
Workshop on the State Of the Art in Program Analysis 
June 17, 2023

Completeness Thresholds for Memory Safety of
Array Traversing Programs
Tobias Reinhard, Justus Fasse, Bart Jacobs 
KU Leuven

1

What This Work Is About

• Connection between bounded & unbounded proofs

• Ideas to increase trust in bounded model checking

2

What This Work Is About

• Connection between bounded & unbounded proofs

• Ideas to increase trust in bounded model checking

• When is a bounded “proof” a proof?

3

Model Checking: Easy Off-by-1 Error

4

• WHILE language with pointer arithmetic

• Targeted property: Memory safety

• Memory assumption :
 allocated

𝚊𝚛𝚛𝚊𝚢(a, s)
a[0] … a[s−1]

for i in [0 : -1] do
 !a[i+1]

s

Model Checking: Easy Off-by-1 Error

5

• : No error

• : Error

s = 0
s = 1

Which bounds should we choose for ?s

for i in [0 : -1] do
 !a[i+1]

s• WHILE language with pointer arithmetic

• Targeted property: Memory safety

• Memory assumption :
 allocated

𝚊𝚛𝚛𝚊𝚢(a, s)
a[0] … a[s−1]

Model Checking: “Harder” Off-by-N Error

6

for i in [0 : -2] do
 !a[i+2]

sMemory assumption:

𝚊𝚛𝚛𝚊𝚢(a, s)

Which bounds should we choose for ?s

Model Checking: “Harder” Off-by-N Error

7

for i in [0 : -2] do
 !a[i+2]

s

• : No error

• : No error

• : Error

s = 0
s = 1
s = 2

Which bounds should we choose for ?s

Memory assumption:

𝚊𝚛𝚛𝚊𝚢(a, s)

Model Checking: No Off-by-N Error

8

for i in [0 : -1] do
 !a[i]

s

Which can convince us?s

Memory assumption:

𝚊𝚛𝚛𝚊𝚢(a, s)

Model Checking: No Off-by-N Error

9

for i in [0 : -1] do
 !a[i]

s

• : No error

• : No error

• : No error

• : No error

s = 0
s = 1
s = 2
s = 3

⋮

 Which size bound is large enough?⇒

Memory assumption:

𝚊𝚛𝚛𝚊𝚢(a, s)

Which can convince us?s

10

• Finite state transition system T

• Prove property  
G globally holds in every state

• Approach:  
Prove for all paths up to length  

Gp
≈ ≈ p

Gp k
T ⊧k Gp

Model Checking Finite Systems

11

• Finite state transition system T

• Prove property  
G globally holds in every state

• Approach:  
Prove for all paths up to length  

Gp
≈ ≈ p

Gp k
T ⊧k Gp

T ⊧0 Gp

Model Checking Finite Systems

12

• Finite state transition system T

• Prove property  
G globally holds in every state

• Approach:  
Prove for all paths up to length  

Gp
≈ ≈ p

Gp k
T ⊧k Gp

T ⊧1 Gp

Model Checking Finite Systems

Model Checking Finite Systems

13

• Finite state transition system T

• Prove property  
G globally holds in every state

• Approach:  
Prove for all paths up to length  

Gp
≈ ≈ p

Gp k
T ⊧k Gp

T ⊧2 Gp

When should we stop?

14

Completeness Thresholds for Finite Systems

• is completeness thresholds (CT) iff 

• For specific :  
Can over-approximate CT via of key props of  

k
T ⊧k ϕ ⇒ T ⊧ ϕ

ϕ
T

15

Completeness Thresholds for Finite Systems

• is completeness thresholds (CT) iff 

• For specific :  
Can over-approximate CT via of key props of

• For we know 
 

(longest distance between any states) 

k
T ⊧k ϕ ⇒ T ⊧ ϕ

ϕ
T

ϕ = Gp
CT(T, Gp) = diameter(T)

diameter(T) = 5

16
T ⊧5 Gp

Completeness Thresholds for Finite Systems

• is completeness thresholds (CT) iff 

• For specific :  
Can over-approximate CT via of key props of

• For we know 
 

(longest distance between any states) 

k
T ⊧k ϕ ⇒ T ⊧ ϕ

ϕ
T

ϕ = Gp
CT(T, Gp) = diameter(T)

diameter(T) = 5

17
T ⊧5 Gp T ⊧ Gp

Completeness Thresholds for Finite Systems

• is completeness thresholds (CT) iff 

• For specific :  
Can over-approximate CT via of key props of

• For we know 
 

(longest distance between any states) 

k
T ⊧k ϕ ⇒ T ⊧ ϕ

ϕ
T

ϕ = Gp
CT(T, Gp) = diameter(T)

diameter(T) = 5

CTs for Infinite Systems?

18

Problem

Key properties used to describe CTs may be ∞

diameter(T) = ∞

19

Problem

Key properties used to describe CTs may be ∞

CTs for Infinite Systems?

Our Approach

Analyse program’s verification conditions  
instead of transition system

Verification Conditions

20

• Logical formula is VC for any spec iff 

• Can verify VC instead of program

• In general: VCs are over-approximations, i.e., 

possible that but  

vc Spec(c)
⊧ vc ⇒ ⊧ Spec(c)

⊧ vc ⊧ Spec(c)

Completeness Thresholds

21

• Program variable with domain

• Specification

x X

∀x ∈ X . Spec(c)

Completeness Thresholds

22

• Program variable with domain

• Specification

• Subdomain is a CT for in iff 

• For us: CT are subdomains, not depths

x X

∀x ∈ X . Spec(c)

Q ⊆ X x ∀x ∈ X . Spec(c)
⊧ ∀x ∈ Q . Spec(c) ⇒ ⊧ ∀x ∈ X . Spec(c)

How to Prove CTs

23

• Generate VC: Spec(c) ⇝ ∀x ∈ X . vc(x)

How to Prove CTs

24

• Generate VC:

• Identify subdomain where choice does not influence validity of

 with  

 Found CT: (for any choice of) 

Spec(c) ⇝ ∀x ∈ X . vc(x)

Y ⊆ X x ∈ Y vc(x)

(⊧ vc(x) ⇔ ⊧ vc′￼ x ∉ free(vc′￼))
⟹ (X∖Y) ∪ {y} y ∈ Y

How Does the Array Size Affect Memory Safety?

25

for i in [L : -R] do

 !a[i+Z]

sMemory assumption:

𝚊𝚛𝚛𝚊𝚢(a, s)

How Does the Array Size Affect Memory Safety?

VC vc0 := ∀s . 𝚊𝚛𝚛𝚊𝚢(a, s) → ∀i ∈ {L, …, s − R} . a[i+Z] alloc

26

Generate VC (fully automated)

for i in [L : -R] do

 !a[i+Z]

sMemory assumption:

𝚊𝚛𝚛𝚊𝚢(a, s)

How Does the Array Size Affect Memory Safety?

VC vc0 := ∀s . 𝚊𝚛𝚛𝚊𝚢(a, s) → ∀i ∈ {L, …, s − R} . a[i+Z] alloc

27

Range L, …, -R empty?s

How Does the Array Size Affect Memory Safety?

Yes

28

vc0 ≡ ∀s− . … → ∀i ∈ ∅ . …
≡ True

s− < L + R
Simplify VC!

Range L, …, -R empty?s

VC vc0 := ∀s . 𝚊𝚛𝚛𝚊𝚢(a, s) → ∀i ∈ {L, …, s − R} . a[i+Z] alloc

How Does the Array Size Affect Memory Safety?

Yes

29

No need to check

s− < L + R
Simplify VC!

Range L, …, -R empty?s

VC vc0 := ∀s . 𝚊𝚛𝚛𝚊𝚢(a, s) → ∀i ∈ {L, …, s − R} . a[i+Z] alloc

How Does the Array Size Affect Memory Safety?

Yes NoSimplify VC!

30

vc0 ≡ ∀i . (L ≤ i < s+ − R) → (0 ≤ i+Z < s+)

s− < L + R s+ ≥ L + R

No need to check

Range L, …, -R empty?s

VC vc0 := ∀s . 𝚊𝚛𝚛𝚊𝚢(a, s) → ∀i ∈ {L, …, s − R} . a[i+Z] alloc

How Does the Array Size Affect Memory Safety?

Yes NoSimplify VC!

31

vc0 ≡ ∀i . (L ≤ i < s+ − R) → (0 ≤ i+Z < s+)

≡ ∀i . (L ≤ i → 0 ≤ i+Z)

 Validity does not depend on size⇒
∧ (i ≤ −R) → i+Z < 0)

s− < L + R s+ ≥ L + R

No need to check

Range L, …, -R empty?s

VC vc0 := ∀s . 𝚊𝚛𝚛𝚊𝚢(a, s) → ∀i ∈ {L, …, s − R} . a[i+Z] alloc

How Does the Array Size Affect Memory Safety?

Yes No

Can check for any

s+ ≥ L + R

32

s− < L + R s+ ≥ L + R

No need to check

Range L, …, -R empty?s

VC vc0 := ∀s . 𝚊𝚛𝚛𝚊𝚢(a, s) → ∀i ∈ {L, …, s − R} . a[i+Z] alloc

How Does the Array Size Affect Memory Safety?

Yes No

Can check for any

s+ ≥ L + R

Found CT: {s+}

s− < L + R s+ ≥ L + R

33

No need to check

Range L, …, -R empty?s

VC vc0 := ∀s . 𝚊𝚛𝚛𝚊𝚢(a, s) → ∀i ∈ {L, …, s − R} . a[i+Z] alloc

Workflow: How to Find CTs
Mem spec

+ program

Workflow: How to Find CTs
Mem spec

+ program VC ∀x ∈ X . vc(x)

Generate VC

Workflow: How to Find CTs
Mem spec

+ program VC ∀x ∈ X . vc(x)

Generate VC

Try to eliminate x

Restricted VCSelect subdomain 

 Y ⊆ X with vc(x) x ∈ Y

 with vc′￼(x) x ∈ Y

x ∉ free(vc′￼)?

Workflow: How to Find CTs
Mem spec

+ program VC ∀x ∈ X . vc(x)

Generate VC

Try to eliminate x

Restricted VC

no

yes

Select subdomain 

 Y ⊆ X

37

Found CT: (X∖Y) ∪ {y}

No new info: CT X

 with vc(x) x ∈ Y

 with vc′￼(x) x ∈ Y

Scalability

VC

38

Generate VCMem spec

+ program CTWorkflow

Program Slicing

Simpler VC

39

Mem spec

+ program CTWorkflow

Scalability
Program Slicing

?

Unrelated to x

Affects x

Simpler VC

40

Mem spec

+ program CTWorkflow

Slice spec and

prog at x

Scalability
Program Slicing

Affects x

Simpler VC

41

Gen
era

te
VC

Mem spec

+ program CTWorkflow

Slice spec and

prog at x

Scalability
Program Slicing

Sequencing 
c1; c2

Q = Q1 ∪ Q2

CTs Q1, Q2

42

Scalability
CT Combinators

Sequencing 
c1; c2

Branching 
if then else e c1 c2

Q = Q1 ∪ Q2 Q ∼ (e ∧ K1) ∨ (¬e ∧ K2)

CTs Q1, Q2

CTs as contraints 
Qi ∼ Ki

43

Scalability
CT Combinators

44

c1; c2 if then else e c3 c4

c1 c2 c3 c4

Scalability
Follow AST

45

c1; c2 if then else e c3 c4

K1 K2 K3 K4

CT constraints 
for sub-ASTs

Scalability
Follow AST

46

K1 ∨ K2

K1 K2 K3 K4

(e ∧ K3) ∨ (¬e ∧ K4)

CT

propagate

CT constraints

CT constraints 
for sub-ASTs

Scalability
Follow AST

Outlook: Challenges

• Automation, e.g., automatic VC rewriting

• Demo scalability: Complex programs & data (e.g. lists, trees)

47

Outlook: Increase Trust in BMC

• Turn bounded into unbounded proof

Outlook: Increase Trust in BMC

• Turn bounded into unbounded proof

• Shift resources to critical bounds

49
x

y

10

20

10 20

Check x, y ≤ 10

10 20

Outlook: Increase Trust in BMC

• Turn bounded into unbounded proof

• Shift resources to critical bounds

50
x

y

10

20

10 20

Check x, y ≤ 10

x

y

10

20

10 20

CT for : x
{0,…,5} is enough 

 Can increase bound
x ≤ 5
⇒ y

Conclusion

• First generalisation of CTs to infinite state systems

• Connection between bounded & unbounded proofs in program verification

• Foundational research but potential for integration into BMC 

51

52

Backup Slides

53

Precise VCs

• VC is precise for in iff 

  

Intuition: does not over-approximate wrt.

• is CT is precise is CT

vc x Spec

∀v . (⊧ Spec[x ↦ v] ⇒ ⊧ vc[x ↦ v])
vc x

Q vc ∧ vc ⇒ Q Spec

54

Precise VCs

55

∀x . Spec ⊧ ∀x . Spec
Unbounded proof

∀x . vc

Q is CT for vc CT
Q

Bounded proof

 precise for
vc x

⊧ ∀x ∈ Q . SpecQ is CT for Spec

