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Model Checking: Easy Off-by-1 Error

 WHILE language with pointer arithmetic

» Jargeted property: Memory safety

» Memory assumption array(a, s):
al0] ... als—1] allocated
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Model Checking: Easy Off-by-1 Error

 WHILE language with pointer arithmetic

» Jargeted property: Memory safety

» Memory assumption array(a, s):
al0] ... als—1] allocated

Which bounds should we choose for 57

e s = (: No error
e s = 1: Error
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e s = (0: No error
e s = |:No error
o 5 = 2:Error



Model Checking: No Off-by-N Error

‘Memory assumption:]
array(a, s) h

Which s can convince us?



Model Checking: No Off-by-N Error

‘Memory assumption:]
array(a, s) h

Which s can convince us?

e 5 = 0: No error
e 5 = ]: No error
e 5 = 2:No error = Which size bound is large enough?
e 5 = 3: No error



Model Checking Finite Systems

* Finite state transition systemt? .. ®©*®® ¢ ¢ o ¢

* Prove property Gp
G =~ globally & p holds in every state ¢ e

* Approach:
Prove Gp for all paths up to length k

I'F, Gp
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Model Checking Finite Systems

* Finite state transition system T

* Prove property Gp
G =~ globally & p holds in every state

* Approach:
Prove Gp for all paths up to length k
I'F, Gp
TE, Gp

When should we stop?
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Completeness Thresholds for Finite Systems

e kis completeness thresholds (CT)iff ~  © ~ =~ =~ "~
Te ¢ > TEG e

. For specificep: ~gEss s e

Can over-approximate CT via of key props of I' L + + « « « .« .
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Completeness Thresholds for Finite Systems

» kis completeness thresholds (CT) iff
'k, ¢ = TE@

» For specific ¢:
Can over-approximate CT via of key props of 1

» For ¢ = Gp we know diameter(T) = 5
CT(T,Gp) = diameter(7')
(longest distance between any states) l
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CTs for Infinite Systems?

Problem 00000000 . e o

Key properties used to describe CTsmaybe oo .« ¢ ¢ ¢ ¢ ¢ o

diameter(T) = oo
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CTs for Infinite Systems?

Problem

Key properties used to describe CTs may be oo

Our Approach

Analyse program’s verification conditions
iInstead of transition system

19



Verification Conditions

» Logical formula vc is VC for any spec Spec(c) iff

Fve = F Spec(c)
* Can verify VC instead of program

* |n general: VCs are over-approximations, i.e.,

possible that Fvc but E Spec(c)
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Completeness Thresholds

* Program variable x with domain X

» Specification Vx € X . Spec(c)
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Completeness Thresholds

* Program variable x with domain X
» Specification Vx € X . Spec(c)

« Subdomain Q C Xisa CTforxin Vx € X. Spec(c) iff
FVxe Q. Spec(c) = EVxeX. Spec(c)

 Forus: CT are subdomains, not depths
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How to Prove CTs

» Generate VC: Spec(c) w Vx € X. ve(x)
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How to Prove CTs

» Generate VC: Spec(c) w Vx € X. ve(x)

o |dentify subdomain Y C X where choice x € Y does not influence validity of vc(x)

( Fve(x) © Fve with x & free(vc’))

—> Found CT: (X\Y)U {y} (for any choice of y € Y)
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How Does the Array Size Affect Memory Safety?

I\/Iemory assump’uon -

array(a, s) Ell
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How Does the Array Size Affect Memory Safety?

I\/Iemory assump’uon -

array(a, s) | 13 l~

Generate VC (fully automated)
LVCVCO ‘v’s arra,y(a s) — ‘v’z e {L 58 — R} a[l+Z] alloc
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How Does the Array Size Affect Memory Safety?

o S ) o ] - - ]
VC vey = Vs. array(a,s) — ‘v’i{L, L0y S R} . a[i+Z] alloc |

____|

——— — e — —— I N

Range L, ..., s-R empty?
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How Does the Array Size Affect Memory Safety?

VC vey = Vs. array(a,s) — Vi j
Range L, ..., s-R empty?
Yes Simplify VC!
s <L4+R
vep = Vs . ..o Viegd. ...
= [rue

28



How Does the Array Size Affect Memory Safety?

o - ) s ) - - - ]
VG vey = Vs. array(a,s) = Vie {L,....,s — R} . ali+Z] aIIoc
Range L, ..., s-R empty?

Yes Simplify VC!
s T<LA4+R

No need to check
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How Does the Array Size Affect Memory Safety?

o S ) R ] - - ]
VG vey == Vs. array(a,s) — ‘v’i{L, Loy S R} . ali+Z] alloc

——— — e — —— I N

Range L, ..., s-R empty?

Yes Simpilify VC! No
sT<L+R sT>L+R

No need to check veg = Vi.(LLi<s"—R)—- (0<Li+Z<s")
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How Does the Array Size Affect Memory Safety?

o - S - ] - - ]
VC v¢y = Vs. array(a,s) - Vi€ {L,...,s — R} . ali+Z] aIIoc

Range L, ..., s-R empty?

Yes Simpilify VC! No
s < L4+R sT>L+R

Vi.(L§i<X—R)—>(O§i+Z<x

Vi.L<i—->0<Li+7)
AN ([ <—=R)—-i+Z<0)

No need to check VG

= Validity does not depend on size
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How Does the Array Size Affect Memory Safety?

o S ) o ] - - ]
VC vey = Vs. array(a,s) — ‘v’i{L, L0y S R} . a[i+Z] alloc |

____|

——— —— —— ———

Range L, ..., s-R empty?

Yes No
sT<L+R sT>L+R

No need to check Can check for any
st >L+R
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How Does the Array Size Affect Memory Safety?

VC va 1= ‘v’s array(a s) — ‘v’z E {L 58 —R} Cl[l-I-Z] aIIoc

——— — e — —— E—— — s

Range L, ..., s-R empty?

Yes
s < L4+R

No need to check Can check for any

\
\ / stT>L+R

Found CT [sT})
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ve(x) withx € Y

Try to eliminate x l

ve'(x)withx € Y



Workflow: How to Find CTs

e ——— O ENErate VG
{Mem spec}

Select subdomain Restricted VC
—_— \V/C Vx € X. ve(x) =
YCX

|+ program |

vc(x) withx € Y

Try to eliminate x

Found CT: (X\Y) U {y}

x & free(vce’)? /




Scalability

Program Slicing

| Generate VC > \VC WorkflowI CT
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Scalability

Program Slicing

ey ? Workflow
—_— 3 Simpler v KW, (o7
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Scalability

Program Slicing

Simpler VC —Rtklow,,
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Scalability

Program Slicing

Simpler VC dlow,, f&7
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Scalability

CT Combinators

Sequencing
Cy; Co

Q=0,V0,

CTs Oy, O,
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Scalability

CT Combinators

Sequencing Branching CTs as contraints
Cl; C2 CTS Ql’ Q2 If e then Cl else C2 Qi ~/ Ki

Q=0,V0, Q ~ (eAK)V(7eAK))
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Scalability

Follow AST
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Scalability

Follow AST

CT constraints
for sub-ASTs
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Scalability

Follow AST

propagate
CT constraints

CT constraints
for sub-ASTs
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Outlook: Challenges

* Automation, e.g., automatic VC rewriting

 Demo scalability: Complex programs & data (e.q. lists, trees)
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Outlook: Increase Trust in BMC

 Turn bounded into unbounded proof



Outlook: Increase Trust in BMC

 Turn bounded into unbounded proof

 Shift resources to critical bounds
Y

Check x,y < 10

20

10
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Outlook: Increase Trust in BMC

 Turn bounded into unbounded proof

e Shift resources to critical bounds
Y Y

CT for x:
Check x,y < 10 (0,...,5) x < 5 is enough

20

' = Can increase y bound

20

10
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Conclusion

* First generalisation of CTs to infinite state systems
 Connection between bounded & unbounded proofs in program verification

* Foundational research but potential for integration into BMC
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Backup Slides
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Precise VCs

» VC vc is precise for x in Spec iff

Vv. ( F Spec[x » v] = Fvclx— V] )
Intuition: vc does not over-approximate wrt. x

e« QisCTvc A vcisprecise = QisCT Spec
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Precise VCs
Vx. Spec

!

Vx. ve

!

O is CT for ve

Unbounded proof

_—) FVx. Spec

CTO

vcC precise for x

O is CT for Spec

Bounded proof
———————————————————— N x € (). Spec
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