{ "cells": [ { "cell_type": "markdown", "id": "bec25f1a", "metadata": {}, "source": [ "# Loading Text-Fabric (Nestle1904LFT)\n", "\n", "**Work in progress!**" ] }, { "cell_type": "markdown", "id": "fa7f85d5", "metadata": { "tags": [] }, "source": [ "## Table of content \n", "* 1 - Introduction\n", " * 1.1 - Text-Fabric data versions\n", "* 2 - Preparation / installation\n", " * 2.1 - Install Python\n", " * 2.2 - Install Text-Fabric\n", " * 2.3 - Raise rate limit on Github\n", "* 3 - Load Text-Fabric into memory\n", " * 3.1 - Load the code\n", " * 3.2 - Load the app and data\n", "* 4 - Add additional features\n", " * 4.1 - The official method\n", " * 4.2 - The unofficial method\n", " * 4.3 - Additional dataset\n", " * 4.4 - Further reference\n", "* 5 - Using multiple Text-Fabric corpora" ] }, { "cell_type": "markdown", "id": "c2c48614-5571-47f8-b70c-28f1ea58f97b", "metadata": { "tags": [] }, "source": [ "# 1 - Introduction \n", "\n", "Basic instructions on loading the Text-Fabric and start using it on your system. It will provide examples of the various ways you can invoke Text-Fabric." ] }, { "cell_type": "markdown", "id": "76d1044b-e3b6-4a51-b9fa-5f3234a6d08b", "metadata": {}, "source": [ "### 1.1 - Text-Fabric data versions \n", "\n", "Some discussion related to versions" ] }, { "cell_type": "markdown", "id": "2e01787a-7480-43df-8ae4-6b73e0805f72", "metadata": {}, "source": [ "## 2 - Preparation / installation\n", "##### [back to TOC](#TOC)\n", "\n", "The instructions in this section are only required once to be executed. This will result in the Text-Fabric code being available for loading into memory of your system." ] }, { "cell_type": "markdown", "id": "bf3f556a-a84d-423d-833d-5a1f39dfd733", "metadata": {}, "source": [ "### 2.1 - Install Python \n", "\n", "You need to have Python on your system. Most systems have it out of the box,but alas, that is python2 and we need at least python **3.6**.\n", "\n", "Install it from [python.org](https://www.python.org) or from\n", "[Anaconda](https://www.anaconda.com/products/distribution)." ] }, { "cell_type": "markdown", "id": "d5a6e05a", "metadata": {}, "source": [ "### 2.2 - Install Text-Fabric \n", "\n", "(if not yet installed) \n", " \n", "**TF itself**\n", "\n", " pip3 install text-fabric\n", " \n", "**When using Jupyter notebook**\n", "\n", "You can install Jupyter Notebook by command:\n", "\n", " pip3 install jupyter\n", " \n", "**When using Anaconda**\n", "\n", "A platform like [Anaconda](https://www.anaconda.com/products/distribution) allows for easy installation of Jupyter.\n", "\n", "It is advisable to define a new environment in Anaconda on which Text-Fabric can be installed [(documentation)](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)." ] }, { "cell_type": "markdown", "id": "8684bf30", "metadata": {}, "source": [ "### 2.3 - Raise rate limit on Github \n", "##### [back to TOC](#TOC)\n", "\n", "It may be required to increase rate limit for GitHub. [See instructions](https://annotation.github.io/text-fabric/tf/advanced/repo.html#increase-the-rate-limit) on aquiring and setting the GHPERS variable. \n", "See [here](https://www.howtogeek.com/789660/how-to-use-windows-cmd-environment-variables/#autotoc_anchor_2) if you want to set the varibale on windows using the command prompt." ] }, { "cell_type": "markdown", "id": "edadeba4", "metadata": {}, "source": [ "## 3 - Load Text-Fabric into memory \n", "##### [back to TOC](#TOC)\n", "\n", "The instructions in this section are required once to be executed each time you want to use Text_Fabric. It will load the Text-Fabric code and data into memory." ] }, { "cell_type": "markdown", "id": "2152b562-5135-4b27-bd56-b3dc7abaa031", "metadata": {}, "source": [ "### 3.1 - Load the code \n", "##### [back to TOC](#TOC)" ] }, { "cell_type": "code", "execution_count": 1, "id": "a5bc2a5d", "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 1, "id": "31f3bbde", "metadata": {}, "outputs": [], "source": [ "# Loading the Text-Fabric code\n", "# Note: it is assumed Text-Fabric is installed in your environment\n", "from tf.fabric import Fabric\n", "from tf.app import use" ] }, { "cell_type": "markdown", "id": "f8a57edd-2c89-406a-873f-e7f71a5539c3", "metadata": {}, "source": [ "### 3.2 - Load app and data \n", "##### [back to TOC](#TOC)\n", "\n", "The following invocation of function [`use`](https://annotation.github.io/text-fabric/tf/about/usefunc.html) loads all features of the corpus (and extra modules, see section 4). It creates an variable (in this example `N1904LFT`) with its associated methods and function, the 'Advanced API'. In the 'cheat sheet' there are many references to `A.*something*`. In this notebook they should be read as `N1904LFT`. " ] }, { "cell_type": "code", "execution_count": 7, "id": "b8574f48", "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "**Locating corpus resources ...**" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "The requested app is not available offline\n", "\t~/text-fabric-data/github/tonyjurg/Nestle1904LFT/app not found\n" ] }, { "data": { "text/html": [ "Status: latest release online v0.6a versus None locally" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "downloading app, main data and requested additions ..." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "app: ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/app" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "The requested data is not available offline\n", "\t~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6 not found\n" ] }, { "data": { "text/html": [ "Status: latest release online v0.6a versus None locally" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "downloading app, main data and requested additions ..." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "data: ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " | 0.19s T otype from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 2.50s T oslots from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.46s T verse from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.61s T word from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.51s T after from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.60s T wordtranslit from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T chapter from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.62s T normalized from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.61s T unicode from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.57s T book from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.60s T wordunacc from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | | 0.06s C __levels__ from otype, oslots, otext\n", " | | 1.82s C __order__ from otype, oslots, __levels__\n", " | | 0.07s C __rank__ from otype, __order__\n", " | | 3.26s C __levUp__ from otype, oslots, __rank__\n", " | | 1.93s C __levDown__ from otype, __levUp__, __rank__\n", " | | 0.22s C __characters__ from otext\n", " | | 0.95s C __boundary__ from otype, oslots, __rank__\n", " | | 0.04s C __sections__ from otype, oslots, otext, __levUp__, __levels__, book, chapter, verse\n", " | | 0.23s C __structure__ from otype, oslots, otext, __rank__, __levUp__, book, chapter, verse\n", " | 0.45s T booknumber from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.51s T bookshort from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.48s T case from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.33s T clausetype from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.58s T containedclause from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.42s T degree from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.58s T gloss from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.49s T gn from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.03s T headverse from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.33s T junction from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.60s T lemma from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.56s T lex_dom from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.58s T ln from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.42s T markafter from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.43s T markbefore from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.44s T markorder from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.46s T monad from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.46s T mood from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.52s T morph from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.54s T nodeID from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.48s T nu from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.48s T number from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.43s T person from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.43s T punctuation from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.64s T ref from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.64s T reference from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.48s T roleclausedistance from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.46s T sentence from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T sp from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T sp_full from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.54s T strongs from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.44s T subj_ref from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.43s T tense from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.45s T type from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.44s T voice from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.39s T wgclass from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.33s T wglevel from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.36s T wgnum from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.35s T wgrole from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.35s T wgrolelong from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.39s T wgrule from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.33s T wgtype from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T wordlevel from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T wordrole from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.52s T wordrolelong from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n" ] }, { "data": { "text/html": [ "\n", " TF: TF API 12.1.5, tonyjurg/Nestle1904LFT/app v3, Search Reference
\n", " Data: tonyjurg - Nestle1904LFT 0.6, Character table, Feature docs
\n", "
Node types\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "
Name# of nodes# slots / node% coverage
book275102.93100
chapter260529.92100
verse794317.35100
sentence801117.20100
wg1054306.85524
word1377791.00100
\n", " Sets: no custom sets
\n", " Features:
\n", "
Nestle 1904 (Low Fat Tree)\n", "
\n", "\n", "
\n", "
\n", "after\n", "
\n", "
str
\n", "\n", " ✅ Characters (eg. punctuations) following the word\n", "\n", "
\n", "\n", "
\n", "
\n", "book\n", "
\n", "
str
\n", "\n", " ✅ Book name (in English language)\n", "\n", "
\n", "\n", "
\n", "
\n", "booknumber\n", "
\n", "
int
\n", "\n", " ✅ NT book number (Matthew=1, Mark=2, ..., Revelation=27)\n", "\n", "
\n", "\n", "
\n", "
\n", "bookshort\n", "
\n", "
str
\n", "\n", " ✅ Book name (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "case\n", "
\n", "
str
\n", "\n", " ✅ Gramatical case (Nominative, Genitive, Dative, Accusative, Vocative)\n", "\n", "
\n", "\n", "
\n", "
\n", "chapter\n", "
\n", "
int
\n", "\n", " ✅ Chapter number inside book\n", "\n", "
\n", "\n", "
\n", "
\n", "clausetype\n", "
\n", "
str
\n", "\n", " ✅ Clause type details (e.g. Verbless, Minor)\n", "\n", "
\n", "\n", "
\n", "
\n", "containedclause\n", "
\n", "
str
\n", "\n", " 🆗 Contained clause (WG number)\n", "\n", "
\n", "\n", "
\n", "
\n", "degree\n", "
\n", "
str
\n", "\n", " ✅ Degree (e.g. Comparitative, Superlative)\n", "\n", "
\n", "\n", "
\n", "
\n", "gloss\n", "
\n", "
str
\n", "\n", " ✅ English gloss\n", "\n", "
\n", "\n", "
\n", "
\n", "gn\n", "
\n", "
str
\n", "\n", " ✅ Gramatical gender (Masculine, Feminine, Neuter)\n", "\n", "
\n", "\n", "
\n", "
\n", "headverse\n", "
\n", "
str
\n", "\n", " ✅ Start verse number of a sentence\n", "\n", "
\n", "\n", "
\n", "
\n", "junction\n", "
\n", "
str
\n", "\n", " ✅ Junction data related to a wordgroup\n", "\n", "
\n", "\n", "
\n", "
\n", "lemma\n", "
\n", "
str
\n", "\n", " ✅ Lexeme (lemma)\n", "\n", "
\n", "\n", "
\n", "
\n", "lex_dom\n", "
\n", "
str
\n", "\n", " ✅ Lexical domain according to Semantic Dictionary of Biblical Greek, SDBG (not present everywhere?)\n", "\n", "
\n", "\n", "
\n", "
\n", "ln\n", "
\n", "
str
\n", "\n", " ✅ Lauw-Nida lexical classification (not present everywhere?)\n", "\n", "
\n", "\n", "
\n", "
\n", "markafter\n", "
\n", "
str
\n", "\n", " 🆗 Text critical marker after word\n", "\n", "
\n", "\n", "
\n", "
\n", "markbefore\n", "
\n", "
str
\n", "\n", " 🆗 Text critical marker before word\n", "\n", "
\n", "\n", "
\n", "
\n", "markorder\n", "
\n", "
str
\n", "\n", "  Order of punctuation and text critical marker\n", "\n", "
\n", "\n", "
\n", "
\n", "monad\n", "
\n", "
int
\n", "\n", " ✅ Monad (smallest token matching word order in the corpus)\n", "\n", "
\n", "\n", "
\n", "
\n", "mood\n", "
\n", "
str
\n", "\n", " ✅ Gramatical mood of the verb (passive, etc)\n", "\n", "
\n", "\n", "
\n", "
\n", "morph\n", "
\n", "
str
\n", "\n", " ✅ Morphological tag (Sandborg-Petersen morphology)\n", "\n", "
\n", "\n", "
\n", "
\n", "nodeID\n", "
\n", "
str
\n", "\n", " ✅ Node ID (as in the XML source data)\n", "\n", "
\n", "\n", "
\n", "
\n", "normalized\n", "
\n", "
str
\n", "\n", " ✅ Surface word with accents normalized and trailing punctuations removed\n", "\n", "
\n", "\n", "
\n", "
\n", "nu\n", "
\n", "
str
\n", "\n", " ✅ Gramatical number (Singular, Plural)\n", "\n", "
\n", "\n", "
\n", "
\n", "number\n", "
\n", "
str
\n", "\n", " ✅ Gramatical number of the verb (e.g. singular, plural)\n", "\n", "
\n", "\n", "
\n", "
\n", "otype\n", "
\n", "
str
\n", "\n", " \n", "\n", "
\n", "\n", "
\n", "
\n", "person\n", "
\n", "
str
\n", "\n", " ✅ Gramatical person of the verb (first, second, third)\n", "\n", "
\n", "\n", "
\n", "
\n", "punctuation\n", "
\n", "
str
\n", "\n", " ✅ Punctuation after word\n", "\n", "
\n", "\n", "
\n", "
\n", "ref\n", "
\n", "
str
\n", "\n", " ✅ Value of the ref ID (taken from XML sourcedata)\n", "\n", "
\n", "\n", "
\n", "
\n", "reference\n", "
\n", "
str
\n", "\n", " ✅ Reference (to nodeID in XML source data, not yet post-processes)\n", "\n", "
\n", "\n", "
\n", "
\n", "roleclausedistance\n", "
\n", "
str
\n", "\n", " ⚠️ Distance to the wordgroup defining the syntactical role of this word\n", "\n", "
\n", "\n", "
\n", "
\n", "sentence\n", "
\n", "
int
\n", "\n", " ✅ Sentence number (counted per chapter)\n", "\n", "
\n", "\n", "
\n", "
\n", "sp\n", "
\n", "
str
\n", "\n", " ✅ Part of Speech (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "sp_full\n", "
\n", "
str
\n", "\n", " ✅ Part of Speech (long description)\n", "\n", "
\n", "\n", "
\n", "
\n", "strongs\n", "
\n", "
str
\n", "\n", " ✅ Strongs number\n", "\n", "
\n", "\n", "
\n", "
\n", "subj_ref\n", "
\n", "
str
\n", "\n", " 🆗 Subject reference (to nodeID in XML source data, not yet post-processes)\n", "\n", "
\n", "\n", "
\n", "
\n", "tense\n", "
\n", "
str
\n", "\n", " ✅ Gramatical tense of the verb (e.g. Present, Aorist)\n", "\n", "
\n", "\n", "
\n", "
\n", "type\n", "
\n", "
str
\n", "\n", " ✅ Gramatical type of noun or pronoun (e.g. Common, Personal)\n", "\n", "
\n", "\n", "
\n", "
\n", "unicode\n", "
\n", "
str
\n", "\n", " ✅ Word as it apears in the text in Unicode (incl. punctuations)\n", "\n", "
\n", "\n", "
\n", "
\n", "verse\n", "
\n", "
int
\n", "\n", " ✅ Verse number inside chapter\n", "\n", "
\n", "\n", "
\n", "
\n", "voice\n", "
\n", "
str
\n", "\n", " ✅ Gramatical voice of the verb (e.g. active,passive)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgclass\n", "
\n", "
str
\n", "\n", " ✅ Class of the wordgroup (e.g. cl, np, vp)\n", "\n", "
\n", "\n", "
\n", "
\n", "wglevel\n", "
\n", "
int
\n", "\n", " 🆗 Number of the parent wordgroups for a wordgroup\n", "\n", "
\n", "\n", "
\n", "
\n", "wgnum\n", "
\n", "
int
\n", "\n", " ✅ Wordgroup number (counted per book)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgrole\n", "
\n", "
str
\n", "\n", " ✅ Syntactical role of the wordgroup (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgrolelong\n", "
\n", "
str
\n", "\n", " ✅ Syntactical role of the wordgroup (full)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgrule\n", "
\n", "
str
\n", "\n", " ✅ Wordgroup rule information (e.g. Np-Appos, ClCl2, PrepNp)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgtype\n", "
\n", "
str
\n", "\n", " ✅ Wordgroup type details (e.g. group, apposition)\n", "\n", "
\n", "\n", "
\n", "
\n", "word\n", "
\n", "
str
\n", "\n", " ✅ Word as it appears in the text (excl. punctuations)\n", "\n", "
\n", "\n", "
\n", "
\n", "wordlevel\n", "
\n", "
str
\n", "\n", " 🆗 Number of the parent wordgroups for a word\n", "\n", "
\n", "\n", "
\n", "
\n", "wordrole\n", "
\n", "
str
\n", "\n", " ✅ Syntactical role of the word (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "wordrolelong\n", "
\n", "
str
\n", "\n", " ✅ Syntactical role of the word (full)\n", "\n", "
\n", "\n", "
\n", "
\n", "wordtranslit\n", "
\n", "
str
\n", "\n", " 🆗 Transliteration of the text (in latin letters, excl. punctuations)\n", "\n", "
\n", "\n", "
\n", "
\n", "wordunacc\n", "
\n", "
str
\n", "\n", " ✅ Word without accents (excl. punctuations)\n", "\n", "
\n", "\n", "
\n", "
\n", "oslots\n", "
\n", "
none
\n", "\n", " \n", "\n", "
\n", "\n", "
\n", "
\n", "\n", " Settings:
specified
  1. apiVersion: 3
  2. appName: tonyjurg/Nestle1904LFT
  3. appPath:C:/Users/tonyj/text-fabric-data/github/tonyjurg/Nestle1904LFT/app
  4. commit: no value
  5. css: ''
  6. dataDisplay:
    • excludedFeatures:
      • orig_order
      • verse
      • book
      • chapter
    • noneValues:
      • none
      • unknown
      • no value
      • NA
      • ''
    • showVerseInTuple: 0
    • textFormat: text-orig-full
  7. docs:
    • docBase: https://github.com/tonyjurg/Nestle1904LFT/blob/main/docs/
    • docPage: about
    • docRoot: https://github.com/tonyjurg/Nestle1904LFT
    • featureBase:https://github.com/tonyjurg/Nestle1904LFT/blob/main/docs/features/<feature>.md
  8. interfaceDefaults: {fmt: layout-orig-full}
  9. isCompatible: True
  10. local: no value
  11. localDir:C:/Users/tonyj/text-fabric-data/github/tonyjurg/Nestle1904LFT/_temp
  12. provenanceSpec:
    • corpus: Nestle 1904 (Low Fat Tree)
    • doi: 10.5281/zenodo.10182594
    • org: tonyjurg
    • relative: /tf
    • repo: Nestle1904LFT
    • repro: Nestle1904LFT
    • version: 0.6
    • webBase: https://learner.bible/text/show_text/nestle1904/
    • webHint: Show this on the Bible Online Learner website
    • webLang: en
    • webUrl:https://learner.bible/text/show_text/nestle1904/<1>/<2>/<3>
    • webUrlLex: {webBase}/word?version={version}&id=<lid>
  13. release: no value
  14. typeDisplay:
    • book:
      • condense: True
      • hidden: True
      • label: {book}
      • style: ''
    • chapter:
      • condense: True
      • hidden: True
      • label: {chapter}
      • style: ''
    • sentence:
      • hidden: 0
      • label: #{sentence} (start: {book} {chapter}:{headverse})
      • style: ''
    • verse:
      • condense: True
      • excludedFeatures: chapter verse
      • label: {book} {chapter}:{verse}
      • style: ''
    • wg:
      • hidden: 0
      • label:#{wgnum}: {wgtype} {wgclass} {clausetype} {wgrole} {wgrule} {junction}
      • style: ''
    • word:
      • base: True
      • features: lemma
      • featuresBare: gloss
      • surpress: chapter verse
  15. writing: grc
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
TF API: names N F E L T S C TF Fs Fall Es Eall Cs Call directly usable

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# load the app and data\n", "N1904LFT = use (\"tonyjurg/Nestle1904LFT\", version=\"0.6\", hoist=globals())" ] }, { "cell_type": "code", "execution_count": 5, "id": "932992c9-3fd9-4b5a-aa22-48eb376c8622", "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# The following will push the Text-Fabric stylesheet to this notebook (to facilitate proper display with notebook viewer)\n", "N1904LFT.dh(N1904LFT.getCss())" ] }, { "cell_type": "markdown", "id": "9f8b75f6-3bf8-40ee-bb1e-a05714794a5b", "metadata": {}, "source": [ "# 4 - Add additional features\n", "##### [back to TOC](#TOC)\n", "\n", "\n", "**The following is optional.**\n" ] }, { "cell_type": "markdown", "id": "d0a09e00-481a-4c33-a7f6-9a53a84d8a31", "metadata": {}, "source": [ "## 4.1 - The official method\n", "##### [back to TOC](#TOC)\n", "\n", "Still to be done: find good example" ] }, { "cell_type": "code", "execution_count": 7, "id": "266af257-e70a-4ae9-87af-405ddb57fb3a", "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (851510525.py, line 2)", "output_type": "error", "traceback": [ "\u001b[1;36m Input \u001b[1;32mIn [7]\u001b[1;36m\u001b[0m\n\u001b[1;33m N1904LFT = use (\"tonyjurg/Nestle1904LFT:latest\", mod=f\"annotation/banks/sim/tf\" hoist=globals())\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "# load the app and data with additional features\n", "N1904LFT = use (\"tonyjurg/Nestle1904LFT:latest\", mod=f\"annotation/banks/sim/tf\" hoist=globals())" ] }, { "cell_type": "markdown", "id": "b144959b-2e67-414a-9d26-535e04cfeddf", "metadata": {}, "source": [ "## 4.2 - The unofficial method\n", "##### [back to TOC](#TOC)\n", "\n", "Warning: to use this method it is critical to verify that **ALL** the following match:\n", "* most importantly, the Text-Fabric dataset should be based upon the same corpus (in the most literal sense of the word!)\n", "* the node range(s) (check output of command `F.otype.all` or values found in file `otype.tf`).\n", "* the slot order (i.e. the order of the wordsin the Text-Fabric corpus; usualy refered to as monad).\n", "\n", "If these conditions are met, it is possible to copy the .tf files from the donor dataset to your local Text-Fabric directory.." ] }, { "cell_type": "markdown", "id": "44fd949d-c638-42d1-a235-b700c0a3454a", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ "## 4.3 - Additional dataset\n", "##### [back to TOC](#TOC)\n", "\n", "Some additional dataset that should work with this Text-Fabric implementation are:\n", "\n", "Dataset location | additions\n", "--- | ---\n", "[CenterBLC](https://github.com/CenterBLC/NA/tree/main/tf/202201) | *additional grammatical features, Bible Online Learner details*\n", " " ] }, { "cell_type": "markdown", "id": "0f50a69e-794d-4fa1-87c3-3cfdf7bd8b97", "metadata": {}, "source": [ "## 4.4 - Further reference\n", "##### [back to TOC](#TOC)" ] }, { "cell_type": "markdown", "id": "17574d99-d4d9-4b00-a1f8-f5f7b721e391", "metadata": {}, "source": [ "Further reference [module tf.about.datasharing](https://annotation.github.io/text-fabric/tf/about/datasharing.html)" ] }, { "cell_type": "markdown", "id": "392e108c-fea8-44bd-9e20-213b9d68e499", "metadata": {}, "source": [ "# 5 - Using multiple Text-Fabric corpora\n", "##### [back to TOC](#TOC)\n", "\n", "When using multiple Text-Fabric corpora there are a few things to take care of.\n", "The most important are to invocate function [`use`](https://annotation.github.io/text-fabric/tf/about/usefunc.html) twice using a different variables (name) to create two Advanced API's. In the following example two `A` (Advanced API) objects are created named CORPUS1 and CORPUS2:\n" ] }, { "cell_type": "raw", "id": "da5e4866-9506-4ccc-bccc-d3e230201f3a", "metadata": {}, "source": [ "CORPUS1 = use ( ... )\n", "CORPUS2 = use ( ... )" ] }, { "cell_type": "markdown", "id": "ea086155-a0dc-485f-aa6a-8c5e909b3f3c", "metadata": {}, "source": [ "**IMPORTANT:** When working with multiple corpora, do not add 'hoist=globals()' to the invocation!. See the comments on [section hoist of function use](https://annotation.github.io/text-fabric/tf/about/usefunc.html#hoisting).\n", "\n", "In order to access to the variables `F`, `L`, `T`, and `TF` for the relevant CORPUS dataset, you need to first issue `api = A.api` like in the following example. This example will create two lists containing the nodes for that corpus where feature `word` has value `λόγος`. See also [Hoisting](https://annotation.github.io/text-fabric/tf/about/usefunc.html#hoisting)." ] }, { "cell_type": "raw", "id": "731a6016-a6ee-44c0-b8e1-9a5122d35898", "metadata": {}, "source": [ "# We also need to add the app reference before we can access the F API functions\n", "api=CORPUS1.api\n", "LogosList1=api.F.word.s(λόγος)\n", "api=CORPUS2.api\n", "LogosList2=api.F.word.s(λόγος)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }