
1/21

Introduction to Data Science for Public Policy
Class 1: Overview

Thomas Monk
t.d.monk@lse.ac.uk

with thanks to

Frank Muci, LSE; Dr. Melissa Sands, LSE; Dr. Eric Potash, Harris School of Public Policy & Fabian H. C.

Raters, Georg-August-Universität Göttingen

30 August 2022

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.

• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:
https://tmonk.github.io/dspp/. The syllabus and material is located there.

• We’re going to cover:

• Programming in a setting of public policy - why should we care?
• Thinking algorithmically, taking policy questions to the data via a general purpose

programming language.
• Fundamentals of programming: code syntax, libraries, variables, data types, program

control, functions and IO.
• Data science through open-source python libraries. Cleaning, obtaining and analysing

structured data.
• Introducing more advanced applications, such as web scraping and natural language

processing.

• The syllabus itself is much subject to change - I want the content to go at the pace
and towards the interests of the group.

• Let me know as we progress what you’d like to see more of, or something you’ve
seen elsewhere, and I’ll try and get this included.

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.
• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:

https://tmonk.github.io/dspp/. The syllabus and material is located there.

• We’re going to cover:

• Programming in a setting of public policy - why should we care?
• Thinking algorithmically, taking policy questions to the data via a general purpose

programming language.
• Fundamentals of programming: code syntax, libraries, variables, data types, program

control, functions and IO.
• Data science through open-source python libraries. Cleaning, obtaining and analysing

structured data.
• Introducing more advanced applications, such as web scraping and natural language

processing.

• The syllabus itself is much subject to change - I want the content to go at the pace
and towards the interests of the group.

• Let me know as we progress what you’d like to see more of, or something you’ve
seen elsewhere, and I’ll try and get this included.

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.
• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:

https://tmonk.github.io/dspp/. The syllabus and material is located there.
• We’re going to cover:

• Programming in a setting of public policy - why should we care?
• Thinking algorithmically, taking policy questions to the data via a general purpose

programming language.
• Fundamentals of programming: code syntax, libraries, variables, data types, program

control, functions and IO.
• Data science through open-source python libraries. Cleaning, obtaining and analysing

structured data.
• Introducing more advanced applications, such as web scraping and natural language

processing.
• The syllabus itself is much subject to change - I want the content to go at the pace

and towards the interests of the group.
• Let me know as we progress what you’d like to see more of, or something you’ve

seen elsewhere, and I’ll try and get this included.

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.
• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:

https://tmonk.github.io/dspp/. The syllabus and material is located there.
• We’re going to cover:

• Programming in a setting of public policy - why should we care?

• Thinking algorithmically, taking policy questions to the data via a general purpose
programming language.

• Fundamentals of programming: code syntax, libraries, variables, data types, program
control, functions and IO.

• Data science through open-source python libraries. Cleaning, obtaining and analysing
structured data.

• Introducing more advanced applications, such as web scraping and natural language
processing.

• The syllabus itself is much subject to change - I want the content to go at the pace
and towards the interests of the group.

• Let me know as we progress what you’d like to see more of, or something you’ve
seen elsewhere, and I’ll try and get this included.

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.
• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:

https://tmonk.github.io/dspp/. The syllabus and material is located there.
• We’re going to cover:

• Programming in a setting of public policy - why should we care?
• Thinking algorithmically, taking policy questions to the data via a general purpose

programming language.

• Fundamentals of programming: code syntax, libraries, variables, data types, program
control, functions and IO.

• Data science through open-source python libraries. Cleaning, obtaining and analysing
structured data.

• Introducing more advanced applications, such as web scraping and natural language
processing.

• The syllabus itself is much subject to change - I want the content to go at the pace
and towards the interests of the group.

• Let me know as we progress what you’d like to see more of, or something you’ve
seen elsewhere, and I’ll try and get this included.

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.
• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:

https://tmonk.github.io/dspp/. The syllabus and material is located there.
• We’re going to cover:

• Programming in a setting of public policy - why should we care?
• Thinking algorithmically, taking policy questions to the data via a general purpose

programming language.
• Fundamentals of programming: code syntax, libraries, variables, data types, program

control, functions and IO.

• Data science through open-source python libraries. Cleaning, obtaining and analysing
structured data.

• Introducing more advanced applications, such as web scraping and natural language
processing.

• The syllabus itself is much subject to change - I want the content to go at the pace
and towards the interests of the group.

• Let me know as we progress what you’d like to see more of, or something you’ve
seen elsewhere, and I’ll try and get this included.

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.
• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:

https://tmonk.github.io/dspp/. The syllabus and material is located there.
• We’re going to cover:

• Programming in a setting of public policy - why should we care?
• Thinking algorithmically, taking policy questions to the data via a general purpose

programming language.
• Fundamentals of programming: code syntax, libraries, variables, data types, program

control, functions and IO.
• Data science through open-source python libraries. Cleaning, obtaining and analysing

structured data.

• Introducing more advanced applications, such as web scraping and natural language
processing.

• The syllabus itself is much subject to change - I want the content to go at the pace
and towards the interests of the group.

• Let me know as we progress what you’d like to see more of, or something you’ve
seen elsewhere, and I’ll try and get this included.

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.
• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:

https://tmonk.github.io/dspp/. The syllabus and material is located there.
• We’re going to cover:

• Programming in a setting of public policy - why should we care?
• Thinking algorithmically, taking policy questions to the data via a general purpose

programming language.
• Fundamentals of programming: code syntax, libraries, variables, data types, program

control, functions and IO.
• Data science through open-source python libraries. Cleaning, obtaining and analysing

structured data.
• Introducing more advanced applications, such as web scraping and natural language

processing.

• The syllabus itself is much subject to change - I want the content to go at the pace
and towards the interests of the group.

• Let me know as we progress what you’d like to see more of, or something you’ve
seen elsewhere, and I’ll try and get this included.

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.
• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:

https://tmonk.github.io/dspp/. The syllabus and material is located there.
• We’re going to cover:

• Programming in a setting of public policy - why should we care?
• Thinking algorithmically, taking policy questions to the data via a general purpose

programming language.
• Fundamentals of programming: code syntax, libraries, variables, data types, program

control, functions and IO.
• Data science through open-source python libraries. Cleaning, obtaining and analysing

structured data.
• Introducing more advanced applications, such as web scraping and natural language

processing.
• The syllabus itself is much subject to change - I want the content to go at the pace

and towards the interests of the group.

• Let me know as we progress what you’d like to see more of, or something you’ve
seen elsewhere, and I’ll try and get this included.

2/21

Overview
• This course is designed as an intensive two-week introduction to programming and

data science for public policy students, using Python.
• We’ll meet daily in NAB 2.09, 11:00-13:00. Course website:

https://tmonk.github.io/dspp/. The syllabus and material is located there.
• We’re going to cover:

• Programming in a setting of public policy - why should we care?
• Thinking algorithmically, taking policy questions to the data via a general purpose

programming language.
• Fundamentals of programming: code syntax, libraries, variables, data types, program

control, functions and IO.
• Data science through open-source python libraries. Cleaning, obtaining and analysing

structured data.
• Introducing more advanced applications, such as web scraping and natural language

processing.
• The syllabus itself is much subject to change - I want the content to go at the pace

and towards the interests of the group.
• Let me know as we progress what you’d like to see more of, or something you’ve

seen elsewhere, and I’ll try and get this included.

3/21

Data Science in Public Policy

• We saw a huge variety of applications of data to causal questions in PP455.
• This course is going to differ in two key ways:

1. Causality is not going to be our focus. We will care about ingesting and manipulating
data, with other meaningful applications, rather than being hung up on identification.

2. The datasets we will use, and will be able to use, will be bigger.

• There’s more to data than causal inference...

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals

• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data

• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points

• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.

• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data

• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points

• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.

• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data

• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points

• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data

• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points

• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data

• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points

• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data
• Inferring ”preferences” from choice data.

• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points

• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data
• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.

• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points

• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data
• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points

• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data
• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points

• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data
• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points
• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).

• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data
• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points
• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).

• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data
• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points
• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data
• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points
• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

4/21

Three Modes of Inference

1. Causal Inference: predicting counterfactuals
• Inferring the effect of education on wages.
• Inferring the effects of ethnic minority rule on civil war onset.
• Inferring whether incumbency status affects election outcomes.

2. Descriptive Inference: summarizing and exploring data
• Inferring ”preferences” from choice data.
• Inferring “topics” from texts and speeches.
• Inferring “social networks” from surveys.

3. Predictive Inference: forecasting out-of-sample data points
• Inferring minimum wage status from demographic data (Cengiz et. al. 2021, NBER).
• Inferring partisanship from congressional speech (Gentzkow et. al. 2019, ECMA).
• Inferring exposure to artificial intelligence from job task information (Webb, 2019).

Although the lines between these can be quite blurred, and often one type of inference
depends on the conclusions of another.

5/21

Predictive/descriptive inference example: Gentzkow (2019)

This paper measures trends in the partisanship of congressional speech in the US House
of Representatives and the Senate. The paper is mathematically complex and dense,
but delivers an interesting conclusion (non-causally) based on a large quantity of data.

• Definition. Partisanship is defined as the ease with which an observer could infer a
congressperson’s party from a single utterance.

• Data. All congressional speech from 1873 to 2016. 508,352 unique phrases spoken
a total of 287 million times by 7732 unique speakers.

• Output. A partisanship score for each session of congress. When the words
(vectors) spoken by Democrats and Republicans are similar, there is low polarisation
in Congress. When these vectors are far from each other, the parties speak
differently and we say that partisanship is high.

6/21

Predictive/descriptive inference example: Gentzkow (2019)

Polarisation in the US congress was roughly stable until the early 1990s.

6/21

Predictive/descriptive inference example: Gentzkow (2019)

Polarisation in the US congress was roughly stable until the early 1990s.

7/21

Predictive/descriptive inference example: Gentzkow (2019)

We have an insight into the most polarising phrases of each Congressional session.

8/21

Programming and Public Policy: the aim of this course

Why have I shown this paper?

It’s doing huge amounts of interesting data science.

• It ingests a huge corpus of data, and transforms it into a database ready to be
exploited.

• It analyses the data and visualises the underlying data in interesting and striking
ways.

• It uses natural language processing and machine learning techniques at the cutting
edge.

Course Aims

I want you to come out of this course with an understanding of the possibilities (and
limitations) that data science holds for us in being able to make informed policy
choices and provide social insight.

The best way for us to do that is to learn this actively - which we’ll spend the rest of
the course doing.

8/21

Programming and Public Policy: the aim of this course

Why have I shown this paper? It’s doing huge amounts of interesting data science.

• It ingests a huge corpus of data, and transforms it into a database ready to be
exploited.

• It analyses the data and visualises the underlying data in interesting and striking
ways.

• It uses natural language processing and machine learning techniques at the cutting
edge.

Course Aims

I want you to come out of this course with an understanding of the possibilities (and
limitations) that data science holds for us in being able to make informed policy
choices and provide social insight.

The best way for us to do that is to learn this actively - which we’ll spend the rest of
the course doing.

8/21

Programming and Public Policy: the aim of this course

Why have I shown this paper? It’s doing huge amounts of interesting data science.

• It ingests a huge corpus of data, and transforms it into a database ready to be
exploited.

• It analyses the data and visualises the underlying data in interesting and striking
ways.

• It uses natural language processing and machine learning techniques at the cutting
edge.

Course Aims

I want you to come out of this course with an understanding of the possibilities (and
limitations) that data science holds for us in being able to make informed policy
choices and provide social insight.

The best way for us to do that is to learn this actively - which we’ll spend the rest of
the course doing.

8/21

Programming and Public Policy: the aim of this course

Why have I shown this paper? It’s doing huge amounts of interesting data science.

• It ingests a huge corpus of data, and transforms it into a database ready to be
exploited.

• It analyses the data and visualises the underlying data in interesting and striking
ways.

• It uses natural language processing and machine learning techniques at the cutting
edge.

Course Aims

I want you to come out of this course with an understanding of the possibilities (and
limitations) that data science holds for us in being able to make informed policy
choices and provide social insight.

The best way for us to do that is to learn this actively - which we’ll spend the rest of
the course doing.

8/21

Programming and Public Policy: the aim of this course

Why have I shown this paper? It’s doing huge amounts of interesting data science.

• It ingests a huge corpus of data, and transforms it into a database ready to be
exploited.

• It analyses the data and visualises the underlying data in interesting and striking
ways.

• It uses natural language processing and machine learning techniques at the cutting
edge.

Course Aims

I want you to come out of this course with an understanding of the possibilities (and
limitations) that data science holds for us in being able to make informed policy
choices and provide social insight.

The best way for us to do that is to learn this actively - which we’ll spend the rest of
the course doing.

8/21

Programming and Public Policy: the aim of this course

Why have I shown this paper? It’s doing huge amounts of interesting data science.

• It ingests a huge corpus of data, and transforms it into a database ready to be
exploited.

• It analyses the data and visualises the underlying data in interesting and striking
ways.

• It uses natural language processing and machine learning techniques at the cutting
edge.

Course Aims

I want you to come out of this course with an understanding of the possibilities (and
limitations) that data science holds for us in being able to make informed policy
choices and provide social insight.

The best way for us to do that is to learn this actively - which we’ll spend the rest of
the course doing.

8/21

Programming and Public Policy: the aim of this course

Why have I shown this paper? It’s doing huge amounts of interesting data science.

• It ingests a huge corpus of data, and transforms it into a database ready to be
exploited.

• It analyses the data and visualises the underlying data in interesting and striking
ways.

• It uses natural language processing and machine learning techniques at the cutting
edge.

Course Aims

I want you to come out of this course with an understanding of the possibilities (and
limitations) that data science holds for us in being able to make informed policy
choices and provide social insight.

The best way for us to do that is to learn this actively - which we’ll spend the rest of
the course doing.

9/21

Why not Stata?

• In PP455 we heavily used Stata. Stata is great -

but only really excels at a small
number of tasks.

• If I want to run regressions (or regression-adjacent work), then I turn to Stata.

• If we want to do nearly anything else, then we turn to a more general-purpose
programming language. Could you code the Gentzkow paper in Stata?

• Why not Stata?

1. Cost. Stata is proprietary - costs $1000 USD per year per license.
2. Functionality. Basic programming logic that you’ll be exposed to in this course, like if,

loops etc. are far more tedious to write in stata.
3. Mata. For complex software, Stata forces you to write in a language called Mata. It’s

fast, but based around matrices and relatively complex for general purpose tasks.

9/21

Why not Stata?

• In PP455 we heavily used Stata. Stata is great -

but only really excels at a small
number of tasks.

• If I want to run regressions (or regression-adjacent work), then I turn to Stata.

• If we want to do nearly anything else, then we turn to a more general-purpose
programming language. Could you code the Gentzkow paper in Stata?

• Why not Stata?

1. Cost. Stata is proprietary - costs $1000 USD per year per license.
2. Functionality. Basic programming logic that you’ll be exposed to in this course, like if,

loops etc. are far more tedious to write in stata.
3. Mata. For complex software, Stata forces you to write in a language called Mata. It’s

fast, but based around matrices and relatively complex for general purpose tasks.

9/21

Why not Stata?

• In PP455 we heavily used Stata. Stata is great - but only really excels at a small
number of tasks.

• If I want to run regressions (or regression-adjacent work), then I turn to Stata.

• If we want to do nearly anything else, then we turn to a more general-purpose
programming language. Could you code the Gentzkow paper in Stata?

• Why not Stata?

1. Cost. Stata is proprietary - costs $1000 USD per year per license.
2. Functionality. Basic programming logic that you’ll be exposed to in this course, like if,

loops etc. are far more tedious to write in stata.
3. Mata. For complex software, Stata forces you to write in a language called Mata. It’s

fast, but based around matrices and relatively complex for general purpose tasks.

9/21

Why not Stata?

• In PP455 we heavily used Stata. Stata is great - but only really excels at a small
number of tasks.

• If I want to run regressions (or regression-adjacent work), then I turn to Stata.

• If we want to do nearly anything else, then we turn to a more general-purpose
programming language. Could you code the Gentzkow paper in Stata?

• Why not Stata?

1. Cost. Stata is proprietary - costs $1000 USD per year per license.
2. Functionality. Basic programming logic that you’ll be exposed to in this course, like if,

loops etc. are far more tedious to write in stata.
3. Mata. For complex software, Stata forces you to write in a language called Mata. It’s

fast, but based around matrices and relatively complex for general purpose tasks.

9/21

Why not Stata?

• In PP455 we heavily used Stata. Stata is great - but only really excels at a small
number of tasks.

• If I want to run regressions (or regression-adjacent work), then I turn to Stata.

• If we want to do nearly anything else, then we turn to a more general-purpose
programming language. Could you code the Gentzkow paper in Stata?

• Why not Stata?

1. Cost. Stata is proprietary - costs $1000 USD per year per license.
2. Functionality. Basic programming logic that you’ll be exposed to in this course, like if,

loops etc. are far more tedious to write in stata.
3. Mata. For complex software, Stata forces you to write in a language called Mata. It’s

fast, but based around matrices and relatively complex for general purpose tasks.

9/21

Why not Stata?

• In PP455 we heavily used Stata. Stata is great - but only really excels at a small
number of tasks.

• If I want to run regressions (or regression-adjacent work), then I turn to Stata.

• If we want to do nearly anything else, then we turn to a more general-purpose
programming language. Could you code the Gentzkow paper in Stata?

• Why not Stata?

1. Cost. Stata is proprietary - costs $1000 USD per year per license.

2. Functionality. Basic programming logic that you’ll be exposed to in this course, like if,
loops etc. are far more tedious to write in stata.

3. Mata. For complex software, Stata forces you to write in a language called Mata. It’s
fast, but based around matrices and relatively complex for general purpose tasks.

9/21

Why not Stata?

• In PP455 we heavily used Stata. Stata is great - but only really excels at a small
number of tasks.

• If I want to run regressions (or regression-adjacent work), then I turn to Stata.

• If we want to do nearly anything else, then we turn to a more general-purpose
programming language. Could you code the Gentzkow paper in Stata?

• Why not Stata?

1. Cost. Stata is proprietary - costs $1000 USD per year per license.
2. Functionality. Basic programming logic that you’ll be exposed to in this course, like if,

loops etc. are far more tedious to write in stata.

3. Mata. For complex software, Stata forces you to write in a language called Mata. It’s
fast, but based around matrices and relatively complex for general purpose tasks.

9/21

Why not Stata?

• In PP455 we heavily used Stata. Stata is great - but only really excels at a small
number of tasks.

• If I want to run regressions (or regression-adjacent work), then I turn to Stata.

• If we want to do nearly anything else, then we turn to a more general-purpose
programming language. Could you code the Gentzkow paper in Stata?

• Why not Stata?

1. Cost. Stata is proprietary - costs $1000 USD per year per license.
2. Functionality. Basic programming logic that you’ll be exposed to in this course, like if,

loops etc. are far more tedious to write in stata.
3. Mata. For complex software, Stata forces you to write in a language called Mata. It’s

fast, but based around matrices and relatively complex for general purpose tasks.

10/21

What do we want in a programming language?

• There are a large number of programming languages we could learn in this course:

• R, MATLAB, GAUSS, Fortran, C/++ and Julia are all used, to varying extents, in
Economics and Public Policy settings.

• Fortran is used heavily by researchers in macro and public economics, for large,
complex models of consumer choice over the lifecycle. See Tony Smith at Yale and his
coauthors.

• For context, Fortran was developed by IBM in the 50s on mainframes - my Dad used
Fortran punch cards to code as part of his astrophysics doctorate in the 70s.

• Academics and practitioners have preferences over languages for a variety of reasons.

• One of the main factors is the ‘level’ of the programming language.

10/21

What do we want in a programming language?

• There are a large number of programming languages we could learn in this course:
• R, MATLAB, GAUSS, Fortran, C/++ and Julia are all used, to varying extents, in

Economics and Public Policy settings.

• Fortran is used heavily by researchers in macro and public economics, for large,
complex models of consumer choice over the lifecycle. See Tony Smith at Yale and his
coauthors.

• For context, Fortran was developed by IBM in the 50s on mainframes - my Dad used
Fortran punch cards to code as part of his astrophysics doctorate in the 70s.

• Academics and practitioners have preferences over languages for a variety of reasons.

• One of the main factors is the ‘level’ of the programming language.

10/21

What do we want in a programming language?

• There are a large number of programming languages we could learn in this course:
• R, MATLAB, GAUSS, Fortran, C/++ and Julia are all used, to varying extents, in

Economics and Public Policy settings.
• Fortran is used heavily by researchers in macro and public economics, for large,

complex models of consumer choice over the lifecycle. See Tony Smith at Yale and his
coauthors.

• For context, Fortran was developed by IBM in the 50s on mainframes - my Dad used
Fortran punch cards to code as part of his astrophysics doctorate in the 70s.

• Academics and practitioners have preferences over languages for a variety of reasons.

• One of the main factors is the ‘level’ of the programming language.

10/21

What do we want in a programming language?

• There are a large number of programming languages we could learn in this course:
• R, MATLAB, GAUSS, Fortran, C/++ and Julia are all used, to varying extents, in

Economics and Public Policy settings.
• Fortran is used heavily by researchers in macro and public economics, for large,

complex models of consumer choice over the lifecycle. See Tony Smith at Yale and his
coauthors.

• For context, Fortran was developed by IBM in the 50s on mainframes - my Dad used
Fortran punch cards to code as part of his astrophysics doctorate in the 70s.

• Academics and practitioners have preferences over languages for a variety of reasons.

• One of the main factors is the ‘level’ of the programming language.

10/21

What do we want in a programming language?

• There are a large number of programming languages we could learn in this course:
• R, MATLAB, GAUSS, Fortran, C/++ and Julia are all used, to varying extents, in

Economics and Public Policy settings.
• Fortran is used heavily by researchers in macro and public economics, for large,

complex models of consumer choice over the lifecycle. See Tony Smith at Yale and his
coauthors.

• For context, Fortran was developed by IBM in the 50s on mainframes - my Dad used
Fortran punch cards to code as part of his astrophysics doctorate in the 70s.

• Academics and practitioners have preferences over languages for a variety of reasons.

• One of the main factors is the ‘level’ of the programming language.

10/21

What do we want in a programming language?

• There are a large number of programming languages we could learn in this course:
• R, MATLAB, GAUSS, Fortran, C/++ and Julia are all used, to varying extents, in

Economics and Public Policy settings.
• Fortran is used heavily by researchers in macro and public economics, for large,

complex models of consumer choice over the lifecycle. See Tony Smith at Yale and his
coauthors.

• For context, Fortran was developed by IBM in the 50s on mainframes - my Dad used
Fortran punch cards to code as part of his astrophysics doctorate in the 70s.

• Academics and practitioners have preferences over languages for a variety of reasons.

• One of the main factors is the ‘level’ of the programming language.

11/21

Lowest level programming language: ASM

global _start

section .text

_start: mov rax, 1 ; system call for write

mov rdi, 1 ; file handle 1 is stdout

mov rsi, message ; address of string to output

mov rdx, 13 ; number of bytes

syscall ; invoke operating system to do the write

mov rax, 60 ; system call for exit

xor rdi, rdi ; exit code 0

syscall ; invoke operating system to exit

section .data

message: db Hello, World, 10 ; note the newline at the end

Here we are directly interacting with the processor of the computer, instructing the
CPU in the only language it understands.

12/21

Lowest level programming language: C

#include <stdio.h>

int main() {

printf("Hello, World!");

return 0;

}

The number of lines we have to write has dropped significantly!

What do we think could be happening in the background?

A program called a
compiler is translating the more human readable code into a language the computer
actually understands.

12/21

Lowest level programming language: C

#include <stdio.h>

int main() {

printf("Hello, World!");

return 0;

}

The number of lines we have to write has dropped significantly!

What do we think could be happening in the background? A program called a
compiler is translating the more human readable code into a language the computer
actually understands.

13/21

Higher level programming language: Fortran

program hello

print *, 'Hello, World!'

end program hello

We come closer to a more human readable code base.

14/21

Higher level programming language: Fortran
C This program computes the equilibrium of the stochastic-beta economy in

C "Income and Wealth Heterogeneity in the Macroeconomy" (co-authored with

C Per Krusell of the University of Rochester).

implicit real*8 (a-h,o-z)

parameter (nkpts=132,durug=1.5D+00,nmupts=4,

* delta=0.025D+00,alpha=0.36D+00,unempg=0.04D+00,

* mxloop=12,sfac=0.25D+00,hfix=0.3271D+00,

* durgd=8.0D+00,unempb=0.1D+00,kgrid=278,

* xkbor=-2.4D+00,mgrid=30,

* durbd=8.0D+00,zgood=1.01D+00,zbad=0.99D+00,

* npbhat=2,durub=2.5D+00,ntop=9,

* xkglow=xkbor,xkghgh=25.0D+00,nlzpts=201,

* nbetas=3,nzpts=2,nrspts=132)

common/cpr/pr(4,4),prbeta(nbetas,nbetas),prob(nbetas)

common/cgrid/xkgpts(kgrid),xmgpts(mgrid)

common/clzpts/xlzpts(nlzpts),xlzdat(nlzpts)

common/cbetas/betas(nbetas)

common/ctop/toppct(ntop)

common/ccoef/coefk(kgrid-1,mgrid-1,4,nbetas,4),

But things can still get complex.

15/21

High level programming language: Python

print("Hello, World!")

• This is all we need to do in Python to obtain exactly the same output as the
assembly code.

• But what could the the trade offs be?

Speed.

• For example, a prime-checking algorithm could run in 1 min in Python. The same
logic could take 5 seconds to run in assembly.

• Python here is interpreted instead of compiled, this means each instruction can be
read line by line by the machine and run. A compiler considers the whole code at
once.

• Interpreted code is generally slower than complied code, but easier to write.

• So is Python slow? No, as we’ll be interfacing with pieces of code that are written in
C. Python is our gateway to that code.

15/21

High level programming language: Python

print("Hello, World!")

• This is all we need to do in Python to obtain exactly the same output as the
assembly code.

• But what could the the trade offs be?

Speed.

• For example, a prime-checking algorithm could run in 1 min in Python. The same
logic could take 5 seconds to run in assembly.

• Python here is interpreted instead of compiled, this means each instruction can be
read line by line by the machine and run. A compiler considers the whole code at
once.

• Interpreted code is generally slower than complied code, but easier to write.

• So is Python slow? No, as we’ll be interfacing with pieces of code that are written in
C. Python is our gateway to that code.

15/21

High level programming language: Python

print("Hello, World!")

• This is all we need to do in Python to obtain exactly the same output as the
assembly code.

• But what could the the trade offs be?

Speed.

• For example, a prime-checking algorithm could run in 1 min in Python. The same
logic could take 5 seconds to run in assembly.

• Python here is interpreted instead of compiled, this means each instruction can be
read line by line by the machine and run. A compiler considers the whole code at
once.

• Interpreted code is generally slower than complied code, but easier to write.

• So is Python slow? No, as we’ll be interfacing with pieces of code that are written in
C. Python is our gateway to that code.

15/21

High level programming language: Python

print("Hello, World!")

• This is all we need to do in Python to obtain exactly the same output as the
assembly code.

• But what could the the trade offs be? Speed.

• For example, a prime-checking algorithm could run in 1 min in Python. The same
logic could take 5 seconds to run in assembly.

• Python here is interpreted instead of compiled, this means each instruction can be
read line by line by the machine and run. A compiler considers the whole code at
once.

• Interpreted code is generally slower than complied code, but easier to write.

• So is Python slow?

No, as we’ll be interfacing with pieces of code that are written in
C. Python is our gateway to that code.

15/21

High level programming language: Python

print("Hello, World!")

• This is all we need to do in Python to obtain exactly the same output as the
assembly code.

• But what could the the trade offs be? Speed.

• For example, a prime-checking algorithm could run in 1 min in Python. The same
logic could take 5 seconds to run in assembly.

• Python here is interpreted instead of compiled, this means each instruction can be
read line by line by the machine and run. A compiler considers the whole code at
once.

• Interpreted code is generally slower than complied code, but easier to write.

• So is Python slow?

No, as we’ll be interfacing with pieces of code that are written in
C. Python is our gateway to that code.

15/21

High level programming language: Python

print("Hello, World!")

• This is all we need to do in Python to obtain exactly the same output as the
assembly code.

• But what could the the trade offs be? Speed.

• For example, a prime-checking algorithm could run in 1 min in Python. The same
logic could take 5 seconds to run in assembly.

• Python here is interpreted instead of compiled, this means each instruction can be
read line by line by the machine and run. A compiler considers the whole code at
once.

• Interpreted code is generally slower than complied code, but easier to write.

• So is Python slow?

No, as we’ll be interfacing with pieces of code that are written in
C. Python is our gateway to that code.

15/21

High level programming language: Python

print("Hello, World!")

• This is all we need to do in Python to obtain exactly the same output as the
assembly code.

• But what could the the trade offs be? Speed.

• For example, a prime-checking algorithm could run in 1 min in Python. The same
logic could take 5 seconds to run in assembly.

• Python here is interpreted instead of compiled, this means each instruction can be
read line by line by the machine and run. A compiler considers the whole code at
once.

• Interpreted code is generally slower than complied code, but easier to write.

• So is Python slow?

No, as we’ll be interfacing with pieces of code that are written in
C. Python is our gateway to that code.

15/21

High level programming language: Python

print("Hello, World!")

• This is all we need to do in Python to obtain exactly the same output as the
assembly code.

• But what could the the trade offs be? Speed.

• For example, a prime-checking algorithm could run in 1 min in Python. The same
logic could take 5 seconds to run in assembly.

• Python here is interpreted instead of compiled, this means each instruction can be
read line by line by the machine and run. A compiler considers the whole code at
once.

• Interpreted code is generally slower than complied code, but easier to write.

• So is Python slow?

No, as we’ll be interfacing with pieces of code that are written in
C. Python is our gateway to that code.

15/21

High level programming language: Python

print("Hello, World!")

• This is all we need to do in Python to obtain exactly the same output as the
assembly code.

• But what could the the trade offs be? Speed.

• For example, a prime-checking algorithm could run in 1 min in Python. The same
logic could take 5 seconds to run in assembly.

• Python here is interpreted instead of compiled, this means each instruction can be
read line by line by the machine and run. A compiler considers the whole code at
once.

• Interpreted code is generally slower than complied code, but easier to write.

• So is Python slow? No, as we’ll be interfacing with pieces of code that are written in
C. Python is our gateway to that code.

16/21

Why Python?

• Ease. It’s high level - easy to write, read and learn.

• Resources. It’s used by a huge number of people across a variety of different
disciplines. If you have a question, the answer is only a Google search away.

• Modules. High quality, fast and feature-packed code has been written for Python
which allows us to do data science related tasks with ease, and even progress on to
more complex machine learning applications.

• Idiosyncratic preference. I prefer Python to R, so you’ll learn Python.

16/21

Why Python?

• Ease. It’s high level - easy to write, read and learn.

• Resources. It’s used by a huge number of people across a variety of different
disciplines. If you have a question, the answer is only a Google search away.

• Modules. High quality, fast and feature-packed code has been written for Python
which allows us to do data science related tasks with ease, and even progress on to
more complex machine learning applications.

• Idiosyncratic preference. I prefer Python to R, so you’ll learn Python.

16/21

Why Python?

• Ease. It’s high level - easy to write, read and learn.

• Resources. It’s used by a huge number of people across a variety of different
disciplines. If you have a question, the answer is only a Google search away.

• Modules. High quality, fast and feature-packed code has been written for Python
which allows us to do data science related tasks with ease, and even progress on to
more complex machine learning applications.

• Idiosyncratic preference. I prefer Python to R, so you’ll learn Python.

16/21

Why Python?

• Ease. It’s high level - easy to write, read and learn.

• Resources. It’s used by a huge number of people across a variety of different
disciplines. If you have a question, the answer is only a Google search away.

• Modules. High quality, fast and feature-packed code has been written for Python
which allows us to do data science related tasks with ease, and even progress on to
more complex machine learning applications.

• Idiosyncratic preference. I prefer Python to R, so you’ll learn Python.

17/21

Global preference

Python has become extremely popular.

18/21

Global preference

The world prefers Python to R - this makes our life a lot easier.

19/21

Thinking beyond Python

• Importantly, learning Python doesn’t stop you from picking up any other
programming languages.

• In fact, learning how to use Python will give you a fundamental understanding of
programming thinking - you’ll even notice that learning Stata over the last year
will have made this easier.

• The aim of course course is to teach you language agnostic concepts, that you can
apply over your career. We happen to be understand these concepts through the
lens of Python.

19/21

Thinking beyond Python

• Importantly, learning Python doesn’t stop you from picking up any other
programming languages.

• In fact, learning how to use Python will give you a fundamental understanding of
programming thinking - you’ll even notice that learning Stata over the last year
will have made this easier.

• The aim of course course is to teach you language agnostic concepts, that you can
apply over your career. We happen to be understand these concepts through the
lens of Python.

19/21

Thinking beyond Python

• Importantly, learning Python doesn’t stop you from picking up any other
programming languages.

• In fact, learning how to use Python will give you a fundamental understanding of
programming thinking - you’ll even notice that learning Stata over the last year
will have made this easier.

• The aim of course course is to teach you language agnostic concepts, that you can
apply over your career. We happen to be understand these concepts through the
lens of Python.

20/21

Installation

Lets take ourselves to the point that we can actually run the example I’ve shown above!

We’re going to spend the rest of the class installing Anaconda - the instructions are
on these webpages depending on your OS. I’ll walk you through.

1. Install the Anaconda distribution (anaconda.com). Anaconda brings together a
number of data science tools into one complete package.

2. Following installation run Anaconda Navigator.

3. Open JupyterLab - this will be our main workspace in using Python.

20/21

Installation

Lets take ourselves to the point that we can actually run the example I’ve shown above!

We’re going to spend the rest of the class installing Anaconda - the instructions are
on these webpages depending on your OS. I’ll walk you through.

1. Install the Anaconda distribution (anaconda.com). Anaconda brings together a
number of data science tools into one complete package.

2. Following installation run Anaconda Navigator.

3. Open JupyterLab - this will be our main workspace in using Python.

20/21

Installation

Lets take ourselves to the point that we can actually run the example I’ve shown above!

We’re going to spend the rest of the class installing Anaconda - the instructions are
on these webpages depending on your OS. I’ll walk you through.

1. Install the Anaconda distribution (anaconda.com). Anaconda brings together a
number of data science tools into one complete package.

2. Following installation run Anaconda Navigator.

3. Open JupyterLab - this will be our main workspace in using Python.

21/21

JupyterLab

• JupyterLab is our gateway to Python. There are many possible options, but Jupyter
provides everything we need.

• Jupyter provides us with a notebook.

• You’ll see individual, vertically arranged cells. These can be executed separately.

• Type the following into a cell, and press the � button to run (or Control-Enter).
print("Hello, World!")

21/21

JupyterLab

• JupyterLab is our gateway to Python. There are many possible options, but Jupyter
provides everything we need.

• Jupyter provides us with a notebook.

• You’ll see individual, vertically arranged cells. These can be executed separately.

• Type the following into a cell, and press the � button to run (or Control-Enter).
print("Hello, World!")

21/21

JupyterLab

• JupyterLab is our gateway to Python. There are many possible options, but Jupyter
provides everything we need.

• Jupyter provides us with a notebook.

• You’ll see individual, vertically arranged cells. These can be executed separately.

• Type the following into a cell, and press the � button to run (or Control-Enter).
print("Hello, World!")

21/21

JupyterLab

• JupyterLab is our gateway to Python. There are many possible options, but Jupyter
provides everything we need.

• Jupyter provides us with a notebook.

• You’ll see individual, vertically arranged cells. These can be executed separately.

• Type the following into a cell, and press the � button to run (or Control-Enter).

print("Hello, World!")

21/21

JupyterLab

• JupyterLab is our gateway to Python. There are many possible options, but Jupyter
provides everything we need.

• Jupyter provides us with a notebook.

• You’ll see individual, vertically arranged cells. These can be executed separately.

• Type the following into a cell, and press the � button to run (or Control-Enter).

print("Hello, World!")

21/21

JupyterLab

• JupyterLab is our gateway to Python. There are many possible options, but Jupyter
provides everything we need.

• Jupyter provides us with a notebook.

• You’ll see individual, vertically arranged cells. These can be executed separately.

• Type the following into a cell, and press the � button to run (or Control-Enter).
print("Hello, World!")

