Completeness Thresholds for Memory Safety of
Array Traversing Programs

Tobias Reinhard, Justus Fasse, Bart Jacobs
KU Leuven

Workshop on the State Of the Art in Program Analysis
June 17, 2023

What This Work Is About

* Connection between bounded & unbounded proofs

* |deas to increase trust in bounded model checking

What This Work Is About

e Connection between bounded & unbounded proofs
* |deas to increase trust in bounded model checking

 When is a bounded “proof” a proof?

Model Checking: Easy Off-by-1 Error

 WHILE language with pointer arithmetic

» Jargeted property: Memory safety

» Memory assumption array(a, s):
al0] ... als—1] allocated

forimo;

Model Checking: Easy Off-by-1 Error

 WHILE language with pointer arithmetic

» Jargeted property: Memory safety

» Memory assumption array(a, s):
al0] ... als—1] allocated

Which bounds should we choose for 57

e s = (: No error
e s = 1: Error

Model Checking: “Harder” Off-by-N Error

‘Memory assumption:]
array(a, s) h

Which bounds should we choose for s?

Model Checking: “Harder” Off-by-N Error

‘Memory assumption:]
array(a, s) h

Which bounds should we choose for s?

e s = (0: No error
e s = |:No error
o 5 = 2:Error

Model Checking: No Off-by-N Error

‘Memory assumption:]
array(a, s) h

Which s can convince us?

Model Checking: No Off-by-N Error

‘Memory assumption:]
array(a, s) h

Which s can convince us?

e 5 = 0: No error
e 5 =]: No error
e 5 = 2:No error = Which size bound is large enough?
e 5 = 3: No error

Model Checking Finite Systems

* Finite state transition systemt? .. ®©*®® ¢ ¢ o ¢

* Prove property Gp
G =~ globally & p holds in every state ¢ e

* Approach:
Prove Gp for all paths up to length k

I'F, Gp

10

Model Checking Finite Systems

* Finite state transition systemt? .. ®©*®® ¢ ¢ o ¢

* Prove property Gp
G =~ globally & p holds in every state ¢ e

* Approach:
Prove Gp for all paths up to length k

I'F, Gp

11

Model Checking Finite Systems

* Finite state transition systemt? .. ®©*®® ¢ ¢ o ¢

* Prove property Gp
G =~ globally & p holds in every state ¢ e

* Approach:
Prove Gp for all paths up to length k

I'F, Gp

12

Model Checking Finite Systems

* Finite state transition system T

* Prove property Gp
G =~ globally & p holds in every state

* Approach:
Prove Gp for all paths up to length k
I'F, Gp
TE, Gp

When should we stop?

13

Completeness Thresholds for Finite Systems

e kis completeness thresholds (CT)iff ~ © ~ =~ =~ "~
Te ¢ > TEG e

. For specificep: ~gEss s e

Can over-approximate CT via of key props of I' L + + « « « .« .

14

Completeness Thresholds for Finite Systems

» kis completeness thresholds (CT) iff
'k, ¢ = TE@

» For specific ¢:
Can over-approximate CT via of key props of 1

» For ¢ = Gp we know diameter(T) = 5

CT(T,Gp) = diameter(7')
(longest distance between any states)

15

Completeness Thresholds for Finite Systems

» kis completeness thresholds (CT) iff
'k, ¢ = TE@

» For specific ¢:
Can over-approximate CT via of key props of 1

» For ¢ = Gp we know diameter(T) = 5

CT(T,Gp) = diameter(7')
(longest distance between any states) l
T Es Gp

16

Completeness Thresholds for Finite Systems

» kis completeness thresholds (CT) iff
'k, ¢ = TE@

» For specific ¢:
Can over-approximate CT via of key props of 1

» For ¢ = Gp we know diameter(T) = 5
CT(T,Gp) = diameter(7')
(longest distance between any states) l

17

CTs for Infinite Systems?

Problem 00000000 . e o

Key properties used to describe CTsmaybe oo .« ¢ ¢ ¢ ¢ ¢ o

diameter(T) = oo

18

CTs for Infinite Systems?

Problem

Key properties used to describe CTs may be oo

Our Approach

Analyse program’s verification conditions
iInstead of transition system

19

Verification Conditions

» Logical formula vc is VC for any spec Spec(c) iff

Fve = F Spec(c)
* Can verify VC instead of program

* |n general: VCs are over-approximations, i.e.,

possible that Fvc but E Spec(c)

20

Completeness Thresholds

* Program variable x with domain X

» Specification Vx € X . Spec(c)

21

Completeness Thresholds

* Program variable x with domain X
» Specification Vx € X . Spec(c)

« Subdomain Q C Xisa CTforxin Vx € X. Spec(c) iff
FVxe Q. Spec(c) = EVxeX. Spec(c)

 Forus: CT are subdomains, not depths

22

How to Prove CTs

» Generate VC: Spec(c) w Vx € X. ve(x)

23

How to Prove CTs

» Generate VC: Spec(c) w Vx € X. ve(x)

o |dentify subdomain Y C X where choice x € Y does not influence validity of vc(x)

(Fve(x) © Fve with x & free(vc’))

—> Found CT: (X\Y)U {y} (for any choice of y € Y)

24

How Does the Array Size Affect Memory Safety?

I\/Iemory assump’uon -

array(a, s) Ell

25

How Does the Array Size Affect Memory Safety?

I\/Iemory assump’uon -

array(a, s) | 13 l~

Generate VC (fully automated)
LVCVCO ‘v’s arra,y(a s) — ‘v’z e {L 58 — R} a[l+Z] alloc

20

How Does the Array Size Affect Memory Safety?

o S) o] - -]
VC vey = Vs. array(a,s) — ‘v’i{L, L0y S R} . a[i+Z] alloc |

____|

——— — e — —— I N

Range L, ..., s-R empty?

27

How Does the Array Size Affect Memory Safety?

VC vey = Vs. array(a,s) — Vi j
Range L, ..., s-R empty?
Yes Simplify VC!
s <L4+R
vep = Vs . ..o Viegd. ...
= [rue

28

How Does the Array Size Affect Memory Safety?

o -) s) - - -]
VG vey = Vs. array(a,s) = Vie {L,....,s — R} . ali+Z] aIIoc
Range L, ..., s-R empty?

Yes Simplify VC!
s T<LA4+R

No need to check

29

How Does the Array Size Affect Memory Safety?

o S) R] - -]
VG vey == Vs. array(a,s) — ‘v’i{L, Loy S R} . ali+Z] alloc

——— — e — —— I N

Range L, ..., s-R empty?

Yes Simpilify VC! No
sT<L+R sT>L+R

No need to check veg = Vi.(LLi<s"—R)—- (0<Li+Z<s")

30

How Does the Array Size Affect Memory Safety?

o - S -] - -]
VC v¢y = Vs. array(a,s) - Vi€ {L,...,s — R} . ali+Z] aIIoc

Range L, ..., s-R empty?

Yes Simpilify VC! No
s < L4+R sT>L+R

Vi.(L§i<X—R)—>(O§i+Z<x

Vi.L<i—->0<Li+7)
AN ([<—=R)—-i+Z<0)

No need to check VG

= Validity does not depend on size
31

How Does the Array Size Affect Memory Safety?

o S) o] - -]
VC vey = Vs. array(a,s) — ‘v’i{L, L0y S R} . a[i+Z] alloc |

____|

——— —— —— ———

Range L, ..., s-R empty?

Yes No
sT<L+R sT>L+R

No need to check Can check for any
st >L+R

32

How Does the Array Size Affect Memory Safety?

VC va 1= ‘v’s array(a s) — ‘v’z E {L 58 —R} Cl[l-I-Z] aIIoc

——— — e — —— E—— — s

Range L, ..., s-R empty?

Yes
s < L4+R

No need to check Can check for any

\
\ / stT>L+R

Found CT [sT})

Workflow: How to Find CTs

Workflow: How to Find CTs

—— Generate VC
[— VC Vx € X. ve(x)

Workflow: How to Find CTs

———— Generate VC Select subdomain Restricted VC

ve(x) withx € Y

Try to eliminate x l

ve'(x)withx € Y

Workflow: How to Find CTs

e ——— O ENErate VG
{Mem spec}

Select subdomain Restricted VC
—_— \V/C Vx € X. ve(x) =
YCX

|+ program |

vc(x) withx € Y

Try to eliminate x

Found CT: (X\Y) U {y}

x & free(vce’)? /

Scalability

Program Slicing

| Generate VC > \VC WorkflowI CT

38

Scalability

Program Slicing

ey ? Workflow
—_— 3 Simpler v KW, (o7

39

Scalability

Program Slicing

Simpler VC —Rtklow,,

40

Scalability

Program Slicing

Simpler VC dlow,, f&7

41

Scalability

CT Combinators

Sequencing
Cy; Co

Q=0,V0,

CTs Oy, O,

42

Scalability

CT Combinators

Sequencing Branching CTs as contraints
Cl; C2 CTS Ql’ Q2 If e then Cl else C2 Qi ~/ Ki

Q=0,V0, Q ~ (eAK)V(7eAK))

43

Scalability

Follow AST

44

Scalability

Follow AST

CT constraints
for sub-ASTs

45

Scalability

Follow AST

propagate
CT constraints

CT constraints
for sub-ASTs

46

Outlook: Challenges

* Automation, e.g., automatic VC rewriting

 Demo scalability: Complex programs & data (e.q. lists, trees)

47

Outlook: Increase Trust in BMC

 Turn bounded into unbounded proof

Outlook: Increase Trust in BMC

 Turn bounded into unbounded proof

 Shift resources to critical bounds
Y

Check x,y < 10

20

10

49 | |
10 20 10

Outlook: Increase Trust in BMC

 Turn bounded into unbounded proof

e Shift resources to critical bounds
Y Y

CT for x:
Check x,y < 10 (0,...,5) x < 5 is enough

20

' = Can increase y bound

20

10

50
10 20

Conclusion

* First generalisation of CTs to infinite state systems
 Connection between bounded & unbounded proofs in program verification

* Foundational research but potential for integration into BMC

51

52

Backup Slides

53

Precise VCs

» VC vc is precise for x in Spec iff

Vv. (F Spec[x » v] = Fvclx— V])
Intuition: vc does not over-approximate wrt. x

e« QisCTvc A vcisprecise = QisCT Spec

54

Precise VCs
Vx. Spec

!

Vx. ve

!

O is CT for ve

Unbounded proof

_—) FVx. Spec

CTO

vcC precise for x

O is CT for Spec

Bounded proof
———————————————————— N x € (). Spec

55

