{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Pandas parallelization" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2020-08-17T17:03:16.321164Z", "iopub.status.busy": "2020-08-17T17:03:16.320901Z", "iopub.status.idle": "2020-08-17T17:03:17.360884Z", "shell.execute_reply": "2020-08-17T17:03:17.360077Z", "shell.execute_reply.started": "2020-08-17T17:03:16.321124Z" } }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import swifter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data" ] }, { "cell_type": "markdown", "metadata": { "execution": { "iopub.execute_input": "2020-08-17T16:25:42.218487Z", "iopub.status.busy": "2020-08-17T16:25:42.218215Z", "iopub.status.idle": "2020-08-17T16:25:42.224742Z", "shell.execute_reply": "2020-08-17T16:25:42.222762Z", "shell.execute_reply.started": "2020-08-17T16:25:42.218445Z" } }, "source": [ "Shape: `(100.000 x 10.000)`" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2020-08-17T17:03:17.362349Z", "iopub.status.busy": "2020-08-17T17:03:17.362169Z", "iopub.status.idle": "2020-08-17T17:03:20.693553Z", "shell.execute_reply": "2020-08-17T17:03:20.692569Z", "shell.execute_reply.started": "2020-08-17T17:03:17.362321Z" } }, "outputs": [ { "data": { "text/html": [ "
| \n", " | 0 | \n", "1 | \n", "2 | \n", "3 | \n", "4 | \n", "5 | \n", "6 | \n", "7 | \n", "8 | \n", "9 | \n", "... | \n", "9990 | \n", "9991 | \n", "9992 | \n", "9993 | \n", "9994 | \n", "9995 | \n", "9996 | \n", "9997 | \n", "9998 | \n", "9999 | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "0 | \n", "1 | \n", "2 | \n", "3 | \n", "4 | \n", "5 | \n", "6 | \n", "7 | \n", "8 | \n", "9 | \n", "... | \n", "9990 | \n", "9991 | \n", "9992 | \n", "9993 | \n", "9994 | \n", "9995 | \n", "9996 | \n", "9997 | \n", "9998 | \n", "9999 | \n", "
| 1 | \n", "10000 | \n", "10001 | \n", "10002 | \n", "10003 | \n", "10004 | \n", "10005 | \n", "10006 | \n", "10007 | \n", "10008 | \n", "10009 | \n", "... | \n", "19990 | \n", "19991 | \n", "19992 | \n", "19993 | \n", "19994 | \n", "19995 | \n", "19996 | \n", "19997 | \n", "19998 | \n", "19999 | \n", "
| 2 | \n", "20000 | \n", "20001 | \n", "20002 | \n", "20003 | \n", "20004 | \n", "20005 | \n", "20006 | \n", "20007 | \n", "20008 | \n", "20009 | \n", "... | \n", "29990 | \n", "29991 | \n", "29992 | \n", "29993 | \n", "29994 | \n", "29995 | \n", "29996 | \n", "29997 | \n", "29998 | \n", "29999 | \n", "
| 3 | \n", "30000 | \n", "30001 | \n", "30002 | \n", "30003 | \n", "30004 | \n", "30005 | \n", "30006 | \n", "30007 | \n", "30008 | \n", "30009 | \n", "... | \n", "39990 | \n", "39991 | \n", "39992 | \n", "39993 | \n", "39994 | \n", "39995 | \n", "39996 | \n", "39997 | \n", "39998 | \n", "39999 | \n", "
| 4 | \n", "40000 | \n", "40001 | \n", "40002 | \n", "40003 | \n", "40004 | \n", "40005 | \n", "40006 | \n", "40007 | \n", "40008 | \n", "40009 | \n", "... | \n", "49990 | \n", "49991 | \n", "49992 | \n", "49993 | \n", "49994 | \n", "49995 | \n", "49996 | \n", "49997 | \n", "49998 | \n", "49999 | \n", "
5 rows × 10000 columns
\n", "