://www.software-lab.de/INSTALL
http://www.software-lab.de/tut.html#ledit
http://www.software-lab.de/ref.html#cell
http://en.wikipedia.org/wiki/Lisp_%28programming_language%29
http://www.software-lab.de/ref.html#conv

314 Henrik Sarvell

Let’s create a simple table/2D array:

(setq *Fruits

(list

(list "green" "apple" "guava" "avocado")

(list "red" "cherry" "apple")))

(prin (car *Fruits))

As you can see you will get the whole first list from the last car command, not
really surprising if we follow the logic from the first example, this whole list
will basically be the key that was represented by “Hello” above. Try writing

(prin (car (car *Fruits)))

on the last line instead. As you see this will return “green” which is the car

of the first list which in turn is the car of the whole table. These double, triple
and quadruple car/cdr calls have shortcuts. Try

(prin (caar *Fruits))

instead and you will get the same result. See what you get when you try cdr,
cdar, cadr, caadr and cdadr. Which combinations are they shortcuts for?
Take your time to learn how these register functions applies to various list
configurations, the time will be well spent because these things are used all
the time. They’re everywhere.

As it happens there is a shortcut for retrieving the contents of any key even
if it’s in place 100 down the line. Try substituting the last line with

(prin (assoc "red" *Fruits))

instead. As you can see the whole list with red fruits and the key (car) is
returned. This is normally not what you want when you make a call like that,
you don’t want the key too, only the fruits. But armed with our knowledge of
how the whole car and cdr thing works we quickly do the following:

(prin (cdr (assoc "red" *Fruits)))

That’s better, we now get all red fruits, and only the fruits.

29 Registers and Quoting in PicoLisp 315

29.3 Quoting

Try this:

(set ’*Greeting ’("Hello" "how" "are" "you" "doing?"))

(prin (car *Greeting))

Different than above but the result is the same, it’s easy to see that setq

var is just a shortcut for set var. The is a shortcut for quote, everything
quoted is taken literally. Variable names inside a quoted list will of course not
expand into their values - except when when evaluated or passed to a family
of special functions, mapcar (described below) is one of them.

Evaluation example:

(setq *Prin ’prin)

(eval ’(*Prin "hello"))

However, when not evaluated:

(setq *Prin ’prin)

(prin ’(*Prin "hello"))

When thinking about quoting it helps - at least for me - to think about the
turing machine that accepts instructions in the form of these long paper strips
that you feed into it. On the other side you get the result of the computation.
When feeding the machine a variable it will of course expand into the strip it
contains. When quoting though you simply feed the machine the raw/literal
strip, telling it to treat it as such.

There are however exceptions, some functions work on data by reference, just
like with the & in PHP. Let’s look at such an example:

(setq *Greeting ’("Hello" "how" "are" "you" "doing?"))

(prinl (pop ’*Greeting))

(prinl *Greeting)

In this case, as you can see the will make the pop function treat Greeting as
something passed by reference. Quoted lists can of course be created dynam-
ically and then be passed around and executed to create yet other lists that
will be executed in other places in absurdity. If done properly you can in this
way utilize the power of Lisp.

316 Henrik Sarvell

As it happens there is a whole category of functions that will accept a function
literal (quoted list) and use that function on another list. Let’s look at a simple
example:

(de getSomething (Lst R)

(mapcar ’((Element) (R Element)) Lst))

(setq *Fruits

’(("green" "apple" "guava" "avocado")

("red" "cherry" "apple")))

(prin (getSomething *Fruits ’car))

In this case we will retrieve all keys, basically the same functionality as the
PHP function array keys. If you do cdr you will instead get the values which
corresponds to array values(). What if you want to get the first fruit in each
sub-list? Yep you guessed it, just pass cadr instead. Pretty dynamic isn’t it?
If we return to the Turing machine analogy, this would constitute using a
placeholder on a raw strip that will get it’s value when it’s time to execute
the strip/list.

What’s happening here is that the function mapcar takes a function literal as
it’s first parameter, the second parameter is the list the function literal will
operate on, actually mapcar can accept several lists and use their contents in
the function literal, however in this case we just keep it simple. Element will
be each element in the list, in our case the two sub-lists. The result will be a
new list whose elements are the results of each operation our function literal
performs. That is why we get a list with “green” and “red” in it if we pass
car to getSomething.

Notice also that there is no return keyword, in PicoLisp (and all Lisps I think)
all expressions return something, hence no need for a return keyword. And the
(de keyword is the same as function in PHP, we simply define a new function
to be used later. That’s all for this time, the next tutorial will probably cover
more advanced list manipulation examples.

30

Working with tables in PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article demonstrates how to construct a table in PicoLisp, retrieve
data from it and sort it.

30.1 Example Data

Let’s examine a common example, a list of people forming a table without
key access to each person could look like this:

(setq *People

’(((name . John) (phone . 123456) (age . 56))

((name . Fred) (phone . 654321) (age . 35))

((name . Fred) (phone . 236597) (age . 38))

((name . Hank) (phone . 078965) (age . 23))))

30.2 Retrieving data from the table

What you see is they way to specify pairs, each pair is a car and a cdr. If you
recall the way assoc worked in the prior tutorial you realize that each sublist
can be accessed with that function - since each key is a car. With that in
mind a solution for retrieving a person by key and value could look like this:

(de assoc2d (Lst K V)

(filter ’((Sub)

(let CurValue (cdr (assoc K Sub))

(= V CurValue))) Lst))

(println (assoc2d *People ’name ’Fred))

318 Henrik Sarvell

The above example will retrieve a new list with all persons called Fred. The
way this works is through filter which is a member of the same family as
mapcar. Filter will return a new list with all items that the callback/literal
function returned true for. As in the example in the prior tutorial Sub will be
each element, in this case each person.

Next we initiate a temporary variable with (let CurValue (cdr (assoc K

Sub) logic using CurValue here), let is a cousin of setq but will create it’s own
little space. Had we already had a variable called CurValue with some value
in it in the above example - that variable would’ve gotten a new value inside
the let expression. However after the let expression has finished executing,
CurValue would revert back to it’s original value. It’s a convenient way of
using a variable name temporarily without having to worry about wrecking
something else.

Next we use the equal (=) function to test if our current value is equal to the
passed value in V, since = will return T (Pico Lisp’s equivalent to true) if they
are equal, or NIL (the equivalent of false) we are done. All sublists without
the wanted key/value combination will return NIL and will therefore not get
a place in the return array.

What if you want to create your own table system, maybe you think the above
way of defining a table is too verbose, you want it to look like this instead:

(setq *People

’((name John phone 123456 age 56)

(name Fred phone 654321 age 35)

(name Fred phone 236597 age 38)

(name Hank phone 078965 age 23)))

No problem, then you could define the lookup logic like this instead:

(de assoc1d (Lst Key)

(loop

(NIL Lst NIL)

(T (= Key (pop ’Lst)) (pop ’Lst))

(pop ’Lst)))

(de assoc2d (Lst K V)

(filter ’((Sub)

(= V (assoc1d Sub K))) Lst))

(println (assoc2d *People ’name ’Fred))

30 Working with tables in PicoLisp 319

Our custom assoc1d function is basically a replacement of assoc tailored to
our custom table system. It will return the value of the passed key or NIL if
the key can’t be found. You could try it out in isolation:

(println (assoc1d ’(phone 123456 name John age 56) ’name))

The loop function will let us loop infinitely and have an arbitrary amount
of conditional exits at the same time. We begin by checking if the list (Lst)
is NIL (all elements have been popped off), if that is the case we return NIL.
If not then we pop an element off and check if it matches the passed key, if
yes then we return the next element (the value) by popping it off. If the key
didn’t match we will continue down the loop conditionals and simply pop the
value off without returning it. The equivalent would look something like this
in PHP:

function assoc1d($lst, $key){

while(!empty($lst)){

if($key == array_shift($lst))

return array_shift($lst);

else

array_shift($lst);

}

return false;

}

In this case the Lisp equivalent isn’t really any shorter. However, the alterna-
tive to loop would be the use of temporary variables and so on and that is a
road we don’t want to start walking down.

The assoc2d function doesn’t present us with any surprises, we simply check
each returned value from the assoc1d function with the passed value (V).

30.3 Sort the table

So what if we want to sort our table of persons? The solution is similar to
sorting tables in PHP. We will extract the values (column) we want to sort
by - with the help of the key:

(de getCol (Lst K)

(mapcar ’((Sub)(assoc1d Sub K)) Lst))

(println (getCol *People ’phone))

http://www.prodevtips.com/2008/01/06/sorting-2d-arrays-in-php-anectodes-and-reflections/

320 Henrik Sarvell

Let’s put it all together:

(de getSorting (Sorted Original)

(make

(while Original

(let Value (pop ’Original)

(setq Sorted

(place

(link (index Value Sorted)) Sorted NIL))))))

(de sort2d (L Key)

(let Col (getCol L Key)

(mapcar ’((Pos)(get L Pos)) (getSorting (sort (copy Col)) Col))))

(println (sort2d *People ’name))

When contemplating problems in Lisp it helps to think in terms of how to
generate intermediate lists that are needed to solve the problem. In this case
we generate a list describing how to sort our table through the getSorting

function. That list will be used in the Sort2d function to do the actual sorting.

In Sort2d we begin by fetching the column represented by the key, in this
case we get a flat list of names as they appear in the table (a column). Note
that we use copy before we sort the first argument to getSorting, the reason
being that sort will also sort in place, therefore to get two distinct columns
in getSorting we have to copy one of them, in this case the sorted version.
Otherwise they would both be sorted and that would ruin everything.

Right at the beginning of getSorting we start with make which will initiate
a make environment. Inside a make environment there are a few special func-
tions that can be used, the most common one is link which we use here. In
this case make will return a list created with all arguments to link. It doesn’t
matter how or where the link is called, whenever and wherever it is called
within the make environment will cause it to append another item to the list
being made.

Here we will loop through the Original column with unsorted names and pop
a name off each time until it’s empty. Each name is stored in Value followed by
a call to setq to change the Sorted column but why? The reason is duplicate
names, we need some way of marking already fetched names by setting them
to NIL, otherwise the index function would return the same position for Fred.
This would later result in us getting a copy of the first Fred in the sorted table
instead of two unique Freds, that is really, really unwanted behavior.

This way of preventing duplicate Freds feels a little bit ugly. In Lisp there is
not one way of doing something, in fact there are probably an infinite number

30 Working with tables in PicoLisp 321

of ways of doing something, one better than the other, only the imagination
and cleverness of the programmer sets the limits. And unfortunately my limit
was reached here, but somehow I realize that there probably is a better way
. . .

Anyway, it’s the place function that is responsible for replacing names whose
positions we have already linked with NIL, the above way of doing this is
possible because link returns the value it links as well as linking it, thus it can
be used with place at the same time. Check out both index, place, make and
link in the reference.

The main point with getSorting is that we compare the sorted names with
the unsorted names and return the position of the original name in the sorted
column. These are then used in ((Pos)(get L Pos)) as each Pos with get.
Get can be used in a variety of situations, in this case it’s simply used as an
index lookup, in PHP it might have looked like $L[$Pos].

Don’t like the way the table got sorted? No problem, try calling Sort2d like
this instead:

(println (flip (sort2d *People ’name)))

Yep, flip will reverse the list.

Maybe a bit late but: This is probably not the way you would be working
with records in a “sharp” situation. Every person would then be a database
object and sorted upon retrieval, don’t get mad though. The above was a
good exercise in any case.

Note also the use of name, as you can see it seems like it’s a reserved word,
still we are able to use it by quoting it.

31

Simple OO in PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article describes the fundamentals of object-oriented programming
in PicoLisp: defining classes, creating instances, as well as fetching from and sorting
a list of objects.

31.1 Defining classes

PicoLisp has a very nice object system which will take some time to explore,
let’s begin with simple examples and work towards more complex scenarios.

(class +Person)

(dm hello> ()

(prin "hello"))

(hello> ’+Person)

In this example we do not instantiate an object, in PHP the last call would
correspond to Person::hello().

324 Henrik Sarvell

(class +Person)

(dm setHello> (HelloPhrase)

(=: hello HelloPhrase))

(dm hello> ()

(prin (: hello)))

(setHello> ’+Person "Hello how are you?")

(hello> ’+Person)

There are two shortcuts at work here, =: will put the contents of HelloPhrase
into the member variable hello, : will in turn get it.

31.2 Creating instances

Let’s start creating instances:

(class +Person)

(dm T (Age Name)

(=: age Age)

(=: name Name))

(setq *John (new ’(+Person) 65 ’John))

(show *John)

So the first argument to new is a quoted list with the class we want to use.
The constructor is the T method, that is a requirement, it always has to be
called T for PicoLisp to notice it correctly.

Add the above hello functions to the John code above and try:

(setHello> *John "Hello how are you?")

(hello> *John)

As you can see the result is the same, in this regard PicoLisp is similar to
PHP:

31 Simple OO in PicoLisp 325

class Person{

static $hello;

function __construct($age, $name){

$this->age = $age;

$this->name = $name;

}

static function setHello($HelloPhrase){

self::$hello = $HelloPhrase;

}

static function hello(){

echo self::$hello;

}

}

$john = new Person(65, "John");

$john->setHello("Hello how are you?");

$john->hello();

Person::hello();

The only difference is that PHP requires us to declare the $hello variable in
order for it to be used in subsequent functions. A requirement which makes
static usage less useful in PHP than in PicoLisp.

31.3 Fetch from and sort a list of objects

Let’s see how we can fetch from and sort a list of persons:

(setq *Persons (list

(new ’(+Person) 65 ’John)

(new ’(+Person) 38 ’Fred)

(new ’(+Person) 41 ’Annie)

(new ’(+Person) 42 ’Sam)))

326 Henrik Sarvell

This is actually how it could look after you get a list of people from a database
which makes this example more useful than the stuff we did in the prior
tutorial in this series.

(de assoc2d (Lst Key Value)

(filter ’((Sub)(= (get Sub Key) Value)) Lst))

(show (car (assoc2d *Persons ’name ’John)))

As you can see get can be used to get member variables in objects as well as
by index as in the prior tutorial.

Sorting is similar to what we have already done in the prior part, in fact
getSorting doesn’t have to be changed at all, neither does sort2d:

(de getCol (Lst K)

(mapcar ’((Sub)(get Sub K)) Lst))

(de getSorting...

(de sort2d...

(show (car (sort2d *Persons ’name)))

Try removing the car in the last call, you will get a list looking something like
($34567855 $68904356 $21345679 $56854378). Show will only print their
addresses when accessing objects indirectly as is the case here when they are
in a list. I leave it as an exercise to write a function that loops through the
list and shows each person.

32

More OO in PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article dives deeper into object-oriented programming in PicoLisp,
touching topics like singe and multiple inheritance as well as class extension on
demand.

32.1 Simple single inheritance

Let’s first look at a simple single inheritance example:

(class +Species)

(dm T (Species)

(=: species Species))

(class +Person +Species)

(dm T (Age Name)

(=: age Age)

(=: name Name)

(super "H. sapiens"))

(setq *John (new ’(+Person) 65 ’John))

(prin (get *John ’species))

Nothing really surprising here, the hierarchy is set from left to right in the
class definition, that’s why +Person comes before +Species: (class +Person

+Species).

328 Henrik Sarvell

(class +Animal +Species)

(dm T (Age Name . @)

(=: age Age)

(=: name Name)

(super (car (rest))))

(setq *John (new ’(+Animal) 25 ’John "G. gorilla"))

(prin (get *John ’species))

So John is now a gorilla instead. It’s starting to get interesting, the above
way of doing the argument list will enable us to pass a variable amount of
arguments, the ones ending up in the @ can be retrieved with rest, in this case
it’s the third one, “G. gorilla”. Note that rest will retrieve a list, even if there
is only one argument left in it, hence the use of car in this case to get only
the first element. In this case “G. gorilla” will be passed to the constructor of
+Species through super.

There is however at better way of doing the argument handling than (car

(rest)):

(class +Species)

(dm T (Species . @)

(=: species Species)

(=: description (next)))

(class +Animal +Species)

(dm T (Age Name . @)

(=: age Age)

(=: name Name)

(super (next) (car (rest))))

(setq *John (new ’(+Animal) 25 ’John "G. gorilla"

"Big leaf eating primate"))

(prin (get *John ’description))

That’s right, next will retrieve the next value from rest and in the process
remove the value by reference as demonstrated by the fact that (car (rest))

gives the proper result in this case. You would however want to use just
another (next) instead in a situation like the one above.

32 More OO in PicoLisp 329

32.2 Multiple inheritance

Let’s take a look at a more complex “horizontal” example, for another example
check out the OOP section in Alex’s Pico Lisp tutorial. I found it helpful, even
in the very beginning.

(class +Species)

(dm T (@)

(=: species (next)))

(dm show> ()

(pack " Species:" (: species)))

(class +Body)

(dm T (Age Weight Height . @)

(=: age Age)

(=: weight Weight)

(=: height Height)

(pass extra))

(dm show> ()

(pack " Age:" (: age) " Weight(kg):

" (: weight) " Height(cm):" (: height) (extra)))

(class +Person)

(dm T (Name Occupation . @)

(=: occupation Occupation)

(=: name Name)

(pass extra))

(dm show> ()

(pack " Name:" (: name) " Occupation:" (: occupation) (extra)))

(setq *John (new ’(+Person +Body +Species)

"John" "Teacher" 65 85 180 "H. Sapiens"))

(prin (show> *John))

In this case John is the combination of three different classes at once and the
way to call the next function in the horizontal hierarchy (from left to right)
is to use extra. In this case pass is a shortcut for sending rest to the next
constructor. Let’s introduce a new class:

http://www.software-lab.de/tut.html#oop
http://www.software-lab.de/tut.html

330 Henrik Sarvell

(class +Location)

(dm T (Location . @)

(=: location Location)

(pass extra))

(dm show> ()

(pack " Location:" (: location) (extra)))

(setq *John (new ’(+Person +Body +Location +Species)

"John" "Teacher" 65 85 180 "New York" "H. Sapiens"))

(prin (show> *John))

In this case the two middle classes +Body and +Location are interchangeable:

(setq *John (new ’(+Person +Location +Body +Species)

"John" "Teacher" "New York" 65 85 180 "H. Sapiens"))

This is basically the same thing since it’s not a hierarchy in the traditional
sense, the two middle classes do not have to know what is behind and after
in the chain.

This way of using chained relations is important, it is used for instance in the
GUI framework to validate forms by simply having a chk> function that uses
(pass extra) to walk the chain, each check is of course unique for each input
type, +TextField and +NumField are two examples.

32.3 Class extension on demand

Classes can be extended on demand:

(setq *John (new ’(+Person +Body +Location +Species)

"John" "Teacher" 65 85 180 "New York" "H. Sapiens"))

(extend +Body)

(dm bmi> ()

(*/ (: weight) 10000 (** (: height) 2)))

(prin (bmi> *John))

The **/* function is necessary to handle cases like this in order to get the
proper result by first multiplying the weight with 10000 and then dividing

32 More OO in PicoLisp 331

that result with 180*180. PicoLisp doesn’t handle intermediate floating point
numbers automatically. If you wanted an output with one decimal for instance
you could do:

(dm bmi> ()

(format (*/ (: weight) 100000 (** (: height) 2)) 1))

In this case format will take the number 262 and turn it into 26.1. A more
on the fly method of accomplishing the above would be:

(setq *John (new ’(+Person +Body +Location +Species)

"John" "Teacher" 65 85 180 "New York" "H. Sapiens"))

(push *John

’(bmi> () (format (*/ (: weight) 100000 (** (: height) 2)) 1)))

(prin (bmi> *John))

Or maybe the bmi> method is already part of some old class in some library
and now our program discovers that John needs that class too:

(class +WeightHandler)

(dm bmi> ()

(format (*/ (: weight) 100000 (** (: height) 2)) 1))

(setq *John (new ’(+Person +Body +Location +Species)

"John" "Teacher" 65 85 180 "New York" "H. Sapiens"))

(unless (method ’bmi> *John) (push *John ’+WeightHandler))

(prin (bmi> *John))

In this case method will return NIL if John doesn’t already have the ability
to calculate his BMI, in that case we simply push the WeightHandler class
in front of his other classes.

I don’t think I’ve ever experienced a more flexible object system.

33

Simple OODB in PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article first walks through a simple example that shows how a table
in a relational database system like MySQL would be implemented in PicoLisp’s
build-in object-oriented database. Then it discusses external symbols in PicoLisp.

33.1 Walk through a simple example

Let’s walk through a simple and usual example, what would constitute a user
table in MySQL:

(class +User +Entity)

(rel username (+Need +Key +String))

(rel password (+Need +String))

(pool "users.db")

(new! ’(+User) ’username "sam" ’password "parrotno5")

(new! ’(+User) ’username "fred" ’password "MegaPizza")

(new! ’(+User) ’username "anna" ’password "swooosh")

(new! ’(+User) ’username "fred" ’password "yiiihaaa")

(new! ’(+User) ’username NIL ’password "asdf")

(mapcar show (collect ’username ’+User))

Output:

334 Henrik Sarvell

{6} (+User)

password "swooosh"

username "anna"

{5} (+User)

password "MegaPizza"

username "fred"

{2} (+User)

password "parrotno5"

username "sam"

-> ({6} {5} {2})

That was quite a lot at the same time. All classes that are to generate objects
stored in the database needs to be children of +Entity. Furthermore some
relations are needed in the form of prefix classes, rel will in this case take
the name of the relation, username, and the list of classes that will define the
behavior of the relation. Prefix classes has been explained in the prior tutorial.

In the case of the username we have +Need which denotes that this relation
is needed for successful creation of the persistent object. As you can see in
the output the last call to new! (only difference from new is that we create
the object in a file instead of in the RAM) never resulted in an object on
disc since no key was created. In our case the username will be used as key
and needs to be unique, hence no second “fred” in the output. Of course both
username and password will both be strings. There is a short description of
more relations in the reference.

33.2 External symbols

Instead of the above run this (don’t delete users.db!):

(class +User +Entity)

(rel username (+Need +Key +String))

(rel password (+Need +String))

(pool "users.db")

(show ’{2})

This will give us “sam” which means that he is directly accessible through
{2} which Alex explains better than me:

http://www.software-lab.de/ref.html#dbase
http://www.software-lab.de/ref.html#external-io

33 Simple OODB in PicoLisp 335

External symbol names are surrounded by braces (‘{’ and ‘}’). The
characters of the symbol’s name itself identify the physical location
of the external object. This is currently the number of the starting
block in the database file, encoded in base–64 notation (characters ‘0
through 9, :’ through ;’, ‘A’ through ‘Z’ and ‘a’ through ‘z’).

Instead of (show {2}) try:

(show (db ’username ’+User "sam"))

This is basically the equivalent of:

SELECT * FROM ‘user‘ WHERE BINARY username = ’sam’

And

(show (db ’username ’+User "fred" ’password "MegaPizza"))

is of course the same as the login SQL:

SELECT * FROM ‘user‘ WHERE BINARY username = ’fred’

AND BINARY password = ’MegaPizza’

34

Advanced OODB in PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article describes how select (with and without Pilog), insert, up-
date and delete actions are realized with PicoLisp’s object-oriented database.

34.1 Assumptions

In this tutorial I will assume you’ve already glanced at the documents I linked
to in the prior article. I hope you still have cms.db intact.

Copy paste relations and classes from the prior

article here, nothing has changed

(pool "cms.db")

(?

(select (@A)

((tag +Tag "pc" (tags +Article)))

(tolr "computer" @A body)

(show @A)))

34.2 Using select

A lot easier than the approach we employed in the prior tutorial, select will
first take generators, in our case only (tag +Tag ‘‘pc’’ (tags +Article)).
It will go through the tags and when we find one with tag “pc” we will continue
and retrieve all articles connected through the tags reference. Next comes an
arbitrary amount of filter clausfes, in our case only one: (tolr ‘‘computer’’

338 Henrik Sarvell

@A body). tolr is a shortcut for tolerant which means we do partials too. Try
replacing “computer” with “comp” and the result will be the same.

The result is of course a list with all articles who are tagged with “pc” and
contain the substring “computer” in their article bodies.

(?

(select (@A)

((tag +Tag "pc" (tags +Article)))

(tolr "computer" @A body)

(same "sam" @A author username)

(same "tech" @A folder slug)

(show @A)))

The only addition here is more filtering through the author and folder ref-
erences. We now get a list of all articles tagged with “pc”, written by Sam,
containing “computer” in their bodies and located in the “tech” folder, feel
free to contemplate the equivalent SQL . . .

34.3 Pilog example

34.3.1 Select and insert

As you might know already this all works through Pilog which is a PicoLisp
implementation of Prolog. To understand how it works let’s play around a
little with be and a Pilog version of the SWI-Prolog tutorial:

http://www.software-lab.de/ref.html#pilog
http://en.wikipedia.org/wiki/Prolog
http://www.swi-prolog.org/documentation.html

34 Advanced OODB in PicoLisp 339

(be Indian (vindaloo))

(be Indian (dahl))

(be Indian (tandoori))

(be Indian (kurma))

(be mild (dahl))

(be mild (tandoori))

(be mild (kurma))

(be Chinese (chow-mein))

(be Chinese (chop-suey))

(be Chinese (sweet-and-sour))

(be Italian (pizza))

(be Italian (spaghetti))

(be likes (Sam @F) (Indian @F) (mild @F))

(be likes (Sam @F) (Chinese @F))

(be likes (Sam @F) (Italian @F))

(be likes (Sam chips))

(? (likes Sam @F))

Yep, Sam likes Indian food but only the mild curries, vindaloo doesn’t fall into
that category, that’s why it’s missing in the output. This is the mechanism
behind our OODB queries. The same and tolr keywords we use above are in
fact set with be in pilog.l.

Let’s continue with some simple pagination:

(new! ’(+Article) ’slug "new-pcs-in-2008" ’headline "New PC’s in 2008"

’body "An article about all the new PC’s in 2008." ’author (db ’username ’+User "sam"))

(setq *Query (goal ’(@Headline "2008" (db headline +Article @Headline @A))))

(do 2 (bind (prove *Query) (println (get @A ’headline))))

There are two new things here goal and prove. Until now we have used the
shortcut ? to do both at the same time. Goal will prepare a Lisp statement
by turning it into a valid query that the Pilog engine can prove or disprove
like we are doing above with Sam and his food. Try printing *Query to see
what it looks like. In this case repeated calls to the last line will retrieve the
results two by two because prove will return the next result which makes it
ideal to call repeatedly to get the next two and then the next two and so on.
Try this instead:

340 Henrik Sarvell

(setq *Query (goal ’(@Headline "2008" (db headline +Article @Headline @A))))

(do 1 (bind (prove *Query) (println (get @A ’headline))))

(do 1 (bind (prove *Query) (println (get @A ’headline))))

In a “sharp” situation we could have called that last line to fetch the next
result when our user presses a next button for instance. Notice also the nec-
essary “preparation” of 2008 with @Headline at the beginning of the quoted
list we pass to goal.

34.3.2 Updating and Deleting

Until now we have only selected and inserted things, let’s look at ways to
change and delete our data. As you know most of our articles are tagged with
“fun”, this is how we could remove that tag from our tech folder/article:

(del!> (db ’slug ’+Article "tech") ’tags (db ’tag ’+Tag "fun"))

(mapcar show (collect ’slug ’+Article))

Note how del!> automatically deletes the fun tag from the reference list in
the tech article. Updating a pure value is just a matter of putting again:

(put!> (db ’slug ’+Article "tech") ’headline "The technology folder")

(mapcar show (collect ’slug ’+Article))

Let’s get rid of the fun tag altogether:

(lose!> (db ’tag ’+Tag "fun"))

(mapcar show (collect ’slug ’+Article))

The tag is gone but the references are still there, in my case the fun tag was
{P} and the {P} still shows in the tag list of each article. So we have a case
of orphaning, sometimes it’s a wanted behavior, not now though so let’s get
rid of the reference:

(for Article (collect ’tags ’+Article ’{P})

(put!> Article ’tags (delete ’{P} (get Article ’tags))))

(mapcar show (collect ’slug ’+Article))

The for loop is the PicoLisp version of the old “for in” or “for each”. We
collect all articles that are referring to the fun tag ({P}). After that we get

34 Advanced OODB in PicoLisp 341

the tag list in question, delete the fun reference and finally put it back. With
that in mind we could create a custom lose method:

(extend +Entity)

(dm loseref!> ()

(for Child (var: Cascade)

(let (ChildClass (car Child) ChildRef (cdr Child))

(for Element (collect ChildRef ChildClass This)

(put!> Element ChildRef (delete This (get Element ChildRef))))))

(lose!> This))

(class +User +Entity)

(rel username (+Need +Key +String))

(rel password (+Need +String))

(class +Article +Entity)

(rel slug (+Need +Key +String))

(rel headline (+Need +Idx +String))

(rel body (+Need +String))

(rel author (+Ref +Link) NIL (+User))

(rel folder (+Ref +Link) NIL (+Article))

(rel tags (+List +Ref +Link) NIL (+Tag))

(class +Tag +Entity)

(rel tag (+Need +Key +String))

(var Cascade . ((+Article . tags)))

(pool "cms.db")

(loseref!> (db ’tag ’+Tag "pc"))

(mapcar show (collect ’slug ’+Article))

This is just repetition of the above with the addition of a Cascade list that we
loop through to find which classes are affected (in our case only +Article)
and the name of the reference to use (tags). Note the use of class variables
(which I forgot to mention in the simple OO tutorial). We initiate a class
variable with var and retrieve it with var:.

That was one way of doing it, another is to inspect the relations and use that
information to do the cleanup. The problem with this is that it will delete all
references in all tagged objects. Pretend you had something else in the system
that you are tagging, +Novel(s) for instance. If you only wanted to remove the

342 Henrik Sarvell

specific tag for articles, not novels you would have to specifically state that
somewhere and you are back to something like the above. However, if this is
not a problem you could do like this instead:

(extend +Entity)

(dm loseref!> ()

(for Child (getRefs> This)

(let (ChildClass (car Child) ChildRef (cdr Child))

(for Element (collect ChildRef ChildClass This)

(put!> Element ChildRef (delete This (get Element ChildRef))))))

(lose!> This))

(dm getRefs> ()

(make

(for Class (all)

(when (isa ’+Entity Class)

(for El (getl Class)

(and

(isa ’(+Ref +Link) (car El))

(= (list *Class) (get El 1 ’type))

(link (cons Class (cdr El)))))))))

Relations here without the (var Cascade . ((+Article . tags))) line.

(pool "cms.db")

(loseref!> (db ’tag ’+Tag "scuba"))

(mapcar show (collect ’slug ’+Article))

GetRefs> will loop through all symbols currently loaded, when the symbol is
an +Entity we fetch the whole property list from the symbol.

We loop through all properties and check if they have +Ref +Link, if yes
we check if the current class accessed through the *Class global is equal to
the type we fetch from the car of El, yes (get (car El) type) would have
worked too. If they are equal we move on and link a cons pair to the list.

We get the name of the relation with (cdr El), the result is identical to the
explicitly set ((+Article . tags)) in the prior example.

35

Registration Form in PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article describes how to build a website registration form with
PicoLisp.

35.1 Prerequisites

Finally, the registration form! Not really for beginners but anyway

If you are new to Pico Lisp you might want to check out the first article in
the series and move “upwards”. Apart from that this tutorial builds upon two
earlier articles. Regular expressions and templating.

http://www.prodevtips.com/2008/03/28/pico-lisp/
http://www.prodevtips.com/2008/03/28/pico-lisp/
http://www.prodevtips.com/2008/07/01/regular-expressions-in-pico-lisp/
http://www.prodevtips.com/2008/07/17/templating-in-pico-lisp/

344 Henrik Sarvell

I’ve changed the background color to black and the text to white just as a
test to see if the CSS was loading properly. Let’s walk in order of execution,
first out is main.l:

35.2 Walk through the main.l library

(load "lib/http.l" "lib/xhtml.l" "lib/form.l" "lib/ps.l"

"lib/adm.l" "lib/misc.l" "lib/rgx.l" "lib/tpl.l")

(setq *BP "projects/tpl-test/")

(setq *Css (pack *BP "css/styles.css"))

(load

(pack *BP "models/er.l")

(pack *BP "helpers/global-helpers.l"))

(de main ()

(pool (pack *BP "db/test.db")))

(de start ()

(app)

(setq Tpl (new ’(+Tpl) *BP))

(assign> Tpl ’title "Registration Form")

(parse> Tpl ’index)

(compRun> Tpl)

(out> Tpl))

(de go ()

(server 8080 "@start"))

So apart from the libraries we load er.l and global-helpers.l, rgx.l and tpl.l
are the two libraries whose explanations I link to above.

We load the database with pool initially because we start the server with: .p/
dbg.l projects/tpl-test/main.l -main -go.

And go is of course responsible for starting the server on port 8080 and
running start.

The start function will first start the session with app, create the template
object with our base path *BP and assign a title, parse the template, compile
it, run it and finally print it to the browser.

Let’s take a look at the template:

35 Registration Form in PicoLisp 345

<html>

<head>

<title> <% get title %> </title>

<base href="<% bPath %>"/>

<link rel="stylesheet" href="<% path cssDir %>styles.css" type="text/css" >

</head>

<body>

<% gui reg-form %>

</body>

</html>

There are some new things here since we went through the template class,
but not much:

(dm path> (Var)

(pack (srcUrl) (get This Var)))

(dm bPath> ()

(baseHRef))

The result could look like this:

<base href="http://localhost:44148/"/>

<link rel="stylesheet"

href="http://localhost:8080/projects/tpl-test/css/styles.css"

type="text/css" >

So baseHRef outputs http://localhost:44148 and *srcUrl*http://localhost:8080/,
great. The reason for the base tag is that the GUI framework needs it. The
port number keeps track of each session and is unique for that nsession.

35.3 Walk through the er.l library

Before we start with the form itself let’s go through the er.l file and global-
helpers.l, first er.l:

http://www.prodevtips.com/2008/07/17/templating-in-pico-lisp/
http://localhost:44148
http://localhost:8080/
http://software-lab.de/app.html

346 Henrik Sarvell

(extend +Entity)

(dm asSelect> ()

(collect (: lbl) This NIL T (: lbl)))

(class +Member +Entity)

(rel fname (+Need +Sn +Idx +String))

(rel lname (+Need +Sn +Idx +String))

(rel uname (+Need +Key +Sn +Idx +String)) #min 6 chars

(rel pwd (+Need +String)) #min 6 chars

(rel zip (+Need +Idx +String)) #min 5 chars, numerical

(rel city (+Link)(+City)) #lives in a city

min 7 digits for validation but we store min 11 digits

(as is, no loc formatting)

(rel cellnr (+Need +Ref +String))

has to validate as proper email address

(rel email (+Need +Key +Idx +String))

(rel bdate (+Need +Ref +Date)) #birthdate

(class +CellPrefix +Entity)

will be used in the registration to create a complete cell number

(rel nr (+Ref +String))

(var lbl . nr)

(class +City +Entity)

(rel nm (+Ref +String))

(var lbl . nm)

We’ve got a link to +City in the +Member. The asSelect> method is respon-
sible for fetching a list to be used as a drop down. In the +CellPrefix case
it is nr of course, and in the +City case it’s nm. Actually pretty redundant
since they only have one relation but that could quickly change.

35.4 Walk through the global-helpers.l library

Global-helpers.l contains some extra validation logic and generators:

35 Registration Form in PicoLisp 347

(class +Gh)

(dm range> (Start End Pad)

(make

(for (N Start (>= End N) (inc N)) (link (pad Pad N)))))

(dm getMonths> ()

(range> This 1 12 2))

(dm getDays> ()

(range> This 1 31 2))

(dm getYears> (Min-age)

(let curYear (curYear> This)

(range> This (- curYear 100) (- curYear Min-age) 0)))

(dm curYear> () (car (date (date))))

Trivial stuff to generate various drop downs. Note pad to get 01, 02 etc.

(class +EmailField +TextField)

(dm chk> ()

(ifn

(match> ’+Rgx (super) ’((word > 0) "{at}" (dmn > 0) "." (ltr > 2 < 5)))

,"email-expected"

(super)))

(class +AlNum +TextField)

(dm chk> ()

(ifn (alnum> ’+Rgx (val> This)) ,"alnum-expected" (super)))

So we create a new +EmailField and +AlNum based on the basic +TextField.
The main thing here is the chk> method that is called automatically by the
GUI logic in order to check if a value is OK or not. The +Rgx stuff has already
been covered. Note the comma (,) It’s a shortcut for the localization logic, it
will lookup the keys for translations in translation files if they are provided,
currently not though. Check out the the OO tutorial for more info on super

above, and extra used below.

http://www.prodevtips.com/2008/04/11/more-oo-in-pico-lisp/

348 Henrik Sarvell

(class +MinLen)

(dm T (MinLen . @)

(=: minLen MinLen)

(pass extra))

(dm chk> ()

(ifn

(>= (length (val> This)) (: minLen))

(pack ,"minlen-1" (: minLen) ,"minlen-2")

(extra)))

The minimum length logic, it does not inherit from something else but is
setup to work with other classes in a horizontal fashion. Note the use of
,minlen--1 (: minLen) ,minlen--2. We need this to account for differing
minimum lengths in the error message.

(class +PwdCheck)

(dm T (PwdGet . @)

(=: pwdGet PwdGet)

(pass extra))

(dm chk> ()

(ifn (= (eval (: pwdGet)) (val> This)) ,"password-mismatch" (extra)))

Also designed to be prefix class only. We simply check if the passwords match.

35.5 The registration form

It’s time for the registration form which is a biggie, I’ve uploaded it here if
you want to see the whole thing at once. It will be chopped up below in a
from top to bottom fashion.

http://www.prodevtips.com/wp-content/uploads/2008/08/reg-form.l

35 Registration Form in PicoLisp 349

(action

(let E (loc "*Err" err)

(set E (head 1 (val E))))

(form NIL

(unless *Post (=: obj (new! ’(+Member))))

(<table> NIL NIL NIL

(<row> NIL ,"firstname" (gui ’(+E/R +TextField)

’(fname : home obj) 10))

(<row> NIL ,"lastname" (gui ’(+E/R +TextField)

’(lname : home obj) 10))

(<row> NIL ,"username" (gui ’(+E/R +MinLen +AlNum)

’(uname : home obj) 6 10))

Having everything be an argument to the action function is a requirement for
the GUI to work.

The first thing we do is override the default behavior of displaying validation
errors for all fields at once. We get the *Err list from the err function defined
in form.l line 207. After that we extract and use the first error (if there are
any).

The second thing we do is to build an empty +Member object which will be
available through (: home obj). You might notice the use of new!, what
happens if the user just navigates away you might think, there will be a lot
of empty bullshit in the database won’t it? Sure, and they can be cleared out
by running a cron job every day or continuously although it consumes more
resources. Since we work with a new! object there will be no need for future
commits, from now on everything that happens happens on disk, not memory.

We build the layout in a table where each call to <row> will create new rows
and tds. Notice the calls to gui, apparently +E/R needs the (fname home

obj) list and +TextField the 10 number (the size of the field).

Our first custom prefix classes comes in the form of +MinLen and +AlNum which
takes 6 and 10 respectively (remember that +AlNum is just a +TextField

with extra validation attached to it).

(<row> NIL ,"password"

(gui

’(+E/R +PwdCheck +MinLen +PwField)

’(pwd : home obj)

’(val> (: home pwd2)) 6 10))

(<row> NIL ,"password again" (gui ’pwd2 ’(+PwField) 10))

(<row> NIL ,"email" (gui ’(+E/R +EmailField) ’(email : home obj) 10))

(<row> NIL ,"zip" (gui ’(+E/R +MinLen +NumField) ’(zip : home obj) 6 10))

(<row> NIL ,"city" (gui ’(+E/R +TextField) ’(city : home obj) (asSelect> ’+City)))

350 Henrik Sarvell

Note that the code has been indented to save horizontal space, in reality it’s
just a continuation of the above code.

+PwdCheck will work with (val> (: home pwd2)) as input, yes it’s the value
of the “password again” field.

The city +TextField will get the result of the (asSelect> +City) call as it’s
input, note the lack of a quote (). So we evaluate and get the list of cities
which will turn the field into a drop down instead of a normal text field.

(<row> NIL ,"birthdate"

(<div>

(gui ’(+E/R +Fmt +Chart) ’(bdate : home obj)

’((Dat) (list (date Dat)))

’((Lst) (and (caar Lst) (cadar Lst) (caddr (car Lst)) (date (car Lst))))

3)

(gui 1 ’(+TextField) (getYears> ’+Gh 18))

(gui 2 ’(+Map +TextField)

(make

(for (I . M) *MonFmt

(link (cons M I))))

*MonFmt)

(gui 3 ’(+TextField) (getDays> ’+Gh))))

It’s starting to get tricky. Remember that we use +Date for the birth date so we
need some way of getting it to prepopulate three consecutive drop downs, and
be inserted by getting the data in all of them. Actually we are just updating
the empty object we created at the top all the time but insert might be a
more proper wording since we are replacing nothing with something.

The +Fmt is class will take care of getting and setting the date, the first
function ((Dat)...) will set> and the second one ((Lst)...) will be our
val> function.

The +Chart prefix is responsible for handling our 3 date drop downs and will
therefore take 3 as its single argument. The constituent gui elements need to
know where they are in this list, hence 1, 2 and 3 as the first argument. The
second drop down will display the months of the year by working with the
global *MonFmt which will contain the full names based on which location we
have selected. Since we haven’t chosen a location they will default to their
English names. Come to think of it this piece of code should have been put
in global helpers since month drop downs are pretty common.

35 Registration Form in PicoLisp 351

(<row> NIL ,"cellphone"

(<div>

(gui ’(+E/R +Chart) ’(cellnr : home obj) 2

’((Str)

(let Len

(length

(Find ’((P) (pre? P Str)) (asSelect> ’+CellPrefix)))

(setq Str (chop Str))

(list

(list (pack (cut Len ’Str)) (format (pack Str))))))

’((Lst) (pack (caar Lst) (cadar Lst))))

(gui 1 ’(+TextField) (asSelect> ’+CellPrefix))

(gui 2 ’(+MinLen +NumField) 7 10)))

(<row> NIL (gui ’(+Button) ,"save" ’(url "@start"))))))

Here we pass two extra set and get functions to the +Chart class directly
instead. The first one is needed due to the fact that it will recieve for instance
a string looking like 01766587436. It then needs to cut the string up to get a
list looking like this: (0176 6587436), in order to repopulate on for instance
validation failure. The problem is that some mobile phone prefix numbers can
have five digits in Germany, ouch. That’s why we need to determine the length
first, otherwise we could end up with the wrong numbers.

Finally the +Button will post the form back to the start function which in
turn contains this function. The error logic at the top of the form could be
used to confirm a successful post by displaying a new page or message. No
error == success.

36

Explicit Scope Resolution in PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article describes how to use explicit scope resolution with run and
eval when extending the html function with some arbitrary code as final argument.

36.1 Extending the html function

Today I felt like extending the html function that is responsible for rendering
the bare bones of a HTML document in the GUI framework.

Normally a call to (html) looks something like:

(html 0 "Pico Admin" *CSS NIL

(Some code here)

(Some more code here) ...)

The important thing is the fact that the function accepts some arbitrary
code(s) as the final argument. I wanted to simply hard code my stuff into an
“extension”, like this:

(de pa-html Prg

(html 0 "Pico Admin" *CSS NIL Prg))

Calling the above is shorter than the original with the same arguments over
and over again and Prg is now the arbitrary code I referred to above.

354 Henrik Sarvell

36.2 FEXPRs and scoping rules

It wouldn’t work though, what was going on? Well the answer is obvious when
you get some help and think a little about it. In our (pa-html) above the
Prg variable is a FEXPR; unevaluated code. With our addition we add a new
scope, the local scope of (pa-html). It turns out that (html) doesn’t expect
the code to come from this local scope, a lot of variables that are defined in
the scope calling (pa-html) are probably undefined within the local scope of
(pa-html) for instance. Hence the massive crashing.

To understand the solution, let’s start over from the beginning with the (up)
function:

(let Hello "Hello"

(println Hello)

(let Hello "Hi!"

(println Hello)

(let Hello "Greetings"

(println Hello)

(println (up Hello)))))

Output:

"Hello"

"Hi!"

"Greetings"

"Hi!"

So the call to (up) will check what Hello contained in the scope above the
scope that it was called in. In this case “Hi!” was the contents. If I say that the
default value for (up) is 1 you can probably figure out what the last (println)
would’ve printed had we passed it (up 2 Hello) instead.

36.3 Explicit scoping with run and eval

36.3.1 Using run

Both (run) and (eval) can accept a last optional argument that will define
their scope explicitly, let’s start with (run):

http://en.wikipedia.org/wiki/Fexpr

36 Explicit Scope Resolution in PicoLisp 355

(de Lvl1 (Arg . Prg)

(let Lvl "lvl: 1"

(run Prg 1)))

(de Lvl2 ()

(let Lvl "lvl: 2"

(Lvl1 "some argument"

(println Lvl) (println "Something more here"))))

(Lvl2)

Output:

"lvl: 2"

"Something more here"

As you can see (run Prg 1) will run Prg within the scope of (Lvl2), “one
up”. I think you can guess what the output would be if we just did (run
Prg).

By this point you should be able to understand that

(de pa-html Prg

(html 0 "Pico Admin" *CSS NIL (run Prg 1)))

is how (pa-html) should look.

36.3.2 Using eval

Let’s finish off with (eval) for good measure:

(de Lvl1 (Arg Lst)

(let Lvl "lvl1"

(eval Lst 1)))

(de Lvl2 ()

(let Lvl "lvl2"

(Lvl1 "I’m Arg" ’(pack Arg " and I’m: " Lvl))))

(Lvl2)

Output:

356 Henrik Sarvell

" and I’m: lvl2"

Since Arg is undefined within the scope of (Lvl2) we won’t get “I’m Arg” in
the beginning of the output. Just calling (eval Lst) would of course result
in I’m Arg and I’m: lvl1.

I think it’s a bad idea to rely on explicit scope resolution out of laziness, as you
can imagine the code could easily become unintelligible if not used sparingly.
Use only when absolutely necessary if you can not see any other solution.

37

Pilog Solve and the +Aux Relation

Henrik Sarvell

hsarvell@gmail.com

Summary. This article uses the ’Doctrine’ example (known from the PHP world)
to demonstrate the usage (and advantages) of Pilog solve and the +Aux relation.

37.1 ’Doctrine for dummies’ example

I just set out to duplicate the Doctrine for dummies example, but this time
for real, with a real OODB system, not some silly ORM. Thanks goes to Alex
for helping me out with the queries.

(class +Member +Entity)

(rel uname (+Need +Key +String))

(rel pwd (+Need +String))

(rel email (+String))

(rel city (+Ref +Link) NIL (+City))

(class +City +Entity)

(rel name (+Key +String))

(class +Message +Entity)

(rel subject (+Idx +String))

(rel body (+String))

(rel from (+Ref +Link) NIL (+Member))

(rel to (+Aux +Ref +Link) (from) NIL (+Member))

(pool "dbtest.db")

So we create the relations, and the database file. Take special note of the
+Aux relation from to to from. It will play a central role later.

http://www.prodevtips.com/2008/08/05/doctrine-for-dummies/

358 Henrik Sarvell

(setq Mbrs

(list

(list "member1" "password1" "member1@members.com" "Berlin")

(list "member2" "password2" "member2@members.com" "Stuttgart")

(list "member3" "password3" "member3@members.com" "Hamburg")))

(for Mbr Mbrs

(request ’(+Member)

’uname (get Mbr 1)

’pwd (get Mbr 2)

’email (get Mbr 3)

’city (request ’(+City) ’name (get Mbr 4))))

We input some members in the database, note the use of request. The major
thing is that it will create an object if there is none with the given key(s)
already, however if there is an object with the given keys it will return that
object, quite handy.

(setq Mbr1 (db ’uname ’+Member "member1"))

(setq Mbr2 (db ’uname ’+Member "member2"))

(new T ’(+Message)

’subject "from mbr1 to mbr2"

’body "Hello mbr2 this is mbr1"

’to Mbr2

’from Mbr1)

(new T ’(+Message)

’subject "from mbr2 to mbr1"

’body "Hello mbr1 this is mbr2"

’to Mbr1

’from Mbr2)

(new T ’(+Message)

’subject "from mbr2 to mbr1, again"

’body "Hello mbr1 this is mbr2, again"

’to Mbr1

’from Mbr2)

37 Pilog Solve and the +Aux Relation 359

(new T ’(+Message)

’subject "from mbr1 to mbr3"

’body "Hello mbr3 this is mbr1"

’to (db ’uname ’+Member "member3")

’from Mbr1)

(commit)

Note the use of (new T. . .) without the T we won’t get database objects.

37.2 Querying

37.2.1 Simple queries

(mapc show (collect ’to ’+Message Mbr1 Mbr1 ’from))

(mapc show (collect ’from ’+Message Mbr1 Mbr1 ’to))

(mapc show (collect ’from ’+Message Mbr1 Mbr1))

(mapc show (collect ’to ’+Message Mbr1 Mbr1))

Test that everything is there by calling the above statements, the first one
will get all people who sent a message to member 1. The second one will
instead get all people who member 1 sent messages to. The two last ones will
do the same but will get messages, not people. And that was that, this is as
complex as the PHP Doctrine example got, let’s move on to more complex
stuff relating to the +Aux relation:

37.2.2 Using the +Aux relation

(scan (tree ’to ’+Message))

(scan (tree ’from ’+Message))

Output:

360 Henrik Sarvell

({5} {:} . {H}) {H}

({5} {:} . {I}) {I}

({:} {5} . {B}) {B}

({A} {5} . {L}) {L}

({5} . {B}) {B}

({5} . {L}) {L}

({:} . {H}) {H}

({:} . {I}) {I}

-> {F}

Notice the difference, the to relation is utilizing +Aux so we have extra
references there between the message receiver and sender. Together the com-
bination can be used as a key to speed up things.

(mapc show (collect ’to ’+Message (list Mbr1 Mbr2)))

This is an example of how to use the +Aux relation to get all messages to
member 1 from member 2 with collect.

37.2.3 Pilog solve with parallel scanning

(mapc show

(solve

(quote @M1 Mbr1 @M2 Mbr2 @S "mbr2"

(select (@Msgs)

((subject +Message @S) (to +Message @M1) (from +Message @M2))

(same @M1 @Msgs to)

(same @M2 @Msgs from)

(tolr @S @Msgs subject)))

@Msgs))

The above code will retrieve all messages from member 2 to member 1 that
also contain the word mbr2 in the subject. It is however not using the +Aux

relation to make the lookup of who is sending a message to who, we scan in
parallel here.

37 Pilog Solve and the +Aux Relation 361

37.2.4 Pilog solve using the +Aux relation

(mapc show

(solve

(quote

@M1 Mbr1

@M2 Mbr2

@M (list Mbr1 Mbr2)

@S "mbr2"

(select (@Msgs)

((subject +Message @S) (to +Message @M))

(tolr @S @Msgs subject)

(same @M1 @Msgs to)

(same @M2 @Msgs from)))

@Msgs))

This example is however using the +Aux relation. The @M list will look for
for example the {5} {:} combo above in the (to +Message @M) clause.
Next we filter as usual.

After benchmarking the above examples I got a 3% speed increase in favor of
the second one using 6000 messages to test on, when using 11000 the difference
increased to 11% so careful planning will pay off more and more the bigger
the database becomes.

38

PicoLisp and JSON

Henrik Sarvell

hsarvell@gmail.com

Summary. This article discusses libraries and tests for converting PicoLisp to
JSON and vice versa.

38.1 Introduction

Yet again I have to do some documenting so I know what the hell I’m doing
since I’m all over the place at the moment. Doing something here and then
moving over to do something over there and then coming back to coding this
and that. If you’re this unstructured you need crutches and this documenta-
tion is that, it will enable me to get back to this and do easy debugging in
the future, it will trigger memories.

Therefore this code is very rough and untested, a work in progress, you have
been warned. . .

If you somehow landed on this page without any background on PicoLisp or
Lisp you probably need to start from the beginning.

38.2 The tests

38.2.1 PicoLisp to JSON

Let’s start with the tests for a change. This is an example of converting a
proper database object to JSON. The code will determine the relations and
use them to build the JSON, nothing else that might be in there:

http://www.prodevtips.com/2008/03/28/pico-lisp/

364 Henrik Sarvell

(load "lib/str.l")

(load "lib/json.l")

(class +Product +Entity)

(rel name (+Need +String))

(rel id (+Need +Number))

(rel descr (+String))

(rel attributes (+List +String))

(setq Product

(new ’(+Product) ’name

"A \"PC\"" ’id 123 ’attributes ’("black" "laptop")))

(println (to> ’+Json ’encObj> Product))

Output:

"{\"attributes\": [\"black\", \"laptop\"], \"id\": 123,

\"name\": \"A \\\"PC\\\"\", \"descr\": false}"

Associative structure, it will also be encoded as object:

(setq Pairs ’((key1 . hello) (key2 . world) (false . NIL)

(someArr . (1 2 "hello quote: \"quote\"" 4))))

(println (to> ’+Json ’encPair> Pairs))

"{\"key1\": \"hello\", \"key2\": \"world\", \"false\": false,

\"someArr\": [1, 2, \"hello quote: \\\"quote\\\"\", 4]}"

2D structure will be an array of objects:

(setq Pair1 ’((key1 . hello) (key2 . world) (false . NIL) (someArr . (1 2 "hello" 4))))

(setq Pair2 ’((key1 . hello) (key2 . world) (false . NIL) (someArr . (1 2 "world" 4))))

(setq Tst (list Pair1 Pair2))

(println (to> ’+Json ’encTable> Tst))

"[{\"key1\": \"hello\", \"key2\": \"world\", \"false\": false,

\"someArr\": [1, 2, \"hello\", 4]},

{\"key1\": \"hello\", \"key2\": \"world\", \"false\": false,

\"someArr\": [1, 2, \"world\", 4]}]"

38 PicoLisp and JSON 365

Simple case of nested list:

(setq Tst (list 1 2 "hello" (1 2 3) 3 4 "world"))

(println (to> ’+Json ’encArr> Tst))

"[1, 2, \"hello\", [1, 2, 3], 3, 4, \"world\"]"

38.2.2 JSON to PicoLisp

(setq Json "{\"hello1\": {\"subObj\": [123, 456, true, NIL]}, \"b\": true}")

(setq Result (from> ’+Json Json))

(show Result)

(show (get Result ’hello1))

$385543015 NIL

b

hello1 $385543062

$385543062 NIL

subObj (123 456 T NIL)

38.3 The library

38.3.1 JSON to PicoLisp

(class +Json)

(dm from> (J)

(=: L (chop J))

(let C (pop (:: L))

(let R (if (= C "[") (pre> This ’pArr>) (pre> This ’pObj>))

(parse> This R))))

This is where the coding from JSON to PicoLisp structure begins.

366 Henrik Sarvell

(dm pre> (Type)

(let (R (list Type) InStr NIL)

(catch NIL

(while (: L)

(let C (pop (:: L))

(cond

((= C "[") (queue ’R (pre> This ’pArr>)))

((= C "{") (queue ’R (pre> This ’pObj>)))

((and (or (= C "]") (= C "}")) (nT InStr)) (throw))

(T (when (= C "\"")

(setq InStr (not InStr)))

(queue ’R C)))))) R))

Here we are creating an intermediary list that will be easy to execute. We
do this by inserting the names of functions to use in later steps into this list.
But what is really happening? Well as you saw from the prior listing we begin
with either pArr> or pObj> depending on if we are to begin parsing to an
object or an array. InStr will keep track of whether the characters {, }, [,]
are inside a string or not, if they are they should not count of course.

So while we still have characters in our chopped up list we will loop through
them by destructively popping, if we have a “[“ we will put pArr> on the
list instead of the caracter, if we have “{” we put pObj>. If we have the
respective closing character, and it is not inside a string, we exit by throwing
NIL.

(dm any> (L)

(let R (any (pack L))

(if (= R "true") T (if (= R "false") NIL R))))

(dm parse> (L)

(apply (car L) (list This (cdr L))))

(dm pObj> (L)

(let (R (new) L (split L ","))

(for El L

(let Pair (split El ":")

(put R

(any (any (pack (car Pair))))

(let Value (cdadr Pair)

(if (lst? (car Value))

(parse> This (car Value))

(any> This Value)))))) R))

We begin by applying either pObj> or pArr> in parse>.

38 PicoLisp and JSON 367

The pObj> method will begin with creating the empty result object, R and a
list of sublists looking something like this: (“k” “e” “y” “:” “v” “a” “l” “u”
“e”) in L by splitting by “,”.

We continue by splitting by “:” to get the key and the value. The key is then
retrieved, the value will be further examined to determine if we should apply
recursion to get a sub-object/array or simply return the result through any>.

(dm pArr> (L)

(make

(for El (mapcar ’clip (split L ","))

(if (lst? (car El))

(link (parse> This (car El)))

(link (any> This El))))))

38.3.2 PicoLisp to JSON

(dm to> (F L)

(pack (make (apply F (list This L)))))

As you know from the tests above the behavior has to be explicitly set by
passing the function name to be used to generate the result when going from
PicoLisp to Javascript. It’s pretty obvious actually since it’s impossible to
determine from the structure of various types of lists how to treat them. We
can’t infer whether a list is a normal nested list or a paired list, for all intents
and purposes they are identical. However the output will be radically different.
Note make, that is why we are able to use link all over the place below.

368 Henrik Sarvell

(dm encTable> (Tbl)

(link "[")

(let F T

(mapc

’((L)

(link (comma> This F))

(encPair> This L)

(setq F NIL)) Tbl))

(link "]"))

(dm encPair> (L)

(link "{")

(let F T

(mapc

’((El)

(link (pack (comma> This F) "\"" (car El) "\"" ":" " "))

(setq F NIL)

(enc> This (if (pair El) (cdr El) NIL))) L))

(link "}"))

(dm comma> (First)

(unless First ", "))

Some redundant code here, it might benefit from refactoring, or we could just
leave it like it is and call it a day, yeah let’s do that. When encoding a table
each element will in turn be encoded with encPair>, if we have the first
element we do not prepend the “,”.

A paired list will be encoded as an object with encPair>.

(dm encArr> (L)

(link "[")

(let F T

(mapc

’((El)

(link (pack (comma> This F)))

(setq F NIL)

(enc> This El)) L))

(link "]"))

Redundancy again! List -> array is easier though than paired list ->

object.

38 PicoLisp and JSON 369

(dm encObj> (O)

(encPair> This

(make

(mapc

’((Prop)

(when (isa ’+Relation (car Prop))

(let Key (cdr Prop)

(link (cons Key (get O Key)))))) (getl (car (type O)))))))

Finally something clever, in case of object we will get all the properties of
the object through the getl function. Every property that is a relation will
get the “treatment”. We get the name of the relation as Key and use that
name on the original object to retrieve the value. The resultant array is now
a paired list that can be encoded with encObj>.

(dm enc> (L)

(cond

((=T L) (link "true"))

((not L) (link "false"))

((num? L) (link L))

((lst? L) (encArr> This L))

((or (box? L) (ext? L)) (encObj> This L))))

accordingly, notice the escaping with +Str. It’s the genesis of some kind of
general string library, not much in there yet though:

(dm fChr> (Lst Chr)

(find ’((C)(= C Chr)) Lst))

#S = hello, Lst = ’("\"")

(dm esc> (S Lst)

(pack

(mapcar

’((C)

(if (fChr> This Lst C) (pack "\\" C) C)) (chop S))))

Every character in the passed list (in this case only one) will be escaped.

39

Factorials, Permutations and Recursion in
PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article describes factorials, permutations and recusrion can be
used in the simulation of stock trading strategies.

39.1 Simulating stock trading strategies

Currently I’m simulating trading strategies on historical stock data. Yes I
know according to Nassim this is complete bullshit but I might beg to differ.
At least I feel the need to determine if it’s bullshit on my own than just take
his word for it.

I have bought trading data from the SET which includes the years 1975–2008,
the period 1997–2001 could possibly closely resemble what we are up against
at the moment so any simulated strategy that returns more than simply sitting
on the sidelines and doing nothing is a winner and might be worth testing at
the moment.

39.2 Factorials and Permutation

39.2.1 First try

However in order to simulate these strategies we need to be able to do per-
mutations and I couldn’t find anything already created to this effect, neither
could I find a core factorial function, so here they are:

(de fac (Num)

(let Res 1

(for (N 1 (>= Num N) (inc N))

(setq Res (* Res N)))))

http://en.wikipedia.org/wiki/Nassim_taleb

372 Henrik Sarvell

So this one is basically the same as ye old “N!”.

(de switch (Lst P1 P2)

(let (V1 (get Lst P1) V2 (get Lst P2))

(place P1 (place P2 Lst V1) V2)))

This one is used in the permutate function below, however it might be of use
in a standalone fashion, hence it having its own definition. Anyway the end
result is a switch of the values indicated by the numbers in P1 and P2.

39.2.2 Using recur and recurse

(de permutate (Lst)

(let (Result (list) Count 1 Start 1)

(recur (Lst Start Result Count)

(when (>= (fac (length Lst)) Count)

(push Result Lst)

(when (= Start (length Lst)) (setq Start 1))

(recurse

(switch Lst Start (inc Start))

(inc Start)

Result

(inc Count)))

(car Result))))

Note recur and recurse here, we might just have created a different non-
recursive entry function instead but using these two is a more lazy approach
that lets us dispense with the need to create two different definitions.

The end result is a list of lists with all different permutations.

Anyway, I will put this stuff up for inspection on the Pico Lisp mailing list
and let more knowledgeable people give feedback, updates with new code and
comments will most likely appear here in the near future.

Update: OK so it didn’t work, I created the above based on an (1 2 3)
example list, however in my sharp application I work with 4 numbers and it
didn’t manage that, I’ll leave it though as an example of how recursion can
be done in PicoLisp.

39 Factorials, Permutations and Recursion in PicoLisp 373

39.2.3 Second try

I ended up stealing one of the algorithms from the permutation Wikipedia
article, and this is the result:

(de permutation (N Lst)

(for (J 2 (>= (length Lst) J) (inc J))

(setq N (/ N (- J 1)))

(setq Lst (switch Lst (inc (% N J)) J))))

(de permutate (Lst)

(let Rslt (list)

(for (N 1 (>= (fac (length Lst)) N) (inc N))

(push Rslt (permutation N Lst)))

(uniq (car Rslt))))

Everything else equal.

39.2.4 Using permute

Update: So I got my answer from Alex on the mailing list:

Well, there is the ‘permute’ function in “lib/simul.l”. Does it what
you intend?

(de permute (Lst)

(ifn (cdr Lst)

(cons Lst)

(mapcan

’((X)

(mapcar

’((Y) (cons X Y))

(permute (delete X Lst))))

Lst)))

Indeed, and very nice, excellent solution, I wish my mind was lispy enough to
come up with these things myself. If you encapsulate the recursive permute
call in a println you will get a feeling for how it works.

http://en.wikipedia.org/wiki/Permutation

40

Prolog as a Dating Aid

Henrik Sarvell

hsarvell@gmail.com

Summary. This article describes how Pilog, PicoLisp’s implementation of Prolog,
can be used to find out which women in a flirt&dating database have similar tastes
like the male candidate.

40.1 A Prolog presentation

This Saturday I had a small presentation. It wasn’t really well prepared so I’ll
try and make up for it here instead.

I wanted to demonstrate how Prolog, or in my case Pilog (same thing but
different syntax), could be used to solve problems and query object databases.
If you’ve been following my stuff on PicoLisp you won’t find much new.

40.2 Set up a Prolog environment

First I began by setting up a simple Prolog environment to demonstrate how
Pilog can be used in a setting free of object databases. The goal is to find a
compatible woman. This is basically the same thing as the food example.

http://www.prodevtips.com/2008/04/28/advanced-oodb-in-pico-lisp/

376 Henrik Sarvell

(be actionMovies (Jane))

(be actionMovies (Yoko))

(be durian (Kwan))

(be somTum (Kwan))

(be diving (Anna))

(be Japanese (Yoko))

(be blond (Anna))

(be petite (Yoko))

(be petite (Kwan))

(be sporty (Anna))

(be funny (Yoko))

(be likeBeer (Jane))

(be likeBeer (Anna))

(be speaksThai (Kwan))

(be likes (Tum @F) (actionMovies @F))

(be likes (Tum @F) (Japanese @F))

(be likes (Tum @F) (blond @F))

(be likes (Tum @F) (petite @F))

(be likes (Tum @F) (funny @F))

(be likes (Tum @F) (sporty @F))

(be likes (Tum @F) (likeBeer @F))

(be likes (Tum @F) (speaksThai @F))

(be likes (Tum @F) (durian @F))

(be likes (Tum @F) (somTum @F))

(be likes (Tum @F) (diving @F))

(let L NIL

(solve ’((likes Tum @F))

(accu ’L @F 1))

(flip (by cdr sort L)))

(println L)

The last sequence will output the woman Tum likes the most first and then
in descending order. Try to fool around with it, starting with (? (likes Tum

@F)) and then adding the rest step by step and see how the output changes
for each step.

40 Prolog as a Dating Aid 377

40.3 The database

40.3.1 Generate the database

Let’s move on to the database stuff. First we need to generate it, you can do
that by running the following:

(class +Woman +Entity)

(rel id (+Key +Number))

(rel age (+Number))

(rel country (+Ref +Link) NIL (+Country))

(rel hair (+Ref +Link) NIL (+Color))

(rel smoking (+Number))

(rel tattoo (+Number))

(class +Country +Entity)

(rel name (+Key +String))

(class +Color +Entity)

(rel color (+Key +String))

(class +Likes +Entity)

(rel name (+Key +String))

(class +LikesCon +Entity)

(rel woman (+Aux +Ref +Link) (likes) NIL (+Woman))

(rel likes (+Ref +Link) NIL (+Likes))

(pool "bcamp_phuket.db")

(de randEls (Cls Key Amount)

(make

(let Lst (collect Key Cls)

(do Amount

(let Nth (rand 1 (length Lst))

(link (get Lst Nth)))))))

378 Henrik Sarvell

(de setup()

(mapc ’((Col) (new! ’(+Color) ’color Col))

’("red" "brown" "blond" "black"))

(mapc ’((Like)(new! ’(+Likes) ’name Like))

’("diving" "skiing" "partying" "pop" "rock" "alternative" "cars"

"beer" "tennis" "wine" "golf" "geeks" "computers" "som tam"

"gaeng som" "larb moo" "gaeng aum"))

(mapc ’((Con) (new! ’(+Country) ’name Con))

’("Sweden" "Thailand" "Japan")))

(de createWomen ()

(let N 0

(do 10000

(new! ’(+Woman)

’age (rand 18 65)

’country (car (randEls ’+Country ’name 1))

’hair (car (randEls ’+Color ’color 1))

’smoking (rand 0 1)

’tattoo (rand 0 1)

’id (inc ’N)))))

(de createLikes ()

(for W (collect ’id ’+Woman)

(for L (randEls ’+Likes ’name 10)

(new! ’(+LikesCon) ’woman W ’likes L))))

(setup)

(createWomen)

(createLikes)

This example uses new!, it takes quite a while to generate the database like
this. You could try new followed by a commit when all the objects have
been created if you want this to go faster.

40.3.2 Query the database

Let’s move on to the final piece, you run this after the above code, don’t
forget to delete the three last function calls or comment them out first. The
end could look like this:

40 Prolog as a Dating Aid 379

#(setup)

#(createWomen)

#(createLikes)

(setq Start (usec))

(setq Women

(uniq

(mapcar ’((Con)(; Con woman))

(solve

(quote

@C1 "Japan"

@C2 "Thailand"

@L1 "beer"

@L2 "diving"

@L3 "geeks"

@Tat 1

@Smo 0

(select (@Links)

(((name +Likes @L1 name +Likes @L2 name +Likes @L3) (likes +LikesCon)))

(or

((same @C1 @Links woman country name))

((same @C2 @Links woman country name)))

(same @Tat @Links woman tattoo)

(same @Smo @Links woman smoking)))

@Links))))

(setq End (format (/ (- (usec) Start) 100000) 1))

(mapc

’((W)

(println

(; W country name)

(; W smoking)

(; W tattoo)

(collect ’woman ’+LikesCon W W ’likes ’name))) Women)

(println

(pack

"There were "

(length Women)

" women matching the query out of 10000. The query took "

End

" seconds."))

380 Henrik Sarvell

The above will fetch all women from Thailand and Japan who like one of
beer, diving or geeks, she also needs to sport a tattoo and not smoke. We
work through the connection of women to what they like, when we have them
we proceed by extracting the women with ((Con)(; Con woman)) and cutting
out duplicates with uniq.

We proceed by printing each woman’s relevant info and finally we print some
statistics on how many hits we got and how long the fetch took.

41

jQuery and PicoLisp

Henrik Sarvell

hsarvell@gmail.com

Summary. This article describes problems arising when trying to make jQuery and
PicoLisp work together, as well as possible solutions and their implementation.

41.1 Problem

The heart of the problem with making jQuery.post work with the PicoLisp
server is simple once found (thanks to Alex for helping me find it). Apache
seems to use the Content-Length header to determine the length of the ar-
gument sent by XMLHttpRequest.send(), the PicoLisp server doesn’t bother
with determining the the length. It looks for a newline at the end instead.

41.2 Solution

41.2.1 Description

How do we solve this problem considering that $.ajax does not append a
newline? With my abysmal knowledge of OO programming in Javascript (all
that prototyping makes my head hurt) I’ve opted for the simplest and dirt-
iest solution. A simple copy paste of $.post and $.ajax implemented as a
separate plugin to enable effortless upgrades of the core, the new stuff can be
called with $.pico.post and works just like the original.

The only change in the plugin compared with the original is line 2806 in
jquery.js, it looks like this in the original: xhr.send(s.data);, I’ve changed
that to xhr.send(s.data + ‘\r\n’);.

382 Henrik Sarvell

41.2.2 Implementation

My current application renders the HTML like this:

(de js (JS)

(prinl "<script type=\"text/javascript\" src=\""

(pack *BP "js/" JS) "\"></script>"))

(de rss-html Prg

(html 0 "RSS Reader" *Css NIL

(js "jquery.js")

(js "jquery.pico.js")

(js "rss-reader.js")

(<div> ’page_margins

(<div> ’page

(<div> ’header "header")

(<div> ’main

(<div> ’left

(<div> ’left_content (leftContent)))

(<div> ’middle

(<div> ’middle_content (run Prg 1)))

(<div> ’right

(<div> ’right_content "right"))

(<div> ’clear)))

(<div> ’footer "footer"))))

So we include the new plugin in the form of (js “jquery.pico.js”), after the
base library.

The rss-reader.js file now contains this:

$(document).ready(function(){

$(".articles_link").css(’cursor’, ’pointer’).click(function(){

$.pico.post("@ajaxTest", {jquerytest: "test"}, function(res){

$(".middle_content").html(res);

});

});

});

When one of the links are clicked we call @ajaxTest:

41 jQuery and PicoLisp 383

(de ajaxTest ()

(httpHead "text/plain; charset=utf-8")

(ht:Out T

(ht:Prin (pack "Result: " (get ’jquerytest ’http)))))

And the contents of the div with the class attribute of “middle content”
changes to Result: test, great.

Source: jquerypico.js

Note that we make use of the httpGate here, the base url in this example is
http://localhost, not http://localhost:8080.

http://www.prodevtips.com/wp-content/uploads/2008/10/jquerypico.js
http://localhost
http://localhost:8080

Part VI

PicoLisp FAQ

42

Frequently Asked Questions (FAQ)

Alexander Burger

abu@software-lab.de

Monk: “If I have nothing in my mind, what shall I do?”
Joshu: “Throw it out.”
Monk: “But if there is nothing, how can I throw it out?”
Joshu: “Well, then carry it out.”
(Zen koan)

Summary. These are the official FAQ for PicoLisp.

42.1 Why did you write yet another Lisp?

Because other Lisps are not the way I’d like them to be. They concentrate
on efficient compilation, and lost the one-to-one relationship of language and
virtual machine of an interpreted system, gave up power and flexibility, and
impose unnecessary limitations on the freedom of the programmer. Other
reasons are the case-insensitivity and complexity of current Lisp systems.

42.2 Who can use PicoLisp?

PicoLisp is for programmers who want to control their programming environ-
ment, at all levels, from the application domain down to the bare metal. Who
want use a transparent and simple - yet universal - programming model, and
want to know exactly what is going on. This is an aspect influenced by Forth.

It does not pretend to be easy to learn. There are already plenty of languages
that do so. It is not for people who don’t care what’s under the hood, who
just want to get their application running. They are better served with some

388 Alexander Burger

standard, “safe” black-box, which may be easier to learn, and which allegedly
better protects them from their own mistakes.

42.3 What are the advantages over other Lisp systems?

42.3.1 Simplicity

PicoLisp is easy to understand and adapt. There is no compiler enforcing
special rules, and the interpreter is simple and straightforward. There are only
three data types: Numbers, symbols and lists (“LISP” means “List-, Integer-
and Symbol Processing” after all ;-). The memory footprint is minimal, and
the tarball size of the whole system is just a few hundred kilobytes.

42.3.2 A Clear Model

Most other systems define the language, and leave it up to the implementation
to follow the specifications. Therefore, language designers try to be as abstract
and general as possible, leaving many questions and ambiguities to the users
of the language.

PicoLisp does the opposite. Initially, only the single-cell data structure was
defined, and then the structure of numbers, symbols and lists as they are
composed of these cells. Everything else in the whole system follows from
these axioms. This is documented in the chapter about the The PicoLisp
Machine in the reference manual.

42.3.3 Orthogonality

There is only one symbolic data type, no distinction (confusion) between
symbols, strings, variables, special variables and identifiers.

Most data-manipulation functions operate on the value cells of symbols as
well as the CARs of list cells:

: (let (N 7 L (7 7 7)) (inc ’N) (inc (cdr L)) (cons N L))

-> (8 7 8 7)

There is only a single functional type, no “special forms”. As there is no com-
piler, functions can be used instead of macros. No special “syntax” constructs
are needed. This allows a completely orthogonal use of functions. For example,
most other Lisps do not allow calls like

42 Frequently Asked Questions (FAQ) 389

: (mapcar if ’(T NIL T NIL) ’(1 2 3 4) ’(5 6 7 8))

-> (1 6 3 8)

PicoLisp has no such restrictions. It favors the principle of “Least Astonish-
ment”.

42.3.4 Object System

The OOP system is very powerful, because it is fully dynamic, yet extremely
simple:

• In other systems you have to statically declare “slots”. In PicoLisp, classes
and objects are completely dynamic, they are created and extended at run-
time. “Slots” don’t even exist at creation time. They spring into existence
purely dynamically. You can add any new property or any new method to
any single object, at any time, regardless of its class.

• The multiple inheritance is such that not only classes can have several
superclasses, but each individual object can be of more than one class.

• Prefix classes can surgically change the inheritance tree for any class or
object. They behave like Mixins in this regard.

• Fine-control of inheritance in methods with super and extra.

42.3.5 Pragmatism

PicoLisp has many practical features not found in other Lisp dialects. Among
them are:

• Auto-quoting of lists when the CAR is a number. Instead of ’(1 2 3) you
can just write (1 2 3). This is possible because a number never makes
sense as a function name, and has to be checked at runtime anyway.

• The quote function returns all unevaluated arguments, instead of just the
first one. This is both faster (quote does not have to take the CAR of its
argument list) and smaller (a single cell instead of two). For example, ’A
expands to (quote . A) and ’(A B C) expands to (quote A B C).

• The symbol @ is automatically maintained as a local variable, and set im-
plicitly in certain flow- and logic-functions. This makes it often unnecessary
to allocate and assign local variables.

• Functional I/O is more convenient than explicitly passing around file de-
scriptors.

390 Alexander Burger

• A well-defined ordinal relationship between arbitrary data types facilitates
generalized comparing and sorting.

• Uniform handling of var locations (i.e. values of symbols and CARs of list
cells).

• The universality and usefulness of symbol properties is enforced and ex-
tended with implicit and explicit bindings of the symbol This in combi-
nation with the access functions =: : and ::.

• A very convenient list-building machinery, using the link, yoke, chain
and made functions in the make environment.

• The syntax of often-used functions is kept non-verbose. For example, in-
stead of (let ((A 1) (B 2) C 3) ..) you write (let (A 1 B 2 C 3)

..), or just (let A 1 ..) if there is only a single variable.

• The use of the hash (#) as a comment character is more adequate today,
and allows a clean hash-bang (#!) syntax for stand-alone scripts.

• The interpreter is invoked with a simple and flexible syntax, where com-
mand line arguments are either files to be interpreted or functions to be
directly executed. With that, many tasks can be performed without writ-
ing a separate script.

• A sophisticated system of interprocess communication, file locking and
synchronization allows multi-user access to database applications.

• A Prolog interpreter is tightly integrated into the language. Prolog clauses
can call Lisp expressions and vice versa, and a self-adjusting depth-first
search predicate select can be used in database queries.

42.3.6 Persistent Symbols

Database objects (“external” symbols) are a primary data type in PicoLisp.
They look like normal symbols to the programmer, but are managed in the
database (fetched from, and stored to) automatically by the system. Symbol
manipulation functions like set, put or get, the garbage collector, and other
parts of the interpreter know about them.

42.3.7 Application Server

It is a stand-alone system (it does not depend on external programs like
Apache or MySQL) and it provides a “live” user interface on the client side,
with an application server session for each connected client. The GUI lay-
out and behavior are described with S-expressions, generated dynamically at
runtime, and interact directly with the database structures.

42 Frequently Asked Questions (FAQ) 391

42.3.8 Localization

Internal exclusive and full use of UTF–8 encoding, and self-translating tran-
sient symbols (strings), make it easy to write country- and language-independent
applications.

42.4 How is the performance compared to other Lisp
systems?

Despite the fact that PicoLisp is an interpreted-only system, the performance
is quite good. Typical Lisp programs operating on list data structures are
executed in (interpreted) PicoLisp at about the same speed as in (compiled)
CMUCL, and about two or three times faster than in CLisp or Scheme48.
Programs with lots of numeric calculations, however, may be slower on a 32-
bit system, due to PicoLisp’s somewhat inefficient implementation of numbers.
The 64-bit version improved on that.

But in practice, speed was never a problem, even with the first versions of
PicoLisp in 1988 on a Mac II with a 12 MHz CPU. And certain things are
cleaner and easier to do in plain C or asm anyway. It is very easy to write C

functions in PicoLisp, either in the kernel, as shared object libraries, or even
inline in the Lisp code.

PicoLisp is very space-effective. Other Lisp systems reserve heap space twice
as much as needed, or use rather large internal structures to store cells and
symbols. Each cell or minimal symbol in PicoLisp consists of only two pointers.
No additional tags are stored, because they are implied in the pointer encod-
ings. No gaps remain in the heap during allocation, as there are only objects
of a single size. As a result, consing and garbage collection are very fast, and
overall performance benefits from a better cache efficiency. Heap and stack
grow automatically, and are limited only by hardware and operating system
constraints.

42.5 What means “interpreted”?

It means to directly execute Lisp data as program code. No transformation
to another representation of the code (e.g. compilation), and no structural
modifications of these data, takes place.

Lisp data are the “real” things, like numbers, symbols and lists, which can
be directly handled by the system. They are not the textual representation of

392 Alexander Burger

these structures (which is outside the Lisp realm and taken care of the read

ng and print ng interfaces).

The following example builds a function and immediately calls it with two
arguments:

: ((list (list ’X ’Y) (list ’* ’X ’Y)) 3 4)

-> 12

Note that no time is wasted to build up a lexical environment. Variable bind-
ings take place dynamically during interpretation.

A PicoLisp function is able to inspect or modify itself while it is running
(though this is rarely done in application programming). The following func-
tion modifies itself by incrementing the ‘0’ in its body:

(de incMe ()

(do 8

(printsp 0)

(inc (cdadr (cdadr incMe)))))

: (incMe)

0 1 2 3 4 5 6 7 -> 8

: (incMe)

8 9 10 11 12 13 14 15 -> 16

Only an interpreted Lisp can fully support such “Equivalence of Code and
Data”. If executable pieces of data are used frequently, like in PicoLisp’s
dynamically generated GUI, a fast interpreter is preferable over any compiler.

42.6 Is there (or will be in the future) a compiler
available?

No. That would contradict the idea of PicoLisp’s simple virtual machine struc-
ture. A compiler transforms it to another (physical) machine, with the result
that many assumptions about the machine’s behavior won’t hold any more.
Besides that, PicoLisp primitive functions evaluate their arguments indepen-
dently and are not suited for being called from compiled code. Finally, the gain
in execution speed would probably not be worth the effort. Typical PicoLisp
applications often use single-pass code which is loaded, executed and thrown
away; a process that would be considerably slowed down by compilation.

42 Frequently Asked Questions (FAQ) 393

42.7 Is it portable?

Yes and No. Though we wrote and tested PicoLisp originally only on Linux, it
now also runs on FreeBSD, Mac OS X (Darwin), Cygwin/Win32, and proba-
bly other POSIX systems. The first versions were even fully portable between
DOS, SCO-Unix and Macintosh systems. But today we have Linux. Linux
itself is very portable, and you can get access to a Linux system almost ev-
erywhere. So why bother?

The GUI is completely platform independent (Browser), and in the times of
Internet an application server does not really need to be portable.

42.8 Is PicoLisp a web server?

Not really, but it evolved a great deal into that direction.

Historically it was the other way round: We had a plain X11 GUI for our ap-
plications, and needed something platform independent. The solution was ob-
vious: Browsers are installed virtually everywhere. So we developed a protocol
which persuades a browser to function as a GUI front-end to our applications.
This is much simpler than to develop a full-blown web server.

42.9 I cannot find the LAMBDA keyword in PicoLisp

Because it isn’t there. The reason is that it is redundant; it is equivalent to
the quote function in any aspect, because there’s no distinction between code
and data in PicoLisp, and quote returns the whole (unevaluated) argument
list. If you insist on it, you can define your own lambda:

: (def ’lambda quote)

-> lambda

: ((lambda (X Y) (+ X Y)) 3 4)

-> 7

: (mapcar (lambda (X) (+ 1 X)) ’(1 2 3 4 5))

-> (2 3 4 5 6)

42.10 Why do you use dynamic variable binding?

Dynamic binding is very powerful, because there is only one single, dynami-
cally changing environment active all the time. This makes it possible (e.g. for

394 Alexander Burger

program snippets, interspersed with application data and/or passed over the
network) to access the whole application context, freely, yet in a dynamically
controlled manner. And (shallow) dynamic binding is the fastest method for
a Lisp interpreter.

Lexical binding is more limited by definition, because each environment is de-
liberately restricted to the visible (textual) static scope within its establishing
form. Therefore, most Lisps with lexical binding introduce “special variables”
to support dynamic binding as well, and constructs like labels to extend the
scope of variables beyond a single function.

In PicoLisp, function definitions are normal symbol values. They can be dy-
namically rebound like other variables. As a useful real-world example, take
this little gem:

(de recur recurse

(run (cdr recurse)))

It implements anonymous recursion, by defining recur statically and recurse

dynamically. Usually it is very cumbersome to think up a name for a function
(like the following one) which is used only in a single place. But with recur

and recurse you can simply write:

: (mapcar

’((N)

(recur (N)

(if (=0 N)

1

(* N (recurse (- N 1))))))

(1 2 3 4 5 6 7 8))

-> (1 2 6 24 120 720 5040 40320)

Needless to say, the call to recurse does not have to reside in the same func-
tion as the corresponding recur. Can you implement anonymous recursion so
elegantly with lexical binding?

42.11 Are there no problems caused by dynamic
binding?

You mean the funarg problem, or problems that arise when a variable might
be bound to itself ? For that reason we have a convention in PicoLisp to use
transient symbols (instead of internal symbols)

42 Frequently Asked Questions (FAQ) 395

1. for all parameters and locals, when functional arguments or executable
lists are passed through the current dynamic bindings

2. for a parameter or local, when that symbol might possibly be (directly or
indirectly) bound to itself, and the bound symbol’s value is accessed in
the dynamic context

This is a form of lexical scoping - though we still have dynamic binding - of
symbols, similar to the static keyword in C.

In fact, these problems are a real threat, and may lead to mysterious bugs
(other Lisps have similar problems, e.g. with symbol capture in macros). They
can be avoided, however, when the above conventions are observed. As an
example, consider a function which doubles the value in a variable:

(de double (Var)

(set Var (* 2 (val Var))))

This works fine, as long as we call it as (double ’X), but will break if we
call it as (double ’Var). Therefore, the correct implementation of double

should be:

(de double ("Var")

(set "Var" (* 2 (val "Var"))))

If double is defined that way in a separate source file, and/or isolated via the
==== function, then the symbol Var is locked into a private lexical context
and cannot conflict with other symbols.

Admittedly, there are two disadvantages with this solution:

1. The rules for when to use transient symbols are a bit complicated. Though
it is safe to use them even when not necessary, it will take more space then
and be more difficult to debug.

2. The string-like syntax of transient symbols as variables may look strange
to alumni of other languages.

Fortunately, these pitfalls do not occur so very often, and seem more likely in
utilities than in production code, so that they can be easily encapsulated.

42.12 But with dynamic binding I cannot implement
closures!

This is not true. Closures are a matter of scope, not of binding.

396 Alexander Burger

For a closure it is necessary to build and maintain a separate environment. In
a system with lexical bindings, this has to be done at each function call, and
for compiled code it is the most efficient strategy anyway, because it is done
once by the compiler, and can then be accessed as stack frames at runtime.

For an interpreter, however, this is quite an overhead. So it should not be
done automatically at each and every function invocation, but only if needed.

You have several options in PicoLisp. For simple cases, you can take advan-
tage of the static scope of transient symbols. For the general case, PicoLisp
has built-in functions like bind or job, which dynamically manage statically
scoped environments.

Environments are first-class objects in PicoLisp, more flexible than hard-coded
closures, because they can be created and manipulated independently from
the code.

As an example, consider a currying function:

(de curry Args

(list (car Args)

(list ’list

(lit (cadr Args))

(list ’cons ’’job

(list ’cons

(list ’lit (list ’env (lit (car Args))))

(lit (cddr Args)))))))

When called, it returns a function-building function which may be applied to
some argument:

: ((curry (X) (N) (* X N)) 3)

-> ((N) (job ’((X . 3)) (* X N)))

or used as:

: (((curry (X) (N) (* X N)) 3) 4)

-> 12

In other cases, you are free to choose a shorter and faster solution. If (as in
the example above) the curried argument is known to be immutable:

42 Frequently Asked Questions (FAQ) 397

(de curry Args

(list

(cadr Args)

(list ’fill

(lit (cons (car Args) (cddr Args)))

(lit (cadr Args)))))

Then the function built above will just be:

: ((curry (X) (N) (* X N)) 3)

-> ((X) (* X 3))

In that case, the “environment build-up” is reduced by a simple (lexical)
constant substitution with zero runtime overhead.

Note that the actual curry function is simpler and more pragmatic. It com-
bines both strategies (to use job, or to substitute), deciding at runtime what
kind of function to build.

42.13 Do you have macros?

Yes, there is a macro mechanism in PicoLisp, to build and immediately execute
a list of expressions. But it is seldom used. Macros are a kludge. Most things
where you need macros in other Lisps are directly expressible as functions in
PicoLisp, which (as opposed to macros) can be applied, passed around, and
debugged.

42.14 Why are there no strings?

Because PicoLisp has something better: Transient symbols. They look and
behave like strings in any respect, but are nevertheless true symbols, with a
value cell and a property list.

This leads to interesting opportunities. The value cell, for example, can point
to other data that represent the string’s translation. This is used extensively
for localization. When a program calls

(prinl "Good morning!")

then changing the value of the symbol ’’Good morning!’’ to its translation
will change the program’s output at runtime.

398 Alexander Burger

Transient symbols are also quite memory-conservative. As they are stored in
normal heap cells, no additional overhead for memory management is induced.
The cell holds the symbol’s value in its CDR, and the tail in its CAR. If the
string is not longer than 7 bytes, it fits (on the 64-bit version) completely
into the tail, and a single cell suffices. Up to 15 bytes take up two cells, 23
bytes three etc., so that long strings are not very efficient (needing twice the
memory on the average), but this disadvantage is made up by simplicity and
uniformity. And lots of extremely long strings are not the common case, as
they are split up anyway during processing, and stored as plain byte sequences
in external files and databases.

Because transient symbols are temporarily interned (while load ng the current
source file), they are shared within the same source and occupy that space
only once, even if they occur multiple times within the same file.

42.15 What about arrays?

PicoLisp has no array or vector data type. Instead, lists must be used for any
type of sequentially arranged data.

We believe that arrays are usually overrated. Textbook wisdom tells that
they have a constant access time O(1) when the index is known. Many other
operations like splits or insertions are rather expensive. Access with a known
(numeric) index is not really typical for Lisp, and even then the advantage
of an array is significant only if it is relatively long. Holding lots of data in
long arrays, however, smells quite like a program design error, and we suspect
that often more structured representations like trees or interconnected objects
would be better.

In practice, most arrays are rather short, or the program can be designed in
such a way that long arrays (or at least an indexed access) are avoided.

Using lists, on the other hand, has advantages. We have so many concerted
functions that uniformly operate on lists. There is no separate data type that
has to be handled by the interpreter, garbage collector, I/O, database and so
on. Lists can be made circular. And lists don’t cause memory fragmentation.

42.16 How to do floating point arithmetics?

PicoLisp does not support real floating point numbers. You can do all kinds
of floating point calculations by calling existing library functions via native,
inline-C code, and/or by loading the “@lib/math.l” library.

42 Frequently Asked Questions (FAQ) 399

But PicoLisp has something even (arguably) better: Scaled fixpoint numbers,
with unlimited precision.

The reasons for this design decision are manifold. Floating point numbers
smack of imperfection, they don’t give “exact” results, have limited precision
and range, and require an extra data type. It is hard to understand what
really goes on (How many digits of precision do we have today? Are perhaps
10-byte floats used for intermediate results? How does rounding behave?).

For fixpoint support, the system must handle just integer arithmetics, I/O and
string conversions. The rest is under programmer’s control and responsibility
(the essence of PicoLisp).

Carefully scaled fixpoint calculations can do anything floating points can do.

42.17 What happens when I locally bind a symbol which
has a function definition?

That’s not a good idea. The next time that function gets executed within the
dynamic context the system may crash. Therefore we have a convention to
use an upper case first letter for locally bound symbols:

(de findCar (Car List)

(when (member Car (cdr List))

(list Car (car List))))

;-)

42.18 Would it make sense to build PicoLisp in
hardware?

At least it should be interesting. It would be a machine executing list
(tree) structures instead of linear instruction sequences. “Instruction prefetch”
would look down the CAR- and CDR-chains, and perhaps need only a single
cache for both data and instructions.

Primitive functions like set, val, if and while, which are written in C or
assembly language now, would be implemented in microcode. Plus a few I/O
functions for hardware access. EVAL itself would be a microcode subroutine.

Only a single heap and a single stack is needed. They grow towards each other,
and cause garbage collection if they get too close. Heap compaction is trivial
due to the single cell size.

400 Alexander Burger

There would be no assembly-language. The lowest level (above the hardware
and microcode levels) are s-expressions: The machine language is Lisp.

42.19 I get a segfault if I . . .

PicoLisp is a pragmatic language. It doesn’t check at runtime for all possible
error conditions which won’t occur during normal usage. Such errors are usu-
ally detected quickly at the first test run, and checking for them after that
would just produce runtime overhead.

Catching the segfault signals is also not a good idea, because the Lisp heap is
most probably be damanged afterwards.

It is recommended, though, to inspect the code periodically with lint.

42.20 Where can I ask questions?

The best place is the PicoLisp Mailing List (see also The Mail Archive), or
the IRC #picolisp channel on FreeNode.net.

mailto:picolisp@software-lab.de?subject=Subscribe
http://www.mail-archive.com/picolisp@software-lab.de/

43

Some technical questions and answers

Alexander Burger

abu@software-lab.de

Summary. These are some technical questions about PicoLisp with answers, ad-
ditional to the official FAQ.

43.1 Can there be more than one copy of the symbol T?

Question

NIL is a special symbol which exists exactly once in the whole system. Can
there be more than one copy of the symbol T?

Answer

In this sense, any internal symbol is unique, and exists exactly once in the
system. And any internal symbol (also ’NIL’) could exist a second time, but it
cannot be interned at the same time (and would thus be a transient symbol).

“interned” means no more or less that an entry in the “internal” symbol table
points to that symbol.

’NIL’ is special, however, because even if you would succeed to intern a new
(transient) symbol “NIL” (it isn’t possible, as the existing ’NIL’ cannot be
uninterned), it would not have the speciality of the old ’NIL’, e.g. being re-
turned from boolean functions, because these functions return a hard-compiled
pointer to the old ’NIL’, and conditionals check for this pointer.

Take a normal symbol, say “abc”. You can create several transient symbols
“abc” in the system, for example by loading them from different source files,
or separating the input with (====), by ’pack’ing them and so on.

402 Alexander Burger

Now you could ’intern’ one of those “abc” symbols. It will appear as ’abc’.
The reader will always return that interned symbol when it sees ’abc’. A call
to (intern “abc”) also would return that already-interned symbol ’abc’. To
change another one of the above “abc” symbols to ’abc’, you’ll first have to
unintern (with ’zap’) the existing ’abc’.

43.2 Why is the symbol T not protected like NIL?

Question

(Related to the one above) If one tries to put a property on the NIL symbol,
one gets the message “NIL – Protected symbol“. Why is the symbol T not
protected likewise?

Answer

Perhaps is this error message not necessary, at least not in the 64-bit version.
For a background, see the structure of ’NIL’ in “doc/structures“:

NIL: /

|

V

+-----+-----+-----+-----+

| / | / | / | / |

+-----+--+--+-----+-----+

’NIL’ is the only symbol that has a double nature: It is a symbol and a cons
pair. It doesn’t even have a name in the 32-bit version, the reader and printer
simply know about it, and read and print ’N’, ’I’, and ’L’ by themselves.

In the 64-bit version the situation is slightly different:

NIL: /

|

V

+-----+-----+-----+-----+

|’LIN’| / | / | / |

+-----+--+--+-----+-----+

Here NIL does have a name. This field where you see the letters ’N’, ’I’ and ’L’
here, is called the symbol’s tail. Besides the name, it can also hold a property
list.

43 Some technical questions and answers 403

Technically, there is perhaps no problem when storing also properties in that
tail of ’NIL’, and it might work (at least on the 64-bit version) if we removed
the above error message.

However, I think it is wise to prohibit properties in ’NIL’, as “NIL” also means
“nothing”, and storing properties in “nothing” sounds a bit sick.

Any opinions?

43.3 Why does the REPL exit when NIL is typed?

Question

If you type just “NIL” or “()” on the command line in the REPL, then the
REPL exits. Why is that?

Answer

The REPL is basically

(while (read)

(eval @))

’read’ returns ’NIL’ upon end of file, but also when it indeed reads ’NIL’.

The same happens btw if you write the atom ’NIL’ somewhere in a ’load’ed
file. This is a convenient way to “comment” the rest of the file.

Even better is conditional commenting of the rest of a file, by using a back-
quote read macro. When ‘(condition) is read, the rest of the file will be ignored
if (condition) evaluates to ’NIL’. There are examples for that in the sources,
e.g. at the end of “lib/form.l“, where ‘*Dbg causes the rest of the file to be
loaded only if in debugging mode.

Note: As of picoLisp-3.0.6, the interpreter does no longer exit when the top
level REPL reads NIL. This is a bit inconsistent, but more what seems to be
expected by most people.

404 Alexander Burger

43.4 PicoLisp indicated that ’be’ was undefined - why?

Question

At this URL (http://rosettacode.org/wiki/Pascal%27s triangle/Puzzle#PicoLisp1)
there is some PicoLisp code for solving Pascal’s triangle. I tried it out on my
machine and PicoLisp indicated that ’be’ was undefined. Where would I find
it? I’m running version 3.0.4 on a Windows 7 Home Premium 64-bit system.

Answer

This is most probably because you didn’t load the full system, but just the
’picolisp’ binary perhaps.

Normally, PicoLisp is either started locally with the ’p’ or ’dbg’ scripts:

$./p +

:

or globally (e.g. when installed via some package) with the ’pil’ command:

$ pil +

:

In both cases, the full system is loaded. The trailing ’+’ indicates debug mode.

: (pp ’be)

(de be CL

(with (car CL)

(if (== *Rule This)

(=: T (conc (: T) (cons (cdr CL))))

(=: T (cons (cdr CL)))

(setq *Rule This))

This))

-> be

1http://rosettacode.org/wiki/Pascal%27s triangle/Puzzle#PicoLisp

Part VII

PicoLisp 64-bit Version

44

README 64-bit

Alexander Burger

abu@software-lab.de

Summary. This is the README file from the 64-bit PicoLisp distribution.

44.1 64-bit PicoLisp

The 64-bit version of PicoLisp is a complete rewrite of the 32-bit version.

While the 32-bit version was written in C, the 64-bit version is implemented
in a generic assembler, which in turn is written in PicoLisp. In most respects,
the two versions are compatible (see ”Differences” below).

44.1.1 Building the Kernel

No C-compiler is needed to build the interpreter kernel, only a 64-bit version
of the GNU assembler for the target architecture.

The kernel sources are the ”*.l” files in the ”src64/” directory. The PicoL-
isp assembler parses them and generates a few ”*.s” files, which the GNU
assembler accepts to build the executable binary file. See the details for boot-
strapping the ”*.s” files in INSTALL.

The generic assembler is in ”src64/lib/asm.l”. It is driven by the script
”src64/mkAsm” which is called by ”src64/Makefile”.

The CPU registers and instruction set of the PicoLisp processor are described
in ”doc64/asm”, and the internal data structures of the PicoLisp machine in
”doc64/structures”.

Currently, x86-64/Linux, x86-64/SunOS and ppc64/Linux are supported. The
platform dependent files are in the ”src64/arch/” for the target architecture,
and in ”src64/sys/” for the target operating system.

408 Alexander Burger

44.1.2 Reasons for the Use of Assembly Language

Contrary to the common expectation: Runtime execution speed was not a
primary design decision factor. In general, pure code efficiency has not much
influence on the overall execution speed of an application program, as memory
bandwidth (and later I/O bandwidth) is the main bottleneck.

The reasons to choose assembly language (instead of C) were, in decreasing
order of importance:

1. Stack manipulations

Alignment to cell boundaries: To be able to directly express the desired
stack data structures (see ”doc64/structures”, e.g. ”Apply frame”), a bet-
ter control over the stack (as compared to C) was required.

Indefinite pushs and pops: A Lisp interpreter operates on list structures
of unknown length all the time. The C version always required two passes,
the first to determine the length of the list to allocate the necessary stack
structures, and then the second to do the actual work. An assembly version
can simply push as many items as are encountered, and clean up the stack
with pop’s and stack pointer arithmetics.

2. Alignments and memory layout control

Similar to the stack structures, there are also heap data structures that can
be directly expressed in assembly declarations (built at assembly time),
while a C implementation has to defer that to runtime.

Built-in functions (SUBRs) need to be aligned to to a multiple of 16+2,
reflecting the data type tag requirements, and thus allow direct jumps
to the SUBR code without further pointer arithmetic and masking, as is
necessary in the C version.

3. Multi-precision arithmetics (Carry-Flag)

The bignum functions demand an extensive use of CPU flags. Overflow
and carry/borrow have to emulated in C with awkward comparisons of
signed numbers.

4. Register allocation

A manual assembly implementation can probably handle register alloca-
tion more flexibly, with minimal context saves and reduced stack space,
and multiple values can be returned from functions in registers. As men-
tioned above, this has no measurable effect on execution speed, but the
binary’s overall size is significantly reduced.

5. Return status register flags from functions

44 README 64-bit 409

Functions can return condition codes directly. The callee does not need
to re-check returned values. Again, this has only a negligible impact on
performance.

6. Multiple function entry points

Some things can be handled more flexibly, and existing code may be easier
to re-use. This is on the same level as wild jumps within functions (’goto’s),
but acceptable in the context of an often-used but rarely modified program
like a Lisp kernel.

It would indeed be feasible to write only certain parts of the system in assem-
bly, and the rest in C. But this would be rather unsatisfactory. And it gives
a nice feeling to be independent of a heavy-weight C compiler.

44.1.3 Differences to the 32-bit Version

Except for the following seven cases, the 64-bit version should be upward
compatible to the 32-bit version.

1. Internal format and printed representation of external symbols

This is probably the most significant change. External (i.e. database) sym-
bols are coded more efficiently internally (occupying only a single cell),
and have a slightly different printed representation. Existing databases
need to be converted.

2. Short numbers are pointer-equal

As there is now an internal ”short number” type, an expression like

(== 64 64)

will evaluate to ’T’ on a 64-bit system, but to ’NIL’ on a 32-bit system.

3. Bit manipulation functions may differ for negative arguments

Numbers are represented internally in a different format. Bit manipula-
tions are not really defined for negative numbers, but (& -15 -6) will give
-6 on 32 bits, and 6 on 64 bits.

4. ’do’ takes only a ’cnt’ argument (not a bignum)

For the sake of simplicity, a short number (60 bits) is considered to be
enough for counted loops.

5. Calling native functions is different.

410 Alexander Burger

Direct calls using the ’lib:fun’ notation is still possible (see the ’ext’ and
’ht’ libraries), but the corresponding functions must of course be coded
in assembly and not in C. To call C functions, the new ’native’ function
should be used, which can interface to native C functions directly, without
the need of glue code to convert arguments and return values.

6. New features were added, like coroutines or namespaces.

7. Bugs (in the implementation, or in this list ;-)

45

Generic VM/Assembler

Alexander Burger

abu@software-lab.de

Summary. This is a detailled description of the 64-bit Generic VM/Assembler.

45.1 CPU Registers

+---+---+---+---+---+---+---+---+

| A | B | \ [A]ccumulator

+---+---+---+---+---+---+---+---+ D [B]yte register

| C | / [C]ount register

+---+---+---+---+---+---+---+---+ [D]ouble register

| E | [E]xpression register

+---+---+---+---+---+---+---+---+

+---+---+---+---+---+---+---+---+

| X | [X] Index register

+---+---+---+---+---+---+---+---+ [Y] Index register

| Y | [Z] Index register

+---+---+---+---+---+---+---+---+

| Z |

+---+---+---+---+---+---+---+---+

412 Alexander Burger

+---+---+---+---+---+---+---+---+

| L | [L]ink register

+---+---+---+---+---+---+---+---+ [S]tack pointer

| S |

+---+---+---+---+---+---+---+---+

+-------------------------------+

| [z]ero [s]ign [c]arry | [F]lags

+-------------------------------+

Source Addressing Modes:

ld A 1234 # Immediate

ld A "(a+b-c)"

ld A R # Register

ld A Global # Direct

ld A (R) # Indexed

ld A (R 8) # Indexed with offset

ld A (R OFFS)

ld A (R Global)

ld A (Global) # Indirect

ld A (Global OFFS) # Indirect with offset

ld A ((R)) # Indexed indirect

ld A ((R 8)) # Indexed with offset indirect

ld A ((R 8) OFFS)

ld A ((R Global) OFFS)

ld A ((R OFFS) Global)

...

Destination Addressing Modes:

ld R A # Register

ld (R) A # Indexed

ld (R 8) A # Indexed with offset

ld (R OFFS) A

ld (R Global) A

45 Generic VM/Assembler 413

ld (Global) A # Indirect

ld (Global OFFS) A # Indirect with offset

ld ((R)) A # Indexed indirect

ld ((R 8)) A # Indexed with offset indirect

ld ((R 8) OFFS) A

ld ((R Global) OFFS) A

ld ((R OFFS) Global) A

...

Destination Addressing Modes: Target Addressing Modes:

jmp 1234 # Absolute

jmp Label

jmp (R) # Indexed

jmp (R T) # Indexed SUBR

jmp (Global) # Indirect

45.2 Instruction Set

No Operation:

nop # No operation

Move Instructions:

ld dst src # Load ’dst’ from ’src’ [---]

ld2 src # Load ’A’ from two bytes ’src’ (unsigned)

ld4 src # Load ’A’ from four bytes ’src’ (unsigned)

ldc reg src # Load if Carry ’reg’ from ’src’

ldnc reg src # Load if not Carry ’reg’ from ’src’

ldz reg src # Load if Zero ’reg’ from ’src’

ldnz reg src # Load if not Zero ’reg’ from ’src’

lea dst src # Load ’dst’ with effective address of ’src’ [---]

414 Alexander Burger

st2 dst # Store two bytes from ’A’ into ’dst’

st4 dst # Store four bytes from ’A’ into ’dst’

xchg dst dst # Exchange ’dst’s

movn dst src cnt # Move ’cnt’ bytes from ’src’ to ’dst’ (non-overlapping)

mset dst cnt # Set ’cnt’ bytes of memory to B

movm dst src end # Move memory ’src’..’end’ to ’dst’ (aligned)

save src end dst # Save ’src’..’end’ to ’dst’ (non-overlapping)

load dst end src # Load ’dst’..’end’ from ’src’ (non-overlapping)

Arithmetics:

add dst src # Add ’src’ to ’dst’ [zsc]

addc dst src # Add ’src’ to ’dst’ with Carry [zsc]

sub dst src # Subtract ’src’ from ’dst’ [zsc]

subc dst src # Subtract ’src’ from ’dst’ with Carry [zsc]

inc dst # Increment ’dst’ [zs.]

dec dst # Increment ’dst’ [zs.]

not dst # One’s complement negation of ’dst’

neg dst # Two’s complement negation of ’dst’

and dst src # Bitwise AND ’dst’ with ’src’

or dst src # Bitwise OR ’dst’ with ’src’

xor dst src # Bitwise XOR ’dst’ with ’src’

off dst src # Clear ’src’ bits in ’dst’

test dst src # Bit-test ’dst’ with ’src’ [z._]

shl dst src # Shift ’dst’ left into Carry by ’src’ bits

shr dst src # Shift ’dst’ right into Carry by ’src’ bits

rol dst src # Rotate ’dst’ left by ’src’ bits

ror dst src # Rotate ’dst’ right by ’src’ bits

rcl dst src # Rotate ’dst’ with Carry left by ’src’ bits

rcr dst src # Rotate ’dst’ with Carry right by ’src’ bits

mul src # Multiplication of ’A’ and ’src’ into ’D’ [...]

div src # Division of ’D’ by ’src’ into ’A’, ’C’ [...]

zxt # Zero-extend ’B’ to ’A’

setz # Set Zero flag [z__]

clrz # Clear Zero flag [z..]

setc # Set Carry flag [--c]

clrc # Clear Carry flag [--c]

45 Generic VM/Assembler 415

Comparisons:

cmp dst src # Compare ’dst’ with ’src’ [z.c]

cmp4 src # Compare four bytes in ’A’ with ’src’

cmpn dst src cnt # Compare ’cnt’ bytes ’dst’ with ’src’

slen dst src # Set ’dst’ to the string length of ’src’

memb src cnt # Find B in ’cnt’ bytes of memory [z..]

null src # Compare ’src’ with 0 [zs_]

nul4 # Compare four bytes in ’A’ with 0 [zs_]

Byte addressing:

set dst src # Set ’dst’ byte to ’src’

nul src # Compare byte ’src’ with 0 [zs_]

Types:

cnt src # Non-’z’ if small number

big src # Non-’z’ if bignum

num src # Non-’z’ if number

sym src # Non-’z’ if symbol

atom src # Non-’z’ if atom

Flow Control:

jmp adr # Jump to ’adr’

jz adr # Jump to ’adr’ if Zero

jnz adr # Jump to ’adr’ if not Zero

js adr # Jump to ’adr’ if Sign

jns adr # Jump to ’adr’ if not Sign

jc adr # Jump to ’adr’ if Carry

jnc adr # Jump to ’adr’ if not Carry

call adr # Call ’adr’

cc adr(src ..) # C-Call to ’adr’ with ’src’ arguments

cc adr reg # C-Call to ’adr’ with top of stacked args in ’reg’

ldd # Load double value pointed to by ’C’

ldf # Load float value pointed to by ’C’

fixnum # Convert double with scale ’E’ to fixnum in ’E’

float # Convert fixnum with scale ’A’ pointed to by ’X’

std # Store double value at address ’Z’

stf # Store float value at address ’Z’

416 Alexander Burger

ret # Return

begin # Called from foreign function

return # Return to foreign function

Stack Manipulations:

push src # Push ’src’ [---]

pop dst # Pop ’dst’ [---]

link # Setup frame

tuck src # Extend frame

drop # Drop frame [---]

Evaluation:

eval # Evaluate expression in ’E’

eval+ # Evaluate expression in partial stack frame

eval/ret # Evaluate expression and return

exec reg # Execute lists in ’reg’, ignore results

prog reg # Evaluate expressions in ’reg’, return last result

System:

initData # Init runtime system

initCode

initMain

45.3 Naming Conventions

Lisp level functions, which would be all of the form doXyzE E, are written as
doXyz for brevity.

46

Internal Structures 64-bit Version

Alexander Burger

abu@software-lab.de

Summary. This article describes the internal structures of the 64-bit PicoLisp Ver-
sion.

46.1 Primary Data Types

cnt xxS010

big xxS100

sym xx1000

pair xx0000

418 Alexander Burger

Bignum

|

V

+-----+-----+

| DIG | | |

+-----+--+--+

|

V

+-----+-----+

| DIG | | |

+-----+--+--+

|

V

+-----+-----+

| DIG | CNT |

+-----+-----+

Pair

|

V

+-----+-----+

| CAR | CDR |

+-----+-----+

Symbol

|

V

+-----+-----+ +-----+-----+

| | | VAL | |’cba’|’fed’|

+--+--+-----+ +-----+-----+

| tail ^

| |

V | name

+-----+-----+ +-----+-----+ +-----+--+--+

| | | ---+---> | KEY | ---+---> | | | | |

+--+--+-----+ +-----+-----+ +--+--+-----+

| |

V V

+-----+-----+ +-----+-----+

| VAL | KEY | | VAL | KEY |

+-----+-----+ +-----+-----+

46 Internal Structures 64-bit Version 419

NIL: /

|

V

+-----+-----+-----+-----+

|’LIN’| / | / | / |

+-----+--+--+-----+-----+

Symbol tail

Internal/Transient

0010 Short name

0100 Long name

0000 Properties

External

1010 Short name

1000 Properties

Name final short

Internals, Transients

0000.xxxxxxx.xxxxxxx.xxxxxxx.xxxxxxx.xxxxxxx.xxxxxxx.xxxxxxx0010

60 52 44 36 28 20 12 4

Externals

42 bit Object (4 Tera objects)

16 bit File (64 K files)

2 bit Status

Loaded 01........

Dirty 10........

Deleted 11........

1+2 Bytes: 1 file, 64K objects {177777}

1+3 Bytes: 16 files, 1M objects {O3777777}

1+4 Bytes: 256 files, 16M objects {OO77777777}

1+5 Bytes: 256 files, 4G objects {OO37777777777}

1+6 Bytes: 65536 files, 4G objects {OOOO37777777777}

1+8 Bytes: 65536 files, 4T objects {OOOO77777777777777}

(2 + 10 + 8 + 12 + 8 + 20)

xx.xxxxxxxxx.xxxxxxx.xxxxxxxxxxx.xxxxxxx.xxxxxxxxxxxxxxxxxxxE010

obj file obj file obj

^6 ^5 ^4 ^3 ^2

420 Alexander Burger

46.2 Heap

Heaps Avail

| |

| | +-----------------------+

| | | |

V V | V

+-----+-----+--+--+-----+-----+-----+-----+-----+--- ---+-----+

| | | | | | / | | ... | | |

+-----+-----+-----+-----+-----+-----+-----+-----+--- ---+--+--+

|

|

+----->

46.3 Stack

Saved values:

^

|

+---> LINK ----+

| val1

| val2

| ...

| valN

+---- LINK <-- L

Bind frame:

^

Bind |

+---> LINK ----+

| val1

| sym1

| ...

| valN

| symN

+---- LINK <-- L <-- Bind

eswp

46 Internal Structures 64-bit Version 421

VarArgs frame:

^

Bind |

+---> LINK ----+

| val1

| sym1

| ...

| valN

| symN

+---- LINK <---+ <-- Bind

eswp |

Next |

Args |

+---> LINK ----+ <-- Next

| arg1

| ...

| argN <-- Args

+---- LINK <-- L

Apply args:

^

|

+---> LINK ----+

| ...

| fun <-- Y

| arg1

| ...

| argN <-- Z

| ...

+---- LINK <-- L

Apply frame:

^

Apply |

+---> LINK ----+

| ...

| valN <-+ (gc)

| zero |

| NIL | (gc)

| carN --+ <-+

| ... |

| val1 <-+ | (gc)

| zero | |

| cdr1 --|---+ (gc)

| +-> car1 --+

| +-- cdr (gc)

| fun <-- exe

+---- LINK <-- L <-- Apply

422 Alexander Burger

Catch frame:

^

X |

Y |

Z |

L |

<III> [env] |

<II> fin |

<I> tag |

LINK ----+ <-- Catch

I/O frame:

^

<III> put/get |

<II> pid |

<I> fd |

LINK ----+ <-- inFrames, outFrames, errFrames, ctlFrames

Coroutine frame:

^

X |

Y |

Z |

L |

<III> [env] |

<II> seg |

<I> lim |

LINK ----+ <-- co7

Stack segment:

<-I> tag # Tag

<-II> stk # Stack pointer --+

[env] # Environment |

Stack ... |

X |

Y |

Z |

L <-----------------------+

46 Internal Structures 64-bit Version 423

46.4 Memory

inFile:

--> fd # File descriptor

<I> ix # Read index

<II> cnt # Buffer count

<III> next # Next character

<IV> line # Line number

<V> src # Source line number

<VI> name # Filename

<VII> buf # Buffer [BUFSIZ]

outFile:

--> fd # File descriptor

<I> ix # Read index

<II> tty # TTY flag

<III> buf # Buffer [BUFSIZ]

child:

--> pid # Process ID

<I> hear # Pipe read end

<II> tell # Pipe write end

<III> ofs # Buffer offset

<IV> cnt # Buffer count

<V> buf # Buffer pointer

+--------------------------+ Mic

|

| +-----------------+ Tell <Child>

| |

| +-----------------> Hear

<Parent> | |

| |

Spkr <---+ |

| |

| |

| +-----------------+ Tell

| |

| +-----------------> Hear <Child>

|

+--------------------------+ Mic

424 Alexander Burger

46.5 Database File

+-------------+-+-------------+-+----+

Block 0: | Free 0| Next 0| << |

+-------------+-+-------------+-+----+

0 BLK 2*Blk+1

+-------------+-+

Free: | Link 0|

+-------------+-+

0

+-------------+-+----

ID-Block: | Link 1| Data

+-------------+-+----

0 BLK

+-------------+-+----

EXT-Block: | Link n| Data

+-------------+-+----

0 BLK

dbFile: # Size VIII (64 bytes)

--> fd # File descriptor

<I> db # File number

<II> sh # Block shift

<III> siz # Block size (64 << sh)

<IV> flgs # Flags: Lock(0), Dirty(1)

<V> marks # Mark vector size

<VI> mark # Mark bit vector

<VII> fluse # Free list use count

46 Internal Structures 64-bit Version 425

46.6 Assumptions

• 8 bit per byte

• 64 bit per word

• Stack grows downwards, aligned to 64 bit

• Memory access legal also at 4-byte boundaries

Part VIII

Ersatz PicoLisp

47

README Ersatz-PicoLisp

Alexander Burger

abu@software-lab.de

Summary. This is the README file from the Ersatz PicoLisp distribution.

47.1 Ersatz PicoLisp

Ersatz PicoLisp is a version of PicoLisp completely written in Java. It requires
a 1.6 Java Runtime Environment.

It should be the last resort when there is no other way to run a ”real” PicoLisp.
Also, it may be used to bootstrap the 64-bit version, which requires a running
PicoLisp to build from the sources.

Unfortunately, ErsatzLisp lacks everything which makes up ”true” PicoLisp:
Speed, small memory footprint, and simple internal structures.

Performance is rather poor. It is 5 to 10 times slower, allocates a huge amount
of memory at startup (600 MB vs. 3 MB), and needs 2.5 to 4 times the space
for runtime Lisp data. But efficiency was not a major goal. Instead, perfor-
mance was often sacrificed in favor of simpler or more modular structures.

There is no support for

• raw console input (’key’) and line editing

• child processes (’fork’)

• interprocess communication (’tell’, ’hear’, ’ipc’, ’udp’ etc.)

• databases (external symbols)

• signal handling

430 Alexander Burger

47.1.1 Invocation

Ersatz PicoLisp can be started - analog to ’pil’ - as

$ ersatz/pil

This includes slighly simplfied versions of the standard libraries as loaded by
the ”real” ’pil’ (without database, but with Pilog and XML support).

To start it in debug mode, use

$ ersatz/pil +

On non-Unix systems, you might start ’java’ directly, e.g.:

java -DPID=42 -cp .;tmp;picolisp.jar PicoLisp lib.l

Instead of ’42’ some other number may be passed. It is used to simulate a
”process ID”, so it should be different for every running instance of Ersatz
PicoLisp.

47.1.2 Building the JAR file

The actual source files are

sys.src # The system

fun.src # Function definitions

The PicoLisp script ”mkJar” will read them, generate the Java source file
”PicoLisp.java”, compile that with ’javac’, and pack the result into a JAR
(Java Archive) file. ”mkJar” expects to be run in the ”ersatz/” directory, e.g.:

$ (cd ersatz; ./mkJar)

48

Ersatz PicoLisp Java Reflection API

Alexander Burger

abu@software-lab.de

Summary. This article introduces the Ersatz PicoLisp Java Reflection API and
its most important functions.

48.1 Introduction

As Ersatz Lisp (available in the “ersatz/” directory in the Picolisp release,
or as a separate tarball) is completely written in Java, it comes with a set of
dedicated functions to interface to the Java Reflection API.

48.2 Important functions

48.2.1 The java function

The central function is java. It comes in four forms:

(java ‘cls ‘T [’any ..]) -> obj

is a constructor call, returning a Java object. cls is the name of a Java class.
The optional any arguments are passed to the Java constructor.

(java ‘cls ‘msg [’any ..]) -> obj

calls a static method msg for a class cls.

http://software-lab.de/picoLisp.tgz
http://software-lab.de/ersatz.tgz

432 Alexander Burger

(java ‘obj ‘msg [’any ..]) -> obj

calls a dynamic method msg for an object obj. The optional any arguments
to the above three forms can be

• T or NIL, then the type passed to Java is boolean

• A number, then it must fit in 32 bits and will be passed as int

• A normal symbol, then it will be passed as String

• A Java object, as returned by java or one of the xxx: conversion functions
(see below).

• A list, then all elements must be of the same type and will be passed as
Array.

(java ‘obj [’cnt]) -> any

converts a Java object to the corresponding Lisp type. Supported types, and
their conversion results are:

• Boolean objects are converted to T or NIL

• Byte, Character, Integer, Long or BigInteger objects are converted to num-
bers

• Double objects are converted to fixnums, using the scale cnt

• String objects are converted to transient symbols

• Arrays of byte, char, int or long are converted to lists of numbers

• Arrays of double are converted lists of fixnums, using the scale cnt

Example:

: (setq Sb (java "java.lang.StringBuilder" T "abc"))

-> $StringBuilder

: (java Sb "append" (char: 44))

-> $StringBuilder

: (java Sb "append" 123)

-> $StringBuilder

: (java Sb "toString")

-> $String

: (java @)

-> "abc,123"

48 Ersatz PicoLisp Java Reflection API 433

: (setq S (java "java.lang.String" T "abcde"))

-> $String

: (java (java S "getBytes"))

-> (97 98 99 100 101)

: (java "java.lang.String" T (mapcar byte: (100 101 102)))

-> $String

: (java @)

-> "def"

48.2.2 The public function

To access public fields in Java objects or classes, public can be used:

(public ‘obj ‘any [’any ..]) -> obj

Returns the value of a public field any in object obj.

(public ‘cls ‘any [’any ..]) -> obj

Returns the value of a public field any in class cls. In both forms, the optional
any arguments will in turn access corresponding fields in the object retrieved
so far.

Example:

: (public "java.lang.System" "err")

-> $PrintStream

: (java @ "println" "Hello world")

Hello world

-> NIL

48.2.3 The interface function

To create an interface object:

(interface ‘cls|lst ‘sym ‘fun ..) -> obj

Creates an interface, i.e. a set of methods for a class cls (or a list of classes
lst).

434 Alexander Burger

Example:

#!ersatz/pil

(let

(Frame (java "javax.swing.JFrame" T "Bye-Frame")

Button (java "javax.swing.JButton" T "OK"))

(java Frame "add" "South" Button)

(java Button "addActionListener"

(interface "java.awt.event.ActionListener" # When button is clicked,

’actionPerformed ’((Ev) (bye)))) # Exit PicoLisp

(java Frame "setSize" 100 60)

(java Frame "setVisible" T))

48.2.4 Type conversion functions

Finally, we have a set of type conversion functions, to produce Java objects
from Lisp data:

(byte: ‘num|sym) -> obj

(char: ‘num|sym) -> obj

(int: ‘num) -> obj

(long: ‘num) -> obj

(double: ‘str ‘cnt) -> obj

(double: ‘num ‘cnt) -> obj

(big: ‘num) -> obj

For a more elaborated example, take a look at the article Swing REPL written
in Ersatz PicoLisp.

A

GNU Free Documentation License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional
and useful document ”free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

436 A GNU Free Documentation License

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that con-
tains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The ”Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as ”you”. You ac-
cept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A ”Modified Version” of the Document means any work containing the Docu-
ment or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a mat-
ter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does
not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document
is released under this License. A Front-Cover Text may be at most 5 words,
and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy
that is not ”Transparent” is called ”Opaque”.

A GNU Free Documentation License 437

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any
title page as such, ”Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as ”Acknowledgements”, ”Dedications”,
”Endorsements”, or ”History”.) To ”Preserve the Title” of such a section when
you modify the Document means that it remains a section ”Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are repro-
duced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

438 A GNU Free Documentation License

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance
to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if

A GNU Free Documentation License 439

there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document. E. Add an appropriate
copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License. I. Preserve the section Entitled
”History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled ”History” in the Document,
create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

440 A GNU Free Documentation License

M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Doc-
ument, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example,
statements of peer review or that the text has been approved by an organiza-
tion as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorse-
ment of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make

A GNU Free Documentation License 441

the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the
various original documents, forming one section Entitled ”History”; likewise
combine any sections Entitled ”Acknowledgements”, and any sections Entitled
”Dedications”. You must delete all sections Entitled ”Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an ”aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one half of the entire ag-
gregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

442 A GNU Free Documentation License

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the origi-
nal version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”,
or ”History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically termi-
nate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. How to use
this License for your documents

A GNU Free Documentation License 443

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

	Part I Philosophy and Concepts of PicoLisp
	1 A Radical Approach to Application Development
	Alexander Burger
	Introduction
	A Radical Approach
	Myth 1: Lisp Needs a Compiler
	Myth 2: Lisp Needs Plenty of Data Types
	Myth 3: Dynamic Binding is Bad
	Myth 4: Property Lists are Bad

	The Application Server
	Locality Principle
	Lisp

	Conclusion
	References

	2 A Unifying Language for Database And User Interface Development
	Alexander Burger
	Introduction
	Traditional DB and GUI Development
	A Unified Approach
	Object Architecture
	Database
	Relation Daemons
	Relation Prefix Usage
	Entity Linkage

	Query Language
	GUI Integration
	+E/R (Entity/Relation)
	+Obj (Object)

	An Example
	Discussion
	Conclusion
	Download
	References

	Part II PicoLisp References
	3 The PicoLisp Reference
	Alexander Burger
	Introduction
	The PicoLisp Machine
	The Cell
	Data Types
	Numbers
	Symbols
	Lists

	Memory Management

	Programming Environment
	Installation
	Invocation
	Input/Output
	Numbers
	Symbols
	Lists
	Read-Macros

	Evaluation
	Coroutines
	Interrupt
	Error Handling
	@ Result
	Comparing
	OO Concepts
	Database
	Transactions
	Entities / Relations

	Pilog (PicoLisp Prolog)
	Naming Conventions
	Breaking Traditions
	Bugs

	References

	4 The Equivalence of Code and Data
	Alexander Burger
	The Equivalence of Code and Data

	5 First Class Environments
	Alexander Burger
	Dynamic Binding vs Lexical Scoping
	First Class Data Type
	First Class Environments
	Creation
	Activation

	6 Even small details make a difference!
	Alexander Burger
	Even small details make a difference!

	7 The Dual Nature of NIL
	Alexander Burger
	The Dual Nature of NIL

	8 Array Abstinence
	Alexander Burger
	Introduction
	What is an Array?
	Lists
	Are Arrays Really Needed?
	Relative Performance Consideration

	9 Coroutines
	Alexander Burger
	Introduction
	Using a Generator
	Using a Coroutine
	Efficiency
	Inspecting and Stopping Coroutines
	A Tree Example

	10 Transient Namespaces
	Alexander Burger
	Introduction
	Using transient symbols
	Using internal symbols
	Using transient namespaces
	Implementation
	Drawback

	11 Native C Calls
	Alexander Burger
	Overview
	Syntax
	Libraries
	Functions
	Return Value
	Primitive Types
	Arrays and Structures

	Arguments
	Primitive Types
	Arrays and Structures

	Memory Management
	Fast Fourier Transform
	Constant Data

	Callbacks
	Call by Name
	Function Pointer

	12 The 'select' Predicate
	Alexander Burger
	Syntax
	First Example
	Unification Variables
	Generator Clauses
	B-Tree Stepping
	Interaction of Generator Clauses
	Combined Indexes
	Indirect Object Associations
	Nested Pilog Queries

	Filter Clauses
	A Little Report
	Filter Predicates

	13 Using 'edit'
	Alexander Burger
	Introduction
	PicoLisp Symbols
	Editing a Symbol
	Browsing
	Transient Symbols
	Browsing the Database
	Debugging
	Distributed Database

	14 Bash Completion
	Alexander Burger
	Bash Completion

	15 The Need for Speed
	Alexander Burger
	Introduction
	Fibonacci
	List Operations
	Binary Trees
	Fannkuch

	16 GUI Scripting
	Alexander Burger
	Introduction
	A Simple Example
	Using the Browser GUI
	Using GUI Scripting

	The Scrape Library

	17 Manual Page
	Alexander Burger
	NAME
	SYNOPSIS
	DESCRIPTION
	INVOCATION
	FILES
	BUGS
	AUTHOR
	RESOURCES

	18 README
	Alexander Burger
	The PicoLisp System
	Programming Language
	Application Server Framework

	19 INSTALL
	Alexander Burger
	PicoLisp Installation
	Local Installation
	Unpack the distribution
	Change the directory
	Compile the PicoLisp interpreter

	Global Installation
	Invocation
	Documentation

	Part III PicoLisp Tutorials
	20 A PicoLisp Tutorial
	Alexander Burger
	Now let's start
	Command Line Editing
	VI-like editing
	Conclusion

	Browsing
	Basic tools
	Inspect a symbol with show
	Inspect and edit with edit
	Built-in pretty print with pp
	Inspect elements one by one with more
	Search through available symbols with what
	Search through values or properties of symbols with who
	Inspect dependencies with dep

	Defining Functions
	Functions with no argument
	Functions with one argument
	Preventing arguments evaluation and variable number of arguments
	Mixing evaluated arguments and variable number of unevaluated
	Variable number of evaluated arguments
	Anonymous functions without the lambda keyword

	Debugging
	Tracing
	Single-stepping

	Functional I/O
	Scripting
	Command line arguments for the PicoLisp interpreter
	PicoLisp scripts
	Grab command line arguments from PicoLisp scripts
	Run scripts from arbitrary places on the host file system
	Editing scripts
	Editing scripts with vi

	Objects and Classes
	Persistence (External Symbols)
	Database Programming
	User Interface (GUI) Programming
	Pilog — PicoLisp Prolog
	Poor Man's SQL
	select
	update

	References

	21 PicoLisp Application Development
	Alexander Burger
	Introduction
	Static Pages
	Hello World
	 Start the application server
	 How does it work?

	URL Syntax
	Security
	 The ``.pw'' File

	The html Function
	CSS Attributes
	Tag Functions
	 Simple Tags
	 (Un)ordered Lists
	 Tables
	 Menus and Tabs

	Interactive Forms
	Sessions
	Action Forms
	 The gui Function
	 Control Flow
	 Switching URLs
	 Alerts and Dialogs
	 A Calculator Example

	Charts
	 Scrolling
	 Put and Get Functions

	GUI Classes
	Input Fields
	 Numeric Input Fields
	 Time & Date
	 Telephone Numbers
	 Checkboxes

	Field Prefix Classes
	 Initialization
	 Disabling and Enabling
	 Formatting
	 Side Effects
	 Validation
	 Data Linkage

	Buttons
	 Dialog Buttons
	 Active JavaScript

	A Minimal Complete Application
	Getting Started
	 Localization
	 Navigation
	 Choosing Objects
	 Editing
	 Buttons vs. Links

	The Data Model
	Usage
	 Customer/Supplier
	 Item
	 Order
	 Reports

	Part IV PicoLisp Community Articles
	22 VizReader's distributed word index
	Henrik Sarvell
	Introduction
	Setup
	Implementation

	23 Asynchronous Programming in PicoLisp
	Henrik Sarvell
	Introduction
	Asynchronous Evaluation in PicoLisp
	HTTP only
	Using call
	Using in

	24 PicoLisp Ticker
	Alexander Burger
	Producing an endless stream of pseudo-text
	Implementing a ticker page
	Googlebot in action

	25 The many uses of @ in PicoLisp
	Thorsten Jolitz
	The @ mark in PicoLisp

	26 Wacky Stuff with circular Lists
	José Ignacio Romero
	Example 1 with walk-through
	Example 2 with graphical depiction

	27 Speedtest PicoLisp vs Elisp
	Thorsten Jolitz, José Ignacio Romero
	The Tests
	Function Call/Arithmetic Cost
	Shell Script Approach
	Command Line Approach

	List Manipulation Cost

	Results
	32bit
	System Information
	Function Calls
	List Manipulation

	64bit
	System Information
	Function Calls
	List Manipulation

	32bit vs 64bit

	Part V PicoLisp Community Tutorials
	28 PicoLisp at first glance
	Henrik Sarvell
	PicoLisp at first glance

	29 Registers and Quoting in PicoLisp
	Henrik Sarvell
	Install and Start
	The car and the cdr
	Quoting

	30 Working with tables in PicoLisp
	Henrik Sarvell
	Example Data
	Retrieving data from the table
	Sort the table

	31 Simple OO in PicoLisp
	Henrik Sarvell
	Defining classes
	Creating instances
	Fetch from and sort a list of objects

	32 More OO in PicoLisp
	Henrik Sarvell
	Simple single inheritance
	Multiple inheritance
	Class extension on demand

	33 Simple OODB in PicoLisp
	Henrik Sarvell
	Walk through a simple example
	External symbols

	34 Advanced OODB in PicoLisp
	Henrik Sarvell
	Assumptions
	Using select
	Pilog example
	Select and insert
	Updating and Deleting

	35 Registration Form in PicoLisp
	Henrik Sarvell
	Prerequisites
	Walk through the main.l library
	Walk through the er.l library
	Walk through the global-helpers.l library
	The registration form

	36 Explicit Scope Resolution in PicoLisp
	Henrik Sarvell
	Extending the html function
	 FEXPRs and scoping rules
	Explicit scoping with run and eval
	Using run
	Using eval

	37 Pilog Solve and the +Aux Relation
	Henrik Sarvell
	'Doctrine for dummies' example
	Querying
	Simple queries
	Using the +Aux relation
	Pilog solve with parallel scanning
	Pilog solve using the +Aux relation

	38 PicoLisp and JSON
	Henrik Sarvell
	Introduction
	The tests
	PicoLisp to JSON
	JSON to PicoLisp

	The library
	JSON to PicoLisp
	PicoLisp to JSON

	39 Factorials, Permutations and Recursion in PicoLisp
	Henrik Sarvell
	Simulating stock trading strategies
	Factorials and Permutation
	First try
	Using recur and recurse
	Second try
	Using permute

	40 Prolog as a Dating Aid
	Henrik Sarvell
	A Prolog presentation
	Set up a Prolog environment
	The database
	Generate the database
	Query the database

	41 jQuery and PicoLisp
	Henrik Sarvell
	Problem
	Solution
	Description
	Implementation

	Part VI PicoLisp FAQ
	42 Frequently Asked Questions (FAQ)
	Alexander Burger
	Why did you write yet another Lisp?
	Who can use PicoLisp?
	What are the advantages over other Lisp systems?
	Simplicity
	A Clear Model
	Orthogonality
	Object System
	Pragmatism
	Persistent Symbols
	Application Server
	Localization

	How is the performance compared to other Lisp systems?
	What means ``interpreted''?
	Is there (or will be in the future) a compiler available?
	Is it portable?
	Is PicoLisp a web server?
	I cannot find the LAMBDA keyword in PicoLisp
	Why do you use dynamic variable binding?
	Are there no problems caused by dynamic binding?
	But with dynamic binding I cannot implement closures!
	Do you have macros?
	Why are there no strings?
	What about arrays?
	How to do floating point arithmetics?
	What happens when I locally bind a symbol which has a function definition?
	Would it make sense to build PicoLisp in hardware?
	I get a segfault if I …
	Where can I ask questions?

	43 Some technical questions and answers
	Alexander Burger
	Can there be more than one copy of the symbol T?
	Why is the symbol T not protected like NIL?
	Why does the REPL exit when NIL is typed?
	PicoLisp indicated that 'be' was undefined - why?

	Part VII PicoLisp 64-bit Version
	44 README 64-bit
	Alexander Burger
	64-bit PicoLisp
	Building the Kernel
	Reasons for the Use of Assembly Language
	Differences to the 32-bit Version

	45 Generic VM/Assembler
	Alexander Burger
	CPU Registers
	Instruction Set
	Naming Conventions

	46 Internal Structures 64-bit Version
	Alexander Burger
	Primary Data Types
	Heap
	Stack
	Memory
	Database File
	Assumptions

	Part VIII Ersatz PicoLisp
	47 README Ersatz-PicoLisp
	Alexander Burger
	Ersatz PicoLisp
	Invocation
	Building the JAR file

	48 Ersatz PicoLisp Java Reflection API
	Alexander Burger
	Introduction
	Important functions
	The java function
	The public function
	The interface function
	Type conversion functions

	GNU Free Documentation License

