Completeness Thresholds for Memory Safety of Array Traversing Programs

<u>Tobias Reinhard</u>, Justus Fasse, Bart Jacobs KU Leuven

Workshop on the State Of the Art in Program Analysis June 17, 2023

What This Work Is About

- Connection between bounded & unbounded proofs
- Ideas to increase trust in bounded model checking

What This Work Is About

- Connection between bounded & unbounded proofs
- Ideas to increase trust in bounded model checking
- When is a bounded "proof" a proof?

Model Checking: Easy Off-by-1 Error

- WHILE language with pointer arithmetic
- Targeted property: Memory safety
- Memory assumption array(a, s): $a[0] \dots a[s-1]$ allocated

for i in [0 : *s*-1] do !a[i+1]

Model Checking: Easy Off-by-1 Error

- WHILE language with pointer arithmetic
- Targeted property: Memory safety
- Memory assumption array(a, s): $a[0] \dots a[s-1]$ allocated

Which bounds should we choose for s?

- $\mathbf{S} = 0$: No error
- s = 1: Error

Model Checking: "Harder" Off-by-N Error

Which bounds should we choose for s?

Model Checking: "Harder" Off-by-N Error

- $\mathbf{s} = 0$: No error
- s = 1: No error
- s = 2: Error

Which bounds should we choose for s?

Model Checking: No Off-by-N Error

Which *s* can convince us?

Model Checking: No Off-by-N Error

Which *s* can convince us?

- $\mathbf{s} = 0$: No error
- s = 1: No error
- s = 2: No error \Rightarrow Which size bound is large enough?
- s = 3: No error

- Finite state transition system T
- Prove property Gp $G \approx globally \approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k \mathbf{G}p$

- Finite state transition system T
- Prove property Gp $G \approx globally \approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k \mathbf{G}p$

 $T \models_0 \mathbf{G}p$

- Finite state transition system T
- Prove property Gp $G \approx globally \approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k \mathbf{G}p$

 $T \models_1 \mathbf{G}p$

- Finite state transition system T
- Prove property Gp $G \approx \text{globally} \approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k \mathbf{G}p$

 $T \models_2 \mathbf{G}p$

When should we stop?

• k is completeness thresholds (CT) iff

$T \models_k \phi \implies T \models \phi$

• For specific ϕ : Can over-approximate CT via of key props of T

- k is completeness thresholds (CT) iff $T \models_k \phi \implies T \models \phi$
- For specific ϕ : Can over-approximate CT via of key props of T
- For $\phi = Gp$ we know CT(T, Gp) = diameter(T)(longest distance between any states)

diameter(T) = 5

- k is completeness thresholds (CT) iff $T \models_k \phi \implies T \models \phi$
- For specific ϕ : Can over-approximate CT via of key props of T
- For $\phi = Gp$ we know CT(T, Gp) = diameter(T)(longest distance between any states)

diameter(T) = 5

- k is completeness thresholds (CT) iff $T \models_k \phi \implies T \models \phi$
- For specific ϕ : Can over-approximate CT via of key props of T
- For $\phi = Gp$ we know CT(T, Gp) = diameter(T)(longest distance between any states)

diameter(T) = 5

 $T \models_5 \mathbf{G} p$ \longrightarrow $T \models \mathbf{G} p$

CTs for Infinite Systems?

Problem

Key properties used to describe CTs may be ∞

diameter(T) = ∞

 $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$

CTs for Infinite Systems?

Problem

Key properties used to describe CTs may be ∞

Our Approach

Analyse program's verification conditions instead of transition system

Verification Conditions

- Logical formula vc is VC for any spec Spec(c) iff $\models vc \implies \models Spec(c)$
- Can verify VC instead of program
- In general: VCs are over-approximations, i.e., possible that $\not\models vc$ but $\models Spec(c)$

Completeness Thresholds

- Program variable x with domain X
- Specification $\forall x \in X$. Spec(c)

Completeness Thresholds

- Program variable x with domain X
- Specification $\forall x \in X$. Spec(c)
- Subdomain $Q \subseteq X$ is a CT for x in $\forall x \in X$. Spec(c) iff $\models \forall x \in Q. \ Spec(c) \implies \models \forall x \in X. \ Spec(c)$
- For us: CT are subdomains, not depths

How to Prove CTs

• Generate VC: $Spec(c) \rightsquigarrow \forall x \in X. vc(x)$

How to Prove CTs

• Generate VC: $Spec(c) \rightsquigarrow \forall x \in X. vc(x)$

- Identify subdomain $Y \subseteq X$ where choice $x \in Y$ does not influence validity of vc(x) $\left(\models vc(x) \iff \models vc' \text{ with } x \notin \text{free}(vc') \right)$
- \implies Found CT: $(X \setminus Y) \cup \{y\}$ (for any choice of $y \in Y$)

Memory assumption: for i in [L : s-R] do array(*a*, s) !a[i+Z]

VC $vc_0 := \forall s \text{ array}(a, s) \rightarrow \forall i \in \{L, \dots, s - R\} \text{ a}[i+Z] \text{ alloc}$

Range L, ..., *s*-R empty?

VC $vc_0 := \forall s . \operatorname{array}(a, s) \rightarrow \forall i \in \{L, ..., s - R\} . a[i+Z] alloc$

Range L, ..., *s*-R empty?

Simplify VC!

No need to check

VC $vc_0 := \forall s . \operatorname{array}(a, s) \rightarrow \forall i \in \{L, ..., s - R\} . a[i+Z] alloc$

Range L, ..., *s*-R empty?

Simplify VC!

No need to check

No need to check

 \Rightarrow Validity does not depend on size 31

VC $vc_0 := \forall s . \operatorname{array}(a, s) \rightarrow \forall i \in \{L, ..., s - R\} . a[i+Z] alloc$

Yes $s^{-} < L + R$ No need to check

Range L, ..., *s*-R empty? No $s^+ \ge L + R$ Can check for any $s^+ \ge L + R$

VC $vc_0 := \forall s . \operatorname{array}(a, s) \rightarrow \forall i \in \{L, ..., s - R\} . a[i+Z] alloc$

Range L, ..., *s*-R empty? Yes No $s^+ > L + R$ $s^- < L + R$ No need to check Can check for any $s^+ \ge L + R$ Found CT: $\{s^+\}$ 33

Workflow: How to Find CTs

Mem spec + program

ScalabilityProgram Slicing

ScalabilityProgram Slicing

?

Scalability
 Program Slicing

Scalability CT Combinators

Scalability CT Combinators

Branching CTs as contraints if e then c_1 else c_2 $Q_i \sim K_i$ $Q \sim (e \wedge K_1) \lor (\neg e \wedge K_2)$

Scalability Follow AST

Scalability Follow AST

Scalability Follow AST

propagate **CT** constraints $K_1 \lor K_2$ CT constraints for sub-ASTs K_2 K_1

Outlook: Challenges

- Automation, e.g., automatic VC rewriting
- Demo scalability: Complex programs & data (e.g. lists, trees)

Outlook: Increase Trust in BMC

• Turn bounded into unbounded proof

Outlook: Increase Trust in BMC

- Turn bounded into unbounded proof
- Shift resources to critical bounds

10 20

Outlook: Increase Trust in BMC

- Turn bounded into unbounded proof
- Shift resources to critical bounds

50

Conclusion

- First generalisation of CTs to infinite state systems
- Connection between bounded & unbounded proofs in program verification
- Foundational research but potential for integration into BMC

Backup Slides

Precise VCs

• VC vc is precise for x in Spec iff $\forall v . \ \left(\ \models Spec[x \mapsto v] \ \Rightarrow \ \models v \right)$

Intuition: vc does not over-approximate wrt. x

• Q is CT $vc \land vc$ is precise $\Rightarrow Q$ is CT Spec

$$vc[x \mapsto v]$$

