{ "cells": [ { "cell_type": "markdown", "id": "93db94f1-9db3-43eb-9b18-4203d6796234", "metadata": { "tags": [] }, "source": [ "# Interpretation (Nestle1904LFT)\n", "\n", "**This is work in progress**" ] }, { "cell_type": "markdown", "id": "688c25d7-0277-4fe3-9d7f-dee0b81ee07c", "metadata": {}, "source": [ "## Table of content \n", "* 1 - Introduction\n", "* 2 - Load Text-Fabric app and data\n", "* 3 - Examine some cases\n", " * 3.1 - Louw Nida and John 1:1 (Ἐν ἀρχῇ)\n", " * 3.2 - Formal and functional tags (ἔρχεται)\n", " * 3.3 - Handling of multiple appositions\n", "* 4 - Discussion\n", "* 5 - Atribution and footnotes\n", "* 6 - Required libraries" ] }, { "cell_type": "markdown", "id": "8d234f24-515f-430c-a7ce-709e18605a01", "metadata": { "tags": [] }, "source": [ "# 1 - Introduction \n", "##### [Back to TOC](#TOC)\n", "\n", "This Jupyter Notebook shows a number of cases where the interpretation of the Greek text involves some kind of choice that had to be made. However, it does not necessarily claim the data is 'wrong'." ] }, { "cell_type": "markdown", "id": "1841c53f-ba52-4c6e-ab0b-8ecefee86fb2", "metadata": {}, "source": [ "# 2 - Load Text-Fabric app and data \n", "##### [Back to TOC](#TOC)\n", "\n", "For this notebook two data sets of Text-Fabric will be loaded. As consequence the option `hoist=globals()` can not be used and the Advanced API calls require to be called in a differnt manner. " ] }, { "cell_type": "code", "execution_count": 1, "id": "b3511ace-56ae-485f-ad9c-43e0b84728c5", "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 3, "id": "756ac563-3d0b-4a31-9d62-604d21a6a909", "metadata": {}, "outputs": [], "source": [ "# Loading the Text-Fabric code\n", "# Note: it is assumed Text-Fabric is installed in your environment\n", "from tf.fabric import Fabric\n", "from tf.app import use" ] }, { "cell_type": "code", "execution_count": 6, "id": "4eb44182-0825-453c-b254-9ea6a83b44ad", "metadata": { "scrolled": true, "tags": [] }, "outputs": [ { "data": { "text/markdown": [ "**Locating corpus resources ...**" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "The requested app is not available offline\n", "\t~/text-fabric-data/github/tonyjurg/Nestle1904GBI/app not found\n" ] }, { "data": { "text/html": [ "Status: latest release online 0.4 versus None locally" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "downloading app, main data and requested additions ..." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "app: ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/app" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "The requested data is not available offline\n", "\t~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4 not found\n" ] }, { "data": { "text/html": [ "Status: latest release online 0.4 versus None locally" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "downloading app, main data and requested additions ..." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "data: ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " | 0.19s T otype from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 1.95s T oslots from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.59s T word from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.49s T after from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.59s T book from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.51s T chapter from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.51s T verse from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | | 0.05s C __levels__ from otype, oslots, otext\n", " | | 1.67s C __order__ from otype, oslots, __levels__\n", " | | 0.07s C __rank__ from otype, __order__\n", " | | 2.21s C __levUp__ from otype, oslots, __rank__\n", " | | 1.41s C __levDown__ from otype, __levUp__, __rank__\n", " | | 0.06s C __characters__ from otext\n", " | | 0.92s C __boundary__ from otype, oslots, __rank__\n", " | | 0.04s C __sections__ from otype, oslots, otext, __levUp__, __levels__, book, chapter, verse\n", " | | 0.22s C __structure__ from otype, oslots, otext, __rank__, __levUp__, book, chapter, verse\n", " | 0.52s T booknum from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.61s T bookshort from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.49s T case from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.51s T clause from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.07s T clauserule from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.02s T clausetype from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.45s T degree from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.56s T formaltag from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.86s T functionaltag from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.98s T gloss from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.48s T gn from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.56s T lemma from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.52s T lex_dom from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.53s T ln from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.45s T monad from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.45s T mood from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.66s T nodeID from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.61s T normalized from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.52s T nu from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.51s T number from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.45s T person from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.74s T phrase from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.27s T phrasefunction from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.28s T phrasefunctionlong from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.27s T phrasetype from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.47s T sentence from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.51s T sp from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.53s T splong from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.54s T strongs from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.49s T subj_ref from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.44s T tense from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.49s T type from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n", " | 0.45s T voice from ~/text-fabric-data/github/tonyjurg/Nestle1904GBI/tf/0.4\n" ] }, { "data": { "text/html": [ "\n", " TF: TF API 12.1.5, tonyjurg/Nestle1904GBI/app v3, Search Reference
\n", " Data: tonyjurg - Nestle1904GBI 0.4, Character table, Feature docs
\n", "
Node types\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "
Name# of nodes# slots / node% coverage
book275102.93100
chapter260529.92100
sentence572024.09100
verse794317.35100
clause161248.54100
phrase726741.90100
word1377791.00100
\n", " Sets: no custom sets
\n", " Features:
\n", "
Nestle 1904 (GBI nodes)\n", "
\n", "\n", "
\n", "
\n", "after\n", "
\n", "
str
\n", "\n", " Character after the word (space or punctuation)\n", "\n", "
\n", "\n", "
\n", "
\n", "book\n", "
\n", "
str
\n", "\n", " Book name (fully spelled out)\n", "\n", "
\n", "\n", "
\n", "
\n", "booknum\n", "
\n", "
int
\n", "\n", " NT book number (Matthew=1, Mark=2, ..., Revelation=27)\n", "\n", "
\n", "\n", "
\n", "
\n", "bookshort\n", "
\n", "
str
\n", "\n", " Book name (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "case\n", "
\n", "
str
\n", "\n", " Gramatical case (Nominative, Genitive, Dative, Accusative, Vocative)\n", "\n", "
\n", "\n", "
\n", "
\n", "chapter\n", "
\n", "
int
\n", "\n", " Chapter number inside book\n", "\n", "
\n", "\n", "
\n", "
\n", "clause\n", "
\n", "
int
\n", "\n", " Clause number (counted per chapter)\n", "\n", "
\n", "\n", "
\n", "
\n", "clauserule\n", "
\n", "
str
\n", "\n", " Clause rule\n", "\n", "
\n", "\n", "
\n", "
\n", "clausetype\n", "
\n", "
str
\n", "\n", " Clause type\n", "\n", "
\n", "\n", "
\n", "
\n", "degree\n", "
\n", "
str
\n", "\n", " Degree (e.g. Comparitative, Superlative)\n", "\n", "
\n", "\n", "
\n", "
\n", "formaltag\n", "
\n", "
str
\n", "\n", " Formal tag (Sandborg-Petersen morphology)\n", "\n", "
\n", "\n", "
\n", "
\n", "functionaltag\n", "
\n", "
str
\n", "\n", " \n", "\n", "
\n", "\n", "
\n", "
\n", "gloss\n", "
\n", "
str
\n", "\n", " English gloss\n", "\n", "
\n", "\n", "
\n", "
\n", "gn\n", "
\n", "
str
\n", "\n", " Gramatical gender (Masculine, Feminine, Neuter)\n", "\n", "
\n", "\n", "
\n", "
\n", "lemma\n", "
\n", "
str
\n", "\n", " Lexeme (lemma)\n", "\n", "
\n", "\n", "
\n", "
\n", "lex_dom\n", "
\n", "
str
\n", "\n", " Lexical domain according to Semantic Dictionary of Biblical Greek, SDBG\n", "\n", "
\n", "\n", "
\n", "
\n", "ln\n", "
\n", "
str
\n", "\n", " Lauw-Nida lexical classification\n", "\n", "
\n", "\n", "
\n", "
\n", "monad\n", "
\n", "
int
\n", "\n", " Sequence number of the smallest meaningful unit of text (single word)\n", "\n", "
\n", "\n", "
\n", "
\n", "mood\n", "
\n", "
str
\n", "\n", " Gramatical mood of the verb (passive, etc)\n", "\n", "
\n", "\n", "
\n", "
\n", "nodeID\n", "
\n", "
str
\n", "\n", " Node ID (as in the XML source data)\n", "\n", "
\n", "\n", "
\n", "
\n", "normalized\n", "
\n", "
str
\n", "\n", " Surface word stripped of punctations\n", "\n", "
\n", "\n", "
\n", "
\n", "nu\n", "
\n", "
str
\n", "\n", " Gramatical number (Singular, Plural)\n", "\n", "
\n", "\n", "
\n", "
\n", "number\n", "
\n", "
str
\n", "\n", " Gramatical number of the verb\n", "\n", "
\n", "\n", "
\n", "
\n", "otype\n", "
\n", "
str
\n", "\n", " \n", "\n", "
\n", "\n", "
\n", "
\n", "person\n", "
\n", "
str
\n", "\n", " Gramatical person of the verb (first, second, third)\n", "\n", "
\n", "\n", "
\n", "
\n", "phrase\n", "
\n", "
int
\n", "\n", " Phrase number (counted per chapter)\n", "\n", "
\n", "\n", "
\n", "
\n", "phrasefunction\n", "
\n", "
str
\n", "\n", " Phrase function (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "phrasefunctionlong\n", "
\n", "
str
\n", "\n", " Phrase function (long description)\n", "\n", "
\n", "\n", "
\n", "
\n", "phrasetype\n", "
\n", "
str
\n", "\n", " Phrase type information\n", "\n", "
\n", "\n", "
\n", "
\n", "sentence\n", "
\n", "
int
\n", "\n", " Sentence number (counted per chapter)\n", "\n", "
\n", "\n", "
\n", "
\n", "sp\n", "
\n", "
str
\n", "\n", " Speech Part (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "splong\n", "
\n", "
str
\n", "\n", " Speech Part (long description)\n", "\n", "
\n", "\n", "
\n", "
\n", "strongs\n", "
\n", "
str
\n", "\n", " Strongs number\n", "\n", "
\n", "\n", "
\n", "
\n", "subj_ref\n", "
\n", "
str
\n", "\n", " Subject reference (to nodeID in XML source data)\n", "\n", "
\n", "\n", "
\n", "
\n", "tense\n", "
\n", "
str
\n", "\n", " Gramatical tense of the verb (e.g. Present, Aorist)\n", "\n", "
\n", "\n", "
\n", "
\n", "type\n", "
\n", "
str
\n", "\n", " Gramatical type of noun or pronoun (e.g. Common, Personal)\n", "\n", "
\n", "\n", "
\n", "
\n", "verse\n", "
\n", "
int
\n", "\n", " Verse number inside chapter\n", "\n", "
\n", "\n", "
\n", "
\n", "voice\n", "
\n", "
str
\n", "\n", " Gramatical voice of the verb\n", "\n", "
\n", "\n", "
\n", "
\n", "word\n", "
\n", "
str
\n", "\n", " Word as it appears in the text\n", "\n", "
\n", "\n", "
\n", "
\n", "oslots\n", "
\n", "
none
\n", "\n", " \n", "\n", "
\n", "\n", "
\n", "
\n", "\n", " Settings:
specified
  1. apiVersion: 3
  2. appName: tonyjurg/Nestle1904GBI
  3. appPath:C:/Users/tonyj/text-fabric-data/github/tonyjurg/Nestle1904GBI/app
  4. commit: no value
  5. css:
  6. dataDisplay:
    • excludedFeatures: [reference]
    • noneValues:
      • none
      • unknown
      • no value
      • NA
      • ''
    • textFormat: text-orig-full
  7. interfaceDefaults: {fmt: layout-orig-full}
  8. isCompatible: True
  9. local: no value
  10. localDir:C:/Users/tonyj/text-fabric-data/github/tonyjurg/Nestle1904GBI/_temp
  11. provenanceSpec:
    • corpus: Nestle 1904 (GBI nodes)
    • org: tonyjurg
    • relative: /tf
    • repo: Nestle1904GBI
    • repro: Nestle1904GBI
    • version: 0.4
    • webUrl:https://bibleol.3bmoodle.dk/text/show_text/nestle1904/<1>/<2>/<3>
  12. release: no value
  13. typeDisplay:
    • book:
      • label: {book}
      • style: ''
    • clause:
      • label: #{clause}
      • style: ''
    • phrase:
      • label: #{phrase}
      • style: ''
    • word:
      • features:
        • lemma
        • strongs
      • featuresBare: [gloss]
  14. writing: grc
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# load the N1904GBI app and data\n", "N1904GBI = use (\"tonyjurg/Nestle1904GBI\", version=\"0.4\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "4a5ab617-17d1-44bb-b0d0-a33ec392f9e4", "metadata": { "scrolled": true, "tags": [] }, "outputs": [ { "data": { "text/markdown": [ "**Locating corpus resources ...**" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "The requested app is not available offline\n", "\t~/text-fabric-data/github/tonyjurg/Nestle1904LFT/app not found\n" ] }, { "data": { "text/html": [ "Status: latest release online v0.6 versus None locally" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "downloading app, main data and requested additions ..." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "app: ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/app" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "The requested data is not available offline\n", "\t~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6 not found\n" ] }, { "data": { "text/html": [ "Status: latest release online v0.6 versus None locally" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "downloading app, main data and requested additions ..." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "data: ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " | 0.21s T otype from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 2.27s T oslots from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.63s T unicode from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.59s T wordtranslit from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.60s T normalized from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.49s T chapter from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.49s T verse from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.59s T word from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T after from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.62s T wordunacc from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.58s T book from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | | 0.06s C __levels__ from otype, oslots, otext\n", " | | 1.83s C __order__ from otype, oslots, __levels__\n", " | | 0.07s C __rank__ from otype, __order__\n", " | | 3.35s C __levUp__ from otype, oslots, __rank__\n", " | | 1.94s C __levDown__ from otype, __levUp__, __rank__\n", " | | 0.21s C __characters__ from otext\n", " | | 1.00s C __boundary__ from otype, oslots, __rank__\n", " | | 0.04s C __sections__ from otype, oslots, otext, __levUp__, __levels__, book, chapter, verse\n", " | | 0.22s C __structure__ from otype, oslots, otext, __rank__, __levUp__, book, chapter, verse\n", " | 0.45s T booknumber from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.49s T bookshort from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.47s T case from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.32s T clausetype from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.55s T containedclause from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.42s T degree from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.58s T gloss from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.47s T gn from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.03s T headverse from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.32s T junction from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.56s T lemma from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.51s T lex_dom from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.55s T ln from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.42s T markafter from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.42s T markbefore from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.43s T markorder from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.46s T monad from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.44s T mood from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.52s T morph from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.53s T nodeID from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.49s T nu from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.48s T number from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.43s T person from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.43s T punctuation from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.66s T ref from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.66s T reference from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T roleclausedistance from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.46s T sentence from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T sp from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T sp_full from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.53s T strongs from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.44s T subj_ref from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.44s T tense from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.45s T type from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.44s T voice from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.38s T wgclass from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.33s T wglevel from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.36s T wgnum from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.34s T wgrole from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.34s T wgrolelong from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.39s T wgrule from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.33s T wgtype from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.49s T wordlevel from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.49s T wordrole from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n", " | 0.50s T wordrolelong from ~/text-fabric-data/github/tonyjurg/Nestle1904LFT/tf/0.6\n" ] }, { "data": { "text/html": [ "\n", " TF: TF API 12.1.5, tonyjurg/Nestle1904LFT/app v3, Search Reference
\n", " Data: tonyjurg - Nestle1904LFT 0.6, Character table, Feature docs
\n", "
Node types\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", "\n", "
Name# of nodes# slots / node% coverage
book275102.93100
chapter260529.92100
verse794317.35100
sentence801117.20100
wg1054306.85524
word1377791.00100
\n", " Sets: no custom sets
\n", " Features:
\n", "
Nestle 1904 (Low Fat Tree)\n", "
\n", "\n", "
\n", "
\n", "after\n", "
\n", "
str
\n", "\n", " ✅ Characters (eg. punctuations) following the word\n", "\n", "
\n", "\n", "
\n", "
\n", "book\n", "
\n", "
str
\n", "\n", " ✅ Book name (in English language)\n", "\n", "
\n", "\n", "
\n", "
\n", "booknumber\n", "
\n", "
int
\n", "\n", " ✅ NT book number (Matthew=1, Mark=2, ..., Revelation=27)\n", "\n", "
\n", "\n", "
\n", "
\n", "bookshort\n", "
\n", "
str
\n", "\n", " ✅ Book name (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "case\n", "
\n", "
str
\n", "\n", " ✅ Gramatical case (Nominative, Genitive, Dative, Accusative, Vocative)\n", "\n", "
\n", "\n", "
\n", "
\n", "chapter\n", "
\n", "
int
\n", "\n", " ✅ Chapter number inside book\n", "\n", "
\n", "\n", "
\n", "
\n", "clausetype\n", "
\n", "
str
\n", "\n", " ✅ Clause type details (e.g. Verbless, Minor)\n", "\n", "
\n", "\n", "
\n", "
\n", "containedclause\n", "
\n", "
str
\n", "\n", " 🆗 Contained clause (WG number)\n", "\n", "
\n", "\n", "
\n", "
\n", "degree\n", "
\n", "
str
\n", "\n", " ✅ Degree (e.g. Comparitative, Superlative)\n", "\n", "
\n", "\n", "
\n", "
\n", "gloss\n", "
\n", "
str
\n", "\n", " ✅ English gloss\n", "\n", "
\n", "\n", "
\n", "
\n", "gn\n", "
\n", "
str
\n", "\n", " ✅ Gramatical gender (Masculine, Feminine, Neuter)\n", "\n", "
\n", "\n", "
\n", "
\n", "headverse\n", "
\n", "
str
\n", "\n", " ✅ Start verse number of a sentence\n", "\n", "
\n", "\n", "
\n", "
\n", "junction\n", "
\n", "
str
\n", "\n", " ✅ Junction data related to a wordgroup\n", "\n", "
\n", "\n", "
\n", "
\n", "lemma\n", "
\n", "
str
\n", "\n", " ✅ Lexeme (lemma)\n", "\n", "
\n", "\n", "
\n", "
\n", "lex_dom\n", "
\n", "
str
\n", "\n", " ✅ Lexical domain according to Semantic Dictionary of Biblical Greek, SDBG (not present everywhere?)\n", "\n", "
\n", "\n", "
\n", "
\n", "ln\n", "
\n", "
str
\n", "\n", " ✅ Lauw-Nida lexical classification (not present everywhere?)\n", "\n", "
\n", "\n", "
\n", "
\n", "markafter\n", "
\n", "
str
\n", "\n", " 🆗 Text critical marker after word\n", "\n", "
\n", "\n", "
\n", "
\n", "markbefore\n", "
\n", "
str
\n", "\n", " 🆗 Text critical marker before word\n", "\n", "
\n", "\n", "
\n", "
\n", "markorder\n", "
\n", "
str
\n", "\n", "  Order of punctuation and text critical marker\n", "\n", "
\n", "\n", "
\n", "
\n", "monad\n", "
\n", "
int
\n", "\n", " ✅ Monad (smallest token matching word order in the corpus)\n", "\n", "
\n", "\n", "
\n", "
\n", "mood\n", "
\n", "
str
\n", "\n", " ✅ Gramatical mood of the verb (passive, etc)\n", "\n", "
\n", "\n", "
\n", "
\n", "morph\n", "
\n", "
str
\n", "\n", " ✅ Morphological tag (Sandborg-Petersen morphology)\n", "\n", "
\n", "\n", "
\n", "
\n", "nodeID\n", "
\n", "
str
\n", "\n", " ✅ Node ID (as in the XML source data)\n", "\n", "
\n", "\n", "
\n", "
\n", "normalized\n", "
\n", "
str
\n", "\n", " ✅ Surface word with accents normalized and trailing punctuations removed\n", "\n", "
\n", "\n", "
\n", "
\n", "nu\n", "
\n", "
str
\n", "\n", " ✅ Gramatical number (Singular, Plural)\n", "\n", "
\n", "\n", "
\n", "
\n", "number\n", "
\n", "
str
\n", "\n", " ✅ Gramatical number of the verb (e.g. singular, plural)\n", "\n", "
\n", "\n", "
\n", "
\n", "otype\n", "
\n", "
str
\n", "\n", " \n", "\n", "
\n", "\n", "
\n", "
\n", "person\n", "
\n", "
str
\n", "\n", " ✅ Gramatical person of the verb (first, second, third)\n", "\n", "
\n", "\n", "
\n", "
\n", "punctuation\n", "
\n", "
str
\n", "\n", " ✅ Punctuation after word\n", "\n", "
\n", "\n", "
\n", "
\n", "ref\n", "
\n", "
str
\n", "\n", " ✅ Value of the ref ID (taken from XML sourcedata)\n", "\n", "
\n", "\n", "
\n", "
\n", "reference\n", "
\n", "
str
\n", "\n", " ✅ Reference (to nodeID in XML source data, not yet post-processes)\n", "\n", "
\n", "\n", "
\n", "
\n", "roleclausedistance\n", "
\n", "
str
\n", "\n", " ⚠️ Distance to the wordgroup defining the syntactical role of this word\n", "\n", "
\n", "\n", "
\n", "
\n", "sentence\n", "
\n", "
int
\n", "\n", " ✅ Sentence number (counted per chapter)\n", "\n", "
\n", "\n", "
\n", "
\n", "sp\n", "
\n", "
str
\n", "\n", " ✅ Part of Speech (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "sp_full\n", "
\n", "
str
\n", "\n", " ✅ Part of Speech (long description)\n", "\n", "
\n", "\n", "
\n", "
\n", "strongs\n", "
\n", "
str
\n", "\n", " ✅ Strongs number\n", "\n", "
\n", "\n", "
\n", "
\n", "subj_ref\n", "
\n", "
str
\n", "\n", " 🆗 Subject reference (to nodeID in XML source data, not yet post-processes)\n", "\n", "
\n", "\n", "
\n", "
\n", "tense\n", "
\n", "
str
\n", "\n", " ✅ Gramatical tense of the verb (e.g. Present, Aorist)\n", "\n", "
\n", "\n", "
\n", "
\n", "type\n", "
\n", "
str
\n", "\n", " ✅ Gramatical type of noun or pronoun (e.g. Common, Personal)\n", "\n", "
\n", "\n", "
\n", "
\n", "unicode\n", "
\n", "
str
\n", "\n", " ✅ Word as it apears in the text in Unicode (incl. punctuations)\n", "\n", "
\n", "\n", "
\n", "
\n", "verse\n", "
\n", "
int
\n", "\n", " ✅ Verse number inside chapter\n", "\n", "
\n", "\n", "
\n", "
\n", "voice\n", "
\n", "
str
\n", "\n", " ✅ Gramatical voice of the verb (e.g. active,passive)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgclass\n", "
\n", "
str
\n", "\n", " ✅ Class of the wordgroup (e.g. cl, np, vp)\n", "\n", "
\n", "\n", "
\n", "
\n", "wglevel\n", "
\n", "
int
\n", "\n", " 🆗 Number of the parent wordgroups for a wordgroup\n", "\n", "
\n", "\n", "
\n", "
\n", "wgnum\n", "
\n", "
int
\n", "\n", " ✅ Wordgroup number (counted per book)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgrole\n", "
\n", "
str
\n", "\n", " ✅ Syntactical role of the wordgroup (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgrolelong\n", "
\n", "
str
\n", "\n", " ✅ Syntactical role of the wordgroup (full)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgrule\n", "
\n", "
str
\n", "\n", " ✅ Wordgroup rule information (e.g. Np-Appos, ClCl2, PrepNp)\n", "\n", "
\n", "\n", "
\n", "
\n", "wgtype\n", "
\n", "
str
\n", "\n", " ✅ Wordgroup type details (e.g. group, apposition)\n", "\n", "
\n", "\n", "
\n", "
\n", "word\n", "
\n", "
str
\n", "\n", " ✅ Word as it appears in the text (excl. punctuations)\n", "\n", "
\n", "\n", "
\n", "
\n", "wordlevel\n", "
\n", "
str
\n", "\n", " 🆗 Number of the parent wordgroups for a word\n", "\n", "
\n", "\n", "
\n", "
\n", "wordrole\n", "
\n", "
str
\n", "\n", " ✅ Syntactical role of the word (abbreviated)\n", "\n", "
\n", "\n", "
\n", "
\n", "wordrolelong\n", "
\n", "
str
\n", "\n", " ✅ Syntactical role of the word (full)\n", "\n", "
\n", "\n", "
\n", "
\n", "wordtranslit\n", "
\n", "
str
\n", "\n", " 🆗 Transliteration of the text (in latin letters, excl. punctuations)\n", "\n", "
\n", "\n", "
\n", "
\n", "wordunacc\n", "
\n", "
str
\n", "\n", " ✅ Word without accents (excl. punctuations)\n", "\n", "
\n", "\n", "
\n", "
\n", "oslots\n", "
\n", "
none
\n", "\n", " \n", "\n", "
\n", "\n", "
\n", "
\n", "\n", " Settings:
specified
  1. apiVersion: 3
  2. appName: tonyjurg/Nestle1904LFT
  3. appPath:C:/Users/tonyj/text-fabric-data/github/tonyjurg/Nestle1904LFT/app
  4. commit: no value
  5. css: ''
  6. dataDisplay:
    • excludedFeatures:
      • orig_order
      • verse
      • book
      • chapter
    • noneValues:
      • none
      • unknown
      • no value
      • NA
      • ''
    • showVerseInTuple: 0
    • textFormat: text-orig-full
  7. docs:
    • docBase: https://github.com/tonyjurg/Nestle1904LFT/blob/main/docs/
    • docPage: about
    • docRoot: https://github.com/tonyjurg/Nestle1904LFT
    • featureBase:https://github.com/tonyjurg/Nestle1904LFT/blob/main/docs/features/<feature>.md
  8. interfaceDefaults: {fmt: layout-orig-full}
  9. isCompatible: True
  10. local: no value
  11. localDir:C:/Users/tonyj/text-fabric-data/github/tonyjurg/Nestle1904LFT/_temp
  12. provenanceSpec:
    • corpus: Nestle 1904 (Low Fat Tree)
    • doi: notyet
    • org: tonyjurg
    • relative: /tf
    • repo: Nestle1904LFT
    • repro: Nestle1904LFT
    • version: 0.6
    • webBase: https://learner.bible/text/show_text/nestle1904/
    • webHint: Show this on the Bible Online Learner website
    • webLang: en
    • webUrl:https://learner.bible/text/show_text/nestle1904/<1>/<2>/<3>
    • webUrlLex: {webBase}/word?version={version}&id=<lid>
  13. release: no value
  14. typeDisplay:
    • book:
      • condense: True
      • hidden: True
      • label: {book}
      • style: ''
    • chapter:
      • condense: True
      • hidden: True
      • label: {chapter}
      • style: ''
    • sentence:
      • hidden: 0
      • label: #{sentence} (start: {book} {chapter}:{headverse})
      • style: ''
    • verse:
      • condense: True
      • excludedFeatures: chapter verse
      • label: {book} {chapter}:{verse}
      • style: ''
    • wg:
      • hidden: 0
      • label:#{wgnum}: {wgtype} {wgclass} {clausetype} {wgrole} {wgrule} {junction}
      • style: ''
    • word:
      • base: True
      • features: lemma
      • featuresBare: gloss
      • surpress: chapter verse
  15. writing: grc
\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# load the N1904LFT app and data\n", "N1904LFT = use (\"tonyjurg/Nestle1904LFT\", version=\"0.6\")" ] }, { "cell_type": "code", "execution_count": 7, "id": "ff942529-c25a-497b-85a8-fa48b2f53e21", "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# The following will push the Text-Fabric stylesheet to this notebook (to facilitate proper display with notebook viewer)\n", "# The stylesheets of N1904GBI and N1904LFT will be identical, so one call will suffice.\n", "N1904GBI.dh(N1904GBI.getCss())" ] }, { "cell_type": "code", "execution_count": 8, "id": "1747daf0-3f04-461e-8c26-2ba9ecaab846", "metadata": { "tags": [] }, "outputs": [], "source": [ "# Set default view in a way to limit noise as much as possible.\n", "# These settings need to be done for both datasets\n", "N1904GBI.displaySetup(condensed=True, multiFeatures=False,queryFeatures=False)\n", "N1904LFT.displaySetup(condensed=True, multiFeatures=False,queryFeatures=False)" ] }, { "cell_type": "markdown", "id": "a29a3dc3-f727-458d-b90b-bee8e4545859", "metadata": {}, "source": [ "# 3 - Performing the queries \n", "##### [Back to TOC](#TOC)" ] }, { "cell_type": "markdown", "id": "5b98ec15-fdbe-4b7f-a5fe-8364d26dcb7e", "metadata": { "tags": [] }, "source": [ "## 3.1 - Louw Nida and John 1:1 (Ἐν ἀρχῇ)\n", "##### [Back to TOC](#TOC)\n", "\n", "Examin the Greek ἀρχῇ in John 1:1:" ] }, { "cell_type": "code", "execution_count": 10, "id": "7a6b5c40-7a4f-4a8e-bc8c-363c9691c40e", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.08s 1 result\n", "word: ἀρχῇ Louw-Nida: 67.65\n" ] } ], "source": [ "WordQuery = '''\n", "word book=John chapter=1 verse=1 word=ἀρχῇ\n", "'''\n", "WordResult = N1904LFT.search(WordQuery) \n", "api=N1904LFT.api\n", "# returns list of ordered tuples, even when only containing one node, hence indexed with [0][0] on next line\n", "print(\"word:\",api.T.text(WordResult[0][0]),\" Louw-Nida:\",api.F.ln.v(WordResult[0][0]))" ] }, { "cell_type": "markdown", "id": "15e2c041-7305-43f9-8347-25478d844200", "metadata": {}, "source": [ "However, the ἀρχή of John 1:1, according to Louw-Nida Lexicon can be either:\n", ">```\n", "a:beginning (aspect)=68.1 [^1]\n", "b:beginning (time)=67.65 [^2]\n", "\n", "Only the second meaning is provided by the feature 'ln'. Although the most appropriate, the meaning of the second one (aspect) might also be implied by the author. Queries depending on 'ln' (or, by consequence, 'lex_dom') may yield incorrect or incomplete results.\n", "\n", "[^1] Louw, Johannes P., and Eugene Albert Nida. *Greek-English Lexicon of the New Testament: Based on Semantic Domains, Vol. I* (New York: United Bible Societies, 1996), 654.\n", "\n", "[^2] ibid., 636." ] }, { "cell_type": "markdown", "id": "434ae56a-d68e-49b2-af5a-b22346688775", "metadata": {}, "source": [ "## 3.2 - Formal and functional tags (ἔρχεται)\n", "##### [Back to TOC](#TOC)" ] }, { "cell_type": "markdown", "id": "650d23c8-62c1-4954-b6e4-4af5e913ba51", "metadata": {}, "source": [ "Functional tags are only available on GBI, so the data will be taken from that Text-Fabric dataset. See [this Jupyter notebook](https://github.com/tonyjurg/Nestle1904GBI/blob/main/docs/usecases/formal_versus_functional_tag.ipynb) for an indepth discussion about formal and functional tags.\n", "\n", "Consider the two following verses, both containing the same verb ἔρχεται:\n", "> Καὶ ἐξῆλθεν ἐκεῖθεν, καὶ **ἔρχεται** εἰς τὴν πατρίδα αὐτοῦ, .. (He went away from there and **came** to his hometown, Mark 6:1a, ESV) \n", "\n", "> Ἰδοὺ **ἔρχεται** μετὰ τῶν νεφελῶν, καὶ ὄψεται αὐτὸν πᾶς ὀφθαλμὸς ... (Behold, **he is coming** with the clouds, and every eye will see him, Rev. 1:7a ESV)\n", "\n", "The following query pulls the relevant data from the GBI Text-Fabric dataset" ] }, { "cell_type": "code", "execution_count": 12, "id": "7bfc5821-a5a6-43da-a022-6c1a7a2ca6e3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.08s 2 results\n", "('Mark', 6, 1) word: ἔρχεται Formal tag: V-PNI-3S Functional tag V-PNI-3S gloss: came\n", "('Revelation', 1, 7) word: ἔρχεται Formal tag: V-PNI-3S Functional tag V-PNI-3S gloss: He is coming\n" ] } ], "source": [ "ErgetaiQuery = '''\n", "word word=ἔρχεται\n", "/with/\n", "book=Mark chapter=6 verse=1 \n", "/or/\n", "book=Revelation chapter=1 verse=7 \n", "/-/\n", "'''\n", "\n", "ErgetaiResult = N1904GBI.search(ErgetaiQuery) \n", "# returns list of ordered tuples\n", "\n", "# We also need to add the app reference (N1904GBI) before we can access the F API functions\n", "api=N1904GBI.api\n", "for tuple in ErgetaiResult:\n", " node=tuple[0]\n", " print(api.T.sectionFromNode(node), \" word:\",api.T.text(node),\" Formal tag:\",api.F.formaltag.v(node),\n", " \" Functional tag \",api.F.functionaltag.v(node),\" gloss:\",api.F.gloss.v(node))" ] }, { "cell_type": "markdown", "id": "38b6ab64-63a3-4853-af27-f618cc081a22", "metadata": {}, "source": [ "Both instances are the same praesens indicativus of ἔρχομαι, with identical formal and functional tag, but require to be translated rather different. " ] }, { "cell_type": "markdown", "id": "a5583155-be42-4577-a88d-788c24a0b8d9", "metadata": {}, "source": [ "## 3.3 - Handling of multiple appositions\n", "##### [Back to TOC](#TOC)\n", "\n", "Consider the following text from Matthew 1:1:\n", "\n", "> Βίβλος γενέσεως Ἰησοῦ Χριστοῦ υἱοῦ Δαυεὶδ υἱοῦ Ἀβραάμ. \n", "\n", "In this verse there are two appositions to 'Ἰησοῦ Χριστοῦ': 'υἱοῦ Δαυεὶδ' and 'υἱοῦ Ἀβραάμ'. The LFT Text-Fabric data presents 'υἱοῦ Δαυεὶδ' as apposition to 'Ἰησοῦ Χριστοῦ' and 'υἱοῦ Ἀβραάμ' as apposition to 'Ἰησοῦ Χριστοῦ υἱοῦ Δαυεὶδ'. Another choice of apposition can also be argued: both 'υἱοῦ Δαυεὶδ' and 'υἱοῦ Ἀβραάμ' being appositions to 'Ἰησοῦ Χριστοῦ'. This actualy the case in the XML data for the GBI nodes.\n", "\n", "This Example is discussed in detail in a separate [Jupiter NoteBook](https://github.com/tonyjurg/Nestle1904LFT/blob/main/docs/usecases/appostions.ipynb)" ] }, { "cell_type": "markdown", "id": "6e488392-6aae-4f0f-ad2b-5543b55aea78", "metadata": {}, "source": [ "## 3.4 Adverbial to what?\n", "##### [Back to TOC](#TOC)\n", "\n", "To what is the κατὰ in 1 Cor. 16:2 the adverbial? The Text-Farbic data suggest to 'μίαν σαββάτου'." ] }, { "cell_type": "code", "execution_count": 15, "id": "e204c171-9be6-4c52-9b58-2c3e68a9fb84", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.00s 1 result\n" ] } ], "source": [ "# create the query template\n", "VerseQuery = '''\n", "verse verse=2 chapter=16 book=I_Corinthians\n", "'''\n", "# execute the query template\n", "VerseResult = N1904LFT.search(VerseQuery) " ] }, { "cell_type": "code", "execution_count": 16, "id": "9cf135f0-7f08-4784-93ed-b04d4b282e98", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "

verse 1" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "

verse I_Corinthians 16:2
sentence #499 (start: I_Corinthians 16:2)
wg #5381: cl
wg #5382: pp adv PrepNp
κατὰ
wg #5383: np NPofNP
μίαν
σαββάτου
wg #5384: np s NPofNP
ἕκαστος
ὑμῶν
wg #5385: pp adv PrepNp
παρ’
ἑαυτῷ
τιθέτω
wg #5386: cl adv V-O
θησαυρίζων
wg #5387: apposition np o NP-CL
wg #5388: cl* PtclCL apposition
wg #5389: cl O-V
τι
wg #5388: cl* PtclCL apposition
ἐὰν
wg #5389: cl O-V
εὐοδῶται,
wg #5390: cl* adv sub-CL
ἵνα
wg #5391: cl ADV-ADV-ADV-S-V
μὴ
wg #5392: cl* adv sub-CL
ὅταν
wg #5393: cl V2CL
ἔλθω
τότε
λογίαι
γίνωνται.
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "N1904LFT.show(VerseResult, condensed=True, multiFeatures=False)" ] }, { "cell_type": "markdown", "id": "15130691-475e-4c78-b435-96470cc89d71", "metadata": {}, "source": [ "Query for following syntactical construction:" ] }, { "cell_type": "code", "execution_count": 18, "id": "b8166e32-3fac-4f76-9858-35753f389b5e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.21s 6 results\n" ] }, { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "
npverseword (+1)word (+1)wg (+1)
1John 21:25καθ’ ἕν, καθ’ ἕν,
2Acts 21:19καθ’ ἓν καθ’ ἓν
3I_Corinthians 14:31καθ’ ἕνα καθ’ ἕνα
4I_Corinthians 16:2κατὰ κατὰ μίαν σαββάτου μίαν
5Ephesians 5:33καθ’ καθ’ ἕνα ἕνα
6Revelation 4:8καθ’ ἓν καθ’ ἓν αὐτῶν
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create the query template\n", "SyntacticQuery1 = '''\n", "verse\n", " wg wgrule=PrepNp\n", " word lemma=κατά sp=prep\n", " word lemma=εἷς case=accusative\n", "'''\n", "SyntacticResult1 = N1904LFT.search(SyntacticQuery1) \n", "N1904LFT.table(SyntacticResult1, condensed=True, multiFeatures=False)" ] }, { "cell_type": "markdown", "id": "31d887e4-5470-4a20-915c-9a1cdd5d6385", "metadata": {}, "source": [ "Query for next syntactical construction: {note below: in the recent dataset the function of feature wgtype has changed - this query needs to be reconsidered}" ] }, { "cell_type": "code", "execution_count": 20, "id": "cdab8f1d-a9f9-4ba3-a651-82b7c1055a54", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.35s 0 results\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create the query template\n", "SyntacticQuery2 = '''\n", "verse\n", " wg wgrule=PrepNp wgrole=adv\n", " word sp=prep lemma=κατά\n", " word sp=adj case=accusative \n", " wg wgtype=modifier-scope\n", " word sp=noun \n", "'''\n", "SyntacticResult2 = N1904LFT.search(SyntacticQuery2) \n", "N1904LFT.table(SyntacticResult2, condensed=True, multiFeatures=False)" ] }, { "cell_type": "code", "execution_count": 21, "id": "f1b4f6cf-e3d8-409f-bb43-0799e8ca70cf", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.18s 10 results\n" ] }, { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "
npversewg (+1)word (+1)wg (+1)wg (+1)wg
1Matthew 28:1μίαν Ὀψὲ δὲ σαββάτων, τῇ ἐπιφωσκούσῃ εἰς μίαν σαββάτων, ἦλθεν Μαριὰμ Μαγδαληνὴ καὶ ἄλλη Μαρία θεωρῆσαι τὸν τάφον. Ὀψὲ σαββάτων, τῇ ἐπιφωσκούσῃ εἰς μίαν σαββάτων, ἦλθεν Μαριὰμ Μαγδαληνὴ καὶ ἄλλη Μαρία θεωρῆσαι τὸν τάφον. Ὀψὲ
2Mark 15:6Κατὰ ἑορτὴν ἀπέλυεν αὐτοῖς ἕνα δέσμιον ὃν παρῃτοῦντο. ἕνα Κατὰ Κατὰ δὲ ἑορτὴν ἀπέλυεν αὐτοῖς ἕνα δέσμιον ὃν παρῃτοῦντο.
3Acts 28:13μετὰ μίαν μετὰ μίαν ἡμέραν ἐπιγενομένου νότου δευτεραῖοι ἤλθομεν εἰς Ποτιόλους, μετὰ μίαν ἡμέραν ἐπιγενομένου νότου μετὰ μίαν ἡμέραν
4I_Corinthians 16:2κατὰ μίαν σαββάτου κατὰ κατὰ μίαν σαββάτου ἕκαστος ὑμῶν παρ’ ἑαυτῷ τιθέτω θησαυρίζων τι ἐὰν εὐοδῶται, ἵνα μὴ ὅταν ἔλθω τότε λογίαι γίνωνται. μίαν
5Titus 3:10μετὰ μίαν καὶ δευτέραν νουθεσίαν μετὰ μίαν
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create the query template\n", "SyntacticQuery3 = '''\n", "verse\n", " wg \n", " word sp=prep lex_dom=067002\n", " word lemma=εἷς case=accusative\n", "'''\n", "SyntacticResult3 = N1904LFT.search(SyntacticQuery3) \n", "N1904LFT.table(SyntacticResult3, condensed=True, multiFeatures=False)" ] }, { "cell_type": "code", "execution_count": 22, "id": "6fe7d15d-4ca1-4369-963a-d73f8c34149f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.25s 8 results\n" ] }, { "data": { "text/html": [ "\n", "\n", "\n", "
npverseword (+1)wordwordwg (+1)wgwgwg
1Matthew 5:18ἓν μία ἀμὴν γὰρ λέγω ὑμῖν, ἕως ἂν παρέλθῃ οὐρανὸς καὶ γῆ, ἰῶτα ἓν μία κεραία οὐ μὴ παρέλθῃ ἀπὸ τοῦ νόμου, ἕως ἂν πάντα γένηται. ἀμὴν λέγω ὑμῖν, ἕως ἂν παρέλθῃ οὐρανὸς καὶ γῆ, ἰῶτα ἓν μία κεραία οὐ μὴ παρέλθῃ ἀπὸ τοῦ νόμου, ἕως ἂν πάντα γένηται. ἕως ἂν παρέλθῃ οὐρανὸς καὶ γῆ, ἰῶτα ἓν μία κεραία οὐ μὴ παρέλθῃ ἀπὸ τοῦ νόμου, ἕως ἂν πάντα γένηται. ἰῶτα ἓν μία κεραία
2Ephesians 4:7Ἑνὶ δὲ ἑκάστῳ ἡμῶν ἐδόθη χάρις κατὰ τὸ μέτρον τῆς δωρεᾶς τοῦ Χριστοῦ. Ἑνὶ δὲ ἑκάστῳ
3Titus 3:10μίαν καὶ δευτέραν μετὰ μίαν καὶ δευτέραν νουθεσίαν μίαν καὶ δευτέραν νουθεσίαν μίαν καὶ δευτέραν
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create the query template\n", "SyntacticQuery4 = '''\n", "verse\n", " wg \n", " a:word sp=adj lemma=εἷς\n", " b:word sp=conj\n", " c:word sp=adj\n", "a <: b\n", "b <: c\n", "'''\n", "SyntacticResult4 = N1904LFT.search(SyntacticQuery4) \n", "N1904LFT.table(SyntacticResult4, condensed=True, multiFeatures=False)" ] }, { "cell_type": "code", "execution_count": 24, "id": "7cca165f-731a-4aed-8386-5ecfa33499cc", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.07s 8 results\n" ] }, { "data": { "text/html": [ "

verse 1" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "

verse Titus 3:10
sentence #28 (start: Titus 3:10)
wg #463: cl O-ADV-V-ADV
wg #464: np o AdjpNp
αἱρετικὸν
ἄνθρωπον
wg #465: pp adv PrepNp
μετὰ
wg #466: np AdjpNp
wg #467: AdjpaAdjp
μίαν
wg #468: group
καὶ
δευτέραν
νουθεσίαν
παραιτοῦ,
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "WordQuery = '''\n", "word book=Titus chapter=3 verse=10 word\n", "'''\n", "VerseResult = N1904LFT.search(WordQuery) \n", "N1904LFT.show(VerseResult, condensed=True, multiFeatures=False)" ] }, { "cell_type": "code", "execution_count": 25, "id": "478157af-7f1d-416c-9d09-efe4141d3df8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " = left equal to right (as node)\n", " # left unequal to right (as node)\n", " < left before right (in canonical node ordering)\n", " > left after right (in canonical node ordering)\n", " == left occupies same slots as right\n", " && left has overlapping slots with right\n", " ## left and right do not have the same slot set\n", " || left and right do not have common slots\n", " [[ left embeds right\n", " ]] left embedded in right\n", " << left completely before right\n", " >> left completely after right\n", " =: left and right start at the same slot\n", " := left and right end at the same slot\n", " :: left and right start and end at the same slot\n", " <: left immediately before right\n", " :> left immediately after right\n", " =k: left and right start at k-nearly the same slot\n", " :k= left and right end at k-nearly the same slot\n", " :k: left and right start and end at k-near slots\n", " left k-nearly after right\n", " .f. left.f = right.f\n", " .f=g. left.f = right.g\n", " .f~r~g. left.f matches right.g\n", " .f#g. left.f # right.g\n", " .f>g. left.f > right.g\n", " .f\n", "##### [Back to TOC](#TOC)\n", "\n", "N.A." ] }, { "cell_type": "markdown", "id": "9c74ecb9-5e06-4dfd-bef2-0d5d8a97bef9", "metadata": {}, "source": [ "# 5 - Attribution and footnotes\n", "##### [Back to TOC](#TOC)\n", "\n", "N.A." ] }, { "cell_type": "markdown", "id": "47003d27-ae95-48e4-8d6e-80d443850eed", "metadata": { "tags": [] }, "source": [ "# 6 - Required libraries \n", "##### [Back to TOC](#TOC)\n", "\n", "The scripts in this notebook require (beside `text-fabric`) the following Python libraries to be installed in the environment:\n", "\n", " {none}\n", "\n", "You can install any missing library from within Jupyter Notebook using either`pip` or `pip3`." ] }, { "cell_type": "code", "execution_count": null, "id": "9a110495-7c60-4f64-92d4-748a7c12b99d", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }