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Partl

Sets



Chapter1

Sets

0000 This chapter (will eventually) contain material on axiomatic set theory, as
well as a couple other things.

Contents

11 Setsand FUNCEiONS.........ccviviniiniiniiiiniininnnnnen. 2
1.1.1 Functions ... 2
1.2 TheEnrichment of Sets in Classical Truth Values..... 4
1.2.1 (—2)-Categories........c.cceveeeeaiaiiaen.. 4
122 (—1)-Categories............c.oceeeeiiiiian... 4
1.23  0-Categories.........ccoviiiiiiiiiiiii 8

1.2.4  Tablesof Analogies Between Set Theory and
Category THEOIY ... 8
1.A  OtherChapters.........cccevviiiiiiiiiiiiiiiinenennennn. 10

0001 1.1 Sets and Functions

0002 1.11 Functions

0003 Definition1.1.1.1.1. A function is a functional and total relation.
0004 Notation1.1.1.1.2. Throughout this work, we will sometimes denote a func-
tionf: X — Y by

def

f2 x> FL.

1. Forexample, given a function

®: Homges(X,Y) > K


https://topological-modular-forms.github.io/the-clowder-project/tag/0000
https://topological-modular-forms.github.io/the-clowder-project/tag/0001
https://topological-modular-forms.github.io/the-clowder-project/tag/0002
https://topological-modular-forms.github.io/the-clowder-project/tag/0003
https://topological-modular-forms.github.io/the-clowder-project/tag/0004
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taking values on a set of functions such as Homsets (X, Y), we will
sometimes also write

o(f) = &([x = f(x)])-
2. This notational choice is based on the lambda notation

def

f= (Ax.f(x)),

but uses a “+—" symbol for better spacing and double brackets instead
of either:

(@) Square brackets [x +— f(x)];
(b) Parentheses (x — f(x));

hoping to improve readability when dealing with e.g.:

(@) Equivalence classes, cf.:

i [[x] = f([xD]
i. [[x] ~ f([x]D]
ii. (A[x].f([x]))

(b) Function evaluations, cf.:

i, o([x = f(x)])
i. o((x > f(x)))
iii. ®((Ax.f(x)))

3. We will also sometimes write —1, —9, etc. for the arguments of a func-
tion. Some examples include:

(@) Writingf(—1) forafunctionf: A — B.
(b) Writing f(—1, —2) fora functionf: Ax B — C.
(c) Givenafunctionf: Ax B — C, writing
f(a,-): B> C
for the function [b +— f(a,b)].

(d) Denoting a composition of the form

id
Ax B2 gt ¢

by f(¢(-1), —2).
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4. Finally, givenafunctionf: A — B, we write

def

eve(f) = f(a)
forthe value of f atsomea € A.

For an example of the above notations being used in practice, see the proof
of the adjunction

AX—
P
(A X =4 HomSets(A; _)): Sets 1 Sets,
~—
Homsets (A,—)

stated in Item 2 of Proposition 2.1.3.1.2.

0005 1.2 The Enrichment of Sets in Classical Truth Values

0006 1.21 (—2)-Categories

0007 Definition1.2.1.1.1. A (—2)-category is the “necessarily true” truth value."*-3

0008 1.2.2 (—1)-Categories
0009 Definition1.2.2.1.1. A (—1)-category is a classical truth value.

000A Remark1.2.2.1.2. %(—1)-categories should be thought of as being “cate-
gories enriched in (—2)-categories”, having a collection of objects and, for
each pair of objects, a Hom-object Hom(x, y) thatis a (—2)-category (i.e.
trivial).
Therefore, a (—1)-category C is either ([BS10, pp. 33-34]):

1. Empty, having no objects;

2. Contractible, havinga collectionof objects {a, b, c, ...}, butwithHom¢ (a, b)
being a (—2)-category (i.e. trivial) forall a, b € Obj(C), forcing all ob-
jects of C to be uniquely isomorphic to each other.

As such, there are only two (—1)-categories, up to equivalence:

- The (—1)-category false (the empty one);

"Thus, there is only one (—2)-category.

2A (—n)-category forn = 3,4, ...is also the “necessarily true” truth value, coinciding with
a (—2)-category.

3For motivation, see [BS10, p.13].

4For more motivation, see [BS10, p.13].


https://topological-modular-forms.github.io/the-clowder-project/tag/0005
https://topological-modular-forms.github.io/the-clowder-project/tag/0006
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https://topological-modular-forms.github.io/the-clowder-project/tag/000A
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- The (—1)-category true (the contractible one).

000B Definition1.2.2.1.3. The posetoftruthvalues’ isthe poset ({true, false}, X)
consisting of

- The Underlying Set. The set {true, false} whose elements are the truth
values true and false.

- The Partial Order. The partial order
=<: {true, false} x {true, false} — {true, false}
on {true, false} defined by®

def

false < false = true,
def

true < false = false,
def

false < true = true,

def
true < true = true.

000C Notation1.2.2.1.4. We also write {t, f} for the poset {true, false}.

000D Proposition1.2.2.1.5. The poset of truth values {t, f} is Cartesian closed with
product given by’

txXt=t
txf=Ho,
fxt=H,
fxf=Ho,

and internal Hom Homy ¢, given by the partial order of {t, f}, i.e. by

Homy: ¢ (t,t) = ¢,
Homy: ¢ (t,f) =1,
Homy: ¢ (f, 1) = ¢,
Homy s (f, f) = t.

Proof. Existence of Products: We claim that the productst x t,t X f,f X t,and
f x f satisfy the universal property of the productin {t,f}. Indeed, consider

5Further Terminology: Also called the poset of (—1)-categories.

6This partial order coincides with logical implication.

7Note that X coincides with the “and” operator, while Homy, ¢, coincides with the logical
implication operator.
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the diagrams

AN N N N

t«—

Here:

1.

tXt —>t t«—txf—»f f«—fxt—»t fe— fxf —f.
pra i Pr2 pPri . br2 pri . bra

=t =f =f =f

If Py = t,then P1 p2 id¢, and there’s indeed a unique morphism
from P; to t making the diagram commute, namely idy;

. If Py = £, then p% = pé are given by the unique morphism from f

tot, and there’s indeed a unique morphism from P; to t making the
diagram commute, namely the unique morphism from f to t;

If Py = t, then there is no morphism pg.

If P, = f, then p? is the unique morphism from f to t while p2 =
id¢, and there’s indeed a unique morphism from Ps to f making the
diagram commute, namely ids;

The proof for Ps is similar to the one for Ps;
If P4 = t, then there is no morphism p‘l1 or pg.

If Py = f,then 1’1 p2 idf, and there’s indeed a unique morphism
from P4 to f making the diagram commute, namely ids.

Cartesian Closedness: We claim there’s a bijection

Homy (AX B,C) = Homyyf) (A, Hom s, (B, C))

naturalin A, B, C € {t,f}. Indeed:
- For (A, B,C) = (t,t,t), we have

Homyyf) (txtt) Homyy (t,t)
= {idtrue}
= Homyyf) (t,t)

= Homyy sy (t, Homg; ) (t, t))

IR

- For (A, B,C) = (t,t,f), we have

Homyyey (t X t,f) = Homyigy (1, f)
=0
= Homy sy (t, )
= Homye sy (t, Homye gy (8, ).
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- For (A, B,C) = (t,f,t), we have
Homye gy (t X f, 1) = Homyesy (f, 1)
= pt
= Homyy ey (f, 1)
= Homyyy (f, Homye gy (f, 1)).

- For (A, B,C) = (t,f,f), we have
Homye sy (t X f,f) = Homye ey (F, )
= {idfalse}
= Homy g (f, )
= Homy ) (t, Homye gy (f, ).

- For (A, B,C) = (f, t,t), we have
Homyesy (f X t, 1) = Homyesy (f, 1)
= pt
= Homy) (f, t)
= Homy sy (f, Homye gy (£, 1)).

- For (A, B,C) = (f, t,f), we have
Homyegy (f X t,f) = Homyeg) (f, )

= {idfalse}
= Hom{t,f} (f, f)
= Homyy gy (f, Hom ) (t, f))

- For (A, B,C) = (f,f, t), we have
Hom ey (f X f, 1) = Homyegy (1)
= pt
= Hom 5y (f, 1)
= Homyy (f, Homyy gy (, 1)).

- For (A, B,C) = (f,f,f), we have

Hom{tyf} (f xf, f) Hom{t,f} (f, f)

= {idfalse}
= Hom{tyf} (f,1)
= Homyyf) (f, Homy ) (f, f))

IR

The proof of naturality is omitted.
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000E 1.2.3 (-Categories

000F Definition1.2.3.1.1. A O-category is a poset.’®

000G Definition1.2.3.1.2. A 0-groupoid is a O-category in which every morphism
is invertible.’

000H 1.2.4 TablesofAnalogies Between Set Theoryand Category Theory

Here we record some analogies between notions in set theory and category
theory. Note that the analogies relating to presheaves relate equally well to
copresheaves, as the opposite X°P of a set X isjust X again.

Basics:

SET THEORY ‘ CATEGORY THEORY ‘

Enrichmentin {true, false} Enrichmentin Sets

Set X Category C
Elementx € X Object X € Obj(C)
Function Functor
Function X — {true, false} Functor C — Sets

Function X — {true, false} | Presheaf C°P — Sets

Powersets and categories of presheaves:

8 Motivation: A O-category is precisely a category enriched in the poset of (—1)-categories.
9Thatis, a set.
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SET THEORY
Powerset P (X)
Characteristic function y(}
Characteristicembedding
X(—): X = P(X)
Characteristic relation yx(—1, —2)
The Yoneda lemma for sets
Homp (x) (xx, xu) = yu(x)

The characteristic
embedding is fully faithful,

Homp(x) (12, xy) = xx(x, )

Subsets are unions of their elements

CATEGORY THEORY
Presheaf category PSh(C)

Representable presheaf hy

Yoneda embedding
& : C° < PSh(C)

Hom profunctor Hom¢g (—1, —2)
The Yoneda lemma for categories

Nat(hy, F) = F(X)

The Yoneda
embedding is fully faithful,
Nat(hx, hy) = Homg(X,Y)

U= U{x} Presheaves are
r<U colimits of representables,
or F = colim (hy)
= colim (1) hxefo F
yx€Sets(U {t,f})
Categories of elements:
SET THEORY ‘ CATEGORY THEORY

AssignmentU — yy

AssignmentU — yuy
giving an isomorphism
P(X) = Sets(X, {t,f})

Assignment F +— fcﬂf
(the category of elements)

Assignment F — fcﬂf
giving an equivalence
PSh(C) £ DFib(C)

Functions between powersets and fun

SET THEORY

Direct image function

fo: P(X) = P(Y)

Inverse image function
1 P(Y) - P(X)

Directimage with
compact support function

fi: P(X) — P(Y)

ctors between presheaf categories:

CATEGORY THEORY

Inverse image functor
f~t: PSh(C) — PSh(D)

Direct image functor
fi: PSh(D) — PSh(C)

Directimage with
compact support functor
fi: PSh(C) — PSh(D)




1.A. Other Chapters 10

Relations and profunctors:

SET THEORY ‘ CATEGORY THEORY
RelationR: X x Y — {t,f} Profunctorp: D°P x C — Sets
RelationR: X — P(Y) Profunctorp: C — PSh(D)
Relation as a Profunctor as a
cocontinuous morphism of posets colimit-preserving functor
R: (P(X),c) = (P(Y),Q) p: PSh(C) — PSh(D)

Appendices

1.A OtherChapters
Sets 6. Constructions With Relations
1. Sets 7. Equivalence Relations and
) ) Apartness Relations
2. Constructions With Sets
3. Pointed Sets Category Theory
4. Tensor Products of Pointed 8. Categories
Sets . .
Bicategories
Relations S
9. Types of Morphisms in Bicate-
5. Relations gories



Chapter 2

Constructions With Sets

000J This chapter develops some material relating to constructions with sets with
an eye towards its categorical and higher-categorical counterparts to be in-
troduced later in this work. In particular, it contains:

1. Explicit descriptions of the major types of co/limits in Sets, including
in particular explicit descriptions of pushouts and coequalisers (see
Definitions 2.2.4.1.1and 2.2.5.1.1and Remarks 2.2.4.1.2and 2.2.5.1.2).

2. Adiscussion of powersets as decategorifications of categories of presheaves
(Remarks 2.4.1.1.2 and 2.4.3.1.2), including a (—1)-categorical ana-
logue of un/straightening, described in [tems1and 2 of Proposition2.4.3.1.6
and Remark 2.4.3.1.7.

3. Alengthy discussion of the adjoint triple

foaftafi: P(A) S P(B)

of functors (morphisms of posets) between P(A) and P (B) induced
byamapofsetsf: A — B, alongwith a discussion of the properties
off.,f~1, andfi.

In line with the categorical viewpoint developed here, this adjoint
triple may be described in terms of Kan extensions, and, as it turns out,
italso shows up in some definitions and results in point-set topology,
such as in e.g. notions of continuity for functions (2?).

Contents

2.1 Limits Of SEtS..uuviiiiniiiiiiiiiiiiiiieeiinreenns 12

2.1.1 TheTerminal Set................o .. 12

11


https://topological-modular-forms.github.io/the-clowder-project/tag/000J

2.1. Limits of Sets

12

21.2  Products of Familiesof Sets.................... 13
213 BinaryProductsof Sets........................ 15
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215  Equalisers............... 28
2.2 ColimitsofSets........ccceveieiniiiiiiiiiiinininiinnnn.. 32
221 ThelnitialSet...............o 32
2.2.2  Coproducts of Familiesof Sets................. 33
2.23  BinaryCoproducts................coooviin. .. 35
224  Pushouts...............cccociiiiiii 37
2.25 Coequalisers............ccoviiiiiiiiiiian.. 44
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231 TheEmptySet...........coooiiiiiiiii . 47
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2311 Complements...........cooeviiiiiiiiiiiin. 58
2.3.12  Symmetric Differences......................... 59
2.4 POWErSetS......ccovviiiiiiniiiiiiiiiiiiiiiiiiiiiias 63
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2.4.2 TheYonedalemmaforSets................... 68
2.43  POWErSetS........ccooviiiiiiiiiiiiiiiiaiiaaen 69
2.4.4 Directlmages...........cooooviiiiiiii, 84
2.4.5 Inverselmages.........ccooviiiiiiiiiiiiiiii, 90
2.4.6  DirectImages With Compact Support........ 94
2.A OtherChapters.......ccccevviiiiiiieiieiineennennaennns 101
000Kk 2.1 Limits of Sets
000L 2.1.1 The Terminal Set

000M Definition 2.1.1.1.1. The terminal set is the pair (pt, {!A}Aeobj(Sets)) con-
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sisting of:
- The Limit. The punctual set pt « {x}.

- The Cone. The collection of maps

{141 A = Pt} scobj(Sets)

defined by

NOER

foreacha € Aandeach A € Obj(Sets).

Proof. We claim that ptis the terminal object of Sets. Indeed, suppose we
have a diagram of the form

A pt

in Sets. Then there exists a unique map ¢: A — pt making the diagram
¢
A-g~pt
commute, namely ! 4. |

000N 2.1.2 Products of Families of Sets
Let {A;};c; be afamily of sets.

000P Definition 2.1.2.1.1. The product’ of {A;};.; is the pair ([T;c; Ai, {pri}ic;)
consisting of:

- The Limit. The set [];c; A; defined by?

[]a< {f € Sets| 1| | Al-)
iel

i€l
'Further Terminology: Also called the Cartesian product of {A; };;.
ZLess formally, [T;c; A; is the set whose elements are I-indexed collections (a;) ;¢ with
a; € A;foreachi € I. The projection maps

{pr,': 1_[Ai - A,-}
iel

have (i) € A;

foreachi € I, we}

iel
are then given by
def
pri((a))jer) %'

foreach (aj)].el € [lier Ajandeachi € I.
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- The Cone. The collection

e,

iel
of maps given by
pri(H) = £ (i)
foreachf € [[;c; Aiandeachi € I.

Proof. We claim that [];<; A; is the categorical product of {A;};<; in Sets.
Indeed, suppose we have, foreach i € I, a diagram of the form
P

N\

nAiTA

iel

in Sets. Then there exists a unique map ¢: P — [];c; Ai making the dia-
gram

P

|
NERNG
|

l_[A,'TA

iel
commute, being uniquely determined by the condition pr; o ¢ = p; foreach
i€ lvia
¢(x) = (pi(x))ie;
foreachx € P. O

000Q Proposition 2.1.2.1.2. Let {A;};.; be afamily of sets.

000R 1. Functoriality. The assignment{A;};c; — [l;c; Ai definesa functor

l_[: Fun(lgisc, Sets) — Sets
iel

where

- Action on Objects. For each (A;);c; € Obj(Fun(Igisc, Sets)), we

have l]_[

iel

(Adien =] | A

iel
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- Action on Morphisms. Foreach (A;);cr, (Bi)ic; € Obj(Fun(Igisc, Sets)),
the action on Hom-sets

i

) s Nat((Aiicp (Bi)iep) — Sets(l_l Ai, l_l Bi)
iel (ADien(Bi)ier

iel iel
of [Tier at ((Ai)iep, (Bi)icy) is defined by sending a map
{fi: Ai = Bi}ie

in Nat((Ai);cp, (Bi)ics) tothe map of sets

1_[ fz : 1—[ Ai — l_[ Bl‘

iel iel iel
defined by

[1_[ 4 ((@)ier) = (fi(ai)es
i€l

foreach (a;);c; € [lier Ai-

Proof. Item 1, Functoriality: This follows from ?? of 2. O

000S 2.1.3 Binary Products of Sets

Let Aand B be sets.

000T Definition 2.1.3.1.1. The product® of Aand B is the pair (A X B, {pry, pra})
consisting of:

- The Limit. The set A X B defined by*

def

AXB= ]_l z
ze{A,B}
E {f € Sets({0,1}, AU B) |we have f(0) € Aandf(1) € B}
= {{{a},{a,b}} e P(P(AUB)) |wehavea € Aandb € B}.

3 Further Terminology: Also called the Cartesian product of A and B or the binary Cartesian
product of A and B, for emphasis.
This can also be thought of as the (E_1, E_1 )-tensor product of Aand B.
4In other words, A X Bis the set whose elements are ordered pairs (a, b) witha € Aand
b € Basin Definition 2.3.4.1.1
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- The Cone. The maps

pri: AX B — A,
pro: AXB — B

defined by

prq(a,b) ol a,

def

pry(a,b) =b
foreach (a,b) € AX B.

Proof. We claim that A X B is the categorical product of A and B in Sets.
Indeed, suppose we have a diagram of the form

P
X
A AXB 52 B
in Sets. Then there exists a unique map ¢: P — A X B making the diagram
P
p1 | P2
////¢pr\\\
A AXB 52 B

commute, being uniquely determined by the conditions

pry o ¢ =p1
pra o ¢ = pa
via
¢(x) = (p1(x), p2(x))
foreachx € P. O
Proposition 2.1.3.1.2. Let A, B, C, and X be sets.

1. Functoriality. The assignments A, B, (A, B) — A X B define functors

A X —: Sets — Sets,
— X B: Sets — Sets,

—1 X —g: Sets x Sets — Sets,

where —1 X —g is the functor where
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- Action on Objects. For each (A, B) € Obj(Sets x Sets), we have

def

[-1 X —2] (A, B) = AXB.

- Action on Morphisms. For each (A, B), (X,Y) € Obj(Sets), the
action on Hom-sets

X(AB),(X,Y): Sets(A, X) x Sets(B,Y) — Sets(Ax B, X xXY)
of xat ((A, B), (X,Y)) isdefined by sending (f, g) to the func-

tion
fXg:AXB—>XXY

defined by
[f x g](a,b) = (f(a), g (b))
foreach (a,b) € A X B.

and where A X —and — X B are the partial functors of —; X — at
A, B € Obj(Sets).

000W 2. Adjointness. We have adjunctions

AX—
(A X — 4 Homses (A, —)): Sets = Sets,

S~
Homsets (A,-)

—-%XB
(= X B 4 Homgets(B,—)):  Sets L Sets,

S~
Homsets (B,—)

witnessed by bijections

HomSets(A X B, C) = HomSets(A’ HomSets(Br C)),
HomSets(A X B, C) = HomSets(Br HomSets(Ar C)),

naturalin A, B, C € Obj(Sets).
000X 3. Associativity. We have an isomorphism of sets
(AXxB)xC=Ax(BxQ),

naturalin A, B, C € Obj(Sets).
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000Y 4. Unitality. We have isomorphisms of sets

ptxX A=A
AXpt= A

naturalin A € Obj(Sets).
000Z 5. Commutativity. We have an isomorphism of sets
AXB=BXA,
naturalin A, B € Obj(Sets).
0010 6. Annihilation With the Empty Set. We have isomorphisms of sets

AX0Q =0,
OxA=0,

naturalin A € Obj(Sets).
0011 7. Distributivity Over Unions. We have isomorphisms of sets

AX(BUC)=(AXB)U(AXxC),
(AUB)XxC=(AxC)U(BxCQC).

0012 8. Distributivity Over Intersections. \We have isomorphisms of sets

AX(BNC)=(AXxB)N(AxC),
(ANB)xC=(AxC)n(BxCQC).

0013 9. Middle-Four Exchange with Respect to Intersections. We have an isomor-
phism of sets

(AXxB)N(CxD) = (ANB)x(CND).

0014  10. Distributivity Over Differences. We have isomorphisms of sets

AX(B\C)=(AxB)\ (AxCQC),
(A\B)xC=(AxC)\ (BxCQC),

natural in A, B, C € Obj(Sets).

0015 1. Distributivity Over Symmetric Differences. We have isomorphisms of
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sets

AX(BAC)=(AXB)A(AXQO),
(AAB)XC=(AxC)A(BxCQC),

naturalin A, B, C € Obj(Sets).

12. SymmetricMonoidality. Thetriple (Sets, X, pt) isasymmetricmonoidal
category.

13. Symmetric Bimonoidality. The quintuple (Sets, [[, 0, X, pt) is a sym-
metric bimonoidal category.

Proof. Item 1, Functoriality: This follows from 22 of 22.
Item 2, Adjointness: We prove only thatthere’sanadjunction —xB 4 Homgets(B, —),
witnessed by a bijection

HomSets(A X B, C) = HomSets(A, HomSets(Br C)),

natural in B, C € Obj(Sets), as the proof of the existence of the adjunction
A X — 4 Homsets (A, —) follows almost exactly in the same way.

- Map |. We define a map
®pc: Homgers(A X B, C) — Homsets(A, Homsets (B, C)),
by sending a function
£: AXB—C
to the function
£7: A — Homsets(B,C),

ar— (E;:B—>C),

where we define
def

£1(b) = £(a, b)

foreachb € B. Intermsofthe [a +— f(a)] notationof Notation1.1.1.1.2,

we have
def

(e fa [b E(a,b)]].
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- Map Il. We define a map
\I/B,C : HomSetS (A! HomsetS(Br C))! - HomSetS(A X B! C)
given by sending a function

£: A — Homses(B,C),
at— (¢,: B— Q)

to the function

£ AxB—C
defined by
£ (a,b) = evy(evy(£))
Zevy (&)
= £,(b)

foreach (a,b) € A X B.

- Invertibility I. We claim that

YaB © PaB = idHoms,. (AXB,C)-

Indeed, given a function£: A X B — C, we have

[Yas 0 @ap](£) = Yap(Pas(£))
= Ya5(Pap([(a b) = £(a,b)]))
=Yap([a > [b &(a,b)]])
=Yp([a" = [b" - &, 0)]])
=[(a,0) = evy(eva([a” > [b" = £(a’,0)]]))]
= [(a,b) — evy([t" — £(a,b)])]
= [(a,b) — £(a,b)]
=¢.

- Invertibility Il. We claim that
Dap o YaB = idHomge. (A Homse (B,C))-
Indeed, given a function

f: A I HomSets(B, C))
ar— (£,: B—> C),
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we have
[®a5 0 Yas] (&) = oy p(Yan(®))
Zo45([(a,b) > £4()])
Z0,5([(a,b) = £0 (B)])
Zlams b evi ([(a,0) = £ O]
Za b &OB)]]
Za &

def

=¢.

- Naturality for ®, Part |. We need to show that, given a functiong: B —
B’, the diagram

by
Homsgets (A x B, C) —5 Homsets (A, Homsets (B, C));
idAXg* (gx)*

HomSets(A X B, C) W’ HomSets(A; HomSets(By C))

commutes. Indeed, given a function
£:AxB — C,
we have

[®5,c o (ida x g)]|(£) = ®pc([ida X g°1(£))
=®pc(6(-1,8(-2)))
= [£(-1,8(=2)]"
= &1 (8(-2)
= g.(£)
= (8. (®pc(9)
=[(g"), o ®pc|(©).

Alternatively, using the [a + f(a)] notation of Notation 1.1.1.1.2, we
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have

[®5c o (ida x g9)](£) = pc([ida x g°1(£))
= 0pc([ida x g"1([(a,b) = £(a,b")]))
= 0pc([(a,b) > £(a,g(b))])

fa b £(a,g(b)]]

la g ([t) — £(a,b)])]

= (g").([am [b" > £(@a,0)]])

=(g").(®2pc([(a,b") = £(a,b)]))

= (g").(Ppc (%))

=[(g"), o ®pc] ().

- Naturality for ®, Part 1. We need to show that, given a functionh: C —
C’,thediagram

0]
Homsets(A X B,C) —— Homsets (A, Homses(B, C)),
hs (hy),

HomSets(A X B, C/) W HomSets(A; HomSets(Br C/))

commutes. Indeed, given a function
£: AXB—C,
we have

[®5c 0 h.](£) = Ppc(h.(£))

= ®pc(he([(a,b) — &(a,b)]))
= ®pc([(a b) = h(£(a,b))])
=[a [b— h(&(a,b)]]
=[a = h.([b = £, b)]])
= (h).([a > [b - (e b)]])
= (h).(@p,c([(a,b) = £(a, b)]))
= (h.),(®Bc(8))
= [(h), o ®pc](£).

- Naturality for'¥. Since ® is natural in each argument and @ is a com-

ponentwise inverse to ¥ in each argument, it follows from Item 2 of
Proposition 8.8.6.1.2 that ¥ is also natural in each argument.
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Item 3, Associativity: See [Pro24a].

Item 4, Unitality: Clear.

Item 5, Commutativity: See [Proz4b].

Item 6, Annihilation With the Empty Set: See [Pro24f].

Item 7, Distributivity Over Unions: See [Proz4e].

Item 8, Distributivity Over Intersections: See [Proz24g, Corollary1].

Item 9, Middle-Four Exchange With Respect to Intersections: See [Pro24g, Corol-
lary1].

Item 10, Distributivity Over Differences: See [Proz4c].

Item 11, Distributivity Over Symmetric Differences: See [Pro24d].

Item 12, Symmetric Monoidality: See [MO 382264].

Item 13, Symmetric Bimonoidality: Omitted. O

0018 2.1.4 Pullbacks

Let A, B,andC besetsandletf: A — Candg: B — C be functions.

0019 Definition 2.1.4.1.1. The pullback of Aand B over C alongf and g° is the
pair® (A X¢ B, {pry, pry}) consisting of:

- The Limit. The set A X¢ B defined by

def

AxcB={(a,b) e AXB|f(a) =g(b)}.

- The Cone. The maps

pri: AXc B = A,
pro: AXcB— B

defined by

prl (a! b) dZEf a,

def

pro(a,b) = b
foreach (a,b) € A X¢c B.

Proof. We claim that AX¢ Bisthe categorical pullback of Aand B over C with
respect to (f, g) in Sets. First we need to check that the relevant pullback

5Further Terminology: Also called the fibre product of Aand B over C alongf and g.
6 Further Notation: Also written A Xf,cg B
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diagram commutes, i.e. that we have

pra

AXCB — B
f opry =gopry, pry |g
A C.

f

Indeed, given (a,b) € A Xc B, we have

[f o pri1(a,b) = f(pri(a, b))
=f(a)
=g(b)
= g(pry(a, b))
= [gopra](a,b),

wheref(a) = g(b)since (a,b) € AXc B. Next, we prove that AX¢ B satisfies
the universal property of the pullback. Suppose we have a diagram of the

form
P \"2

AXcB —p2—> B

]|

P1
pry 8
A C
f

in Sets. Then there existsaunique map ¢: P — AXc B makingthe diagram

p p2

AXcB —p2—> B

| a

p1
pry 8
A C
f

commute, being uniquely determined by the conditions

prio¢=pi,
pro o ¢ = py
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via
¢(x) = (p1(x), p2(x))

foreach x € P, where we note that (p;(x), p2(x)) € A X Bindeed liesin
A X¢ B by the condition

fopi=gops
which gives
f(p1(x)) = g(p2(x))
foreach x € P,sothat (p1(x), p2(x)) € AXc B. O

001A Example 2.1.4.1.2. Here are some examples of pullbacks of sets.

001B 1. Unions via Intersections. Let A, B C X. We have a bijection of sets
ANB — B
|
ANB = AXuup B, |lB

A —— AUB.
LA

Proof. Item 1, Unions via Intersections: Indeed, we have

Axaup B ={(x,y) e AXB|x =y}
= ANB.

This finishes the proof. O
001C Proposition 2.1.4.1.3. Let A, B, C, and X be sets.

001D 1. Functoriality. The assignment (A, B,C,f,g) + A X;c, Bdefinesa
functor
—1 X—y —1: Fun(®P, Sets) — Sets,

where P is the category that looks like this:

In particular, the action on morphisms of —; X_, —1 is given by sending
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a morphism

AXc B

B
a | v
8
A’ Xcr B |—> B’

.

a1l |—c ¢

\ N
b3
¢ N

A/
f/

C/

3!
in Fun(%P, Sets) tothemap £: A xc B— A’ X B’ given by

def

£(a,b) = (¢(a), y(b))

foreach (a,b) € Ax¢ B, whichisthe unique map making the diagram

AXc B

B
\\_| | 'L//
\\ g
; I
A x¢ B ———— B’
.

a1l |—c ¢

\ N
b3
¢ N

A C’

commute.

001E 2. Associativity. Givenadiagram

A B C
NN A
X Y
in Sets, we have isomorphisms of sets

(AXXB)XyCE(AXXB)XB(BXyC) EAXX(BXYC),
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where these pullbacks are built as in the diagrams

(AXXB) Xy C (AXXB)XB (BXyC) AXyx (BXyC)
/- N / N
AXXB AXxB BXyC BXyC
N SN N VRN
A B C, A B C, A B C.
NoA N A NoA N A NoA N A
X Y X Y X Y
001F 3. Unitality. We have isomorphisms of sets
f
A A A X
4 X Xx A=A, 4
! Axy X = A
001G 4. Commutativity. We have an isomorphism of sets
AXx B — B BxxA— A
| -
|g AXy B=BXxx A | f

B — X.

>

001H 5. Annihilation With the Empty Set. We have isomorphisms of sets

0 0
AXx 0 =0, =
(Z)XXAE(D,

X 0

— X.

A

|

—

S

f )
0017 6. Interaction With Products. We have an isomorphism of sets

AXxB — B

AXp B=AXB,
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001K 7. Symmetric Monoidality. Thetriple (Sets, Xx, X) isasymmetricmonoidal
category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits,
?? of 22, with the explicit expression for £ following from the commutativity

of the cube pullback diagram.
Item 2, Associativity: Indeed, we have

(Axx B) Xy C = {((a,b),c) € (Axx B) xC|h(b) = k(c)}
= {((a,b),c) € (AX B) xC|f(a) = g(b)and h(b) = k(c)}
= {(a,(b,c)) € AX (BxC)|f(a) = g(b)and h(b) = k(c)}

= {(a,(bc)) € AX(BxyC)|[f(a) =g(b)}
= AXxx (B xy C)

and
(Axx B) xg (Bxy C) = {((a,b), (¥',c)) € (Axx B)x (Bxy C)|b=1V"}
f(a)=g(b),b =1,
andh(b’) = k(c)
f(a)=g(b),b =",
andh(b’) = k(c)
f(a)=g(b),b =1,
andh(b’) = k(c)
f(a) = g(b)and
h(b') = k(c)
= {(a,(bc)) € Ax (BxC)|f(a) = g(b) and h(b) = k(c)}
= Axx (BxyC),

= {((a,b), (b',¢)) € (AX B)x (BxC)

= {(a, (b,(b',¢c))) e Ax (Bx (BxC))

= {(a, ((b,b),c)) e Ax (Bx B)xC)

= {(a, ((6,0"),c)) € Ax ((Bxp B)xC)

where we have used Item 3 for the isomorphism B X3 B = B.
Item 3, Unitality: Indeed, we have

XxxA={(x,a) e XxXA|f(a) =x},

Axx X = {(a,x) e XX A|f(a) = x},
which are isomorphicto A via the maps (x, a) — aand (a, x) — a.
Item 4, Commutativity: Clear.
Item 5, Annihilation With the Empty Set: Clear.

Item 6, Interaction With Products: Clear.
Item 7, Symmetric Monoidality: Omitted. O

001L 2.1.5 Equalisers

Let Aand B besetsandletf,g: A =3 B be functions.
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Definition 2.1.5.1.1. The equaliserof{ and g is the pair (Eq(f, £),eq(f, g))
consisting of:

- The Limit. The set Eq(f, g) defined by
Eq(f,8) = {a € Alf(a) = g(a)}.
- The Cone. The inclusion map

eq(f,g): Eq(f,g) — A.

Proof. We claim that Eq(f, g) is the categorical equaliser of f and g in Sets.
First we need to check that the relevant equaliser diagram commutes, i.e.
that we have

foeq(f,g) = goeq(f, ),
which indeed holds by the definition of the set Eq(f, g). Next, we prove that
Eq(f, g) satisfies the universal property of the equaliser. Suppose we have a
diagram of the form

Eq(fg) 2, 4

B

E

in Sets. Then there exists a unique map ¢: E — Eq(f, g) making the dia-
gram

Eq(f,g) ——— A B
EN
|

E

commute, being uniquely determined by the condition
eq(f,.g)op=e
via
$(x) = e(x)

foreach x € E, where we note thate(x) € Aindeed liesin Eq(f, g) by the
condition

foe=goe,
which gives
f(e(x)) = g(e(x))
foreachx € E,sothate(x) € Eq(f, g). m]
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001N Proposition 2.1.5.1.2. Let A, B, and C be sets.
001P 1. Associativity. We have isomorphisms of sets’
Eq(f o eq(g, h),g o eq(g, h)) = Eq(f, g h) = Eq(f o eq(f,g), h o eq(f, g)),
=Eq(foeq(g,h),hoeq(gh)) =Eq(goeq(f.g),hceq(f.g))

where Eq(f, g, h) is the limit of the diagram

"Thatis, the following three ways of forming “the” equaliser of (f, g, h) agree:

1. Take the equaliser of (f, g, h), i.e. the limit of the diagram

in Sets.

2. Firsttake the equaliser of f and g, forming a diagram

\ f
Eafg) U AL B
8

and then take the equaliser of the composition

(fg) f
Ea(f. g) g A ? B,

obtaining a subset
Eq(f o eq(f,g), h o eq(f, g)) = Ea(g o eq(f, g), h o eq(f, g))

of Eq(f, g)-
3. Firsttake the equaliser of g and h, forming a diagram

Wh g
Ea(e ) 5 4% 5
h

and then take the equaliser of the composition

n o f
Ea(e ) & AL,
8

obtaining a subset
Eq(f o eq(g, h), g o eq(g, h)) = Eq(f o eq(g, h),h o eq(g, h))

of Eq(g, h).
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in Sets, being explicitly given by
Ea(f,8,h) = {a € Alf(a) = g(a) = h(a)}.
001Q 4. Unitality. We have an isomorphism of sets
Eq(f,f) = A.
001R 5. Commutativity. We have an isomorphism of sets
Eq(f,8) = Ea(g. /).

001S 6. Interaction With Composition. Let

f h
A33B33C
g k

be functions. We have an inclusion of sets

Eq(hofoeq(f,g),kogoeq(f,g) CEq(hof,koy),

whereEq(h o f o eq(f,g), k o g o eq(f, g)) istheequaliserof the com-
position

eq(fg) f_ h
Eq(f,g) A3 B3C
g

Proof. Item1, Associativity: We first prove that Eq(f, g, h) is indeed given by

Eq(f, g h) = {a € A|f(a) = g(a) = h(a)}.

Indeed, suppose we have a diagram of the form

f
Faf,g h) < A =a= B

h

E

in Sets. Then there exists a unique map ¢: E — Eq(f, g, h), uniquely deter-
mined by the condition

eq(f,g)od=e

being necessarily given by

¢(x) = e(x)
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foreach x € E, where we note thate(x) € Aindeed liesin Eq(f, g, h) by the
condition
foe=goe=hoe,

which gives
f(e(x)) = gle(x)) = h(e(x))

foreach x € E,sothate(x) € Eq(f, g, h).
We now check the equalities

Eq(f o eq(g, h),g o eq(g h)) = Eq(f, g h) = Eq(f o eq(f,g), h o eq(f, g)).
Indeed, we have

Eq(f o eq(g h),g o eq(g,h)) = {x € Eq(g h) | [f o eq(g, h)](a) = [g o eqa(g, h)](a)}
= {x € Eq(g,h) |f(a) = g(a)}
= {x € Alf(a) = g(a) and g(a) = h(a)}
= {x € Alf(a) = g(a) = h(a)}
= Eq(f,8,h).

Similarly, we have

Eq(f o eq(f,g), hoea(f,8)) = {x € Eq(f,8) | [f o ea(f,§)1(a) = [h o eq(f, g)](a)}
= {x € Eq(f,8) |f(a) = h(a)}
= {x € Alf(a) = h(a) andf(a) = g(a)}
= {x € Alf(a) = g(a) = h(a)}
= Eq(f, 8 h).

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.
Item 6, Interaction With Composition: Indeed, we have

Eq(hofoeq(f,g),kogoeq(f,g)) = {a € Eq(f,g) | h(f(a)) = k(g(a))}
= {a € Alf(a) = g(a) and h(f(a)) = k(g(a))}.

and
Eq(hof,kog) = {a € A|h(f(a)) = k(g(a))},

and thus there’s an inclusion from Eq(h o f o eq(f, g),k o g o eq(f, g)) to
Eq(hof,ko g). m

2.2 Colimits of Sets

2.2.1 Thelnitial Set

Definition 2.2.1.1.1. The initial set is the pair (Q), {‘A}Aeobj(Sets)) consisting
of:
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- The Limit. The empty set @ of Definition 2.3.1.1.1.
- The Cone. The collection of maps
{ta: 0 — A} scobj(sets)
given by the inclusion maps from 0 to A.

Proof. We claim that 0 is the initial object of Sets. Indeed, suppose we have
adiagram of the form

0 A
in Sets. Then there exists a unique map ¢: @ — A making the diagram
¢
0 RETREL

commute, namely the inclusion map t4. O

001W 2.2.2 Coproducts of Families of Sets

Let {A;};c; be afamily of sets.

001X Definition 2.2.2.1.1. The disjoint union of the family {A;},.; is the pair
(LTies Ai, {inj;};¢;) consisting of:
- The Colimit. The set [ [;<; A; defined by
X € Ai}.

| A d:“{(i,x) € Ix (UAi)

iel iel

- The Cocone. The collection
{inji: A — ]_[ Ai}
i€l iel
of maps given by
inj; (x) £ (i, x)
foreachx € A;andeachi € I.

Proof. We claim that [ [;<; A; is the categorical coproduct of {A;};c; in Sets.
Indeed, suppose we have, foreach i € I, a diagram of the form
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in Sets. Then there exists a unique map ¢: [[;c; Ai — C making the
diagram

commute, being uniquely determined by the condition ¢ o inj; = ¢; for each
i€ lvia
¢((i,x)) = ti(x)
foreach (i,x) € [ ;1 Ai- O
001Y Proposition 2.2.2.1.2. Let {A;};-; be afamily of sets.

0017 1. Functoriality. The assignment {A;};c; — [l;c; Ai definesa functor

LI: Fun(lgisc, Sets) — Sets
iel

where

- Action on Objects. For each (A;);c; € Obj(Fun(lgisc, Sets)), we

have
L]

iel

def
((Adier) = U Ai
iel
- Action on Morphisms. Foreach (A;);cr, (Bi)ie; € Obj(Fun(Igisc, Sets)),
the action on Hom-sets

L

iEI)(Ai)ielr(Bi)iel

of [Liey at ((A);es, (Bi)er) is defined by sending a map
{fi: Ai = Bi}ig

in Nat((A;i);es, (Bi);cs) tothe map of sets

L] L4~

iel iel iel

: Nat((Aiep, (Bi)icy) = Sets(]_[ Al ] Bi)

iel iel

defined by

iel

[U fi} (i,a) ='fi(a)

foreach (i,a) € [1;cs Ai-
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Proof. Item1, Functoriality: This follows from ?? of 22, O

0020 2.2.3 Binary Coproducts

Let A and B be sets.

0021 Definition2.2.3.1.1. The coproduct® of Aand Bisthe pair (A [[ B, {injy, inj5})
consisting of:

- The Colimit. The set A || B defined by
AUBgIJz

ze{AB}
= {(0,a) |a € A} U{(1,b) | b € B}.

- The Cocone. The maps

inj,: A— Al B,
inj,: B— Al B,

given by

inj; (a) = (0, a),
injy (b) = (1,b),

foreacha € Aandeachb € B.

Proof. We claimthat A [ | B is the categorical coproduct of Aand B in Sets.
Indeed, suppose we have a diagram of the form

C
T

injs

in Sets. Then there exists auniquemap ¢: A[[ B — C makingthe diagram

C
LA A ]
/45:3\
|

A——> AllB — B

inj4 injg

8 Further Terminology: Also called the disjoint union of A and B, or the binary disjoint
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commute, being uniquely determined by the conditions

¢ ° injA =ta
¢ oinjp=1p
via
ta(a) ifx=1(0,a),
px)=4"""
tg(b) ifx=(1,b)
foreachx € A[] B. O

0022 Proposition2.2.3.1.2. Let A, B, C,and X be sets.

0023 1. Functoriality. The assignment A, B, (A, B) — A [] B defines functors

A]] —: Sets — Sets,
— ]I B: Sets — Sets,
—1 ]I —2: Sets x Sets — Sets,

where —1 [ —2 is the functor where

- Action on Objects. For each (A, B) € Obj(Sets x Sets), we have

def

[—1 LI —21(A,B) = A1l B.

- Action on Morphisms. For each (A, B), (X,Y) € Obj(Sets), the
action on Hom-sets

]_[(A,B),(X,Y) : Sets(A, X) X Sets(B, Y) — Sets(A LB X1 Y)

of [Tat((A4, B), (X,Y)) is defined by sending (f, g) to the func-

tion
flHg: AIUB—-X]]Y
defined by
def (0,f(a)) ifx=(0,a),
el = {(Lg(b)) = (L),

foreachx € A[] B.

andwhere A [ [ —and — [ ] B are the partial functors of —; [] —2 at
A, B € Obj(Sets).
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2. Associativity. We have an isomorphism of sets

(AOBILIC=ALI(BLIC),
naturalin A, B, C € Obj(Sets).
3. Unitality. We have isomorphisms of sets
AJJO = A
OI]A=A,
naturalin A € Obj(Sets).

4. Commutativity. We have an isomorphism of sets
A[IB = BI] A
naturalin A, B € Obj(Sets).

5. Symmetric Monoidality. Thetriple (Sets, [ [, 0) isasymmetricmonoidal
category.

Proof. Item 1, Functoriality: This follows from 22 of 22.

Item 2, Associativity: Clear.

Item 3, Unitality: Clear.

Item 4, Commutativity: Clear.

Item 5, Symmetric Monoidality: Omitted. O

2.2.4 Pushouts
Let A, B,and C besetsandletf: C — Aandg: C — B be functions.

Definition 2.2.4.1.1. The pushout of Aand B over C alongf and g° is the
pair'® (A [1¢ B, {injy, injy}) consisting of:

- The Colimit. The set A | [ B defined by

def

Allc BEALI B/~c,

where ~¢ istheequivalencerelationon A[ | B generated by (0, (¢)) ~¢

(1,8(c)).

union of Aand B, for emphasis.
9 Further Terminology: Also called the fibre coproduct of Aand B over C alongf and g.
'°Further Notation: Also written A [[ 1,c ¢ B.


https://topological-modular-forms.github.io/the-clowder-project/tag/0024
https://topological-modular-forms.github.io/the-clowder-project/tag/0025
https://topological-modular-forms.github.io/the-clowder-project/tag/0026
https://topological-modular-forms.github.io/the-clowder-project/tag/0027
https://topological-modular-forms.github.io/the-clowder-project/tag/0028
https://topological-modular-forms.github.io/the-clowder-project/tag/0029

2.2. Colimits of Sets 38

- The Cocone. The maps
inj1: A—)AucB,
inj,: B— Al B
given by

inj; (a) £ [(0,a)]
injo(b) = [(1,b)]

foreacha € Aandeachb € B.

Proof. We claim that A [ [ B is the categorical pushout of Aand B over C
withrespectto (f, g) in Sets. First we need to check that the relevant pushout
diagram commutes, i.e. that we have

injo

AllcB—— B
injpof =injy0g, injy |g
A C.

f

Indeed, given ¢ € C, we have

[injy o f1(c) = inj; (f(c))
[(0,f())]
= [(1,8(c))]
= inj2(g(c))

= [inj2 o g] (C),

where [(0,f(c))] = [(1, g(c))] by the definition of the relation ~on A [ | B.
Next, we prove that A [ ¢ B satisfies the universal property of the pushout.
Suppose we have a diagram of the form

P*_K
AUCB «<injz — B

r
1

inj; 8

A
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in Sets. Then there exists a unique map ¢: A [[o B — P making the
diagram
P 12

commute, being uniquely determined by the conditions
¢ oinjy =1,
poinjy =12

via
1o(b) ifx=1[(1,b)]

foreach x € A []. B, where the well-definedness of ¢ is guaranteed by the
equality 11 o f = 19 o g and the definition of the relation ~on A [] B as
follows:

5r) = {tl(a) ifx = [(0,0)],

1. Case1: Suppose we have x = [(0,a)] = [(0,a’)] forsomea,a’ € A.
Then, by Remark 2.2.4.1.2, we have a sequence

0,a) ~ x1 ~ -+~ x, ~ (0,a").

2. Case2: Suppose we have x = [(1,b)] = [(1,b")] forsome b, b’ € B.
Then, by Remark 2.2.4.1.2, we have a sequence

(1,b) ~" x1 ~" -+~ x, ~ (L, 1),

3. Case3: Suppose we have x = [(0,a)] = [(1,b)] forsomea € Aand
b € B. Then, by Remark 2.2.4.1.2, we have a sequence

(0,a) ~" x1 ~ -+~ x, ~ (1,b).

In all these cases, we declare x ~" y iff there exists some ¢ € C such that
x = (0,f(c))and y = (1,g(c))orx = (1,g(c)) and y = (0,f(c)). Then,
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the equality ¢ o f = 12 0 g gives

$([x]) = ([0, f(o)])
= 4(f(0))
=12(g(c))

= ¢([(L,g(e)])
=¢([»D),

withthecasewherex = (1, g(c))andy = (0, f(c)) similarly giving¢([x]) =

¢([y]). Thus,ifx ~" y,then ¢([x]) = ¢([y]). Applying this equality pair-
wise to the sequences

(0! a) ~ X1 ~ e Xn ~' (O’ a,)y

(17 b) NI xl N, e ~’ xn N, (1; b/)’
0,a) ~" x1 ~ -+~ x, ~ (1,b)

gives

¢([(0,a)]) = ¢([(0,a")]),

¢([(Lb)]) =¢([(1,)]),

¢([(0,a)]) = ¢([(L,b)]),
showing ¢ to be well-defined. ]
Remark 2.2.4.1.2. Indetail, by Construction 7.4.2.1.2, the relation ~ of Defi-

nition 2.2.4.1.1 is given by declaring a ~ b iff one of the following conditions
is satisfied:

- We havea,b € Aanda = b;
- We havea,b € Banda = b;

- Thereexistxq,...,x, € A[] Bsuchthata ~" x1 ~" -+ ~" x, ~" b,
where we declare x ~’ y if one of the following conditions is satisfied:

1. Thereexistsc € Csuchthatx = (0,f(c))and y = (1, g(¢)).
2. Thereexistsc € Csuchthatx = (1,g(c))and y = (0,f(c)).

Thatis: we require the following condition to be satisfied:

(%) Thereexistxy,...,x, € A ]| Bsatisfying the following condi-
tions:
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1. There exists ¢y € C satisfying one of the following condi-
tions:
(@) Wehavea =f(cp) andx1 = g(cp).
(b) We havea = g(cg) and x1 = f(co).
2. Foreachl < i < n—1,thereexists¢; € C satisfying one
of the following conditions:
(@) Wehavex; =f(c;) and xi41 = g(c;).
(b) We have x; = g(c;) and xj41 = f(ci).
3. Thereexists ¢, € C satisfying one of the following condi-
tions:
(@) Wehavex, =f(c,)andb = g(cy).
(b) We have x, = g(c,) and b = f(cy).

002B Example 2.2.4.1.3. Here are some examples of pushouts of sets.

002C 1. Wedge Sums of Pointed Sets. The wedge sum of two pointed sets of
Definition 3.3.3.1.1is an example of a pushout of sets.

002D 2. Intersections via Unions. Let A, B C X. We have a bijection of sets

AUB «—— B
r J

A «—— ANB.

AUB%AHAQBB’

Proof. Item 1, Wedge Sums of Pointed Sets: Follows by definition.

Item 2, Intersections via Unions: Indeed, A | [ 4»p B is the quotientof A [[ B
by the equivalence relation obtained by declaring (0,a) ~ (1,b) iffa=b €
A N B,whichisin bijection with A U B via the map with [(0,a)] + aand

[(1,b)] — b. O
002E Proposition2.2.4.1.4. Let A, B, C, and X be sets.

002F 1. Functoriality. The assignment (A, B,C,f,g) — A llsc,, Bdefinesa
functor

—1 -, —1: Fun(®, Sets) — Sets,

where P is the category that looks like this:
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In particular, the action on morphisms of —; [[_, —1 is given by send-
ing a morphism

Allc B B
r ’X
Alle B — B
r
8
oo
Ae——-|——C ¢
\ N
X
¢ N
A/ Cl

|
in Fun(®, Sets) tothemapé: A[[: B =Ny [ B’ given by

£( def ¢(a) ifx =[(0,a)],
x) = .
y(b) ifx=[(1,b)]

foreachx € A [ B, whichis the unique map making the diagram

Allc B B
\\l‘ ’ V\
Al B — B’
r
g
. |
Ae—|——2C 4
\ AN
X
¢ N
A’ c’
f/

commute.

002G 2. Associativity. Given a diagram

A B C
X Y
in Sets, we have isomorphisms of sets

AlxB Uy C=(A1lxB) LUg (BLIyC) =Allx (B1lyO),
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where these pullbacks are built as in the diagrams

(Allx B) Ly C (Allx B) L (B LIy C) Ally (BLyC)

/A\ VAN N

Allx B Allx B BllyC BllyC
A/A\B . / \ e \ / \
\Xﬂﬂkyﬁ \ /"\ / X /'\,/

3. Unitality. We have isomorphisms of sets

A A A X
r X[xA=A r
f Al X = A
4. Commutativity. We have an isomorphism of sets
r r
’ |g AllxB=BllyA ’ :

5. Interaction With Coproducts. We have

Al[B — B
AH@BEAHB,

6. SymmetricMonoidality. Thetriple (Sets, | [ x, X) isasymmetricmonoidal
category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits,
?? of 22, with the explicit expression for £ following from the commutativity
of the cube pushout diagram.

Item 2, Associativity: Omitted.

Item 3, Unitality: Omitted.

Item 4, Commutativity: Clear.

Item 5, Interaction With Coproducts: Clear.

Item 6, Symmetric Monoidality: Omitted. O
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002M 2.2.5 Coequalisers

Let Aand B besetsand letf,g: A =3 B be functions.

002N Definition2.2.5.1.1. The coequaliseroff and g isthe pair (CoEq(f, g), coeq(f, g))
consisting of:

- The Colimit. The set CoEq(f, g) defined by

def

CoEq(f,g) = B/~

where ~ is the equivalence relation on B generated by f (a) ~ g(a).

- The Cocone. The map

coeq(f,g): B — CoEq(f,g)

given by the quotientmap 7: B - B/~ with respect to the equiva-
lence relation generated by f (a) ~ g(a).

Proof. We claim that CoEq(f, g) is the categorical coequaliser of f and g in
Sets. Firstwe need to check that the relevant coequaliser diagram commutes,
i.e. that we have

coeq(f,g) of = coeq(f,g) o g.

Indeed, we have

[coeq(f, g) o f1(a) = [coeq(f, &)1 (f(a))
Zf(a)]
= [g(a)]
= [coeq(f, £)1(g(a))
' [coeq(f, g) © g(a)

foreacha € A. Next, we prove that CoEq(f, g) satisfies the universal prop-
erty of the coequaliser. Suppose we have a diagram of the form

B <=9 cokq(f, g)

A

C

in Sets. Then, since c(f(a)) = c(g(a)) foreacha € A, itfollows from Items 4
3!
and 5 of Proposition7.5.2.1.3 that there exists a unique map CoEq(f, g) — C
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making the diagram

B <=9, cokq(f,g)

A

commute. O

002P Remark2.2.5.1.2. In detail, by Construction 7.4.2.1.2, the relation ~ of Defi-
nition 2.2.5.1.1is given by declaring a ~ b iff one of the following conditions

is satisfied:
- We havea = b;
- There exist x1,...,x, € Bsuchthata ~" x; ~ --- ~" x, ~ b,

where we declare x ~’ y if one of the following conditions is satisfied:

1. Thereexistsz € Asuchthatx = f(z)and y = g(z).
2. Thereexistsz € Asuchthatx = g(z) and y = f(z).

Thatis: we require the following condition to be satisfied:

(%) Thereexistxy,...,x, € Bsatisfying the following conditions:
1. There exists zg € Asatisfying one of the following condi-
tions:
(@) Wehavea = f(zp)and x; = g(zp).
(b) We havea = g(z¢) and x1 = f(z0).
2. Foreach1 <i < n—1,thereexists z; € Asatisfyingone
of the following conditions:
(@) Wehavex; =f(z;)andxi = g(z;).
(b) We have x; = g(z;) and xj41 = f(z;).
3. There exists z, € Asatisfying one of the following condi-
tions:
(@) Wehavex, =f(z,)andb = g(z,).
(b) We have x, = g(z,) and b = f(z,).

002Q Example2.2.5.1.3. Here are some examples of coequalisers of sets.
002R 1. Quotients by Equivalence Relations. Let R be an equivalence relation on

aset X. We have a bijection of sets

pr
X/~g = CoEq[R = X x X 33 X|.

pra
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Proof. Item1, Quotients by Equivalence Relations: See [Pro24ad]. O
002S Proposition2.2.5.1.4. Let A, B, and C be sets.
002T 1. Associativity. We have isomorphisms of sets"

Cokq(coeq(f, g) o f,coeq(f, g) o h) = CoEq(f, g, h) = CoEq(coeq(g, h) o f, coeq(g, h) o g),

=CoEq(coeq(f,g) og,coeq(f,g) oh) =CoEq(coeq(g,h) of coeq(g,h)oh)

where CoEq(f, g, h) is the colimit of the diagram

"That s, the following three ways of forming “the” coequaliser of (f, g, h) agree:

1. Take the coequaliser of (f, g, h), i.e. the colimit of the diagram

A —8-> B

—_—

in Sets.

2. First take the coequaliser of f and g, forming a diagram

f ,
45 B Corq(f,g)
8

and then take the coequaliser of the composition

f \
A3 B weifo) CoEq(f, g),
h

obtaining a quotient
CoEq(coeq(f, g) o f, coeq(f, g) o h) = CoEq(coeq(f, g) o g coeq(f, g) o h)

of CoEq(f, g)
3. Firsttake the coequaliser of g and h, forming a diagram

8 h
A2 B Corqre, b
h

and then take the coequaliser of the composition

f h
=3B coeq_gg ) CoEq(g, h),
g

obtaining a quotient

CoEq(coeq(g, h) o f, coeq(g, h) o g) = CoEq(coeq(g, h) o f,coeq(g, h) o h)
of CoEq(g, h).
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in Sets.

002U 4. Unitality. We have an isomorphism of sets
CoEq(f,f) = B.
002V 5. Commutativity. We have an isomorphism of sets
CoEq(f, g) = CoEq(g, f).

002W 6. Interaction With Composition. Let

be functions. We have a surjection
CoEq(hof,k o g) - CoEq(coeq(h,k) o hof,coeq(h,k)okog)

exhibiting CoEq(coeq(h, k) o h o f,coeq(h, k) o k o g) as a quotient
of CoEq(h o f, k o g) by the relation generated by declaring h(y) ~
k(y) foreach y € B.

Proof. Item 1, Associativity: Omitted.

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.

Item 6, Interaction With Composition: Omitted. |

002x 2.3 Operations With Sets

002Y 2.3.1 TheEmpty Set

002Z Definition 2.3.1.1.1. The empty set is the set @ defined by

def

D={xeX|x #x},

where A is the set in the set existence axiom, 22 of 22.

0030 2.3.2 Singleton Sets
Let X be a set.

0031 Definition 2.3.2.1.1. The singleton set containing X is the set { X} defined
by

def

{X} ={X, X},
where {X, X} is the pairing of X with itself (Definition 2.3.3.1.1).
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0032 2.3.3 Pairings of Sets

Let X and Y be sets.
0033 Definition 2.3.3.1.1. The pairingof X and Y is the set {X, Y} defined by
def

{X,)Y}={xe€Alx=Xorx =Y},

where A is the set in the axiom of pairing, 2? of 22.

0034 2.3.4 Ordered Pairs

Let A and B be sets.

0035 Definition 2.3.4.1.1. The ordered pairassociatedto Aand B is the set (A, B)
defined by

def

(A B) = {{A},{A B}}.
0036 Proposition 2.3.4.1.2. Let Aand B be sets.

0037 1. Uniqueness. Let A, B, C,and D be sets. The following conditions are

equivalent:
0038 (@) Wehave (A, B) = (C,D).
0039 (b) Wehave A =CandB = D.
Proof. Item 1, Uniqueness: See [Cie97, Theorem 1.2.3]. m]

003A 2.3.5 Setsof Maps

Let A and B be sets.

003B Definition2.3.5.1.1. Thesetofmapsfrom Ato B isthe set Homgets (A, B)™
whose elements are the functions from A to B.

003C Proposition 2.3.5.1.2. Let Aand B be sets.

003D 1. Functoriality. The assignments X,Y, (X,Y) — Homges(X,Y) de-
fine functors

Homgets (X, —): Sets — Sets,
Homsets(—, Y): Sets®? — Sets,

Homsets(—1, —2) : Sets® x Sets — Sets.

Proof. Item1, Functoriality: This follows from [tems 2 and 5 of Proposition 8.1.6.1.2.
O

"2 Further Terminology: Also called the Hom set from A to B.
"3 Further Notation: Also written Sets(A, B).
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2.3.6 Unions of Families

Let {A;};c; be a family of sets.

Definition 2.3.6.1.1. The union of the family {A;},.; isthe set | J;c; A; de-
fined by

U AE {x € F|thereexistssomei € I suchthatx € A;},
iel

where Fis the set in the axiom of union, 22 of 22.

2.3.7 BinaryUnions

Let Aand B be sets.
Definition 2.3.7.1.1. The union™ of Aand B is the set A U B defined by
AUBE [ ] =
ze{A,B}

Proposition 2.3.7.1.2. Let X be a set.
1. Functoriality. The assignmentsU, V, (U, V) — U UV define functors
Uu-: (P(X),0) = (P(X),C),
—uUV: (P(X),c) — (P(X),0),
—1U—2: (P(X) X P(X),c x ) = (P(X),0),
where —; U —g is the functor where
- Action on Objects. Foreach (U, V) € P(X) x P(X), we have
[-1U—](U,V)EUUV.
- Action on Morphisms. For each pair of morphisms
w: U= U,
w: VeV
of P(X) x P(X), theimage
wUy: UUV U UV’
of (1y, tv) by Uis the inclusion

vuvcU uv’

i.e. where we have

4 Further Terminology: Also called the binary union of A and B, for emphasis.
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(x) fUcU’andV c V', thenUUV cU UV".

and where U U — and — U V are the partial functors of —; U — at
UV eP(X).

003L 2. Via Intersections and Symmetric Differences. We have an equality of sets
vuv=UaVvV)yalUnV)
foreach X € Obj(Sets) andeach U,V € P(X).
003M 3. Associativity. We have an equality of sets
UuvV)yuw=Uu((Vuw)
foreach X € Obj(Sets) andeachU,V,W € P(X).
003N 4. Unitality. We have equalities of sets

vub=U,
ouU=U

foreach X € Obj(Sets) andeachU € P(X).

003P 5. Commutativity. We have an equality of sets
vuv=vVuu

foreach X € Obj(Sets) andeach U,V € P(X).

003Q 6. Idempotency. We have an equality of sets
vuU=U

foreach X € Obj(Sets) andeachU € P(X).

003R 7. Distributivity Over Intersections. We have equalities of sets

Uu(VAW)=UuV)n(UUW),
(UNV)UW =(UUW)N(VUW)

foreach X € Obj(Sets) andeachU,V,W € P(X).
003S 8. Interaction With Characteristic Functions . We have
yuuv = max(yu, xv)

foreach X € Obj(Sets) andeach U,V € P(X).
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9. Interaction With Characteristic Functions Il. We have

Xuuv = Yu t+ Xv — Yunv

foreach X € Obj(Sets) andeach U,V € P(X).

10. Interaction With Powersets and Semirings. The quintuple (P(X),U,n, 0, X)

is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Pro24ar].

Item 2, Via Intersections and Symmetric Differences: See [Proz24bc].

Item 3, Associativity: See [Proz4be].

Item 4, Unitality: This follows from [Pro24bh] and Item 5.

Item 5, Commutativity: See [Pro24bf].

Item 6, Idempotency: See [Pro24aq].

Item 7, Distributivity Over Intersections: See [Proz4bd].

Item 8, Interaction With Characteristic Functions I: See [Pro24Kk].

Item 9, Interaction With Characteristic Functions II: See [Pro24Kk].

Item 10, Interaction With Powersets and Semirings: This follows from Items 3
to 6 and Items 3 to5,7and 8 of Proposition 2.3.9.1.2. O

2.3.8 Intersections of Families

Let F be a family of sets.

Definition 2.3.8.1.1. Theintersectionofafamily F ofsetsistheset(\xc r X
defined by

f]xg{zeLJX

XeF XeF

foreach X € F,wehavez € X}.

2.3.9 Binary Intersections

Let X and Y be sets.

Definition 2.3.9.1.1. The intersection™ of X and Y is the set X N Y defined
by
def

Xny¥ f]z
ze{X,Y}

Proposition 2.3.9.1.2. Let X be aset.

15 Further Terminology: Also called the binary intersection of X and Y, for emphasis.
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0040 1. Functoriality. The assignmentsU, V, (U, V) — U NV define functors

Un-:(P(X),c) — (PX),0),
-NV: (P(X),c) - (P(X),0),
—1 N =2: (P(X) X P(X),c x ) = (P(X),0),
where —1 N —9 is the functor where
- Action on Objects. Foreach (U, V) € P(X) x P(X), we have

def

[—1 N —2](U, V) =UnV.
- Action on Morphisms. For each pair of morphisms

w: U= U,

w: VeV
of P(X) x P(X), theimage
wNiy:UNV UMV
of (ty, ty) by Nis the inclusion
unvctunVv

i.e. where we have

(¥) fUcU andV c V', thenUNV cU' NV’

and where U N —and — N V are the partial functors of —; N — at
UV eP(X).

0041 2. Adjointness. We have adjunctions

Un-
=

(UN=4Hompx)(U,-)): PX) + PX),
Hom 03, (U-)
-nV
(— NV 4 Homp(X)(V, —)) : P(X)S P(X)’

Homp(x) (V,—)

where

Homp(x)(—l,—z)t P(X)Op X P(X) - P(X)
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is the bifunctor defined by'®
Homypx) (U, V) £ (X \U)UV
witnessed by bijections

Homp(X)(U NV, W) = Homp(X)(U, Homp(x)(V, W)),
Homp x)(U NV, W) = Hompx) (V, Hompx) (U, W)),

natural inU,V,W € P(X), i.e. where:

(@) The following conditions are equivalent:
i. WehaveUNV CcW.
ii. WehaveU C Hompx)(V,W).
iii. WehaveU c (X\V)UW.
(b) The following conditions are equivalent:
i. WehaveVNU cCcW.
ii. WehaveV C Hompx) (U, W).
iii. WehaveV c (X\U)UW.

3. Associativity. We have an equality of sets
UnvV)ynw=Un((Vnw)
foreach X € Obj(Sets) andeachU,V,W € P(X).
4. Unitality. Let X beasetandletU € P(X). We have equalities of sets

XNnU=U,
UnX=U

foreach X € Obj(Sets) andeachU € P(X).
5. Commutativity. We have an equality of sets
Uunv=vnU
foreach X € Obj(Sets) andeach U,V € P(X).
6. Idempotency. We have an equality of sets
UnU=U

foreach X € Obj(Sets) andeachU € P(X).

"6For intuition regarding the expression defining Homp x) (U, V), see Remark23.9.1.3.
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7. Distributivity Over Unions. We have equalities of sets

Un(Vuw)=UnV)uUnWw)
UuvV)ynw=UnwW)u((Vnw)

foreach X € Obj(Sets) andeachU,V,W € P(X).
8. Annihilation With the Empty Set. We have an equality of sets

ONX=0,
XNO0=0

foreach X € Obj(Sets) andeachU € P(X).

9. Interaction With Characteristic Functions . We have

XUnv = YUV
foreach X € Obj(Sets) andeach U,V € P(X).

10. Interaction With Characteristic Functions . We have

xunv = min(yu, xv)
foreach X € Obj(Sets) andeach U,V € P(X).

1. Interaction With Powersets and Monoids With Zero. The quadruple ((P(X), 0), N, X)
is a commutative monoid with zero.

12. Interaction With Powersets and Semirings. The quintuple (P(X), U, N, 0, X)
is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Proz24ap].

Item 2, Adjointness: See [MSE 267469].

Item 3, Associativity: See [Pro24v].

Item 4, Unitality: This follows from [Pro24z] and Item 5.

Item 5, Commutativity: See [Pro24w].

Item 6, ldempotency: See [Pro24a0].

Item 7, Distributivity Over Unions: See [Proz4an].

Item 8, Annihilation With the Empty Set: This follows from [Pro24x] and Item 5.
Item 9, Interaction With Characteristic Functions I: See [Pro24h].

Item 10, Interaction With Characteristic Functions |1: See [Pro24h].

Item 11, Interaction With Powersets and Monoids With Zero: This follows from
Items3to5and 8.

Item 12, Interaction With Powersets and Semirings: This follows from Items 3
to6and Items3tos,7and 8 of Proposition 2.3.9.1.2. m]
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Remark 2.3.9.1.3. Since intersections are the products in P(X) (Item 1 of
Proposition 2.4.3.1.3), the left adjoint Homp x) (U, V) may be thought of as
a function type [U, V1.

Then, under the Curry—Howard correspondence, the function type [U, V]
corresponds to implicationU = V, whichislogically equivalent to the
statement—=U V V. Thisinturn correspondstothesetUVV = (X \ U)UV.
2.3.10 Differences

Let X and Y be sets.

Definition 2.3.10.1.1. The difference of X and Y istheset X \ Y defined by
X\YE{aeX|a¢ Y}
Proposition 2.3.10.1.2. Let X be aset.

1. Functoriality. The assignmentsU, V, (U, V) — U NV define functors

U\-: (P(X),2) = (P(X),0),
-\ V: (P(X),0) = (P(X),0),
-1\ —2: (P(X) xP(X),c x2) = (P(X),0),

where —1 \ —2 is the functor where

- Action on Objects. Foreach (U, V) € P(X) x P(X), we have
[-1\ =2l (U,V) U\ V.

- Action on Morphisms. For each pair of morphisms

th: A B,
w:U—>V

of P(X) x P(X), theimage
w\twy: A\V — B\U
of (ty, tv) by \ is the inclusion
A\V cB\U

i.e. where we have
(x) fAc BandU c V,thenA\V c B\ U.
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and where U \ —and — \ V are the partial functors of —; \ —3 at
U,V e P(X).

2. De Morgan’s Laws. We have equalities of sets

X\ (UUV)=X\U)n(X\V),
X\(UNV)=(X\U)U(X\V)

foreach X € Obj(Sets) andeach U,V € P(X).
3. Interaction With Unions |. We have equalities of sets
UN(VUW)=U\V)n(U\W)
foreach X € Obj(Sets) andeachU,V,W € P(X).
4. Interaction With Unions Il. We have equalities of sets
U\VY)UW =(UUW)\ (V\W)
foreach X € Obj(Sets) andeachU,V,W € P(X).
5. Interaction With Unions I1]. We have equalities of sets

U\N\(VUW) = (UUW)\ (VUW)
=U\V)\wW
=U\W)\V

foreach X € Obj(Sets) andeachU,V,W € P(X).
6. Interaction With Unions IV. We have equalities of sets
UUV\W=U\W)u (VW)
foreach X € Obj(Sets) andeachU,V,W € P(X).
7. Interaction With Intersections. \We have equalities of sets

U\V)NW=UNW)\V
=UN(W\V)

foreach X € Obj(Sets) andeachU,V, W € P(X).
8. Interaction With Complements. We have an equality of sets
U\v=UnVe

foreach X € Obj(Sets) andeach U,V € P(X).
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9.

10.

11.

12.

13.

14.

15.

Interaction With Symmetric Differences. We have an equality of sets
u\v=U0aUnNYV)
foreach X € Obj(Sets) andeach U,V € P(X).
Triple Differences. We have
UN(VAW)=UnW)u(U\V)
foreach X € Obj(Sets) andeachU,V,W € P(X).
Left Annihilation. We have
0\U=0
foreach X € Obj(Sets) andeachU € P(X).
Right Unitality. We have
U\0=U
foreach X € Obj(Sets) andeachU € P(X).
Invertibility. We have
u\u=0
foreach X € Obj(Sets) andeachU € P(X).
Interaction With Containment. The following conditions are equivalent:

(@) WehaveV\U c W.
(b) WehaveV\W c U.

Interaction With Characteristic Functions. We have

XU\V = XU — Yunv

foreach X € Obj(Sets) andeach U,V € P(X).

Proof. Item1, Functoriality: See [Pro24ah] and [Proz24al].
Item 2, De Morgan’s Laws: See [Pro24p].

Item 3, Interaction With Unions I: See [Pro24q].

[tem 4, Interaction With Unions II: Omitted.

Item 5, Interaction With Unions Ill: See [Pro24am].

Item 6, Interaction With Unions IV: See [Pro24ag].
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Item 7, Interaction With Intersections: See [Pro24y].

Item 8, Interaction With Complements: See [Proz4ae].

Item 9, Interaction With Symmetric Differences: See [Pro24af].

Item 10, Triple Differences: See [Pro24ak].

Item 11, Left Annihilation: Clear.

Item 12, Right Unitality: See [Pro24ai].

Item 13, Invertibility: See [Pro24aj].

[tem 14, Interaction With Containment: Omitted.

Item 15, Interaction With Characteristic Functions: See [Pro24i]. O

2.3.11  Complements
Let X beasetandletU € P(X).
Definition 2.3.11.1.1. The complementofU is the set U defined by
USEX\U
LlaeX|agU).
Proposition 2.3.11.1.2. Let X be a set.
1. Functoriality. The assignment U +— U° defines a functor
(=) P(X)*P - P(X),
where
- Action on Objects. Foreach U € P(X), we have
(W) =Ue.
- Action on Morphisms. For each morphism 1y: U — V of P(X),
the image
iy Ve = U©
of iy by (=) is the inclusion
Ve cU*
i.e. where we have
(%) IfU c V,thenV*© c U€.
2. De Morgan’s Laws. We have equalities of sets
Uuv) =UnVs
Unw)c=U“UV*©
foreach X € Obj(Sets) andeach U,V € P(X).
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0054 3. Involutority. We have
U9 =U
foreach X € Obj(Sets) andeachU € P(X).

0055 4. Interaction With Characteristic Functions. We have
xue=1-yu
foreach X € Obj(Sets) andeachU € P(X).

Proof. Item1, Functoriality: This follows from Item 1 of Proposition 2.3.10.1.2.
Item 2, De Morgan’s Laws: See [Pro24p].

Item 3, Involutority: See [Pro24l].

Item 4, Interaction With Characteristic Functions: Clear. ]

0056 2.3.12 Symmetric Differences

Let Aand B be sets.

0057 Definition 2.3.12.1.1. The symmetric difference of Aand Bistheset A A B
defined by

def

AAB=(A\B)U(B\A).
0058 Proposition2.3.12.1.2. Let X beaset.

0059 1. Lackof Functoriality. The assignment (U, V) — U AV need not define
functors

Ua-: (P(X),c)— (P(X),c),
-AV: (P(X),C) — (P(X),0),
—1A—: (P(X)XxP(X),cxc)— (P(X),Q).

Q05A 2. Via Unions and Intersections. We have'’
UaV=UuV)\(UNYV)
foreach X € Obj(Sets) andeach U,V € P(X).

Q-0

vuav vuv unv

7 llustration:
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3. Associativity. We have'®
UaV)YaAw=UA(VaAW)
foreach X € Obj(Sets) andeachU,V,W € P(X).
4. Commutativity. We have
UaV=VaAU
foreach X € Obj(Sets) andeach U,V € P(X).
5. Unitality. We have

uanbd=U,
OAU=U

foreach X € Obj(Sets) andeach U € P(X).
6. Invertibility. We have
UnU=0
foreach X € Obj(Sets) andeachU € P(X).
7. Interaction With Unions. \We have
UaV)yu(VaT)=(UuVumM\UNVNW)
foreach X € Obj(Sets) andeachU,V,W € P(X).
8. Interaction With Complements|. We have
UaU =X
foreach X € Obj(Sets) andeachU € P(X).
9. Interaction With Complements Il. We have

UaX=US,
XAU=U"

foreach X € Obj(Sets) andeachU € P(X).

8 llustration:

0.9-9-¢.9

uav w uavaw U Vaw
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10.

12.

13.

14.

15.

Interaction With Complements I1l. We have
ucave=u0navV
foreach X € Obj(Sets) andeach U,V € P(X).

. “Transitivity”. We have

Uav)ya(Vaw)y=uaw
foreach X € Obj(Sets) andeachU,V, W € P(X).
The Triangle Inequality for Symmetric Differences. \We have
UaWcUaVuVvVaWw
foreach X € Obj(Sets) andeachU,V, W € P(X).
Distributivity Over Intersections. We have

Un(Vaw)y=UnV)aUnWw),
UaAaV) NnW=UnW)a(VnWw)

foreach X € Obj(Sets) andeachU,V, W € P(X).
Interaction With Characteristic Functions. \We have
xuav = yu+ v = 2xunv
and thus, in particular, we have
yuav = qu+yv mod 2
foreach X € Obj(Sets) andeach U,V € P(X).
Bijectivity. Given A, B ¢ P(X), the maps

AA—:P(X) = P(X),
-AB:P(X) = P(X)
are bijections with inverses given by
(Aa-)'=-u(An-),
(-AB)lt=-U(BN-).
Moreover, the map

Cr Ca(AnB)

is a bijection of P(X) onto itself sending A to Band B to A.
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005Q  16. Interaction With Powersets and Groups. Let X be a set.

Q05R (@ Thequadruple (P(X), 4,0,idp(x)) is an abelian group. ™
(b) Everyelementof P(X) hasorder 2 with respect to A, and thus
005S P(X) is a Boolean group (i.e. an abelian 2-group).

005T 4. Interaction With Powersets and Vector Spaces I. The pair (P (X), ap(x))
consisting of
- The group P(X) of 22,
- Themap ap(x): Fo X P(X) — P(X) defined by
def

0-U=0,

def

1-U=U;
is an Fy-vector space.

005U 5. Interaction With Powersets and Vector Spaces I1. If X is finite, then:

(@) Thesetof singletons sets on the elements of X forms a basis for
the Fa-vector space (P (X), ap(x)) of Item 4.

(b) We have
dim(P (X)) = #P(X).

005V 6. Interaction With Powersetsand Rings. The quintuple (P(X), A, N, 0, X)
is a commutative ring.?°

¥Here are some examples:

1. When X = (), we have anisomorphism of groups between PP (0) and the trivial group:
(P©@),5,0,idpq)) = pt.
2. When X = pt, we have an isomorphism of groups between P (pt) and Za:
(P(pt), A, 0, idp(pt)) = Zjo.

3. When X = {0, 1}, we have an isomorphism of groups between P ({0, 1}) and Z 5 x
Zjo:

(PU0.11), 8,0,idp((01))) = Z)2 X 22

ZO@Waming: The analogous statement replacing intersections by unions (i.e. that the
quintuple (P(X), A, U, 0, X) isaring) is false, however. See [Pro24ba] for a proof.
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Proof. Item1, Lack of Functoriality: Omitted.

Item 2, Via Unions and Intersections: See [Pro24tr].

Item 3, Associativity: See [Proz4as].

Item 4, Commutativity: See [Pro24at].

Item 5, Unitality: This follows from Item 4 and [Proz4ax].
Item 6, Invertibility: See [Proz4az].

Item 7, Interaction With Unions: See [Pro24bg].

Item 8, Interaction With Complements |: See [Proz4aw].
Item 9, Interaction With Complements |1: This follows from Item 4 and [Pro24bb].
Item 10, Interaction With Complements I1l: See [Proz4au].
Item 11, “Transitivity”: We have

UaV)YA(VaWw)y=Ua((Va(VaWw)) (by Item 3)
=UA((VAV)AW) (by Item 3)
=UA(DAW) (by Item 6)
=UAW (by Item 5)

Item 12, The Triangle Inequality for Symmetric Differences: This follows from
Items 2 and 11.

Item 13, Distributivity Over Intersections: See [Proz24u].

Item 14, Interaction With Characteristic Functions: See [Pro24j].

Item 15, Bijectivity: Clear.

Item 16, Interaction With Powersets and Groups: |tem 16a follows from?' Items 3
to 6, while Item 3b follows from Item 6.

Item 4, Interaction With Powersets and Vector Spaces I: Clear.

Item 5, Interaction With Powersets and Vector Spaces |1: Omitted.

Item 6, Interaction With Powersets and Rings: This follows from Items 8 and 11
of Proposition 2.3.9.1.2 and Items 13 and 16.% O

2.4 Powersets

2.4.1 Characteristic Functions

Let X be a set.

Definition 2.4.1.1.1. LetU c X andletx € X.

END TEXTDBEND
21Reference: [Pro24av].
22Reference: [Proz4ay].
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0057 1. The characteristic function of U % is the function®*
qu: X — {t,f}
defined by
( )def true ifx € U,
x) =
v false ifx ¢ U
foreachx € X.
0060 2. The characteristic function of x is the function 2
ret X — {t,f}
defined by
def
Xx = X{x}
i.e. by
( )d_ef true ifx = Y,
A= false ifx #y
foreachy € X.
0061 3. The characteristic relation on X 2 is the relation?’

xx(—1,—2): X X X — {t,f}
on X defined by?®

wf |true ifx =y,

x,y) =
1x(x) false ifx #y

foreachx,y € X.

0062 4. The characteristicembedding ?° of X into P (X) is the function

X X = PX)

ZFurther Terminology: Also called the indicator function of U.

24 Further Notation: Also written yx (U, =) or yx (=, U).

5 Further Notation: Also written y*, yx (x,—),or yx(—, x).

26 Fyrther Terminology: Also called the identity relation on X.

7 Further Notation: Also written y_3, or ~iq in the context of relations.

28 Asa subset of X x X, the relation yx corresponds to the diagonal Ay ¢ X x X of X.
22The name “characteristic embedding” comes from the fact that there is an analogue of
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defined by
def
X(—)(x) = xx

foreachx € X.

Remark 2.4.1.1.2. The definitions in Definition 2.4.1.1.1 are decategorifica-
tions of co/presheaves, representable co/presheaves, Hom profunctors, and
the Yoneda embedding:3°

1. Afunction
f: X — {tf}

is a decategorification of a presheaf
F: C°% — Sets,

with the characteristic functions yy of the subsets of X being the
primordial examples (and, in fact, all examples) of these.

2. The characteristic function

ret X — {t,f}

fully faithfulness for y(_y: given a set X, we have

Homp (x) (2x, 2y) = xx (%, 3),

foreachx, y € X.
39These statements can be made precise by using the embeddings

(=)disc : Sets — Cats,
(“)disc : {t f}disc = Sets

of sets into categories and of classical truth values into sets.
For instance, in this approach the characteristic function

yo: X — {tf}
of an element x of X, defined by

def | true ifx =y,
1 () = {false ifx £y

foreach y € X, is recovered as the representable presheaf
Hodeisc (= x): Xgisc — Sets

of the corresponding object x of Xy;sc, defined on objects by

def | Pt ifx:y,
Homxy, (3, %) = {0 fx %y

foreach y € Obj(Xyisc)-
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ofanelement x of X isa decategorification of the representable presheaf
hx: C°° — Sets
of an object x of a category C.
0066 3. The characteristic relation
xx(=1,—2): X XX — {t,f}
of X is a decategorification of the Hom profunctor
Homg(—1,—2): C°? X C — Sets
of a category C.
0067 4. The characteristicembedding
Y- X = P(X)
of X into P(X) is a decategorification of the Yoneda embedding
& : C°? — PSh(C)
of a category C into PSh(C).
0068 5. Thereisalso a direct parallel between unions and colimits:

- Anelement of P(X) is a union of elements of X, viewed as one-
pointsubsets {x} € P(A).

- An object of PSh(QC) is a colimit of objects of C, viewed as rep-
resentable presheaves hy € Obj(PSh(C)).

0069 Proposition2.4.1.1.3. Let X beaset.

Q06A 1. The Inclusion of Characteristic Relations Associated to a Function. Let
f: A — Bbeafunction. We have an inclusion®'

AxAﬁ)BxB

wofxpem N7/,
{t,f}.

3This is the 0-categorical version of Definition 8.4.4.1.1.
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006B 2. Interaction With Unions |. We have
xuuv = max(yu, xv)
foreach X € Obj(Sets) andeach U,V € P(X).
006C 3. Interaction With Unions Il. We have
XUUV = XU+ Xv — Yunv
foreach X € Obj(Sets) andeach U,V € P(X).
006D 4. Interaction With Intersections |. We have
Xunv = Yuxv
foreach X € Obj(Sets) andeach U,V € P(X).
006E 5. Interaction With Intersections I. We have
xunv = min(yu, xv)
foreach X € Obj(Sets) andeach U,V € P(X).
006F 6. Interaction With Differences. We have
XU\V = XU — Xunv
foreach X € Obj(Sets) andeach U,V € P(X).
006G 7. Interaction With Complements. We have
xue=1-yu
foreach X € Obj(Sets) andeach U € P(X).
006H 8. Interaction With Symmetric Differences. \We have
Xuav = U+ xv = 2unv
and thus, in particular, we have
xUav = yu+yv mod 2

foreach X € Obj(Sets) andeach U,V € P(X).
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9. Interaction Between the Characteristic Embedding and Morphisms. Let
f: X — Y beamap of sets. The diagram

X
fio xx = xx of, XX| |)(X’

P(X) - P(X").

Xl

commutes.

Proof. Item 1, The Inclusion of Characteristic Relations Associated to a Function:
The inclusion yg(f(a),f(b)) € ya(a,b) is equivalent to the statement “if
a =b,thenf(a) = f(b)", which is true.

Item 2, Interaction With Unions I: This is a repetition of Item 8 of Proposi-
tion 2.3.7.1.2 and is proved there.

Item 3, Interaction With Unions II: This is a repetition of Item 9 of Proposi-
tion 2.3.7.1.2 and is proved there.

Item 4, Interaction With Intersections I: This is a repetition of Item 9 of Proposi-
tion 2.3.9.1.2 and is proved there.

Item 5, Interaction With Intersections |1: This is a repetition of Item 10 of Propo-
sition 2.3.9.1.2 and is proved there.

Item 6, Interaction With Differences: This is a repetition of Item 15 of Proposi-
tion 2.3.10.1.2 and is proved there.

Item 7, Interaction With Complements: This is a repetition of Item 4 of Proposi-
tion 2.3.11.1.2 and is proved there.

Item 8, Interaction With Symmetric Differences: This is a repetition of Item 14 of
Proposition 2.3.12.1.2 and is proved there.

Item 9, Interaction Between the Characteristic Embedding and Morphisms: Indeed,
we have

[f 0 xx1(x) = fulrx (x))
2f.({x))

= {f(x)}

= 1 (F(x))

def

= [xx o f1(x),

foreach x € X, showing the desired equality. O

006K 2.4.2 The YonedaLemma for Sets

Let X beasetandletU c X beasubsetof X.
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Proposition 2.4.2.1.1. We have

xrx) (e xu) = yu(x)

foreach x € X, giving an equality of functions

1P (xoy 2u) = v
Proof. Clear. O

Corollary 2.4.2.1.2. The characteristicembedding is fully faithful, i.e., we
have

xro) (Xo 2y) = xx(x,9)

foreachx,y € X.

Proof. This follows from Proposition 2.4.2.1.1. O

2.4.3 Powersets

Let X be aset.

Definition 2.4.3.1.1. The powerset of X is the set P(X) defined by

def

P(X)={UeP|UcX}
where P is the set in the axiom of powerset, 2? of 22.

Remark2.4.3.1.2. The powersetofasetisadecategorification of the category
of presheaves of a category: while*?

- The powerset of a set X is equivalently (Items 1 and 2 of Proposi-
tion 2.4.3.1.6) the set

Sets(X, {t,f})

of functions from X to the set {t, f} of classical truth values.

32This parallel is based on the following comparison:

- Acategory is enriched over the category
def
Sets = Catsg

of sets (i.e. “O-categories”), with presheaves taking values on it.

- Asetis enriched over the set

{t,f} < Cats_q
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- The category of presheaves on a category C is the category
Fun(C®P, Sets)
of functors from C°P to the category Sets of sets.

006R Proposition 2.4.3.1.3. Let X beaset.

006S 1. Co/Completeness. The (posetal) category (associated to) (P(X), C) is
complete and cocomplete:

(@) Products. The products in P(X) are given by intersection of sub-
sets.

(b) Coproducts. The coproducts in P (X) are given by union of sub-
sets.

(c) Co/Equalisers. Being a posetal category, P(X) only has at most
one morphisms between any two objects, so co/equalisers are
trivial.

006T 2. Cartesian Closedness. The category P(X) is Cartesian closed with in-
ternal Hom

Homp (x)(—1,—2): P(X)°® X P(X) — P(X)
given by
Homypx) (U, V) £ (X \U)UV
foreach U,V € Obj(P(X)).

Proof. Item1, Co/Completeness: Clear.
Item 2, Cartesian Closedness: This follows from Item 2 of Proposition 2.3.9.1.2.
O

006U Proposition 2.4.3.1.4. Let X be a set.

006V 1. Functoriality I. The assignment X +— P(X) defines a functor
P.: Sets — Sets,

where

of classical truth values (i.e. “(—1)-categories”), with characteristic functions taking
valuesonit.

3BFor intuition regarding the expression defining Homp x) (U, V), see Remark23.9.1.3.
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- Action on Objects. For each A € Obj(Sets), we have

def

P.(A) = P(A).

- Action on Morphisms. For each A, B € Obj(Sets), the action on
morphisms

P.iap: Sets(A, B) — Sets(P(A), P(B))

of P, at (A, B) is the map defined by by sending a map of sets
f: A— Btothemap

P.(f): P(A) — P(B)
defined by

def

P.(f) =t

asin Definition 2.4.4.1.1.
006W 2. Functoriality Il. The assignment X +— P (X) defines a functor
P~1: Sets®P — Sets,
where
- Action on Objects. For each A € Obj(Sets), we have

def

PL(A) EP(A).

- Action on Morphisms. For each A, B € Obj(Sets), the action on
morphisms

Pp: Sets(A B) — Sets(P(B), P(A))

of P~1at (A, B) is the map defined by by sending a map of sets
f: A— Btothemap

PH(f): P(B) — P(A)
defined by
PHHEST,
as in Definition 2.4.5.1.1.
006X 3. Functoriality Ill. The assignment X +— P(X) defines a functor
Py : Sets — Sets,

where
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- Action on Objects. For each A € Obj(Sets), we have

def

Pi(A) =P(A).

- Action on Morphisms. For each A, B € Obj(Sets), the action on
morphisms

Piiap: Sets(A, B) — Sets(P(A), P(B))

of Py at (A, B) is the map defined by by sending a map of sets
f: A— Btothemap

Pi(f): P(A) = P(B)

defined by

def

Pi(f) = h,

as in Definition 2.4.6.1.1.

006Y 4. Adjointness |. We have an adjunction

7)71
/=
(P‘1—|P_1’°p): Sets® 1 Sets,
~—
P_l’OP

witnessed by a bijection

Sets®®(P(A), B) = Sets(A, P(B)),

—————

i Sets(B,P(A))

natural in A € Obj(Sets) and B € Obj(Sets°P).
0067 5. Adjointness Il. We have an adjunction

Gr
(Gr4Py): Sets/? Rel,
—~—
P*

witnessed by a bijection of sets
Rel(Gr(A), B) = Sets(A, P(B))

natural in A € Obj(Sets) and B € Obj(Rel), where Cr is the graph
functor of Item 1 of Proposition 6.3.1.1.2 and P, is the functor of Propo-
sition 6.4.5.1.1.
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Proof. Item1, Functoriality I: This follows from Items3and 4 of Proposition 2.4.4.1.5.
Item 2, Functoriality II: This follows Items 3 and 4 of Proposition 2.4.5.1.4.

Item 3, Functoriality I11: This follows Items 3 and 4 of Proposition 2.4.6.1.7.

Item 4, Adjointness I: We have

def

Sets®P(P(A), B) = Sets(B, P(A))

= Sets(B, Sets(A, {t,f}))

(by Item 1 of Proposition 2.4.3.1.6)
=~ Sets(A X B, {t,f})

(by Item 2 of Proposition 2.1.3.1.2)
=~ Sets(A, Sets(B, {t,f}))

(by Item 2 of Proposition 2.1.3.1.2)
= Sets(A,P(B)) (byltem1of Proposition 2.4.3.1.6)

withall bijections naturalin Aand B (where we use Item 2 of Proposition 2.4.3.1.6
here).
Item 5, Adjointness |1: We have

Rel(Gr(A), B) = P(A X B)
= Sets(A X B, {t,f}) (byltem1of Proposition 2.4.3.1.6)
= Sets(A, Sets(B, {t,f}))
(by Item 2 of Proposition 2.1.3.1.2)
= Sets(A, P(B)) (by Item 1 of Proposition 2.4.3.1.6)

with all bijections natural in A (where we use Item 2 of Proposition 2.4.3.1.6
here). Explicitly, thisisomorphismis given by sendingarelationR: Gr(A) -
Btothemap RT: A — P(B) sending a to the subset R(a) of B, as in Re-
mark 5.1.1.1.4.

Naturality in B is then the statement that given arelation R: B - B’, the

diagram
Rel(Gr(A), B) 225 Rel(Gr(A), B')
Sets(AjP(B)) = Sets(AjP(B’))
commutes, which follows from Remark 6.4.1.1.2. ]

0070 Proposition2.4.3.1.5. Let X be aset.

0071 1. Symmetric Strong Monoidality With Respect to Coproducts|. The powerset
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functor P, of Item 1 of Proposition 2.4.3.1.4 has a symmetric strong
monoidal structure

(P PH, L) (Sets, x,pt) — (Sets, 11, 0)
being equipped with isomorphisms

PH P xPm S Px 1Y),
P bt 5 p(0),
natural in X, Y € Obj(Sets).

0072 2. Symmetric Strong Monoidality With Respect to Coproducts Il. The pow-
erset functor P~! of Item 2 of Proposition 2.4.3.1.4 has a symmetric
strong monoidal structure

(P, PP ) (Setsop, <22, pt) — (Sets, 11,0)
being equipped with isomorphisms
Pl pxy xP(v) S P(X 1Y),
P o 25 o0,
natural in X, Y € Obj(Sets).

0073 3. Symmetric Strong Monoidality With Respect to Coproducts I1l. The power-
set functor Py of Item 3 of Proposition 2.4.3.1.4 has a symmetric strong
monoidal structure

(P, pH, P,H)  (Sets, x, pt) — (Sets, ][, 0)

being equipped with isomorphisms

PH . pooyxPm) S P 1IY),

NX,Y
PH: ot 5 P(0),
naturalin X, Y € Obj(Sets).

0074 4. Symmetric Lax Monoidality With Respect to Products|. The powerset func-
tor P, of Item 1 of Proposition 2.4.3.1.4 has a symmetric lax monoidal
structure

(73*, Pe, 7331)  (Sets, %, pt) — (Sets, X, pt)
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being equipped with morphisms
xy: PX)XP(Y) - P(XXY),
Pfllz pt — P(pt),

naturalin X, Y € Obj(Sets), where

- Themap P:<|X,Y is given by

Plxy(UV)EU XV
foreach (U,V) € P(X) x P(Y),
- Themap 73*X|1 is given by

>i<|1(*) = pt.

0075 5. Symmetric Lax Monoidality With Respect to Products Il. The powerset
functor P~ of Item 2 of Proposition 2.4.3.1.4 has a symmetric lax
monoidal structure

(73_1,77_1|®,731_1|®): (Sets®P, x°P pt) — (Sets, X, pt)
being equipped with morphisms

Py PX)XP(Y) > P(X xY),
Pi:pt — P(0),
naturalin X, Y € Obj(Sets), defined asin Item 4.

0076 6. Symmetric Lax Monoidality With Respect to Products Ill. The powerset
functor P, of ltem 3 of Proposition 2.4.3.1.4 has a symmetric lax monoidal
structure

(73!,73!@9,73!?1): (Sets, X, pt) — (Sets, X, pt)
being equipped with morphisms

Py PO X P(Y) = P(X X Y),
P!le pt — P(0),

natural in X, Y € Obj(Sets), defined asin Item 4.
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Proof. Item 1, Symmetric Strong Monoidality With Respect to Coproducts |: The
isomorphism
PH P xP(Y) - X LI Y)

is given by sending (U, V) € P(X) x P(Y) toU [] V, with inverse given
by sending asubset S of X [ Y to the pair (Sx, Sy) € P(X) x P(Y) with

Sy £ {x € X|(0,x) € S}

Sy={yeY|(l,y) €S}
The isomorphism pt = P(0) is given by x > 0 € P(0).
Naturality for the isomorphism 73*|X y Is the statement that, given maps of
setsf: X - X’andg: Y — Y’, thediagram

PX) x P(Y) 225 pxr) x P(Y)

L 2

(FLIg).

commutes, which is clear, as it acts on elements as

(U V) ——— (f.(U),g.(V))

| |

ULV — (fUg.(ULV)=f(U) L g(V),

where we are using Item 7 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of P, as a monoidal functor follow
by checking the commutativity of the relevant diagrams on elements.

Item 2, Symmetric Strong Monoidality With Respect to Coproducts II: The proof is
similar to Item 1, and is hence omitted.

Item 3, Symmetric Strong Monoidality With Respect to Coproducts I1: The proof is
similar to Item 1, and is hence omitted.

Item 4, Symmetric Lax Monoidality With Respect to Products I: Naturality for the
morphism Pf'X,Y is the statement that, given maps of setsf: X — X" and
g: Y — Y’ thediagram

P(X¢LI Y) P(Xﬁll Y')

PX) x P(Y) 225 px') x P(Y)
2 !

P(X X Y) W P(X’ X Y’)
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commutes, which is clear, as it acts on elements as

(U V) ——— (f.(U),g.(V))

| |

UXV — (fxg),(UxV)=FfU)xg.(V),

where we are using Item 8 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of P, as a monoidal functor follow
by checking the commutativity of the relevant diagrams on elements.

Item 5, Symmetric Lax Monoidality With Respect to Products Il: The proofis similar
to Item 4, and is hence omitted.

Item 6, Symmetric Lax Monoidality With Respect to Products IlI: The proof is
similar to Item 4, and is hence omitted. ]

Proposition 2.4.3.1.6. Let X be a set.
1. Powersets as Sets of Functions |. The assignmentU +— yy defines a
bijection
2(-y: P(X) = Sets(X, {t,f}),
foreach X € Obj(Sets).

2. Powersets as Sets of Functions Il. The bijection
P(X) = Sets(X, {t,f})

of ltem 1is natural in X € Obj(Sets), refining to a natural isomor-
phism of functors

P~ = Sets(—, {t, f}).

3. Powersets as Sets of Relations. \We have bijections

P(X) = Rel(pt, X),
P(X) = Rel(X, pt),

natural in X € Obj(Sets).

Proof. Item 1, Powersets as Sets of Functions I: Indeed, the inverse of y(_) is
given by sendinga functionf: X — {t, f} to the subset Uy of P(X) defined
by

def

Ur ={x € X|f(x) = true},
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ie.by Ur = f~!(true). That y(_y and f — Uy are inverses is then straight-
forward to check.

Item 2, Powersets as Sets of Functions II: We need to check that, given a function
f: X — Y, thediagram

f—l

P(Y) P(X)

2 L)

Sets(Y, {t,f}) - Sets(X, {t,f})
commutes, i.e. thatforeach V € P(Y), we have
xvof=xm1vy
And indeed, we have

[xv o fl(w) E xv(f(v))
_ {true iff(v) eV,

false otherwise

false otherwise

_ {true ifv e F~1(V),

def

= X1y (V)

foreachv € V.
Item 3, Powersets as Sets of Relations: Indeed, we have

Rel(pt, X) £ P(pt x X)

= P(X)
and
Rel(X, pt) £ P(X X pt)
= P(X),
where we have used Item 4 of Proposition 2.1.3.1.2. O

Remark 2.4.3.1.7. The bijection
P(X) = Sets(X, {t,f})

of Item 1 of Proposition 2.4.3.1.6, which
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- TakesasubsetU < X of X and straightens it to a function yy: X —
{true, false};

- Takesafunctionf: X — {true, false} and unstraightens it to a subset
f~1(true) — X of X;

may be viewed as the (—1)-categorical version of the un/straightening iso-
morphism for indexed and fibred sets

FibSets(X) = ISets(X)
N—— — ———
l:lzegetS/X déi:un(Xdisc,Sets)
of 22, where we view:
- Subsets U < X as analogous to X-fibred sets ¢x: A — X.

- Functionsf: X — {t,f} asanalogous to X-indexed sets A: Xgjsc —
Sets.

007C Proposition 2.4.3.1.8. Let X beaset.
007D 1. Universal Property. The pair (P(X), y(-)) consisting of

- The powerset P(X) of X;

- The characteristic embedding y(_y: X < P(X) of X into
P(X);

satisfies the following universal property:

(x) Givenanother pair (Y, f) consisting of
— Acocomplete poset (Y, <);
— Afunctionf: X —» Y;

there exists a unique cocontinuous morphism of posets
3!
(P(X),c)— (Y,2)
making the diagram
P(X)

I
y
3!

|
|
|
v
X Y
f

commute.
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007E 2. Adjointness. We have an adjunction3*
P
—
(P4%): Sets 1 Pos®emP
=

witnessed by a bijection
Pos=™P((P(X), ©), (Y, <)) = Sets(X,Y),

natural in X € Obj(Sets) and (Y, <) € Obj(Pos““°™P"), where the
maps witnessing this bijection are given by

- The map
Xy i Pos™P((P(X), ), (Y,=)) — Sets(X,Y)
defined by

def

xx(f) =1 o xx,
i.e. by sending a cocontinuous morphism of posetsf: P(X) —
Y to the composition

x&px)Ly.
- Themap
Lan,, : Sets(X,Y) — Pos“<™P((P(X), ), (Y, X))

is given by sendinga functionf: X — Y toitsleftKanextension

along yx,
P(X)
|
Lan,, (f): P(X) =Y, V :LanXX(f)
¢
X —>Y.

f

Moreover, Lan,, (f) can be explicitly computed by

xeX
[Lan, (H](U) z/ xpx) (2 U) ©f(x)

xeX
= / xu(x) ©f(x) (by Proposition 2.4.2.1.1)

= \/ () o f(x))

xeX
foreachU € P(X), where:

34\n this sense, P(A) is the free cocompletion of A. (Note that, despite its name, however,
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- Visthejoinin (Y, X).
— We have

true © f(x) d:Eff(x),
false @ f(x) < oy,

where @y is the minimal element of (Y, ).

Proof. Item1, Universal Property: This is a rephrasing of [tem 2.
Item 2, Adjointness: We claim we have adjunction P 4 &, witnessed by a
bijection

Pos“™P ((P(X), ©), (Y, X)) = Sets(X,Y),
natural in X € Obj(Sets) and (Y, X) € Obj(Pos<°™P").

- Map I. We define a map
q)X,Y: Poscocomp'((P(X)r C)) (Y! j)) - Sets(X, Y)
asin the statement, by
def
Oxy(f) =fo xx
foreachf € Pos®®°™P((P(X), ), (Y, X)).

- Map Il. We define a map
Yxy: Sets(X,Y) — Pos®°™ ((P(X), ), (Y, =))
asin the statement, by
P(X)
Yy (f) < Lan, (), o /i_ Lany (F)
v
f

X_|_)Y’

foreachf € Sets(X,Y).

- Invertibility I. We claim that

Yxy 0 Oxy = idpgseocomp. ((p(x),c),(7,<))-

this is not an idempotent operation, as we have P(P(A)) # P(A).)
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Indeed, given a cocontinuous morphism of posets
£: (P(X), ) = (Y,3),

we have

[Yxy o ®xy] (&) = Yy (Px,y (£))
def

=Yx,y(£o xx)

def

=lany, (¢ o 1)
= \/ 1) (x) ©£(rx(x)

xeX

2¢
where indeed

def

\/ 2 (1) @ £ () | (U) =

xeX

\/ 2w 0 ()

xeX

=(v w(x)@f(mx)))v( \ )(U(x)Of()(X(X)))

xeU xeX\U

= (V f(zx(x))) v( \/ @y)

xeU xeX\U

=\/ £Gx(x))

xeU

2 5( \/ ){X(x))

xeU
=£U)

foreach U € P(X), where we have used that £ is cocontinuous for

the equality(;).

- Invertibility 1. We claim that

Oy y o Yxy = idsets(x,v)-

Indeed, given a functionf: X — Y, we have

[@xy o Yy | (F) = oxy (Yxy ()
Z oy y(Lany, (f))

def
= Lan,, (f) o xx

clm

=f,
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where indeed

[tan (F) 0 2x] (0 £\ 1y () @ F ()

yeX
= (2 (x) Of (x)) V( \ 2w Gf(y))
yeX\{x}
=f(x)V( \/ @y)
yeX\{x}
=f(x) v oy
=f(x)

foreachx € X.

- Naturality for ®, Part . We need to show that, given a functionf: X —
X', thediagram

Poscocomp.((fP(X/)’ C), (Y, j)) M Sets(X’, Y)
P.(f)” f*

PosMP-((P(X), ©), (Y, X)) W Sets(X,Y)

commutes. Indeed, given a cocontinuous morphism of posets
£: (P(X'),c) = (V,%),
we have

[@x.y 0 Pu(F)*] (&) E oxy (Pu()*(£))
Zoxy(£of.)
Z(¢0f) o xx
=&o (fuo xx)
Lo (yxof)
=(oyx)of
E Oy y(£) of
E f*(®x,y (%))

2 o oxy](®),

where we have used Item 9 of Proposition 2.4.1.1.3 for the equality@
above.
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- Naturality for , Part I1. We need to show that, given a cocontinuous
morphism of posets

8: (Y, jY) - (Y,; ﬁY’);

the diagram

PoscmP-((P(X), ©), (Y, <)) O Sets(X,Y)
g &

Poscocomp.((P(X), C), (Y’, j)) W SetS(X, Y/)

commutes. Indeed, given a cocontinuous morphism of posets
E: (P(X)) C) - (Yr j):

we have

[Oxy 0 g.](5) = Dxy (8. (£))
= Oxy(gof)
Z(god)oyx
=go(£oyx)
Zgo (Pxy(£))

def

= g.(Px,y(9))
= [ge 0 Ox,y] (&)

- Naturality for Y. Since ® is natural in each argument and ® is a com-
ponentwise inverse to Y in each argument, it follows from Item 2 of
Proposition 8.8.6.1.2 that ¥ is also natural in each argument.

This finishes the proof. O

007F 2.4.4 Directlmages

Let Aand B besetsandletf: A — B bea function.

007G Definition 2.4.4.1.1. The directimage function associated tof{ is the func-
tion

f«: P(A) — P(B)
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defined by3-3¢

def

f(U) =f(U)
def there exists somea € U
=<beB

suchthatb = f(a)

= {f(a) € Bla € U}

foreachU € P(A).

007H Notation 2.4.4.1.2. Sometimes one finds the notation
3r: P(A) — P(B)

for f.. This notation comes from the fact that the following statements are
equivalent, whereb € Band U € P(A):

- We haveb € 3¢(U).
- There exists some a € U such thatf(a) = b.

007J Remarkz2.4.4.1.3. Identifying subsets of Awith functions from Ato {true, false}
vialtems1and 2 of Proposition 2.4.3.1.6, we see that the directimage function
associated to f is equivalently the function

fo: P(A) — P(B)

defined by

f.(xv) = Lan (yu)
- coIim((f;Q) LQyRLN {t,f})
= colim (xu(a))
fa)=-1
= \/ (),

acA
f(a)=—1

35 Further Terminology: The setf (U) is called the directimage of U by f.
36\We also have

f«(U) = B\ fi(A\ U);

see [tem 9 of Proposition 2.4.4.1.4.
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where we have used ?? for the second equality. In other words, we have

(Gl = \/ G(a)
o

true ifthere existssomea € Asuch
= thatf(a) =banda € U,

false otherwise

true ifthereexistssomea € U

= suchthatf(a) = b,

false otherwise

foreach b € B.

007K Proposition 2.4.4.1.4. Letf: A — Bbea function.

007L

007M

1. Functoriality. The assignmentU — f,(U) defines a functor
where

- Action on Objects. Foreach U € P(A), we have

def

[f:](U) = f.(U).

- Action on Morphisms. Foreach U,V € P(A):
(%) IfU c V,thenf,.(U) C f.(V).

2. Triple Adjointness. \We have a triple adjunction

f
SN
(FAf14h) PA—r—PB),
\fL/

witnessed by bijections of sets
Homy (s (. (U), V) = Homp ) (U, F~! (V)
Hompx) (ffl(U),V) = Hompa) (U, fi(V)),

natural inU € P(A) andV € P(B) and (respectively) V € P(A)
andU € P(B), i.e. where:
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(@) The following conditions are equivalent:
i. Wehavef,(U) c V.
ii. WehaveU c f~1(V).

(b) The following conditions are equivalent:

i. Wehavef~1(U) c V.
ii. WehaveU c fi(V).

007N 3. Preservation of Colimits. We have an equality of sets

Ju|=Urw,

iel iel

f

naturalin {U;};c; € P(A)*. In particular, we have equalities

f*(U) U f*(V) = f*(U U V);
f*((b) =0,

natural inU,V € P(A).
007P 4. Oplax Preservation of Limits. \We have an inclusion of sets

ﬂ Uil c mf*(Ui),

iel iel

fe

naturalin {U;};cs € P(A)*L. In particular, we have inclusions

f(UNV) Cf(U) nf(V),
f«(A) C B,

natural inU,V € P(A).

007Q 5. Symmetric Strict Monoidality With Respect to Unions. The directimage
function of Item 1 has a symmetric strict monoidal structure

(- £2.15,): (P(4),0,0) > (P(B),,0),
being equipped with equalities

oy U UR(V) S f(UUY),
o100,

natural inU,V € P(A).
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6. Symmetric Oplax Monoidality With Respect to Intersections. The direct
image function of Item 1 has a symmetric oplax monoidal structure

(o £2.£5) - (P40, 4) = (P(B),0B),

being equipped with inclusions

LUNV) = f(U)Nf(V),
31: f-(A) — B,

® .
U,V *

natural inU,V € P(A).

7. Interaction With Coproducts. Letf: A — A’andg: B — B’ be maps
of sets. We have

(fUg.(ULV)=f)Lg)
foreachU € P(A) andeachV € P(B).

8. Interaction With Products. Letf: A — A’and g: B — B’ be maps of
sets. We have

(f X 8),(UxV) =f.(U) x g.(V)
foreachU € P(A)andeachV € P(B).

9. Relation to Direct Images With Compact Support. We have

f(U) = B\ fi(A\U)
foreachU € P(A).

Proof. Item1, Functoriality: Clear.

Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2,
Remark 2.4.6.1.3, and 22 of 22,

Item 3, Preservation of Colimits: This follows from Item 2 and ?? of 22.37

Item 4, Oplax Preservation of Limits: The inclusion f.(A) C B is clear. See
[Pro24s] for the other inclusions.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from
ltem 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows
from Item 4.

Item 7, Interaction With Coproducts: Clear.

37See also [Pro24t].
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Item 8, Interaction With Products: Clear.
Item 9, Relation to Direct Images With Compact Support: Applying Item 9 of
Proposition 2.4.6.1.6to A \ U, we have

fitA\U) = B\ f.(A\ (A\U))
= B\ £.(U).

Taking complements, we then obtain

f«(U) = B\ (B\ f.(U)),
=B\ fi(A\U),

which finishes the proof. O
Proposition 2.4.4.1.5. Lletf: A — Bbea function.

1. Functionality . The assignmentf — f, definesa function

(=)sap: Sets(A, B) — Sets(P(A), P(B)).

2. Functionality Il. The assignmentf +— f. defines a function

(_)*lA,B: Sets(A, B) — Pos((P(A), ©), (P(B), ©)).

3. Interaction With Identities. Foreach A € Obj(Sets), we have
(ida), = idp(a).

4. Interaction With Composition. For each pair of composable functions
f: A— Bandg: B — C,we have

P(A) L P(B)

(gof). =g+t o
(gof).

P(C).

Proof. Item1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Remark 2.4.4.1.3 and ?? of
»

Item 4, Interaction With Composition: This follows from Remark 2.4.4.1.3and 2?
of 22. O
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0080 2.4.5 Inverselmages

Let Aand B besetsandletf: A — B bea function.

0081 Definition 2.4.5.1.1. The inverse image function associated tof{ is the func-
tion*®
f~1: P(B) > P(4A)

defined by*®

def

Y V)= {a e A|wehavef(a) € V}

foreachV € P(B).

0082 Remark2.4.5.1.2. Identifyingsubsets of Bwith functions from Bto {true, false}
via Iltems1and 2 of Proposition 2.4.3.1.6, we see that the inverse image func-
tion associated to f is equivalently the function

f*: P(B) = P(A)

defined by

def

() =vef

foreach yy € P(B), where yy o f is the composition

AL> B2 {true, false}

in Sets.
0083 Proposition2.4.5.1.3. Letf: A — Bbea function.

0084 1. Functoriality. The assignmentV > f~1(V) defines a functor
f~': (P(B),c) = (P(A), Q)
where

- Action on Objects. Foreach V € P(B), we have
[V =W
- Action on Morphisms. Foreach U,V € P(B):
(x) IfU c V,thenf~1(U) c f~1(V).

38 Further Notation: Also written f*: P(B) — P(A).
39 Further Terminology: The set f =1 (V) is called the inverse image of V by f.
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0085 2. Triple Adjointness. We have a triple adjunction

fe
SN
(A" h) P —PB)
\;_/v

witnessed by bijections of sets
Homp ) (£ (U), V) = Hompa (U, F1(V)),

Homp(a) (£~ (U), V) = Hompay (U, A(V)),

natural inU € P(A) andV € P(B) and (respectively) V € P(A)
andU € P(B), i.e.where:

(@) The following conditions are equivalent:
i. Wehavef,(U) c V;
ii. WehaveU c f~1(V);

(b) The following conditions are equivalent:
i. Wehavef~1(U) c V.
ii. WehaveU c fi(V).

0086 3. Preservation of Colimits. We have an equality of sets
! UUi =Uf_1(Ui),
iel iel

natural in {U;},c; € P(B)*!. In particular, we have equalities
OtV =fuuy),
f1(0) =0,
natural inU,V € P(B).
0087 4. Preservation of Limits. \We have an equality of sets

ul =",

iel iel

f—l

natural in {U;};c; € P(B)*!. In particular, we have equalities
fFraOnfv)=wnv),
f(B) =4
natural inU,V € P(B).
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0088 5. Symmetric Strict Monoidality With Respect to Unions. The inverse image
function of Item 1 has a symmetric strict monoidal structure

(L) (P(B),UO) = (P(4), 1,0,
being equipped with equalities
SO u V) S iU U ),
fi 20> 171(0),
natural inU,V € P(B).

0089 6. Symmetric Strict Monoidality With Respect to Intersections. The inverse
image function of Item 1 has a symmetric strict monoidal structure

(FLF2172): (P(B),0,B) = (P(A),0,4),
being equipped with equalities
SO NV S iU,
fi7%:AS[HB),
natural inU,V € P(B).

008A 7. Interaction With Coproducts. Letf: A — A’andg: B — B’ be maps
of sets. We have

(fU (U UV)=f"U)LUg (V)
foreachU’ € P(A’) andeach V' € P(B’).

008B 8. Interaction With Products. Letf: A — A’and g: B — B’ be maps of
sets. We have

(fx@ ' (U x V) =fHU)xg (V)
foreachU’ € P(A’) andeach V' € P(B’).

Proof. Item 1, Functoriality: Clear.

Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2,
Remark 2.4.6.1.3, and ?? of 22,

Item 3, Preservation of Colimits: This follows from Item 2 and ?? of 22.4°

40See also [Pro24ac].
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Item 4, Preservation of Limits: This follows from Item 2 and ?? of 22.4'

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from
[tem 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows
from Item 4.

Item 7, Interaction With Coproducts: Clear.

Item 8, Interaction With Products: Clear. ]

Proposition 2.4.5.1.4. Letf: A — Bbea function.

1. Functionality I. The assignment f > f~! defines a function

(—)1p: Sets(A, B) — Sets(P(B), P(A)).

2. Functionality Il. The assignment f + f~! defines a function

(—)1p: Sets(A, B) — Pos((P(B), ©), (P(A),C)).

3. Interaction With Identities. Foreach A € Obj(Sets), we have
-1
IdA = Idp(A).

4. Interaction With Composition. For each pair of composable functions
f: A— Bandg: B — C,we have

PC) £ P(B)

(gof) t=flog™, \ |f-1
(gof)~!

P(A).

Proof. Item1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Remark 2.4.5.1.2and Items
of Proposition 8.1.6.1.2.

Item 4, Interaction With Composition: This follows from Remark 2.4.5.1.2 and
Item 2 of Proposition 8.1.6.1.2. O

#1See also [Proz4ab].
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008H 2.4.6 DirectImages With Compact Support
Let Aand B besetsandletf: A — B bea function.

008J Definition 2.4.6.1.1. The directimage with compact support function asso-
ciated tof is the function

fi: P(A) — P(B)
defined by**43

def foreacha € A, if we have
fitlU)y=4beB
f(a) =b,thena e U

= {b € B|we have f~1(b) U}
foreachU € P(A).
008K Notation 2.4.6.1.2. Sometimes one finds the notation
Vi P(A) — P(B)

for f... This notation comes from the fact that the following statements are
equivalent, whereb € BandU € P(A):

- We have b € V¢(U).
- Foreacha € A,ifb =f(a),thena € U.

008L Remark2.4.6.1.3. Identifyingsubsets of Awith functions from Ato {true, false}
via ltems1and 2 of Proposition 2.4.3.1.6, we see that the direct image with
compact support function associated to f is equivalently the function

fi: P(A) — P(B)
defined by

fi(xv) = Ran(yu)
Iim((@; f) 54 {true, false})

lim (ru(a))
fla)=—1
=\ Gl

acA
f(a)=—1

42 Further Terminology: The set fi(U) is called the direct image with compact support of U
byf.

4We also have

fi(U) = B\ f(A\ U);
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where we have used ?? for the second equality. In other words, we have

(Gl = N (w(e)

acA
f(a)=b
true if, foreacha € Asuchthat
= f(a) =b,wehavea € U,
false otherwise
_Jtrue iff~1(b) cU
B {false otherwise

foreach b € B.
008M Definition 2.4.6.1.4. Let U be a subset of A.44:4>

1. The image part of the directimage with compact support f(U) of U

008N is the set f1im (U) defined by

def

frim(U) = fi(U) N Im(f)
_ {b c plwe have f~1(b) c}

Uandf=(b) # 0
2. The complement part of the direct image with compact support

see [tem 9 of Proposition 2.4.6.1.6.
44Note that we have

f!(U) = f!,im(U) U f!,cp(U)x

as

AU)=fAU)NB
= U) N (Im(f) U (B\ Im(f)))
= (AU) N Im(f)) U (HU) N (B \ Im(f)))

def

= f!,im(U) U f!,cp(U)'

451n terms of the meet computation of f; (U) of Remark 2.4.6.1.3, namely

i) = N\ Gua),
acA
fla)=—1
we see thatfj i, corresponds to meets indexed over nonempty sets, while fi ¢, corresponds
to meets indexed over the empty set.
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008P fi(U) of Uris the set fi ,, (U) defined by
fiep(U) = (V) N (B\Im(f))
= B\ Im(f)

3 we have f~1(b) c
B {b € Bl Uandf1(5) = 0 }

={beB|f(b) =0}
008Q Example2.4.6.1.5. Here are some examples of direct images with compact
support.

1. The Multiplication by Two Map on the Natural Numbers. Consider the
functionf: N — N given by

def

f(n) =2n

foreachn € N. Sincef is injective, we have

fum(U) = £.(U)
ficp(U) = {odd natural numbers}

foranyU c N.

2. Parabolas. Consider the functionf: R — R given by

f(x) € 2?
foreach x € R. We have
f!,cp(U) = R<0
forany U c R. Moreover, sincef~!(x) = {—v/x, Vx}, we have e.g.:
fiim ([0, 1]) = {0},
fiim([=1,1]) = [0, 1],
ﬁ,im([lrQ]) = @,
fim([-2,-1] U [1,2]) = [1,4].

3. Circles. Consider the functionf: R? — R given by
fxy) Ex?+5°
foreach (x, y) € R?. We have

f!,cp(U) =R
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forany U c R?, and since

acircle of radius r about the origin  ifr > 0,
f~1(r) = 1{(0,0)} ifr =0,
0 ifr <0,

we have e.g.:

flim([=1,1] x [-1,1]) = [0, 1],
flim(([=1, 1] x [=1,1]) \ [-1,1] x {0}) = 0.
Proposition 2.4.6.1.6. Letf: A — B bea function.
1. Functoriality. The assignmentU + fi(U) defines a functor
fr: (P(A),c) — (P(B), )
where

- Action on Objects. Foreach U € P(A), we have

def

[A1(U) = H(U).

- Action on Morphisms. Foreach U,V € P(A):
(%) IfU c V,thenfi(U) c fi(V).

2. Triple Adjointness. We have a triple adjunction
f
ST LN
(FAF4h) PA——PB),
~L 7
fi

witnessed by bijections of sets
Homp s, (£, (U), V) = Hompa (U, F (V)
Homp (a1 (U), V) = Homp(x) (U (V)

natural inU € P(A)andV € P(B) and (respectively) V € P(A)
andU € P(B), i.e.where:

(@) The following conditions are equivalent:


https://topological-modular-forms.github.io/the-clowder-project/tag/008R
https://topological-modular-forms.github.io/the-clowder-project/tag/008S
https://topological-modular-forms.github.io/the-clowder-project/tag/008T

2.4. Powersets 98

i. Wehavef,(U) cV.
ii. WehaveU c f~4(V).
(b) The following conditions are equivalent:

i. Wehavef~1(U) c V.
ii. WehaveU c fi(V).

008U 3. Lax Preservation of Colimits. We have an inclusion of sets

o

iel

U fi(Ui) c fi

iel

)

naturalin {U;};¢; € P(A)*!. In particular, we have inclusions

U) UAV) = AU UY),
0 — fi(0),

natural inU,V € P(A).

008V 4. Preservation of Limits. We have an equality of sets

U] =()fw@),

iel iel

fi

naturalin {U;};¢; € P(A)*!. In particular, we have equalities

L UnV) =) nf V),
fi(A) = B,

natural inU,V € P(A).

008W 5. Symmetric Lax Monoidality With Respect to Unions. The direct image
with compact support function of Item 1 has a symmetric lax monoidal
structure

(. F2.F2) - (P(4),0,0) > (P(B),U,0),
being equipped with inclusions

fiuy: AU UAV) = AU UY),
f!?]_: 0 — fl(o)y

natural inU,V € P(A).
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6.

10.

11.

Symmetric Strict Monoidality With Respect to Intersections. The direct
image function of Item 1 has a symmetric strict monoidal structure

(of2.£52): (P(A).0,4) = (P(B).N, B)
being equipped with equalities
fiy: AU NV) = AU) N AV),
fify: fi(A) = B,
natural inU,V € P(A).

Interaction With Coproducts. Letf: A — A’and g: B — B’ be maps
of sets. We have

(fUgULV)=hW)Lg(V)
foreachU € P(A)andeachV € P(B).

Interaction With Products. Letf: A — A’andg: B — B’ be maps of
sets. We have

(f xgh(UxV)=f(U)xg(V)
foreachU € P(A)andeachV € P(B).

Relation to Direct Images. \We have

fitU) = B\ f.(A\U)
foreachU € P(A).

Interaction With Injections. If f is injective, then we have
frim(U) = £+ (U),
frep(U) = B\ Im(f),
fi(U) = fiim(U) U fiep(U)
=f.(U) U (B\ Im(f))
foreachU € P(A).

Interaction With Surjections. If f is surjective, then we have
frim(U) C f.(U),
f!,cp(U) = (Z);
fi(U) c f.(U)
foreachU € P(A).
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Proof. Item1, Functoriality: Clear.

Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2,
Remark 2.4.6.1.3,and ?? of 2.

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: This follows from Item 2 and 2?2 of 22.

Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows from
ltem 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows
from Item 4.

Item 7, Interaction With Coproducts: Clear.

Item 8, Interaction With Products: Clear.

Item 9, Relation to Direct Images: We claim thatfy(U) = B\ f.(A\ U).

- The First Implication. We claim that

fi(U) € B\ f.(A\ D).
Letb € fi(U). We need toshow thatb ¢ f.(A\ U),i.e.thatthereis
noa € A\ Usuchthatf(a) =b.

Thisis indeed the case, as otherwise we would have a € f~!(b) and
a ¢ U, contradictingf~*(b) c U (which holdssince b € fi(U)).

Thusb € B\ f.(A\ U).

- The Second Implication. We claim that

B\ f.(A\U) c fi(U).

Letb € B\ f.(A\U). We need to show thatb € fi(U), i.e. that
f~1(b) cU.

Sinceb ¢ f.(A\ U),thereexistsnoa € A\ U suchthatb = f(a),and
hencef~!(b) c U.

Thusb € fi(U).

This finishes the proof of Item 9.
Item 10, Interaction With Injections: Clear.
Item 11, Interaction With Surjections: Clear. m]

Proposition2.4.6.1.7. Letf: A — B be a function.

1. Functionality . The assignmentf +— f defines a function

(=)1jap: Sets(A, B) — Sets(P(A), P(B)).
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0095 2.
0096 3.
0097 4.

Functionality Il. The assignmentf — f, defines a function

(=)1jap: Sets(A, B) — Pos((P(A), ©), (P(B), ©)).
Interaction With ldentities. Foreach A € Obj(Sets), we have
(ida)y = idp(a).

Interaction With Composition. For each pair of composable functions
f: A— Bandg: B — C,we have

P(4) L P(B)

(goPr=goh \ |gl
(gof)

P(C).

Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: This follows from Remark 2.4.6.1.3 and 2? of

2

Item 4, Interaction With Composition: This follows from Remark 2.4.6.1.3 and ??

of 22.

O
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Pointed Sets

0098 This chapter contains some foundational material on pointed sets.
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3.1 Pointed Sets
3.1.1 Foundations
Definition3.1.1.1.1. A pointed set' is equivalently:
- AnEg-monoid in (N.(Sets), pt).
- A pointed objectin (Sets, pt).
Remark3.1.1.1.2. Indetail, a pointed set s a pair (X, x() consisting of:
- The Underlying Set. A set X, called the underlying set of (X, xq).
- The Basepoint. A morphism
[xo]: pt > X

in Sets, determining an element x( € X, called the basepoint of X.

Example3.1.1.1.3. The O-sphere? is the pointed set (SO, 0)? consisting of:

. The Underlying Set. The set S° defined by

SO (0,1}

. The Basepoint. The element 0 of S.
Example3.1.1.1.4. Thetrivial pointedsetisthe pointedset (pt, x) consisting
of:

- The Underlying Set. The punctual set pt « {x}.

- The Basepoint. The element x of pt.
Example3.1.1.1.5. The underlying pointed set of a semimodule (M, &) is

the pointed set (M, ).

Example 3.1.1.1.6. The underlying pointed set of a module (M, ay;) is the
pointed set (M, Op).

"Further Terminology: In the context of monoids with zero as models for F1-algebras,
pointed sets are viewed as F1-modules.

2Fuyrther Terminology: In the context of monoids with zero as models for F1 -algebras, the
0-sphere is viewed as the underlying pointed set of the field with one element.

3Further Notation: In the context of monoids with zero as models for Fy -algebras, S is
also denoted (Fq, 0).
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Q09H 3.1.2 Morphisms of Pointed Sets

009J Definition3.1.2.1.1. A morphism of pointed sets*° is equivalently:
- Amorphism of Eg-monoids in (N (Sets), pt).
- Amorphism of pointed objects in (Sets, pt).

009K Remark3.1.2.1.2. Indetail, amorphismofpointedsetsf: (X, xq) — (Y, yo)
isamorphism of setsf: X — Y such that the diagram

pt
[xoy xyo]

X — Y
f

commutes, i.e. such that
f(x0) = yo.

009L 3.1.3 The Category of Pointed Sets

009M Definition 3.1.3.1.1. The category of pointed sets is the category Sets, de-
fined equivalently as

- The homotopy category of the co-category Mong, (N, (Sets), pt) of
2.

ce,

- The category Sets, of 2.

009N Remark3.1.3.1.2. Indetail, the category of pointed sets is the category Sets,
where

- Objects. The objects of Sets, are pointed sets;
- Morphisms. The morphisms of Sets, are morphisms of pointed sets;
- Identities. For each (X, xg) € Obj(Sets,), the unit map

1%+ pt — Sets. (X, x0), (X, 0))

of Sets, at (X, xq) is defined by®

. Sets, def. .
'd(X,xo) = idy;

4Further Terminology: Also called a pointed function.

5Further Terminology: In the context of monoids with zero as models for Fy-algebras,
morphisms of pointed sets are also called morphism of F1 -modules.

6Note thatidy is indeed a morphism of pointed sets, as we have idx (xg) = xg.
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- Composition. Foreach (X, x¢), (Y, y0), (Z, z9) € Obj(Sets..), the com-
position map

O(S;TJScZ),[Y,yo},(Z,Zo) : Sets« ((Y,0), (Z,20)) x Sets« ((X,x0), (Y,y0)) — Sets« ((X,x0),(Z,z0))

of Sets. at (X, x0), (Y, y0), (Z, 20)) is defined by
Sets, def
g o()e(,?co),(Y,_yo),(Z,zo) f =4° f

3.1.4 Elementary Properties of Pointed Sets

Proposition3.1.4.1.1. Let (X, xo) be a pointed set.

1. Completeness. The category Sets. of pointed sets and morphisms
between them is complete, having in particular:
(@) Products, described as in Definition 3.2.3.1.1;
(b) Pullbacks, described as in Definition 3.2.4.1.1;
(c) Equalisers, described as in Definition 3.2.5.1.1.
2. Cocompleteness. The category Sets. of pointed sets and morphisms
between them is cocomplete, having in particular:
(@) Coproducts, described as in Definition 3.3.3.1.1;
(b) Pushouts, described as in Definition 3.3.4.1.1;
(c) Coequalisers, described as in Definition 3.3.5.1.1.

3. Failure To Be Cartesian Closed. The category Sets, is not Cartesian
closed.®

7Note that the composition of two morphisms of pointed sets is indeed a morphism of
pointed sets, as we have

8(f(x0)) = g(»o)
= 20,

or
pt

in terms of diagrams.
8The category Sets. does admit monoidal closed structures however; see Tensor Products
of Pointed Sets.
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4. Morphisms From the Monoidal Unit. We have a bijection of sets®

Sets, (SO,X) ~ X,
of pointed sets

naturalin (X, xg) € Obj(Sets.), internalisingalso toanisomorphism

Sets, (SO, X) = (X, xo),

again natural in (X, xo) € Obj(Sets,).
00A1

5. Relation to Partial Functions. \We have an equivalence of categories'

eq.
Sets, = SetsP*™

where:

between the category of pointed sets and pointed functions between
them and the category of sets and partial functions between them,

(@) From Pointed Sets to Sets With Partial Functions. The equivalence

£: Sets, — SetsP
sends:

i. Apointedset (X, xg)toX.
ii. A pointed function

f: (X,x0) = (Y, 0)

to the partial function

ff:X—>Y

definedon f~1(Y'\ yo) and given by

def

£r(x) =f(x)

foreachx € f~5(Y '\ o).

%In other words, the forgetful functor

%: Sets, — Sets

defined on objects by sending a pointed set to its underlying set is corepresentable by SY.

1O?PWG;’ning: This is not an isomorphism of categories, only an equivalence.
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(b) From Sets With Partial Functions to Pointed Sets. The equivalence
£71: SetsP™ 5 Sets,

sends:

i. Aset X istothe pointed set (X, %) with x an element that
isnotinX.

ii. Apartial function
f: X->Y
definedon U C X to the pointed function
£ (X, x0) = (Y, 30)

defined by
Ef(x) d=ef {f(X) ifx € U,

0 otherwise.

foreachx € X.

Proof. Item1, Completeness: This follows from (the proofs) of Definitions3.2.3.1.1,
3.2.4.11and3.2.5.1.1and 2.

Item 2, Cocompleteness: This follows from (the proofs) of Definitions 3.3.3.1.1,
3.3.4.1.1and3.3.5.1.1and 2.

Item 3, Failure To Be Cartesian Closed: See [MSE 28558638].

Item 4, Morphisms From the Monoidal Unit: Since a morphism from S%toa
pointed set (X, xg) sends 0 € S°to xg and then cansend 1 € S° to any
element of X, we obtain a bijection between pointed maps S — X and the
elements of X.

The isomorphism then

Sets, (SO, X) = (X, x0)

follows by noting that A, : S — X, the basepoint of Sets. (S, X), corre-
sponds to the pointed map SY — X picking the element xg of X, and thus
we see that the bijection between pointed maps S — X and elements of
X is compatible with basepoints, lifting to an isomorphism of pointed sets.
Item 5, Relation to Partial Functions: See [MSE 884460]. m|

END TEXTDBEND
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3.2 Limits of Pointed Sets

3.2.1 The Terminal Pointed Set

Definition3.2.1.1.1. Theterminal pointedsetisthe pair ((pt, *), {!X}(X,xO)GObj(Sets*))

consisting of:
- The Limit. The pointed set (pt, %).

- The Cone. The collection of morphisms of pointed sets

{!x: (X,x0) = (Pt %)} (x,xy)cObj(Sets)

defined by

Iy (x) €

foreach x € X and each (X, xg) € Obj(Sets).

Proof. We claim that (pt, %) is the terminal object of Sets... Indeed, suppose
we have a diagram of the form

(X, x0) (pt, %)
in Sets,.. Then there exists a unique morphism of pointed sets
¢: (X, x0) — (pt, %)
making the diagram
(X, x0) ~5> (pt %)
commute, namely . O
3.2.2 Products of Families of Pointed Sets

Let { (X, x}) },; be afamily of pointed sets.

Definition3.2.2.1.1. Theproductof { (X;, x})}._, isthe pair ((Hiel X;, (xf))l.el), {pri}id)
consisting of:

- The Limit. The pointed set (Hie] X;, (xf))l.d).
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- The Cone. The collection

{04, = )

iel iel

of maps given by
def
Pri((xi)jel) = Xi
foreach (x;),.; € [1ic; Xiandeachi € I.

iel

Proof. We claim that (Hid X;, (xg)id) is the categorical product of { (X, x1) }
in Sets,. Indeed, suppose we have, foreachi € I, adiagram of the form
(P, %)

pPi

(IMier X (v)e1) 5 (i)

in Sets,.. Then there exists a unique morphism of pointed sets

¢: (P,*) —> (l_l X, (xf))id)

iel
making the diagram
(P, %)
|

e Pi
v

(IMier X (v),c1) 5 (i)

commute, being uniquely determined by the condition pr; o ¢ = p; foreach
i€ lvia
¢(x) = (pi(x))ie;

foreach x € P. Note that this isindeed a morphism of pointed sets, as we
have

¢(x) = (pi(%))ies

i
=1|Xx
( O)iel’

where we have used that p; is a morphism of pointed sets foreachi € I. O



3.2. Limits of Pointed Sets 110

00A7 Proposition3.2.2.1.2. Let {(X;, x}) }ie[ be a family of pointed sets.

00A8 1. Functoriality. The assignment {(X;, x{)}._, (]_[idXi, (xé))id)
defines a functor

1_[: Fun(Igisc, Sets.) — Sets.,.

i€l
Proof. Item 1, Functoriality: This follows from ?? of 2. O

00A9 3.2.3 Products
Let (X, xg) and (Y, yg) be pointed sets.

00AA Definition3.2.3.1.1. The productof (X, xg) and (Y, yg) is the pair consisting
of:

- The Limit. The pointed set (X X Y, (xq, y0))-

- The Cone. The morphisms of pointed sets

pry: (X X Yr (x[)ryO)) - (Xr xO)r
pry: (X XY, (x0, y0)) = (Y, y0)

defined by
pri (xr J’) déf X,
def
pra(x,») =y
foreach (x,y) e X X Y.

Proof. We claim that (X X Y, (x0, o)) is the categorical product of (X, x¢)
and (Y, yo) in Sets.. Indeed, suppose we have a diagram of the form

(X, x0) o= (X XY, (x0,30)) 5> (Y, 30)

(P, %)

in Sets,. Then there exists a unique morphism of pointed sets

¢: (P’ *) - (X XY, (XO,J’O))
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making the diagram

(P, %)

pP1 p2
//////’ ﬁa!\\\\\\\

(erO) (m (XXY; (xﬂryO)) W (ny(])
commute, being uniquely determined by the conditions
pri o ¢ = p1,
pra o ¢ = pa

via
¢(x) = (p1(x), p2(x))

foreach x € P. Note that thisisindeed a morphism of pointed sets, as we

have
¢ (%) = (p1(*), p2(*))
= (x0, Y0),
where we have used that p; and po are morphisms of pointed sets. O

00AB Proposition 3.2.3.1.2. Let (X, xg), (Y, y0), and (Z, zg) be pointed sets.

QOAC 1. Functoriality. The assignments

(Xr xO)! (Y!_yO)! ((Xr .’Xfo), (Y’J’O)) = (X XY, (xO,J’O))
define functors

X %X —: Sets, — Sets,,
— X Y: Sets, — Sets,,

—1 X —9: Sets, X Sets, — Sets,,
definedinthe sameway as the functors of ltem1of Proposition 2.1.3.1.2.

Q0AD 2. Associativity. We have an isomorphism of pointed sets

(X XY) x Z, ((x0, y0), 20)) = (X X (Y X Z), (x0, (¥0,20)))

natural in (X, xo), (Y, y0), (Z,z9) € Obj(Sets.).
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Q0AE 3. Unitality. We have isomorphisms of pointed sets

(pt! *) X (Xr X()) = (Xr X()),
(X, xO) X (ptr*) = (Xr X()),

natural in (X, xg) € Obj(Sets,).

Q0AF 4. Commutativity. We have an isomorphism of pointed sets

(X XY, (xO:J’O)) = (Y x X, (J’Or xO))!
natural in (X, xo), (Y, yo) € Obj(Sets..).

00AG 5. Symmetric Monoidality. The triple (Sets,, X, (pt, %)) is a symmetric
monoidal category.

Proof. Item1, Functoriality: This is a special case of functoriality of limits, 2? of
2

Item 2, Associativity: This follows from Item 3 of Proposition 2.1.3.1.2.
Item 3, Unitality: This follows from Item 4 of Proposition 2.1.3.1.2.
Item 4, Commutativity: This follows from Item 5 of Proposition 2.1.3.1.2.
Item 5, Symmetric Monoidality: This follows from Item12 of Proposition 2.1.3.1.2.
O
00AH 3.2.4 Pullbacks

Let (X, x0), (Y, y9),and (Z, zp) be pointed setsandletf : (X, xq) — (Z, z0)
andg: (Y, y9) — (Z,z9) be morphisms of pointed sets.

00AJ Definition 3.2.4.1.1. The pullback of (X, xq) and (Y, yo) over (Z, z¢) along
(f, g) is the pair consisting of:

- The Limit. The pointed set (X Xz Y, (xo, ¥0))-
- The Cone. The morphisms of pointed sets
pri: (X Xz Y; (XOryO)) - (X, X()),
pra: (X Xz Y, (x0,¥0)) = (Y, 30)
defined by
pry(x,3) < x,
def
pro(x,y) =y

foreach (x,y) e X x, Y.
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Proof. Weclaimthat X XY isthe categorical pullback of (X, x¢) and (Y, yo)
over (Z, zg) with respect to (f, g) in Sets... First we need to check that the
relevant pullback diagram commutes, i.e. that we have

(X %z Y, (x0,30)) =2 (Y, y0)

fopry =gopry, pr1| |g

(Xr xO)

(Z,20).
Indeed, given (x, y) € X Xz Y, we have

[f o pri](x,¥) = f(pri(x,¥))
=f(x)
=8(»)
= g(pra(x,))
= [g o pra](x, ),
where f(x) = g(y) since (x,y) € X Xz Y. Next, we prove that X Xz Y

satisfies the universal property of the pullback. Suppose we have a diagram
of the form

p2

(P, %) /\

(X Xz Y,(x0,y0)) —P2> (Y, »0)

28 P|r1 : |g
l
(Xr xO)

f (Zr ZO)

in Sets,.. Then there exists a unique morphism of pointed sets
¢: (P, %) = (X Xz Y, (x0,50))
making the diagram
P2

P,
(P, *) j\
3! RSN

(X Xz Y, (x0,%0)) —p2~ (Y, y0)
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commute, being uniquely determined by the conditions
prio¢ = pu,
pra © ¢ = po

via
¢(x) = (p1(x), p2(x))

foreach x € P, where we note that (p1(x), p2(x)) € X X Y indeed liesin
X Xz Y by the condition

fopi=gopy

which gives
f(p1(x)) = g(p2(x))

foreach x € P,sothat (p1(x), p2(x)) € X Xz Y. Lastly, we note that ¢ is
indeed a morphism of pointed sets, as we have

$(x) = (p1(x), p2(%))
= (.’)CQ, yO)r

where we have used that p; and ps are morphisms of pointed sets. ]

00AK Proposition3.2.4.1.2. Let (X, xq), (Y, y0), (Z, z0), and (A, ag) be pointed
sets.

Q0AL 1. Functoriality. The assignment (X,Y,Z,f,g) = X X7z, Y definesa
functor

—1 X—y —1: Fun(®P, Sets,) — Sets,,

where P is the category that looks like this:

In particular, theaction on morphisms of — X_, —1 is given by sending
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a morphism
XXzY Y
g | v
4
X' Xz YV’ | Y’
A
X —|—Z .4
\ AN
b
¢ N
X’ VA
f/

in Fun(%P, Sets.) to the morphism of pointed sets

£: (X xzY,(x0,30)) = (X" %z Y, (x0, )
given by
E(x,9) = ($(x), ()

foreach (x, y) € X xz Y, whichis the unique morphism of pointed
sets making the diagram

XXzY Y
\\_| | W
\\M 8
X' xXzY | Y’
|
x 1 |—z ¢
\ AN
P2
¢ N
X’ A

commute.

00AM 2. Associativity. Given a diagram

X Y VA
NN A
W \%4
in Sets,, we have isomorphisms of pointed sets

(XXWY)XVzE(XXWY)Xy(YXVZ)EXXW(YXVZ),
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where these pullbacks are built as in the diagrams

XxwY)xyZ (X xw Y) xy (Y Xy Z) X xw (Y xy Z)
S 7N v\
XxyY XxyY YxyvZ YxvZ
/ \ / \ / \ 7N

X

BN /\ / BN /\ Ve f\w/xv/‘

3. Unitality. We have isomorphisms of pointed sets

A A A—1 L x
4 Xxy A=A 4
! I AxxX =4

4. Commutativity. We have an isomorphism of pointed sets

AXx B — B BxyA— A
| -
|g AXXBEBXXA | f

5. Interaction With Products. We have an isomorphism of pointed sets
XXY —Y
-
XX Y =X XY, | |!Y

X ——— pt.
¢

6. SymmetricMonoidality. Thetriple (Sets,, Xx, X) isasymmetricmonoidal
category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits,

?? of 22, with the explicit expression for £ following from the commutativity

of the cube pullback diagram.

Item 2, Associativity: This follows from Item 2 of Proposition 3.2.4.1.2.

Item 3, Unitality: This follows from Item 3 of Proposition 2.1.4.1.3.

Item 4, Commutativity: This follows from Item 4 of Proposition 2.1.4.1.3.

Item 5, Interaction With Products: This follows from Item 6 of Proposition2.1.4.1.3.

Item 6, Symmetric Monoidality: This follows from Item 7 of Proposition 2.1.4.1.3.
m]
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3.2.5 Equalisers

Letf,g: (X,x0) = (Y, yo) be morphisms of pointed sets.

Definition 3.2.5.1.1. The equaliser of (f, g) is the pair consisting of:
- The Limit. The pointed set (Eq(f, g), x0)-

- The Cone. The morphism of pointed sets

eq(f,8): (Ea(f,8), x0) — (X, xo)
given by the canonical inclusion eq(f, g) — Eq(f,g) — X.

Proof. We claim that (Eq(f, g), xo) is the categorical equaliser of f and g in
Sets,. First we need to check that the relevant equaliser diagram commutes,
i.e. that we have

foeq(f,g) =goeq(f,g),

which indeed holds by the definition of the set Eq(f, ). Next, we prove that
Eq(f, g) satisfies the universal property of the equaliser. Suppose we have a
diagram of the form

(f:8) f
(Ea(f,8). x0) = (X,x0) == (Y, 30)

/
(E,*)
in Sets,. Then there exists a unique morphism of pointed sets
¢: (E, =) — (Ea(f, ), x0)
making the diagram

(f:9) f
(Ea(f,8), x0) < (X,x0) == (¥,30)

¢ i 3 /
|
(E, *)
commute, being uniquely determined by the condition

eq(f,g)od =e
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via
$(x) = e(x)
foreach x € E, where we note thate(x) € Aindeed liesin Eq(f, g) by the
condition
foe=goe,
which gives

f(e(x)) = g(e(x))

foreach x € E,sothate(x) € Eq(f, g). Lastly, we note that ¢ is indeed a
morphism of pointed sets, as we have

$(x) = e(x)
- xO;
where we have used that e is a morphism of pointed sets. O

00AU Proposition3.2.5.1.2. Let (X, xg) and (Y, yp) be pointedsetsandletf, g, h: (X, xg) —
(Y, yo) be morphisms of pointed sets.

Q0AV 1. Associativity. We have isomorphisms of pointed sets

Eq(f o eq(g, h),g o eq(g h)) = Eq(f, g h) = Eq(f o eq(f,g), h o eq(f,g)),

=Eq(foeq(gh),hoeq(g,h)) =Eq(goeq(f.g),hoeq(f.g))

where Eq(f, g, h) is the limit of the diagram
_f,
(X, x0) =8> (Y, 0)
h

in Sets,., being explicitly given by
Eq(f,8,h) = {a € Alf(a) = g(a) = h(a)}.
QAW 2. Unitality. We have an isomorphism of pointed sets
Eq(f.f) = X.
Q0AX 3. Commutativity. We have an isomorphism of pointed sets

Eq(f,g) = Eq(g,f).

Proof. Item 1, Associativity: This follows from Item 1 of Proposition 2.1.5.1.2.
Item 2, Unitality: This follows from Item 4 of Proposition 2.1.5.1.2.
Item 3, Commutativity: This follows from Item 5 of Proposition 2.1.5.1.2. O
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00AY 3.3 Colimits of Pointed Sets

00AZ 3.3.1 Thelnitial Pointed Set

00B0 Definition3.3.1.1.1. Theinitial pointedsetisthe pair((pt, *), {‘X}(X,xo)eobj(Sets*))
consisting of:

- The Limit. The pointed set (pt, %).
- The Cone. The collection of morphisms of pointed sets
{lX: (ptr *) - (Xr xO)}(X,xO)GObj(Sets)

defined by
tx (%) e x0-

Proof. We claim that (pt, %) is the initial object of Sets... Indeed, suppose
we have a diagram of the form

(pt, %) (X, x0)
in Sets,. Then there exists a unique morphism of pointed sets
¢: (pt) *) - (X! xO)

making the diagram

(Pt %) 2> (X, x0)

commute, namely tx. |

00B1 3.3.2 Coproducts of Families of Pointed Sets

Let { (X, x}) }ie[ be a family of pointed sets.

00B2 Definition3.3.2.1.1. The coproduct of the family {(Xi, xg) }1.61, also called
their wedge sum, is the pair consisting of:

- The Colimit. The pointed set (\/;<; Xi, po) consisting of:
— The Underlying Set. The set \/;; X; defined by

VX@“VWx

iel iel
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where ~ is the equivalence relation on [ [;.; X; given by declar-
ing
(0) - 1)

foreachi,j e I.
— The Basepoint. The element pg of \/;<; X; defined by

def .
o= | (i)
= [(i)]
foranyi,j e I.
- The Cocone. The collection
{iniii (Xi,xg) — (\/ Xi,po)}
iel iel
of morphism of pointed sets given by
inj;(x) £ (i, x)
foreachx € X;andeachi € I.

Proof. Weclaimthat (\/;c; X;, po) is the categorical coproduct of { (X;, x}) }

iel
in Sets,. Indeed, suppose we have, foreach i € I, a diagram of the form

(C,%)

(Xi, ) 5 (\/ Xi,po)

iel
in Sets,.. Then there exists a unique morphism of pointed sets
¢ (v Xi,po) = (C, %)
i€l

making the diagram

(C,%)

1
/ ¢13!
|

(Xi, xf) o (\/ Xi, po

iel
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commute, being uniquely determined by the condition ¢ o inj; = ¢; foreach
i€ lvia
o([(6,x)]) = u(x)

foreach [(i, x)] € V;¢; Xi, where we note that ¢ isindeed a morphism of

pointed sets, as we have
ti =[50

= %,

as t; isa morphism of pointed sets. O

Proposition3.3.2.1.2. Let {(Xi, xé)} ; beafamily of pointed sets.

i

1. Functoriality. The assignment {(X;, x})}._, = (Ve Xi, po) defines
a functor
\/: Fun(Igisc, Sets.) — Sets..
iel
Proof. Item 1, Functoriality: This follows from 22 of 22. m]
3.3.3 Coproducts

Let (X, xg) and (Y, yg) be pointed sets.

Definition 3.3.3.1.1. The coproductof (X, xo) and (Y, yy), also called their
wedge sum, is the pair consisting of:

- The Colimit. The pointed set (X V Y, pg) consisting of:

— The Underlying Set. The set X Vv Y defined by

(XVY.po) % (Xoxo) [ (Voy0) A YV 7

-
= (X e Y, po) ‘ J[yOJ
= (X I_I Y/’”;PO);
X ——— pt,
[xo]

where ~isthe equivalence relationon X [ [ Y obtained by declar-

ing (0, x0) ~ (1, yo).
— The Basepoint. The element pg of X V Y defined by
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- The Cocone. The morphisms of pointed sets
inj;: (X,x0) = (X VY, po),
injg: (Y, y0) = (X V'Y, po),

given by
injy (x) = [(0,x)],
.. def
inj2(y) = [(1, )],
foreachx € Xandeachy €Y.

Proof. We claimthat (X V' Y, pg) is the categorical coproduct of (X, x¢) and
(Y, yo) in Sets.. Indeed, suppose we have a diagram of the form

(X, x0) — (X VY,po) < (Y, »0)
injx Injy

(C,%)

in Sets. Then there exists a unique morphism of pointed sets
¢: (X VY, po) — (C*)
making the diagram

C, )

Lx ( ly
/ ¢T3! \

(X, x0) = (X VY, po) <= (¥, 30)
X Jy
commute, being uniquely determined by the conditions

¢ oinjx = 1x,
¢oinjy =1ty
via
_Jix(x) ifz=[(0,x)] withx € X,
#a) = {ly(y) ifz = [(1,y)] withy € Y

foreachz € X V Y, where we note that ¢ isindeed a morphism of pointed
sets, as we have

¢(po) = tx([(0,x0)])
=1y ([(1,30)])

= %k,

as ty and ty are morphisms of pointed sets. O
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00B7 Proposition3.3.3.1.2. Let (X, xg) and (Y, yg) be pointed sets.
00B8 1. Functoriality. The assignments
(X, x0), (Y, y0), ((X, x0), (Y, 0)) = (X V'Y, po)
define functors

X V —: Sets,, — Sets,,
-V Y: Sets, — Sets,,
—1 V —9: Sets, X Sets,, — Sets,.
00B9 2. Associativity. We have an isomorphism of pointed sets
XVvY)vZ=XVv(YVZ),
natural in (X, x), (Y, y0), (Z, z9) € Sets..
00BA 3. Unitality. We have isomorphisms of pointed sets

(ptr *) v (X! xO) = (Xr xO):
(X) xO) M (ptr *) = (Xr X()),

naturalin (X, xo) € Sets..
00BB 4. Commutativity. We have an isomorphism of pointed sets
XvY=YvVvX,
natural in (X, xo), (Y, y0) € Sets..

00BC 5. Symmetric Monoidality. Thetriple (Sets., V, pt) isasymmetricmonoidal
category.

00BD 6. The Fold Map. We have a natural transformation

Sets, X Sets,

. C
ViV o ASHE = idsys, As:::/ [ \
v
Sets, U Sets,,
~—

idSets*
called the fold map, whose component

Vx: XvX—>X
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at X is given by

w |x ifp=1[(0,x)],
Vv =
X7 { itp = [(1,%)]

foreachp e X v X.

Proof. Item 1, Functoriality: This follows from 22 of 22.

Item 2, Associativity: Clear.

Item 3, Unitality: Clear.

Item 4, Commutativity: Clear.

Item 5, Symmetric Monoidality: Omitted.

Item 6, The Fold Map: Naturality for the transformation V is the statement
that, given a morphism of pointed setsf: (X, xg) — (Y, yg), we have

XvX 2 x

Vyo(fVf)=foVy, fvf| f

Indeed, we have

[Vy o (f vOIUG2)]) = Vy ([Gf(x)])
=f(x)
= f(Vx([(&,x)]))
= [f o VxI([(G, x)])

foreach [(i,x)] € X VX,andthus Visindeed a natural transformation. O

3.3.4 Pushouts

Let (X, x0), (Y, y0),and (Z, zp) be pointed setsandletf: (Z,zg) — (X, x0)
andg: (Z,z9) — (Y, yg) be morphisms of pointed sets.

Definition 3.3.4.1.1. The pushoutof (X, x() and (Y, yo) over (Z, z) along
(f, g) is the pair consisting of:

- The Colimit. The pointed set (X Lfze Y, po), where:

- Theset X [[; 7, Y is the pushout (of unpointed sets) of X and
Y over Z with respecttof and g;
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- We have pg = [x0] = [y0].

- The Cocone. The morphisms of pointed sets

injp : (X, x0) = (X [z Y, po),
inja: (Y, 30) = (X LIz Y, po)

given by

inj; (x) £ [(0, x)]
injy (1) £ [(1, )]

foreachx € Xandeachy €Y.

Proof. Firstly, we note thatindeed [x(] = [y0], as we have

xo = f(z0),
Yo = g(20)

since f and g are morphisms of pointed sets, with the relation ~on X [ [ zY
thenidentifying xo = f(z0) ~ g(z0) = yo.

We now claimthat (X [ [, Y, po) is the categorical pushout of (X, xg) and
(Y, y0) over (Z, zp) with respect to (f, g) in Sets.. First we need to check
that the relevant pushout diagram commutes, i.e. that we have

inj
(X HZ Y! PO) (_2 (Y:yO)
injjof =injyog, inj1’ ’g

(X,.X'()) ‘ f (ZIZO)'

Indeed, given z € Z, we have

[injy o f1(2) = inj1(f(2))
=[(0,f(2))]
=[(1,8(2))]
= inj3(g(2))
= [injy 0 g](2),
where [(0,f(2))] = [(1, g(2))] by the definition of the relation~on X [ [ Y

(the coproduct of unpointed sets of X and Y). Next, we prove that X [] zY
satisfies the universal property of the pushout. Suppose we have a diagram
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of the form

(P, %) /\

(X L1z Y, po) <iniz— (Y, y0)

T r
1

injy g

(Xr X())

f (Z! ZO)

in Sets,. Then there exists a unique morphism of pointed sets

¢: (X 1z Y, po) = (P,*)

making the diagram

(P, %) 2
T\\\ 3!
AN

(X HZ Y! PO) < injy — (Y! _yO)
T r
inj; g

(Xr X())

f (Z! ZO)

commute, being uniquely determined by the conditions
¢ ° injl =11,
poinjy =12

via
fu ifx =02,
#) = {my) ifx = [(1,y)]

foreachp € X [[, Y, where the well-definedness of ¢ is proven in the same
way as in the proof of Definition 2.2.4.1.1. Finally, we show that ¢ is indeed a

morphism of pointed sets, as we have

¢(po) = ¢([(0,x0)])
= 11(x0)

:*,
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or alternatively

¢(po) = ¢([(L, y0)])
=12()0)
= *’
where we use that ¢q (resp. i) is a morphism of pointed sets. O

Q0BG Proposition3.3.4.1.2. Let (X, xq), (Y, y0), (Z, zp), and (A, ap) be pointed
sets.

00BH 1. Functoriality. The assignment (X,Y,Z,f,¢g) — X [, Y definesa
functor

-1 [1_, —1: Fun(®, Sets) — Sets.,

where P is the category that looks like this:

In particular, the action on morphisms of —; [[_, —1 is given by send-
ing a morphism

X1, Y Y
r ’Y‘
Xz ¥ — Y’
r g
. |
Xe—~I| 7 g
\ N
X
¢ N
X’ A
f’

in Fun(%, Sets,) to the morphism of pointed sets

£: (X 1zY,po) = (X" 1z Y, pp)

given by
et |$(x) ifp=1[(0,x)],
¢ =
®) {wy) itp=[(L)]
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foreachp € X [[, Y, whichis the unique morphism of pointed sets
making the diagram

XUZY Y
\\I_ ’ X
Xz ¥ Y’
r g
. |
Xe—|—7 g
\ \)(
¢ N
X’ A

commute.

00BJ 2. Associativity. Given a diagram

X Y Z
NN A
w %
in Sets, we have isomorphisms of pointed sets

XUwY v Z=XUwY) Uy (Y v 2) =X lHw (Y Ly 2),

where these pullbacks are built as in the diagrams

X UwY) Uy Z X Uw Y) Uy (Y v 2) X Uw (Y Lv 2)

e /7N SN
XwY XUwY YIvZ YIvZ
VRN SN /0N VAN

X Y Z, X Y Z, X Y Z.
N AN A N AN A N AN A
w |4 w \4 w \%4

00BK 3. Unitality. We have isomorphisms of sets

A

S
S

q

XuxAEA,

f Allx X = A

—~-

S
S
S
S
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00BL 4. Commutativity. We have an isomorphism of sets

XUzY —Y Y, X — X
r r

’ ¢ XL Y=YIX ’ /

X ; Z, Y Z Z.

00BM 5. Interaction With Coproducts. We have

XVY —Y

-
XUptYEX\/Y, | J[yOJ

00BN 6. Symmetric Monoidality. Thetriple (Sets., [ [x, (X, xg)) is a symmetric
monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits,
?? of 22, with the explicit expression for £ following from the commutativity
of the cube pushout diagram.

Item 2, Associativity: This follows from Item 2 of Proposition 2.2.4.1.4.

Item 3, Unitality: This follows from Item 3 of Proposition 2.2.4.1.4.

Item 4, Commutativity: This follows from Item 4 of Proposition 2.2.4.1.4.
Item 5, Interaction With Coproducts: Clear.

Item 6, Symmetric Monoidality: Omitted. O

00BP 3.3.5 Coequalisers
Letf,g: (X, x0) = (Y, yo) be morphisms of pointed sets.
00BQ Definition3.3.5.1.1. The coequaliserof (f, g) isthe pointedset (CoEq(f, g), [¥o])-

Proof. We claim that (CoEq(f, g), [¥o0]) is the categorical coequaliser of f
and g in Sets,. First we need to check that the relevant coequaliser diagram
commutes, i.e. that we have

coeq(f,g) o f = coeq(f,g) o g.
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Indeed, we have

[coeq(f, g) o f1(x) £ [coeq(f, )] (f(x))
= If ()]

g(x)]

coeq(f, g)](g(x))

coeq(f, g) o gl (x)

o
& 1l

a
@
o

=1
[
[
[

foreach x € X. Next, we prove that CoEq(f, g) satisfies the universal prop-
erty of the coequaliser. Suppose we have a diagram of the form

L2909, (cokq(f, g), [0])

T

(C,%)

f
(X, x0) ? (Y, 0)

inSets. Then, since c(f(a)) = c(g(a)) foreacha € A, itfollows from Items 4

3!
andsof Proposition7.5.2.1.3 thatthereexistsauniquemap ¢ : CoEq(f, g) —
C making the diagram

f coe
(X,x0) = (V,30) < (CoEq(f, 9), o))

|
\ ¢ : 3!
¢ |
v
(C, %)
commute, where we note that ¢ is indeed a morphism of pointed sets since

¢([yol) = [¢ o coeq(f, g)1([»0])

= c([yol)
= *,
where we have used that ¢ is a morphism of pointed sets. O
Q0BR Proposition3.3.5.1.2. Let (X, xg) and (Y, yo) be pointedsetsandletf, g, h: (X, x¢) —

(Y, y0) be morphisms of pointed sets.
00BS 1. Associativity. We have isomorphisms of pointed sets

CoEq(coeq(f, g) o f,coeq(f,g) o h) = CoEq(f,g h) = CoEq(coeq(g, h) o f, coeq(g, h) o g),

=CoEq(coeq(f,g)og,coeq(f.g)oh) =CoEq(coeq(g,h) of ,coeq(g,h)oh)
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where CoEq(f, g, h) is the colimit of the diagram
N
(X, x0) —23 (Y, 0)
h

in Sets,.

Q0BT 2. Unitality. We have an isomorphism of pointed sets
CoEq(f,f) = B.
00BU 3. Commutativity. We have an isomorphism of pointed sets

CoEq(f,g) = CoEq(g,f).

Proof. Item 1, Associativity: This follows from Item 1 of Proposition 2.2.5.1.4.
Item 2, Unitality: This follows from Item 4 of Proposition 2.2.5.1.4.
Item 3, Commutativity: This follows from Item 5 of Proposition 2.2.5.1.4. O

o0BV 3.4 Constructions With Pointed Sets
00BW 3.4.1 Free Pointed Sets
Let X be a set.

00BX Definition3.4.1.1.1. The free pointed set on X is the pointed set X* consist-
ing of:

- The Underlying Set. The set X* defined by"

XTEX ] pt

def

=X [ {x}.

- The Basepoint. The element x of X*.
00BY Proposition3.4.1.1.2. Let X be aset.
00BZ 1. Functoriality. The assignment X — X defines a functor
(=)": Sets — Sets,,

where

" Further Notation: We sometimes write x x for the basepoint of X* for clarity when there
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- Action on Objects. For each X € Obj(Sets), we have
[ = x7,

where X% is the pointed set of Definition 3.4.1.1.1;

- Action on Morphisms. For each morphismf: X — Y of Sets, the
image
f+: X+ N Y+

of f by (=)" is the map of pointed sets defined by

def {f(X) ifx € X,

fr(x) = .
*xy  ifx = *x.
00C0o 2. Adjointness. We have an adjunction

(=)
((—)+ 4 /tE\) Setsz Sets,,

=
G

witnessed by a bijection of sets
Sets, ((X*, xx), (Y, y0)) = Sets(X,Y),
natural in X € Obj(Sets) and (Y, yo) € Obj(Sets.).

00C1 3. Symmetric Strong Monoidality With Respect to Wedge Sums. The free
pointed set functor of Item 1 has a symmetric strong monoidal struc-
ture

(& L M) Sets, 11,0 - (Sets., v, p),
being equipped with isomorphisms of pointed sets
(—);I;I S XTVYTS (XTI Y)Y
(- e 25 00,
natural in X, Y € Obj(Sets).

00C2 4. Symmetric Strong Monoidality With Respect to Smash Products. The free
pointed set functor of Item 1 has a symmetric strong monoidal struc-

are multiple free pointed sets involved in the current discussion.
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ture
(55 ()P (9)T7): (Sets, %, pt) — (Sets*,/\, SO),
being equipped with isomorphisms of pointed sets
(yy XTAY? S (X xY)
(2)77: 80 = pt,
natural in X, Y € Obj(Sets).

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: We claim there’s an adjunction (=) 4 =, witnessed by
a bijection of sets

Sets. ((X*, xx), (Y, y0)) = Sets(X,Y),
natural in X € Obj(Sets) and (Y, yg) € Obj(Sets..).
- Map |. We define a map
Dy y: Sets, ((X*, *x), (Y, 30)) — Sets(X,Y)
by sending a pointed function
£: (X", xx) = (Y, 30)

to the function
X5y

given by
def

Ef(x) S E(x)
foreachx € X.
- Map Il. We definea map
Yxy: Sets(X,Y) — Sets. ((X*, xx), (Y, 0))
given by sending a function£: X — Y to the pointed function
£ (X*, *x) = (Y, 30)

defined by
iy & {f(x) ifx € X,

Yo ifx = xx

foreachx € X*.
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- Invertibility I. We claim that

Yxy © Ox,y = idsets, ((X*%x),(Y,30))»
which is clear.
- Invertibility 1. We claim that
Oxy o Yxy = idsets(x,v),
which is clear.
- Naturality for ®, Part |. We need to show that, given a pointed function
g: (Y, 30) — (Y, (), the diagram
Sets. (X*, %x), (Y, 0)) —5 Sets(X, Y)
8 8+

Sets, ((X*, %x), (Y, %)), o Sets(X,Y”)

commutes. Indeed, given a pointed function
£ (XF, *x) = (Y, 0)
we have

[®xy © g:](§) = xy (g.(8))
=Oxy (gof)
=gof
=g o dyxy (¢)
= g.(Pxy/ (8))
= g+ 0 ox,y | (£).

- Naturality for ®, Part Il. We need to show that, given a pointed function
f: (X,x0) = (X’,x}), the diagram

Sets, ((X"”, *X), v, yo)) 2 Sets(X, Y)

T

Sets.. ((X*, xx), (Y, y0)) vy Sets(X,Y)
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commutes. Indeed, given a function
£ X =Y,
we have

[@xy o f*](£) = xy(f*(£))
=0xy(£of)
=fof
=0y y(£)of
=f"(Ox/y(£))
=f"(®x/y(£))
= [f* o ox/v] (£).

- Naturality for Y. Since ® is natural in each argument and ® is a com-
ponentwise inverse to Y in each argument, it follows from Item 2 of
Proposition 8.8.6.1.2 that ¥ is also natural in each argument.

Item 3, Symmetric Strong Monoidality With Respect to Wedge Sums: The isomor-
phism
o XtVvYt S (XY

is given by
X ifz=1[(0,x)] withx € X,
(2) = Y ifz=[(1,y)]withy €Y,
= *ypy 2= [0, xx)],
*yy iz =10 xy)]

foreachz € X* v Y*, with inverse
(XIS X VYt

given by
[(0,0)] ifz=[(0,x)],
¢ D E0,)] ifz=[(1 )],
Po ifz:*XHY

foreachz e (X[ Y)*.
Meanwhile, the isomorphism pt = 0% is given by sending % x to x¢.
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That these isomorphisms satisfy the coherence conditions making the func-
tor (=) symmetric strong monoidal can be directly checked element by
element.
Item 4, Symmetric Strong Monoidality With Respect to Smash Products: The iso-
morphism

$: X AYT S (XxY)*

is given by

(x,y) ifx# xxandy # xy
*xxxy Otherwise

¢(xAy)={

foreachx A y € X* A Y™, withinverse
4l (X XxY)T S X AYY
given by

qﬁ_l(z) def XAY ifz=(x,y)with(x,y) e X XY,
*xx A Xy ifz = *xxy,

foreachz € (X[ Y)".
Meanwhile, the isomorphism SV = pt* is given by sending x to 1 € SV =
{0,1}and % to 0 € S°.
That these isomorphisms satisfy the coherence conditions making the func-
tor (=)* symmetric strong monoidal can be directly checked element by
element. O
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Chapter4

Tensor Products of Pointed Sets

00C3 Inthis chapter we introduce, construct, and study tensor products of pointed
sets. The most well-known among these is the smash product of pointed sets

A: Sets, x Sets, — Sets,,

introduced in Section 4.5.1, defined via a universal property as inducing a
bijection between the following data:

- Pointedmapsf: X AY — Z.
- Mapsofsetsf: X XY — Z satisfying
f(x0,») = zo,
f(x,y0) = zo
foreachx € Xandeachy €Y.
As it turns out, however, dropping either of the bilinearity conditions
f(x0,¥) = zo,
f(x,y0) = zo
while retaining the other leads to two other tensor products of pointed sets,

<: Sets, X Sets,, — Sets,,

>: Sets, X Sets, — Sets,,

called the left and right tensor products of pointed sets. In contrast to A, which
turns outtoendow Sets, with amonoidal category structure (Proposition 4.5.9.1.1),
these do not admitinvertible associators and unitors, but do endow Sets,

138
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with the structure of a skew monoidal category, however (Propositions 4.3.8.1.1
and 4.4.8.1.1).

Finally, in addition to the tensor products <, >, and A, we also have a “tensor
product” of the form

O®: Sets X Sets, — Sets,,

called the tensor of sets with pointed sets. All in all, these tensor products
assemble into a family of functors of the form

®,c: Mong, (Sets) X Mong, (Sets) — Mong,,, (Sets),
<ik: Mong, (Sets) x Mong, (Sets) — Mong, (Sets),
>ir: Mong, (Sets) X Mong, (Sets) — Mong, (Sets),

wherek, £,i € Nwithi < k — 1. Together with the Cartesian product x of
Sets, the tensor products studied in this chapter form the cases:

- (k, ¢) = (—1,-1) for the Cartesian product of Sets;

- (k, £) = (0,—1) and (-1, 0) for the tensor of sets with pointed sets of
Definition 4.2.1.1.1;

- (i,k) = (=1, 0) for the leftand right tensor products of pointed sets
of Sections 4.3 and 4.4;

- (k, t) = (-1, -1) for the smash product of pointed sets of Section 4.5.

In this chapter, we will carefully define and study bilinearity for pointed sets,
as well as all the tensor products described above. Then, in ??, we will extend
these to tensor products involving also monoids and commutative monoids,
which will end up covering all cases up to k, £ < 2, and hence all cases since
E,-monoids on Sets are the same as Eo-monoids on Sets when k > 2.
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ooc4 4.1 Bilinear Morphisms of Pointed Sets
00C5 4.1.1 Left Bilinear Morphisms of Pointed Sets
Let (X, x0), (Y, y0),and (Z, z) be pointed sets.

00C6 Definition4.1.1.1.1. Aleftbilinearmorphism of pointedsetsfrom (X x Y, (x¢, y0))
to (Z,zg) isamap of sets

f: XXY—>Z
satisfying the following condition:™-

(x) Left Unital Bilinearity. The diagram

pt X pt
idptxey/ A
ptxY pt
[xo]xidy [z0]

X X Y f—) Z
commutes, i.e. foreach y € Y, we have
f(x0,¥) = 20.

00C7 Definition 4.1.1.1.2. The set of left bilinear morphisms of pointed sets from
(X XY, (x0,y0)) to(Z,zp) isthe set Hom?éLts (X xY,Z) defined by

HomZ: (X x Y,Z) € {f € Homsews(X X Y, Z) | f is left bilinear}.

'Slogan: The map f is left bilinear if it preserves basepoints in its first argument.
2Succinctly, f is bilinear if we have

f(x0,¥) =z0
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00C8 4.1.2 RightBilinear Morphisms of Pointed Sets
Let (X, x0), (Y, y0), and (Z, zg) be pointed sets.

00C9 Definition4.1.2.1.1. Arightbilinearmorphism of pointedsetsfrom (X x Y, (x0, y0))
to (Z,zg) isamap of sets

f: XXY—>Z
satisfying the following condition:>-4
(*) Right Unital Bilinearity. The diagram

pt X pt

€X><idV NN

X X pt pt

idXX[yo]\ /[zo]

XXYTZ

commutes, i.e. foreach x € X, we have
f(x, yo) = zo.

00CA Definition 4.1.2.1.2. The set of right bilinear morphisms of pointed sets
from (X X Y, (x0, y0)) to (Z, zg) is the set Homg’gs‘ (X xY,Z)defined by

def

Hom2R (X X Y,Z) = {f € Homsets(X X Y, Z) | f is right bilinear}.

Sets,
00CB 4.1.3 Bilinear Morphisms of Pointed Sets
Let (X, x0), (Y, y0), and (Z, zg) be pointed sets.

00CC Definition4.1.3.1.1. Abilinearmorphismof pointedsetsfrom (X X Y, (x¢, y0))
to (Z,zg) isamap of sets

f: XXY—>Z

thatis both left bilinear and right bilinear.

foreachy e Y.
3Slogan: The mapf is right bilinear if it preserves basepoints in its second argument.
4Succinctly, f is bilinear if we have

f(x,y0) =20
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00CD Remark4.1.3.1.2. Indetail, abilinearmorphism of pointedsets from (X x Y, (xq, y0))
to (Z, zg) isamap of sets

f: (X xY,(x0,30) = (Z,20)
satisfying the following conditions::
1. Left Unital Bilinearity. The diagram

pt X pt

idptxey/ A
<

ptxY pt

[x0] xidy\ /[zo]

XXYT)Z

commutes, i.e. foreach y € Y, we have
f(xo0, ) = zo.
2. Right Unital Bilinearity. The diagram

pt X pt

EXXidV N

X X pt pt

idxx[yo]\ /[Zo]

XXYTZ

commutes, i.e. foreach x € X, we have
f(xr )’0) = Z0.

00CE Definition 4.1.3.1.3. The set of bilinear morphisms of pointed sets from
(X XY, (x0,y0)) to (Z,zp) istheset Hom? __ (X x Y, Z) defined by

Sets.
def

Homgets* (X XY,Z) ={f € Homges(X X Y, Z) | f is bilinear}.

foreachx € X.
5Slogan: The map f is bilinear if it preserves basepoints in each argument.
6Succinctly, f is bilinear if we have

f(x()ry) = 20,
f(x,30) = z0
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4.2 Tensors and Cotensors of Pointed Sets by Sets

4.2.1 Tensors of Pointed Sets by Sets
Let (X, x() be a pointed set and let A be a set.

Definition 4.2.1.1.1. The tensor of (X, xg) by A7 is the pointed set® A ©
(X, x0) satisfying the following universal property:

(UP) We have a bijection
Sets, (A ® X, K) = Sets(A, Sets, (X, K)),
naturalin (K, kg) € Obj(Sets.).

Remark 4.2.1.1.2. The universal property in Definition 4.2.1.1.1is equivalent
to the following one:

(UP) We have a bijection
Sets.(A® X,K) = Sets%’0 (Ax X, K),

naturalin (K, ky) € Obj(Sets.), where Setsg0 (AX X,K) istheset
defined by

def

Setsg0 (AXX,K) = {f € Sets(A x X, K)

foreacha € A, we
have f(a, x0) = ko |

Proof. We claim we have a bijection
Sets(A, Sets.. (X, K)) = SetsgO (Ax X,K)

naturalin (K, ky) € Obj(Sets,). Indeed, this bijection is a restriction of the
bijection
Sets(A, Sets(X, K)) = Sets(A x X, K)
of Item 2 of Proposition 2.1.3.1.2:
- Amap
£: A — Sets,.(X,K),
at— (£,: X - K),

foreachx € Xandeachy €Y.
7 Further Terminology: Also called the copower of (X, xg) by A.
8 Further Notation: Often written A © X for simplicity.
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in Sets(A4, Sets.. (X, K)) gets sent to the map

£ AXX > K
defined by

£ (a,x) Z £ (x)
foreach (a,x) € A x X, whichindeed lies in SetsgO (Ax X,K), as
we have

gT(a, X(]) déf fa(x(])
def

foreacha € A, where we have used that £, € Sets, (X, K) isa mor-
phism of pointed sets.

- Conversely, a map
E: AxX —- K

in SetsgO (A X X, K) gets sent to the map

£ A — Sets, (X, K),
a b (fZ: X - K),
where
£ X K
is the map defined by

def

£l (x) E£(a x)

foreach x € X, andindeed lies in Sets, (X, K), as we have

£l (x0) = £(a, x0)
def

= ko.

This finishes the proof. O

00CK Construction 4.2.1.1.3. Concretely, the tensor of (X, x() by A is the pointed
set A © (X, xo) consisting of:
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- The Underlying Set. The set A © X given by

A0X = \/(X,x),
acA

where V ,c4(X, x) is the wedge product of the A-indexed family
((X, x0)) 44 Of Definition3.3.2.1.1.

- The Basepoint. The point [(a, x9)] = [(a’, x0)] of V ,e4 (X, x0).
Proof. (Proven below in a bit.) m|

00CL Notation 4.2.1.1.4. We write a © x forthe element [(a, x)] of

A0X = \/(X,x)
acA

E (]_[ Xl-)/~.

iel

00CM Remark 4.2.1.1.5. Taking the tensor of any element of A with the basepoint
xo of X leads to the same elementin A ® X, i.e. we have

a®xg=a O xg,

foreach a,a’ € A. Thisis due to the equivalence relation ~ on

\V xxo) €] [ x/~

acA acA

identifying (a, xg) with (a’, xg), so that the equivalence class a ® xq is inde-
pendent from the choice of a € A.

Proof. We claim we have a bijection
Sets. (A © X, K) = Sets(A, Sets. (X, K))
natural in (K, kg) € Obj(Sets.).

- Map |. We define a map
O : Sets,.(A© X, K) — Sets(A4, Sets. (X, K))
by sending a morphism of pointed sets

£: (A0 X,a0 x9) = (K, ko)
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to the map of sets

£ A — Sets, (X, K),
a b (6:X > K),

where
ga: (X; xO) - (Kr kO)

is the morphism of pointed sets defined by

def

fa(x) = E(a © x)
foreach x € X. Note that we have

£,.(x0) Z £(a © xo)
= ko,

so thaté, isindeed a morphism of pointed sets, where we have used
that £ isa morphism of pointed sets.

- Map Il. We define a map
Yk : Sets(A, Sets.. (X, K)) — Sets.(A© X, K)
given by sending a map

£: A — Sets,(X,K),
at— (£,: X - K),

to the morphism of pointed sets
£ (Ao X,a0x0) = (K, ko)

defined by
def

£ (a0 x) = &(x)

foreacha®x € A® X. Notethat£" isindeed a morphism of pointed
sets, as we have

£5(a @ x0) E £,(x0)
= ko,

wherewe have usedthat£(a) € Sets, (X, K) isamorphism of pointed
sets.
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- Invertibility I. We claim that
Yk o Ok = idsets, (40X ,K)-
Indeed, given a morphism of pointed sets
£: (A0 X,a0xg) — (K ko),
we have

[Yx o @k ] (&) = Yk (Px(£))
= ‘YK([[a — x> é@o x)]]]])
= ¥%([¢' o [¥' o £ 0 2)]])
=[aox > evy(evy([a” - [x" - £(a" 0 x")]]))]
=laox - ev([x - faox)])]
=lacx—£(aox)]
=¢.

- Invertibility Il. We claim that
Qg o Yi = idsets(aSets, (X,K))-

Indeed, given a morphism&: A — Sets, (X, K), we have

[k o ¥k] (&) = Ok (Yk(§))
= Ok ([a © x > £, (x)])
=[ar [x — £(2)]]

=[a £(a)]
=¢.
- Naturality of . We need to show that, given a morphism of pointed
sets
¢: (K ko) — (K’ kp),
the diagram

Sets,(A® X, K) —X Sets(A, Sets. (X, K))
b $).

Sets.(A® X,K’) - Sets(A, Sets..(X, K”))
K/
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commutes. Indeed, given a morphism of pointed sets
£E: (A0 X,a0 x9) — (K, k),
we have
[Okr © ¢:](&) = Pk (¢:(£))

=Pk (p o)
=(¢08)’
=[am ¢ofa0-)
=[a ¢ (f(a0 )]
= (¢).([am (@0 -]))
= (). (Pk (£))
= [($). 0 Ok](8).

- Naturality of ¥. Since @ is natural and @ is a componentwise inverse to
VY, it follows from Item 2 of Proposition 8.8.6.1.2 that Y is also natural.

This finishes the proof. O
Q0CN Proposition 4.2.1.1.6. Let (X, xg) be a pointed setand let A be a set.

00CP 1. Functoriality. The assignments A, (X, x¢), (4, (X, x¢)) define func-
tors

A ® —: Sets, — Sets,,
— ® X : Sets — Sets,,

—1 ® —9: Sets X Sets, — Sets,.
In particular, given:

- Amapofsetsf: A — B;
- Apointedmap ¢: (X, xg) — (Y, y9);

the induced map
fOp: AGX - BOY
is given by
[f ©¢1(a©x) = f(a) © $(x)

foreacha©x € A0 X.


https://topological-modular-forms.github.io/the-clowder-project/tag/00CN
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00CQ 2. Adjointness|. We have an adjunction

-0X
~
(- O X 4Sets, (X,-)): Sets L Sets,,
~
Sets. (X,-)

witnessed by a bijection
Sets, (A ® X, K) = Sets(A, Sets, (X, K)),
natural in A € Obj(Sets) and X, Y € Obj(Sets.).
00CR 3. Adjointness Il. We have an adjunctions

Ao—
(Ao—+4AM-): Sets*z Sets,,
Ah—

witnessed by a bijection
Homsgets, (A ©® X, Y) = Homsets, (X, A Y),
naturalin A € Obj(Sets) and X, Y € Obj(Sets.).
00CS 4. AsaWeighted Colimit. We have
A0 X = colim4(X),
where in the right hand side we write:

- Aforthe functor A: pt — Sets picking A € Obj(Sets);
- X forthefunctor X : pt — Sets, picking (X, xg) € Obj(Sets,).

00CT 5. lterated Tensors. We have an isomorphism of pointed sets
AO(BoX)=(AXB)oX,
naturalin A, B € Obj(Sets) and (X, xg) € Obj(Sets,).
00CU 6. Interaction With Homs. We have a natural isomorphism

Sets.(A® X,—) = A M Sets. (X, -).

0oCV 7. The Tensor Evaluation Map. Foreach X,Y € Obj(Sets,), we have a


https://topological-modular-forms.github.io/the-clowder-project/tag/00CQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00CR
https://topological-modular-forms.github.io/the-clowder-project/tag/00CS
https://topological-modular-forms.github.io/the-clowder-project/tag/00CT
https://topological-modular-forms.github.io/the-clowder-project/tag/00CU
https://topological-modular-forms.github.io/the-clowder-project/tag/00CV
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map
evyy: Sets. (X, Y) 0o X - Y,

natural in X, Y € Obj(Sets.), and given by

def

=f(x)

foreachf © x € Sets.(X,Y) © X.

evg y(f © x)

8. The Tensor Coevaluation Map. Foreach A € Obj(Sets) andeach X €
Obj(Sets,), we have amap

coevly  : A — Sets. (X, 40 X),
natural in A € Obj(Sets) and X € Obj(Sets.), and given by
coev; v (a) Ex - a0x]
foreacha € A.

Proof. Item 1, Functoriality: This is the special case of 2? of 2? forwhen C =
Sets.,.

Item 2, Adjointness I: This is simply a rephrasing of Definition 4.2.1.1.1.

Item 3, : Adjointness II: This is the special case of 2? of ?? for when C = Sets,.
Item 4, As a Weighted Colimit: This is the special case of ?? of 2? forwhen C =
Sets..

Item 5, Iterated Tensors: This is the special case of 2? of 22 for when C = Sets,.
Item 6, Interaction With Homs: This is the special case of 2? of ?? for when
C = Sets..

Item 7, The Tensor Evaluation Map: This is the special case of ?? of 2? for when
C = Sets..

Item 8, The Tensor Coevaluation Map: This is the special case of 22 of 2? for when
C = Sets.. |

00CX 4.2.2 Cotensors of Pointed Sets by Sets

0oCY

Let (X, xg) be a pointed set and let A be a set.

Definition 4.2.2.1.1. The cotensor of (X, x() by A’ is the pointed set’® A M
(X, x¢) satisfying the following universal property:

% Further Terminology: Also called the power of (X, x) by A.
" Further Notation: Often written A h X for simplicity.


https://topological-modular-forms.github.io/the-clowder-project/tag/00CW
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(UP) We have a bijection
Sets, (K, A h X) = Sets(A, Sets, (K, X)),
naturalin (K, kg) € Obj(Sets..).

00CZ Remark4.2.2.1.2. The universal property of Definition 4.2.2.1.1 is equivalent
to the following one:

(UP) We have a bijection
Sets.(K,Ah X) = Setsg0 (Ax K, X),

natural in (K, kg) € Obj(Sets,), where SetsgO (Ax K, X) is the set
defined by

def

Setsgo(Ax K, X)= {f € Sets(A x K, X)

foreacha € A, we
havef(a, ko) = X0 .

Proof. This follows from the bijection

Sets(A, Sets. (K, X)) = SetsgO (Ax K, X),

natural in (K, kg) € Obj(Sets.) constructed in the proof of Remark 4.2.1.1.2.
O

00DQ Construction4.2.2.1.3. Concretely, the cotensorof (X, x() by Aisthe pointed
set A (X, xg) consisting of:

- The Underlying Set. The set A th X given by

A X = /\(X,xo),

acA

where A, c4(X, x0) is the smash product of the A-indexed family
((X, x0)) 4e 4 Of Definition 4.6.1.1.1.

- TheBasepoint. The point [(xg),c4] = [(x0, X0, %0, ---)] of Azea (X, x0).

Proof. We claim we have a bijection
Sets, (K, A th X) = Sets(A, Sets. (K, X)),

naturalin (K, kg) € Obj(Sets..).


https://topological-modular-forms.github.io/the-clowder-project/tag/00CZ
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- Map I. We define a map
@ : Sets, (K, A X) — Sets(A, Sets. (K, X)),
by sending a morphism of pointed sets
£: (K ko) = (A X, [(x0)gen])
to the map of sets

£: A — Sets. (K, X),
at (£,: K-> X),

where
£at (K, kO) - (X, xO)
is the morphism of pointed sets defined by

£ (k) = xkifE(k) # [(x0)geal,
¢ xg ifE(k) = [(x0)4eal

foreachk € K, where x¥ is the ath componentof (k) = [ (x¥),_,].
Note that:

1. The definition of £, (k) is independent of the choice of equiva-
lence class. Indeed, suppose we have

£ =+,
=102)...]

with x¥ # y* forsome a € A. Then there exist ay,a, € Asuch
that x’;x = yfy = xg. The equivalence relation ~on [[,c4 X
then forces

[(X'S)aeA] = [(x0)qeal,
[(yf)aeA] = [(x0)qeal,

however, and &, (k) is defined to be x in this case.
2. Themap &, isindeed a morphism of pointed sets, as we have

£q.(ko) = x

since £(ko) = [(x0),c4] as & isa morphism of pointed sets and
£,(kp), defined to be the ath component of [(xg),c 4], is equal
to xg.
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- Map Il. We define a map
Y : Sets(A, Sets. (K, X)) — Sets.(K, A h X),
given by sending a map

£: A — Sets,. (K, X),
at— (£,: K- X),

to the morphism of pointed sets

ET: (K’ kU) - (A M X, [(XO)aGA])

defined by
def
E" (k) = [(£a(k)) genl
foreachk € K. Note that £7 isindeed a morphism of pointed sets, as
we have
£ (ko) Z [(£a(k0)) aea]
= X,

where we have used that £, € Sets, (K, X) is a morphism of pointed
sets foreacha € A.

- Naturality of Y. We need to show that, given a morphism of pointed
sets
¢: (K, ko) — (K, kg),

the diagram
Sets(A, Sets. (K’, X)) — Sets.(K’, A h X)
(¢7). ¢*
Sets(A, Sets. (K, X)) 5 Sets, (K, A h X)
commutes. Indeed, given a map of sets

£: A — Sets, (K, X),
at— (&,: K' - X),
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we have

[¥k o (¢).](6) = ¥ ((4),(8))
=Y ((¢),([a — &]))
=Y (([a — ¢*(£)]))
=Yk (([a — [k — Za(¢(RDII))
= [k [Ea(@(R))geull
= ¢ ([k' = [(Za(k'))aeall)
= ¢ (Y (4))
= [¢" o Y] (9).

- Naturality of ®. Since ¥ is natural and ¥ is a componentwise inverse to
®, it follows from Item 2 of Proposition 8.8.6.1.2 that ® is also natural.

- Invertibility I. We claim that
Yk o Ok = idsets, (ka0 x)-
Indeed, given a morphism of pointed sets
£: (K ko) = (AN X, [(x0)4eal)

we have

[Yk o ®x](£) = Yk (P (£))
=Yk ([a — &)
=Yk ([a’ — £])
= [k~ [(eva([a’ = & (R)])),cull
= [k [(£a(k))geal]-

Now, we have two cases:

1. If€(k) = [(x0),e4], we have

[Yk o ©x](£) =---
= [k — [(£a(k))qeall
= [k = [(x0)4eall
= [k £(k)]
=¢.
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2. IfE(k) # [(x0)4ea) and £(k) = [(x¥), ] instead, we have

[Yx 0 Px](£) =---
= [k = [(£a(k))4eall

=l [(),.
= [k — £(k)]
=3

In both cases, we have [ ¥ o ®x](£) = £, and thus we are done.
- Invertibility Il. We claim that

dx o Yy = iCI.Sets(A,Sets*(K,X))'
Indeed, given a morphism £: A — Sets, (K, X), we have
[Pk o Yk] (&) = P (Yk(£))
= (I)K([[k (i [(Eu(k))aeA]ﬂ)
=[a [k & (R)]]
=¢

This finishes the proof. O

00D1 Proposition 4.2.2.1.4. Let (X, xg) be a pointed set and let A be a set.

00D2 1. Functoriality. The assignments A, (X, x¢), (4, (X, x¢)) define func-
tors

A —: Sets, — Sets,,
— M X: Sets°® — Sets,,

—1 M —9: Sets®P x Sets, — Sets,.
In particular, given:

- Amapofsetsf: A — B;
- Apointedmap ¢: (X, xo) — (Y, y0);

the induced map
fog: AhX > BhY
is given by
[f © $1([(xa)aeaD) £ [((x7(@)) yeu]
foreach [(x4),e4] € A h X.


https://topological-modular-forms.github.io/the-clowder-project/tag/00D1
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00D3 2. Adjointness|. We have an adjunction

-MhX
~—
(=M X 4 Sets, (-, X)): Sets®® L = Sets,,
~—
Sets, (—,X)

witnessed by a bijection

Sets;P (A M X, K) = Sets(A, Sets, (K, X)),
i.e. by a bijection

Sets, (K, A h X) = Sets(A, Sets. (K, X)),
natural in A € Obj(Sets) and X, Y € Obj(Sets.).

00D4 3. Adjointness Il. We have an adjunctions

Ao-
(Ao—4AM-): Sets*:?/ Sets.,
Ah—

witnessed by a bijection
Homsgets, (A © X, Y) = Homges, (X, A h Y),
natural in A € Obj(Sets) and X, Y € Obj(Sets.).
00D5 4. AsaWeighted Limit. We have
At X = limlAl(X),
where in the right hand side we write:

- Aforthe functor A: pt — Sets picking A € Obj(Sets);
- X forthefunctor X : pt — Sets, picking (X, xg) € Obj(Sets,).

00D6 5. lterated Cotensors. We have an isomorphism of pointed sets
AhN (BhX)=(AxB) hX,
natural in A, B € Obj(Sets) and (X, x¢) € Obj(Sets,).
00D7 6. Commutativity With Homs. We have natural isomorphisms

A M Sets, (X, —) = Sets, (A0 X, -),
A M Sets,(—,Y) = Sets,(—,AM Y).


https://topological-modular-forms.github.io/the-clowder-project/tag/00D3
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7. The Cotensor Evaluation Map. Foreach X,Y € Obj(Sets.), we have a
map
evghm,: X — Sets, (X, Y) N Y,

naturalin X, Y € Obj(Sets.), and given by

def

evgh(yy(X) = [(f(x))fesets, (x,v)

foreachx € X.

8. The Cotensor Coevaluation Map. For each X € Obj(Sets,) and each
A € Obj(Sets), we have amap

coevgx: A — Sets, (A X, X),
natural in X € Obj(Sets,) and A € Obj(Sets), and given by

coev) (@) = [[(xp)peal > xd]
foreacha € A.

Proof. Item 1, Functoriality: This is the special case of 22 of ?? for when C =
Sets.,.

Item 2, Adjointness I: This is simply a rephrasing of Definition 4.2.2.1.1.

Item 3, : Adjointness II: This is the special case of ?? of ?? for when C = Sets,.
Item 4, As a Weighted Limit: This is the special case of ?? of 22 for when C =
Sets..

Item 5, Iterated Cotensors: This is the special case of 22 of 2? forwhen C = Sets,.
Item 6, Commutativity With Homs: This is the special case of 22 of 22 for when
C = Sets..

Item 7, The Cotensor Evaluation Map: This is the special case of 22 of 2? for when
C = Sets..

Item 8, The Cotensor Coevaluation Map: This is the special case of ?? of ?? for
when C = Sets.. |

4.3 The Left Tensor Product of Pointed Sets

4.3.1 Foundations

Let (X, xg) and (Y, yg) be pointed sets.
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Definition 4.3.1.1.1. The left tensor product of pointed sets is the functor"
<: Sets, X Sets, — Sets,

defined as the composition

Catsp
Setsy,Sets

idx &= o)
Sets, X Sets, N Sets, X Sets Sets x Sets, — Sets,,,

where:

. 7&: Sets, — Sets s the forgetful functor from pointed sets to sets.

Catsy . = . .. .
. ﬁsets*,sets : Sets, X Sets — Sets X Sets, is the braiding of Catsy, i.e.

the functor witnessing the isomorphism

Sets,. X Sets = Sets x Sets,.

- ©: Sets x Sets, — Sets, is the tensor functor of Item 1 of Proposi-
tion4.2.1.1.6.

Remark 4.3.1.1.2. The left tensor product of pointed sets satisfies the follow-
ing natural bijection:

Sets,. (X < Y,Z) = Hom?é';s* (X XY, 2).
Thatis to say, the following data are in natural bijection:
1. Pointedmapsf: X <Y — Z.
2. Mapsofsetsf: X XY — Z satisfyingf(xo, y) = zoforeachy € Y.

Remark 4.3.1.1.3. The left tensor product of pointed sets may be described
as follows:

- Thelefttensor productof (X, xg) and (Y, yo) isthe pair ((X < Y, xg < yp), t)

consisting of

— Apointedset (X < Y, x0 < yp);

— Aleftbilinear morphism of pointedsets:: (X X Y, (x0, y0)) —
X« Y;

satisfying the following universal property:

(up) Given another such pair ((Z, zg), f) consisting of

"' Further Notation: Also written <Igets, -


https://topological-modular-forms.github.io/the-clowder-project/tag/00DC
https://topological-modular-forms.github.io/the-clowder-project/tag/00DD
https://topological-modular-forms.github.io/the-clowder-project/tag/00DE
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* Apointedset (Z, zp);
* Aleftbilinearmorphismof pointedsetsf: (X x Y, (xq, y0)) —
XY,

. . . . E|l
there exists a unique morphism of pointedsets X <« Y — Z
making the diagram

i-<

>

X

~ \
AN
N <—-é-—— A

commute.

00DF Construction 4.3.1.1.4. In detail, the left tensor product of (X, xg) and
(Y, yo) isthe pointed set (X <« Y, [x¢]) consisting of

- The Underlying Set. The set X < Y defined by

def

X<aY¥|Y|ox

= \/ (Xr xO)r

yey
where |Y| denotes the underlying set of (Y, yg);

- The Underlying Basepoint. The point [ (o, x0)] of V ¢y (X, x0), which
isequal to [(y,xp)] forany y € Y.

00DG Notation 4.3.1.1.5. We write'” x < y forthe element [(y, x)] of
X<Y=|YloX.

00DH Remark 4.3.1.1.6. Employing the notation introduced in Notation 4.3.1.1.5,
we have

Xo<<)Yyo=x0<)Yy

foreachy € Y, and
xo<y=x0<y

foreachy,y" €Y.

00DJ Proposition 4.3.1.1.7. Let (X, xp) and (Y, yg) be pointed sets.

"2 Further Notation: Also written x <gets, -
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Q0DK 1. Functoriality. The assignments X, Y, (X,Y) — X <Y define functors

ooDL 2.

X < —: Sets, — Sets,,
— <aY: Sets, — Sets,,

—1 < —9: Sets, X Sets, — Sets,.
In particular, given pointed maps

f: (X, x0) = (A, ao),
g: (Y, y0) — (B, bo),

the induced map
f<g: X<Y—>A<B
is given by
[f < 8l(x < 9) = f(x) 2g(»)
foreachx <y e X Y.
Adjointness . We have an adjunction

(— a4YAH[Y, _]Sets*): Sets*\J./ Sets,,
[Y,-]

gets*
witnessed by a bijection of sets

HomSets* (X aY, Z) = HomSets* (X; [Yr Z]gets*)

<

natural in (X, x), (Y, y0), (Z,z0) € Obj(Sets,), where [X, Y]Sets*
is the pointed set of Definition 4.3.2.1.1.

00DM 3. AdjointnessIl. The functor

X <« —: Sets, — Sets,

does notadmita right adjoint.

QODN 4. Adjointness Ill. We have a bijection of sets

Homgets, (X <Y, Z) = Homseis(|Y], Sets. (X, Z))

natural in (X, xo), (Y, y0), (Z, z9) € Obj(Sets..).
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Proof. Item1, Functoriality: Clear.

Item 2, Adjointness I: This follows from Item 3 of Proposition 4.2.1.1.6.

Item 3, Adjointness II: For X <« —to admit a right adjoint would require it to
preserve colimits by ?? of ??2. However, we have

def

X<pt=|ptjoX
= X
# pt,

and thus we see that X <« — does not have a right adjoint.
Item 4, Adjointness IlI: This follows from Item 2 of Proposition 4.2.1.1.6. O

Remark 4.3.1.1.8. Here is some intuition on why X < — fails to be a left
adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural bijection

Homgets, (X <Y, Z) = Homsges(|Y], Sets. (X, Z)),
so itwould be reasonable to wonder whether a natural bijection of the form
Homsets, (X <Y, Z) = Homses, (Y, Sets. (X, 7)),

also holds, which would give X <— 4 Sets..(X, —). However, such a bijection
would require every map

f: XY —>Z

to satisfy

f(x < y0) =20
foreach x € X, whereas we are imposing such a basepoint preservation
condition only for elements of the form x¢ < y. Thus Sets,.(X, —) cantbea
right adjoint for X < —, and as shown by Item 3 of Proposition 4.3.1.1.7, no
functor can.”
4.3.2 TheLeftInternal Hom of Pointed Sets
Let (X, xg) and (Y, yg) be pointed sets.

Definition 4.3.2.1.1. The leftinternal Hom of pointed sets is the functor

[— =S, : Setse” X Sets, — Sets,

3The functor Sets, (X, —) is instead right adjoint to X A —, the smash product of pointed
sets of Definition 4.5.1.1.1. See Item 2 of Proposition 4.5.1.1.9.
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defined as the composition

op Sxid op )
Sets,” X Sets, —— Sets®P x Sets, — Sets,,
where:
. %&: Sets, — Setsis the forgetful functor from pointed sets to sets.

- M: Sets®P x Sets, — Sets, is the cotensor functor of Item 1 of Propo-
sition 4.2.2.1.4.

Proof. For a proofthat [—, —];ets* isindeed the left internal Hom of Sets,
with respect to the left tensor product of pointed sets, see Item 2 of Proposi-
tion 4.3.1.1.7. O

00DS Remark 4.3.2.1.2. The leftinternal Hom of pointed sets satisfies the follow-
ing universal property:

Sets.(X < Y,Z) = Sets, (X, [Y,Z]<S )

Sets,
That is to say, the following data are in bijection:

1. Pointedmapsf: X <Y — Z.

2. Pointed mapsf: X — [Y,Z]<

Sets,*

00DT Remark 4.3.2.1.3. Indetail, the leftinternal Hom of (X, xg) and (Y, y) is

<

the pointed set ([X, Y]Sets.r [(yO)xEX]) consisting of

- The Underlying Set. The set [ X, Y]<.,. defined by

Sets,
def
[X, Y]Ges, = IXI Y
= /\ (Y, yo0),
xeX

where | X| denotes the underlying set of (X, x¢);
- The Underlying Basepoint. The point [(J’O)xex] of Arex (Y, y0).
00DU Proposition 4.3.2.1.4. Let (X, xg) and (Y, yo) be pointed sets.

00DV 1. Functoriality. The assignments X, Y, (X,Y) — [X, Y]gets* define
functors

[X, =]Sets, : Sets. — Sets.,,

[— Y]Sys, : Sets?® — Sets,,

[—1, =21,  Setse® X Sets, — Sets,.
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In particular, given pointed maps

f: (X, x0) = (A a9),
g: (Y, y0) = (B, bo),

the induced map

[f, g]gets*: [A, Y]gets* - [X, B]gets*

is given by
def

[f, 81Sets, ([Va)aeal) = [(€(r))) cex]
foreach [(1),ea] € [A YIS

Sets, "
2. Adjointness|. We have an adjunction

—-<Y

(— 1Y 4]Y, —];'ets*) : Sets*z Sets.,
[Y'_:l<1

Setss

witnessed by a bijection of sets

Sets,

Homsgets, (X < Y, Z) = Homgets, (X, [Y,Z]< )

natural in (X, xg), (Y, y0), (Z, z9) € Obj(Sets.)
3. Adjointness Il. The functor
X <« —: Sets, — Sets,
does notadmita right adjoint.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness I: This is a repetition of Item 2 of Proposition 4.3.1.1.7, and
is proved there.

Item 3, Adjointness |I: This is a repetition of Item 3 of Proposition 4.3.1.1.7, and
is proved there. O

4.3.3 The Left Skew Unit

Definition 4.3.3.1.1. The left skew unit of the left tensor product of pointed

sets is the functor

q5ets. <. pt — Sets,

defined by
& 60
gets* =S5
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00EQ 4.3.4 The Left Skew Associator

00E1 Definition4.3.4.1.1. Theskewassociatorofthelefttensorproductof pointed
sets is the natural transformation

Sets,,< . . . Cats
4 : <o (<] X ldSets*) > <0 ('dSets* X <]) ° “Sets*,Sets*,Sets*

asinthe diagram

Sets, X (Sets, X Sets,)

B
Cats Le° .
% Sets.,Setsx,Setss /'H’ \ldi( <

(Sets, x Sets*j X Sets, / Sets, X Sets,

7

Sets, X Sets, — Sets,,

whose component

T (X aY)<aZ > Xa(Y<2)

at (X, x0), (Y, y0), (Z,z09) € Obj(Sets,) is given by
(X<aY)<Z¥|Z|o (X <Y)

def

=Zlo (Yo X)

z\/|Y|®X

zeZ

=\/|\/x

zeZ\yeY
- \/ X
[(zy)]eV.ez Y
= \/ X
[(zy)]elZloY
= ||Z|oY|oX

def

=|lY<Z|oX
EXa(Y<2),
where the map

ViVx|- /o x

2€z\yey (z0)€V.er Y


https://topological-modular-forms.github.io/the-clowder-project/tag/00E0
https://topological-modular-forms.github.io/the-clowder-project/tag/00E1

0Q0E2

00E3

4.3. The Left Tensor Product of Pointed Sets 166

isgivenby [(z, [(y,x)D] = [([(z, )], )].
Proof. (Proven below in a bit.) O

Remark 4.3.4.1.2. Unwinding the notation for elements, we have

[(z, [(3,0)D] = [(z,x < )]

déf(x<1y)<lz

and

[([(, )], )] E[(y <2 x)]
“xa (y < 2).

Sets,,<

Xyz actson elementsvia

So, in other words,

Sets,,

X,Y,Zq((x <y)<z) d=Efx < (y<z)

o

foreach(x < y)<ze (X <Y)<Z.

Sets,,

<
XY.Z actson

Remark 4.3.4.1.3. Taking y = yo, we see that the morphism «
elements as

Sets,, def
“Xfys,zq((x Qyp)<d2) =x < (yo<z).

However, by the definition of <, we have yg < z = yg < 2’ forallz,2" € Z,
preventing a)s(e;‘f}q from being non-invertible.

Proof. Firstly, note that, given (X, xo), (Y, y0), (Z,z9) € Obj(Sets,), the
map
T (X aY)<Z > X a(Y<2)

isindeed a morphism of pointed sets, as we have

Set: )
a3y ((x0 < y0) < 20) = x0 < (3o < 20).

Next, we claim that a5¢%+< is a natural transformation. We need to show
that, given morphisms of pointed sets

f: (X, x0) = (X', x5),
8- (Y,;Vo) - (Y',y{)),
h: (Z,z0) = (Z,2])
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the diagram

h
(X<1Y)<1Zm X' «aY)Y<Z

Setsy,< Setsy,<
XYz | | Axry’ 7t

X<1(Y<IZ) WX <1(Y <IZ)
commutes. Indeed, this diagram acts on elements as

(x<y) <z —— (f(x) <g(y)) < h(2)

| |

x < (y <2) —— f(x) < (g(») <h(2))

and hence indeed commutes, showing a5et4< to be a natural transforma-

tion. This finishes the proof. O

4.3.5 The Left Skew Left Unitor

Definition4.3.5.1.1. Theskew leftunitorofthelefttensorproductofpointed
sets is the natural transformation

:I_Sets* xid
pt X Sets, ——— Sets, X Sets,

\\ /

\ lSets*.q

JELC <1o(1sets* X i(:lSets*):"{gjtts52

whose component
AT 809X - X

at (X, xg) € Obj(Sets.) is given by the composition

SPaX=|Xlos

E\/SO

xeX
- X,
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where \/ . x S® — X is the map given by

[(x,0)] = xo,
[(x,1)] — x.

Proof. (Proven below in a bit.) O

Remark 4.3.5.1.2. In other words, A;ets*’q acts on elements as

def
(0 < x) = xp,
Sets,,< def
/IX

Sets,,<
/IX
(l<x)=x
foreachl < x € SY < X.

Remark 4.3.5.1.3. The morphism Aiets*’q is almostinvertible, with its would-
be-inverse
bx: X - 8%aXx

given by
px(x) E1ax
foreach x € X. Indeed, we have
57 0 8 0 = 1572 (6(0)

=25 (1< x)

=x
= [idx](x)
so that
A3 0 ¢ = idy
and
#0457 | (1w ) = ¢(2577 (1 < )
=¢(x)
=1l<x
= [idgoax](1 < x),
but

#0457 | 0a ) = $(2377 (0 < )
= ¢(x0)

=1 < xq,
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where 0 < x # 1 < xg. Thus
b oA 2 idgoax
holds for all elements in S° <« X except one.
Proof. Firstly, note that, given (X, x¢) € Obj(Sets.), the map
A3 80 aX - X
is indeed a morphism of pointed sets, as we have
A3 (0 < x0) = xp.

Next, we claim that 15¢%~< is a natural transformation. We need to show
that, given a morphism of pointed sets

f: (X,x0) = (Y, 30),

the diagram

ide
$0qx 50 o4y

Setsy,< Setsx,<
;{X | |1Y

X Y
f

commutes. Indeed, this diagram acts on elements as

0<x 0<x — 0<f(x)
xo > f(x0) Yo

and
lgx — 1<af(x)

x — f(x)

and hence indeed commutes, showing 15¢t+< to be a natural transforma-
tion. This finishes the proof. O
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4.3.6 The Left Skew Right Unitor

Definition 4.3.6.1.1. The skew right unitor of the left tensor product of
pointed sets is the natural transformation

idx1 Setsy
Sets, X pt ——— Sets, X Sets.,
\
\
\ /
\\ pSets*.<
pSets* pCatsz <10(Id x 1Sets*) \ /
Sets. \\\ / <
Catsy
pSets* \\\
Sets,,
whose component
piets*’q X > X<S°

at (X, xg) € Obj(Sets.) is given by the composition

X-XVvX
=% 0X
5X<1$0,

where X — X V X isthe map sending X to the second factorof X in X v X.

Proof. (Proven below in a bit.) O

Sets,,<

Remark 4.3.6.1.2. In otherwords, o5 acts on elements as

def

“(x) = [(Lx)]

Sets*

i.e. by

def

=x<al

Sets*
foreachx € X.
Remark4.3.6.1.3. The morphism psets* isnon-invertible, asitis non-surjective

when viewed asa map of sets, since the elements x <0 of X < S? withx # x
are outside the image ofpsets* ,whichsends x tox < 1.

Proof. Firstly, note that, given (X, x¢) € Obj(Sets.), the map

P X > X as”
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is indeed a morphism of pointed sets as we have
Sets,,< _

Px (x0) =xp<1

=xp < 0.

Next, we claim that psets*'<1 is a natural transformation. We need to show
that, given a morphism of pointed sets

f: (X,x0) = (Y, 30),

the diagram

X Y

Setsy,< Setsy,<

0 0
X<S —)f<1idso Y<«S

commutes. Indeed, this diagram acts on elements as

x — f(x)

| ]

x<0H— f(x)<0

and henceindeed commutes, showing p>¢t+< to be a natural transformation.
This finishes the proof. O

Q0EC 4.3.7 TheDiagonal

QQED Definition 4.3.7.1.1. The diagonal of the left tensor product of pointed sets
is the natural transformation

idSets*
Sets,, T Sets,
<

<. Catsp A
AT idsets, = <90 Ag 7, Catey U /
* A <
Setsy
Sets, X Sets,,
whose component

A% (X, x0) = (X < X, x0 < x0)


https://topological-modular-forms.github.io/the-clowder-project/tag/00EC
https://topological-modular-forms.github.io/the-clowder-project/tag/00ED

4.3. The Left Tensor Product of Pointed Sets 172

at (X, xg) € Obj(Sets.) is given by
Ay (x) Txax
foreachx € X.
Proof. Being a Morphism of Pointed Sets: We have
Ay (x0) £ x9 < x0,

and thus A§ is a morphism of pointed sets.
Naturality: We need to show that, given a morphism of pointed sets

f: (X! X[)) - (Yry()):

the diagram
Y

XQXW)YQY

commutes. Indeed, this diagram acts on elements as

Tiﬁ f(x)
x<x — f(x) <f(x)

and hence indeed commutes, showing A< to be natural. O

4.3.8 The Left Skew Monoidal Structure on Pointed Sets Associ-
QQEE ated to <

QOEF Proposition 4.3.8.1.1. The category Sets, admitsaleft-closed left skew monoidal
category structure consisting of

- The Underlying Category. The category Sets, of pointed sets;

- The Left Skew Monoidal Product. The left tensor product functor
<: Sets, X Sets, — Sets,

of Definition 4.3.1.1.1;


https://topological-modular-forms.github.io/the-clowder-project/tag/00EE
https://topological-modular-forms.github.io/the-clowder-project/tag/00EF

4.3. The Left Tensor Product of Pointed Sets 173

- The Left Internal Skew Hom. The left internal Hom functor
[ —]5es, : Sets.” x Sets, — Sets,

of Definition 4.3.2.1.1;

- The Left Skew Monoidal Unit. The functor
159 pt — Sets,
of Definition 4.3.3.1.1;
- The Left Skew Associators. The natural transformation

Cats

Sets,,<
o ° “Sets*,Sets*,Sets*

<o (<X idsets,) = < o (idsets, X <)
of Definition 4.3.4.1.1;
. The Left Skew Left Unitors. The natural transformation

A58t 4 6 (1Sets* X idSets*) - ’122::2

of Definition 4.3.5.1.1;

- The Left Skew Right Unitors. The natural transformation

pSets*,<1 . pg;tssz :~> 40 (id x 1Sets*)
of Definition 4.3.6.1.1.

Proof. The Pentagon Identity: Let (W, wp), (X, x0), (Y, yo) and (Z, zg) be
pointed sets. We have to show that the diagram

Wa(X<Y)<Z

Wiy <idz W
(W<X)«Y)«Z Wa(X«Y)<Z)
P w2y

W<aX)<a(Y<2) > Wa(X<(Y<2))
W,XT};<1Z
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commutes. Indeed, this diagram acts on elements as

(wa(x<y)) <z

(wax)<y)<z w<((x<y)<z)

(w<x)d(y<z2) —o w<a(x<(y<2))

and thus we see that the pentagon identity is satisfied.
The Left Skew Left Triangle Identity: Let (X, xq) and (Y, yo) be pointed sets.
We have to show that the diagram

Setsy,<
sO.xy

(S°<«X)aY —> %< (X<Y)
lSets*,q
A;etm | X<aY
XY
commutes. Indeed, this diagram acts on elements as
O<x)<y — 0<(x<y)
X021y =x0<)o

and
lax)<dy— 1la(x<ay)

N

x4y

and hence indeed commutes. Thus the left skew triangle identity is satisfied.
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The Left Skew Right Triangle Identity: Let (X, xo) and (Y, yo) be pointed sets.
We have to show that the diagram

X<Y

. Setss, <t
idy< ’
Setsy,< X<py
Pxay

(X<1Y) <28’ —— X< (Y1)

X,v,s0
commutes. Indeed, this diagram acts on elements as

x<y

[

(x<ypy)alr—xa(y<al)

and hence indeed commutes. Thus the right skew triangle identity is satis-
fied.

The Left Skew Middle Triangle Identity: Let (X, xo) and (Y, yo) be pointed sets.
We have to show that the diagram

XY ——— X «Y
piets*,qqidyl ’iquiiets*,q

(X<1$0)<1YW>X<1(SO<1Y)

X80y
commutes. Indeed, this diagram acts on elements as

X<y ————— x4y

T |

(x<Dayr——x<(l<ay)

and hence indeed commutes. Thus the right skew triangle identity is satis-
fied.
The Zig-Zag Identity: We have to show that the diagram

Setsy,<
0
s 2, g0 4460

Setsy,<
/ISO

SO
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commutes. Indeed, this diagram acts on elements as

0/!—>\(?<11
0
and
l— 1«1

——A

and hence indeed commutes. Thus the zig-zag identity is satisfied.
Left Skew Monoidal Left-Closedness: This follows from Item 2 of Proposition4.3.1.1.7.
]

4.3.9 Monoids With Respect to the Left Tensor Product of Pointed
Sets

Proposition 4.3.9.1.1. The category of monoids on (Sets., <, SO) is isomor-
phic to the category of “monoids with left zero”* and morphisms between
them.

Proof. Monoids on (Sets., <, S°): A monoid on (Sets,, <, S°) consists of:
- The Underlying Object. A pointed set (A, 04).
- The Multiplication Morphism. A morphism of pointed sets

pa: AA— A

determining a left bilinear morphism of pointed sets

AXA A
(a,b) ——— ab.

- The Unit Morphism. A morphism of pointed sets
NA: SO A

picking an element 14 of A.

14 A monoid with left zero is defined similarly as the monoids with zero of 22. Succinctly,
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satisfying the following conditions:

1. Associativity. The diagram

oo, A< (A< A)
aA,A,A*/ \in‘iAqu
(A< A) <A A< A

[lA<1idA

AdA — A
“A

2. Left Unitality. The diagram

nAXidA

S0gA =25 A A

s “a
lAets*,q
A
commutes.
3. Right Unitality. The diagram
Setss,<
AL AqS0
|idA><’7A
A A< A
kA

commutes.

Being a left-bilinear morphism of pointed sets, the multiplication map satis-
fies

OAa = OA
foreach a € A. Now, the associativity, left unitality, and right unitality
conditions act on elements as follows:

they are monoids (A, u4, n4) with a special element 04 satisfying
OAa = OA

foreacha € A.
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1. Associativity. The associativity condition acts as

a<(b<c)
(@<b)<c (a<b)<c a < be
ab < ¢ —— (ab)c a(be)
This gives

(ab)c = a(bc)
foreacha, b, c € A.
2. Left Unitality. The left unitality condition acts:
(@ OnO<aas

O<a O<at— 0g4<a
OA OAa

(b) Onl<aas

l<abr—> 1u<a

NN

lga = q,

This gives

OAa = OA
foreacha € A.
3. Right Unitality. The right unitality condition acts as
a at——a<l1
a

aly «— a<1y
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This gives
algy=a

foreacha € A.

Thus we see that monoids with respect to < are exactly monoids with left
zero.

Morphisms of Monoids on (Sets*, <, SO): A morphism of monoidson (Sets*, «, SO)
from (A, ua, 4, 04) to (B, up, 18, 0p) isa morphism of pointed sets

f: (A,04) — (B,0p)
satisfying the following conditions:
1. Compatibility With the Multiplication Morphisms. The diagram

Aad L BaB

|M

B

HA

A

commutes.

2. Compatibility With the Unit Morphisms. The diagram

SO M A
N f
B
commutes.
These act on elements as
a<b a<br— f(a) <f(b)
ab ——— f(ab) f(a)f(b)
and
0 0 ——— 04

N

U f(04)
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and
1 1 — 14
1 f(1a)
giving

f(ab) = f(a)f (b),
f(04) = 03,
f(1a) =13,

foreach a, b € A, which is exactly a morphism of monoids with left zero.
Identities and Composition: Similarly, the identitiesand composition ofMon(Sets*, «, SO)
can be easily seen to agree with those of monoids with left zero, which fin-

ishes the proof. O

00eJ 4.4 The Right Tensor Product of Pointed Sets

Q0EK 4.4.1 Foundations
Let (X, xg) and (Y, yg) be pointed sets.
00EL Definition 4.4.1.1.1. Therighttensor product of pointed sets is the functor'
>: Sets, X Sets, — Sets,

defined as the composition

=xid o)
Sets, X Sets, —— Sets X Sets, — Sets,,
where:
. %&: Sets, — Sets s the forgetful functor from pointed sets to sets.

- ©: Sets x Sets, — Sets, is the tensor functor of Item 1 of Proposi-
tion 4.2.1.1.6.

Q0EM Remark 4.4.1.1.2. The right tensor product of pointed sets satisfies the fol-
lowing natural bijection:

Sets, (X > Y,Z) = HomQSZ’éFE5 (XxY,2).

Thatis to say, the following data are in natural bijection:

'>Further Notation: Also written I>gets, -
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1. Pointed mapsf: X>Y — Z.
2. Mapsofsetsf: X XY — Zsatisfyingf(x, yo) = zo foreachx € X.

QQEN Remark 4.4.1.1.3. Therighttensor product of pointed sets may be described
as follows:

- Therighttensorproductof (X, x¢) and (Y, yo) isthe pair (X > Y, xo > yg),¢)
consisting of
- Apointedset (X > Y, xo > ¥0);
— Arightbilinear morphismof pointedsets:: (X X Y, (x0, y0)) —
X Y;

satisfying the following universal property:

(up) Givenanother such pair ((Z, zg), f) consisting of
% Apointedset (Z, zg);
% Arightbilinear morphism of pointedsetsf: (X X Y, (xo, y0)) —
X Y;

. . . . 3!
there exists a unique morphism of pointedsets X > Y — Z
making the diagram

>-<

S
X
~ \
AN
N <—-é-—— v

commute.

QOEP Construction 4.4.1.1.4. In detail, the right tensor product of (X, x() and
(Y, yo) isthe pointed set (X > Y, [ yg]) consisting of:

- The Underlying Set. The set X > Y defined by

def

XeYEX|oY

= \/ (¥, 30),

xeX

where | X| denotes the underlying set of (X, x¢).

- The Underlying Basepoint. The point [(xq, y0)] of \V ex (Y, ¥9), which
isequal to [(x, yo)] forany x € X.
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Notation 4.4.1.1.5. We write'® x > y for the element [(x, )] of
X>Y=|X|0Y.

Remark 4.4.1.1.6. Employing the notation introduced in Notation 4.4.1.1.5,
we have

X0 > Yo =xX> Y
foreachx € X, and
x> yo=x"> o
foreachx,x’ € X.
Proposition 4.4.1.1.7. Let (X, xo) and (Y, yo) be pointed sets.
1. Functoriality. The assignments X,Y, (X,Y) — XY define functors
X > —: Sets, — Sets,,
— > Y: Sets, — Sets,,

—1 > —9: Sets, X Sets, — Sets,.
In particular, given pointed maps
f: (X, x0) = (A ao),

g: (Y, 30) = (B, bo),
the induced map

frg: X>Y—>A> B
is given by

[f > gl (x> ) Zf(x) > g()
foreachx>ye X > Y.
2. Adjointness . We have an adjunction

X>—
(X >—4[X,-]2 ): Sets*/J.\A Sets.,
S~

Sets.
[X’_]Zets*
witnessed by a bijection of sets

HomSets* (X >Y, Z) = HomSets* (Y, [Xr Z]D )

Sets,

natural in (X, xo), (Y, y0), (Z, z09) € Obj(Sets,), where [X, Y] 'gets*
is the pointed set of Definition 4.4.2.1.1.

"6 Further Notation: Also written x >gets, ¥
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QQEV 3. Adjointness Il. The functor
— > Y: Sets, — Sets,
does notadmita right adjoint.
QOEW 4. Adjointness Ill. We have a bijection of sets
Homgets, (X > Y, Z) = Homseis (| X, Sets. (Y, Z2))
natural in (X, xo), (Y, y0), (Z, z9) € Obj(Sets.).

Proof. Item1, Functoriality: Clear.
Item 2, Adjointness I: This follows from Item 3 of Proposition 4.2.1.1.6.
Item 3, Adjointness Il: For — > Y to admit a right adjoint would require it to
preserve colimits by 2? of 22. However, we have
pte X < |ptj 0 X
= X
# pt,

and thus we see that — > Y does not have a right adjoint.
Item 4, Adjointness IlI: This follows from Item 2 of Proposition 4.2.1.1.6. O

00EX Remark 4.4.1.1.8. Here is some intuition on why — > Y fails to be a left
adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural bijection

Homsgets, (X >Y, Z) = HomSets(|X|: Sets*(Y, Z)),
so it would be reasonable to wonder whether a natural bijection of the form
Homgets, (X > Y, Z) = Homsets, (X, Sets. (Y, 7)),

also holds, whichwould give —1>Y 4 Sets. (Y, —). However, such a bijection
would require every map

f:X>Y—>Z

to satisfy
f(xo> ) = z0

foreach x € X, whereas we are imposing such a basepoint preservation
condition only for elements of the form x > yg. Thus Sets..(Y, —) cantbea
right adjoint for — > Y, and as shown by Item 3 of Proposition 4.4.1.1.7, no
functor can.”

7The functor Sets. (Y, —) is instead right adjoint to — A Y, the smash product of pointed
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Q0EY 4.4.2 The RightInternal Hom of Pointed Sets
Let (X, xg) and (Y, yg) be pointed sets.
Q0EZ Definition 4.4.2.1.1. Therightinternal Hom of pointed sets is the functor

[— —1Sets, - Setsy” X Sets, — Sets,,

defined as the composition

op =xid op M
Sets,” x Sets, ——> Sets®P x Sets, —> Sets,,
where:
. %&: Sets, — Setsis the forgetful functor from pointed sets to sets.

- M : Sets®P x Sets, — Sets, is the cotensor functor of Item 1 of Propo-
sition 4.2.2.1.4.

Proof. Fora proofthat [—, —]Zets* isindeed the right internal Hom of Sets,
with respect to the right tensor product of pointed sets, see Item 2 of Propo-
sition 4.4.1.1.7. |

00F0 Remark 4.4.2.1.2. We have
< _ >
[_’ _]Sets* - [_’ _]Sets*'

00F1 Remark 4.4.2.1.3. Therightinternal Hom of pointed sets satisfies the fol-
lowing universal property:

Sets, (X b Y, 7) = Sets*(Y, (X, Z]2 )

Sets,
Thatis to say, the following data are in bijection:
1. Pointed mapsf: X > Y — Z.

2. Pointed mapsf: Y — [X,Z]<

Sets, "

00F2 Remark 4.4.2.1.4. Indetail, the rightinternal Hom of (X, x¢) and (Y, yg)
is the pointed set ( [ X, Y] gets*, [(J’O)xex]) consisting of

- The Underlying Set. The set [ X, Y]<.,. defined by

Sets,
ef
[X,V1Ses, = 1XI Y
= /\ (Y» J’O),
xeX

where | X| denotes the underlying set of (X, x¢);
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- The Underlying Basepoint. The point [(J’O)xex] of Arex(Y, y0).
Q0F3 Proposition 4.4.2.1.5. Let (X, xp) and (Y, yo) be pointed sets.

00F4 1. Functoriality. The assignments X, Y, (X,Y) — [X, Y]'gets* define
functors
[X, —]Gess, : Sets. — Sets.,,
[— Y]Ses, : Sets?® — Sets,,

[—1, =212, : Setse® X Sets, — Sets,.
In particular, given pointed maps
f: (X, x0) = (A a0),
g: (Y, y0) — (B, bo),
the induced map

[f)8)5ess.  [A V]G, = [X, Blg

Sets, Sets.

is given by

def

[f, 815ets. ([ D)acal) = [(8(rr ) cex]
foreach [(ya),ea] € [A YIS

Sets,.*

Q0F5 2. Adjointness|. We have an adjunction

X -
—
(X >—4[X, —]gets*): Sets*;/ Sets.,
[X’_];ets*

witnessed by a bijection of sets

Sets,

Homgets, (X > Y, Z) = Homsets*(Y, [X,Z]2 )

natural in (X, xo), (Y, y0), (Z, z9) € Obj(Sets.), where [ X, Y] 'gets*
is the pointed set of Definition 4.4.2.1.1.

00F6 3. Adjointness Il. The functor
— > Y: Sets, — Sets,
does notadmit a right adjoint.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness I: This is a repetition of Item 2 of Proposition 4.4.1.1.7, and
is proved there.

Item 3, Adjointness II: This is a repetition of Item 3 of Proposition 4.4.1.1.7, and
is proved there. O
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00F7 4.4.3 The Right Skew Unit

00F8 Definition 4.4.3.1.1. The right skew unit of the right tensor product of
pointed sets is the functor

q5ets> . pt — Sets,

defined by

> def o0
Sets, — S

00F9 4.4.4 The Right Skew Associator

00FA Definition 4.4.4.1.1. The skew associator of the right tensor product of
pointed sets is the natural transformation

Cats,—1

Sets,,> . . .
2> > o (idsets, X ) = 1 o (> X idsets, ) © 5ot Sets. Sets.

as in the diagram

(Sets, x Sets,) X Sets,

Cats,—1 ’,«” .
aSetS*,Sets*,Sets* /'H’ \qd

Sets, X (Sets. ’>< Sets,) / Sets, X Sets,

.

Sets, X Sets, — Sets,,

whose component

oc)S(e;sf:XD(YDZ)H(XDY)DZ

sets of Definition 4.5.1.1.1. See Item 2 of Proposition 4.5.1.1.9.
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at (X, xg), (Y, y0), (Z, z9) € Obj(Sets,) is given by

Xo (Y 2)¥ X0 (Y > 2)
def

=Xlo(lY|o2)
=\/(IYl02)

xeX

xeX\yeY

— \/ VA
[(xy)]€Viex Y

= \/ Z
[(xy)]elX]|oY

= || X|oY|oZ

def

= X>Y|loZ

def

=X Y)>Z,

\/(\/ Z) — \/ Z
xeX\yeYy [(xy)]€Viex Y

is given by [(x, [(3,2)D)] = [([(x, )], 2)].

Proof. (Proven below in a bit.) |

where the map

00FB Remark 4.4.4.1.2. Unwinding the notation for elements, we have

[(x, [(3 2D = [(x, 3> 2)]

PN (y>2)
and

[([(x, )], 2)] € [(x > p,2)]

x>y

Sets,,>

XYz acts on elements via

So, in other words,

Sets,,

def
aXyYZD(x >(y>z)=(x>y)>2z

foreachx > (y>z2) e X (Y > Z).
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Sets,,>

XYZ actson

Remark 4.4.4.1.3. Taking y = yg, we see that the morphism «
elements as

Sets,,

OZX’Y,ZD(X > (yO > 7)) E (x> _)/0) > z.

However, by the definition of >, we have x > yg = x” > yg forall x,x” € X,
preventing ajs(ejtf}b from being non-invertible.

Proof. Firstly, note that, given (X, xq), (Y, y0), (Z,z9) € Obj(Sets.), the
map
X (Y Z) = (X>Y)>Z

isindeed a morphism of pointed sets, as we have

S sy
axyy (X0 > (3o > 20)) = (x0 > yo) > 2.

Next, we claim that a5¢%+" is a natural transformation. We need to show

that, given morphisms of pointed sets

f: (X, xO) - (X,, .X'E)),

8- (Y)yO) - (Y,!y[,))»
h: (Z,z0) = (Z,2])

the diagram

X (Vo z) 280,

Setss,>
4xy,z |

XeY)>Z

X'> Y >2Z)

Setsy,>
X'\y’z’

W (XIDY/)DZ,

commutes. Indeed, this diagram acts on elements as

x> (y>2) —— f(x) > (g(y) > h(2))

| |

(x> y)>z —— (f(x) > g(y)) > h(2)

and hence indeed commutes, showing >¢t+" to be a natural transforma-

tion. This finishes the proof. O
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4.4.5 The Right Skew Left Unitor

Definition 4.4.5.1.1. The skew left unitor of the right tensor product of
pointed sets is the natural transformation

:I_Sets* xid
pt X Sets, ———— Sets, X Sets,
\
\
\ /
\
\ lSets*,D
Catsy _~ Sets : \
ASets*,D .l 2=I>O(l * 5 id ) /
Sets. Sets. \\\ / >
Catsp \\
Setss N
> ~
> Sets,,

whose component
AP X - 80 X

at (X, xg) € Obj(Sets.) is given by the composition
X->XVvX

=% 0X
=S X,

where X — X V X isthe map sending X to the second factorof X in X v X.

Proof. (Proven below in a bit.) O

Sets,,>
/1X

Remark 4.4.5.1.2. In otherwords, acts on elements as

25 () 211, 2)]
i.e. by
A;ets*’b () E1>x

foreachx € X.

Remark4.4.5.1.3. The morphism Af{ets*’b isnon-invertible, asitis non-surjective
when viewed as a map of sets, since the elements 0> x of Y > X with x # x
are outside the image ofiiets*’b, whichsendsx to 1 > x.

Proof. Firstly, note that, given (X, x¢) € Obj(Sets.), the map

P D D
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is indeed a morphism of pointed sets, as we have

Sets,,
iXes D(x0)=1>x0

=0>x0.

Next, we claim that 15¢t+" is a natural transformation. We need to show
that, given a morphism of pointed sets

f: (X! X[)) - (Yry());

the diagram
X Y

Setss,> Setsy,>
/IX | |lY

0 0
S X S S>Y

commutes. Indeed, this diagram acts on elements as
x F—— f(x)

| ]

1o x — 1> f(x)

and hence indeed commutes, showing)tsets*’l> to be a natural transforma-
tion. This finishes the proof. O
4.4.6 The Right Skew Right Unitor

Definition 4.4.6.1.1. The skew right unitor of the right tensor product of
pointed sets is the natural transformation

-XmSets*
Sets, X pt - Sets, X Sets,
\
\
\ y
\\ pSets*,D
Sets,,> . : Sets, \_~. Catsp \
p : |>o(|d x1 ):pSets*’ \ / o
\
Catsp \\
Setsy AN
\\
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whose component
pf{ets* XS5 X

at (X, xg) € Obj(Sets,) is given by the composition

X80

IR

1X| o s°

\/ s

xeX
- X,

IR

where \/ . x S® — X is the map given by

[(x,0)] — xo,
[(x,1)] — x.

Proof. (Proven below in a bit.) O

Sets,,>

Remark 4.4.6.1.2. Inotherwords, o3, acts on elements as

P?{ets* (x> 0) = xp,

,a)S(ets*’ (x> 1) 'y

foreachx> 1€ X > SO,

Remark 4.4.6.1.3. The morphism pSEts*’ is almostinvertible, with its would-
be-inverse

bx: X - XSO
given by

¢x(x) E x> 1

foreach x € X. Indeed, we have

[55 0 8] (0) = #3582
— p)S{ets* (x > 1)
=x

= [idx](x)

so that
Sets* ¢ |d.X
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and
[¢ o pf{ets*,b] (x> 1) = ¢(p)$(ets*,l>(x o 1))
=¢(x)
=xp>1
= [idxps0](x > 1),
but

#0031 (o 0) = ¢35 (0 0))

= ¢(x0)
=1p xq,
wherex > 0 # 1 > xg. Thus
$o P;S(ets*’b = idyp. 0

holds for all elements in X > S° except one.
Proof. Firstly, note that, given (X, x¢) € Obj(Sets,), the map

p)s(ets*’bz X>80 5 X

isindeed a morphism of pointed sets as we have

piets*’b (xo > 0) = xo.
Next, we claim that p°¢+> is a natural transformation. We need to show

that, given a morphism of pointed sets

f: (X,x0) = (Y, 30),

the diagram
id¢
Xo 80 0y g0
p}S{ets*p | |p§]€t5*,l>
X Y
f

commutes. Indeed, this diagram acts on elements as

x>0 x>0 FH— f(x)>0

|

xg ——— f(x0) Y0
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and
x>l f(x)>1

| ]

x — f(x)

and hence indeed commutes, showing p>¢t+* to be a natural transformation.

This finishes the proof. O
4.4.7 TheDiagonal

Definition 4.4.7.1.1. The diagonal of the right tensor product of pointed
sets is the natural transformation

idSets*
Sets, /ﬁ\) Sets.
>

A” : idsets, = B © Aggggg, (o jl /
Sets
Sets, X Sets,,
whose component
A% (X, x0) = (X > X, x0 > x0)
at (X, xg) € Obj(Sets.) is given by
A% (x) s
foreachx € X.
Proof. Being a Morphism of Pointed Sets: We have
A% (x0) E x9 > x0,

and thus A% is a morphism of pointed sets.
Naturality: We need to show that, given a morphism of pointed sets

f: (X, x0) = (Y, y0),

the diagram
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commutes. Indeed, this diagram acts on elements as

X f(x)

| ]

x> x — f(x) > f(x)

and hence indeed commutes, showing A” to be natural. m]
4.4.8 The Right Skew Monoidal Structure on Pointed Sets Associ-
atedto>

Proposition 4.4.8.1.1. The category Sets, admits a right-closed right skew
monoidal category structure consisting of

- The Underlying Category. The category Sets, of pointed sets;
- The Right Skew Monoidal Product. The right tensor product functor
>: Sets, X Sets, — Sets,

of Definition 4.4.1.1.1;

- The Right Internal Skew Hom. The right internal Hom functor
[— —1Sets, - Setsy” X Sets, — Sets,,

of Definition 4.4.2.1.1;

- The Right Skew Monoidal Unit. The functor
15¢t+> . pt — Sets,

of Definition 4.4.3.1.1;

- The Right Skew Associators. The natural transformation

Cats,—1

Sets,,> . ; — ;
@i >0 (IdSEtS* X [>) > o (D X |dSets*) °© aSets*,Sets*,Sets*

of Definition 4.4.4.1.1;

- The Right Skew Left Unitors. The natural transformation

1Sets.e /152::2 =ro (1set5* X idSets*)

of Definition 4.4.5.1.1;
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- The Right Skew Right Unitors. The natural transformation
pSets*,D b o (id % 1Sets*) :~> p(s::ttssz
of Definition 4.4.6.1.1.

Proof. The Pentagon ldentity: Let (W, wyq), (X, x0), (Y, y0) and (Z, zp) be
pointed sets. We have to show that the diagram

W (X>Y)>2Z)

Sets,>
W.XY > IdZ

W (X (Y 2Z)) W (X>Y)>Z

Setsy,>
XYZ

Setsy,>

WeX,Y,Z idy>a

WeX)>(Y>2) —— (WeX)>Y)>2Z
W,X,*};DZ

commutes. Indeed, this diagram acts on elements as

w> ((x>yp)>2)

w> (x> (y>2)) (w> (x> y)) >z

(wex)> (yp2z) ——"> (w>x)>y)> 2
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and thus we see that the pentagon identity is satisfied.
The Right Skew Left Triangle Identity: Let (X, xg) and (Y, yg) be pointed sets.
We have to show that the diagram

X>Y

B >| widy
XoY

> (X>Y) —— (> X) > Y
a s, D>

sOxy
commutes. Indeed, this diagram acts on elements as

x>y

[

1o (x> y) — (I>x)>y

and hence indeed commutes. Thus the left skew triangle identity is satisfied.
The Right Skew Right Triangle Identity: Let (X, x¢) and (Y, yo) be pointed sets.
We have to show that the diagram

idy> pf]ets* >

X> (Y89 (X>Y)> SO
N p)sfssy*p
%50 xy
XY

commutes. Indeed, this diagram acts on elements as

x> (> 0) — (x> y)>0

N

XP>yo=x0> Yo

and
x> (ypl)F— (x> y)>1

N

x>y

and hence indeed commutes. Thus the right skew triangle identity is satis-
fied.



4.4. The Right Tensor Product of Pointed Sets 197

The Right Skew Middle Triangle Identity: Let (X, xg) and (Y, yo) be pointed
sets. We have to show that the diagram

XY —— XY

. Setsy,> Setss,> .
Idxl>).y * | ’px * I>Idy

X> (8> Y) —— X> %) > Y
X,SO,;/

commutes. Indeed, this diagram acts on elements as

x>y ——— x>y

T |

x> (1l y) —— (x> 1) >y

and hence indeed commutes. Thus the right skew triangle identity is satis-
fied.
The Zig-Zag Identity: We have to show that the diagram

lSets* >
= 80 g0

commutes. Indeed, this diagram acts on elements as

OF— 110

S «—V

and

1

= «— V

and hence indeed commutes. Thus the zig-zag identity is satisfied.
Right Skew Monoidal Right-Closedness: This follows from Item 2 of Proposi-
tion 4.4.1.1.7. O
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4.4.9 Monoids With Respecttothe Right Tensor Product of Pointed
QOFR Sets

Q0FS Proposition 4.4.9.1.1. The category of monoids on (Sets., >, SO) is isomor-
phic to the category of “monoids with right zero”'® and morphisms between
them.

Proof. Monoids on (Sets., >, S°): Amonoid on (Sets., >, S") consists of:
- The Underlying Object. A pointed set (A, 04).
- The Multiplication Morphism. A morphism of pointed sets
par A A— A

determining a right bilinear morphism of pointed sets

AXA A
(a,b) ——— ab.

- The Unit Morphism. A morphism of pointed sets
NA: '}
picking an element 14 of A.
satisfying the following conditions:

1. Associativity. The diagram

e AP (A> A)
aA,A,;/ \i“iAD.“A
(A A)> A A A
#a>ida ka

AbA—— A
UA

8 A monoid with right zero is defined similarly as the monoids with zero of 2. Succinctly,
they are monoids (A, u4, 74) with a special element 04 satisfying

OAa = OA

foreacha € A.
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2. Left Unitality. The diagram

Setsy,>

A2 — 504
|?7A><idA
A—— Ad A

commutes.

3. Right Unitality. The diagram

idax7a
_—

A SO A A

Setsy,>
pA\

Being a right-bilinear morphism of pointed sets, the multiplication map
satisfies

A

A

commutes.

OAa = OA

foreacha € A. Now, the associativity, left unitality, and right unitality
conditions act on elements as follows:

1. Associativity. The associativity condition acts as

a> (b )
(a>-b)ec (a>b)>c ar be
ab> ¢ —— (ab)c a(be)

This gives
(ab)c = a(bc)

foreacha, b,c € A.
2. Left Unitality. The left unitality condition acts as
a at—— 1>a
a

lga «— 1g>a
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This gives
laa=a
foreacha € A.

3. Right Unitality. The right unitality condition acts:

(@ OnlrO0Oas

1>0 a> 0+ a0y

04 a0a.
(b) Onar1as

a1 ar1t+— a1y

a alg.
This gives

aly =a,
a0y =04

foreacha € A.

Thus we see that monoids with respect to > are exactly monoids with right
zero.

Morphisms of Monoids on (Sets,., >, S°): Amorphism of monoids on (Sets., >, S%)
from (A, ua,n4,04) to (B, up, 18, 0p) isa morphism of pointed sets

f: (A,04) — (B,0p)
satisfying the following conditions:
1. Compatibility With the Multiplication Morphisms. The diagram

Av AT goB

|#B

B

H“aA

A

commutes.
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2. Compatibility With the Unit Morphisms. The diagram

O™ A
NG
B
commutes.
These act on elements as
ab arb+—— f(a)> f(b)
ab ——— f(ab) f(a)f(b)
and
0\ 0 ——— 04
OB f(OA)
and
1\ 1 — 14
1p f(1a)
giving

f(ab) = f(a)f (b),
f(04) = 03,
f(1a) =13,

foreacha, b € A, which is exactly a morphism of monoids with right zero.
Identities and Composition: Similarly, the identitiesand composition ofMon(Sets*, >, SO)
can be easily seen to agree with those of monoids with right zero, which fin-

ishes the proof. O
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4.5 The Smash Product of Pointed Sets
4.5.1 Foundations
Let (X, xg) and (Y, yg) be pointed sets.

Definition 4.5.1.1.1. Thesmash productof (X, xo)and (Y, yo)' isthe pointed
set X A Y?° satisfying the bijection

Sets. (X AY,Z) = Homgets* (XxY,2),
naturally in (X, xo), (Y, y0), (Z, z0) € Obj(Sets.).

Remark 4.5.1.1.2. Thatis to say, the smash product of pointed sets is defined
so as to induce a bijection between the following data:

- Pointedmapsf: X AY — Z.
- Mapsofsetsf: X XY — Z satisfying
f(x0,¥) = 20,
f(x, y0) = 2o
foreachx € Xandeachy €Y.

Remark 4.5.1.1.3. The smash product of pointed sets may be described as
follows:

- Thesmash productof (X, xg) and (Y, yg) isthepair (X A Y, xg A yg),t)
consisting of

— Apointedset (X A Y, xg A y0);

— A bilinear morphism of pointed sets :: (X XY, (xg, y09)) —
XAY;

satisfying the following universal property:

(uP) Given another such pair ((Z, zg), f) consisting of
* Apointedset (Z, zp);

19 Further Terminology: In the context of monoids with zero as models for F1 -algebras, the
smash product X A Y is also called the tensor product of F1 -modules of (X, xg) and (Y, y0)
or the tensor product of (X, xg) and (Y, yg) overFy.

20 Fyrther Notation: In the context of monoids with zero as models for F1 -algebras, the
smash product X A Yisalsodenoted X ®p, Y.
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% Abilinear morphismofpointedsetsf: (X x Y, (xg, y0)) —
XAY;

. . . . El
there exists a unique morphism of pointedsets X A Y — Z
making the diagram

~

\ N
N «---oo- >

S
X
h.<

commute.

QOFY Construction 4.5.1.1.4. Concretely, the smash productof (X, xo) and (Y, o)
is the pointed set (X A Y, xg A yg) consisting of

- The Underlying Set. The set X A 'Y defined by
XAY = (XXY)/~g,
where ~y is the equivalence relation on X X Y obtained by declaring
(x0,) ~r (x0,3"),
(x, 70) ~r (x', 30)
foreachx,x” € Xandeachy,y’ € Y;

- The Basepoint. The element [(xq, yo)] of X A Y given by the equiva-
lence class of (xq, yo) under the equivalence relation ~on X X Y.

Proof. By Item 6 of Proposition 7.5.2.1.3, we have a natural bijection
Sets.(X AY,Z) = Homgets(X xY,Z).

Now, by definition, HomZ (X X Y, Z) isthe set

R
Sets

foreachx,y € X, if
Z3f € Homsers(X X Y, Z) | (x,) ~g (x',)"), then .
fx,p) =f(x',y)

However, the condition (x, y) ~r (x’, ¥") only holds when:

Homg., (X X Y, Z)

1. Wehavex =x"andy = y’.

2. The following conditions are satisfied:
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(a) Wehavex = xgory = yjg.

(b) Wehavex’ = xgory’ = yg.

So, givenf € Homgets(X X Y, Z) with acorrespondingf: XAY — Z, the
latter case above implies

f(x0,y) =f(x, y0)
= f(xo!y())!

and sincef: X AY — Zisapointed map, we have

f(x0, y0) = f(x0, y0)
= 2p.

Thus the elements f in Homses (X X Y, Z) are precisely those functions
f: X XY — Zsatisfying the equalities

f(.’XfO, J’) = 20,

f(x,30) = 2o
foreach x € X andeach y € Y, givingan equality

Hom&. (X X Y,Z) = Homg, (X xY,Z)
of sets, which when composed with our earlier isomorphism
Sets. (X AY,Z) = Hom$ (X xY,Z)

gives our desired natural bijection, finishing the proof. O
Remark 4.5.1.1.5. Itis also somewhat common to write

xayg2x?
S XVvY

identifying X V'Y with the subspace ({xg} X Y)U (X X {y9}) of X XY, and
having the quotient be defined by declaring (x, y) ~ (x/, y’) iff we have
(v, ), (x',y")e X VY.

Notation 4.5.1.1.6. We write x A y forthe element [(x, y)] of

XAY=2XXY/~
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00G1 Remark 4.5.1.1.7. Employing the notation introduced in Notation 4.5.1.1.6,
we have

X0 A Yo =X A Yo,
=XxXgA)Y

foreachx € Xandeachy € Y,and
x A yo=x" Ay,
xoAy=x9AY
foreachx,x’ € Xandeachy,y’ €Y.

00G2 Example 4.5.1.1.8. Here are some examples of smash products of pointed
sets.

00G3 1. Smashing With pt. For any pointed set X, we have isomorphisms of
pointed sets

pt A X = pt,
X A pt = pt.

00G4 2. Smashing With SV. For any pointed set X, we have isomorphisms of
pointed sets
SOAX = X,
XASY=X.
00G5 Proposition 4.5.1.1.9. Let (X, xg) and (Y, yo) be pointed sets.

00G6 1. Functoriality. Theassignments X, Y, (X,Y) + X AY define functors

X A —: Sets, — Sets,,
— AY: Sets, — Sets,,

—1 A —9: Sets, X Sets, — Sets,.
In particular, given pointed maps

f: (Xr X()) - (A’ (10),
g (Y’yO) - (B’ bO)’

the induced map

fAg:XANY —>AAB
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is given by
[f Agl(x A y) Sf(x) Ag()
foreachx Ay e X AY.
00G7 2. Adjointness. We have adjunctions

XA-
—
(X A — 4 Sets.(X,-)): Sets*\J./ Sets,,
Sets. (X,—)
-AY
=
(=AY 4Sets.(Y,-)): Sets, 1 Sets,,
~
Sets. (Y,—)

witnessed by bijections

Homgets, (X A Y, Z) = Homses, (X, Sets. (Y, Z2)),
Homgets, (X A Y, Z) = Homses, (X, Sets.. (4, 7)),

naturalin (X, xo), (Y, y0), (Z, z9) € Obj(Sets.).
00G8 3. Enriched Adjointness. We have Sets,.-enriched adjunctions

XA-
(X A —4Sets.(X,-)): Sets*z Sets,,
Sets. (X,—)
—AY
— >
(=AY 4Sets.(Y,-)): Sets. 1 Sets,,
S~
Sets. (Y,—)

witnessed by isomorphisms of pointed sets

Sets.(X AY,Z) = Sets. (X, Sets. (Y, 2)),
Sets. (X AY,Z) = Sets. (X, Sets. (A, Z)),

natural in (X, xo), (Y, y0), (Z, z9) € Obj(Sets..).
00G9 4. Asa Pushout. We have anisomorphism
XAY «— XXY
XAY=pt ][] (XXY), |r Jl
XvY

pt<!—XVY,
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natural in X, Y € Obj(Sets,), where the pushout is taken in Sets,
and the embedding:: X VY — X x Y is defined following Re-
mark 4.5.1.1.5.

00GA 5. Distributivity Over Wedge Sums. We have isomorphisms of pointed
sets

XANYVZ)y=XAY)V(XAZ),
XVY)YANZ=2(XANZ)V(YAZ),

natural in (X, xo), (Y, y0), (Z, z9) € Obj(Sets.).

Proof. Item 1, Functoriality: The map f A g comes from Item 4 of Proposi-
tion7.5.2.1.3 viathe map

fAg:XXY —>ANAB
sending (x, y) tof(x) A g(y), which we need to show satisfies

[f Agl(x,»)=[f Agl(x', ")

foreach (x,y), (x’, ") € X x Y with (x,y) ~r (x/, ), where ~p is the
relation constructing X A Y as

XAY = (X xY)/~k

in Construction 4.5.1.1.4. The condition defining ~ is that at least one of the
following conditions is satisfied:

1. Wehavex =x"andy = y’;
2. Both of the following conditions are satisfied:

(@) Wehavex = xgory = yq.

(b) We havex’ = xgory’ = yp.
We have five cases:

1. Inthe first case, we clearly have

[f Agl(x,p) =[f Agl(x',»")

sincex =x"andy = y’.
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2. Ifx = xgand x” = x(, we have

def

[f A gl(x0,») =f(x0) A g(y)
=ap A g(y)
=ao A g(y')
=f(x0) Ag(»")

def

= [f A gl(x0, ")
3. Ifx = xgandy’ = yo, we have

[f A gl(x0,) = f(x0) A g(»)
=ag A g(y)
=agp A by
=f(x") Abg
=f(x") A g(y0)
Zf A g1+, y0).

4. If y = ypand x’ = xq, we have

ef

[f A g](x, 30) E£(x) A g(30)
= f(x) A b
=ag A by
=agAg(y)
=f(x0) Ag(y")
Zf A gl(xo, ).

5. Ify = ypand y’ = yo, we have

[f A gl(x,30) E f(x) A g(0)
=f(x) Abg
=f(x") Abg
=f(x) A g(»0)
Zf A g1, y0).

Thusf A giswell-defined. Next, we claim that A preserves identities and
composition:
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- Preservation of Identities. We have
[lidx Aidy](x A y) Zidx (x) A idy ()
=xXAYy
= [idxay](x A J/)
foreachx A y € X AY,and thus

idX A idy = id.XAy.

- Preservation of Composition. Given pointed maps
f:(X,x0) = (X', x(),
he (X', x4) = (X7, x(),
g (Y, 30) = (Y, %),
k: (Y7 20) = (Y750,
we have

[(hof) A(kog)l(xAy) = h(f(x) Ak(g(y))
Z[hAk](f(x) Ag()

= [h ARI(If A gl(x A )
Z[(hAk) o (fAI(xAY)

foreachx A y € X A Y,and thus
(hof)A(kog)=(hAk)o(fAg).

This finishes the proof.
Item 2, Adjointness: We prove only the adjunction — A Y 4 Sets,(Y,-),
witnessed by a natural bijection

Homgets, (X A Y, Z) = Homsets, (X, Sets. (Y, Z2)),

as the proof of the adjunction X A — 4 Sets. (X, —) is similar. We claim we
have a bijection

Hom?ets* (X X Y’ Z) = HomSets* (X, sets*(Y, Z))

natural in (X, x0), (Y, y0), (Z, z0) € Obj(Sets..), impliying the desired ad-
junction. Indeed, this bijection is a restriction of the bijection

Sets(X x Y,Z) = Sets(X, Sets(Y, Z2))

of Item 2 of Proposition 2.1.3.1.2:
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- Amap
E:XXY > Z

in Hom®

cets, (X X Y, Z) gets sent to the pointed map

£7: (X, x0) — (Sets.(Y,Z),A,,),

X — (EI:Y—)Z),

where £I : Y — Zisthe map defined by
E() = Exy)

foreach y € Y, where:

— Themap ¢' isindeed pointed, as we have

£l (9) £ E(x0,9)
“

foreach y € Y. Thus £IO =A;,and £7is pointed.
— The map EI indeed liesin Sets, (Y, Z), as we have

5 (30) = £(x, y0)

def
= Z0.

- Conversely,a map

£: (X,x9) — (Sets.(Y,2),A,),

x+——— (£,:Y > Z2),

in Homgets, (X, Sets., (Y, Z)) gets sent to the map

o XxYy >2Z

defined by

def

ET(xry) = fx(y)
foreach (x, y) € X x Y, whichindeed lies in Homg’ets (X xY,2),
as:
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— Left Bilinearity. We have

£ (x0,9) € £y ()
= Az, (J’)

def
= ZO

foreachy € Y,sinceé,, = A, as¢ isassumed to be a pointed
map.

— Right Bilinearity. We have

7 (x, 30) £ £:(30)

def
= ZO

foreach x € X, since £, € Sets,(Y,Z) is a morphism of
pointed sets.

This finishes the proof.
Item 3, Enriched Adjointness: This follows from Item 2 and 22 of 22.
Item 4, As a Pushout: Following the description of Remark 2.2.4.1.2, we have

pt [l xvy(X xXY) = (ptxX (X XY))/~,

where ~ identifies the elemenet x in pt with all elements of the form (x¢, y)
and (x, yg) in X X Y. Thus Item 4 of Proposition 7.5.2.1.3 coupled with Re-
mark 4.5.1.1.7 then gives us a well-defined map

ptIl xvy(X XY) > X AY
via [(x, (x,¥))] = x A y,withinverse

XAY - pt[xvr (X XY)
givenbyx Ay = [(%, (x,))].

Item 5, Distributivity Over Wedge Sums: This follows from Proposition 4.5.9.1.1,
??0f 22, and the fact that V is the coproduct in Sets,. (Definition3.3.3.1.1). O

00GB 4.5.2 Thelnternal Hom of Pointed Sets

Let (X, xg) and (Y, yg) be pointed sets.
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00GC Definition 4.5.2.1.1. The internal Hom?*' of pointed sets from (X, x() to
(Y, yo) is the pointed set Sets..((X, xo), (Y, y0))** consisting of:

- The Underlying Set. The set Sets..((X, xo), (Y, y0)) of morphisms of
pointed sets from (X, xg) to (Y, yg).

- The Basepoint. The element

Ayo: (X, xO) - (Y!_)}O)

of Sets..((X, xp), (Y, y0)) given by

def

Ayo (x) =20
foreachx € X.

Proof. ForaproofthatSets, isindeed the internal Hom of Sets. with respect
to the smash product of pointed sets, see Item 2 of Proposition 4.5.1.1.9. O

00GD Proposition 4.5.2.1.2. Let (X, xg) and (Y, y¢) be pointed sets.

00GE 1. Functoriality. The assignments X,Y, (X,Y) — Sets.(X,Y) define
functors

Sets. (X, —): Sets, — Sets,,
Sets, (-, Y): Sets.? — Sets,,

Sets, (-1, —2): Sets.” x Sets, — Sets,.
In particular, given pointed maps

f: (X, x0) = (A a0),
8- (Y,yo) - (B, bg),

the induced map
Sets.(f,g): Sets.(A,Y) — Sets. (X, B)

is given by
[Sets.(f,2)1($) Egodof
foreach ¢ € Sets.(A,Y).

21The pointed set Sets., (X, Y) is the internal Hom of Sets, with respect to the smash
product of Definition 4.5.1.1.1; see Item 2 of Proposition 4.5.1.1.9.
22 Fyrther Notation: Also written Homgegs, (X, Y).
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00GF 2. Adjointness. We have adjunctions

XA-
—
(X A — 4 Sets.(X,-)): Sets*\J./ Sets,,
Sets. (X,—)
-AY
=
(=AY 4Sets.(Y,-)): Sets, 1 Sets,,
~
Sets. (Y,—)

witnessed by bijections

Homgets, (X A Y, Z) = Homses, (X, Sets. (Y, Z2)),
Homgets, (X A Y, Z) = Homses, (X, Sets.. (4, 7)),

natural in (X, xo), (Y, y0), (Z, z9) € Obj(Sets.).
00GG 3. Enriched Adjointness. We have Sets,-enriched adjunctions

XA-
~
(X A —4Sets.(X,-)): Sets*\L/ Sets,,
Sets, (X,—)
—AY
—
(=AY 4Sets.(Y,-)): Sets. 1 Sets,,
S~
Sets. (Y,—)

witnessed by isomorphisms of pointed sets

Sets.(X AY,Z) = Sets.(X, Sets.(Y, Z2)),
Sets.(X AY,Z) = Sets. (X, Sets.(A, Z)),

natural in (X, xg), (Y, y0), (Z, z9) € Obj(Sets.).

Proof. Item 1, Functoriality: This follows from Item 1 of Proposition 2.3.5.1.2
and from the equalities

8ol =4y,
Ay, of =4y,

for morphisms f: (K, kg) — (X,x9)and g: (Y,y9) — (Z,zp), which
guarantee pre- and postcomposition by morphisms of pointed sets to also
be morphisms of pointed sets.

Item 2, Adjointness: This is a repetition of Item 2 of Proposition 4.5.1.1.9, and is
proved there.

Item 3, Enviched Adjointness: Thisis a repetition of [tem 3 of Proposition 4.5.1.1.9,
and is proved there. O
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4.5.3 The Monoidal Unit

Definition 4.5.3.1.1. The monoidal unit of the smash product of pointed
sets is the functor
15¢% . pt — Sets,
defined by
def
1Sets* = SO~

4.5.4 The Associator

Definition 4.5.4.1.1. The associator of the smash product of pointed sets is
the natural isomorphism
Sets, . : - : C
a e P Ao (/\ X Idsets*) = Ao (IdSEtS* X /\) ° aS:tt: Sets,,Sets,.’

asinthediagram

Sets, X (Sets, X Sets,)

7
Cats s .
aSets*,Sets*,Sets* ’,;: Ni(/\

(Sets, x Sets,) X Sets, Sets* X Sets,

Sets*

AXid

Sets, X Sets* —— Sets,,
whose component
oy (XAY)AZ S XA(YAZ)

at (X, xp), (Y, y0), (Z, z9) € Obj(Sets.,) is given by

a7 (A AZ)E XA (yA2)

foreach(x Ay)Aze (X AY)AZ.

Proof. Well-Definedness: Let [((x, y),2z)] = [((x’,y"),2’)] be an elementin
(X AY) A Z. Theneither:

1. Wehavex =x’,y = y’,andz = 2’
2. Both of the following conditions are satisfied:

(@) Wehavex =xgory = ygorz = zp.
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(b) Wehavex” = xgory’ = ygorz’ = zg.

In the first case, a)s(e}t,s*z clearly sends both elements to the same element in

X A (Y A Z). Meanwhile, in the latter case both elements are equal to the
basepoint (xg A y9) A zp of (X A Y) A Z, which gets sent to the basepoint
x0 A (o Azg)of X A (Y A Z).

Being a Morphism of Pointed Sets: As just mentioned, we have

35 ((x0 A 30) A 20) Z x0 A (30 A 20),

Sets.
XY, Z

Invertibility: Clearly, the inverse of &

and thus & is a morphism of pointed sets.

Sets.

Xz s given by the morphism

ST XA (Y AZ) S (XAY)AZ

defined by

)S(e;s*z_l(x AGA)E (xAy) Az
foreachx A (y Az) e X A (Y A Z).
Naturality: We need to show that, given morphisms of pointed sets

f: (X!xO) — (X’;x(/)):

g: (Y,30) = (Y, ),

h: (Z,z0) = (Z,2])
the diagram

(X AY) Az [P0,

Sets*
X Y.Z

XAN(YANZ)

X'ANY)YANZ
| Setsx

X’Y’Z’

TG X' ANY' ANZ)

commutes. Indeed, this diagram acts on elements as

(xAy) Az = (f(x) Ag(»)) Ah(2)

| |

XA (Y Az) —— f(x) A(g(y) AR(2))

and hence indeed commutes, showing 2°¢t+ to be a natural transformation.
Being a Natural Isomorphism: Since ¢t is natural and #>¢'+~! is a compo-
nentwise inverse to >+, it follows from Item 2 of Proposition 8.8.6.1.2 that
a>ets+~1 is also natural. Thus &5t is a natural isomorphism. O
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4.5.5 TheLeftUnitor

Definition 4.5.5.1.1. The left unitor of the smash product of pointed sets is
the natural isomorphism

15¢ts xid
pt X Sets, ———— Sets, X Sets,

\
\
\ /

N C \\ lSets*

/‘{Sets*: /\o(lsets* X Id. ) l atsy \
Sets, | = Sets, \\\ / A
Catsy N
lSets* \\\
™ Sets,,

whose component
A SOAX > X

at X € Obj(Sets,) is given by

0Ax— xg,

1AXx > x.

Proof. Well-Definedness: Let [(x, y)] = [(x’,y’)] bean elementin S° A X.
Then either:

1. Wehavex =x"andy = y’.
2. Both of the following conditions are satisfied:

(@) Wehavex =0ory = xo.

(b) We havex” = 0ory’ = xo.

In the first case, /I)Sfts* clearly sends both elements to the same element in
X. Meanwhile, in the latter case both elements are equal to the basepoint
0 A xg of S° A X, which gets sent to the basepoint x( of X.
Being a Morphism of Pointed Sets: As just mentioned, we have

def

).)S(ets*(o A x0) = xq,

and thus lf(ets* is a morphism of pointed sets.

Invertibility: The inverse ofiiets* is the morphism

Al x 580a X
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defined by
A ) 1A

foreach x € X. Indeed:

- Invertibility |. We have
Sets,,—1 Sets, __ 1 Sets,,—1( 4 Sets,
a5l o 2545 (0 A x) = 25 (1X O A x))

Sets,,—1
:Axes (XO)
=1Axg
=0Ax,

and
)’)S(ets*,—l o A)S(ets* (1 A x) — A?{ets*,—l(iiets*(l A x))

— A?{ets*,—l (x)

=1Ax
foreach x € X, and thus we have
A)S(ets*,—l o l?{ets* — idgox.
- Invertibility 1. We have

Aiets* ° A?{ets*,—l] (x) — Aiets* (Aiets*,—l(x))
=237 (1 Ax)
=x

foreach x € X, and thus we have

Sets, Sets,,—1 _ .
AX o iX = Idx.

This shows A;ﬁs* to be invertible.
Naturality: We need to show that, given a morphism of pointed sets

f: (X,x0) = (Y, 30),

the diagram

idSO /\f

SOAX = SOAY

Setss Setsx
lX | |/1Y

X Y
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commutes. Indeed, this diagram acts on elements as

0Ax 0Ax — 0 Af(x)
xg —— f(x0) Yo

and
1Ax — 1Af(x)

T

x F—— f(x)

and hence indeed commutes, showing 15+ to be a natural transformation.
Being a Natural Isomorphism: Since 15+ is natural and 15¢t+~1 js a compo-
nentwise inverse to 15¢t+ it follows from Item 2 of Proposition 8.8.6.1.2 that

25etse—1 s also natural. Thus A€+ is a natural isomorphism. O
4.5.6 The Right Unitor
Definition 4.5.6.1.1. The right unitor of the smash product of pointed sets
is the natural isomorphism
iXmSets*
Sets, X pt ——— Sets, X Sets.
\
\
\ y
c \ pSets*
Sets. : Sets, | _~ atsp \
P Ao (|d x1 ) - )
p pSets* \\\ / A
Catsy \\
Setsy AN

whose component
P X ASY S X

at X € Obj(Sets.) is given by

x A0 xg,

x Al x.

Proof. Well-Definedness: Let [(x, y)] = [(x’,y’)] be anelementin X A S°.
Then either:
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1. Wehavex =x"andy = y’.
2. Both of the following conditions are satisfied:

(@) Wehavex = xpory =0.
(b) We havex” = xgory’ = 0.

In the first case, p)s(ets* clearly sends both elements to the same element in

X. Meanwhile, in the latter case both elements are equal to the basepoint
xo A 0of X A SO, which gets sent to the basepoint xg of X.
Being a Morphism of Pointed Sets: As just mentioned, we have

. def
P37 (x0 A 0) E xg,
and thus ,a)S(ets* is a morphism of pointed sets.

Sets.

Y isthe morphism

Invertibility: The inverse of p

piets*’_lz X 5 XAS°

defined by
piets*’_l(x) PN

foreach x € X. Indeed:

- Invertibility I. We have

piets*,—l ° p)S(ets* (x A 0) — p}S{ets*,—l (piets* (x A 0))
Sets,,—

= pXets 1(x0)
=xgAN1

=x A0,

and

piets*,—l ° p?(ets* (x A 1) — p?{ets*,—l(p;ets* (x A 1))

— p?{ets*,—l(x)
=xA1
foreach x € X, and thus we have

Sets,,—1 Sets, _
pX © pX - Id‘X/\SO'
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- Invertibility 1. We have

p?{ets* ° piets*,—l] (x) _ p)S{ets* (piets*,—l (x))
— p?{ets*,—l(x /\ 1)
=x
foreach x € X, and thus we have

Sets, Sets,,—1 _ .
Px  °Px = idy.

This shows p)sfets* to be invertible.
Naturality: We need to show that, given a morphism of pointed sets

f: (X,x0) = (Y, 30),

the diagram
idgo

X A80 L0,y 4 g0

Setsx Sets.
pX &3 | | pY £

X Y
f

commutes. Indeed, this diagram acts on elements as

x A0 x A0 f(x)AD
xo > f(x0) Yo

and
r Al f(x) Al

T

x F—— f(x)

and hence indeed commutes, showing p>¢t to be a natural transformation.
Being a Natural Isomorphism: Since p>¢t« is natural and p>¢t+~1 is a compo-
nentwise inverse to psets*, it follows from Item 2 of Proposition 8.8.6.1.2 that
p>¢+~Lisalso natural. Thus p%¢%+ is a natural isomorphism. ]
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4.5.7 The Symmetry

Definition 4.5.7.1.1. The symmetry of the smash product of pointed sets is
the natural isomorphism

Sets, X Sets, # Sets,,

Sets, - Catsp s
: : o) ets*
g A A a—Sets*,Sets*’ Cat52
Sets* Setsx

Sets, X Sets*

whose component

Sets*
R XAY SY AKX

atX,Y € Obj(Sets,) is defined by

Sets*

(x/\y) y/\x
foreachx Ay e X AY.

Proof. Well-Definedness: Let [(x, y)] = [(x/, y")] beanelementin X A Y.
Then either:

1. Wehavex =x"andy = y’.
2. Both of the following conditions are satisfied:

(@) Wehavex = xgory = yo.
(b) Wehavex’ = xgory’ = yg.

In the first case, aie“’* clearly sends both elements to the same elementin
X. Meanwhile, in the latter case both elements are equal to the basepoint
x0 A yo of X A Y, which gets sent to the basepoint yg A xgof Y A X.

Being a Morphism of Pointed Sets: As just mentioned, we have

Sets* (x0 A 30) = ¥ A x0,

Sets,
and thus oy

Invertibility: Clearly, the inverse ofcr

is a morphism of pointed sets.

Ets* is given by the morphism

Sets,,—1
Tyy YAX >XAY

defined by

Sets*,

GADZxny
foreachy Ax e Y A X.
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Naturality: We need to show that, given morphisms of pointed sets
f: (X! xO) - (A! aO)!
g: (Y’yO) - (B, bU)

the diagram

XAY 25 AnB

Setsi Setsi
Ixy | |%3

YANX — BAA
gnf
commutes. Indeed, this diagram acts on elements as

XAy — f(x) Ag(y)

|

yAx > g(y) Af(x)

and hence indeed commutes, showing o°¢t* to be a natural transformation.
Being a Natural Isomorphism: Since o€ is natural and o€t~ is a compo-
nentwise inverse to o>+ it follows from Item 2 of Proposition 8.8.6.1.2 that
ooet+~1is also natural. Thus o5 is a natural isomorphism. O

4.5.8 The Diagonal

Definition 4.5.8.1.1. The diagonal of the smash product of pointed sets is
the natural transformation

idSets*
Sets, /ﬁ\’ Sets,
AL Catsy AN
A" idgets, = A © VSR Gty .

Setsx
Sets. A Sets,,
whose component
A (X, x0) = (X A X, x0 A x0)

at (X, xg) € Obj(Sets.,) is given by the composition

A

(X, x0) =5 (X x X, (x0, x0))

— (X xX)/~, [(x0,%0)])
def (X AX,x0 A x0)
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in Sets,, and thus by
AR (x) “xAx

foreachx € X.
Proof. Being a Morphism of Pointed Sets: We have
def
A% (x0) = x0 A xo,

and thus A% is a morphism of pointed sets.
Naturality: We need to show that, given a morphism of pointed sets

f:(X,x0) = (Y, 0),
the diagram

Y

A

XANX — YAY
fAf

commutes. Indeed, this diagram acts on elements as

X f(x)

|

xAx —— f(x) Af(x)
and hence indeed commutes, showing A" to be natural. O

00GV Proposition 4.5.8.1.2. Let (X, xy) € Obj(Sets.).
Q0OGW 1. Monoidality. The diagonal

AL Catsp
A" idsets, = Ao Asets*,
of the smash product of pointed sets is a monoidal natural transfor-

mation:

00GX (@) Compatibility With Strong Monoidality Constraints. Foreach (X, xo), (Y, yo0) €
Obj(Sets.,), the diagram

AR ALY
XAY X5 (XAX)A(YAY)
) :
Ay :

M

(XAY)A(XAY)

commutes.
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00GY (b) Compatibility With Strong Unitality Constraints. The diagrams
% 50 A S0 —, 0 A S0

NF NF

commute, i.e. we have
Sets*,—l
SO - ’1

_ Sets* -1
= 0% ,
where we recall that the equalities
Sets* _ Sets,
/1 - psO )
Sets* -1 Sets,,—1
/1 psO

are always true in any monoidal category by ?? of 22.
00GZ 2. The Diagonal of the Unit. The component
Ay SO 5 80 A S0
of A" at $%is an isomorphism.

Proof. Item 1, Monoidality: We claim that A" is indeed monoidal:

1. Item1a: Compatibility With Strong Monoidality Constraints: We need to
show that the diagram
A A

AYAAY
XAY —— (XAX)A(YAY)

0
A :
A¥ay i

'
v

(XAY)A(XAY)
commutes. Indeed, this diagram acts on elements as
XAy FH—— (xAX)A (YA Y)
(xAY)A(xAY)

and hence indeed commutes.
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2. Item 1b: Compatibility With Strong Unitality Constraints: As shown in
the proof of Definition 4.5.5.1.1, the inverse of the left unitor of Sets.,
with respect to to the smash product of pointed sets at (X, xg) €
Obj(Sets..) is given by

AN 1A
foreachx € X, sowhen X = S° we have
I 0) =140,
AT W) EIAL

Butsincel AO=0AOand

def

A0 E0 A0,
AN E1AL,
it follows that we indeed have A}, = l?gts*’_l.

This finishes the proof.

Item 2, The Diagonal of the Unit: This follows from Item 1 and the invertibility
of the left/right unitor of Sets.. with respect to A, proved in the proof of
Definition 4.5.5.1.1 for the left unitor or the proof of Definition 4.5.6.1.1 for
the right unitor. O

00H? 4.5.9 The Monoidal Structure on Pointed Sets Associated to A

Q0H1 Proposition 4.5.9.1.1. The category Sets, admits a closed monoidal category
with diagonals structure consisting of

- The Underlying Category. The category Sets,, of pointed sets;

- The Monoidal Product. The smash product functor
A: Sets, X Sets, — Sets,

of Item 1 of Proposition 4.5.1.1.9;

- The Internal Hom. The internal Hom functor
Sets, : Sets2P x Sets, — Sets,

of Item 1 of Proposition 4.5.2.1.2;
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- The Monoidal Unit. The functor

15ets- . pt — Sets,

of Definition 4.5.3.1.1;

- The Associators. The natural isomorphism

Cats

Sets,
@ °© “Sets*,Sets*,Sets*

: Ao (A Xidsets,) = A o (idsets, X A)
of Definition 4.5.4.1.1;

- The Left Unitors. The natural isomorphism

ASEtS* - Ao (1Sets* X idSetS*) 5 2'g:ttssz

of Definition 4.5.5.1.1;

- The Right Unitors. The natural isomorphism

Sets, . . Sets, ~ Cats,
P ./\O(IdX1 ):>psets*

of Definition 4.5.6.1.1;

- The Symmetry. The natural isomorphism

Catsy

U,Sets*
Sets,,Sets.

A= Aoo
of Definition 4.5.7.1.1;

- The Diagonals. The monoidal natural transformation

Catsy

/AN
A" |dSets* — Ao ASetS*

of Definition 4.5.8.1.1.

Proof. The Pentagon ldentity: Let (W, wyq), (X, x0), (Y, y0) and (Z, zp) be
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pointed sets. We have to show that the diagram

WAXAY)ANZ

Setsy Sets

ty xyNidz %w.XAY.Z
(WAXYANY)YANZ WA((XAY)AZ)
“15/;25;,5/,2 idw A }S(extfsz

WAX)AN(YANZ)

e WA (XA(YAZ))
WX YNZ

commutes. Indeed, this diagram acts on elements as

(wA(XAY))AzZ

(wAx)ANY)Az wA((xAy)Az)

(wAX)A(YAZ) ——> w A (x A (Y A2))

and thus we see that the pentagon identity is satisfied.
The Triangle Identity: Let (X, xo) and (Y, y¢) be pointed sets. We have to
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show that the diagram

Setsx

(X AS)AY 225 XSOV XA (SOAY)

Sets* \ %/\ASets*

XANY

commutes. Indeed, this diagram acts on elements as

(xAO)A Y (xAO)AYy ——— xA(0OAY)
XgNYy x A Yo
and

(xADAy ——— xA(1AY)

N

XAy,

and thus we see that the triangle identity is satisfied.
The Left Hexagon Identity: Let (X, xg), (Y, y0), and (Z, z) be pointed sets.
We have to show that the diagram

(XAY)AZ
)5(‘5;5}/ \ﬂ)s(e;s*/\ldz
XAN(YANZ) (YAX)ANZ
i
YAZ)ANX YAN(XAZ)

Sh / YA Setsx

£
%yzx Y A(ZAX) X,z
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commutes. Indeed, this diagram acts on elements as

(xAy)Az

PN

XA (yA2) (YAX)AzZ

(yAz)Ax yA(xA2)

~

yA(zAx)

and thus we see that the left hexagon identity is satisfied.
The Right Hexagon Identity: Let (X, xg), (Y, y0), and (Z, zp) be pointed sets.
We have to show that the diagram

1 XA(YAZ)
NG
XAY)ANZ XAN((ZAY)
etss etse | L
ﬂ)s(/\ty,z (“;S(,z,y)
ZAXAY) XAZ)AY

Setsx )_\‘ /Set > Aidy

55 Zaxyny ™
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commutes. Indeed, this diagram acts on elements as

xA(yAz)

PN

(xAy)Az XA (zNY)

ZA (X AY) (xA2) Ay

~

(zAX)AY

and thus we see that the right hexagon identity is satisfied.

Monoidal Closedness: This follows from Item 2 of Proposition 4.5.1.1.9.

Existence of Monoidal Diagonals: This follows from Items 1 and 2 of Proposi-

tion 4.5.8.1.2. O
00H2 4.5.10 Universal Properties of the Smash Product of Pointed Sets |

00H3 Theorem 4.5.10.1.1. The symmetric monoidal structure on the category
Sets, is uniquely determined by the following requirements:

1. Two-Sided Preservation of Colimits. The smash product
A: Sets, X Sets, — Sets,

of Sets, preserves colimits separately in each variable.
2. The Unit Object Is S°. We have lsets, = SO,

Proof. Omitted. O

00H4 4.5.11 Universal Properties of the Smash Product of Pointed Sets 1

00H5 Theorem4.5.11.1.1. The symmetric monoidal structure on the category Sets,
is the unique symmetric monoidal structure on Sets, such that the free
pointed set functor
(=)*: Sets — Sets,

admits a symmetric monoidal structure.

Proof. See [CGN15, Theorem 5.1]. O
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Q0H6 4.5.12 Monoids With Respecttothe Smash Product of Pointed Sets

00H7 Proposition 4.5.12.1.1. The category of monoids on (Sets., A, SO) is isomor-
phic to the category of monoids with zero and morphisms between them.

Proof. See ??,in particular ??, 22, and ?2. O
4.5.13 Comonoids With Respect to the Smash Product of Pointed
00H8 Sets

00H9 Proposition 4.5.13.1.1. The symmetric monoidal functor

()% (51, (2)3%): (Sets, x,pt) = (Sets,, A, 8°),
of Item 4 of Proposition 3.4.1.1.2 lifts to an equivalence of categories
CoMon (Sets*, A, SO) 2 CoMon(Sets, X, pt)
= Sets.

Proof. See [PS19, Lemma2.4]. O

ooHA 4.6 Miscellany

00HB 4.6.1 The Smash Product of a Family of Pointed Sets
Let {(X;, x}) }ie[ be a family of pointed sets.

00HC Definition 4.6.1.1.1. The smash product of the family {(X;, x})}. _, isthe
pointed set A\;c; X; consisting of:

- The Underlying Set. The set A\ ;¢; X; defined by
Ax £ (nx,-)/~,
iel iel

where ~ is the equivalence relation on [ [;<; X; obtained by declaring
(xi)ier ~ Di)ier

if there existip € I such that x;, = xgand y;, = yo, for each
(xi)ier (Di)ier € [licr Xi.

- The Basepoint. The element [(x0);c;] of Ajer Xi-

Appendices
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Chapters

Relations

QOHD This chapter contains some material about relations. Notably, we discuss
and explore:

1. The definition of relations (Section 5.1.1).

2. How relations may be viewed as decategorification of profunctors
(Section 5.1.2).

3. Thevarious kind of categories that relations form, namely:

(@) Acategory (Section5.2.1).
(b) A monoidal category (Section 5.2.2).
(c) A2-category (Section 5.2.3).
(d) Adouble category (Section 5.2.4).
4. Thevarious categorical properties of the 2-category of relations, in-
cluding:
(@) The self-duality of Rel and Rel (Proposition 5.3.1.1.1).

(b) Identifications of equivalences and isomorphisms in Rel with
bijections (Proposition 5.3.2.1.1).

(¢) Identifications of adjunctions in Rel with functions (Proposi-
tion 5.3.3.1.1).

(d) Identificationsof monadsin Relwith preorders (Proposition5.3.4.1.1).
(e) Identifications of comonadsin Rel with subsets (Proposition5.3.5.1.1).

(f) Adescription of the monoids and comonoids in Rel with respect
to the Cartesian product (Remark 5.3.6.1.1).

(g) Characterisationsof monomorphismsin Rel (Proposition5.3.7.1.1).
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Characterisations of 2-categorical notions of monomorphisms
in Rel (Proposition 5.3.8.1.1).

Characterisations of epimorphisms in Rel (Proposition 5.3.9.1.1).

Characterisations of 2-categorical notions of epimorphisms in
Rel (Proposition 5.3.10.1.1).

The partial co/completeness of Rel (Proposition 5.3.11.1.1).

The existence or non-existence of Kan extensions and Kan lifts
in Rel (Remark 5.3.12.1.1).

The closedness of Rel (Proposition 5.3.13.1.1).

The identification of Rel with the category of free algebras of
the powerset monad on Sets (Proposition 5.3.14.1.1).

5. Adescription of two notions of “skew composition” on Rel(A, B), giv-
ingrisetoleftand right skew monoidal structures analogous to the left
skew monoidal structure on Fun(C, D) appearing in the definition
of a relative monad (Sections 5.4 and 5.5).
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ooHE 5.1 Relations
00HF 5.1.1 Foundations
Let A and B be sets.

00HG Definition5.1.1.1.1. ArelationR: A b B from Ato B"-? is a subset R of
A X B.

00HH Notations.1.1.1.2. LetR: A - B be arelation.

TFurther Terminology: Also called a multivalued function from A to B, a relation over A
and B, relation on A and B, a binary relation over A and B, or a binary relation on Aand B.
2Further Terminology: When A = B, we also call R € A X Aarelationon A.
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1. Givenelementsa € Aandb € BandarelationR: A —p B, we write
a ~g btomean (a,b) € R.

2. Viewing R as a function
R: AX B — {t,f}
via Remark 5.1.1.1.4, we write Rg forthe value of R at (a, b).3
Definition 5.1.1.1.3. Let Aand B be sets.

1. The setofrelations from A to B is the set Rel(A, B) defined by

Rel(A, B) « {Relations from A to B}.

2. The poset of relations from A to B is the poset

def

Rel(A, B) = (Rel(A, B), Q)
consisting of:

- The Underlying Set. The set Rel (A, B) of Item 1.
- The Partial Order. The partial order

C: Rel(A, B) X Rel(A, B) — {true, false}
on Rel(A, B) given by inclusion of relations.

3. Thecategory of relationsfrom Ato Bis the posetal category Rel (A, B)
associated to the poset Rel (A, B) of Item 2 via Definition 8.1.3.1.1.

Remark5.1.1.1.4. Arelation from Ato Bis equivalently:®
1. Asubsetof A X B.
2. Afunction from A X Bto {true, false}.

3. Afunction from Ato P(B).

3The choice Rla’ inplace ofR‘bl is to keep the notation consistent with the notation we will
later employ for profunctors.

4Here we choose to slightly abuse notation by writing Rel(A, B) (instead of e.g.
Rel(A, B)0s) for the posetal category of relations from A to B, even though the same nota-
tion is used for the poset of relations from A to B.

SIntuition: In particular, we may think of a relation R: A — P(B) from Ato Basa
multivalued function from Ato B (including the possibility of a given a € A having no value
atall).
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Q0oHU 4. Afunction from Bto P(A).

QOHV 5. A cocontinuous morphism of posets from (P (A), C) to (P(B), ©).

That is: we have bijections of sets

def

Rel(A, B) = P(A X B),
= Homsgets (A X B, {true, false}),
= HomSets(A» P(B)),
= HomSets(Bx P(A)),
~ Homg’ssnt(P(A),P(B)),
natural in A, B € Obj(Sets).
Proof. We claim that Items1to 5 are indeed equivalent:

- Item1 <= Item 2: This is a special case of [tems 1 and 2 of Proposi-
tion 2.4.3.1.6.

- Item 2 &= Item 3: This follows from the bijections

Homsets(A X B, {true, false}) = Homsets (A, Homsers(B, {true, false}))
= HomsetS(Ar P(B)),

where the last bijection is from Items 1 and 2 of Proposition 2.4.3.1.6.

- Item 2 &= Item 4: This follows from the bijections

Homsets(A X B, {true, false}) = Homsgets(B, Homsets(B, {true, false}))
= HomSetS(Br P(A))r

where againthelast bijection is from Items1and 2 of Proposition 2.4.3.1.6.

- Item 2 <= Item 5: This follows from the universal property of the

powerset P (X) of aset X as the free cocompletion of X via the char-
acteristicembedding

rx: X — P(X)

of X into P(X), Item 2 of Proposition 2.4.3.1.8.

In particular, the bijection

Rel(A, B) = HomE2™ (P (A), P(B))

Pos
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is given by taking a relation R: A —b B, passing to its associated
functionf: A — P(B) from Ato B and then extending f from A to
all of P(A) by taking its left Kan extension along yx.

This coincides with the direct image function f..: P(A) — P(B) of
Definition 2.4.4.1.1.

This finishes the proof. O
Proposition5.1.1.1.5. Let Aand B besetsandletR,S: A - B berelations.

1. End Formula for the Set of Inclusions of Relations. We have
HomReKA,B) (R, S) = / Hom{tyf} (RZ,SZ).
acA JbeB

Proof. Item 1, End Formula for the Set of Inclusions of Relations: Unwinding the
expression inside the end on the right hand side, we have

pt if foreacha € Aandeachb € B,

/ / Hom{t,f}(RZ, Si’) = we have Hom{tyf}(RZ,Sg) = pt
acA JbeB .
0  otherwise.

Since we have Homy f} (RZ,SE) = {true} = ptexactly when R" = false or
R’ = SP = true, we get

pt if foreacha € Aandeachb € B,

/ / Hom{tyf} (RZ, Sg) = ifa ~R b,thena ~g b,
acA JbeB .
@ otherwise.

On the left hand-side, we have

pt ifRCS,

Homgel(45) (R, §) = {(z) otherwise

Itis then clear that the conditions for each set to evaluate to pt (up to isomor-
phism) are equivalent, implying that those two sets are isomorphic. O
5.1.2 Relations as Decategorifications of Profunctors

Remark5.1.2.1.1. The notion of a relation is a decategorification of that of a
profunctor:
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1. A profunctor from a category C to a category D is a functor

p: DP x C — Sets.

2. Arelation onsets A and Bis a function

R: AX B — {true, false}.

Here we notice that:

- The opposite X°P of a set X isitself, as (—)°P: Cats — Cats restricts
to the identity endofunctor on Sets.

- The values that profunctors and relations take are analogous:
— Acategory is enriched over the category
def
Sets = Catsg

of sets, with profunctors taking values on it.

— Asetisenriched over the set
def
{true, false} = Cats_;
of classical truth values, with relations taking values on it.

00J0 Remarks.1.2.1.2. Extending Remark5.1.2.1.1, the equivalent definitions of
relations in Remark 5.1.1.1.4 are also related to the corresponding ones for
profunctors (2?), which state that a profunctorp: C - D is equivalently:

00J1 1. Afunctorp: D x C — Sets.

0072 2. Afunctorp: C — PSh(D).

0073 3. Afunctorp: D°P — Fun(C, Sets).

0074 4. Acolimit-preserving functorp: PSh(C) — PSh(D).
Indeed:

- The equivalence between Items1and 2 (and also that between Items 1
and 3, which is proved analogously) is an instance of currying, both
for profunctors as well as for relations, using the isomorphisms

Sets(A X B, {true, false}) = Sets(A, Sets(B, {true, false}))
= Sets(A, P(B)),
Fun(D°P x D, Sets) = Fun(C, Fun(D°P, Sets))
= Fun(C, PSh(D)).
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- The equivalence between Items 1 and 3 follows from the universal
properties of:

— The powerset P (X) of a set X as the free cocompletion of X via
the characteristicembedding

)((_) X — P(X)

of XintoP(X), asstated and provedin Item 2 of Proposition 2.4.3.1.8.

— The category PSh(C) of presheaves on a category C as the free
cocompletion of C via the Yoneda embedding

&: C < PSh(C)

of C into PSh(C), as stated and proved in ?? of 22.

00J5 5.1.3 Examples of Relations

00J6 Examples.1.3.1.1. Thetrivial relationon Aand B is the relation ~y,, defined
equivalently as follows:

1. Asasubsetof A X B, we have

def

~uiv = A X B.

2. Asafunction from A X B to {true, false}, the relation ~yy is the con-
stant function

Atrue: A X B — {true, false}
from A X B to {true, false} taking the value true.
3. Asafunction from A to P(B), the relation ~;, is the function
Atrye: A — P(B)

defined by
def

Atrye (a) =B

foreacha € A.

4. Lastly, itis the unique relation R on Aand B such thatwe havea ~3 b
foreacha € Aandeachb € B.

00J7 Examples.1.3.1.2. The cotrivial relation on A and B is the relation ~giy
defined equivalently as follows:
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1. Asasubsetof A X B, we have

def
~cotriv = 0.

2. Asa function from A X B to {true, false}, the relation ~ciy is the
constant function

Afaise: A X B — {true, false}

from A X B to {true, false} taking the value false.

3. Asafunction from A to P(B), the relation ~uiy is the function
Afaise: A — P(B)

defined by
def

Afalse(a) =0

foreacha € A.

4. Lastly, itis the unique relation R on Aand B such thatwe havea +3 b
foreacha € Aandeachb € B.

00J8 Examples.1.3.1.3. The characteristic relation
xx(=1,—2): X X X — {t,f}

on X of Item 3 of Definition 2.4.1.1.1, defined by

(x,) @ |true ifx =y,
x,y) =
AXAE Y false ifx #y

foreach x, y € X, isanother example of a relation.
00J9 Examples.1.3.1.4. Square roots are examples of relations:
1. Square Rootsin R. The assignment x — +/x defines arelation
V=:R - P(R)
from R to itself, being explicitly given by

0 ifx =0,

de{{_m, JRI} ifx <0
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2. Square Roots in Q. Square roots in Q are similar to square roots in R,
though now additionally it may also occur that /=: Q — P(Q)
sends a rational number x (e.g. 2) to the empty set (since V2 ¢ Q).

Example5.1.3.1.5. The complexlogarithm defines a relation
log: C — P(C)
from C to itself, where we have
log(a + bi) « {log(m) +iarg(a+ bi) + (2mi)k ‘ ke Z}

foreacha + bi € C.

Example5.1.3.1.6. See [Wik24] for more examples of relations, such as an-
tiderivation, inverse trigonometric functions, and inverse hyperbolic func-
tions.

5.1.4 Functional Relations

Let A and B be sets.

Definition5.1.4.1.1. ArelationR: A - B is functional if, foreacha € A,
the set R(a) is either empty or a singleton.

Proposition5.1.4.1.2. LetR: A - B bearelation.
1. Characterisations. The following conditions are equivalent:

(@) Therelation R is functional.
(b) WehaveR ¢ RT C y3.

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed
equivalent:

- Item1a = Item1b: Let (b,b") € B X B. We need to show that
[R o RT] (b,b") 2t x8(b,b"),

i.e. that if there exists somea € Asuchthath ~p+ aanda ~p b,
thenb = b’. Butsince b ~y+ aisthesameasa ~p b, we have both
a ~g banda ~g b’ atthe same time, which implies b = b’ since R is
functional.

- Item1b = Item 1a: Suppose that we havea ~g banda ~p b’ for
b,b’ € B. Weclaimthatb = b’:
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1. Sincea ~g b,we haveb ~p: a.

2. SinceRo R" c yp, we have

[R o RT] (b,b") 2t 18(b,b"),

andsince b ~g+ aanda ~p b’, it follows that [R © RT] (b,b") =
true, and thus yp(b,b") = trueaswell,ie.b = b’".

This finishes the proof. O

00JJ 5.1.5 Total Relations

Let Aand B be sets.

00JK Definitions.1.5.1.1. ArelationR: A - Bistotalif, foreacha € A, we have
R(a) £ 0.

00JL Propositions.1.5.1.2. LetR: A —p B bearelation.

00JIM 1. Characterisations. The following conditions are equivalent:
00JN (@) Therelation R s total.
00JP (b) Wehave y4 c R o R.

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed
equivalent:

. Item1a = Item 1b: We have to show that, for each (a,a’) € A, we
have

xala,a’) 2y [RT oR|(a "),

i.e.thatifa = a’, then there exists some b € Bsuchthata ~g band
b ~g+ a’ (i.e.a ~g bagain), which follows from the totality of R.

. Item1b = Item1a: Givena € A, since y4 C R" o R, we must have
{a} C [RT <>R] (a),

implying that there must exist some b € Bsuch thata ~r band
b ~gr afie.a ~g b)andthusR(a) # 0,asb € R(a).

This finishes the proof. O
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o070 5-2 Categories of Relations

00JR 5.2.1 The Category of Relations

00JS Definitions.2.1.1.1. The category of relations is the category Rel where
- Objects. The objects of Rel are sets.
- Morphisms. For each A, B € Obj(Sets), we have

def

Rel(A, B) £ Rel(A, B).

- Identities. For each A € Obj(Rel), the unitmap
lie': pt — Rel(A, A)
of Rel at Ais defined by
idRe = ya(=1,—2),

where y4(—1, —2) is the characteristic relation of A of Item 3 of Defi-
nition 2.4.1.1.1.

- Composition. Foreach A, B, C € Obj(Rel), the composition map

Rel ot Rel(B,C) x Rel(4, B) — Rel(4,C)

[e]

of Relat (A, B, C) is defined by
SoRe L RESOR

foreach (S, R) € Rel(B, C)xRel(A, B),whereSoR isthe composition

of S and R of Definition 6.3.12.1.1.
00JT 5.2.2 TheClosed Symmetric Monoidal Category of Relations
00JU 5.2.21 The Monoidal Product
00JV Definitions.2.2.1.1. The monoidal product of Rel is the functor

X: Rel X Rel — Rel
where
- Action on Objects. For each A, B € Obj(Rel), we have
def

X(A,B) = AX B,

where A X Bis the Cartesian product of sets of Definition 2.1.3.1.1.
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- Action on Morphisms. For each (A, C), (B, D) € Obj(Rel x Rel), the
action on morphisms

X(ac),8D): Rel(A, B) X Rel(C,D) — Rel(Ax C,B x D)
of X is given by sending a pair of morphisms (R, S) of the form
R: A B,

S:C—$D

to the relation

RxS: AxC-$BxD

of Definition 6.3.9.1.1.

00JW 5.2.2.2 The Monoidal Unit
00JX Definitions.2.2.2.1. The monoidal unitof Rel is the functor

1Rel: pt — Rel

picking the set
def

1rel = pt
of Rel.

00JY 5.2.2.3 The Associator
00JZ Definitions.2.2.3.1. The associator of Rel is the natural isomorphism

2R x 0 ((x) X id) = x o (id X (X)) o a%iﬁaeLRep

asinthe diagram

. Relx (RelxRel)

%Rel,Rel Rel :‘,x’ \ idx (X)

(Rel x ReI) X ReI Rel X Rel

T

Rel x Rel —|—> Rel,
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whose component
a3 (AXB)XC - Ax (BxC)
at A, B, C € Obj(Rel) is the relation defined by declaring
((@),€) ~gq_ (@, (V',c")
iffa=a’,b="b",andc=c".

Q0KQ 5.2.2.4 TheLeftUnitor

00K1 Definitions.2.2.4.1. The left unitor of Rel is the natural isomorphism

1Re| id
pt X Rel X%, Rel x Rel,
\
\ /
\
Rel Rel ~_ ,Cats \ ARl
A :><o(1 xid)=>/1 2
Rel \\\ V x
Catsy N
AReI \\\\
"> Rel

whose component
lidi 1Re| X A —|—> A

at Ais defined by declaring
(%, a) ~ el b
iffa="0.
00K2 5.2.2.5 The RightUnitor
00K3 Definition5.2.2.5.1. The right unitor of Rel is the natural isomorphism

idx1Rel

Rel x pt Rel X Rel,
\
\\\ Rel/
Rel o (id 2 1Re|) épgzltszl \\\ /,, )
P§2f2\\\\
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whose component
PR Ax 1pe b A

at Aisdefined by declaring
(a, *) ~p§e| b
iffa="a.

00K4 5.2.2.6 TheSymmetry

00K5 Definition5.2.2.6.1. The symmetry of Rel is the natural isomorphism

Rel x Re]| ————
Cat:
O'Re| X = X o URZISRzel’ Cat52\ oRel /
! Rel Rel
Rel x Rel

whose component
oh3: AXB— BxA

at (A, B) is defined by declaring
(a, b) ~ ;Rel (b’,a')
AB
iffa=a"andb ="b".

Q0K6 5.2.2.7 Thelnternal Hom

00K7 Definitions.2.2.7.1. The internal Hom of Rel is the functor
Rel: Rel°? x Rel — Rel

defined

- Onobjects by sending A, B € Obj(Rel) to the set Rel(A, B) of Item 1
of Definition 5.1.1.1.3.

- Onmorphisms by pre/post-composition defined asin Definition 6.3.12.1.1.

00K8 Propositions.2.2.7.2. Let A, B, C € Obj(Rel).
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00K9 1. Adjointness. We have adjunctions

AX—
~
(AX—4Rel(A,-)): Rel 1 Rel,
~
Rel(A,-)
—-%XB

(-x B-4Rel(B,—)): Rel” L  Rel,
S~
Rel(B,-)
witnessed by bijections

Rel(A x B,C) = Rel(A, Rel(B,C)),
Rel(A x B,C) = Rel(B,Rel(A,C)),

natural in A, B, C € Obj(Rel).
Proof. Item 1, Adjointness: Indeed, we have

Rel(A x B, C) = Sets(A x B x C, {true, false})

def

“'Rel(A, B x C)

def

“' Rel(A, Rel(B, C)),

and similarly for the bijection Rel(A X B, C) = Rel(B, Rel(A4, C)). ]

00KA 5.2.2.8 The Closed Symmetric Monoidal Category of Relations

00KB Propositions5.2.2.8.1. The category Rel admits a closed symmetric monoidal
category structure consisting of®

- The Underlying Category. The category Rel of sets and relations of Defi-
nition 5.2.1.1.1.

- The Monoidal Product. The functor
X: Rel X Rel — Rel
of Definition 5.2.2.1.1.
- The Internal Hom. The internal Hom functor
Rel: Rel°P x Rel — Rel

of Definition 5.2.2.7.1.

G?PWaming: This is not a Cartesian monoidal structure, as the product on Rel is in fact
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- The Monoidal Unit. The functor
1Rl pt — Rel

of Definition5.2.2.2.1.

- The Associators. The natural isomorphism

Cats
Rel,Rel,Rel

2R X o (X X idRe)) = X 0 (idpe| X X) 0 et
of Definition 5.2.2.3.1.

- The Left Unitors. The natural isomorphism

28l 0 (17 X idga ) = A5

of Definition 5.2.2.4.1.
- The Right Unitors. The natural isomorphism

pRel: % o (id % 1Re|) N pgea]tsz

of Definition 5.2.2.5.1.

- The Symmetry. The natural isomorphism

U,ReI: % =~> % 0 o_CatSQ
Rel,Rel
of Definition 5.2.2.6.1.

Proof. Omitted. O

00KC 5.2.3 The 2-Category of Relations

00KD Definition 5.2.3.1.1. The 2-category of relations is the locally posetal 2-
category Rel where

- Objects. The objects of Rel are sets.

- Hom-Objects. Foreach A, B € Obj(Sets), we have

Homgel(A, B) £ Rel(A, B)

def

“ (Rel(A, B), ©).

given by the disjoint union of sets; see ?2.
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- Identities. For each A € Obj(Rel), the unit map
1Re!: pt — Rel(4, A)

of Rel at A is defined by

idRe! = ya(=1,-2),

where y4(—1, —2) is the characteristic relation of A of Item 3 of Defi-
nition 2.4.1.1.1.

- Composition. Foreach A, B, C € Obj(Rel), the composition map’

off% ¢+ Rel(B,C) x Rel(A, B) — Rel(4,C)

of Relat (A, B, C) is defined by

def

SRS R=SoR

foreach (S,R) € Rel(B, C) x Rel(A, B), where S ¢ R is the composi-
tion of S and R of Definition 6.3.12.1.1.

Q0KE 5.2.4 TheDouble Category of Relations
00KF 5.2.4.1 The Double Category of Relations

00KG Definition5.2.4.1.1. The double category of relations is the locally posetal
double category Rel?® where

. Objects. The objects of Rel?! are sets.

|db|

- Vertical Morphisms. The vertical morphisms of Rel®” are maps of sets

f: A— B.

Idbl

- Horizontal Morphisms. The horizontal morphisms of Rel®”" are rela-

tionsR: A - X.

END TEXTDBEND
”Note that this is indeed a morphism of posets: given relations R1, Ro € Rel(A, B) and
S1,82 € Rel(B, C) such that

R1 CRo,
S1 C So,

we havealso S1 o Rq C Sg ¢ Ro.
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- 2-Morphisms. A 2-cell

.S

R
—+— B

-

8

a
X —— Y
S
of Relb!is either non-existent or an inclusion of relations of the form
AxB 2 {true, false}
R - S o (f X g)’ fXg| C/ |id{true,false)

XxY - {true, false}.

. Horizontal Identities. The horizontal unit functor of Rel?! is the functor
of Definition 5.2.4.2.1.

- Vertical Identities. Foreach A € Obj(ReIdb'), we have
idRel™ g,

- Identity 2-Morphisms. For each horizontal morphism R: A - B of
Rel®® the identity 2-morphism

R
A——

B
| |
idR idB
B

A——
R

ida

of R is the identity inclusion
BxA 2 {true, false}
Rc R’ idBXidAl C |id(true,fa|se}

BxA — {true, false}.

- Horizontal Composition. The horizontal composition functor of Rel4”"
is the functor of Definition 5.2.4.3.1.
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F G
- Vertical Composition of 1-Morphisms. Foreach composable pair A— B—C
of vertical morphisms of Rel®?!, i.e. maps of sets, we have

gt g0,

- Vertical Composition of 2-Morphisms. The vertical composition of 2-morphisms
in Rel9! is defined as in Definition 5.2.4.4.1.

Idbl

- Associators. The associators of Rel®” is defined asin Definition 5.2.4.5.1.

- Left Unitors. Theleft unitors of Rel?isdefined asin Definitions.2.4.6.1.

|db|

- Right Unitors. Therightunitors of Rel®” isdefined asin Definition5.2.4.7.1.

Q0KH 5.2.4.2 Horizontal Identities

|db|

00KJ Definitions.2.4.2.1. The horizontal unit functor of Rel®”" is the functor

dbl
ARel™ . RelgbI — Rel‘ljbl
of Rel9®" is the functor where

- Action on Objects. Foreach A € Obj (Relgb'), we have

def

14 = ya(=1,-2).

. Action on Morphisms. For each vertical morphismf: A — Bof Rel®®!,

i.e. each map of sets f from A to B, the identity 2-morphism

14
A——F— A
|
f 1y f
J
B —+— B
1
of f is the inclusion
AXA ) {true, false}
XB©° (f X f) - XA fo| C |id(true,fa|se}
BxB {true, false}

x6(=1,~2)

of Item 1 of Proposition 2.4.1.1.3.
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Q0KK 5.2.4.3 Horizontal Composition

Idbl

00KL Definition 5.2.4.3.1. The horizontal composition functor of Rel®” is the

functor »
ORI Relf™ x Rel{™ — Relf®
Reld®

of Rel®®" is the functor where

R S
- Action on Objects. For each composable pair A - B —p C of horizontal
morphisms of Rel®!, we have

SORESOR,

where S ¢ R is the composition of R and S of Definition 6.3.12.1.1.

- Action on Morphisms. For each horizontally composable pair

R
A—+— B B —|—> C
|
f la' | 4 h
y U
X —+—Y Y —|—> Z
T
of 2-morphisms of Rel®?', i.e. for each pair
AxB 2 {true, false} BxC - {true, false}
f><g| C/ |id{true,false} th| C/ |id{true,false}
XxY - {true, false} YxZ - {true, false}

of inclusions of relations, the horizontal composition

—~
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of @ and f3 is the inclusion of relations®

AxC R, {true, false}

(U < T) ° (f X h) - (S < R) th C id{true,false}
XXZ o {true, false}.

Q0KM 5.2.4.4 Vertical Composition of 2-Morphisms

00KN Definitions.2.4.4.1. The vertical composition in Rel®?' is defined as follows:
for each vertically composable pair

R s
A—— X B——Y
|
f U g h B k
| Y
B——Y C—4— 7
S T
of 2-morphisms of Rel?® i.e. for each each pair
AxX 2 {true, false} BxY - {true, false}
fxg C/ id{true,false} hxk C/ id(true,false}
BxY - {true, false} CxZ —- {true, false}

8This is justified by noting that, given (a,c) € A x C, the statement

- Wehavea ~yoryo(fxh) ¢ i€.f(a) ~uor h(c),ie. thereexistssome y € Y such
that:

1. Wehavef(a) ~r y;
2. Wehavey ~y h(c);
isimplied by the statement
- Wehave a ~g,R ¢, i.e.thereexistssome b € Bsuch that:
1. Wehavea ~g b;
2. Wehaveb ~g ¢;
since:
- Ifa~g b,thenf(a) ~r g(b),asT o (f X g) CR;
- Ifb ~g ¢, theng(b) ~y h(c),asU o (g x h) CS.
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of inclusions of relations, we define the vertical composition

S

R
A—f—
l

hof Boa kog

a
N

—
T
of @ and f3 as the inclusion of relations

AxX 2, {true, false}
To[(hof)x(kog)] CR, (hOf)X(kOg)I C |id{me,false;
CxZ - {true, false}
given by the pasting of inclusions®
AxX 2 {true, false}
fxg C id truefalse)
BxY —s— {true, false}

hxk C/ id(true,false}

CxZ — {true, false}.

Q0KP 5.2.4.5 The Associators

This is justified by noting that, given (a, x) € A X X, the statement
- Wehave h(f(a)) ~1 k(g(x));
isimplied by the statement
- Wehavea ~p x;
since
- Ifa ~g x,thenf(a) ~g g(x),asSo (f xg) CR;
- Ifb ~g y,thenh(b) ~1 k(y),asT o (h X k) C S, and thus, in particular:

- Iff(a) ~5 g(x), then h(f(a)) ~ k(g(x)).
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00KQ Definitions.2.4.5.1. For each composable triple

R S T
A-$B-+HC—D

Idbl

of horizontal morphisms of Rel®”’, the component

R s T
A—+> B —+> C —+

Redbl
TSR

A—+ B+ C—+
R N T

)

dbl 5 ~ \
R (TOS)OR=T O (SOR), i, idp

TSR

)

of the associator of Rel®? at (R, S, T) isthe identity inclusion™

ToS)oR
AXB Te)eR, {true, false}

(ToS)oR=T<(SoR)

// | id{true,false}

AXB TGoR {true, false}.

00KR 5.2.4.6 The Left Unitors
00KS Definition5.2.4.6.1. Foreach horizontal morphism R: A - BofRel®®! the

component
R 1p
A | B | B
Reldbl . ~
A" 1 1pOR=R, idy el idp
A | B
R
of the left unitor of Rel?® at R is the identity inclusion
YBoR
A X B ——— {true, false}
R = )(B < R’ // |id{true,fa|se]

AXB — {true, false}.

"This is justified by Item 2 of Proposition 6.3.12.1.3.
"Thisisjustified by Item 3 of Proposition 6.3.12.1.3.
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Q0KT 5.2.4.7 TheRightUnitors

00KU Definition5.2.4.7.1. For each horizontal morphismR: A - Bof Rel®®!, the

component
14 R
A } A f B
Reldb| ~
pr. RoOly=R, id, pgddbl idy
A | B
R

of the right unitor of Rel®® at R is the identity inclusion™

R
AxB —2*, {true, false}
R = R © ){A’ // |id{true,false}

AXB — {true, false}.

ookv 5.3 Properties of the 2-Category of Relations

00KW 5.3.1 Self-Duality
00KX Proposition5.3.1.1.1. The (2-)category of relations is self-dual:
QOKY 1. Self-Duality I. We have an isomorphism
Rel°P £ Rel
of categories.
Q0KZ 2. Self-Duality Il. We have a 2-isomorphism
Rel°? = Rel
of 2-categories.
Proof. Item1, Self-Duality I: We claim that the functor
F: Rel°® — Rel

given by the identity on objects and by R — R on morphisms is an isomor-
phism of categories.

2This is justified by Item 3 of Proposition 6.3.12.1.3.
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By Item 1 of Proposition 8.5.8.1.3, it suffices to show that F is bijective on
objects (which is clear) and fully faithful. Indeed, the map

(-)": Rel(A, B) — Rel(B, A)

defined by the assignment R — R is a bijection by Item 5 of Proposi-
tion 6.3.11.1.3, showing F to be fully faithful.
Item 2, Self-Duality Il: We claim that the 2-functor

F: Rel°® — Rel

given by the identity on objects, by R — R' on morphisms, and by pre-
serving inclusions on 2-morphisms via Item 1 of Proposition 6.3.11.1.3, is an
isomorphism of categories.

By ?? of 22, it suffices to show that F is:

- Bijective on objects, which is clear.
- Bijective on 1-morphisms, which was shown in Item 1.
- Bijective on 2-morphisms, which follows from Item1of Proposition 6.3.11.1.3.

Thus F isindeed a 2-isomorphism of categories. O

00L0 5.3.2 Isomorphismsand Equivalencesin Rel

LetR: A - Bbearelation from Ato B.
00L1 Propositions.3.2.1.1. The following conditions are equivalent:
00L2 1. TherelationR: A —p Bisanequivalencein Rel, i.e.:

(%) ThereexistsarelationR™!: B - A from B to A together with
isomorphisms

R_l oR = XA,
RoR = yp
00L3 2. Therelation R: A —p Bisanisomorphismin Rel,i.e.:

(%) Thereexistsarelation R~!: B b A from B to A such that we
have

R_1 oR = XA
RoR™'=yp.
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00L4 3. There exists a bijectionf: A =, BwithR = Gr(f).
Proof. We claim that Items1to 3 are indeed equivalent:

- Item1 &= Item2: This follows from the fact that Relis locally posetal,
so that natural isomorphisms and equalities of 1-morphisms in Rel
coincide.

. Item2 = Item 3: The equalities in Item 2 imply R 4 R™1, and thus
by Proposition 5.3.3.1.1, there exists a function fg: A — B associated
to R, where, foreach a € A, theimage fr(a) of a by f is the unique
elementof R(a), whichimplies R = Gr(f) in particular. Furthermore,
we have R™! = fR‘1 (as in Definition 6.3.2.1.1). The conditions from
Item 2 then become the following:

frtofr = xa
frofy' = xp.
All thatis left is to show then is that f is a bijection:

— The Function fr Is Injective. Leta, b € Aand suppose thatfr(a) =
fr(b). Sincea ~p fr(a) and fr(a) = fr(b) ~g-1 b, the condi-
tion flgl o fr = yaimpliesthata = b, showing fx to be injective.

— The Function fg Is Surjective. Letb € B. Applying the condition
fr < fR‘l = ypto (b, b), it follows that there exists some a €
Asuchthat fy1(b) = aand fr(a) = b. This shows fg to be
surjective.

- Item3 = [tem 2: By Item 2 of Proposition 6.3.1.1.2, we have an ad-
junction Gr(f) 4 f~1, giving inclusions

x4 Cf o Gr(f),
Gr(f)of ! c ys.

We claim the reverse inclusions are also true:

— f~1 o Gr(f) C ya: Thisis equivalent to the statement that if
f(a) =bandf~1(b) = a’, thena = a’, which follows from the
injectivity of f.

-y C Gr(f) o f~': This is equivalent to the statement that
given b € B there existssomea € Asuchthatf=!(b) = a
andf(a) = b, which follows from the surjectivity of f.

This finishes the proof. O
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00L5 5.3.3 AdjunctionsinRel

Let A and B be sets.

00L6 Propositions.3.3.1.1. We have a natural bijection

Functions
fromAtoB|’
with every adjunction in Rel being of the form Gr(f) + f~! for some function

f.
Proof. We proceed step by step:

IR

Adjunctionsin Rel
from Ato B

1. From Adjunctions in Rel to Functions. An adjunction in Rel from Ato B
consists of a pair of relations

R: A B,
S: B A

together with inclusions

XA C SoR,
RoS C yp.

We claim that these conditions imply that R is total and functional,
i.e.that R(a) isasingleton foreacha € A:

(@) R(a) Hasan Element. Givena € A, since y4 C S ¢ R, we must
have {a} € S(R(a)), implying that there exists some b € B
suchthata ~g band b ~g a,and thus R(a) # 0,asb € R(a).

(b) R(a) Has No More Than One Element. Suppose that we have a ~g
banda ~p b’ forb, b’ € B. Weclaimthatb =b":

i. Since y4 C SoR,thereexistssomek € Bsuchthata ~p k
and k ~g a.
ii. SinceRoS C yp,ifb"” ~ga’anda’ ~g b"”, thenb” =b"".
iii. Applyingthe abovetob” = k,b’”’ = b,andda’ = a,since
k ~saanda ~g b',wehavek = b.
iv. Similarlyk =b’.
v. Thusb = b’.

Together, the above two items show R (a) to be a singleton, being thus
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given by Gr(f) for some functionf: A — B, which givesa map
Adjunctionsin Rel Functions
— .
fromAto B from Ato B

Moreover, by uniqueness of adjoints (?? of 2?), this implies also that
S=f"1

2. From Functions to Adjunctions in Rel. By Item 2 of Proposition 6.3.1.1.2,
every functionf: A — B gives rise to an adjunction Gr(f) 4 f ! in
Rel, giving a map

Functions Adjunctionsin Rel
- .
from Ato B from Ato B
3. Invertibility: From Functions to Adjunctions Back to Functions. \We need
to show that starting with a functionf: A — B, passing to Gr(f) 4

f~1, and then passing again to a function gives f again. This is clear
however, since we have a ~g () bifff(a) = b.

4. Invertibility: From Adjunctions to Functions Back to Adjunctions. We need
to show that, given an adjunction R 4 S in Rel giving rise to a function
frs: A — B, we have

Gr(frs) = R,

We check these explicitly:
- Gr(frs) = R. We have

Cr(frs) = {(a,frs(a)) € Ax Bla € A}

={(a,R(a)) e AXB|a € A}
=R.

- frs = S. We first claim that, givena € Aandb € B, the
following conditions are equivalent:
— Wehavea ~y b.
— Wehaveb ~g a.
Indeed:
— Ifa ~g b,thenb ~g a: Since y4 C S ¢ R, thereexistsk € B
such thata ~g kand k ~g a, butsincea ~g bandRis
functional, we have k = band thus b ~g a.
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— Ifb ~g5 a,thena ~g b: First note that since R is total we
havea ~p b’ forsomed’ € B. Now,sinceR<¢ S C yp,
b ~g a,anda ~g b’,wehaveb = b’,and thusa ~g b.
Having show this, we now have

frs(0) = {a € Alfrs(a) = b}
“{aecAla~gb}

={a€A|b~sa}

ES(b).

foreachb € B,showinng"S1 =S.

This finishes the proof. O

00L7 5.3.4 Monadsin Rel
Let A be a set.

00L8 Propositions.3.4.1.1. We have a natural identification™

Monads in
Relon A

} = {Preorderson A}.

Proof. Amonadin Relon A consists of arelation R: A - Atogether with
maps

UR: RoR CR,

NR: YA CR

making the diagrams

7 id Rel(A,B) R © (R ¢ R) idrou id 7
ROIAR a " ROUR ROMR
yaoR —+— RoR R‘“/ \ Royas —— RoR

\ J[ . o \ J[
KR R

Rel(A,B) Rel(A,B)

AR R #RoidR \ KR PR R

RoR —— R
UR

commute. However, since all morphisms involved are inclusions, the com-
mutativity of the above diagrams is automatic, and hence all that is left is
the data of the two maps ug and g, which correspond respectively to the
following conditions:

BSee also ?? for an extension of this correspondence to “relative monads in Rel”.
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1. Foreacha,b,c € A,ifa ~g bandb ~p ¢,thena ~y c.

2. Foreacha € A,we havea ~y a.

These are exactly the requirements for R to be a preorder (??). Conversely
any preorder < gives rise to a pair of maps u< and 5<, forming a monad on
A. O

5.3.5 Comonadsin Rel

Let A be a set.

Proposition 5.3.5.1.1. We have a natural identification

Comonadsin
Relon A

} = {Subsets of A}.

Proof. Acomonadin Relon A consistsofarelationR: A - Atogetherwith
maps

AR: R C RoR,

€r: R C ya
making the diagrams

RoR

AR idroAR N
R —4+—— Ro¢R

Ro(RoR)
idgoer
Rel(A,B),~1
PR
Rel(A,B),~1
/RRR Roya

RoR —— (RoR)oR
Apoidg

commute. However, since all morphisms involved are inclusions, the com-
mutativity of the above diagrams is automatic, and hence all that is left is
the data of the two maps Ag and e, which correspond respectively to the
following conditions:

1. Foreacha,b € A, ifa ~g b, then there exists some k € Asuch that
a ~R kandk ~R b.

2. Foreacha,b € A, ifa ~g b,thena = b.

Taking k = bin the first condition above shows it to be trivially satisfied,
while the second condition implies R C Ay, i.e. R must be a subset of A.
Conversely, any subset U of A satisfies U C Ay, defining a comonad as
above. O
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5.3.6 Co/Monoidsin Rel

Remarks5.3.6.1.1. Themonoidsin Rel with respectto the Cartesian monoidal
structure of Proposition 5.2.2.8.1 are called hypermonoids, and their theory
is explored in 2. Similarly, the comonoids in Rel are called hypercomonoids,
and they are defined and studied in 22.

5.3.7 Monomorphismsin Rel

In this section we characterise the epimorphisms in the category Rel, follow-
ing??.

Proposition 5.3.7.1.1. LetR: A —p B bearelation. The following conditions
are equivalent:

1. Therelation R isa monomorphism in Rel.
2. Thedirectimage function
R.: P(A) — P(B)
associated to R is injective.
3. Thedirectimage with compact support function
Ry: P(A) — P(B)
associated to R is injective.

Moreover, if R is a monomorphism, then it satisfies the following condition,
and the converse holds if R is total:

(x) Foreacha,a’ € A,ifthereexistssomeb € Bsuch that

a~grhb,

a’ ~pb,
thena = a’.

Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Proposi-
tion 6.4.1.1.3. We then claim that Items 1 and 2 are also equivalent:

- Item1 = ltem2: LetU,V € P(A) and consider the diagram

u R
pt 4= A —— B.
1%
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By Remark 6.4.1.1.2, we have

R.(U)=RoU,
R.(V)=RoV.

Now,ifRoU = RoV,ie. R.(U) = R,(V),thenU = VsinceRis
assumed to be a monomorphism, showing R, to be injective.

- Item 2 = Item1: Conversely, suppose that R, is injective, consider
the diagram

S R
X:|:;A—|—>B,
T

and supposethatR ¢S = R o T. Note that, since R, is injective, given
adiagram of the form

U R
pt 4= A —— B,
14
if R.,(U)=RoU =RoV =R,(V),thenU = V. In particular, for
each x € X, we may consider the diagram
[x] S R

pt —— X == A —— B,
T

forwhichwehave R¢ S ¢ [x] = Ro T ¢ [x], implying that we have
S(x)=So[x]=To[x] =T(x)
foreach x € X, implyingS = T, and thus R is a monomorphism.
We can also prove this in a more abstract way, following [MSE 350788]:
- Item1 = Item 2: Assume that R is a monomorphism.
— We first notice that the functor Rel(pt, —) : Rel — Sets maps R

to R, by Remark 6.4.1.1.2.

— Since Rel(pt, —) preserves all limits by 2? of 22, it follows by ?? of
?? that Rel(pt, —) also preserves monomorphisms.

— Since R is a monomorphism and Rel(pt, —) maps R to R., it fol-
lows that R, is also a monomorphism.

— Since the monomorphisms in Sets are precisely the injections
(?? of 2?), it follows that R, is injective.
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- Item 2 = [tem1: Assume that R, is injective.

— We first notice that the functor Rel(pt, —) : Rel — Sets maps R
to R, by Remark 6.4.1.1.2.

— Since the monomorphisms in Sets are precisely the injections
(?? of 22), it follows that R, is a monomorphism.

— Since Rel(pt, —) is faithful, it follows by ?? of ?? that Rel(pt, —)
reflects monomorphisms.

— Since R, is a monomorphism and Rel(pt, —) maps R to R,, it
follows that R is also a monomorphism.

Finally, we prove the second part of the statement. Assume that R is a
monomorphism, let a,a’” € Asuchthata ~p banda’ ~ b forsome
b € B, and consider the diagram

[a] R
pt 4= A —+— B.
(']

Since x ~|4] aanda ~g b,wehave x ~p,[4] b. Similarly, * ~go[4] b. Thus
R o [a] = R [d’],andsince R isa monomorphism, we have [a] = [d’],i.e.
a=a.

Conversely, assume the condition

(%) Foreacha,a’ € A, ifthere existssome b € B such that

a ~R b,

a’ ~pb,
thena =a’.

consider the diagram
S R
X =2 A—+B
T

and let (x,a) € S. Since Ristotaland a € A, there exists some b € B such
thata ~g b. In this case, we have x ~g.s b, andsinceR¢S = Ro T, we
have also x ~go7 b. Thus there must existsome a’ € Asuchthatx ~7 a’
and a’ ~g b. However, since a,a’ ~g b, we must have a = a’, and thus
(x,a) € T aswell.

Asimilarargument shows thatif (x,a) € T,then (x,a) € S,andthusS =T
and it follows that R is a monomorphism. O
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5.3.8 2-Categorical Monomorphismsin Rel

In this section we characterise (for now, some of) the 2-categorical monomor-
phisms in Rel, following Section 9.1.

Proposition5.3.8.1.1. LetR: A —p B bearelation.

1. Representably Faithful Morphisms in Rel. Every morphism of Rel is a
representably faithful morphism.

2. Representably Full Morphisms in Rel. The following conditions are
equivalent:
(@) ThemorphismR: A - Bisa representably full morphism.

(b) Foreach pairofrelationsS,T: X =% A, the following condition
is satisfied:

(x) fRoS CcRoT,thenSCT.
() The functor
R.: (P(A),c) — (P(B),Q)

is full.
(d) ForeachU,V € P(A),ifR.(U) Cc R.(V),thenU C V.
(e) The functor
Ri: (P(A),c) — (P(B), )
is full.

(f) ForeachU,V € P(A),ifR\(U) c Ri(V),thenU C V.

3. Representably Fully Faithful Morphisms in Rel. Every representaly full
morphism in Rel is a representably fully faithful morphism.

Proof. Item 1, Representably Faithful Morphisms in Rel: The relation R is a rep-
resentably faithful morphism in Rel iff, for each X € Obj(Rel), the functor

R.: Rel(X,A) — Rel(X, B)
is faithful, i.e. iff the morphism
R.is7: Hompel(x,4) (S, T) — Homgel(x,8) (R S,R< T)

isinjective foreach S, T € Obj(Rel(X, A)). However, Homgey(x,4) (S, T) is
either empty or a singleton, in either case of which the map R, s 7 is neces-
sarily injective.

Item 2, Representably Full Morphisms in Rel: We claim [tems 2a to 2fare indeed
equivalent:
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- Item2a &= Item 2b: This is simply a matter of unwinding definitions:
The relation R is a representably full morphism in Rel iff, for each
X € Obj(Rel), the functor

R.: Rel(X,A) — Rel(X, B)
is full, i.e. iff the morphism
R.is7: Hompel(x,4) (S, T) — Homgel(x,8)(R©S,Ro T)

is surjective foreach S, T € Obj(Rel(X, A)), i.e.iff, wheneverR¢ S C
RoT,wealsohaveS Cc T.

- Item 2¢c <= Item 2d: This is also simply a matter of unwinding defini-
tions: The functor

is full iff, foreach U,V € P(A), the morphism
R.juy: Homp4) (U, V) — Homp p) (R.(U), R.(V))

is surjective, i.e. iff whenever R, (U) C R.(V), we also necessarily
haveU C V.

- Item 2e &= Item 2f: This is once again simply a matter of unwinding
definitions, and proceeds exactly in the same way as in the proof of
the equivalence between Items 2c and 2d given above.

- Item 2d = Item 2f: Suppose that the following condition is true:
(%) ForeachU,V € P(A),ifR,(U) c R.(V),thenU C V.
We need to show that the condition
(%) ForeachU,V € P(A),ifR/(U) c Ri(V),thenU Cc V.
is also true. We proceed step by step:

1. Suppose we have U,V € P(A) with R;(U) c Ri(V).

2. Byltem 7 of Proposition 6.4.4.1.3, we have

Ri(U) = B\ R.(A\U),
Ri(V) = B\ R.(A\ V).

3. Byltem1ofProposition2.3.10.1.2wehaveR,(A\ V) Cc R.(A\ U).
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4. Byassumption,wethenhave A\ V c A\ U.

5. By Item1of Proposition 2.3.10.1.2 again, we have U C V.
- Item 2f = Item 2d: Suppose that the following condition is true:
(x) ForeachU,V € P(A),ifR/(U) c Ry(V),thenU C V.
We need to show that the condition
(%) ForeachU,V € P(A),ifR,(U) c R.(V),thenU C V.
is also true. We proceed step by step:

1. Suppose we have U,V € P(A) withR.(U) c R.(V).

2. Byltem 7 of Proposition 6.4.1.1.3, we have

R.(U) = B\ Ri(A\ V),
R.(V) =B\ Ri(A\V).

3. Byltem1ofProposition2.3.10.1.2wehave Ri(A\ V) c Ri(A\ U).
4. Byassumption,wethenhave A\ V c A\ U.

5. Byltem1of Proposition 2.3.10.1.2 again, we have U C V.

- [tem 2b = Item 2d: Consider the diagram
S R
X =23 A—+ B
T
and supposethatR ¢S Cc R ¢ T. Note that, by assumption, given a
diagram of the form
u R
pt 9= A —— B,
14
if R.(U)=RoU c RoV =R,(V),thenU C V. In particular, for
each x € X, we may consider the diagram
[x] S R
pt —— X == A —+ B,
T
forwhichwehave R¢ S ¢ [x] € Ro T ¢ [x], implying that we have
S(x)=So[x] cTo[x]=T(x)

foreachx € X, implyingS c T.
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- Item 2d = Item 2b: Let U,V € P(A) and consider the diagram
U R
pt 4= A —+ B.
1%

By Remark 6.4.1.1.2, we have

R.(U)=RoU,
R.(V)=RoV.

Now, if R.(U) C R.(V),ie.RoU Cc RoV,thenU C V by assump-
tion.

22 Fully Faithful Monomorphisms in Rel: This follows from Items1and2. O

00LV Questions.3.8.1.2. Item 2 of Proposition 5.3.8.1.1 gives a characterisation of
the representably full morphisms in Rel.
Are there other nice characterisations of these?
This question also appears as [MO 467527].

00LW 5.3.9 Epimorphismsin Rel

In this section we characterise the epimorphisms in the category Rel, follow-
ing 22,

00LX Propositions.3.9.1.1. LetR: A —b B be arelation. The following conditions
are equivalent:

ooLY 1. Therelation R is an epimorphism in Rel.

00LZ 2. The weak inverse image function
R™': P(B) - P(A)
associated to R is injective.
00M0 3. Thestronginverse image function
R_1: P(B) = P(A)
associated to R is injective.

Q0M1 4. ThefunctionR: A — P(B) is “surjective on singletons”:

(x) Foreachb € B, thereexistssomea € AsuchthatR(a) = {b}.
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Moreover, if R is total and an epimorphism, then it satisfies the following
equivalent conditions:

1. Foreach b € B, there existssomea € Asuchthata ~z b.
2. We haveIm(R) = B.

Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Proposi-
tion 6.4.2.1.3. We then claim that Items 1and 2 are also equivalent:

- Item1 = Item2: LetU,V € P(A) and consider the diagram
R U
A —— B =3 pt.
v

By Remark 6.4.1.1.2, we have

RN U)=UoR,
RN (V)=VoR.

Now,ifUoR =V oR,ie.R"1(U) =R 1(V),thenU = Vsince R is
assumed to be an epimorphism, showing R~ to be injective.

. Item2 = Item1: Conversely, suppose that R~ ! is injective, consider
the diagram

R S
A—— B =2 X,
T

and suppose that SoR = T'oR. Note that, since R~! is injective, given
adiagram of the form

R U
A— B == pt,
\%

ifR-1(U)=UoR=VoR=R1(V),thenU = V. In particular, for
each x € X, we may consider the diagram
R S [x]
A—— B== X 1 pt,
T
for which we have [x] ¢S ¢ R = [x] ¢ T ¢ R, implying that we have
STix)=[x]oS=[x]oT =T 1(x)

foreachx € X, implyingS = T, and thus R is an epimorphism.
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We can also prove this in a more abstract way, following [MSE 350788]:

- Item1 = Item 2: Assume that R is an epimorphism.

— We first notice that the functor Rel(—, pt) : Rel°® — Sets maps
RtoR~! by Remark 6.4.3.1.2.

Since Rel(—, pt) preserves limits by ?? of 22, it follows by ?? of 22
that Rel(—, pt) also preserves monomorphisms.

Thatis: Rel(—, pt) sends monomorphisms in Rel°” to monomor-
phismsin Sets.

— The monomorphisms Rel°P are precisely the epimorphismsin
Rel by 22 of 22,

Since R is an epimorphism and Rel(—, pt) maps R to R™1, it fol-
lows that R~! is a monomorphism.

— Since the monomorphisms in Sets are precisely the injections
(22 0f 22), it follows that R ™! is injective.

. Item2 = Item 1: Assume that R~ ! is injective.

— We first notice that the functor Rel(—, pt) : Rel°? — Sets maps
Rto R~! by Remark 6.4.3.1.2.

— Since the monomorphisms in Sets are precisely the injections
(22 0f 22), it follows that R~! is a monomorphism.

— Since Rel(—, pt) is faithful, it follows by ?? of ?? that Rel(, pt)
reflects monomorphisms.

— Thatis: Rel(—, pt) reflects monomorphismsin Sets to monomor-
phismsin Rel°P,

— The monomorphisms Rel°P are precisely the epimorphisms in
Rel by ?? of 22.

— Since R~ isa monomorphism and Rel(—, pt) maps RtoR™1, it
follows that R is an epimorphism.

We also claim that Items 2 and 4 are equivalent, following [MO 350788]:

. ltem2 = Item 4: Since B\ {b} ¢ Band R~! isinjective, we have
R™1(B\ {b}) € R~1(B). Sotakingsomea € R"1(B)\R™1(B\ {b})
we get an element of Asuch that R(a) = {b}.

- ltem4 = Item2: Let U,V C BwithU # V. Without loss of general-
ity, we canassume U \ V # 0; otherwise justswap U and V. Let then
b € U\ V. By assumption, there existsana € Awith R(a) = {b}.
Thena € R-YU) buta ¢ R™Y(V), and thus R"1(U) # R~Y(V),
showing R~! to be injective.
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Finally, we prove the second part of the statement. So assume R is a total
epimorphism in Rel and consider the diagram

R S
A —— B 2 {0,1},
T

where b ~g 0 foreach b € B and where we have

b 0 ifbeIm(R),
1 otherwise

foreach b € B. Since Ris total, we have a ~g5,g Oanda ~r.g Oforalla € A,
andnoelementof Aisrelatedto1bySoRorT ¢ R. ThusSoR =T ¢R,and
since R is an epimorphism, we have S = T'. But by the definition of T, this
implies Im(R) = B. O

5.3.10 2-Categorical Epimorphismsin Rel

In this section we characterise (for now, some of) the 2-categorical epimor-
phismsin Rel, following Section 9.2.

Proposition5.3.10.1.1. LetR: A - B bearelation.

1. Corepresentably Faithful Morphisms in Rel. Every morphism of Relis a
corepresentably faithful morphism.

2. Corepresentably Full Morphisms in Rel. The following conditions are
equivalent:
(@) The morphism R: A —b Bisa corepresentably full morphism.

(b) Foreach pairofrelations S, T: X = A, the following condition
is satisfied:

(x) IfSoRcCcToR,thenSCT.
() The functor

R™': (P(B),c) — (P(A), )

is full.
(d) ForeachU,V € P(B),ifR"Y(U) c R"'(V),thenU c V.
(e) The functor

R_1: (P(B),c) = (P(A),C)

is full.
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() ForeachU,V € P(B),ifR_1(U) c R_1(V),thenU C V.

3. Corepresentably Fully Faithful Morphisms in Rel. Every corepresentably
full morphism of Rel is a corepresentably fully faithful morphism.

Proof. Item 1, Corepresentably Faithful Morphisms in Rel: The relation R is a
corepresentably faithful morphism in Rel iff, for each X € Obj(Rel), the
functor

R*: Rel(B,X) — Rel(A, X)

is faithful, i.e. iff the morphism
R;,T: HomReI(B,X) (S, T) 4 HomReKA,X) (S <& R, To R)

is injective foreach S, T € Obj(Rel(B, X)). However, Homgel(p x) (S, T) is
eitherempty orasingleton, in either case of which the map R;T is necessarily
injective.

Item 2, Corepresentably Full Morphisms in Rel: We claim Items 2a to 2f are
indeed equivalent:

- Item2a <= Item 2b: This is simply a matter of unwinding definitions:
The relation R is a corepresentably full morphism in Rel iff, for each
X € Obj(Rel), the functor

R*: Rel(B,X) — Rel(A4,X)
is full, i.e. iff the morphism
R;,T: HomReI(B,X) (S, T) 4 HomReKA,X) (S <& R,T <& R)

is surjective foreach S, T € Obj(Rel(B, X)), i.e.iff, wheneverS o R C
T o R, wealsohaveS c T.

- Item 2c <= Item 2d: This is also simply a matter of unwinding defini-
tions: The functor

R™': (P(B),c) = (P(A),C)
is full iff, foreach U,V € P(A), the morphism

R3Y, : Homp s (U, V) — Homp(a) (R—l(U),R—l(V))

is surjective, i.e. iff whenever R~1(U) ¢ R~1(V), we also necessarily
haveU C V.
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- Item 2e <= Item 2f: This is once again simply a matter of unwinding
definitions, and proceeds exactly in the same way as in the proof of
the equivalence between Items 2c and 2d given above.

- Item 2d = Item 2f: Suppose that the following condition is true:
(x) ForeachU,V € P(B),ifR"1(U) c R"Y(V),thenU C V.
We need to show that the condition
(x) ForeachU,V € P(B),ifR_1(U) c R_1(V),thenU C V.
is also true. We proceed step by step:

1. Supposewe have U,V € P(B)withR_1(U) c R_1(V).

2. By Item 7 of Proposition 6.4.2.1.3, we have

R1(U)=B\R'(A\U),
R_1(V)=B\R1(A\V).

3. Byltem1ofProposition2.3.10.1.2wehave R™1 (A \ V) ¢ R™1(A\ U).
4. Byassumption,wethenhave A\ V c A\ U.

5. By Item 1 of Proposition 2.3.10.1.2 again, we have U C V.
- Item 2f = Item 2d: Suppose that the following condition is true:
(x) ForeachU,V € P(B),ifR_1(U) c R_1(V),thenU c V.
We need to show that the condition
(x) ForeachU,V € P(B),ifR"'(U) c R"Y(V),thenU C V.
is also true. We proceed step by step:

1. Suppose we have U,V € P(B) withR-1(U) c R-Y(V).

2. Byltem 7 of Proposition 6.4.3.1.3, we have

R7'(U) =B\ R_1(A\ V),
R™YV)=B\R_1(A\V).

3. Byltem1ofProposition2.3.10.1.2wehaveR_1 (A\ V) c R_1(A\ U).
4. Byassumption,wethenhave A\ V c A\ U.

5. By Item1of Proposition 2.3.10.1.2 again, we have U C V.
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- Item 2b = Item 2d: Consider the diagram
R S

A—— B3 X
T

and suppose thatS ¢ R C T ¢ R. Note that, by assumption, given a
diagram of the form

R U
A—— B =2 pt,
1%
ifR"1(U)=RoU c RoV =R™Y(V),thenU c V. In particular, for
each x € X, we may consider the diagram
S [x]

R
A— B == X — pt
T

forwhichwe have [x] ¢ So R C [x] ¢ T ¢ R, implying that we have
STHx)=[x]oSc[x]oT=T"1(x)
foreachx € X,implyingS c T.

- Item 2d = Item 2b: Let U,V € P(B) and consider the diagram
R U
A—— B = pt.
14
By Remark 6.4.1.1.2, we have
RN U)=UoR,
RY(V)=VoR

Now, if R"H(U) ¢ R™Y(V),ieeUo R c VoR,thenU c Vby
assumption.

Item 3, Corepresentably Fully Faithful Morphismsin Rel: This follows from [tems 1
and 2. ]

00MD Question5.3.10.1.2. Item 2 of Proposition 5.3.10.1.1 gives a characterisation
of the corepresentably full morphisms in Rel.
Are there other nice characterisations of these?
This question also appears as [MO 467527].
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5.3.11 Co/Limitsin Rel
Proposition 5.3.11.1.1. This will be properly written later on.

Proof. Omitted. O

5.3.12 Kan Extensions and Kan Lifts in Rel

Remark 5.3.12.1.1. The 2-category Rel admits all right Kan extensions and
right Kan lifts, though not all left Kan extensions and neither does it admit
all left Kan lifts. See Section 6.2 for a detailed discussion of this.

5.3.13 Closedness of Rel

Proposition 5.3.13.1.1. The 2-category Rel is a closed bicategory, there being,
foreachR: A -p Bandset X, a pair of adjunctions

.
(R* 4Rang): Rel(B,X)” 1 ~ Rel(4X),
S~
Rang
R*
(R, 4Riftg): Rel(X,A)” +  Rel(X,B),
S~
Riftg

witnessed by bijections

Rel(S o R, T) = Rel(S,Rang(T)),
Rel(Ro U, V) = Rel(U, Riftg(V)),

naturalinS € Rel(B, X),T € Rel(A,X),U € Rel(X,A),andV € Rel(X, B).

Proof. This follows from Propositions 6.2.3.1.1and 6.2.4.1.1. O

5.3.14 RelasaCategory of Free Algebras

Proposition 5.3.14.1.1. We have an isomorphism of categories
Rel = FreeAlgp (Sets),

where P, is the powerset monad of 2.

Proof. Omitted. O
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ooMN 5.4 The Left Skew Monoidal Structure on Rel( A, B)

00MP 5.4.1 The Left Skew Monoidal Product
Let Aand Bbesetsandlet]: A - Bbearelation.

00MQ Definition 5.4.1.1.1. The left /-skew monoidal product of Rel(A, B) is the
functor
<y: Rel(A, B) x Rel(A, B) — Rel(A, B)

where

- Action on Objects. Foreach R, S € Obj(Rel(A, B)), we have

S
A —+— B.
def . Rifty (R) .7
S<1]R=SORIft](R), /X/ ]
A—+— B
R

- Action on Morphisms. Foreach R, S, R’, S’ € Obj(Rel(A, B)), theaction
on Hom-sets

(41)(G,F),(G’,F’) . HomRel(A,B) (S,S,) X HomRel(A,B) (R, R’) — HomRel(A,B) (S <1] R, S/ <1] R/)

of 9jat((R,S), (R’,S")) is defined by

B <y aZ foRify(a),

foreach f € Hompge(4,5)(S,S’) and each @ € Homgel(a,5) (R, R’).

'4SinceRel(A, B) is posetal, thisis tosay thatif S ¢ S’andR ¢ R’,thenS<jR ¢ 8" <R’
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20MR 5.4.2 The Left Skew Monoidal Unit
Let Aand Bbesetsandlet]: A - Bbearelation.

00MS Definition 5.4.2.1.1. The left /-skew monoidal unit of Rel(A, B) is the func-
tor

15145 pt — Rel(4, B)

picking the object

<y def

1ReI(AB) J

of Rel(A, B).

00MT 5.4.3 The Left Skew Associators
Let Aand BbesetsandletJ: A - Bbearelation.

00MU Definition 5.4.3.1.1. The left /-skew associator of Rel( A, B) is the natural
transformation

Rel(A,B),<; . . : Cat
aRel AR <y o (y xid) = <y o (idx <) o ORel(A,B) Rel(A,B) Rel (A4,B)’

as in the diagram

Rel(A, B) x (Rel(A, B) x Rel(4, B))

'ﬂ
Cat: ;
“Q&mmmmmmm,; \\\<$j]

(Rel(4, B) x Rel(A, B)) x Rel(A, B) ReI(A B) x Rel(4, B)

ReI(AB) <y

<y xid

Rel(A, B) x ReI(A B) 2 Rel(A, B),

whose component

Rel(A,B),
arse o (T<yS)<yR < T<y(S<yR)

| — | —
LT oRifty(S)oRify(R)  “CToRift; (SoRift; (R))

at (T, S, R) is given by

ReI(AB) <y def def
a1 sR idr o,
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where
Y: RIﬁC](S) <& RI'&](R) — let](S < let](R))

is the inclusion adjunct to the inclusion

€5 X idRift](R) : ] o Rift](S) o Rift](R) — S0 Rift](R)

%9, (Rifty () oRift; (R))

under the adjunction /. + Rift;, where ¢: ] o Rifty = idgel(a ) is the
counit of the adjunction J. 4 Rift;.

5.4.4 TheLeft Skew Left Unitors
Let Aand B besetsandletJ: A - B bearelation.

Definition 5.4.4.1.1. The left /-skew left unitor of Rel(4, B) is the natural
transformation

Rel(A,B),<; . Rel(AB) - Cats
PRGBS gy 0 (154D id) = aghe |

as in the diagram

1RelAB) g

pt X Rel(A, B) Rel(A, B) x Rel(A, B)
\
\
\ yd
\ j.ReI(A,B),q]
\\\ / <
}‘chlt(sAZ,B) \\\\\
“~=> Rel(A, B),
whose component
ARAAR R R
EhoRifty (R)

atRis given by Rl ()
e , ,4] d_ef

iR €R,

wheree: ], o Rift; = idgel(4,p) is the counit of the adjunction ], 4 Rift;.
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00MX 5.4.5 The Left Skew Right Unitors
Let Aand Bbesetsandlet]: A - Bbearelation.

QoMY Definition5.4.5.1.1. The left J-skew right unitor of Rel( A, B) is the natural
transformation

Rel(A,B),«; . _Cats
pREAABSy s pretse

. Rel(A,B)
Rel (A.B) =><1]o(|d><l<,] )

asinthe diagram

idx1Rel4B)
Rel(A, B) x pt Rel(A, B) x Rel(A, B),
\
\\\ /
\\ pReI(A,B),<1]

\\\ / Y

N
Catsp S N
PRel(A,B) ~-

~

"7==> Rel(4,B)

whose component

Rel(A,B),«
PR '"R— R<«J
def, . -
ERoRift (/)

at R is given by the composition
R 5 Ro XA

idROr}XA .
= RoRift;(J.(y4))
def

“ RoRifty(J o za)

St Ro Rift](])
def

= R<1]],

where 7: idgel(a,4) = Rift; o J. is the unit of the adjunction J. 4 Rift;.

00MZ 5.4.6 The Left Skew Monoidal Structure on Rel( A, B)

QONQ Proposition5.4.6.1.1. The category Rel(A, B) admits a left skew monoidal
category structure consisting of

- The Underlying Category. The posetal category associated to the poset
Rel(A, B) of relations from A to B of Item 2 of Definition 5.1.1.1.3.
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- The Left Skew Monoidal Product. The left J-skew monoidal product
<y : Rel(A, B) x Rel(A, B) — Rel(A, B)
of Definition 5.4.1.1.1.

- The Left Skew Monoidal Unit. The functor
1Rel(4.B),; . pt — Rel(A, B)

of Definition 5.4.2.1.1.

- The Left Skew Associators. The natural transformation
Rel(4,B),<; . . - Cat
ol AR <y o (< xid) = <y o (idx <)) o O Ral(A.B) Rel(A,B) Rel (A,B)

of Definition 5.4.3.1.1.

. The Left Skew Left Unitors. The natural transformation

Rel(A,B),< . Rel(AB) , . Cats
p I a0 (14] ><|d) = g

of Definition 5.4.4.1.1.

- The Left Skew Right Unitors. The natural transformation

I(AB)<, . C . Rel(AB
pRel By pR:It(Sj,B) = Jj° ('d x 147( ))

of Definition 5.4.5.1.1.

Proof. SinceRel(A, B) is posetal, the commutativity of the pentagonidentity,
the left skew left triangle identity, the left skew right triangle identity, the
left skew middle triangle identity, and the zigzag identity is automatic, and
thus Rel(A, B) together with the data in the statement forms a left skew
monoidal category. O

ooN1 5.5 The Right Skew Monoidal Structure on Rel( A, B)

Let Aand BbesetsandletJ: A - Bbearelation.

00N2 5.5.1 The Right Skew Monoidal Product
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00N3 Definition 5.5.1.1.1. The right /-skew monoidal product of Rel(A, B) is the
functor

>;: Rel(A, B) X Rel(A, B) — Rel(A, B)

where

- Action on Objects. Foreach R, S € Obj(Rel(A, B)), we have
S >; R Ranj(S) o R, ]+\
A

- Action on Morphisms. Foreach R, S, R’, S’ € Obj(Rel(A, B)), theaction
on Hom-sets

(>1) (s.0),(sr7) © HOMRel(4,8) (S, S") X Hompel(4,5) (R, R') — Homgei(a,p) (S &) R,S" &) R')

of >;at ((S,R), (S, R")) is defined by™

R Ran] (8

R NW(V
Bya e Ran;(f) ¢ a,

’:1>

foreach f € Hompge(4,5)(S,S’) and each @ € Homgel(a,8) (R, R’).

00N4 5.5.2 The Right Skew Monoidal Unit

Q0N5 Definitions.5.2.1.1. Theright /-skew monoidal unitof Rel( A, B) is the func-
tor
124P) bt — Rel(4, B)
picking the object

> def
1ReI(A B) =]

of Rel(4, B).

'5Since Rel(A, B) is posetal, thisis tosay thatifS ¢ §”andR c R’,thenS>;R C §'>; R’
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5.5.3 The Right Skew Associators

Definition 5.5.3.1.1. The right /-skew associator of Rel(A, B) is the natural
transformation

Cats,—1

Rel(A,B),>) . : :
aRlADET b o (id X by) = by o (b Xid) 0 % Rel(A,B),Rel (A,B),Rel (A,B)’

asinthe diagram

(Rel(A, B) x Rel(A, B)) x Rel(A, B)

’7
Cats,—1 o .
% Rel(A,B) Rel (A.B), Rel(A) L wd

Rel(A, B) x (Rel(A4, B) X Rel(A, B)) ReI(A B) x Rel(A, B)

ReI(AB) >y

IXm>]

Rel(A, B) x ReI(A B) > ReI(A B),

whose component

Rel(A,B),>) .

aT,S,R TD] (SD]R) — (TD]S) D]R

— —
déhan](T)oRan] (S)oR dgkan](Ran](T)oS)oR

at (T, S, R) is given by

Rel(A,B),> def
aron ¢ idg,

where
y: Ran;(T) o Ran;(S) < Ranj(Ran;(T) ¢ S)

is the inclusion adjunct to the inclusion

idgan; (1) © €s: Ranj(T) ¢ Ran;(S) o] < Ran;(T) ¢ §

d:Ef]*(Ran](T)oRam](S))

under the adjunction /* 4 Ranj, where¢: Ran; ¢ | = idgel(4,3) is the
counit of the adjunction J* + Ran;.
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00N8 5.5.4 The Right Skew Left Unitors

00N9 Definition 5.5.4.1.1. The right J-skew left unitor of Rel(A, B) is the natural
transformation

C Rel(A,B .
/lRel(A,B),DI: /‘I'Realt(SIi,B) N [>] o (lDe( ) X Id),

asinthe diagram

1§eI(A,B)Xid
pt X Rel(A, B) —_ Rel(A, B) x Rel(A, B)

\
\

\ A

\\ lReI(A,B),DJ
\\ / [>/
lCats2 \\\

~
Rel(A,B) ~o

~

"7==> Rel(4,B),

whose component

Rel(A,B),D, .

AR :R— ]D]R

N————

“Ran; (/) oR
at R is given by the composition
R = ypoR

=% o idgan; (" (7)) © R
< Ran;(J* ¢ ya) ©R
— Ran;(J) ¢ R

def

= Rl>]],

where 7: idgel(p 3y = Ran; o J* is the unit of the adjunction J* 4 Ran;.

20NA 5.5.5 The Right Skew Right Unitors

00NB Definition5.5.5.1.1. Theright /-skew right unitor of Rel(A, B) is the natural
transformation

pReI(A,B),>]: l>] o (|d X 1EeI(A,B)) fr——t pgealt(SA2,B)’
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as in the diagram

idx1Rel(4)

Rel(A, B) X pt Rel(A, B) x Rel(A, B),

\ 7

\ RelAB))

\\\ / >J

N

Catsy AN

Prel(AB) > _
“==> Rel(A, B)
whose component
pgel(A'B)'Dj: S]] =S
——
dé&an/(s)o]

atSis given by
Re|(A,B),>[ def
Pg = €R,

wheree: J* o Ran; = idgel(4,8) is the counit of the adjunction J* 4 Ran;.

00NC 5.5.6 The Right Skew Monoidal Structure on Rel(A, B)

00OND Proposition 5.5.6.1.1. The category Rel(A, B) admits a right skew monoidal
category structure consisting of

- The Underlying Category. The posetal category associated to the poset
Rel(A, B) of relations from A to B of Item 2 of Definition 5.1.1.1.3.

- The Right Skew Monoidal Product. The right J-skew monoidal product
<y : Rel(A, B) x Rel(A, B) — Rel(A, B)
of Definition 5.5.1.1.1.
- The Right Skew Monoidal Unit. The functor
1Rel(AB).<s . bt — Rel(A, B)
of Definition 5.5.2.1.1.

- The Right Skew Associators. The natural transformation

Rel(A,B),> . , . Cats—1
aRel(AB) &) >yo (idx>y) = >jo (> xid) o aR:I(SA,B),ReI(A,B),ReI(A,B)

of Definition 5.5.3.1.1.
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- The Right Skew Left Unitors. The natural transformation

Rel(A,B),>; . ,Cat Rel(AB) _ .
Rel( )DJ.AR:I(S;B):D]o(lb ><|d)

of Definition 5.5.4.1.1.

- The Right Skew Right Unitors. The natural transformation

pRel(A.B)>) . > o (id X 12"'(A’B)) == PRC:f(Sj,B)

of Definition 5.5.5.1.1.

Proof. SinceRel(A, B) is posetal, the commutativity of the pentagonidentity,
theright skew left triangle identity, the right skew right triangle identity, the
right skew middle triangle identity, and the zigzag identity is automatic, and
thus Rel(A, B) together with the data in the statement forms a right skew
monoidal category. O
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Chapter 6

Constructions With Relations

QONE This chapter contains some material about constructions with relations. No-
tably, we discuss and explore:

1. The existence or non-existence of Kan extensions and Kan lifts in the
2-category Rel (Section 6.2).

2. Thevarious kinds of constructions involving relations, such as graphs,
domains, ranges, unions, intersections, products, inverse relations,
composition of relations, and collages (Section 6.3).

3. The adjoint pairs

R.4R_1: P(A) 2 P(B),
RV 4R P(B) 2 P(A)
of functors (morphisms of posets) between P(A) and P (B) induced

byarelationR: A - B, aswellas the propertiesof R,, R_1,R™!,and
R, (Section 6.4).

Of particular note are the following points:
(@) These two pairs of adjoint functors are the counterpart for re-

lations of the adjoint triple f, 4 f~! 4 fiinduced by a function
f: A — Bstudied in Section 2.4.

(b) Wehave R_; = R™!iffRis total and functional (Item 8 of Propo-
sition 6.4.2.1.3).

() Asaconsequence of the previous item, when R comes from a
function f, the pair of adjunctions

R.,4R_y=R'4R

289
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reduces to the triple adjunction

fodftAf
from Section 2.4.

(d) ThepairsR, 4 R_1andR™! 4 R turnoutto be ratherimportant
lateron, asthey appearin the definition and study of continuous,
open, and closed relations between topological spaces (??).
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6.1 Co/Limits in the Category of Relations

This section is currently just a stub, and will be properly developed later on.

6.2 Kan Extensions and Kan Lifts in the 2-Category of
Relations

6.2.1 Left Kan Extensionsin Rel

Proposition 6.2.1.1.1. LetR: A - B be arelation.

1. Non-Existence of All Left Kan Extensions in Rel. Notall relationsin Rel
admit left Kan extensions.

2. Characterisation of Relations Admitting Left Kan Extensions Along Them.
The following conditions are equivalent:

(@) The left Kan extension
Lang: Rel(A, X) — Rel(B,X)

along R exists.
(b) Therelation R admits a leftadjointin Rel.

(©) Therelation R is of the form f~! (as in Definition 6.3.2.1.1) for
some functionf.

Proof. Item 1, Non-Existence of All Left Kan Extensions in Rel: Omitted, but will

eventually follow Fosco Loregian's commenton [MO 460656].

Item 2, Characterisation of Relations Admitting Left Kan Extensions Along Them:

Omitted, but will eventually follow Tim Campion’sanswertoto [MO 460656].
]

Question 6.2.1.1.2. GivenrelationsS: A b XandR: A - B, istherea
characterisation of when the left Kan extension

Lang(R): B b X

exists in terms of properties of R and S?
This question also appears as [MO 461592].

Question 6.2.1.1.3. As shown in Item 2 of Proposition 6.2.1.1.1, the left Kan
extension
Lang: Rel(A, X) — Rel(B,X)
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along a relation of the form R = f~! exists. Is there a explicit description
of it, similarly to the explicit description of right Kan extensions given in
Proposition 6.2.3.1.1?

This question also appears as [MO 461592].

6.2.2 LeftKan Liftsin Rel
Proposition 6.2.2.1.1. LetR: A - B bearelation.

1. Non-Existence of All Left Kan Liftsin Rel. Notall relationsin Rel admit
left Kan lifts.

2. Characterisation of Relations Admitting Left Kan Lifts Along Them. The
following conditions are equivalent:

(@) The left Kan lift
Liftg : Rel(X, B) — Rel(X, A)

along R exists.
(b) Therelation R admits a right adjointin Rel.

(c) Therelation R is of the form Cr(f) (as in Definition 6.3.1.1.1) for
some functionf.

Proof. Item 1, Non-Existence of All Left Kan Lifts in Rel: Omitted, but will even-
tually follow (the dual of) Fosco Loregian’s comment on [MO 460656].

Item 2, Characterisation of Relations Admitting Left Kan Lifts Along Them: Omit-
ted, but will eventually follow Tim Campion’s answer toto [MO 460656]. O

Question 6.2.2.1.2. GivenrelationsS: A - X andR: A - B, istherea
characterisation of when the left Kan lift

Lifts(R): X —p A

exists in terms of properties of R and S?
This question also appears as [MO 461592].

Question 6.2.2.1.3. Asshown in Item 2 of Proposition 6.2.2.1.1, the left Kan
lift

Liftg : Rel(X, B) — Rel(X, A)
along arelation of the form R = Gr(f) exists. Is there a explicit description
of it, similarly to the explicit description of right Kan lifts given in Proposi-
tion 6.2.4.1.1?
This question also appearsas [MO 461592].
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00NV 6.2.3 Right Kan Extensionsin Rel
LetR: A - Bbearelation.

QONW Proposition 6.2.3.1.1. The right Kan extension
Rang: Rel(A,X) — Rel(B,X)

along R in Rel exists and is given by

RanR(S) d:m('/ Hom{tf}(Ra ,Sa_l)
acA

foreach S € Rel(A, X), so that the following conditions are equivalent:
1. We have b ~pan,(s) X.

2. Foreacha € A,ifa ~g b,thena ~g x.

Proof. We have

HomReI(AX) (SoRT) = / Hom{tyf}((SoR)’a‘,T;)
acA JxeX

beB

=~ / / Hom{t,f}((‘/ Si;c X RZ),T;)
acA JxeX

= / / / Hom{tf} X RZ,T:)
acA JxeX JbeB

E/ / / Hom{tf} S , Hom; ) (R T;))
acA JxeX JbeB

E/ / / Homy; ) Sh,Hom{tf}(R T;))
beB JxeX

=] / Hom ¢} (SZ,/ Homy; ) (RZ,T;))
beB JxeX acA

= Ho mReI(BX)(S/ Homy sy (R;2, T, ))
a€A

m

naturallyineach S € Rel(B, X) andeach T € Rel(A, X), showing that

/ Hom .} (R;2, T,)
acA

is right adjoint to the precomposition functor — ¢ R, being thus the right Kan
extension along R. Here we have used the following results, respectively (i.e.
for each = sign):

1. Item1 of Proposition 5.1.1.1.5.
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2. Definition 6.3.12.1.1.

3. 2of 22,

4. Proposition1.2.2.1.5.

5. 220f 22,

6. 20of22.

7. Item1of Proposition 5.1.1.1.5.

This finishes the proof. O

Q0NX 6.2.4 RightKan Liftsin Rel

LetR: A - Bbearelation.
QONY Proposition 6.2.4.1.1. The right Kan lift

Riftg : Rel(X, B) — Rel(X, A)
along R in Rel exists and is given by
RiftR(S) dIEf/ Hom{t'f}( _1,Sb )
beB

foreach S € Rel(X, B), so that the following conditions are equivalent:

1. We have x ~pifg, (s) 4.

2. Foreachb € B,ifa ~g b,thenx ~g b.
Proof. We have

Hompgel(x,5) (RoS,T) = / Hom{tyf}((RoS),bc,T;’)
xeX JbeB

’5/ / / Hom{tf}(R x S, x)

xeX JbeB JacA

E/ / / Hom{tf}(S Hom{tf}( Tf))
xeX JbeB

E/ / / Hom{t,f}(SfC,Hom{t,f}(Ra,Tf))
xeX JacA JbeB

/ / Homy ) (S / Hom ) (RZ, Tf))
€X JacA beB

Hompgel(x,4) (S,/ Homy; ) (R_I,Tb ))
beB

R

R


https://topological-modular-forms.github.io/the-clowder-project/tag/00NX
https://topological-modular-forms.github.io/the-clowder-project/tag/00NY

0ONZ

00PO

00P1

6.3. More Constructions With Relations 295

naturallyineach S € Rel(X, A) andeach T € Rel(X, B), showing that

/ Hom{t,f} (Rb_l,sliz)
beB

is right adjoint to the postcomposition functor R ¢ —, being thus the right
Kan liftalong R. Here we have used the following results, respectively (i.e.
for each = sign):

1. Item1 of Proposition 5.1.1.1.5.
2. Definition 6.3.12.1.1.

3. Rof 2.

4. Proposition1.2.2.1.5.

5. 20of?22.

6. ?0of22.

7. Item1of Proposition 5.1.1.1.5.

This finishes the proof. O

6.3 More Constructions With Relations
6.3.1 The Graph of a Function
Letf: A — Bbeafunction.

Definition 6.3.1.1.1. The graph of f is the relation Gr(f): A —p B defined as
follows:’

- Viewing relations from A to B as subsets of A X B, we define

Gr(f) £ {(a,f(a)) € AX B|a € A}.

- Viewing relations from A to B as functions A X B — {true, false}, we
define

aef | true ifb=1f(a),
[Cr()](a.b) = {false otherwise

foreach (a,b) € AX B.

Further Notation: We write Gr(A) for Gr(id4), and call it the graph of A.
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- Viewing relations from A to B as functions A — P(B), we define

def

[Cr(H)](a) = {f(a)}
foreacha € A, i.e. we define Cr(f) as the composition

A-L B2 ).

00P2 Proposition 6.3.1.1.2. Letf: A — B bea function.

00P3 1. Functoriality. The assignment A +— Gr(A) defines a functor
Gr: Sets — Rel
where
- Action on Objects. For each A € Obj(Sets), we have
def

Gr(A) = A.

- Action on Morphisms. For each A, B € Obj(Sets), the action on
Hom-sets

Grap: Sets(A, B) — Rel(Cr(A),Gr(B))

4Rel(A,B)

of Grat (A, B) is defined by

def

Gras(f) = Gr(f),
where Gr(f) is the graph of f as in Definition 6.3.1.1.1.
In particular:
- Preservation of ldentities. We have
Gr(ida) = ya

foreach A € Obj(Sets).

- Preservation of Composition. We have

Gr(gof) = Gr(g) o Cr(f)

for each pair of functionsf: A — Bandg: B — C.
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00P4 2.
Q0P5 3.
00P6 4.
00oP7 5.
00P8 6.
00P9
0Q0PA
00PB
00oPC

Adjointness Inside Rel. We have an adjunction

Gr(f)

(Gr(f) 4 f—l): AT

+ B
~—
f71

in Rel, where f ! is the inverse of f of Definition 6.3.2.1.1.
Adjointness. We have an adjunction

Gr
(Gr47P,): Setsz Rel,
P

witnessed by a bijection of sets
Rel(Gr(A), B) = Sets(A, P(B))
natural in A € Obj(Sets) and B € Obj(Rel).

Interaction With Inverses. We have
ar(p) =f",
1\
(F') =cr).

Cocontinuity. The functor Gr: Sets — Rel of Item 1 preserves colimits.

Characterisations. LetR: A - B be arelation. The following condi-
tions are equivalent:

(@) Thereexistsafunctionf: A — BsuchthatR = Gr(f).

(b) Therelation R is total and functional.

() The weak and strong inverse images of R agree, i.e. we have
R'=R_;.

(d) The relation R hasa rightadjoint R in Rel.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness Inside Rel: We need to check that there are inclusions

XA c f_l OGr(f),
Cr(f) of ' xp.

These correspond respectively to the following conditions:
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1. Foreacha € A, there exists some b € Bsuchthata ~g. ) band
b ~¢1 a.
f

2. Foreacha,b € A, ifa ~Gr(f) bandb ~f-1 4, thena = b.

In other words, the first condition states that the image of anya € Abyfis
nonempty, whereas the second condition states that f is not multivalued. As
f is a function, both of these statements are true, and we are done.

Item 3, Adjointness: The stated bijection follows from Remark 5.1.1.1.4, with
naturality being clear.

Item 4, Interaction With Inverses: Clear.

Item 5, Cocontinuity: Omitted.

Item 6, Characterisations: We claim that Items 6a to 6d are indeed equivalent:

- Item 6a <= Item 6b. This is shown in the proof of 2? of 22.
- Item 6b = Item 6c. If R is total and functional, then, foreacha € A,
the set R(a) is a singleton, implying that

def

RN V)E{ae A|R(a) NV % 0},

R4(V)¥ {ae A|R(a) c V}

are equal forall V- € P(B), as the conditions R(a) NV # 0 and
R(a) c V areequivalentwhen R(a) is a singleton.

- Item 6c = Item 6b. We claim that R is indeed total and functional:

— Totality. Ifwe had R(a) = @ forsomea € A, thenwe would have
a € R_1(0),sothatR_{(0) # 0. Butsince R"1(0) = 0, this
wouldimplyR_1(0) # R~1(0),acontradiction. ThusR(a) # 0
foralla € Aand Ris total.

— Functionality. If R™* = R_;, then we have
{a} = R7'({b})
=R-1({b})

foreachb € R(a) andeacha € A, and thusR(a) c {b}. But
since R is total, we must have R(a) = {b}, and thus we see that
Ris functional.

- Item 6a <= Item 6d. This follows from Proposition 5.3.3.1.1.

This finishes the proof. O
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00PD 6.3.2 Thelnverse of a Function
Letf: A — Bbeafunction.

Q0PE Definition 6.3.2.1.1. Theinverse of f is the relation f~': B - A defined as
follows:

- Viewing relations from B to A as subsets of B X A, we define

1 d;f{(b,f—l(b)) ¢ B ><A|a e A},

where
def

fH(b) = {a € Alf(a) = b}

foreach b € B.

- Viewing relations from B to A as functions B X A — {true, false}, we
define

fl(ba) =

«f | true ifthereexistsa € Awithf(a) = b,
false otherwise
foreach (b,a) € B x A.
- Viewing relations from B to A as functions B — P(A), we define

f1(b)

def

“{acAlf(a)=b)

foreachb € B.
Q0PF Proposition 6.3.2.1.2. Letf: A — Bbeafunction.
00PG 1. Functoriality. The assignment A — A, f +— f~! defines a functor

(=)~!: Sets — Rel
where
- Action on Objects. For each A € Obj(Sets), we have
[ A=A

- Action on Morphisms. For each A, B € Obj(Sets), the action on
Hom-sets

(-3 Sets(A, B) — Rel(4, B)
of (=)' at (A, B) is defined by
def

COVGHICOIG]

where f~!is the inverse of f as in Definition 6.3.2.1.1.
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In particular:
- Preservation of ldentities. We have
-1
idy” = xa

foreach A € Obj(Sets).

- Preservation of Composition. We have
(gof) =g tof!
for pair of functionsf: A — Bandg: B — C.

Q0PH 2. Adjointness Inside Rel. We have an adjunction

Gr(f)

(Gr(f) 4 f—l): AT

+ B
~—
f71

in Rel.

Q0PJ 3. Interaction With Inverses of Relations. We have

1\ F
(') =crip,
ar(H" =f"
Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness Inside Rel: This is proved in Item 2 of Proposition 6.3.1.1.2.
Item 3, Interaction With Inverses of Relations: Clear. ]
00PK 6.3.3 Representable Relations
Let Aand B be sets.

Q0PL Definition6.3.3.1.1. Letf: A — Bandg: B — A be functions.?

2More generally, given functions
f: A—C,
g:B—>D
and arelation B 4 D, we may consider the composite relation

fxg R
AX B —> C x D—> {true, false},
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1. The representable relation associated tof is the relation yf: A 4 B
defined as the composition

id
AXB M Bx B2 {true, false},

i.e. given by declaringa ~,, bifff(a) = b.

2. The corepresentable relation associated to g is the relation y8: B
A defined as the composition

id
Bx A AxAal, {true, false},

i.e. given by declaringb ~ ¢ aiff g(b) = a.

00PM 6.3.4 The Domainand Range of a Relation
Let Aand B be sets.
00PN Definition 6.3.4.1.1. LetR C A X Bbearelation.>#

1. Thedomainof R is the subset dom(R) of A defined by

dom(R) LlacA
suchthata ~g b

there exists some b € B}

forwhich we have a ~go(fxg) bifff(a) ~g g(b).
3Following 22, we may compute the (characteristic functions associated to the) domain
and range of a relation using the following colimit formulas:

~ colim(R?
Xdom(R) (@) = Cboglrsn(Ra) (a €A

\/ R

beB

range(R) (b) = conm(RZ) (be B)
acA

= \/RZ,

acA

IR

where thejoin \/ is taken in the poset ({true, false}, <) of Definition1.2.2.1.3.
4Viewing R as a functionR: A — P(B), we have

1

dom(R) = colim(R(y))
yey

U RO,

yeyYy

IR

range(R) = c;c)éi)r(n(R(x))

U R,

xeX

IR
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2. Therange of R is the subset range(R) of B defined by

range(R) E {b €B

there exists somea € A}

suchthata ~g b

00PP 6.3.5 Binary Unions of Relations
Let Aand B be setsand let R and S be relations from A to B.

00PQ Definition 6.3.5.1.1. The union of R and S° is the relation R U S from A to B
defined as follows:

- Viewing relations from A to B as subsets of A x B, we define®

def

RUS ={(a,b) € Bx A|wehavea ~g bora ~g b}.

- Viewing relations from A to B as functions A — P(B), we define

def

[RUS](a) = R(a) US(a)
foreacha € A.

QOPR Proposition 6.3.5.1.2. LetR, S, Ry, and Ry be relations from Ato B, and let
S1 and S, be relations from Bto C.

Q0PS 1. Interaction With Inverses. We have
(RUS)T=RTUS.
Q0PT 2. Interaction With Composition. We have

poss.
(Sl o R1) U(S20R) # (S1USy) o (R U RQ).
Proof. Item1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Unwinding the definitions, we see that:
1. The condition for (S1 ¢ R1) U (S © Ro) is:

(@) There existssome b € B such that:
i. a ~R; bandb ~$ G

or

5Further Terminology: Also called the binary union of R and S, for emphasis.
6This is the same as the union of R and S as subsets of A x B.
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i. a~g, bandb ~g, c;

3. The condition for (S; U Sg) ¢ (R1 U Ry) is:

(@) There exists some b € B such that:
i. a ~Ry bora ~Ro b;
and

i b~sl corb ~Sy €.

These two conditions may fail to agree (counterexample omitted), and thus
the two resulting relations on A X C may differ. O

00PU 6.3.6 Unions of Families of Relations
Let Aand B be setsand let {R; };<; be a family of relations from A to B.

Q0PV Definition 6.3.6.1.1. The union of the family {R;},;.; is the relation | ;c; R
from A to B defined as follows:

- Viewing relations from A to B as subsets of A X B, we define’

JRrE {(a, b) € (Ax B)*!

iel

there exists somei € |
suchthata ~g, b

- Viewing relations from A to B as functions A — P(B), we define

JRi|@ = JRiCa)

iel iel

foreacha € A.

Q0PW Proposition 6.3.6.1.2. Let A and B be sets and let {R;};c; be a family of
relations from A to B.

Q0PX 1. Interaction With Inverses. We have

(U Ri)% = JR..

iel iel

Proof. Item1, Interaction With Inverses: Clear. ]

7This is the same as the union of {R; };<; as a collection of subsets of A x B.
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Q0PY 6.3.7 Binary Intersections of Relations

Let A and B be sets and let R and S be relations from A to B.

00PZ Definition 6.3.7.1.1. The intersection of R and S8 is the relation R N S from
Ato B defined as follows:

- Viewing relations from A to B as subsets of A X B, we define®

def

RNS={(a,b) € BxA|wehavea ~g banda ~g b}.

- Viewing relations from A to B as functions A — P(B), we define

def

[RNS](a) = R(a) N S(a)
foreacha € A.

00Q0 Proposition 6.3.7.1.2. LetR, S, Ry, and Ry be relations from Ato B, and let
S1 and S, be relations from B to C.

0001 1. Interaction With Inverses. We have
(RNS)T=R"ns".
000Q2 2. Interaction With Composition. We have
(810 R1) N (S20Ra) = (81 N S2) ¢ (R1 N R2).

Proof. Item1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Unwinding the definitions, we see that:

1. The condition for (S1 ¢ R1) N (S2 © Ry) is:

(@) There exists some b € B such that:
i. a ~R; bandb ~$; G
and
i. a ~Ro bandb ~Sy €
3. The condition for (S1 N S2) ¢ (R1 N Ry) is:
(@) There existssome b € B such that:
i. a ~R; banda ~Ro l);
and

i. b ~S candb ~Sy C.

These two conditions agree, and thus so do the two resulting relations on
AXxC. O

8 Further Terminology: Also called the binary intersection of R and S, for emphasis.
°This is the same as the intersection of R and S as subsets of A X B.


https://topological-modular-forms.github.io/the-clowder-project/tag/00PY
https://topological-modular-forms.github.io/the-clowder-project/tag/00PZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00Q0
https://topological-modular-forms.github.io/the-clowder-project/tag/00Q1
https://topological-modular-forms.github.io/the-clowder-project/tag/00Q2

00Q3

00Q5

00Q6

00Q7

00Q8

6.3. More Constructions With Relations 305

6.3.8 Intersections of Families of Relations

Let Aand B be setsand let {R; };<; be a family of relations from A to B.

Definition 6.3.8.1.1. The intersection of the family {R;},; is the relation
Uies Ri defined as follows:

- Viewing relations from A to B as subsets of A X B, we define'

we havea ~g, b

ijg{mwe(Axm“

iel

foreachi e I, }

- Viewing relations from A to B as functions A — P(B), we define

N

iel

(@) <[ | Ri(a)

iel

foreacha € A.

Proposition 6.3.8.1.2. Let A and B be sets and let {R;};c; be a family of
relations from A to B.

1. Interaction With Inverses. We have
(ﬂm):ﬂ@.
iel iel

Proof. Item1, Interaction With Inverses: Clear. O

6.3.9 Binary Products of Relations

Let A, B, X,and Y be sets, letR: A —b B be arelation from Ato B, and let
S: X b YbearelationfromXtoY.

Definition 6.3.9.1.1. The productof Rand S" istherelation Rx S from Ax X
to B x Y defined as follows:

- Viewingrelationsfrom AX X to BXxY assubsetsof (A X X)X (B x Y),
we define R X S as the Cartesian product of R and S as subsets of A x X
and Bx Y.

9This is the same as the intersection of {R; };< as a collection of subsets of A x B.
" Further Terminology: Also called the binary product of R and S, for emphasis.
2Thatis, R X S is the relation given by declaring (a, x) ~gxs (b, y)iffa ~g bandx ~g y.
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- Viewingrelations from AxX to BXY asfunctions AXX — P(BxY),
we define R X S as the composition

Ax X X5 pByx P(Y) &5 P(BxY)

in Sets, i.e. by
[R x S](a,x) = R(a) x S(x)
foreach (a,x) e Ax X.
00Q9 Proposition 6.3.9.1.2. Let A, B, X, and Y be sets.
Q00A 1. Interaction With Inverses. Let

R: A A,
S:X b X

We have
(RxS) =R x .

00QB 2. Interaction With Composition. Let

Ri: A B,
Si:BbC,
Ry: X $ 7Y,
So: Y - Z

be relations. We have
(810 R1) X (S20Rg) = (81 X 82) o (Ry X Ra).
Proof. Item 1, Interaction With Inverses: Unwinding the definitions, we see
that:
1. We have (a, x) ~(RxS)! (b, y) iff:

- We have (b, y) ~rxs (a, x), i.e.iff:
— Wehave b ~y q;
- Wehave y ~g x;

2. We have (a,x) ~piygt (b, ) iff:

- Wehavea ~p+ band x ~gt y,ie.iff:
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— We have b ~y q;
— Wehave y ~g x.

These two conditions agree, and thus the two resulting relationson A X X
are equal.
Item 2, Interaction With Composition: Unwinding the definitions, we see that:

1. We have (a,x) ~(S10R1)%(S20R2) (C, Z) iff:

(@) Wehavea ~g,.r, cand x ~g,or, 2, i.€.iff:
i. Thereexistssomeb € Bsuchthata ~g, bandb ~g, c;
ii. Thereexistssome y € Y suchthatx ~gp, yandy ~g, z;

2. We have (a,x) ~(81%S2)o(R1XR2) (C, Z) iff:

(@) Thereexistssome (b, y) € BxY suchthat(a,x) ~g,xr, (b,y)
and (b, y) ~s,xs, (¢, 2),i.e suchthat:
i. Wehavea ~g, bandx ~g, y;
ii. Wehaveb ~g, cand y ~g, z

These two conditions agree, and thus the two resulting relations from A X X
toC X Z are equal. O
00QC 6.3.10 Products of Families of Relations

Let {A;};c; and {B;};c; be families of sets, and let {R;: A; - Bi};c; bea
family of relations.

00QD Definition6.3.10.1.1. The productofthe family{R;};.;istherelation[];c; R
from [];c; A; to [ [;¢; B; defined as follows:

- Viewing relations as subsets, we define [[;c; R; as its product as a
family of sets, i.e. we have

I_I R E {(airbi)iel € l_[(Ai X B;)

il il we have a; ~g, b;

foreachi € I, }

- Viewing relations as functions to powersets, we define

[ &

iel

((ai)ier) = l_[ Ri(a;)

iel

foreach (a;);c; € [1icr Ri
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000E 6.3.11 Thelnverse of a Relation

Let A, B,and C besetsand letR C A X B be a relation.
00QF Definition 6.3.11.1.1. The inverse of R™3 is the relation R defined as follows:

- Viewing relations as subsets, we define

R' d:ef{(b,a) € Bx A|wehaveb ~g a}.

- Viewing relations as functions A X B — {true, false}, we define
[RT]; = R;
foreach (b,a) € B x A.

- Viewing relations as functions A — P(B), we define

[RT](b) = RT({b})

={ae€A|lbeR(a)}

foreach b € B, where RT({b}) is the fibre of R over {b}.
00QG Example 6.3.11.1.2. Here are some examples of inverses of relations.
00QH 1. Less Than Equal Signs. We have (<) = >.

T

00QJ 2. Greater Than Equal Signs. Dually to Item 1, we have (>)' = <.

Q00K 3. Functions. Letf: A — Bbeafunction. We have

Gr(f) =f",
() = e,

00QL Proposition 6.3.11.1.3. LetR: A - BandS: B - C berelations.

00QM 1. Functoriality. The assignment R — R defines a functor (i.e. mor-
phism of posets)

(-)": Rel(A, B) — Rel(B, A).

In particular, given relations R, S: A =3 B, we have:

3 Further Terminology: Also called the opposite of R, the transpose of R, or the converse of
R.
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(x) IfR c S,thenR" c S.

2. Interaction With Ranges and Domains. \We have
dom(RT) = range(R),
range(RT) = dom(R).
3. Interaction With Composition |. We have
(SoR) =R oS

4. Interaction With Composition Il. We have

y8 C RoRT,
xa C RToR.
5. Invertibility. We have
N
(RT) =R
6. ldentity. We have
2h = xa

Proof. Item 1, Functoriality: Clear.

Item 2, Interaction With Ranges and Domains: Clear.

Item 3, Interaction With Composition I: Clear.

Item 4, Interaction With Composition |I: Clear.

Item 5, Invertibility: Clear.

Item 6, Identity: Clear. O

6.3.12 Composition of Relations
Let A, B,andCbesetsandletR: A b BandS: B - C be relations.

Definition 6.3.12.1.1. The compositionof RandS is therelation SoR defined
as follows:

- Viewing relations from A to C as subsets of A x C, we define

SoRd:ef{(a,c)eAxC

there exists some b € B such
thata ~g bandb ~g ¢
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- Viewing relations as functions A X B — {true, false}, we define
def beB b
(SoR)_;:/ S, " XRZ,

=\/$, xR,

beB

where the join \/ is taken in the poset ({true, false}, X) of Defini-
tion1.2.2.1.3.

- Viewing relations as functions A — P(B), we define

B —- P(C),

SoR=Lan,,(S) o R, 13[//
Lany, (S)

where Lan,, (S) is computed by the formula

y€EB
[Lan,, ($)] (V) = / 1P (2, V) ©S,

yeB
= / xw(y) oS,

= Jwmoes,

yEB

EUSJ,

yev

foreach V € P(B). In otherwords, S ¢ R is defined by

[S o R](a) = S(R(a))

o U S(x).

x€R(a)

foreacha € A.

00QV Example 6.3.12.1.2. Here are some examples of composition of relations.

"4That is: the relation R may send a € Atoa number of elements {b;};<; in B, and then
the relation S may send the image of each of the b;’s to a number of elements {S(b;) };¢1 =

{{Cji}jieji}ie] inC.
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1. Composing Less/Greater Than Equal With Greater/Less Than Equal Signs.
We have

IA
<
v

="~triv»

v
<

IA
Il

~

triv -

2. Composing Less/Greater Than Equal Signs With Less/Greater Than Equal
Signs. We have

IA
<&
IA
Il
IA

\%
<&
v
Il
\%

00QW Proposition 6.3.12.1.3. LetR: A b B,S: B - C,andT: C -p D be
relations.

000X 1. Interaction With Ranges and Domains. We have

dom(S ¢ R) c dom(R),
range(S ¢ R) C range(S).

00QY 2. Associativity. We have
(ToS)oR=To(SoR).
00QZ 3. Unitality. We have
1poR=R,
Roys=R.

Q0RO 4. Interaction With Inverses. We have
(SoR) =RToS".
00R1 5. Interaction With Composition. We have

B CRoRT,
¥4 CRToR.

Proof. Item1, Interaction With Ranges and Domains: Clear.
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Item 2, Associativity: Indeed, we have

ceC
/' 771xs;)oR
beB
(/ 7“1x$)oR2

TlstoRg

(ToS)oRE

—

In the language of relations, givena € Aandd € D, the stated equality
witnesses the equivalence of the following two statements:

1. We have a ~(7.5)0r d, i.e. there existssome b € B such that:

(@) Wehavea ~g b;

(b) We haveb ~7.s d, i.e. there exists some ¢ € C such that:
i. Wehaveb ~g c;
ii. We havec ~r d;

2. We havea ~7,(sor) d, i.e. there exists some ¢ € C such that:

(@) We havea ~g.r c,i.e. there existssome b € Bsuch that:

i. We havea ~p b;
ii. We haveb ~g c;

(b) We havec ~r d;
both of which are equivalent to the statement

- Thereexistb € Bandc € Csuchthata ~g b ~g ¢ ~7 d.
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Item 3, Unitality: Indeed, we have
o X€EB
)(BQR:‘/ ()(B);IXRfZ
=\/(x0)7' xR,
x€B
- \/ R%,
x€B
x=—1
= RZ},
and
o x€eA
Rou [ R
S\ R x G,
xeB
- \/ R
x€eB
x=—3
=R},
In the language of relations, givena € Aand b € B:
- The equality
XB < R=R
witnesses the equivalence of the following two statements:
1. We havea ~; B.
2. There existssome b’ € B such that:
(@) Wehavea ~g b’
(b) We haveb’ ~,, b,ie. b =b.
- The equality
Ro YA = R
witnesses the equivalence of the following two statements:
1. There existssome a’ € Asuch that:
(@) Wehavea ~,, d’,ie.a=a’.
(b) Wehavea’ ~g b
2. We havea ~; B.
Item 4, Interaction With Inverses: Clear.
Item 5, Interaction With Composition: Clear. m]
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00R2 6.3.13 The Collage of a Relation

Let Aand BbesetsandletR: A - B bearelation from Ato B.

00R3 Definition6.3.13.1.1. ThecollageofR“|stheposetCoII(R) (CoII(R), Zcoll(R))
consisting of:

- The Underlying Set. The set Coll(R) defined by

def

Coll(R) £ A 1] B.

- The Partial Order. The partial order
Zcoli(r) : Coll(R) x Coll(R) — {true, false}
on Coll(R) defined by

<(ab) def {true ifa=bora~pb,

false otherwise.

00R4 Proposition 6.3.13.1.2. Let Aand BbesetsandletR: A - B be arelation
from A to B.

Q0R5 1. Functoriality . The assighment R — Coll(R) defines a functor'®

Coll: Rel(A, B) — Pos 51 (A, B),

15 Further Terminology: Also called the cograph of R.
$Here POS/AI (A, B) is the category defined as the pullback

t)

Pos 1 (A, B) « pt X Pos a1

X
[A],Pos,fibg fib1,Pos,[ B]

asin the diagram

POS/Al (A, B)

/N

POS/AI >< pt pt >< Pos/A1

/\/\

N AN S

Explicitly, an object of Pos 51 (4, B) is a pair (X, ¢x) consisting of
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where

- Action on Objects. For each R € Obj(Rel(A, B)), we have

def

[Coll] (R) = (Coll(R), ¢r)

foreach R € Rel(A, B), where
— The poset Coll(R) is the collage of R of Definition 6.3.13.1.1.
— The morphism ¢ : Coll(R) — Al is given by

def 0 Ifx € A,
x) =
Pr(x) {1 ifx € B

foreach x € Coll(R).

- Action on Morphisms. Foreach R, S € Obj(Rel(A, B)), the action
on Hom-sets

Collg s : Homgel(a,8)(R,S) — Pos(Coll(R), Coll(S))

of Coll at (R, S) is given by sending an inclusion

ti:RcS
to the morphism

Coll(1): Coll(R) — Coll(S)
of posets over A defined by
[Coll(1)](x) £ x
foreach x € Coll(R)."”
00R6 2. Equivalence. The functor of ltem 1is an equivalence of categories.

Proof. Item1, Functoriality: Clear.
Item 2, Equivalence: Omitted. O

- Aposet X;
- Amorphism¢x: X — Al;
such that qb)‘(l(O) = Aand qb)‘(l(O) = B, with morphisms between such objects being

morphisms of posets over AL
"7Note that thisis indeed a morphism of posets: if x Zcon(r) ¥, thenx = yorx ~g y,s0
we have eitherx = yorx ~g y (asR C §),and thus x Z¢oyi(s) »-
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6.4 Functoriality of Powersets

6.4.1 Directlmages

Let Aand BbesetsandletR: A - B bearelation.

Definition 6.4.1.1.1. The directimage function associated to R is the func-
tion
R.: P(A) — P(B)

defined by'®"?

def

R.(U) £ R(V)

= JR@

aclU

={beB

foreachU € P(A).

Remark 6.4.1.1.2. Identifying subsets of A with relations from pt to A via
Item 3 of Proposition 2.4.3.1.6, we see that the direct image function associ-
ated to R is equivalently the function

such thatb € R(a)

there exists somea € U}

R.: P(A) — P(B)

—— ——
=Rel(pt,A) =Rel(pt,B)
defined by
R(U)ERoU

foreachU € P(A), where R o U is the composition

U R
pt -+ A - B.
Proposition 6.4.1.1.3. LetR: A - B bearelation.
1. Functoriality. The assignmentU +— R, (U) defines a functor
R.: (P(A),c) — (P(B),C)

where

'8 Further Terminology: The set R(U) is called the directimage of U by R.
PWe also have
R«(U) = B\ R((A\ U);
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- Action on Objects. Foreach U € P(A), we have

def

- Action on Morphisms. Foreach U,V € P(A):
- IfU c V,thenR,.(U) C R.(V).
QORD 2. Adjointness. We have an adjunction

R*
~

(Ri 4R-1): P(A)_+ P(B),
R4

witnessed by a bijections of sets
Homp (4) (R« (U), V) = Homp(4) (U, R-1(V)),
naturalinU € P(A) andV € P(B), i.e.such that:

(x) The following conditions are equivalent:
— WehaveR,(U) Cc V.
— WehaveU c R_{(V).

QORE 3. Preservation of Colimits. We have an equality of sets

Jui| =R,

iel iel

R,

natural in {U;};¢; € P(A)*!. In particular, we have equalities

R.(U)UR.(V)=R.(UUYV),
R.(0) =0,

natural inU,V € P(A).
QORF 4. Oplax Preservation of Limits. \We have an inclusion of sets

(U] <[ R0,

iel iel

R,

natural in {U;},c; € P(A)*!. In particular, we have inclusions

R.(UNV) cR.(U)NR(V),
R.(A) C B,

natural inU,V € P(A).
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5. Symmetric Strict Monoidality With Respect to Unions. The directimage
function of Item 1 has a symmetric strict monoidal structure

(R RE, RS, ) (P(4),0,0) = (P(B),1,0),
being equipped with equalities
RSy y: Re(U) URL(V) SR(UUYV),
Rgl: 0 — 0,
natural inU,V € P(A).

6. Symmetric Oplax Monoidality With Respect to Intersections. The direct
image function of Item 1 has a symmetric oplax monoidal structure

(Ro, RE, RS, ) (P(4),0,4) > (P(B), N, B),
being equipped with inclusions

RﬁU‘V: R.(UNV) cR.(U)NR(V),
Rﬁlz R.(A) C B,
natural inU,V € P(A).
7. Relation to Direct Images With Compact Support. We have
R.(U) = B\ Ri(A\U)
foreachU € P(A).

Proof. Item1, Functoriality: Clear.

Item 2, Adjointness: This follows from 2? of ?2.

Item 3, Preservation of Colimits: This follows from Item 2 and ?? of 2.

Item 4, Oplax Preservation of Limits: Omitted.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from
[tem 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows
from Item 4.

Item 7, Relation to Direct Images With Compact Support: The proof proceeds in
the same way as in the case of functions (?? of Proposition 2.4.4.1.4): applying
Item 7 of Proposition 6.4.4.1.3t0 A \ U, we have

Ri(A\U) =B\ R.(A\ (A\U))
= B\ R.(U).
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Taking complements, we then obtain

R.(U) = B\ (B\ R.(V)),
=B\ Ri(A\V),

which finishes the proof. O
Proposition 6.4.1.1.4. LetR: A - B bearelation.

1. Functionality |. The assignment R — R, defines a function

(—).: Rel(A, B) — Sets(P(A), P(B)).
2. Functionality Il. The assignment R — R, defines a function
(=).: Rel(A,B) — Pos((P(A), ), (P(B),)).
3. Interaction With Identities. Foreach A € Obj(Sets), we have®°
(x4), = idp(a).

4. Interaction With Composition. For each pair of composable relations
R: A BandS: B - C, we have”

P(A) = P(B)

(§oR), =S.0R,, \ |S*
(SoR),

P(C).

see [tem 7 of Proposition 6.4.1.1.3.
20That is, the postcomposition function

(x4).: Rel(pt, A) — Rel(pt, A)

is equal to idpey(pt,A)-
21That is, we have

Rel(pt, A) —“ Rel(pt, B)

(SoR), =S80 Rs, \ |S*
(SeR),

Rel(pt, C).
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Proof. Item1, Functionality I: Clear.

Item 2, Functionality II: Clear.
Item 3, Interaction With Ildentities: Indeed, we have

(). () £ | ) 2a(a)

acU

Ut

acU
=U

def

= idpa)(U)

foreachU € P(A). Thus (ya), = idp(a).
Item 4, Interaction With Composition: Indeed, we have

(SoR).(U) =

2Jts o Rl(a)

acU

= SR

acU

= s (R(a)

acU

= S(U R(a))
acU
=S, (R.(V))

def

= [S. oR.](U)

foreach U € P(A), where we used Item 3 of Proposition 6.4.1.1.3. Thus

(SoR), =S, oR..

6.4.2 StrongInverse Images

Let Aand BbesetsandletR: A - B bearelation.

O

Definition 6.4.2.1.1. The strong inverse image function associated to R is

the function

defined by*

foreachV € P(B).

R_1: P(B) = P(A)

def

22 Fyrther Terminology: The set R_1 (V) is called the strong inverse image of V by R.

Ra(V)E{aec A|R(a) c V}
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00RS Remark 6.4.2.1.2. Identifying subsets of B with relations from pt to B via
Item 3 of Proposition 2.4.3.1.6, we see that the inverse image function associ-
ated to R is equivalently the function

R 1: P(B) — P(A
~—— ~——
=Rel(pt,B) =Rel(pt,A)

defined by

A
o Riftg (V) 7
R (V) ERife(v), Y J[R
pt —— B,
Vv

and being explicitly computed by

def

R_1(V) = Riftr (V)

=~ / Hom (Rb_l, sz);
beB

where we have used Proposition 6.2.4.1.1.
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Proof. We have

Riftg (V) = / Hom{t,f}(R’il,V”)
beB

-2
={a€A

/ Hom 5} (RZ,V*I’) = true}
beB

foreach b € B, atleastone of the
following conditions hold:

1. Wehave R = false

=Ja€A 2. The following conditions hold:

(@) Wehave RZ = true
(b) We have Vf = true

foreach b € B, atleast one of the
following conditions hold:

1. Wehaveb ¢ R(a)
=qa€A 2. The following conditions hold:

(@) Wehaveb € R(a)
(b) Wehaveb eV

={a € A|foreachb € R(a), wehaveb € V}
={ae A|R(a) cV}

def

R (V).
This finishes the proof.
QORT Proposition 6.4.2.1.3. LetR: A - Bbearelation.
QORU 1. Functoriality. The assignmentV +— R_; (V) defines a functor
R-1: (P(B),c) = (P(A), )
where

- Action on Objects. Foreach V € P(B), we have

def

[R-1](V) = R_1(V).

- Action on Morphisms. Foreach U,V € P(B):
- IfU c V,thenR_1(U) Cc R_1(V).
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QORV 2. Adjointness. We have an adjunction

R*
(R.4AR1): P(A)_+  P(B),
Ry

witnessed by a bijections of sets
Homp(4)(R.(U), V) = Hompa) (U, R-1(V)),
naturalinU € P(A) andV € P(B),i.e.suchthat:

(x) The following conditions are equivalent:
— WehaveR,(U) Cc V.
— WehaveU c R_{(V).

QORW 3. Lax Preservation of Colimits. We have an inclusion of sets

o

iel

)

U R_1(Ui) c Ry

iel

natural in {U;};¢; € P(B)*!. In particular, we have inclusions

R_1(U)UR_1(V) c R4 (UUYV),
0 C R_1(0),

natural inU,V € P(B).
QORX 4. Preservation of Limits. We have an equality of sets

ﬂ Ui| = ﬂ R_1(Uy),

iel iel

R4

naturalin {U;};¢; € P(B)*!. In particular, we have equalities

R1(UNV)=R_1(U)NR_1(V),
R_1(B) =B,

natural inU,V € P(B).

QORY 5. Symmetric Lax Monoidality With Respect to Unions. The direct image
with compact support function of Item 1 has a symmetric lax monoidal
structure

(R_I,Rg,R%m); (P(A),U,0) — (P(B),U,0),
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being equipped with inclusions
R®, 1yt RA(U)UR (V) € Ry(UUY),
R%)1: 0 c R4(0),
natural inU,V € P(B).

6. Symmetric Strict Monoidality With Respect to Intersections. The direct
image function of Item 1 has a symmetric strict monoidal structure

(R, R, B2, ) (P(A),0,4) = (P(B),n,B),
being equipped with equalities
R® v Ra(UNY) S R_(U)NR_1(V),
R?lll: R_1(A) — B,
natural inU,V € P(B).

7. Interaction With Weak Inverse Images |. We have
R_1(V)=A\R'(B\V)
foreachV € P(B).

8. Interaction With Weak Inverse Images Il. Let R: A - B be a relation
from Ato B.

(@) If Risatotal relation, then we have an inclusion of sets
R_1(V) cR7H(V)

naturalinV € P(B).

(b) If Ristotal and functional, then the above inclusion is in factan
equality.

(c) Conversely,ifwehaveR_1 = R~1 then Ristotal and functional.

Proof. Item1, Functoriality: Clear.

Item 2, Adjointness: This follows from 22 of 22,

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: This follows from Item 2 and 2? of 22.

Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows from
ltem 3.
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Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows
from Item 4.
Item 7, Interaction With Weak Inverse Images I: We claim we have an equality

R_i(B\V)=A\R (V).
Indeed, we have

R_1(B\V)={ae A|R(a) c B\ V},
A\RY(V)={aec A|R(a) NV = 0}.

TakingV = B\ V thenimplies the original statement.
Item 8, Interaction With Weak Inverse Images I: Item 8a is clear, while [tems 8b
and 8c follow from Item 6 of Proposition 6.3.1.1.2. O

Proposition 6.4.2.1.4. LetR: A - B bearelation.

1. Functionality |. The assignment R — R_; defines a function

(=)_1: Sets(A, B) — Sets(P(A), P(B)).
2. Functionality Il. The assignment R — R_; defines a function
(=)_y1: Sets(A, B) — Pos((P(A), ), (P(B),Q)).
3. Interaction With ldentities. Foreach A € Obj(Sets), we have
(ida)_1 = idp(a).

4. Interaction With Composition. For each pair of composable relations
R: A BandS: B - C,we have

P(C) =5 P(B)

(SeR)_1=R_1084, \
(SoR)_4

P(A).

Ry

Proof. Item1, Functionality I: Clear.
Item 2, Functionality II: Clear.
[tem 3, Interaction With Identities: Indeed, we have

(x4)_1(U) E {a € A| ya(a) c U}

={a€A|{a} CcU}
=U
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foreachU € P(A). Thus (ya)_; = idp(a).
Item 4, Interaction With Composition: Indeed, we have

def

(SoR)_1(U)={ac A|[SoR](a) cU}

def

={a e A|S(R(a)) cU}
£ {a € A|S.(R(a)) c U}
={ae€ A|R(a) c S_1(U)}

def

= R_1(S-1(U))

def

= [R-1081](U)

foreachU € P(C), where we used Item 2 of Proposition 6.4.2.1.3, which
implies that the conditions

- We have S, (R(a)) c U.
- We have R(a) c S_1(U).

are equivalent. Thus (So R)_; = R_1 0 S_1. O

6.4.3 WeakInverse Images
Let Aand B besetsandletR: A - Bbearelation.

Definition 6.4.3.1.1. The weak inverse image function associated to R*? is

the function
R7L: P(B) - P(A)

defined by*
def

RYV)E{aec A|R(a) NV # 0}

foreachV € P(B).
Remark 6.4.3.1.2. Identifying subsets of B with relations from B to pt via

Item 3 of Proposition 2.4.3.1.6, we see that the weak inverse image function
associated to R is equivalently the function

RY: P(B) — P(A)
—— ——
=Rel(B,pt) =Rel(A,pt)

defined by
RIYV)EVeR

2 Fyrther Terminology: Also called simply the inverse image function associated to R.
24 Fyrther Terminology: The set R™1 (V) is called the weak inverse image of V by R or simply


https://topological-modular-forms.github.io/the-clowder-project/tag/00SA
https://topological-modular-forms.github.io/the-clowder-project/tag/00SB
https://topological-modular-forms.github.io/the-clowder-project/tag/00SC

6.4. Functoriality of Powersets 327

foreachV € P(A), where R ¢ V is the composition
R V
A-p B pt.
Explicitly, we have

R V)EVeR
et beB B .
2/ Vb 1 X RZ,.

Proof. We have

o beB
V<>R=e/ VP x R,

beB
:{aeA'/ Vb*xRZ:true}

there exists b € B such that the
following conditions hold:

1. We have V' = true

2. Wehave R = true

there exists b € B such that the
following conditions hold:

1. WehavebeV
2. Wehaveb € R(a)

= {a € A|thereexistsb € Vsuchthatb € R(a)}
={ac€A|R(a)NV = 0}

def

=R (V)
This finishes the proof. O
00SD Proposition 6.4.3.1.3. LetR: A —p B bearelation.
00SE 1. Functoriality. The assignmentV — R~(V) defines a functor
R\ (P(B),€) = (P(4),)

where



https://topological-modular-forms.github.io/the-clowder-project/tag/00SD
https://topological-modular-forms.github.io/the-clowder-project/tag/00SE

6.4. Functoriality of Powersets 328

- Action on Objects. Foreach V € P(B), we have
[R](V) ERY(V).
- Action on Morphisms. Foreach U,V € P(B):
- IfU c V,thenR™Y(U) c R"1(V).
00SF 2. Adjointness. We have an adjunction

(R*l 4 R!): P(B)il\ P(A),
Ry

witnessed by a bijections of sets
Homp ) (R_I(U),V) = Homp4) (U, Ri(V)),
naturalinU € P(A) andV € P(B), i.e. such that:

(x) The following conditions are equivalent:
- Wehave R"1(U) c V.
— WehaveU c Ry(V).

00SG 3. Preservation of Colimits. We have an equality of sets
R Ju| =Jr Wy,
i€l i€l

natural in {Ui};c € P(B)*!. In particular, we have equalities

R-YU)UR Y (V) =R Y (UUV),

RY0) =0,
natural inU,V € P(B).
00SH 4. Oplax Preservation of Limits. \We have an inclusion of sets
R7! ﬂ U | c ﬂR‘l(Ui),
iel iel

naturalin {U;};c; € P(B)*!. In particular, we have inclusions
R°YUNV)cRTYU)NRY(V),
R7'(A) c B,
natural inU,V € P(B).
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5. Symmetric Strict Monoidality With Respect to Unions. The directimage

function of Item 1 has a symmetric strict monoidal structure
(R R71E,R712): (P(4),U,0) = (P(B),U,0),
being equipped with equalities
Ry RN U)URTH(V) S RTH(UUY),
R;"®: 050,

natural inU,V € P(B).

6. Symmetric Oplax Monoidality With Respect to Intersections. The direct

image function of [tem 1 has a symmetric oplax monoidal structure
(R RIS, R712): (P(A),0,4) = (P(B),n,B)

being equipped with inclusions

RL;},@: RN UNV)cRTYU)NRY(V),
R;"®: R71(A) c B,

natural inU,V € P(B).

. Interaction With Strong Inverse Images |. \We have

RN (V)=A\R_1(B\V)

foreachV € P(B).

. Interaction With Strong Inverse Images Il. Let R: A —b B be a relation

from A to B.

(@) If Risatotal relation, then we have an inclusion of sets
R1(V) cR7 (V)

naturalinV € P(B).

(b) If Ristotal and functional, then the above inclusion is in factan
equality.

() Conversely,ifwehave R_; = R™!, then Ris total and functional.
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Proof. Item1, Functoriality: Clear.

Item 2, Adjointness: This follows from 22 of 22,

Item 3, Preservation of Colimits: This follows from Item 2 and ?? of 2.

Item 4, Oplax Preservation of Limits: Omitted.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from
[tem 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows
from Item 4.

Item 7, Interaction With Strong Inverse Images I: This follows from Item 7 of
Proposition 6.4.2.1.3.

Item 8, Interaction With Strong Inverse Images I1: This was proved in Item 8 of
Proposition 6.4.2.1.3. m|

Proposition 6.4.3.1.4. LetR: A - Bbearelation.

1. Functionality . The assignment R — R~! defines a function
(=)' Rel(A, B) — Sets(P(A), P(B)).
2. Functionality Il. The assignment R — R~! defines a function
(=)7": Rel(4, B) — Pos((P(A), ©), (P(B), ©)).
3. Interaction With Identities. Foreach A € Obj(Sets), we have®
(xa) ™' =idp(a).

4. Interaction With Composition. For each pair of composable relations

the inverse image of V by R.
25That is, the postcomposition

(z4)"1: Rel(pt, A) — Rel(pt, A)

is equal to idpe|(pt,A)-
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R: A BandS: B -b C, we have?®

P(C) = P(B)

(SoR)'=Rlos™!
(SoR)™1

P(A).

R—l

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Item 5 of Proposition 8.1.6.1.2.

Item 4, Interaction With Composition: This follows from Item 2 of Proposi-

tion 8.1.6.1.2. m|
00SW 6.4.4 DirectImages With Compact Support

Let Aand BbesetsandletR: A - B bearelation.

00SX Definition 6.4.4.1.1. The directimage with compact support function asso-
ciated to R is the function

Ri: P(A) — P(B)

defined by?7-28

R(U) d:ef{b €B

foreacha € A, if we have
b € R(a),thena e U

={beB|R(b) c U}

foreachU € P(A).

26That is, we have

-1
Rel(pt,C) X5 Rel(pt, B)

(SoeR)y '=R1os™! -1
(SoR)™L

Rel(pt, A).

27 Further Terminology: The set Ry (U) is called the direct image with compact support of U
by R.
28\We also have
Ri(U) = B\ Ru(A\ U);
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Remark 6.4.4.1.2. Identifying subsets of B with relations from pt to B via
Item 3 of Proposition 2.4.3.1.6, we see that the direct image with compact
support function associated to R is equivalently the function

Ri: PA) — P(B)

—— ~——
=Rel(A,pt) =Rel(B,pt)
defined by
B
def R :
RI(U) = RanR(U), ///:— Rang (U)
|
A _|_) pt’
U

being explicitly computed by
R*(U) £ Rang(U)
E/ Hom .y (R, U ),
acA

where we have used Proposition 6.2.3.1.1.

see Item 7 of Proposition 6.4.4.1.3.
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Proof. We have

Rang(V) = / Homyy ) (Rgz, Ua_l)
acA

/ Hom ) (Rz, U;) = true}
acA

foreacha € A, atleastone of the
following conditions hold:

={beB

1. We have R" = false

=4qbeB 2. The following conditions hold:

(@ We have Rz = true
(b) Wehave U} = true

foreacha € A, atleastone of the
following conditions hold:

1. Wehaveb ¢ R(A)
=qbeB 2. The following conditions hold:

(@) Wehaveb € R(a)
(b) Wehavea e U

foreacha € A, if we have
=<beB
b€ R(a),thenae U

={beB|R'(b) cU}

def

=R Y(U).
This finishes the proof. O
00SZ Proposition 6.4.4.1.3. LetR: A —b B be arelation.
00T0Q 1. Functoriality. The assignmentU +— R;(U) defines a functor
Ri: (P(A),c) — (P(B), )
where

- Action on Objects. Foreach U € P(A), we have

def

[Ri](U) = Ri(U).

- Action on Morphisms. Foreach U,V € P(A):


https://topological-modular-forms.github.io/the-clowder-project/tag/00SZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00T0

6.4. Functoriality of Powersets 334

— IfU ¢ V,thenRi(U) c Ry(V).

00T1 2. Adjointness. We have an adjunction
R71
-1 — =
(R 4 R;): P(B) L P(A),
\/
Ry

witnessed by a bijections of sets
Hompa) (R_l(U),V) = Hompa) (U, Ri(V)),

naturalinU € P(A) andV € P(B),i.e.suchthat:

(*) The following conditions are equivalent:

- WehaveR"1(U) c V.
- WehaveU c R|(V).

00T2 3. Lax Preservation of Colimits. We have an inclusion of sets
UmMNﬂﬂJﬂ,
iel iel

naturalin {U;};c; € P(A)*. In particular, we have inclusions

Ri(U)UR(V) c R(UUYV),
0 C Ri(0),

natural inU,V € P(A).

00T3 4. Preservation of Limits. We have an equality of sets

(U] = R,

iel iel

R

natural in {U;};¢; € P(A)*!. In particular, we have equalities

R(UNV)=R(U)NR(V),
Ri(A) = B,

natural inU,V € P(A).

00T4 5. Symmetric Lax Monoidality With Respect to Unions. The direct image
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with compact support function of ltem 1 has a symmetric lax monoidal
structure

(R;,R!®, Rﬁl): (P(A),U,0) — (P(B),U,0),
being equipped with inclusions
Rﬁu,\/: Ri(U)UR(V) c R(UUYV),
Rﬁlz 0 C Ri(0),
natural inU,V € P(A).

6. Symmetric Strict Monoidality With Respect to Intersections. The direct
image function of Item 1 has a symmetric strict monoidal structure

(Ry RE, RS, ) (P(A),0,4) = (P(B),0,B)
being equipped with equalities

REy v RUNV) S RU) NR(Y),
R : Ri(A) = B,

natural inU,V € P(A).

7. Relation to Direct Images. We have
Ry(U) = B\ R.(A\U)
foreachU € P(A).

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This follows from 2?2 of 22,

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: This follows from Item 2 and 22 of 22,

Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows from
[tem 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows
from Item 4.

Item7, Relation to Direct Images: This follows from Item 7 of Proposition 6.4.1.1.3.
Alternatively, we may prove it directly as follows, with the proof proceeding
in the same way as in the case of functions (Item 9 of Proposition 2.4.6.1.6).
We claimthat R{(U) = B\ R.(A\ U):


https://topological-modular-forms.github.io/the-clowder-project/tag/00T5
https://topological-modular-forms.github.io/the-clowder-project/tag/00T6

6.4. Functoriality of Powersets 336

- The First Implication. We claim that
Ri(U) c B\ R.(A\U).

Letb € Ri(U). We need to show thatb ¢ R.(A\ U),i.e.thatthereis
noa € A\ Usuchthatb € R(a).

Thisis indeed the case, as otherwise we would have a € R~'(b) and
a ¢ U, contradicting R~1(b) € U (which holdssince b € R, (U)).

Thusb € B\ R.(A\ V).
- The Second Implication. We claim that
B\ R.(A\U) c Ri(U).

Letb € B\ R.(A\U). We need to show thatb € R|(U), i.e. that
R~ Y(b) c U.

Sinceb ¢ R.(A\ U), thereexistsnoa € A\ Usuchthatb € R(a),
and hence R"1(b) c U.

Thusb € R((U).
This finishes the proof. O
00T7 Proposition 6.4.4.1.4. LetR: A —p B bearelation.

00T8 1. Functionality |. The assignment R — R defines a function

(—)1: Sets(A, B) — Sets(P(A), P(B)).
00T9 2. Functionality Il. The assignment R — R, defines a function
(=) Sets(A, B) — Hompes((P(A), ©), (P(B), ©)).
Q0TA 3. Interaction With Identities. Foreach A € Obj(Sets), we have
(ida)y = idp(a)-

00TB 4. Interaction With Composition. For each pair of composable relations
R: A-p BandS: B - C, we have

P(4) = P(B)

(SQR)! =S 0oRy, \ |S!
(SoR),

P(C).
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Proof. Item1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Ildentities: Indeed, we have
def —
(xa)(U) = {a € Al x3'(a) c U}
def

={a€ A|{a} cU}
=U
foreachU € P(A). Thus (ya), = idp(a).
Item 4, Interaction With Composition: Indeed, we have
(SoR)(U)={ceC|[SoR]'(c) cU}
o {c c C’S‘l(R_l(c)) c U}
={ceC|R (o) c $i(U)}

def

= Ri(S1(V))

def

= [Ri o §](V)

def

foreach U € P(C), where we used Item 2 of Proposition 6.4.4.1.3, which
implies that the conditions

- We have S71(R7Y(¢)) c U.
- We have R™!(¢) c Si(U).

are equivalent. Thus (S ¢ R); = Sy o Ry. O

00TC 6.4.5 Functoriality of Powersets
00TD Proposition 6.4.5.1.1. The assignment X — P(X) defines functors®
P.: Rel — Sets,
P_1: Rel°P — Sets,
P~L. Rel°P — Sets,
Pi: Rel — Sets
where

- Action on Objects. For each A € Obj(Rel), we have

def

P.(A) = P(A),
P_1(A) EP(A),
PH(A) EP(A),

Pi(A) EP(A).

29The functor P, : Rel — Sets admits a left adjoint; see Item 3 of Proposition 6.3.1.1.2.
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- Action on Morphisms. For each morphism R: A - B of Rel, the images
P.(R): P(A) — P(B),
P_1(R): P(B) — P(A),
P~(R): P(B) — P(A),
Pi(R): P(A) — P(B)

of Rby P,, P_1,P~1, and P, are defined by

def

P* (R) = R*;
P_1(R) £ R_y,
PHR)ERT,

Pi(R) R,

as in Definitions 6.4.1.1.1, 6.4.2.1.1, 6.4.3.1.1and 6.4.4.1.1.

Proof. This follows from Items 3 and 4 of Proposition 6.4.1.1.4, ltems 3 and 4
of Proposition 6.4.2.1.4, Items 3 and 4 of Proposition 6.4.3.1.4, and Items 3
and 4 of Proposition 6.4.4.1.4. O

6.4.6 Functoriality of Powersets: Relations on Powersets

QQTE LetAand BbesetsandletR: A - Bbearelation.

00TF Definition 6.4.6.1.1. The relation on powersets associated to R is the rela-
tion

P(R): P(A) -+ P(B)

defined by3°
P(R), £ Rel(ypr, V o Ro U)

foreachU € P(A) andeachV € P(B).

00TG Remark 6.4.6.1.2. Indetail, we have U ~p g V iff the following equivalent
conditions hold:

- Wehave yp,t CVoRoU.

39]lustration:



https://topological-modular-forms.github.io/the-clowder-project/tag/00TE
https://topological-modular-forms.github.io/the-clowder-project/tag/00TF
https://topological-modular-forms.github.io/the-clowder-project/tag/00TG

6.A. Other Chapters 339

- We have (V o Ro U)} = true, i.e. we have

acA beB
/ / VX x Rb x U? = true.

- There exists some a € Aand some b € B such that:

- We have U = true.
— We have RY = true.

— We have Vb* = true.
- There exists some a € Aand some b € B such that:

— Wehavea € U.
— Wehavea ~p b.
- Wehaveb e V.

00TH Proposition 6.4.6.1.3. The assignment R +— P(R) defines a functor
P: Rel — Rel.

Proof. Omitted. O
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7.1 Reflexive Relations

711 Foundations

Let A be a set.

Definition 7.1.1.1.1. Areflexive relation is equivalently:’
- An Eg-monoidin (N.(Rel(A, A)), y4).
- Apointed objectin (Rel(A, A), ya).

Remark 7.1.1.1.2. Indetail, a relation R on A is reflexive if we have an inclu-
sion
NR: YA CR

of relationsin Rel(A, A), i.e. if, foreacha € A,we havea ~ a.
Definition7.1.1.1.3. Let A beaset.

1. Thesetofreflexiverelationson Aisthe subset Rel™ (4, A) of Rel(4, A)
spanned by the reflexive relations.

2. Theposetofrelationson Aisisthe subposetRel™f (4, A) of Rel(4, A)
spanned by the reflexive relations.

Proposition7.1.1.1.4. Let Rand S be relations on A.

1. Interaction With Inverses. If R is reflexive, then sois R.

2. Interaction With Composition. If R and S are reflexive, thensois S ¢ R.
Proof. Item1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Clear. ]
7.1.2  The Reflexive Closure of a Relation

Let R be a relation on A.

Definition 7.1.2.1.1. The reflexive closure of ~ is the relation ~;§ﬂz satisfy-
ing the following universal property:?

(%) Given another reflexive relation ~g on Asuch that R C S, there exists
aninclusion ~;§ﬂ C ~s.

"Note that since Rel(A, A) is posetal, reflexivity is a property of a relation, rather than
extra structure.

2Fyrther Notation: Also written R'fl.

3Slogan: The reflexive closure of R is the smallest reflexive relation containing R.
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00TX Construction 7.1.2.1.2. Concretely, ~;§ﬂ is the free pointed objecton R in

(Rel(A, A), y4)*, being given by

Rreﬂ d:‘*fR UReI(A,A) Ay
=RUAy4
={(a,b) € Ax A|wehavea ~g bora = b}.
b) e AXA h b b

Proof. Clear. O
00TY Proposition7.1.2.1.3. Let R be arelationon A.

00TZ 1. Adjointness. We have an adjunction

(_)reﬂ
(C145): el r

witnessed by a bijection of sets

Relreﬂ (Rreﬂ, S) = ReI(Ry S)’

natural in R € Obj(Reref' (A, A)) and S € Obj(Rel(A, A)).

00U 2. The Reflexive Closure of a Reflexive Relation. If R is reflexive, then R™fl =
R.

00U 3. ldempotency. We have
(Rreﬂ)reﬂ — Rreﬂ'

00U2 4. Interaction With Inverses. We have

_)reﬂ

Rel(A, A) ~—— Rel(4, A)

o\ refl T
¥ _ fl
(K] =(r") oy

REI(A, A) W ReI(A, A)

(-)f

40r, equivalently, the free Eg-monoid on Rin (Ne (Rel(A, A)), y4)-
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5. Interaction With Composition. \We have
Rel(A, A) X Rel(A, A) = Rel(A, A)

(SoR)™ =gl o gref <—>reﬂx<_)mﬂ| o

Rel(A, A) x Rel(A, A) — Rel(A, A).

Proof. Item1, Adjointness: This is a rephrasing of the universal property of the
reflexive closure of a relation, stated in Definition 7.1.2.1.1.

Item 2, The Reflexive Closure of a Reflexive Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

[tem 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Proposi-
tion7.1.1.1.4. m|

7.2 Symmetric Relations

7.21 Foundations

Let A be a set.

Definition7.2.1.1.1. Arelation R on A is symmetricif we have R' = R.

Remark7.2.1.1.2. Indetail, arelation R is symmetric if it satisfies the follow-
ing condition:

(%) Foreacha,b € A,ifa ~g b,thenb ~ a.
Definition7.2.1.1.3. Let A be aset.

1. The set of symmetric relations on A is the subset Rel”™™ (A, A) of
Rel(A, A) spanned by the symmetric relations.

2. Theposetofrelationson Aisisthe subposetRel®™™ (A, A) of Rel(A, A)
spanned by the symmetric relations.

Proposition7.2.1.1.4. Let Rand S be relationson A.
1. Interaction With Inverses. If R is symmetric, thenso is RY.
2. Interaction With Composition. If R and S are symmetric, thensoisS ¢ R.

Proof. Item1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Clear. m]
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7.2.2 The Symmetric Closure of a Relation

Let R be arelation on A.

Definition 7.2.2.1.1. The symmetric closure of ~; is the relation ~;ymm5

satisfying the following universal property:®

(%) Given another symmetric relation ~g on A such that R C S, there

. . . symm
exists an inclusion NRy C ~s.

symm

Construction 7.2.2.1.2. Concretely, ~}

defined by

RY™ Z R U R'
={(a,b) € AX A|wehavea ~g borb ~p a}.

is the symmetric relation on A

Proof. Clear. O

Proposition7.2.2.1.3. Let R be arelation on A.

1. Adjointness. We have an adjunction

(_)symm
((5)¥™ 4735): Rel(A,A)” = RelY™(4,A),
S~

witnessed by a bijection of sets
Rel*Y™™(R¥™™ S) = Rel(R,S),
naturalin R € Obj(Rel®™™ (A, A)) and S € Obj(Rel(A, A)).

2. The Symmetric Closure of a Symmetric Relation. If R is symmetric, then
RY™M =R,

3. ldempotency. We have

(Rsymm)symm — Rsymm'

4. Interaction With Inverses. We have

_\symm
Rel(A, A) ~—2" Rel(A, A)

s symm symm T
(R ) = (R ) N ()
Rel(A, A) Rel(A, A).

5Further Notation: Also written RSY™M
6Slogan: The symmetric closure of R is the smallest symmetric relation containing R.


https://topological-modular-forms.github.io/the-clowder-project/tag/00UE
https://topological-modular-forms.github.io/the-clowder-project/tag/00UF
https://topological-modular-forms.github.io/the-clowder-project/tag/00UG
https://topological-modular-forms.github.io/the-clowder-project/tag/00UH
https://topological-modular-forms.github.io/the-clowder-project/tag/00UJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00UK
https://topological-modular-forms.github.io/the-clowder-project/tag/00UL
https://topological-modular-forms.github.io/the-clowder-project/tag/00UM

QOUN

0oUP

0oUQ

00UR

0oUS

oouT

oouU

7.3. Transitive Relations 345

5. Interaction With Composition. \We have

Rel(A, A) X Rel(A, A) = Rel(A, A)

(_)symm

(S <& R)Symm = SsymmORSymm, (_)symmx(_)symm|

Rel(A, A) x Rel(A, A) — Rel(A, A).

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the
symmetric closure of a relation, stated in Definition 7.2.2.1.1.

Item 2, The Symmetric Closure of a Symmetric Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Proposi-
tion7.2.1.1.4. O

7.3 Transitive Relations

7.3.1 Foundations

Let A be a set.

Definition 7.3.1.1.1. A transitive relation is equivalently:’
- Anon-unital E;-monoid in (N4 (Rel(A4, A)), ¢).
- A non-unital monoid in (Rel (A, A), o).

Remark 7.3.1.1.2. Indetail, a relation R on A is transitive if we have an inclu-
sion
ur: RoR CR

of relationsin Rel(A, A), i.e. if, foreach a, ¢ € A, the following condition is
satisfied:

(%) Ifthereexistssomeb € Asuchthata ~g bandb ~ c¢,thena ~p c.
Definition7.3.1.1.3. Let Abeaset.

1. The set of transitive relations from A to B is the subset Re|"™" (A) of
Rel(A, A) spanned by the transitive relations.

7Note that since Rel(A, A) is posetal, transitivity is a property of a relation, rather than
extra structure.
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2. The poset of relations from A to B is is the subposet Rel™™"$( A) of
Rel(A, A) spanned by the transitive relations.

Proposition7.3.1.1.4. Let Rand S be relations on A.
1. Interaction With Inverses. If R is transitive, thensois R.

2. Interaction With Composition. If R and S are transitive, then S ¢ R may
fail to be transitive.

Proof. Item1, Interaction With Inverses: Clear.

Item 2, Interaction With Composition: See [MSE 2096272].8 O

7.3.2 The Transitive Closure of a Relation

Let R be a relation on A.

Definition 7.3.2.1.1. The transitive closure of ~y is the relation ~§{a”59 satis-
fying the following universal property:'®

(%) Givenanothertransitive relation ~g on AsuchthatR C S, there exists
aninclusion ~32" C ~g.

8 Intuition: Transitivity for R and S fails to imply that of S o R because the composition
operation for relations intertwines R and S in an incompatible way:

1. Ifa ~SoR candc ~Sor € then:

(a) Thereissomeb € Asuch that:
i. a~pb;
ii. b~gc;
(b) Thereissomed € Asuch that:
i. c~pd;
i. d~ge.
9 Further Notation: Also written R¥3nS,
9S/ogan: The transitive closure of R is the smallest transitive relation containing R.
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00V1 Construction7.3.2.1.2. Concretely, ~;{ans is the free non-unital monoid on R
in (Rel(A, A), )", being given by

(o]
Rtrans def U Ro"
n=1
(oo}
<
n=1
| (0 b) € Ax B there exists some (x1, ..., x,) € R™*"
= a, .
suchthata ~g x1 ~g -++ ~g X, ~r b
Proof. Clear. O

00V2 Proposition7.3.2.1.3. Let R bearelationon A.
00V3 1. Adjointness. We have an adjunction

(_)trans

((_)trans 3 I-.Q_Jl—\) Rel(A, A)/J—_\ Re|trans(A] A),
—
=

witnessed by a bijection of sets
Reltrans (Rtransy S) ~ ReI(R, S),
natural in R € Obj(Rel™"*(A, A)) and S € Obj(Rel(A, B)).

ooV4 2. The Transitive Closure of a Transitive Relation. If R is transitive, then
Rtl'al’lS — R

00V5 3. ldempotency. We have

(Rtrans)trans _ Rtrans

00V6 4. Interaction With Inverses. We have

( _ ) trans

Rel(A, A) Rel(A, A)

trans T
T _ t
(R ) — (R rans) , (_)T

Rel(A, A) ——> Rel(4, 4).

_ )trans

(=)'

0r, equivalently, the free non-unital E1-monoid on R in (Ne (Rel (A4, A)),©).
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oov7 5. Interaction With Composition. \We have

Rel(A, A) X Rel(A, A) = Rel(4, A)

( 7)trans

poss.
(S <>R)trans + StransQRtranS] ()transx()tran5| X

Rel(A, A) x Rel(A, A) — Rel(A, A).

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the
transitive closure of a relation, stated in Definition 7.3.2.1.1.

Item 2, The Transitive Closure of a Transitive Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

Item 4, Interaction With Inverses: We have

(€)™ ()"

n=1

where we have used, respectively:
1. Construction 7.3.2.1.2.
2. Item 4 of Proposition 6.3.12.1.3.
3. Item1of Proposition 6.3.6.1.2.
4. Construction7.3.2.1.2.

Item 5, Interaction With Composition: This follows from Item 2 of Proposi-
tion7.3.1.1.4. ]

oovs 7.4 Equivalence Relations

00vV9 7.41 Foundations

Let A be aset.
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Definition 7.4.1.1.1. Arelation R is an equivalence relation if it is reflexive,
symmetric, and transitive.'?

Example 7.4.1.1.2. The kernel ofa functionf: A — Bisthe equivalence
relation ~er(r) on A obtained by declaring a ~er(r) bifff(a) = f(b).”

Definition7.4.1.1.3. Let A and B be sets.

1. The setof equivalence relations from A to B is the subset Rel*? (A, B)
of Rel(A, B) spanned by the equivalence relations.

2. The poset of relations from A to B is is the subposet Rel®¥(A, B) of
Rel(A, B) spanned by the equivalence relations.
7.4.2 The Equivalence Closure of a Relation

Let R be a relation on A.

Definition 7.4.2.1.1. The equivalence closure'* of ~ is the relation ~;1'°
satisfying the following universal property:'®

(x) Given another equivalence relation ~g on AsuchthatR C S, there
exists an inclusion ~;q C ~g.

2 Further Terminology: Ifinstead R is just symmetric and transitive, then itis called a partial
equivalence relation.

BThe kernel Ker(f) : A 4> Aoff is the underlying functor of the monad induced by the
adjunction Gr(f) 4 f~1: A2 BinRelof Item 2 of Proposition 6.3.1.1.2.

4 Further Terminology: Also called the equivalence relation associated to ~ .

"5 Further Notation: Also written R®9.

6Slogan: The equivalence closure of R is the smallest equivalence relation containing R.
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00VH Construction7.4.2.1.2. Concretely, ~},' is the equivalence relation on A de-
fined by

Red def ( (Rreﬂ)symm)trans

— ((Rsymm)tranS)reﬂ
there exists (x1,...,x,) € R*" satisfying at
least one of the following conditions:

1. The following conditions are satisfied:

=1{(ab) e AXB (@) Wehavea ~g xj0rx; ~g a;
(b) We have Xi ~R Xi+1 OF Xj41 ~R Xi
foreachl <i<n-1;

(0 Wehaveb ~g x,0rx, ~g b;

2. Wehavea =b.

Proof. From the universal properties of the reflexive, symmetric, and transi-
tive closures of a relation (Definitions 7.1.2.1.1, 7.2.2.1.1 and 7.3.2.1.1), we see
thatit suffices to prove that:

00VJ 1. The symmetric closure of a reflexive relation is still reflexive.

00VK 2. Thetransitive closure of a symmetric relation is still symmetric.
which are both clear. O

00VL Proposition7.4.2.1.3. Let R be arelationon A.

00VM 1. Adjointness. We have an adjunction

()
()94 7%): Rel(4, 3)3 Rel*9(A, B),
—

witnessed by a bijection of sets
Rel®9(R®%,S) = Rel(R,S),
naturalin R € Obj(Rel®¥(A, B)) and S € Obj(Rel(A, B)).

Q0OVN 2. The Equivalence Closure of an Equivalence Relation. If R is an equivalence
relation, then R®% = R.
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3. ldempotency. We have

(Req)eq — Rec{.

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the
equivalence closure of a relation, stated in Definition 7.4.2.1.1.

Item 2, The Equivalence Closure of an Equivalence Relation: Clear.

Item 3, Idempotency: This follows from Item 2. O

7.5 Quotients by Equivalence Relations

7.5.1  Equivalence Classes

Let Abeaset, let R bearelationon A, and leta € A.

Definition 7.5.1.1.1. The equivalence class associated to a is the set [a]
defined by

def

l[a] = {x € X|x ~g a}

={xeX]|a~p x}. (since R is symmetric)

7.5.2 Quotients of Sets by Equivalence Relations

Let A be asetand let R be arelation on A.

Definition7.5.2.1.1. The quotientof X by R is the set X/~ defined by

def

X/~r={la] € P(X)]|a € X}.
Remark 7.5.2.1.2. The reason we define quotient sets for equivalence rela-
tions only is that each of the properties of being an equivalence relation—

reflexivity, symmetry, and transitivity—ensures that the equivalences classes
[a] of X under R are well-behaved:

- Reflexivity. If R is reflexive, then, foreach a € X, we havea € [a].

- Symmetry. The equivalence class [a] of an element a of X is defined
by

def

[a] ={x € X|x ~g a},
but we could equally well define

s def

[a]” = {x € X[a ~g x}
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instead. This is not a problem when R is symmetric, as we then have

[a] = [a]"."

- Transitivity. If R is transitive, then [a] and [b] are disjointiffa + b,
and equal otherwise.

Q0VW Proposition7.5.2.1.3. Letf: X — Y beafunctionand let R be arelationon
X.

00VX 1. Asa Coequaliser. We have an isomorphism of sets

pry
-

X/~3! = CoEq|R = X x X pry X |,

where ~3'is the equivalence relation generated by ~g.
QoVvY 2. Asa Pushout. \We have an isomorphism of sets'®
X[~y — X

r

X/N?zq =X HEq(prl,prg) X,
X < Eq(pry, pra).

where ~Zq is the equivalence relation generated by ~y.

00VZ 3. The First Isomorphism Theorem for Sets. \We have an isomorphism of
sets'-2°
X /~Ker(f) = Im(f).

7When categorifying equivalence relations, one finds that [a] and [a]’ correspond to
presheaves and copresheaves; see ?2.
8 Dually, we also have an isomorphism of sets

Eq(prq,pro) — X

|

Eq(pry,pro) = X ><X/~;q X,

X —— X/,

9 Further Terminology: The set X /~Ker(f) is often called the coimage of f, and denoted by

Coim(f).
2%In a sense this is a result relating the monad in Rel induced by f with the comonad in
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00Wo 4. Descending Functions to Quotient Sets, I. Let R be an equivalence relation
on X. The following conditions are equivalent:

(@) There existsamap
f:X/~r—>Y
making the diagram

X_f>y

A

3 .
q .

X/~r

commute.
(b) We have R c Ker(f).
(c) Foreachx,y € X,ifx ~g y,thenf(x) =f(y).

Q0WT 5. Descending Functions to Quotient Sets, Il. Let R be an equivalence relation
on X. Ifthe conditions of Item 4 hold, then f is the unique map making

the diagram

X _r, Y
d
a7

7
7
7

X/~r
commute.

Q0OW2 6. Descending Functions to Quotient Sets, Ill. Let R be an equivalence rela-
tion on X. We have a bijection

Homgets (X /~g,Y) = HomgetS(X, Y),

Relinduced by f, as the kernel and image

Ker(f): X X,
Im(f) cY

of f are the underlying functors of (respectively) the induced monad and comonad of the
adjunction
Gr(f)

(Gr(f) 4 f’l): A B

/j:\
\_l,_/
f_l
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natural in X,Y € Obj(Sets), given by the assignment f fof

Items 4 and 5, where Homlszets (X,Y) isthe set defined by

foreachx,y € X,

def

= 4f € Homsgers (X, Y) |ifx ~g y, then
f(x)=1(y)

Homgets (X,Y)

7. Descending Functions to Quotient Sets, IV. Let R be an equivalence rela-
tion on X. If the conditions of Item 4 hold, then the following condi-
tions are equivalent:

(@) The mapf isaninjection.
(b) We have R = Ker(f).
(c) Foreachx,y € X,wehavex ~g yifff(x) =f(y).

8. Descending Functions to Quotient Sets, V. Let R be an equivalence relation
on X. Ifthe conditions of Item 4 hold, then the following conditions
are equivalent:

(@) Themapf: X — Y issurjective.
(b) The mapf: X/~r — Yissurjective.

9. Descending Functions to Quotient Sets, VI. Let R be a relation on X and
let ~;q be the equivalence relation associated to R. The following
conditions are equivalent:

(@) The map f satisfies the equivalent conditions of Item 4:

- There exists a map
7. eq
f: X/~ —Y
making the diagram

q 3

~1

X/~

commute.
- Foreachx,y € X, ifx ~3 y,thenf(x) =f(y).
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(b) Foreachx,y € X,ifx ~g y,thenf(x) =f(y).

Proof. Item1, Asa Coequaliser: Omitted.

Item 2, As a Pushout: Omitted.

Item 3, The First Isomorphism Theorem for Sets: Clear.

Item 4, Descending Functions to Quotient Sets, I: See [Proz240].

Item 5, Descending Functions to Quotient Sets, I1: See [Proz4aal.

Item 6, Descending Functions to Quotient Sets, I1: This follows from Items 5 and 6.
Item 7, Descending Functions to Quotient Sets, IV: See [Pro24n].

Item 8, Descending Functions to Quotient Sets, V: See [Proz4m].

Item 9, Descending Functions to Quotient Sets, VI: The implication Item 9a =
Item 9bis clear.

Conversely, suppose that, foreach x, y € X,ifx ~g y,thenf(x) = f(y).
Spelling out the definition of the equivalence closure of R, we see that the
condition x ~;q y unwinds to the following:

(x) Thereexist (x1,...,x,) € R*" satisfying at least one of the following
conditions:

1. The following conditions are satisfied:
(@) Wehavex ~g x10rx; ~g x;
(b) We have x; ~g xj41 0rxiy1 ~g x;foreachl <i<n-1;
() Wehavey ~p x,0rx, ~g y;

2. Wehavex = y.

Now, if x = y,thenf(x) = f(y) trivially; otherwise, we have

f(x) =f(x1),
f(x1) =f(x2),

f(xn-1) = f(xn),
f(xn) =1(p),

andf(x) = f(y), as we wanted to show. O

Appendices

of Item 2 of Proposition 6.3.1.1.2.
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Chapter 8

Categories

00W8 This chapter contains some elementary material about categories, functors,
and natural transformations. Notably, we discuss and explore:

1.

2.

6.

7.

Categories (Section 8.1).

The quadruple adjunction 7p 4 (—)gisc 4 Obj 4 (—)ingisc PEtWeEEN
the category of categories and the category of sets (Section 8.2).

Groupoids, categories in which all morphisms admit inverses (Sec-
tion 8.3).

Functors (Section 8.4).

The conditions one may impose on functors in decreasing order of
importance:

(a) Section 8.5introduces the foundationally important conditions
one may impose on functors, such as faithfulness, conservativity,
essential surjectivity, etc.

(b) Section 8.6 introduces more conditions one may impose on func-
tors that are still important but less omni-present than those of
Section 8.5, such as being dominant, being a monomorphism,
being pseudomonic, etc.

() Section 8.7 introduces some rather rare or uncommon condi-
tions one may impose on functors that are nevertheless still
useful to explicit record in this chapter.

Natural transformations (Section 8.8).

The various categorical and 2-categorical structures formed by cate-
gories, functors, and natural transformations (Section 8.9).
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oowo 8.1 Categories

0oWA 8.1.1 Foundations
00WB Definition 8.1.1.1.1. A category (C, o, 1€) consists of:

- Objects. A class Obj(C) of objects.


https://topological-modular-forms.github.io/the-clowder-project/tag/00W9
https://topological-modular-forms.github.io/the-clowder-project/tag/00WA
https://topological-modular-forms.github.io/the-clowder-project/tag/00WB

8.1. Categories 361

- Morphisms. For each A, B € Obj(C), a class Hom¢ (A, B), called the
class of morphisms of C from Ato B.

- Identities. For each A € Obj(C), a map of sets
1%: pt — Hom¢ (A, A),
called the unitmap of C at A, determining a morphism
ida: A—> A

of C, called the identity morphism of A.

- Composition. Foreach A, B, C € Obj(C), amap of sets

og,B,C: Hom¢ (B, C) X Hom¢ (A, B) — Home (A, C),
called the composition map of C at (A, B, C).
such that the following conditions are satisfied:
1. Associativity. The diagram

Hom¢ (C, D) x (Hom¢ (B, C) X Hom¢ (A, B))

f C
'dHomC(C,D) XO4BC

g Sets .
Hom¢ (C,D),Home (B,C),Home (A,B) ;

(Hom¢(C, D) x Hom¢ (B, C)) x Hom¢ (A, B) Hom¢(C, D) x Hom¢ (A, C)

C c
°5,c.p X1dHome, (/\ /CD

Hom¢ (B, D) X Hom¢ (A, B) —— Homc(A, D)
CABD
commutes, i.e. for each composable triple (f, g, h) of morphisms of C,
we have

(feg)oh=fo(goh).
2. Left Unitality. The diagram

pt X Hom¢ (A, B)

.. ) Sets
N N Homg (4,B)
1§ Xidome (4,8) el

SN

Hom¢ (B, B) X Hom¢ (A, B)

= Hom¢ (A, B)
AB,B
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commutes, i.e. for each morphismf: A — Bof C, we have
idgof=f.
3. Right Unitality. The diagram

Hom¢ (A, B) X pt
.. Sets
N A pHomC(A,B)
idHome (4.8) X1 NN

SN

Homc (A, B) X Home (A, A)

= Hom¢ (A, B)

CAAB

commutes, i.e. for each morphismf: A — BofC, we have

foida=T.

0OWC Notation 8.1.1.1.2. Let C be a category.
QWD 1. We also write C (A, B) for Hom¢ (A, B).
QOWE 2. We write Mor(C) for the class of all morphisms of C.
00WF Definition 8.1.1.1.3. Let x be aregular cardinal. A category C is

1. Locally small if, for each A, B € Obj(C), the class Hom¢ (A, B) is a
QOWG set.
QOWH 2. Locally essentially small if, for each A, B € Obj(C), the class

Hom¢ (A, B)/{isomorphisms}
isaset.

0OWJ 3. Smallif Cislocally small and Obj(C) is a set.

4. «-Smallif C islocally small, Obj(C) is a set, and we have #0bj(C) <
QOWK X.
0oWL 8.1.2 Examples of Categories
00WM Example 8.1.2.1.1. The punctual category' is the category pt where

TFurther Terminology: Also called the singleton category.
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- Objects. We have
. def
Obj(pt) = {x}.

- Morphisms. The unique Hom-set of pt is defined by

Homp: (%, %) = {idy}.

- Identities. The unit map
1°": pt — Homp (%, %)
of pt at x is defined by

. pt def .
id% = idy.

- Composition. The composition map

ozty*y*: Hompt (5, %) X Homp (3, %) — Homp (*, %)

of pt at (%, %, %) is given by the bijection pt X pt = pt.

00WN Example 8.1.2.1.2. We have an isomorphism of categories?
Mon — Cats
.
Mon = pt x Cats, Obj

Sets

pt o Sets

via the delooping functor B: Mon — Cats of 22 of 2?, exhibiting monoids
as exactly those categories having a single object.

Proof. Omitted. O

00WP Example 8.1.2.1.3. The empty category is the category 0.5; where

2This can be enhanced to an isomorphism of 2-categories

Monpgise —> Catsp,
|

Monogisc = ptp; . X Catsp, 0Obj
etsadisc

Pt~ Setsodisc

between the discrete 2-category Monygisc on Mon and the 2-category of pointed categories


https://topological-modular-forms.github.io/the-clowder-project/tag/00WN
https://topological-modular-forms.github.io/the-clowder-project/tag/00WP

8.1. Categories 364

- Objects. We have

def

Ob] (ocat) =0.

- Morphisms. We have

def

Mor(Dcat) = 0.

- ldentities and Composition. Having no objects, Oc,¢ has no unit nor com-
position maps.

00WQ Example 8.1.2.1.4. The nth ordinal category is the category n where?

- Objects. We have

def

obj(n) = {[0],..., [n]}.
- Morphisms. For each [i], [j] € Obj(n), we have

{idpir} if [i] = [j1.
Homn ([i], [ £ 1 {[i] — [j1} if[j] < [il,
0 if [j] > [i].

- Identities. For each [i] € Obj(n), the unit map

17+ pt — Homn((l, [i])

with one object.
3In other words, n is the category associated to the poset

0]l =[] == [n=1] = [n].

The category n forn > 2 may also be defined in terms of O and joins (??): we have isomor-
phisms of categories

1=0%0,
2=1x%x0
= (0x0) %0,
3=22%0
=(1%x0)x0
= ((0x0)%x0) %0,
4=3%0
=(2x0)x0

=((1x0)x0)x0
= (((0x0)x0)x«0) %0,

andsoon.
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of nat [i] is defined by

i) = idy;).

- Composition. For each [i], [j], [k] € Obj(n), the composition map
o e Homn(Ljl, [K1) x Homn([il, [j1) — Homn([il, [£])
of nat ([i], [j], [k]) is defined by

id[ij o idpi) = id[i,
(Lj] — [k]) o ([i] = [jD = ([i] — [k]).
00WR Example 8.1.2.1.5. Here we list some of the other categories appearing
throughout this work.

00OWS 1. The category Sets, of pointed sets of Definition 3.1.3.1.1.
QOWT 2. The category Rel of sets and relations of Definition 5.2.1.1.1.
00OWU 3. The category Span(A, B) of spans from a set Atoaset B of 22.
QOWV 4. The category ISets(K) of K-indexed sets of 22.
QOWW 5. The category ISets of indexed sets of 22.
0OWX 6. The category FibSets(K) of K-fibred sets of 2.
0OWY 7. The category FibSets of fibred sets of 2.
00WZ 8. Categories of functors Fun(C, D) as in Definition 8.9.1.1.1.
00X0 9. The category of categories Cats of Definition 8.9.2.1.1.

00X1  10. The category of groupoids Grpd of Definition 8.9.4.1.1.

00X2 8.1.3 Posetal Categories

00X3 Definition 8.1.3.1.1. Let (X, <x) bea poset.

1. Theposetal categoryassociatedto (X, <x) isthe category X,os where
00X4

- Objects. We have

def

0bj (X pos) £ X.
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- Morphisms. For each a, b € Obj(Xpos), we have

Homy (a,b) =

pos

wf | Pt ifa=Xxb,
0 otherwise.

- Identities. For each a € Obj(Xpos), the unit map

15‘”5: pt —» Homyx__(a,a)

pos

of Xpos ata is given by the identity map.

- Composition. For each a, b, ¢ € Obj(Xpos), the composition map

Xpos

o :
a,b,c

Homy, . (b, ¢) X Homx,  (a,b) — Homx, (a,c)

of Xpos at (a, b, ¢) is defined as either the inclusion @ < ptor
the identity map of pt, depending on whether we have a <x b,
b <x c,anda <x c.

2. A category C is posetal * if C is equivalent to X, for some poset
(X, 2x).

Proposition 8.1.3.1.2. Let (X, <x) be a posetand let C be a category.

1. Functoriality. The assignment (X, <x) +— X,os defines a functor

(=) pos: Pos — Cats.

2. Fully Faithfulness. The functor (—) o Of Item 1is fully faithful.
3. Characterisations. The following conditions are equivalent:

(@) The category C is posetal.
(b) Foreach A, B € Obj(C) andeachf,g € Hom¢ (A, B), we have
f=g
Proof. Item 1, Functoriality: Omitted.

Item 2, Fully Faithfulness: Omitted.
Item 3, Characterisations: Clear. m|

4Further Terminology: Also called a thin category ora (0, 1)-category.
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8.1.4 Subcategories

Let C be a category.

Definition 8.1.4.1.1. A subcategory of C is a category A satisfying the fol-
lowing conditions:

1. Objects. We have Obj(A) < Obj(C).

2. Morphisms. Foreach A, B € Obj(A), we have

Hom # (A, B) € Hom¢ (A, B).

3. ldentities. Foreach A € Obj(A), we have
17 =15

4. Composition. Foreach A, B, C € Obj(A), we have

:OC

A
°© ABC"

AB,C

Definition 8.1.4.1.2. Asubcategory A of C is full if the canonical inclusion
functor A — Cisfull,ie.if foreach A, B € Obj(A), the inclusion

1ap: Homg (A, B) < Hom¢ (A, B)
is surjective (and thus bijective).

Definition 8.1.4.1.3. A subcategory A of a category C is strictly full if it
satisfies the following conditions:

1. Fullness. The subcategory A is full.

2. Closedness Under Isomorphisms. The class Obj(A) is closed under iso-
morphisms.”

Definition 8.1.4.1.4. A subcategory A of C is wide® if Obj(A) = Obj(C).

8.1.5 Skeletons of Categories

5Thatis, given A € Obj(A) and C € Obj(C), if C = A, then C € Obj(A).
6 Fyrther Terminology: Also called lluf.
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00XJ Definition 8.1.5.1.1. A’ skeleton of a category C is a full subcategory Sk(C)
with one object from each isomorphism class of objects of C.

00XK Definition 8.1.5.1.2. A category C is skeletal if C = Sk(C).2
00XL Proposition 8.1.5.1.3. Let C be a category.
00XM 1. Existence. Assuming the axiom of choice, Sk(C) always exists.

QOXN 2. Pseudofunctoriality. The assignment C +— Sk(C) defines a pseudo-
functor
Sk: Catsy — Catss.

0OXP 3. Uniqueness Up to Equivalence. Any two skeletons of C are equivalent.
00XQ 4. Inclusions of Skeletons Are Equivalences. The inclusion
ic: Sk(C) = C
of a skeleton of C into C is an equivalence of categories.

Proof. Item1, Existence: See [nLab23, Section “Existence of Skeletons of Cate-

gories”].

Item 2, Pseudofunctoriality: See [nLab23, Section “Skeletons as an Endo-Pseudofunctor
on Cat™.

Item 3, Uniqueness Up to Equivalence: Clear.

Item 4, Inclusions of Skeletons Are Equivalences: Clear. O

00XR 8.1.6 Precomposition and Postcomposition

Let C be a category and let A, B, C € Obj(C).
00XS Definition8.1.6.1.1. Letf: A — Bandg: B — C be morphismsof C.

Q0OXT 1. The precomposition function associated to f is the function
f*: Homg(B,C) — Hom¢ (A, C)

defined by

def

ff(@)=¢of
foreach ¢ € Hom¢ (B, C).

7Due to Item 3 of Proposition 8.1.5.1.3, we often refer to any such full subcategory Sk(C)
of C as the skeleton of C.
8Thatis, C is skeletal if isomorphic objects of C are equal.
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00XU 2. The postcomposition function associated to g is the function
g«: Hom¢g (A, B) — Home(A4,C)

defined by

def

8(¢)=god
foreach ¢ € Hom¢ (A, B).

00XV Proposition 8.1.6.1.2. Let A, B,C,D € Obj(C) andletf: A — Band
g: B — Cbemorphismsof C.

QOXW 1. Interaction Between Precomposition and Postcomposition. We have

Hom¢ (B, C) == Homc (B, D)
g.of =f"og, f*| |f*

Hom¢ (A, C) - Hom¢ (A, D).
QOXX 2. Interaction With Composition . We have

Home (X, A) SN Hom¢ (X, B)
(gof) =f"og" g
(8°f).
Home (X, C),
Home(C, X) —— Homc¢ (B, X)

(gof),=gofs f*
(gof)”

Home (A, X).

00XY 3. Interaction With Composition Il. We have

pt A, Hom¢ (A, B) pt 1el, Hom¢ (B, C)

[gof] =g 0[] *
[gof] & [gofl=f"olgl,  lef] !

Hom¢ (4, C) Hom¢ (A4, C).
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00XZ 4. Interaction With Composition Ill. We have

c
CABC

Hom¢ (B, C) X Hom¢ (A, B) ————— Hom¢ (4, C)
fro o ne = %pc o (" xid), id><f*| |f*

HomC(B, C) X HomC(X,B) — HOmc(X, C),
°X,BC

OC ~
Hom¢ (B, C) X Hom¢ (4, B) e, Hom¢ (4, C)
8+ 095 pc =G pp © (id X ge), g*Xid| |g*

Hom¢ (B, D) X Home (A, B) — Hom¢ (A, D).
®ABD

00Y0 5. Interaction With Identities. We have

(ida)™ = idhome (4,B)»

(idB). = idHome (A,B)-

Proof. Item1, Interaction Between Precomposition and Postcomposition: Clear.
Item 2, Interaction With Composition I: Clear.

Item 3, Interaction With Composition II: Clear.

Item 4, Interaction With Composition I11: Clear.

Item 5, Interaction With Identities: Clear. m]

ooyl 8.2 TheQuadruple Adjunction With Sets

00Y2 8.2.1 Statement

Let C be a category.

00Y3 Proposition 8.2.1.1.1. We have a quadruple adjunction
o
£
. - (_)disc ~
(mo A (_)disc 4 Obj (_)indisc): Sets \otj/cats’

L

(_)indisc
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witnessed by bijections of sets

HomSets(FO(C)rX) = HomCats(C’Xdisc)r
HomCats(Xdisc; C) = HomSets(Xr Ob](C)),
HomSets(Obj(C)rX) = HomCats(C;Xindisc)’
natural in C € Obj(Cats) and X € Obj(Sets), where

- The functor
mp: Cats — Sets,

the connected components functor, is the functor sending a category
toits set of connected components of Definition 8.2.2.2.1.

- The functor
(—)disc : Sets — Cats,

the discrete category functor, is the functor sending a set to its associ-
ated discrete category of Item 1.

- The functor
Obj: Cats — Sets,

the object functor, is the functor sending a category to its set of ob-
jects.

- The functor
(_)indisc: Sets — Cats,

the indiscrete category functor, is the functor sending a set to its
associated indiscrete category of Item 1.

Proof. Omitted. O

00Y4 8.2.2 Connected Components and Connected Categories
00Y5 8.2.2.1 Connected Components of Categories
Let C be a category.

00Y6 Definition 8.2.2.1.1. A connected component of C is a full subcategory I of
C satisfying the following conditions:?

1. Non-Emptiness. We have Obj(Z) # 0.

2. Connectedness. There exists a zigzag of arrows between any two objects
of I.

?In other words, a connected component of C is an element of the set Obj(C) /~ with ~
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8.2.2.2 Sets of Connected Components of Categories
Let C be a category.

Definition 8.2.2.2.1. The setof connected components of C is the set 7y (C)
whose elements are the connected components of C.

Proposition 8.2.2.2.2. Let C be a category.

1. Functoriality. The assignment C +— 7o(C) defines a functor

mp: Cats — Sets.

2. Adjointness. We have a quadruple adjunction

0
€L
(_)disc
. — ~
(7(() B (_)disc a Ob] B (_)indisc): Sets ~— oJ[-)]‘ /Cats.
L

(=Dindisc
3. Interaction With Groupoids. If C is a groupoid, then we have an isomor-
phism of categories
mo(C) = K(C),
where K(C) is the set of isomorphism classes of C of 22.

4. Preservation of Colimits. The functor r of ltem 1 preserves colimits. In
particular, we have bijections of sets

m0(C LI D) = 7o(C) L 70(D),
10(C e D) = 10(C) Lz, (&) T0(D),

F 7o (F)
m)(CoEq(C =3 Z))) = CoEq(no(C) O:; (D) ],
G m0(G)
natural in C, D, & € Obj(Cats).

5. Symmetric Strong Monoidality With Respect to Coproducts. The con-
nected components functor of Item 1 hasa symmetricstrong monoidal
structure

(700 L, L) - (Cats, 11, 0ca) — (Sets 11,0,
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being equipped with isomorphisms

T 10(C) L (D) 5 m(C 11 D),

mh 025 20(0car),

natural in C, D € Obj(Cats).

6. Symmetric Strong Monoidality With Respect to Products. The connected
components functor of Item 1 has a symmetric strong monoidal struc-
ture

(no, 7T5<,77.’8<|1): (Cats, X, pt) — (Sets, X, pt),
being equipped with isomorphisms
”(TIC,Z): 10(C) X mo(D) 5 m0(C x D),
Tt Pt = mo(pt),
naturalin C, D € Obj(Cats).

Proof. Item1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.

Item 3, Interaction With Groupoids: Clear.

Item 4, Preservation of Colimits: This follows from Item 2 and ?? of 22.

Item 5, Symmetric Strong Monoidality With Respect to Coproducts: Clear.

Item 6, Symmetric Strong Monoidality With Respect to Products: Clear. O

8.2.2.3 Connected Categories

Definition 8.2.2.3.1. A category C is connected if 75(C) = pt.""

8.2.3 Discrete Categories
Definition 8.2.3.1.1. Let X beaset.
1. The discrete category on X is the category Xg;sc where

- Objects. We have

. def
Obj (Xdisc) =X.
the equivalence relation generated by the relation ~’ obtained by declaring A ~” Biff there
exists a morphism of C from A to B.
O Further Terminology: A category is disconnected if it is not connected.
" Example: A groupoid is connected iff any two of its objects are isomorphic.
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- Morphisms. Foreach A, B € Obj(Xyisc), we have

« lidy ifA=B,
Homy, (A, B o
Xaee (4 B) {0 ifA # B.

- Identities. For each A € Obj(Xyisc), the unit map
154 pt — Homyx,,. (4, A)
of Xyisc at Ais defined by
. .. def .
|df§d'SC = idy.
- Composition. For each A, B,C € Obj(Xgisc), the composition
map
o4 : Homy,, (B, C) x Homy,, (A, B) — Homy,, (4,C)
of Xgisc at (A, B, C) is defined by
ids oids = id.
00YM 2. Acategory C is discrete if it is equivalent to Xy;sc for some set X.
00YN Proposition 8.2.3.1.2. Let X be aset.
00YP 1. Functoriality. The assignment X — Xy;sc defines a functor

(—)disc : Sets — Cats.

00YQ 2. Adjointness. We have a quadruple adjunction

70
£
. _— (_)disc ~
(7T0 a (_)disc . Ob] n (_)indisc): Sets ~ th-)]' /Cats.
£
(_)indisc
00YR 3. Symmetric Strong Monoidality With Respect to Coproducts. The functor
of Item 1 has a symmetric strong monoidal structure

(Oaise (e kL1 )= (Sets, 11,0) > (Cats 11, 0ca),

being equipped with isomorphisms

(_)(deyy: Xdisc 1 Ydisc i (X 1 Y)disc’
(-4

disc|1°
natural in X, Y € Obj(Sets).

Q)cat - Q)disc;
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00YS 4. Symmetric Strong Monoidality With Respect to Products. The functor of
Item 1 has a symmetric strong monoidal structure

(e (Voer (“Nfisrn ) (Sets, x,pt) — (Cats,x, pt),
being equipped with isomorphisms

(_)<>:I<isc|X,Y: Xdisc X Ydisc o (X x Y)disc’
(_)c>j<isc|l: pt - Ptdisc)
natural in X, Y € Obj(Sets).

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.

Item 3, Symmetric Strong Monoidality With Respect to Coproducts: Clear.

Item 4, Symmetric Strong Monoidality With Respect to Products: Clear. O
00YT 8.2.4 Indiscrete Categories

00YU Definition 8.2.4.1.1. Let X beaset.
oYV 1. The indiscrete category on X '? is the category Xi,disc Where

- Objects. We have

Obj (Xindisc) = X.
- Morphisms. For each A, B € Obj(Xjndisc), We have
Homy,,, (A, B) = {[A] — [BI}
= pt.
- Identities. Foreach A € Obj(Xindisc), the unit map

1§indisc: pt — HomX

indisc

(A 4)
of Xingisc at A is defined by
i 2 (4] > [A]).

- Composition. Foreach A, B, C € Obj(Xjndisc), the composition

2 Fyrther Terminology: Sometimes called the chaotic category on X.
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map

Kindisc .

ABC * (A,C)

o

(B,C) x Homy

indisc

(A, B) = Homy

indisc

Homy.

indisc

of Xgisc at (4, B, C) is defined by

def

([B] — [C]) o ([A] — [B]) = ([A] — [CD).
Q0YW 2. Acategory C isindiscrete if it is equivalent to Xj,gisc for some set X.

00YX Proposition 8.2.4.1.2. Let X beaset.

o0YY 1. Functoriality. The assignment X — Xj.qisc defines a functor

(=)indisc : Sets — Cats.

00YZ 2. Adjointness. We have a quadruple adjunction
o
£
(_)disc ~

. —
(7(() B (_)disc a Ob] B (_)indisc): Sets ~— oJ[-)]‘ /Cats.

NS

(_)indisc

0070 3. Symmetric Strong Monoidality With Respect to Products. The functor of
Item 1 has a symmetric strong monoidal structure

((—)indisc» (=) indiscr (_)i>r<1disc|l): (Sets, X, pt) — (Cats, %, pt),
being equipped with isomorphisms

(_)i>:1disc|X,Y: Xindisc X Yindisc : (X X Y)indisc*
(_)i>r<1disc|1: pt - Plindiscs
natural in X, Y € Obj(Sets).

Proof. Item1, Functoriality: Clear.
Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.
Item 3, Symmetric Strong Monoidality With Respect to Products: Clear. O
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8.3 Groupoids
8.3.1 Foundations
Let C be a category.

Definition 8.3.1.1.1. Amorphismf: A — Bof C isanisomorphism if there
existsa morphismf~!: B — Aof C such that

fof™!=idp,
flof=idy

Notation 8.3.1.1.2. We write Isoc (A, B) for the set of all isomorphisms in C
from A to B.

Definition 8.3.1.1.3. A groupoid is a category in which every morphism is an
isomorphism.

8.3.2 The Groupoid Completion of a Category

Let C be a category.

Definition 8.3.2.1.1. The groupoid completion of C' is the pair (Ko (C), t¢)
consisting of

- A groupoid Ko(C);
- Afunctoric: C — Ko(C);

satisfying the following universal property:'

|
(up) Givenanothersuchpair (G, i), thereexistsaunique functor Ky (C) 2,
G making the diagram

Ko(C)

I

I
/ 13!

I

¢
 —

i

C

commute.

3 Further Terminology: Also called the Grothendieck groupoid of C or the Grothendieck
groupoid completion of C.
14See Item 5 of Proposition 8.3.2.1.3 for an explicit construction.
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Construction 8.3.2.1.2. Concretely, the groupoid completion of C is the

Gabriel-Zisman localisation Mor(C) ~*C of C at the set Mor(C) of all mor-
phisms of C; see 22.
(To be expanded upon lateron.)

Proof. Omitted. ]
Proposition 8.3.2.1.3. Let C be a category.

1. Functoriality. The assignment C +— Kg(C) defines a functor

Ko: Cats — Grpd.

2. 2-Functoriality. The assignment C +— Kq(C) defines a 2-functor

Ko: Catsp — Grpd,.

3. Adjointness. We have an adjunction

Ko

(Kg4t): Cats +  Grpd,

witnessed by a bijection of sets

HomGrpd(Ko(C),Q) = HomCats(CJ g)!

natural in C € Obj(Cats) and G € Obj(Grpd), forming, together
with the functor Core of Item 1 of Proposition 8.3.3.1.4, a triple adjunc-
tion
Ko
SN
(Kg 4 ¢ 4 Core): Catse—:— Grpd,
Nt
Core

witnessed by bijections of sets

HomGrpd(Ko(C),Q) = HomCats(CJ g)!
Homcats(g, Z)) = HomGrpd(gr COI’G(D)),

natural in C, D € Obj(Cats) and G € Obj(Grpd).
4. 2-Adjointness. \We have a 2-adjunction
Ko

(Kg 4¢): Cats 1 Grpd,

L
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witnessed by an isomorphism of categories

Fun(Ko(C),G) = Fun(C, G),

natural in C € Obj(Cats) and G € Obj(Grpd), forming, together
with the 2-functor Core of Item 2 of Proposition 8.3.3.1.4, a triple 2-
adjunction

Ko
TN
(Kg 4t 4 Core): Cats—:— Grpd,

N2 S
Core
witnessed by isomorphisms of categories
Fun(Ko(C),G) = Fun(C, G),
Fun(G, D) = Fun(g, Core(D)),
natural in C, D € Obj(Cats) and G € Obj(Grpd).
00QZE 5. Interaction With Classifying Spaces. \We have anisomorphism of groupoids
Ko(C) = <1 (INe(C))),

naturalin C € Obj(Cats); i.e. the diagram

Cats =2, Grp

h
| g
*I}I'

sSets - Top

commutes up to natural isomorphism.

00ZF 6. Symmetric Strong Monoidality With Respect to Coproducts. The groupoid
completion functor of Item 1 has a symmetric strong monoidal struc-
ture

(K(), K(I]_[r K(])_Ill) : (Catsr I_I’ Ocat) - (Grpd’ UJ (Dcat)
being equipped with isomorphisms

KHC,@ L Ko(C) 1] Ko(D) = Ko(C 1] D),

K(])_lll: (Z)cat — KO((Z)cat);

naturalin C, D € Obj(Cats).
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007G 7. Symmetric Strong Monoidality With Respect to Products. The groupoid
completion functor of Item 1 has a symmetric strong monoidal struc-
ture

(KO, Kg, Kal): (Cats, %, pt) — (Grpd, X, pt)
being equipped with isomorphisms
Kicn: Ko(C) X Ko(D) = Ko(C x D),
Kgjp: Pt = Ko(pt),
natural in C, D € Obj(Cats).

Proof. Item1, Functoriality: Omitted.
Item 2, 2-Functoriality: Omitted.
Item 3, Adjointness: Omitted.
Item 4, 2-Adjointness: Omitted.
Item 5, Interaction With Classifying Spaces: See Corollary18.33of https://web.
ma.utexas.edu/users/dafr/M392C-2012/Notes/lecturel8.pdf.
Item 6, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.
Item 7, Symmetric Strong Monoidality With Respect to Products: Omitted. O
00ZH 8.3.3 The Core of a Category
Let C be a category.
00ZJ Definition 8.3.3.1.1. The core of C is the pair (Core(C), i¢) consisting of
- A groupoid Core(C);
- Afunctorc: Core(C) — C;
satisfying the following universal property:

3!
(up) Given another such pair (G, i), there exists a unique functor G —
Core(C) making the diagram

Core(C)

commute.
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Notation 8.3.3.1.2. We also write C= for Core(C).

Construction 8.3.3.1.3. The core of C is the wide subcategory of C spanned
by the isomorphisms of C, i.e. the category Core(C) where™

1. Objects. We have

def

Obj(Core(C)) = Obj(C).

2. Morphisms. The morphisms of Core(C) are the isomorphisms of C.

Proof. This follows from the fact that functors preserve isomorphisms (Item1
of Proposition 8.4.1.1.6). O

Proposition 8.3.3.1.4. Let C be a category.
1. Functoriality. The assignment C +— Core(C) defines a functor

Core: Cats — Grpd.

2. 2-Functoriality. The assignment C +— Core(C) defines a 2-functor

Core: Catsp — Grpd,.

3. Adjointness. We have an adjunction

(¢ 4 Core): Grpdq\ Cats,
~—

Core
witnessed by a bijection of sets
Homcais(G, D) = HomGrpd (G, Core(D)),
natural in G € Obj(Grpd) and D € 0Obj(Cats), forming, together
with the functor Kg of ltem 1 of Proposition 8.3.2.1.3, a triple adjunction

Ko
TN
(Kg 4 ¢ 4 Core): Catse—:— Grpd,
=t 7

Core

witnessed by bijections of sets

Homgrpd (Ko(C), G) = Homcais(C, G),
Homcais(G, D) = HomGrpd(g’ Core(D)),

natural in C, D € Obj(Cats) and G € Obj(Grpd).

'5Slogan: The groupoid Core(C) is the maximal subgroupoid of C.
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00ZR 4. 2-Adjointness. We have an adjunction

00ZS 5.

00ZT 6.

(¢ 4 Core): Grpdcz\ Cats,
~—

Core

witnessed by an isomorphism of categories
Fun(@, D) = Fun(gG, Core(D)),

naturalin G € Obj(Grpd) and D € Obj(Cats), forming, together
with the 2-functor Kq of Item 2 of Proposition 8.3.2.1.3, a triple 2-adjunction

Ko
LN
(Kg 4t 4 Core): Catse—:— Grpd,

N2 S

Core

witnessed by isomorphisms of categories

Fun(Ko(C),G) = Fun(C, G),
Fun(G, D) = Fun(G, Core(D)),

natural in C, D € Obj(Cats) and G € Obj(Grpd).

Symmetric Strong Monoidality With Respect to Products. The core functor
of ltem 1 has a symmetric strong monoidal structure

(Core, Core™, Corey) : (Cats, %, pt) — (Grpd, X, pt)
being equipped with isomorphisms
Coreg 5, : Core(C) x Core(D) = Core(C x D),
Core]': pt =5 Core(pt),
naturalin C, D € Obj(Cats).

Symmetric Strong Monoidality With Respect to Coproducts. The core
functor of Item 1 has a symmetric strong monoidal structure

(Core, Core]—I, Corelu): (Cats, [, 0cat) — (Grpd, [1, Ocat)
being equipped with isomorphisms
Coregﬂz Core(C) [] Core(D) N Core(C 11 D),

Corey: Dcat =N Core(0cat),

naturalin C, D € Obj(Cats).
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Proof. Item1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item 5, Symmetric Strong Monoidality With Respect to Products: Omitted.

Item 6, Symmetric Strong Monoidality With Respect to Coproducts: Omitted. O

o0zU 8.4 Functors

007V 8.4.1 Foundations
Let C and D be categories.
00ZW Definition 8.4.1.1.1. Afunctor F: C — D from C to D' consists of:
1. Action on Objects. A map of sets
F: Obj(C) — Obj(D),
called the action on objects of F.
2. Action on Morphisms. Foreach A, B € Obj(C),amap
Fap: Homg (A, B) — Homgp (F(A), F(B)),
called the action on morphisms of F at (A, B)".
satisfying the following conditions:

1. Preservation of ldentities. For each A € Obj(C), the diagram

pt

D
c 1F(A)
1A

Hom¢ (A, A) T Homg (F(A), F(A))

commutes, i.e. we have

F(ida) = idp(a).

6 Fyrther Terminology: Also called a covariant functor.
7 Further Terminology: Also called action on Hom-sets of F at (A, B).
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2. Preservation of Composition. For each A, B, C € Obj(C), the diagram

c
®ABC

HomC(B, C) X HomC(A, B)

HomC(A, C)

FBYCxFA’B Fac

Homgp (F(B), F(C)) x Homgp (F(A), F(B)) ——— Homg (F(A), F(C))

oD
F(A),F(B),F(C)

commutes, i.e. for each composable pair (g, f) of morphisms of C, we
have

F(gof) =F(g) o F(f).

00ZX Notation8.4.1.1.2. LetC and D be categories, and write C°P for the opposite
category of C of 22.

00ZY 1. Given a functor
F:C— 9D,

we also write F4 for F(A).

0077 2. Given a functor
F: C°° = D,

we also write F4 for F(A).

0100 3. Given a functor
F:CxC—-9D,

we also write F4 g for F(A, B).

0101 4. Givena functor
F:C’xC — D,
we also write Fg for F(A, B).

We employ a similar notation for morphisms, writing e.g. F for F(f) givena
functorF: C — D.

0102 Notation8.4.1.1.3. Followingthenotation [x > f(x)] forafunctionf: X —
Y introducedin Notation1.1.1.1.2, we will sometimes denotea functor F: C —
D by
FE[A - F(A)],
specially when the action on morphisms of F is clear from its action on ob-
jects.
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0103 Example8.4.1.1.4. Theidentity functorofacategory Cisthe functoridc: C —
C where

1. Action on Objects. For each A € Obj(C), we have

def

ide(A) £ A.

2. Actionon Morphisms. Foreach A, B € Obj(C), theactionon morphisms

(idC)A,B: HomC(A, B) g Homc(idc(A),idc(B))

d=ei-|omc(A,B)

ofid¢ at (A, B) is defined by

. def .
(idc) o = idHome (4,8)-

Proof. Preservation of ldentities: We haveidc (id) “'idsforeach A € 0bj(C)
by definition.

Preservation of Compositions: For each composable pair A —f> B Bof
morphisms of C, we have

ide(gof) Egof
def

=idc(g) o idc(f).
This finishes the proof. O

0104 Definition 8.4.1.1.5. The composition of two functors F: C — 9D and
G: D — Eisthefunctor G o F where

- Action on Objects. For each A € Obj(C), we have

def

[G o F](A) = G(F(A)).

- Actionon Morphisms. Foreach A, B € Obj(C), theaction on morphisms
(G o F)A,B : HomC(A, B) — Homg (GFA; GFB)

of G o Fat (A, B) isdefined by

def

[G o FI(f) = G(F(f)).
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Proof. Preservation of Identities: For each A € Obj(C), we have

Gp, = GidFA (functoriality of F)

idy

= ideA ) (functoriality of G)

Preservation of Composition: For each composable pair (g, f) of morphisms of
C, we have

Gry = GFoF; (functoriality of F)
= GFg o GFf. (functoriality of G)
This finishes the proof. O

Proposition 8.4.1.1.6. LetF: C — D be a functor.

1. Preservation of Isomorphisms. Iff is anisomorphismin C, then F(f) is
an isomorphismin 9."®

Proof. Item 1, Preservation of Isomorphisms: Indeed, we have

F(f)™ o F(f) = F(f ' of)

= F(idy)
=idp(a)
and
F(f o (D™ =F(fof™!)
= F(idp)
= idp(p),
showing F(f) to be an isomorphism. O

8.4.2 Contravariant Functors

Let C and D be categories, and let C°P denote the opposite category of C of
2?

Definition 8.4.2.1.1. A contravariant functor from C to D is a functor from
CPto D.

Remark 8.4.2.1.2. Indetail, a contravariant functor from C to D consists of:

8When the converse holds, we call F conservative, see Definition 8.5.4.1.1.
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1. Action on Objects. A map of sets
F: Obj(C) — Obj(D),
called the action on objects of F.
2. Action on Morphisms. For each A, B € Obj(C),amap
Fap: Homg(A, B) — Homg (F(B), F(A)),
called the action on morphisms of F at (A, B).
satisfying the following conditions:

1. Preservation of ldentities. For each A € Obj(C), the diagram

pt

D
o lF(A)
13

Homc (4, 4) —— Homa (F(4), F(4))

commutes, i.e. we have
F(ida) = idp(a).
2. Preservation of Composition. For each A, B, C € Obj(C), the diagram
Homgy (F(C), F(B)) X Homg (F(B), F(A))

\\ g.Sets
FpcxFap \\\ Homg, (F(C),F(B)),Homg, (F(B),F(A))

Hom¢ (B, C) x Hom¢ (A, B) HomD(F(B),F(X)) X Homg (F(C), F(B))

oD
ABC F(C),F(B),F(A)

Home (A, C) v Homg (F(C), F(A))

commutes, i.e. for each composable pair (g, ) of morphisms of C, we
have

F(gof)=F(f) o F(g).
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Remark 8.4.2.1.3. Throughout this work we will not use the term “contravari-
ant” functor, speaking instead simply of functors F: C°P — D. We will
usually, however, write

Fap: Homg (A, B) = Homg (F(B), F(A))
for the action on morphisms
Fap: Homges (A, B) — Homgp (F(A), F(B))

of F,aswell aswrite F(g o f) = F(f) o F(g).

8.4.3 Forgetful Functors

Definition 8.4.3.1.1. There isn'ta precise definition of a forgetful functor.

Remark 8.4.3.1.2. Despite there not being a formal or precise definition of
a forgetful functor, the term is often very useful in practice, similarly to the
word “canonical”. Theidea is that a “forgetful functor” is a functor that forgets
structure or properties, and is best explained through examples, such as the
ones below (see Examples 8.4.3.1.3and 8.4.3.1.4).

Example 8.4.3.1.3. Examples of forgetful functors that forget structure in-
clude:

1. Forgetting Group Structures. The functor Grp — Sets sending a group
(G, g, n¢) toits underlying set G, forgetting the multiplication and
unit maps g and 5 of G.

2. Forgetting Topologies. The functor Top — Sets sending a topological
space (X, Tx) toits underlying set X, forgetting the topology 7x.

3. Forgetting Fibrations. The functor FibSets(K) — Setssendinga K-
fibredset ¢x: X — K totheset X, forgetting the map ¢x and the
baseset K.

Example 8.4.3.1.4. Examples of forgetful functors that forget properties
include:

1. Forgetting Commutativity. The inclusion functor:: CMon < Mon
which forgets the property of being commutative.

2. Forgetting Inverses. The inclusion functor:: Grp < Mon which for-
gets the property of having inverses.
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Notation 8.4.3.1.5. Throughout this work, we will denote forgetful functors
that forget structure by ’%, e.g. as in

=: Grp — Sets.

The symbol =, pronounced wasureru (see [tem 1 of Remark 8.4.3.1.6 below),
means to forget, and is a kanji found in the following words in Japanese and
Chinese:

1. =413, transcribed as wasureru, meaning to forget.

2. 'SEHIBIFE, transcribed as boukyaku kanshu, meaning forgetful functor.

3. IC or a0, transcribed as wangji, meaning to forget.

4. RISERF or IS BRI F, transcribed as yiwdng hdanzi, meaning forget-
ful functor.

Remark 8.4.3.1.6. Here we collect the pronunciation of the words in Nota-
tion 8.4.3.1.5 for accuracy and completeness.

1. Pronunciation of &413:

- Audio: see https://topological-modular-forms.githu
b.io/the-clowder-project/static/sounds/wasurer
u-01.mp3

- IPA broad transcription: [wéiswrerui].

- IPA narrow transcription: [wjfasifrecrwf].
2. Pronunciation of &EIBEF: Pronunciation:

- Audio: see https://topological-modular-forms.githu
b.io/the-clowder-project/static/sounds/wasurer
u-02.mp3

- IPA broad transcription: [bo:kikw kidjew].

- IPA narrow transcription: [bo:kidkw® kidjew®].
3. Pronunciation of =ig:

- Audio: seehttps://topological-modular-forms.githu
b.io/the-clowder-project/static/sounds/wasurer
u-03.ogg

- Broad IPA transcription: [wartei].
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- Sinological IPA transcription: [war®~53gi51].
010W 4. Pronunciation of 18 = BR| F:

- Audio: see https://topological-modular-forms.githu
b.io/the-clowder-project/static/sounds/wasurer
u-04.mp3

- Broad IPA transcription: [iwarn xanfszi].

- Sinological IPA transcription: [i3wan>! x4n35fsz214-21(4)].

010X 8.4.4 The Natural Transformation Associated to a Functor

010Y Definition 8.4.4.1.1. Every functor F: C — D defines a natural transfor-
mation™

op
coPxCc 22X pyor

. Ft =
F': Homg = Homg o (F°P x F), | = g
omg omop

Sets,

called the natural transformation associated to F, consisting of the collec-
tion

F . H A,B H F !F }
{ AB ome (4, B) — Homp (Fa, Fp) (A,B) €0bj(CoPxC)

with
def
Fl S Fap.

Proof. The naturality condition for F' is the requirement that for each mor-
phism
(¢, v): (X,Y) = (A B)

of C°P x C, the diagram

§ovi=piof’

Home(X,Y) Hom¢ (A, B)
FX,Y FA,B
Homg (Fx, Fy) Homgp (Fa, F3),

F(¢)"oF(y).=F(y).oF(¢)"

9This is the 1-categorical version of Item 1 of Proposition 2.4.1.1.3.
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acting on elements as

f yofos

| T

F(f) /—— F(y) o F(f) o F(y) = F(y of o ¢)
commutes, which follows from the functoriality of F. O
Proposition 8.4.4.1.2. LetF: C —» Dand G: D — & be functors.

1. Interaction With Natural Isomorphisms. The following conditions are
equivalent:

(@) Thenatural transformation F': Homge = Homg o (F°P X F)
associated to F is a natural isomorphism.

(b) The functor F is fully faithful.
2. Interaction With Composition. We have an equality of pasting diagrams
CoP x C X, pop y gy CFXC, copy g o x ¢ L0DTX(CD) cop g
A | = L=
_ F = G — (GoF)l
d Homgp - —
Hom¢ l Homg Home Homg
Sets Sets

in Cats,, i.e. we have

(GoF) = (GT * idpopxp) o F.

3. Interaction With Identities. We have

idz‘ = idHomc(—l,—2)’

i.e. the natural transformation associated to id¢ is the identity natural
transformation of the functor Homg (=1, —2).

Proof. Item1, Interaction With Natural Isomorphisms: Clear.
Item 2, Interaction With Composition: Clear.
Item 3, Interaction With Identities: Clear. O


https://topological-modular-forms.github.io/the-clowder-project/tag/010Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0110
https://topological-modular-forms.github.io/the-clowder-project/tag/0111
https://topological-modular-forms.github.io/the-clowder-project/tag/0112
https://topological-modular-forms.github.io/the-clowder-project/tag/0113
https://topological-modular-forms.github.io/the-clowder-project/tag/0114

0115

0116

0117

0118

0119

011A
011B

o11C

011D

011E

011F

011G

8.5. Conditions on Functors 392

8.5 Conditions on Functors

8.5.1 Faithful Functors
Let C and D be categories.

Definition 8.5.1.1.1. A functor F: C — D is faithful if, foreach A,B €
Obj(QC), the action on morphisms

Fuap: Hom¢ (A, B) — Homg (Fa, Fp)
of F at (A, B) isinjective.
Proposition 8.5.1.1.2. LetF: C — D be a functor.

1. Interaction With Postcomposition. The following conditions are equiva-
lent:

(@) ThefunctorF: C — D isfaithful.
(b) Foreach X € Obj(Cats), the postcomposition functor

F.: Fun(X,C) — Fun(X, D)

is faithful.

(c) Thefunctor F: C — D isarepresentably faithful morphismin
Catss in the sense of Definition 9.1.1.1.1.

2. Interaction With Precomposition|. Let F: C — 9D be a functor.
(@) If Fisfaithful, then the precomposition functor
F*: Fun(D, X) — Fun(C, X)

can fail to be faithful.

(b) Conversely, if the precomposition functor
F*: Fun(D,X) — Fun(C, X)
is faithful, then F can fail to be faithful.

3. Interaction With Precomposition Il. If F is essentially surjective, then the
precomposition functor

F*: Fun(D,X) — Fun(C, X)

is faithful.
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4. Interaction With Precomposition l1l. The following conditions are equiv-

alent:

€))

(b)

(0

(d)

(e)

V)

(8

Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)

is faithful.
Foreach X € Obj(Cats), the precomposition functor

F*: Fun(D, X) — Fun(C,X)

is conservative.

Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)

is monadic.

The functor F: C — D isa corepresentably faithful morphism
in Cats, in the sense of Definition 9.2.1.1.1.

The components
716: G = Rang(G o F)
of the unit
7 idFun(p,x) = Ranp o F*

of the adjunction F* 4 Ranp are all monomorphisms.

The components
¢g: Lang(GoF) = G
of the counit
¢: lanp o F* = idrun(p,x)

of the adjunction Lang 4 F* are all epimorphisms.
The functor F is dominant (Definition 8.6.1.1.1), i.e. every object
of D is a retract of some object in Im(F):
(%) Foreach B € Obj(D), there exist:
— Anobject Aof C;
— Amorphisms: B — F(A) of D;
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— Amorphismr: F(A) — Bof D;
suchthatr os = idp.

Proof. Item1, Interaction With Postcomposition: Omitted.

Item 2, Interaction With Precomposition I: See [MSE 733163]forltem 2a. Item 2b
follows from Item 3 and the fact that there are essentially surjective functors
that are not faithful.

Item 3, Interaction With Precomposition |I: Omitted, but see https://unim
ath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor
y.precomp_fully_faithful.html fora formalised proof.

Item 4, Interaction With Precomposition I1l: We claim Items 4a to 4g are equiva-
lent:

- Items 4a and 4d Are Equivalent: This is true by the definition of corepre-
sentably faithful morphism; see Definition 9.2.1.1.1.

- Items 4a to 4c and 4g Are Equivalent: See [Ada+o1, Proposition 4.1] or
alternatively [Freo9, Lemmas 3.1 and 3.2] for the equivalence between
Items 4a and 4g.

- Items 4a, 4e and 4f Are Equivalent: See ?? of 22.

This finishes the proof. O

8.5.2 Full Functors
Let C and D be categories.

Definition 8.5.2.1.1. AfunctorF: C — D is full if, foreach A, B € 0bj(C),
the action on morphisms

FA,B: HomC(A, B) - HomD(FA,FB)
of F at (A, B) is surjective.
Proposition 8.5.2.1.2. LetF: C — D bea functor.

1. Interaction With Postcomposition. The following conditions are equiva-
lent:

(@) ThefunctorF: C — Disfull.
(b) Foreach X € Obj(Cats), the postcomposition functor

F.: Fun(X,C) — Fun(X, D)

is full.
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(© Thefunctor F: C — D is arepresentably full morphism in
011X Cats, in the sense of Definition 9.1.2.1.1.

011Y 2. Interaction With Precomposition |. If F is full, then the precomposition
functor
F*: Fun(D, X) — Fun(C, X)

can fail to be full.

0112 3. Interaction With Precomposition Il. If the precomposition functor
F*: Fun(D, X) — Fun(C,X)
is full, then F can fail to be full.

0120 4. Interaction With Precomposition [11. 1f F is essentially surjective and full,
then the precomposition functor

F*: Fun(D, X) — Fun(C, X)

is full (and also faithful by Item 3 of Proposition 8.5.1.1.2).

0121 5. Interaction With Precomposition IV. The following conditions are equiv-
alent:
0122 (@) Foreach X € Obj(Cats), the precomposition functor

F*: Fun(D, X) — Fun(C,X)

is full.

(b) Thefunctor F: C — D isa corepresentably full morphismin
0123 Catss in the sense of Definition 9.2.1.1.1.

0124 (c) The components
n¢: G = Ranp(G o F)
of the unit
7 idFun(p,x) = Ranp o F*

of the adjunction F* 4 Rang are all retractions/split epimor-
phisms.
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(d) The components
€G: LanF(G o F) =G
of the counit
¢: lanpo F" = idFun(D,X)
of the adjunction Lang 4 F* are all sections/split monomor-
phisms.
(e) Foreach B € Obj(D), there exist:
- Anobject Ag of C;
- Amorphismsg: B — F(Ap) of D;
- Amorphismrg: F(Ap) — BofD;
satisfying the following condition:
(%) Foreach A € Obj(C) and each pair of morphisms
r: F(A) — B,
s: B— F(A)
of D, we have
[(Ap,sp,78)] = [(A/s,r osgorp)]
. AeC , p F
in / hFA X hg'.
Proof. Item1, Interaction With Postcomposition: Omitted.
Item 2, Interaction With Precomposition |: Omitted.
Item 3, Interaction With Precomposition |I: See [BS10, p. 47].
Item 4, Interaction With Precomposition I11: Omitted, but see https://unim
ath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor
y.precomp_fully_faithful.html foraformalised proof.

Item 5, Interaction With Precomposition IV: We claim Items 5a to 5e are equiva-
lent:

- Items 5a and 5b Are Equivalent: This is true by the definition of corepre-
sentably full morphism; see Definition 9.2.2.1.1.

- Items 5a, 5¢c and 5d Are Equivalent: See ?? of 22.
- Items 5a and 5e Are Equivalent: See [Ada+o1, Iltem (b) of Remark 4.3].

This finishes the proof. O

Question 8.5.2.1.3. Item 5 of Proposition 8.5.2.1.2 gives a characterisation of
the functors F for which F* is full, but the characterisations given there are
really messy. Are there better ones?

This question also appears as [MO 468121b].
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8.5.3 Fully Faithful Functors

Let C and D be categories.

Definition 8.5.3.1.1. A functor F: C — D is fully faithful if F is full and
faithful, i.e. if, foreach A, B € Obj(C), the action on morphisms

Fap: Homg (A, B) — Homgp (Fa, Fp)
of F at (A, B) is bijective.
Proposition 8.5.3.1.2. LetF: C — D bea functor.
1. Characterisations. The following conditions are equivalent:

(@) The functor F is fully faithful.
(b) We have a pullback square

Arr(C) 275, Arr(D)

4
Arr(C) = (C X C) XDxD Arr(D), srcxtgt| |src><tgt
cCxC W) DxD

in Cats.
2. Conservativity. If Fis fully faithful, then F is conservative.
3. Essential Injectivity. If F is fully faithful, then F is essentially injective.
4. Interaction With Co/Limits. If F is fully faithful, then F reflects co/limits.

5. Interaction With Postcomposition. The following conditions are equiva-
lent:

(@) ThefunctorF: C — D is fully faithful.
(b) Foreach X € Obj(Cats), the postcomposition functor

F.: Fun(X,C) — Fun(X, D)

is fully faithful.

(©) Thefunctor F: C — D isarepresentably fully faithful mor-
phism in Cats; in the sense of Definition 9.1.3.1.1.

6. Interaction With Precomposition |. If F is fully faithful, then the precom-
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position functor
F*: Fun(D, X) — Fun(C, X)
can fail to be fully faithful.

012N 7. Interaction With Precomposition Il. If the precomposition functor
F*: Fun(D,X) — Fun(C, X)

is fully faithful, then F can fail to be fully faithful (and in factit can also
fail to be either full or faithful).

012P 8. Interaction With Precomposition Ill. If F is essentially surjective and full,
then the precomposition functor

F*: Fun(D,X) — Fun(C, X)
is fully faithful.

012Q 9. Interaction With Precomposition IV. The following conditions are equiv-
alent:

012R (@) Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)

is fully faithful.
012S (b) The precomposition functor

F*: Fun(D, Sets) — Fun(C, Sets)

is fully faithful.
012T () The functor

Lang: Fun(C, Sets) — Fun(D, Sets)

is fully faithful.

(d) The functor F is a corepresentably fully faithful morphism in
012U Catss in the sense of Definition 9.2.3.1.1.

012V (e) The functor F is absolutely dense.
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V)

(g

(h)

(i)

The components
n6: G = Ranp(G o F)
of the unit
1t idfun(p.x) = Ranp o I

of the adjunction F* 4 Rang are all isomorphisms.

The components
eg: lanp(Go F) = G
of the counit
¢: lanp o F* = idryn(p.x)

of the adjunction Lang 4 F* are all isomorphisms.

The natural transformation
. F
a: LanhF(h ) = h

with components

AeC ,
ap.B: / thxth—)hg
given by
ap 3([(e¥)]) =y o

is a natural isomorphism.

Foreach B € Obj(D), there exist:
- Anobject Ag of C;
- Amorphismsg: B — F(Ap) of D;
- Amorphismrg: F(Ap) — BofD;

satisfying the following conditions:

i. Thetriple (F(Ap),rp,sp)isaretractof B,i.e. we haverpg o

S = id.B.
ii. Foreach morphismf: B’ — Bof D, we have

[(Ag,sp,forp)] = [(Ap,sgof,rp)]

. AeC , g Fa
|n/ hFA X hg'.
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Proof. Item1, Characterisations: Omitted.

Item 2, Conservativity: This is a repetition of Item 2 of Proposition 8.5.4.1.2,
and is proved there.

Item 3, Essential Injectivity: Omitted.

Item 4, Interaction With Co/Limits: Omitted.

Item 5, Interaction With Postcomposition: This follows from Item 1 of Proposi-
tion 8.5.1.1.2 and Item 1 of Proposition 8.5.2.1.2.

Item 6, Interaction With Precomposition |: See [MSE 733161] for an example of
a fully faithful functor whose precomposition with which fails to be full.
Item 7, Interaction With Precomposition II: See [MSE 749304, Item 3].

Item 8, Interaction With Precomposition I11: Omitted, but see https://unim
ath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor
y.precomp_fully_faithful.html fora formalised proof.

Item 9, Interaction With Precomposition IV: We claim ltems 9a to 9i are equiva-
lent:

- Items 9a and 9d Are Equivalent: This is true by the definition of corepre-
sentably fully faithful morphism; see Definition 9.2.3.1.1.

- Items 9a, 9f and 9g Are Equivalent: See ?? of 22.

- Items 9a to 9c Are Equivalent: This follows from [Low1s, Proposition
A.1.5].

- Items 9a, 9e, 9h and 9i Are Equivalent: See [Fre09, Theorem 4.1] and
[Ada+01, Theorem1.1].

This finishes the proof. O

8.5.4 Conservative Functors
Let C and D be categories.

Definition 8.5.4.1.1. Afunctor F: C — D is conservative if it satisfies the
following condition:*°

(x) Foreachf € Mor(C), if F(f) is an isomorphism in D, then f is an
isomorphismin C.

Proposition 8.5.4.1.2. Let F: C — D be a functor.
1. Characterisations. The following conditions are equivalent:

(@) The functor F is conservative.

20Slogan: A functor F is conservative if it reflects isomorphisms.
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(b) Foreachf € Mor(C), the morphism F(f) is an isomorphism in
D ifff isanisomorphismin C.

2. Interaction With Fully Faithfulness. Every fully faithful functoris conser-
vative.

3. Interaction With Precomposition. The following conditions are equiva-
lent:

(a) Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)

is conservative.
(b) The equivalent conditions of Item 4 of Proposition 8.5.1.1.2 are
satisfied.

Proof. Item1, Characterisations: This follows from Item1of Proposition 8.4.1.1.6.
Item 2, Interaction With Fully Faithfulness: Let F: C — D be a fully faith-
ful functor, letf: A — B be a morphism of C, and suppose that Fy is an

isomorphism. We have

F(idpg) = idF(B)
=F(f) o F(f)™!
= F(f o f_l).

Similarly, F(ids) = F(f~! o f). Butsince F is fully faithful, we must have

fof™' =ids,
flof =ida,
showing f to be an isomorphism. Thus F is conservative. O

Question 8.5.4.1.3. Is there a characterisation of functors F: C — D satis-
fying the following condition:

(%) Foreach X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is conservative?

This question also appears as [MO 468121a].
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8.5.5 Essentially Injective Functors

Let C and D be categories.

Definition 8.5.5.1.1. Afunctor F: C — D is essentially injective if it satis-
fies the following condition:

(%) Foreach A, B € Obj(C),if F(A) = F(B),then A = B.

Question 8.5.5.1.2. Is there a characterisation of functors F: C — D such
that:

1. Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C,X)

is essentially injective, i.e.if g o F = v o F,then ¢ = v forall functors

pandy?
2. Foreach X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is essentially injective,i.e.if Fo ¢ = F oy, then¢ = y?

This question also appears as [MO 468121a].

8.5.6 Essentially Surjective Functors

Let C and D be categories.

Definition 8.5.6.1.1. Afunctor F: C — D is essentially surjective” if it
satisfies the following condition:

(x) Foreach D € Obj(D), there exists some object A of C such that
F(A) = D.

Question 8.5.6.1.2. Is there a characterisation of functors F: C — D such
that:

1. Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C,X)

is essentially surjective?

2 Further Terminology: Also called an eso functor, where the name “eso” comes from essen-
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2. Foreach X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X,D)
is essentially surjective?

This question also appearsas [MO 468121a].

8.5.7 Equivalences of Categories
Definition 8.5.7.1.1. Let C and D be categories.

1. An equivalence of categories between C and D consists of a pair of
functors

F:C - D,
G:D->C

together with natural isomorphisms
7:ide —= GoF,
¢: FoG=idgp.
2. An adjoint equivalence of categories between C and D is an equiva-
lence (F, G, n, ¢) between C and D which is also an adjunction.
Proposition 8.5.7.1.2. LetF: C — D be a functor.

1. Characterisations. |If C and D are small*?, then the following condi-
tions are equivalent:

(@) The functor F is an equivalence of categories.
(b) The functor F is fully faithful and essentially surjective.

(¢ Theinduced functor
I FSk(C): Sk(C) — Sk(D)

is an isomorphism of categories.

tially surjective on objects.

22Q0therwise there will be size issues. One can also work with large categories and universes,
or require F to be constructively essentially surjective; see [MSE 1465107].

23|n ZFC, the equivalence between Item1a and Item 1b is equivalent to the axiom of choice;
see [MO 119454].
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013Y (d) Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)

isan equivalence of categories.

013Z (e) Foreach X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is an equivalence of categories.
0140 2. Two-Out-of-Three. Let

CGOF8

A

D

beadiagramin Cats. If two out of the three functorsamong F, G, and
G o F are equivalences of categories, then so is the third.

0141 3. Stability Under Composition. Let

F F
C—=D=—¢
G G’

beadiagramin Cats. If (F, G) and (F’, G’) are equivalences of cate-
gories, then so is their composite (F’ o F, G’ o G).

0142 4. Equivalences vs.Adjoint Equivalences. Every equivalence of categories
can be promoted to an adjoint equivalence.?*

0143 5. Interaction With Groupoids. If C and D are groupoids, then the follow-
ing conditions are equivalent:

0144 (@) The functor F is an equivalence of groupoids.
0145 (b) The following conditions are satisfied:
0146 i. The functor F induces a bijection

mo(F): mo(C) — mo(D)

of sets.

In Univalent Foundations, this is true without requiring neither the axiom of choice nor
the law of excluded middle.
Z4More precisely, we can promote an equivalence of categories (F, G, 1, €) to adjoint equiv-
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0147 ii. Foreach A € Obj(C), theinduced map
Fyx: Autg(A) — Autp(Fa)
is an isomorphism of groups.

Proof. Item 1, Characterisations: We claim that [tems1a to 1e are indeed equiv-
alent:

1. ltem1a = Item 1b: Clear.

2. Item1b = Item1a: Since F is essentially surjective and C and D are
small, we can choose, using the axiom of choice, foreach B € Obj(D),
an object jg of C and anisomorphismig: B — F;, of D.

Since F is fully faithful, we can extend the assignment B +— jptoa
unique functor j: O — C such that the isomorphismsip: B — Fj,

assemble into a natural isomorphism 7 : idp = F o j, with asimilar
natural isomorphisme: idg = j o F. Hence F is an equivalence.

3. Item1a = Item1c: This follows from Item 4 of Proposition 8.1.5.1.3.
4. ltem1c = Item 1a: Omitted.
5. Items1a, 1d and 1e Are Equivalent: This follows from 22.

This finishes the proof of Item 1.

Item 2, Two-Out-of-Three: Omitted.

Item 3, Stability Under Composition: Clear.

Item 4, Equivalences vs.Adjoint Equivalences: See [Rie17, Proposition 4.4.5].

Item 5, Interaction With Groupoids: See [nLaz4, Proposition 4.4]. O
0148 8.5.8 Isomorphisms of Categories

0149 Definition 8.5.8.1.1. Anisomorphism of categories is a pair of functors

F:C—- 9D,
G:D->C

such that we have

GOFZidc,

FoG=idp.
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Example 8.5.8.1.2. Categories can be equivalent but non-isomorphic. For
example, the category consisting of two isomorphic objects is equivalent to
pt, but notisomorphictoit.
Proposition 8.5.8.1.3. LetF: C — D bea functor.
1. Characterisations. 1f C and D are small, then the following conditions
are equivalent:
(@) The functor F is an isomorphism of categories.
(b) The functor F is fully faithful and bijective on objects.
(c) Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)
is an isomorphism of categories.
(d) Foreach X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is an isomorphism of categories.
Proof. Item1, Characterisations: We claim that [tems 1a to 1d are indeed equiv-
alent:
1. Items1a and 1b Are Equivalent: Omitted, but similar to Item 1 of Proposi-
tion 8.5.7.1.2.
2. ltems1a, 1cand 1d Are Equivalent: This follows from 22.
This finishes the proof. O
8.6 More Conditions on Functors
8.6.1 Dominant Functors
Let C and D be categories.
Definition 8.6.1.1.1. Afunctor F: C — D isdominantif every object of D

is a retract of some objectin Im(F), i.e.:

(x) Foreach B € Obj(D), there exist:

alences (F,G,7’,¢) and (F, G, 7,¢’).
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— Anobject Aof C;
— Amorphismr: F(A) — Bof D;
— Amorphisms: B — F(A) of D;

such that we have
B —— F(A)

ros=idp,

idg
B.

014L Proposition8.6.1.1.2. LetF,G: C =3 D be functorsandletl: X — Cbea
functor.

014M 1. Interaction With Right Whiskering. If I is full and dominant, then the
map
— % id;: Nat(F,G) —» Nat(FoI,G o)

is a bijection.

014N 2. Interaction With Adjunctions. Let (F,G): C 2 D be an adjunction.

014P (@) If Fisdominant, then G is faithful.
014Q (b) The following conditions are equivalent:
014R i. The functor G is full.

014S ii. The restriction

I Glmg: Im(F) —» C
of G to Im(F) is full.

Proof. Item 1, Interaction With Right Whiskering: See [DFH75, Proposition 1.4].
Item 2, Interaction With Adjunctions: See [DFH75, Proposition 1.7]. O

014T Question 8.6.1.1.3. Is there a characterisation of functors F: C — D such
that:

014U 1. Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)
is dominant?
014V 2. Foreach X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is dominant?

This question also appearsas [MO 468121a].
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014W 8.6.2 Monomorphisms of Categories
Let C and D be categories.

014X Definition8.6.2.1.1. AfunctorF: C — D isamonomorphism of categories
ifitisa monomorphismin Cats (see ??).

014Y Proposition 8.6.2.1.2. LetF: C — D beafunctor.
014Z 1. Characterisations. The following conditions are equivalent:

0150 (@) The functor F is a monomorphism of categories.

(b) The functor F is injective on objects and morphisms, i.e. F is
0151 injective on objects and the map

F: Mor(C) — Mor(D)
is injective.
Proof. Item 1, Characterisations: Omitted. |

0152 Question 8.6.2.1.3. Is there a characterisation of functors F: C — D such
that:

0153 1. Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)
isa monomorphism of categories?

0154 2. Foreach X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X,D)
isa monomorphism of categories?

This question also appears as [MO 468121a].

0155 8.6.3 Epimorphisms of Categories
Let C and D be categories.

0156 Definition8.6.3.1.1. AfunctorF: C — 9 is a epimorphism of categories
ifitis a epimorphism in Cats (see ??).

0157 Proposition8.6.3.1.2. LetF: C — D be a functor.
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0158 1. Characterisations. The following conditions are equivalent:*®
0159 (@) The functor F is a epimorphism of categories.
015A (b) Foreach morphismf: A — Bof D, we have adiagram
A ~
b / $2 4]3 bm < I(\i/:
X X X X T4
N\ 7’ N 7’ N 7/ N //
\\\kal\ ,azl ‘ﬂ(:;\ ,a4‘ \16 asz/z a;z,,.,\l l,lzml

s

NN s N s N
\ a8 3 3 AN 7 N 4
N PR
NER 4] Yo
\
\ \ / /
\
N
N
\\\
. i 2 V3 ¥
ao\\\ \\ V

____ 3 B

AN
N
Ya

in D satisfying the following conditions:

015B i. Wehavef =ago¢;.
015C ii. Wehavef =y, o agp.
015D iii. Foreach0 < i < 2m,we have a; € Mor(Im(F)).

015E 2. Surjectivity on Objects. If F is an epimorphism of categories, then F is
surjective on objects.

Proof. Item 1, Characterisations: See [Isb68].
Item 2, Surjectivity on Objects: Omitted. O

015F Question 8.6.3.1.3. Is there a characterisation of functors F: C — D such
that:

015G 1. Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)
is an epimorphism of categories?
015H 2. Foreach X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is an epimorphism of categories?

This question also appearsas [MO 468121a].

25 Fyrther Terminology: This statement is known as Isbell’s zigzag theorem.
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015J 8.6.4 Pseudomonic Functors

Let C and D be categories.

015K Definition 8.6.4.1.1. Afunctor F: C — 9D is pseudomonic if it satisfies the
following conditions:

015L 1. Forall diagrams of the form

¢
TR F
X \u_Uﬁ/ c — D,
12
if we have
idp*azidp*ﬂ,
thena = §.

015M 2. Foreach X € Obj(Cats) and each natural isomorphism

Fo¢
~ TR
. F F y ’
prepSien x 0
Foy

there exists a natural isomorphism

¢
. ~ X PR C
a: 45 =, \a_/
14
such that we have an equality
¢ Fo
PEETIR —_— TR
X o cHp = x4 o
~—_"_ ~_"_ 7
14 Foy

of pasting diagrams, i.e. such that we have
ﬁ = idF * .
015N Proposition 8.6.4.1.2. LetF: C — D be a functor.

015P 1. Characterisations. The following conditions are equivalent:

015Q (@) The functor F is pseudomonic.
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015R (b) The functor F satisfies the following conditions:
i. The functor F is faithful, i.e. for each A, B € Obj(C), the
015S action on morphisms

FA,B3 HomC(A, B) — HomD(FA, FB)

of F at (A, B) isinjective.
Q15T ii. Foreach A, B € Obj(C), the restriction

Fi/;%: Isoc (A, B) — lIsogp (Fa, Fp)

of the action on morphisms of F at (A, B) to isomorphisms
is surjective.
015U () We have anisocomma square of the form

id

C —

‘s C
ki
////// F
)74
D

C—7

eq. Ad
C=CxpC, g

in Cats, up to equivalence.

015V (d) We have an isocomma square of the form
C — Arr(C)
C = C Xamim) D, F| y//;« |Arr(F)
D — Arr(D)

in Catsp up to equivalence.

015W (e) Foreach X € Obj(Cats), the postcomposition 2° functor
F,: Fun(X,C) — Fun(X,D)
is pseudomonic.

015X 2. Conservativity. If F is pseudomonic, then F is conservative.

26 Asking the precomposition functors
F*: Fun(D, X) — Fun(C,X)

to be pseudomonic leads to pseudoepic functors; see Item 1b of Item 1 of Proposition 8.6.5.1.2.


https://topological-modular-forms.github.io/the-clowder-project/tag/015R
https://topological-modular-forms.github.io/the-clowder-project/tag/015S
https://topological-modular-forms.github.io/the-clowder-project/tag/015T
https://topological-modular-forms.github.io/the-clowder-project/tag/015U
https://topological-modular-forms.github.io/the-clowder-project/tag/015V
https://topological-modular-forms.github.io/the-clowder-project/tag/015W
https://topological-modular-forms.github.io/the-clowder-project/tag/015X

015Y

0157

0160

0161

0162

8.6. More Conditions on Functors 412

3. Essential Injectivity. If F is pseudomonic, then F is essentially injective.

Proof. Item 1, Characterisations: Omitted.

Item 2, Conservativity: Omitted.

Item 3, Essential Injectivity: Omitted. O
8.6.5 Pseudoepic Functors

Let C and D be categories.

Definition 8.6.5.1.1. Afunctor F: C — D is pseudoepic if it satisfies the
following conditions:

1. Forall diagrams of the form
¢
F FETITRY
c— 9 X,
K
v

if we have
a*idpzﬂ*idp,

thena = j.

2. Foreach X € Obj(C) and each 2-isomorphism

¢oF
B:poF=yoF, C 6| X
c:poF=yoF,
W ~_'_
yoF
of C, there exists a 2-isomorphism
¢
4=y, D X
a: p=vy, A
v
of C such that we have an equality
¢ ¢oF
TR — TS
cLo T x = e X
~_ ~__
v yoF

of pasting diagrams in C, i.e. such that we have

[J)=0{*idF.
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Proposition 8.6.5.1.2. LetF: C — D bea functor.
1. Characterisations. The following conditions are equivalent:

(@) The functor F is pseudoepic.
(b) Foreach X € Obj(Cats), the functor

F*: Fun(D, X) — Fun(C, X)

given by precomposition by F is pseudomonic.
() We have anisococomma square of the form
idp D
7
2 \F

D
DEDcD, | |
&/

D

— C
in Catsp up to equivalence.

2. Dominance. If Fis pseudoepic, then F isdominant (Definition 8.6.1.1.1).

Proof. Item1, Characterisations: Omitted.
Item 2, Dominance: If F is pseudoepic, then

F*: Fun(D, X) — Fun(C, X)

is pseudomonic for all X € Obj(Cats), and thus in particular faithful. By
Item 4g of Item 4 of Proposition 8.5.1.1.2, this is equivalent to requiring F to
be dominant. O

Question 8.6.5.1.3. Is there a nice characterisation of the pseudoepic func-
tors, similarly to the characterisaiton of pseudomonicfunctors givenin ltem1b
of Item 1 of Proposition 8.6.4.1.2?

This question also appearsas [MO 321971].

Question 8.6.5.1.4. A pseudomonic and pseudoepic functor is dominant,
faithful, essentially injective, and full on isomorphisms. Is it necessarily an
equivalence of categories? If not, how bad can this fail, i.e. how far can a
pseudomonic and pseudoepic functor be from an equivalence of categories?
This question also appears as [MO 468334].

Question 8.6.5.1.5. Is there a characterisation of functors F: C — D such
that:
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1. Foreach X € Obj(Cats), the precomposition functor
F*: Fun(D, X) — Fun(C, X)
is pseudoepic?
2. Foreach X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is pseudoepic?

This question also appears as [MO 468121a].

8.7 Even More Conditions on Functors

8.7.1 Injective on Objects Functors

Let C and D be categories.

Definition8.7.1.1.1. AfunctorF: C — D isinjectiveonobjectsiftheaction
on objects
F: Obj(C) — 0Obj(D)

of Fisinjective.
Proposition 8.7.1.1.2. LetF: C — D bea functor.
1. Characterisations. The following conditions are equivalent:

(@) The functor F is injective on objects.

(b) The functor F is an isocofibration in Catsy.

Proof. Item 1, Characterisations: Omitted. O

8.7.2 Surjective on Objects Functors

Let C and D be categories.

Definition 8.7.2.1.1. A functor F: C — D is surjective on objects if the
action on objects
F: Obj(C) — 0Obj(D)

of F is surjective.
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8.7.3 Bijective on Objects Functors
Let C and D be categories.

Definition 8.7.3.1.1. Afunctor F: C — D is bijective on objects”’ if the
action on objects
F: Obj(C) — 0Obj(D)

of F is a bijection.

8.7.4 Functors Representably Faithful on Cores
Let C and D be categories.

Definition 8.7.4.1.1. AfunctorF: C — D isrepresentably faithful on cores
if, for each X € Obj(Cats), the postcomposition by F functor

F.: Core(Fun(X,C)) — Core(Fun(X, D))
is faithful.

Remark 8.7.4.1.2. Indetail, a functor F: C — D is representably faithful
on cores if, given a diagram of the form

¢
TR F
X\al{/_ﬂﬁvCﬁD,

if « and f8 are natural isomorphisms and we have
idp x & = idp x f,
thena = §.
Question 8.7.4.1.3. Isthere a characterisation of functors representably faith-
ful on cores?
8.7.5 Functors Representably Full on Cores
Let C and D be categories.

Definition 8.7.5.1.1. Afunctor F: C — D is representably full on cores if,
foreach X € Obj(Cats), the postcomposition by F functor

F,: Core(Fun(X,C)) — Core(Fun(X, D))

is full.

27 Further Terminology: Also called a bo functor.
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Remark 8.7.5.1.2. Indetail, afunctor F: C — D is representably full on
cores if, foreach X € Obj(Cats) and each natural isomorphism

Fo¢
p:Fop=Foy, X i D
: o et oY, ,
‘lil/ ~_'_
Foy
there exists a natural isomorphism
¢
$— X o e
o )
w ~—1_
14
such that we have an equality
¢ Fo¢
P EETERS TR
X 4 cHop = x4 o
~—1_"7 ~__
14 Foy
of pasting diagrams in Catsy, i.e. such that we have
[.)) = idp * Q.
Question 8.7.5.1.3. Is there a characterisation of functors representably full

on cores?
This question also appears as [MO 468121a].

8.7.6 Functors Representably Fully Faithful on Cores

Let C and D be categories.

Definition 8.7.6.1.1. Afunctor F: C — D is representably fully faithful
on cores if, foreach X € Obj(Cats), the postcomposition by F functor

F.: Core(Fun(X,C)) — Core(Fun(X, D))
is fully faithful.

Remark 8.7.6.1.2. In detail, a functor F: C — D is representably fully
faithful on cores if it satisfies the conditions in Remarks 8.7.4.1.2and 8.7.5.1.2,
ie.:
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0172 1. Forall diagrams of the form

¢
TR F
X\aﬂélﬁ/()ﬁi),

with & and  natural isomorphisms, if we have idp x @ = idp x f3, then

a =4
0173 2. Foreach X € Obj(Cats) and each natural isomorphism

Fo¢
~ T

. F F ,
f:Fog=Foy, X 4|
Foy

of C, there exists a natural isomorphism

¢
. ~ X PEETER C
a: p=v, \aL
v
of C such that we have an equality
¢ Fo¢
T — TR
X 4 cHop = x4 o
\1;/ W

of pasting diagrams in Catsy, i.e. such that we have

[3=idp*0l.

0174 Question 8.7.6.1.3. Is there a characterisation of functors representably fully
faithful on cores?

0175 8.7.7 Functors Corepresentably Faithful on Cores

Let C and D be categories.

0176 Definition 8.7.7.1.1. Afunctor F: C — D is corepresentably faithful on
cores if, foreach X € Obj(Cats), the postcomposition by F functor

F.: Core(Fun(X,C)) — Core(Fun(X, D))

is faithful.
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Remark8.7.7.1.2. Indetail, afunctor F: C — 9D iscorepresentably faithful
on cores if, given a diagram of the form

¢
c Lo T X,
&
if « and B are natural isomorphisms and we have
a % idp = f % idp,
thena = §.

Question 8.7.7.1.3. Is there a characterisation of functors corepresentably
faithful on cores?

8.7.8 Functors Corepresentably Full on Cores
Let C and D be categories.

Definition 8.7.8.1.1. Afunctor F: C — D is corepresentably full on cores
if, foreach X € Obj(Cats), the postcomposition by F functor

F,: Core(Fun(X,C)) — Core(Fun(X, D))
is full.

Remark 8.7.8.1.2. Indetail, a functor F: C — D is corepresentably full on
cores if, foreach X' € Obj(Cats) and each natural isomorphism

¢oF
B:goF=syoF, C ¢ X
ipoF=vyoF, ,
w ~_'_
yoF
there exists a natural isomorphism
¢
4=y D X
a: ¢ =y, A,
14
such that we have an equality
¢ Fo¢
P EETER —_— TR
X o cho = x4 o
~—1_ ~__ 7
12 Foy

of pasting diagrams in Catso, i.e. such that we have

[J)=0{*idF.
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Question 8.7.8.1.3. Is there a characterisation of functors corepresentably
full on cores?
This question also appears as [MO 468121a].

8.7.9 Functors Corepresentably Fully Faithful on Cores

Let C and D be categories.

Definition 8.7.9.1.1. Afunctor F: C — D is corepresentably fully faithful
on cores if, for each X € Obj(Cats), the postcomposition by F functor

F,: Core(Fun(X,C)) — Core(Fun(X, D))
is fully faithful.

Remark 8.7.9.1.2. Indetail, a functor F: C — D is corepresentably fully
faithful on cores if it satisfies the conditionsin Remarks 8.7.7.1.2and 8.7.8.1.2,
ie.

1. Forall diagrams of the form
¢
F FETETRY
— D X,
¢ =0l
v

if « and 8 are natural isomorphisms and we have
a*idp:ﬂ*idp,
thena = j.

2. Foreach X € Obj(Cats) and each natural isomorphism
¢oF
B:¢oF=yoF, C 4| X
: o S o y )
W \_/
yoF

there exists a natural isomorphism
¢
p=vy. DX
a: Q=1vY, a
W ~—_"_

14
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such that we have an equality

s ot
x et = x7{ o
\E/ \F:f

of pasting diagrams in Catsy, i.e. such that we have
ﬁ =a % idF.

017J Question 8.7.9.1.3. Is there a characterisation of functors corepresentably
fully faithful on cores?

017k 8.8 Natural Transformations

017L 8.8.1 Transformations

Let C and D be categoriesand F, G: C =2 D be functors.

017M Definition 8.8.1.1.1. Atransformation’® «: F = G from F to G is a collec-
tion
{aa: F(A) = G(A)} scobj(c)
of morphisms of D.

017N Notation 8.8.1.1.2. We write Trans(F, G) for the set of transformations from
FtoG.

017P 8.8.2 Natural Transformations

Let C and D be categoriesand F, G: C =3 D be functors.

017Q Definition 8.8.2.1.1. A natural transformationa: F =— GfromFtoGisa
transformation

{aa: F(A) = G(A)} acobi(c)
from F to G such that, for each morphismf: A — BofC, the diagram

Fa) 22, pp)

|aB

G(4) 57 G(B)

XA

commutes.?’

28 Fyrther Terminology: Also called an unnatural transformation for emphasis.
29Further Terminology: The morphisma4: F4 — G 4 is called the component of « at A.
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Remark 8.8.2.1.2. We denote natural transformations in diagrams as

Notation 8.8.2.1.3. Wewrite Nat(F, G) forthe setof natural transformations
from Fto G.

Example 8.8.2.1.4. The identity natural transformationidy: F = Fof F
is the natural transformation consisting of the collection

{idF(A): F(A) - F(A)}AEObj(C)'

Proof. The naturality condition for idg is the requirement that, for each mor-
phismf: A — BofC,thediagram

Fa) 22, p(p)

|idp(3)

F(A) 50 F(B)

idF(A)

commutes, which follows from unitality of the composition of C. O

Definition 8.8.2.1.5. Two natural transformations a, f: F = G are equal
if we have

ap = fa

foreach A € Obj(C).

8.8.3 \Vertical Composition of Natural Transformations

Definition 8.8.3.1.1. The vertical composition of two natural transforma-
tionsa: F = Gand ff: G = H asinthediagram

F

/7l N
C—G6¢— D
A

H

is the natural transformation f o «: F = H consisting of the collection

{(ﬁ oa)y: F(A) — H(A)}Aeobj(C)
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with
def
(Boa)y=PBacan

foreach A € Obj(C).

Proof. The naturality condition for f o isthe requirementthatthe boundary
of the diagram

Fa) — . pB)
7 (1) aB

G(A) —6(H — G(B)

Ba (2) Bs

commutes. Since
1. Subdiagram (1) commutes by the naturality of «.
2. Subdiagram (2) commutes by the naturality of 3.
so does the boundary diagram. Hence 5 o « is a natural transformation. O

017X Proposition 8.8.3.1.2. LetC, D, and & be categories.

017Y 1. Functionality. The assignment (f, «) — f o « defines a function

opc,u: Nat(G, H) X Nat(F,G) — Nat(F, H).

=
0177 2. Associativity. LetF,G, H,K: C = D be functors. The diagram

Nat(H, K) x (Nat(G, H) x Nat(F, G))

aSets o .
Nat(H.K)Nat(G.H) Nat(F.G) =" idNat(H,K) X°F,G,H

(Nat(H, K) x Nat(G, H)) x Nat(F, G) Nat(H, K) x Nat(F, H)
°G,H,K Xidnat(F,G) OFH K

Nat(G, K) x Nat(F,G) T Nat(F, K)
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commutes, i.e. given natural transformations
a £ Y
F—>G(G—=— H=K,
we have
(yoB)oa=yo(Boa).
0180 3. Unitality. Let F,G: C =3 D be functors.

(@) Left Unitality. The diagram

pt X Nat(F, G)
= ASets

Tl MNat(FG)
[idG I xidnat(r,c) o

e

Nat(G, G) x Nat(F, G) Nat(F, G)

OF,G,G

commutes, i.e. given a natural transformationa: F = G, we
have
idgoa =a.

(b) Right Unitality. The diagram

Nat(F, G) x pt
Sets

PNat(F,G)
idNat(F,G) X [idF] e

Nat(F, G) x Nat(F, F) ——— Nat(F,G)

FF,G

commutes, i.e. given a natural transformationa: F = G, we
have
aoidp = a.

0181 4. Middle Four Exchange. Let F1, Fo, F3: C — Dand G1,Go, G3: D —
& be functors. The diagram

(Nat(Ga, G3) x Nat(Gy, G2)) x (Nat(Fa, F3) x Nat(Fy, Fz)) «=> (Nat(Ga, G3) x Nat(Fy, F3)) x (Nat(Gy, G2) x Nat(Fy, F»))
9G1.G3.G3 XOF) Fa.Fy *FyF3.Gp.G3 X¥Fy Fg.G1.G2

Nat(G1, G3) X Nat(Fy, F3) Nat(Gz o F2, G3 o F3) X Nat(Gy o F1,Ga o Fa)

*Fy.F3,G1.G3 9G] oFy GgoFa GgoFs

Nat(Gy o Fy, G o Fs)
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commutes, i.e. given a diagram

F1 G1
SN TN
C—F— 9D —G,— &
F3 G3
in Cats,, we have
(' *a)o(Bxa)=(f of)*(a' 0a).

Proof. Item 1, Functionality: Clear.
Item 2, Associativity: Indeed, we have

(yoP)oa), Z(yop),oan

= (yaoBa)oan

=yao (Bacaa)
& YA © (ﬂ o a)A
Z(yo(Boa),
foreach A € Obj(C), showing the desired equality.
Item 3, Unitality: We have

(idG OO{)A = idG oA
=aa
(aoidp)y =apoidp

_aA

foreach A € Obj(C), showing the desired equality.
Item 4, Middle Four Exchange: This is proved in Item 4 of Proposition 8.8.4.1.3.
]

0182 8.8.4 Horizontal Composition of Natural Transformations
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Definition 8.8.4.1.1. The horizontal composition3°-3' of two natural trans-
formationsa: F = Gand fi: H = K asinthe diagram

F H

TR FTERS
c 4l o6 &
\E/ \K/’

of « and f3 is the natural transformation
Bxa: (HoF)= (KoG),

as in the diagram
HoF

TR
C Bxa &,
N

KoG

consisting of the collection
{(ﬂ * a)A: H(F(A)) - K(G(A))}AEOb]'(C)’
of morphisms of & with

H(F(4) =% H(G(4))
(B *a)s = Bo(a) o H(aa)

= K(ay) o BF(A); Br(a) |ﬂG(A)
K(F(4)) e K(G(A))

Proof. First, we claim that we indeed have

H(F(4) 22 H(G(A))

ﬂG(A) o H(aa) = K(as) 0 ﬁF(A)’ [J’F(A)| |ﬂG(A)

K(F(A) o~ K(G(4).

This is, however, simply the naturality square for  applied to the morphism

39 Further Terminology: Also called the Godement product of « and §.
3'Horizontal composition forms a map

*(F,H),(GK): Nat(H, K) x Nat(F,G) — Nat(H o F,K o G).
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as: F(A) — G(A). Next, we check the naturality condition for § x &, which
is the requirement that the boundary of the diagram

H(F(A)) H(F(f))

H(F(B))
H(ay) (1) H(ap)

H(G(A)) —H(G(H) — H(G(B))

Bc(a) (2) Bcs)

K(G(A)) K(G(B))

G
commutes. Since

1. Subdiagram (1) commutes by the naturality of «.

2. Subdiagram (2) commutes by the naturality of 3.
sodoes the boundary diagram. Hence f o is a natural transformation.?* O

0184 Definition 8.8.4.1.2. Let
¢
T )
XL oSy
S~———"
v

be a diagramin Catss.

0185 1. The left whiskering of « with G is the natural transformation

idgxa: Gop = Goy.

0186 2. The right whiskering of 2 with F is the natural transformation 34

a*xidp: o F = yoF.

0187 Proposition 8.8.4.1.3. LetC, D, and & be categories.

32 Reference: [Bor94, Proposition 1.3.4].

3 Further Notation: Alsowritten Ga or G xa, although we won't use either of these notations
in this work.

34 Further Notation: Alsowritten o F or a x F, although we won't use either of these notations
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0188 1. Functionality. The assignment (f, «) — (3 x « defines a function
*(F,G),(H,K) * Nat(H, K) x Nat(F,G) — Nat(H o F,K o G).

0189 2. Associativity. Let

Fi Fo Fs
CTIDZZTEZF
G1 G Gs

be adiagramin Catsy. The diagram

* (Fy,Go) (F3.G3) ¥1d
Nat(Fg, Gg) X Nat(Fg, GQ) X Nat(Fl, Gl) B Nat(Fg o F9,G3o0 Gz) X Nat(Fl, Gl)

XX (1) 61),(,G2) * (FgoF3),(G30G2,F1,G1)

Nat(Fs3, G3) X Nat(Fz o F1, Gy o Gy)

Nat(F3 o Fo o F1,G3 0 G 0 Gq)

*(FgoFy),(GgoG1.F3,G3)

commutes, i.e. given natural transformations

F1 Fay F3
TR T~ TR
c « o6 e T
G1 Go G3

we have
(y*xB)xa=y*x(B*a)

018A 3. Interaction With Identities. LetF: C — Dand G: D — & be func-
tors. The diagram

idg Ix[id
pt X pt e xlidrd | Nat(G, G) x Nat(F, F)

A
'

2 *(E,F),(G,G)

pt , Nat(G o F, G o F)
[idGor]
commutes, i.e. we have

idG * idF = idGoF.

018B 4. Middle Four Exchange. Let F1, Fo, F3: C — Dand G1,Go, G3: D —

in this work.
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& be functors. The diagram

(Nat(Ga, Gs) x Nat(G1, G2)) x (Nat(Fy, F3) x Nat(Fy, F2)) <& (Nat(Gy, Gs) x Nat(Fy, F3)) x (Nat(G1, Ga) x Nat(Fy, F2))
©Gy,Go,Gg XOFy Fa F3 *Fy,F3,Go,Gg X*F) F,G1,Go

Nat(Gy, Gs) x Nat(Fy, F3) Nat(Gy o F, Gz o F3) x Nat(Gy o Fy, Gy o Fy)

Nat(Gy o Fy, Gs o Fs)
commutes, i.e. given a diagram
F1 G1
N TN
C—Fh— D —G— &
F3 G3
in Cats,, we have

(B xa')o(Bra)= (B opf)*(a ca)

Proof. Item 1, Functionality: Clear.
Item 2, Associativity: Omitted.
Item 3, Interaction With Identities: We have

(idg % idp) 4 = (id6) g, © G(idp),
= idgp, © Gidy,

= idGFA o idGFA
= idgy,
def

= (idgor) 4

foreach A € Obj(C), showing the desired equality.
Item 4, Middle Four Exchange: Let A € Obj(C) and consider the diagram

G1(F3(A))

G1 (“;x) Bry(a)

G1(an) Brs o)
G1(F1(A)) — G1(Fa2(A)) (1) Ga(F3(A))

G3(F3(A)).

Bry(a) Gg(a’)

G2(F2(4))



8.8. Natural Transformations 429

The top composition

G (F3(4))
Gy (a;‘) w)
» B
G (F1(4) 22 G, (Fy(a)) Ga(F3(A)) —2 Gy(Fs(A)).

isgiven by ((f” o B) * (a’ o a)) 4, while the bottom composition

,
Pry

G (F1(4) 22 G, (Fy(a)) Ga(F3(A)) —2 Gy(Fs(A)).
ﬁ;\\ Ga ()
Ga(F2(A))

isgiven by ((f" * a”) o (§ * a)) 4. Now, Subdiagram (1) corresponds to the
naturality condition

Gl(zx;&)
G1(F2(A)) —— G1(F3(4))

Go (0‘,/4) ° ﬁFz (A) = ﬂF:s (A) oGy (0(;1), ﬁFQ(A>| |ﬁF3(A)

Ga(F2(4)) —— Ga(F3(4))

’
Ga aly

forf: G1 = Gaata/,: F2(A) — F3(A), and thus commutes. Thus we

have

(B op)*(a'oa))y=((f *a')o(f*a)),
foreach A € Obj(C) and therefore
(B *a)o(fxa)=(f op)*(a"0a).

This finishes the proof.
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018C 8.8.5 Propertiesof Natural Transformations

018D Proposition8.8.5.1.1. LetF,G: C =3 D be functors. The following data are
equivalent:®

018E 1. Anatural transformationa: F = G.

018F 2. Afunctor [«] : C — D? filling the diagram
D

/ &vo

C —Il«] > DL,

evy

/

D

018G 3. Afunctor [a]: C x 1 — D filling the diagram

C

evp

/

Cx1l —[«l> D.

evy

N

C

Proof. From [tem1toItem 2 and Back: We may identify D1 with Arr(D). Given
a natural transformation a: F = G, we have a functor

Al aA

35Taken from [MO 64365].
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making the diagram in Item 2 commute. Conversely, every such functor gives

rise to a natural transformation from F to G, and these constructions are

inverse to each other.

From Item 2 to Item 3 and Back: This follows from Item 3 of Proposition 8.9.1.1.2.
O

8.8.6 Natural Isomorphisms

Let C and D be categoriesand let F, G: C = D be functors.

Definition 8.8.6.1.1. A natural transformation «: F = G is a natural
isomorphism if there exists a natural transformation ! : G = F such
that

ot o =idp,
aoal =idg.
Proposition 8.8.6.1.2. leta: F = G be a natural transformation.

1. Characterisations. The following conditions are equivalent:

(@) The natural transformation « is a natural isomorphism.

(b) Foreach A € Obj(C), the morphisma: F4 — G4isaniso-
morphism.

2. Componentwise Inverses of Natural Transformations Assemble Into Natural
Transformations. Leta~1: G = F be a transformation such that, for
each A € Obj(C), we have

idr(a),

-1
Ay Oap
-1 .
apoa, =idg).
Then a1 is a natural transformation.

Proof. Item 1, Characterisations: The implication Item1a = Item1bis clear,
whereas the implication Item 1b = Item1a follows from Item 2.

Item 2, Componentwise Inverses of Natural Transformations Assemble Into Nat-
ural Transformations: The naturality condition for ! corresponds to the
commutativity of the diagram

ca) 2 G(B)

-1

F(4) < F(B)

-1

N
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foreach A, B € Obj(C) andeachf € Hom¢ (A, B). Consideringthediagram

G(f)

ay (1) ay
F(A) —F() — F(B)

oA (2) ap

G(A) G(B),

G(f)
where the boundary diagram as well as Subdiagram (2) commute, we have
G(f) = G(f) o idg(a)

=G(f) oaAoazl

=apoF(f)o a;l.
Postcomposing both sides with a;;l, we get
algl oG(f) = algl oago F(f) o a;l

= idp(s) © F(f) o a;"
=F(f)oay’,

which is the naturality condition we wanted to show. Thus « ! is a natural
transformation. O

0180 8.9 Categories of Categories

018R 8.9.1 Functor Categories
Let C be a category and D be a small category.

018S Definition 8.9.1.1.1. The category of functors from C to D>° is the category
Fun(C, D)* where

- Objects. The objects of Fun(C, D) are functors from C to D.

- Morphisms. Foreach F, G € Obj(Fun(C, D)), we have

HomFun(c.0) (F, G) £ Nat(F, G).

36 Fyrther Terminology: Also called the functor category Fun(C, D).
37 Further Notation: Also written D€ and [C, D].
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- Identities. For each F € Obj(Fun(C, D)), the unit map

Fun(C,D
1F”n( ), pt — Nat(F, F)

of Fun(C, D) at F is given by
id; ") =idp

’

where idp: F = F is the identity natural transformation of F of
Example 8.8.2.1.4.

- Composition. Foreach F, G, H € Obj(Fun(C, D)), the composition
map

of*MS): Nat(G, H) x Nat(F,G) — Nat(F, H)

of Fun(C, D) at (F, G, H) is given by

Fun(C,D) _ def
°poi  2=Boa

where 8 o « is the vertical composition of « and 8 of Item 1 of Proposi-

tion 8.8.3.1.2.

018T Proposition 8.9.1.1.2. Let C and D be categoriesandletF: C — Dbea
functor.

018U 1. Functoriality. The assignments C, D, (C, D) +— Fun(C, D) define
functors
Fun(C,—3): Cats — Cats,
Fun(—1, D): Cats®? — Cats,

Fun(—1, —2): Cats®® x Cats — Cats.

018V 2. 2-Functoriality. The assignmentsC, D, (C, D) — Fun(C, D) define
2-functors
Fun(C, —2): Catsy — Catsy,
Fun(-1,D): Catsy” — Catsp,

Fun(—1,—2): Catsy’ x Cats; — Catso.

018W 3. Adjointness. We have adjunctions

Cx—
~— ™
(Cx—+Fun(C,-)): Cats + Cats,
—~—
Fun(C,-)
-xXD
~— ™
(= XD 4Fun(D,-)): Cats 1 Cats,
~
Fun(D,-)
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witnessed by bijections of sets

Homcas(C X D, E) = Homcais (D, Fun(C, &)),
Homcats(C X D, E) = Homcats(C, Fun(D, &)),

natural in C, D, & € Obj(Cats).

4. 2-Adjointness. We have 2-adjunctions

Cx—
~—
(Cx—=4Fun(C,-)): Catsy <+ Catsy,
S~
Fun(C,-)
-xXD
~—
(-xD 4Fun(D,-)): Cats, 1. Catsy,
~
Fun(D,-)

witnessed by isomorphisms of categories

Fun(C x D, &) = Fun(D, Fun(C, &)),
Fun(C x D, &) = Fun(C, Fun(D, &)),

natural in C, D, & € Obj(Cats)).

. Interaction With Punctual Categories. We have a canonicalisomorphism

of categories
Fun(pt,C) = C,

natural in C € Obj(Cats).

. Objectwise Computation of Co/Limits. Let

D: T — Fun(C,D)
be adiagramin Fun(C, D). We have isomorphisms

lim(D) 4

IR

lim(Di(4)),

colim(D) 4 CQ“Im(Di(A))r

1R

naturallyin A € Obj(C).

. Interaction With Co/Completeness. IfE iscof/complete, thensoisFun(C, &).

. Monomorphisms and Epimorphisms. Let«: F = G be a morphism of

Fun(C, D). The following conditions are equivalent:
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(@) The natural transformation
a:F—=G

isa monomorphism (resp. epimorphism) in Fun(C, D).
(b) Foreach A € Obj(C), the morphism

ap-: FA - GA
is a monomorphism (resp. epimorphism) in D.

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item 5, Interaction With Punctual Categories: Omitted.

Item 6, Objectwise Computation of Co/Limits: Omitted.

Item 7, Interaction With Co/Completeness: This follows from 22.
Item 8, Monomorphisms and Epimorphisms: Omitted.

8.9.2 The Category of Categories and Functors

Definition 8.9.2.1.1. The category of (small) categories and functors is the

category Cats where
- Objects. The objects of Cats are small categories.

- Morphisms. For each C, D € Obj(Cats), we have

def

Homcats(C, D) = Obj(Fun(C, D)).

- Identities. For each C € Obj(Cats), the unitmap
15“5: pt — Homcais(C, C)
of Catsat C is defined by

. def .
|dgats = ide,

whereidc: C — Cistheidentity functor of C of Example 8.4.1.1.4.

- Composition. Foreach C, D, & € Obj(Cats), the composition map

Og,agt;g: Homcats (D, &) X Homcats(C, D) — Homcars(C, E)
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of Catsat (C, D, &) is given by

def
GoSs FZGoF,

where G o F: C — & is the composition of F and G of Defini-
tion 8.4.1.1.5.

Proposition 8.9.2.1.2. Let C be a category.
1. Co/Completeness. The category Cats is complete and cocomplete.

2. Cartesian Monoidal Structure. The quadruple (Cats, X, pt, Fun) is a
Cartesian closed monoidal category.

Proof. Item 1, Co/Completeness: Omitted.
Item 2, Cartesian Monoidal Structure: Omitted. m|

8.9.3 The 2-Category of Categories, Functors, and Natural Trans-
formations

Definition 8.9.3.1.1. The 2-category of (small) categories, functors, and
natural transformations is the 2-category Cats, where

- Objects. The objects of Cats; are small categories.

- Hom-Categories. For each C, D € Obj(Catsy), we have
def

Homcats, (C, D) = Fun(C, D).

- Identities. For each C € Obj(Catsy), the unit functor
1gat52: pt — Fun(C,C)

of Cats; at C is the functor picking the identity functoridc: C — C
of C.

- Composition. Foreach C, D, E € Obj(Cats;), the composition bifunc-
tor

og,aésis: HomCat52 (D, 8) X HomCatsz (C’D) - HomCats2 (Cra)

of Catsp at (C, D, &) is the functor where

— ActiononObjects. Foreachobject (G, F) € Obj(Homcats, (D, &) X Homcats, (C, D)),

we have
Cats def
°cpe(GF)=GokF.


https://topological-modular-forms.github.io/the-clowder-project/tag/0196
https://topological-modular-forms.github.io/the-clowder-project/tag/0197
https://topological-modular-forms.github.io/the-clowder-project/tag/0198
https://topological-modular-forms.github.io/the-clowder-project/tag/0199
https://topological-modular-forms.github.io/the-clowder-project/tag/019A

019B

019C

19D

019E

019F

019G

8.A. Other Chapters 437

— Action on Morphisms. For each morphism (f,a): (K,H) =
(G, F) of Homcats, (D, E) X Homcats, (C, D), we have

Cat def
ocps(Ba) =B *a,

where  x a is the horizontal composition of « and f8 of Defini-
tion 8.8.4.1.1.

Proposition 8.9.3.1.2. Let C be a category.

1.

2-Categorical Co/Completeness. The 2-category Cats, is complete and
cocomplete as a 2-category, having all 2-categorical and bicategorical
co/limits.

Proof. Item 1, Co/Completeness: Omitted. m]

8.9.4 The Category of Groupoids

Definition 8.9.4.1.1. The category of (small) groupoids is the full subcate-
gory Grpd of Cats spanned by the groupoids.

8.9.5 The 2-Category of Groupoids

Definition 8.9.5.1.1. The 2-category of (small) groupoids is the full sub-2-
category Grpd, of Cats; spanned by the groupoids.

Appendices

8.A OtherChapters
Sets 6. Constructions With Relations
1. Sets 7. Equivalence Relations and
2. Constructions With Sets Apartness Relations
3. Pointed Sets Category Theory
4. Tensor Products of Pointed 8. Categories
Sets Bicategories
Relations . .
9. Types of Morphisms in Bicate-
5. Relations gories


https://topological-modular-forms.github.io/the-clowder-project/tag/019B
https://topological-modular-forms.github.io/the-clowder-project/tag/019C
https://topological-modular-forms.github.io/the-clowder-project/tag/019D
https://topological-modular-forms.github.io/the-clowder-project/tag/019E
https://topological-modular-forms.github.io/the-clowder-project/tag/019F
https://topological-modular-forms.github.io/the-clowder-project/tag/019G

PartlV

Bicategories

438



Chapter9

Types of Morphisms in
Bicategories

019H Inthis chapter, we study special kinds of morphisms in bicategories:

1. Monomorphisms and Epimorphisms in Bicategories (Sections 9.1and 9.2).
There is a large number of different notions capturing the idea of a

“monomorphism” or of an “epimorphism”in a bicategory.

Arguably, the notion that best captures these concepts is that of a
pseudomonic morphism (Definition 9.1.10.1.1) and of a pseudoepic mor-
phism (Definition 9.2.10.1.1), although the other notions introduced in

Sections 9.1and 9.2 are also interesting on their own.
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9.1 Monomorphisms in Bicategories
9.1.1 Representably Faithful Morphisms
Let C be a bicategory.

Definition 9.1.1.1.1. A1-morphismf: A — BofC isrepresentably faithful’
if, foreach X € Obj(C), the functor

fi: Home (X, A) —» Home (X, B)
given by postcomposition by f is faithful.

Remark 9.1.1.1.2. Indetail, f is representably faithful if, for all diagramsin C
of the form

¢
/—\ f
X f.A— B,
s
v

if we have
idf*a:idf*ﬁ,

thena = §.

"Further Terminology: Also called simply a faithful morphism, based on Item 1 of
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019N Example 9.1.1.1.3. Here are some examples of representably faithful mor-
phisms.

019P 1. Representably Faithful Morphisms in Catsy. The representably faithful
morphisms in Cats; are precisely the faithful functors; see Item 1 of
Proposition 8.5.1.1.2.

019Q 2. Representably Faithful Morphisms in Rel. Every morphism of Rel is
representably faithful; see Item 1 of Proposition 5.3.8.1.1.
219R 9.1.2 Representably Full Morphisms
Let C be a bicategory.

019S Definition9.1.2.1.1. A 1-morphismf: A — BofC is representably full if,
foreach X € Obj(C), the functor

fi: Home (X, A) — Home (X, B)
given by postcomposition by f is full.

019T Remark9.1.2.1.2. Indetail, f is representably full if, for each X € Obj(C)
and each 2-morphism

fod
x ¢ B
M o > o]
B:fop=roy, X i
fov
of C, there exists a 2-morphism
¢
: X o A
a: g =, A
v
of C such that we have an equality
¢ fo¢
TR —_— PETERS
x o TaLs = x ¢ "B
~_"_ ~_'"_
v fov

of pasting diagrams in C, i.e. such that we have

ﬁ:idf*a.

Example 9.1.1.1.3.
2Further Terminology: Also called simply a full morphism, based on Item 1 of
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Example9.1.2.1.3. Here are some examples of representably full morphisms.

1. Representably Full Morphisms in Cats,. The representably full mor-
phisms in Cats; are precisely the full functors; see Item 1 of Proposi-
tion 8.5.2.1.2.

2. Representably Full Morphismsin Rel. The representably full morphisms
in Rel are characterised in Item 2 of Proposition 5.3.8.1.1.
9.1.3 Representably Fully Faithful Morphisms
Let C be a bicategory.

Definition 9.1.3.1.1. A 1-morphismf: A — Bof C is representably fully
faithful® if the following equivalent conditions are satisfied:

1. The 1-morphism f is representably faithful (Definition 9.1.1.1.1) and
representably full (Definition 9.1.2.1.1).

2. Foreach X € Obj(C), the functor
fi: Home (X, A) — Home (X, B)
given by postcomposition by f is fully faithful.

Remark 9.1.3.1.2. Indetail, f is representably fully faithful if the conditions
in Remark 9.1.1.1.2 and Remark 9.1.2.1.2 hold:

1. Foralldiagramsin C of the form
¢
/—\ f
X p A — B,
W,
14

if we have
idf*a:idf*ﬁ,

thena = §.

2. Foreach X € Obj(C) and each 2-morphism

fog
P TR
B:fop=foy, X\TCLB
oy

Example9.1.2.1.3.
3 Further Terminology: Also called simply a fully faithful morphism, based on Item 1 of


https://topological-modular-forms.github.io/the-clowder-project/tag/019U
https://topological-modular-forms.github.io/the-clowder-project/tag/019V
https://topological-modular-forms.github.io/the-clowder-project/tag/019W
https://topological-modular-forms.github.io/the-clowder-project/tag/019X
https://topological-modular-forms.github.io/the-clowder-project/tag/019Y
https://topological-modular-forms.github.io/the-clowder-project/tag/019Z
https://topological-modular-forms.github.io/the-clowder-project/tag/01A0
https://topological-modular-forms.github.io/the-clowder-project/tag/01A1

01A2

01A3

01A4

01A5

01A6

01A7

9.1. Monomorphisms in Bicategories 443

of C, there exists a 2-morphism

¢
. X /\ A
a: =, A
v
of C such that we have an equality
¢ fo¢
/\ —_— /_\
x W TaLsp = x ¢ "B
~_'"_“ ~_'"_
14 foy

of pasting diagrams in C, i.e. such that we have
[3 = idf * Q.
Example 9.1.3.1.3. Here are some examples of representably fully faithful
morphisms.

1. Representably Fully Faithful Morphismsin Catsy. The representably fully
faithful morphismsin Cats; are precisely the fully faithful functors;
see Item 5 of Proposition 8.5.3.1.2.

2. Representably Fully Faithful Morphisms in Rel. The representably fully
faithful morphisms of Rel coincide (Item 3 of Proposition 5.3.8.1.1)
with the representably full morphismsin Rel, which are characterised
in Item 2 of Proposition 5.3.8.1.1.

9.1.4 Morphisms Representably Faithful on Cores

Let C be a bicategory.

Definition 9.1.4.1.1. A1l-morphismf: A — BofC isrepresentably faithful
on cores if, for each X € Obj(C), the functor

f.: Core(Hom¢ (X, A)) — Core(Hom¢ (X, B))
given by postcomposition by f is faithful.

Remark 9.1.4.1.2. In detail, f is representably faithful on cores if, for all
diagramsin C of the form

¢
/—\ f
X i A— B,
I,
v
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if & and f3 are 2-isomorphisms and we have
idf*a:idf*ﬂ,

thena = §.

9.1.5 Morphisms Representably Full on Cores
Let C be a bicategory.

Definition 9.1.5.1.1. A 1-morphismf: A — Bof C is representably full on
cores if, foreach X € Obj(C), the functor

f.: Core(Hom¢ (X, A)) — Core(Hom¢ (X, B))
given by postcomposition by f is full.

Remark 9.1.5.1.2. Indetail, f is representably full on cores if, foreach X €
Obj(C) and each 2-isomorphism

fod
= x el B
:fo oY,
B:fop=foy, X
foy
of C, there exists a 2-isomorphism
¢
L= X o) A
a: p=v, A
v
of C such that we have an equality
¢ fod
TR —_ FTER
x Tas = x ¢ "B
~—__“ \f/
12 oy

of pasting diagrams in C, i.e. such that we have

[3=idf*a.

01AB 9.1.6 Morphisms Representably Fully Faithful on Cores

Let C be a bicategory.
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01AC Definition 9.1.6.1.1. A 1-morphismf: A — BofC is representably fully
faithful on cores if the following equivalent conditions are satisfied:

1. The 1-morphismf isrepresentably faithful on cores (Definition 9.1.5.1.1)
Q1AD and representably full on cores (Definition 9.1.4.1.1).

01AE 2. Foreach X € Obj(C), the functor
f«: Core(Hom¢ (X, A)) — Core(Hom¢ (X, B))
given by postcomposition by f is fully faithful.

01AF Remark 9.1.6.1.2. In detail, f is representably fully faithful on cores if the
conditions in Remark 9.1.4.1.2 and Remark 9.1.5.1.2 hold:

1. Foralldiagramsin C of the form
¢
/\ f
X p A — B,
.,
v

if « and 8 are 2-isomorphisms and we have
idf*ﬂl:idf*ﬂ,
thena = .

2. Foreach X € Obj(C) and each 2-isomorphism

fod
~ TR
: , X B
B:fop=foy A
foy
of C, there exists a 2-isomorphism
¢
~ PEETERS
a:d=v, X \“l_l/ A
14
of C such that we have an equality
¢ fo¢
P EETERS —_ FETER
x J Tats = x7¢ "B
~_"_ ~_"_
14 fov

of pasting diagrams in C, i.e. such that we have

/3=idf*0(.
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9.1.7 Representably Essentially Injective Morphisms

Let C be a bicategory.

Definition 9.1.7.1.1. A 1-morphismf: A — Bof C is representably essen-
tially injective if, for each X € Obj(C), the functor

fi: Home (X, A) —» Hom¢ (X, B)
given by postcomposition by f is essentially injective.

Remark9.1.7.1.2. Indetail, f is representably essentially injective if, for each
pair of morphisms ¢, v: X =3 Aof C, the following condition is satisfied:

(%) Iffop=foy,thend = vy.

9.1.8 Representably Conservative Morphisms
Let C be a bicategory.

Definition 9.1.8.1.1. A 1-morphismf: A — Bof C is representably conser-
vative if, for each X € Obj(C), the functor

fi: Home (X, A) —» Home (X, B)
given by postcomposition by f is conservative.

Remark 9.1.8.1.2. Indetail, f is representably conservative if, for each pair of
morphisms ¢, ¥ : X =3 Aand each 2-morphism

a:p=vy, X

of C, if the 2-morphism

idfxa:fop=foy, X idx« B

is a 2-isomorphism, thensois a.
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9.1.9 Strict Monomorphisms
Let C be a bicategory.

Definition 9.1.9.1.1. A 1-morphismf: A — B of C is a strict monomor-
phismif, foreach X € Obj(C), the functor

f«: Home (X, A) —» Hom¢ (X, B)
given by postcomposition by f is injective on objects, i.e. its action on objects
f«: Obj(Hom¢ (X, A)) — Obj(Hom¢ (X, B))
is injective.

Remark 9.1.9.1.2. In detail, f is a strict monomorphism in C if, for each
diagramin C of the form

f

X 3 A— B,

iffop=foy,theng =vy.
Example 9.1.9.1.3. Here are some examples of strict monomorphisms.

1. Strict Monomorphisms in Cats,. The strict monomorphismsin Catsy
are precisely the functors which are injective on objects and injective
on morphisms; see Item 1 of Proposition 8.6.2.1.2.

2. Strict Monomorphisms in Rel. The strict monomorphismsin Rel are
characterised in Proposition 5.3.7.1.1.
9.1.10 Pseudomonic Morphisms
Let C be a bicategory.

Definition 9.1.10.1.1. A 1-morphismf: A — Bof C is pseudomonicif, for
each X € Obj(C), the functor

fi: Home (X, A) —» Hom¢ (X, B)
given by postcomposition by f is pseudomonic.

Remark 9.1.10.1.2. Indetail, a 1-morphismf: A — BofC is pseudomonic
if it satisfies the following conditions:
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01AX 1. Foralldiagramsin C of the form
¢
/—\ f
X A — B,
K
14

if we have
idf*d(:idf*ﬂ,

thena = j.

Q1AY 2. Foreach X € Obj(C) and each 2-isomorphism

fo¢
~ TR
: , X B
p:fop=foy, X |
foy
of C, there exists a 2-isomorphism
¢
~ TR
: , X A
IR ICD
v
of C such that we have an equality
¢ fo¢
0 N —_— PTER
x o Talp = x ¢ B
~_"_ ~_'"_
1% foy

of pasting diagrams in C, i.e. such that we have
/3 = idf * a.

01AZ Proposition9.1.10.1.3. Letf: A — Bbea 1-morphismof C.
01B0 1. Characterisations. The following conditions are equivalent:

01B1 (@) The morphismf is pseudomonic.

(b) The morphism f is representably full on cores and representably
01B2 faithful.

Example9.1.3.1.3.
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01B3 (©) We have an isocomma square of the form
A
eq. L 4
AZAXpA |k
%
¥
A = B

in C up to equivalence.

01B4 2. Interaction With Cotensors. If C has cotensors with 1, then the follow-
ing conditions are equivalent:

(@) The morphism f is pseudomonic.

(b) We have an isocomma square of the form

eq. —
AEAleFB, F

in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.
Item 2, Interaction With Cotensors: Omitted. ]

0185 9.2 Epimorphismsin Bicategories

01B6 9.2.1 Corepresentably Faithful Morphisms
Let C be a bicategory.

01B7 Definition9.2.1.1.1. A1l-morphismf: A — BofC is corepresentably faith-
ful if, foreach X € Obj(C), the functor

f*: Hom¢ (B, X) — Homg (A, X)
given by precomposition by f is faithful.

01B8 Remark9.2.1.1.2. Indetail, f is corepresentably faithful if, for all diagrams

in C of the form
¢
f /\
A— B g X,
S,
v
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if we have
a*ideﬂ*idf,
thena = §.

01B9 Example9.2.1.1.3. Here are some examples of corepresentably faithful mor-
phisms.

01BA 1. Corepresentably Faithful Morphismsin Cats,. The corepresentably faith-
ful morphismsin Cats, are characterised in Item 4 of Proposition 8.5.1.1.2.

01BB 2. Corepresentably Faithful Morphismsin Rel. Every morphism of Rel is
corepresentably faithful; see Item 1 of Proposition 5.3.10.1.1.
21BC 9.2.2 Corepresentably Full Morphisms
Let C be a bicategory.

01BD Definition9.2.2.1.1. A 1-morphismf: A — Bof C is corepresentably full
if, foreach X € Obj(C), the functor

f*: Homg(B, X) — Hom¢ (A, X)
given by precomposition by f is full.

01BE Remark9.2.2.1.2. Indetail, f is corepresentably full if, for each X € Obj(C)
and each 2-morphism

¢of
TR

of
of C, there exists a 2-morphism
¢
TR
a:p=v, B \L X
v
of C such that we have an equality
¢ ¢of
TR —_ TR
AL B Tx = aTd T x
~__ 7 ~__
v vof

of pasting diagrams in C, i.e. such that we have

[3=0(*idf.
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01BF Example 9.2.2.1.3. Here are some examples of corepresentably full mor-
phisms.

01BG 1. Corepresentably Full Morphisms in Catsy. The corepresentably full mor-
phismsin Cats, are characterised in Item 5 of Proposition 8.5.2.1.2.

01BH 2. Corepresentably Full Morphismsin Rel. The corepresentably full mor-
phismsin Rel are characterised in ?? of Proposition 5.3.8.1.1.
01BJ 9.2.3 Corepresentably Fully Faithful Morphisms
Let C be a bicategory.

01BK Definition9.2.3.1.1. A 1-morphismf: A — Bof C is corepresentably fully
faithful* if the following equivalent conditions are satisfied:

1. The 1-morphism f is corepresentably full (Definition 9.2.2.1.1) and
01BL corepresentably faithful (Definition 9.2.1.1.1).

01BM 2. Foreach X € Obj(C), the functor
f*: Hom¢(B, X) — Homg (A, X)
given by precomposition by f is fully faithful.

01BN Remark9.2.3.1.2. Indetail, f is corepresentably fully faithful if the conditions
in Remark 9.2.1.1.2 and Remark 9.2.2.1.2 hold:

1. Forall diagramsin C of the form
¢
f A
A— B X,
W,
v

if we have
(Jt*idf=ﬁ*idf,

thena = §.
2. Foreach X € Obj(C) and each 2-morphism
¢of

T
B:pof = vyof, A\ﬁlle
1//0

4Further Terminology: Corepresentably fully faithful morphisms have also been called
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of C, there exists a 2-morphism

¢
TR
: , B X
wé=v B
14
of C such that we have an equality
¢ ¢of
P TR - TS
ALB T x = aTe Tx
~__7 ~_'_
v wof

of pasting diagrams in C, i.e. such that we have
ﬁ =a % idf.
Example 9.2.3.1.3. Here are some examples of corepresentably fully faithful
morphisms.

1. Corepresentably Fully Faithful Morphisms in Cats,. The fully faithful epi-
morphismsin Cats; are characterised in Item 9 of Proposition 8.5.3.1.2.

2. Corepresentably Fully Faithful Morphisms in Rel. The corepresentably
fully faithful morphisms of Rel coincide (Item 3 of Proposition 5.3.10.1.1)
with the corepresentably full morphisms in Rel, which are charac-
terised in Item 2 of Proposition 5.3.10.1.1.

9.2.4 Morphisms Corepresentably Faithful on Cores
Let C be a bicategory.

Definition 9.2.4.1.1. A 1-morphismf: A — B of C is corepresentably
faithful on cores if, for each X € Obj(C), the functor

f*: Core(Hom¢g(B, X)) — Core(Hom¢ (A, X))
given by precomposition by f is faithful.

Remark 9.2.4.1.2. Indetail, f is corepresentably faithful on cores if, for all
diagramsin C of the form

¢
f /\
A— B 6 X,
L,
14
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if & and f3 are 2-isomorphisms and we have
(Jt*idf=ﬂ*idf,

thena = §.

9.2.5 Morphisms Corepresentably Full on Cores

Let C be a bicategory.

Definition 9.2.5.1.1. A 1-morphismf: A — BofC is corepresentably full
on cores if, for each X € 0bj(C), the functor

f*: Core(Hom¢ (B, X)) — Core(Hom¢ (A, X))
given by precomposition by f is full.

Remark 9.2.5.1.2. In detail, f is corepresentably full on cores if, for each
X € 0bj(C) and each 2-isomorphism

¢of
- ATe T x
. o] > of,
B:gof=vyof, A s
yof
of C, there exists a 2-isomorphism
¢
~ PETER
a:p=vy, B \L X
14
of C such that we have an equality
¢ ¢of
TR —_ TR
AL BT x = aTd Cx
~__ \_f/7
14 Vo

of pasting diagrams in C, i.e. such that we have

[3=a*idf.

lax epimorphisms in the literature (e.g. in [Ada+01]), though we will always use the name
“corepresentably fully faithful morphism” instead in this work.
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9.2.6 Morphisms Corepresentably Fully Faithful on Cores

Let C be a bicategory.

Definition 9.2.6.1.1. A 1-morphismf: A — Bof C is corepresentably fully
faithful on cores if the following equivalent conditions are satisfied:

1. The 1-morphism f is corepresentably full on cores (Definition 9.2.5.1.1)
and corepresentably faithful on cores (Definition 9.2.1.1.1).

2. Foreach X € Obj(C), the functor
f*: Core(Hom¢ (B, X)) — Core(Hom¢ (A, X))
given by precomposition by f is fully faithful.

Remark 9.2.6.1.2. Indetail, f is corepresentably fully faithful on cores if the
conditionsin Remark 9.2.4.1.2 and Remark 9.2.5.1.2 hold:

1. Forall diagramsin C of the form

¢
AL e x,
4
if « and 8 are 2-isomorphisms and we have
a x idf = % idy,
thena = .

2. Foreach X € Obj(C) and each 2-isomorphism

¢of
~ TR
: , A X
p:pof=vof 44|
yof
of C, there exists a 2-isomorphism
¢
~ TR
: , B X
4 BT
14
of C such that we have an equality
¢ ¢of
TR —_ TR
AL BT x = aTd Cx
~_'_~ ~__
v of

of pasting diagrams in C, i.e. such that we have

[3=0(*idf.
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9.2.7 Corepresentably Essentially Injective Morphisms
Let C be a bicategory.

Definition 9.2.7.1.1. A 1-morphismf: A — B of C is corepresentably
essentially injective if, for each X € Obj(C), the functor

f*: Hom¢ (B, X) — Homg (A, X)
given by precomposition by f is essentially injective.

Remark9.2.7.1.2. Indetail, f is corepresentably essentially injective if, for
each pair of morphisms ¢, v : B = X of C, the following condition is satis-
fied:

(k) Ifpof =yof,theng = y.

9.2.8 Corepresentably Conservative Morphisms

Let C be a bicategory.

Definition 9.2.8.1.1. A 1-morphismf: A — B of C is corepresentably
conservative if, foreach X € Obj(C), the functor

f*: Hom¢ (B, X) — Homg (A, X)
given by precomposition by f is conservative.

Remark9.2.8.1.2. Indetail, f is corepresentably conservative if, for each pair
of morphisms ¢, ¥ : B =3 X and each 2-morphism

a:¢$w, B

of C, if the 2-morphism

axidi:gof = yof, A axidg X

is a 2-isomorphism, then sois a.
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9.2.9 Strict Epimorphisms
Let C be a bicategory.

Definition 9.2.9.1.1. A 1-morphismf: A — Bisa strictepimorphisminC
if, foreach X € Obj(C), the functor

f*: Hom¢ (B, X) — Homg (A, X)
given by precomposition by f is injective on objects, i.e. its action on objects
f+: Obj(Hom¢ (B, X)) — Obj(Hom¢ (A, X))
is injective.

Remark9.2.9.1.2. Indetail, f is a strict epimorphism if, for each diagram in
C of the form

f ¢
A— B 3 X,
14
ifpof=yof,theng =vy.
Example 9.2.9.1.3. Here are some examples of strict epimorphisms.

1. Strict Epimorphisms in Catsp. The strict epimorphisms in Cats; are
characterised in Item 1 of Proposition 8.6.3.1.2.

2. Strict Epimorphisms in Rel. The strict epimorphismsin Rel are charac-

terised in Proposition 5.3.9.1.1.

9.2.10 Pseudoepic Morphisms
Let C be a bicategory.

Definition 9.2.10.1.1. A 1-morphismf: A — Bof C is pseudoepic if, for
each X € Obj(C), the functor

f*: Hom¢g(B, X) — Homg (A, X)
given by precomposition by f is pseudomonic.

Remark 9.2.10.1.2. Indetail,a 1I-morphismf: A — BofC is pseudoepic if
it satisfies the following conditions:
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01CJ 1. Foralldiagramsin C of the form

¢
f TR
A— B X,
e
v
if we have
a*idf:ﬂ*idf,
thena = §.

01CK 2. Foreach X € Obj(C) and each 2-isomorphism

pof
~ TR
f:¢of=wof A8 X

vof
of C, there exists a 2-isomorphism
¢
~ TR
a:p=v, B \L X
14
of C such that we have an equality
¢ ¢of
TR —_ TR
AL BT x = aTd Cx
~_'_“ ~__
1% yof

of pasting diagrams in C, i.e. such that we have
[3 =ax idf.

01CL Proposition9.2.10.1.3. Letf: A — Bbea l-morphismof C.
01CM 1. Characterisations. The following conditions are equivalent:

Q1CN (@) The morphismf is pseudoepic.

(b) The morphism f is corepresentably full on cores and corepre-
Q1CP sentably faithful.
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01CQ (©) We have an isococomma square of the form
B2 B
eq. A A
B=BlIaB, | o |F
&/
B - A
in C up to equivalence.
Proof. Item 1, Characterisations: Omitted. O
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Sets 6. Constructions With Relations
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) ) Apartness Relations
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Relations

9. Types of Morphisms in Bicate-

5. Relations gories


https://topological-modular-forms.github.io/the-clowder-project/tag/01CQ

PartV

Extra Part

459



Chapter10

Miscellaneous Notes

Q1CR
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01cs 10.1 To Do List
01CT 10.1.1  Omitted Proofs To Add

Truth does not do as much good in

He Tak 61aroTBopHa UCTMHA, Kak the world as the appearance of truth
3/10BpesiHa ee BUAUMOCTb. does evil.
Januua JaHKoecKuii Daniil Dankovsky

There’s a very large number of omitted proofs throughout these notes. Here
[ list them in decreasing order of how nice it would be to add them.

01CU Remark10.1.1.1.1. Proofs that need to be added at some point:

1.

2. ¢

2.
2.

Horizontal composition of natural transformations is associative: ??
of 22.

Fully faithful functors are essentially injective: 2? of 22.

460
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Proofs that would be very nice to be added at some point:
1. Properties of pseudomonic functors: 2.
2. Characterisation of fully faithful functors: 2?2 of 22,
Proofs that would be nice to be added at some point:
1. Properties of posetal categories: ??.
2. The quadruple adjunction between categories and sets: 22.
3. Properties of groupoid completions: 22.
4. Properties of cores: 2.
5. F, faithful iff F faithful: 22 of 22.
6. F, fulliff F full: 22 of 22.

7. Injective on objects functors are precisely the isocofibrations in Catss:
2?2of 22,

8. Characterisations of monomorphisms of categories: ?? of 22.
9. Epimorphisms of categories are surjective on objects: 22 of 22.

10. Properties of pseudoepic functors: ?2.

21Ccv 10.1.2 Things To Explore/Add
Here we list things to be explored/added to this work in the future.
01CW Remark10.1.2.1.1. Set theory through a category theory lens:
1. Isbell duality for sets.
2. Density comonads and codensity monads for sets.
Relations:
1. 2-Categorical monomorphisms and epimorphismsin Rel.
2. Co/limitsin Rel.

3. Apartness composition, categorical properties of Rel with apartness,
and apartness relations.


https://topological-modular-forms.github.io/the-clowder-project/tag/01CV
https://topological-modular-forms.github.io/the-clowder-project/tag/01CW

10.1. To Do List 462

4. Apartness defines a composition for relations, but its analogue

QDpdg/ p,  La?,
AeC

fails to be unital for profunctors. Is there a less obvious analogue of
apartness composition for profunctors?

5. Codensity monad Ran;(]) of arelation (What about Rift;(])?)
6. Relative comonads in the 2-category of relations

7. Discrete fibrations and Street fibrations in Rel.

8. Consider adding the sections

- The Monoidal Bicategory of Relations
- The Monoidal Double Category of Relations

to Relations.
Spans:

1. Universal property of the bicategory of spans, https://ncatlab.or
g/nlab/show/span

2. Write about cospans.
Un/Straightening:

1. Write proper sections on straightening for lax functors from sets to
Rel or Span (displayed sets)

Categories:
1. Expand ??and add a prooftoit.

2. Sections and retractions; retracts, https://ncatlab.org/nlab/s
how/retract.

3. Regularcategories: https://arxiv.org/pdf/2004.08964.pdf.

4. Are pseudoepic functors those functors whose restricted Yoneda em-
bedding is pseudomonic and Yoneda preserves absolute colimits?

5. Absolutely dense functors enriched over R* apparently reduce to topo-
logical density
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Types of Morphisms in Categories:
1. Behaviourin Fun(C, D), e.g. pointwise sectionsvs.sectionsin Fun(C, D).
2. Afaithful functor from balanced category is conservative

Yoneda stuff:

1. Propertiesofrestricted Yonedaembedding, e.g.if therestricted Yoneda
embedding is full, then what can we conclude? Related: https:
//qchu.wordpress.com/2015/05/17/generators/

Adjunctions:

1. Adjunctions, units, counits, and fully faithfulnessasin https://ma
thoverflow.net/questions/100808/properties-of-funct
ors-and-their-adjoints.

2. Morphisms between adjunctions and bicategory Adj(C).

3. https://ncatlab.org/nlab/show/transformation+of+adjo
ints

Constructions With Categories:

1. Comparison between pseudopullbacks and isocomma categories: the

Ld
“evident” functor C x%° D — C Xg D is essentially surjective and
full, but not faithful in general.

Co/limits:

1. Add the characterisations of absolutely dense functors given in 22 to
»

2. Absolutely dense functors, https://ncatlab.org/nlab/sho
w/absolutely+dense+functor. Also theorem 1.1 here: http:
//www.tac.mta.ca/tac/volumes/8/n20/n20.pdf.

3. Dense functors, codense functors, and absolutely codense functors.
Co/ends:
1. Examples of co/ends: https://mathoverflow.net/a/461814

2. Cofinality for co/ends, https://mathoverflow.net/questions
/353876

Fibred category theory:


https://qchu.wordpress.com/2015/05/17/generators/
https://qchu.wordpress.com/2015/05/17/generators/
https://mathoverflow.net/questions/100808/properties-of-functors-and-their-adjoints
https://mathoverflow.net/questions/100808/properties-of-functors-and-their-adjoints
https://mathoverflow.net/questions/100808/properties-of-functors-and-their-adjoints
https://ncatlab.org/nlab/show/transformation+of+adjoints
https://ncatlab.org/nlab/show/transformation+of+adjoints
https://ncatlab.org/nlab/show/absolutely+dense+functor
https://ncatlab.org/nlab/show/absolutely+dense+functor
http://www.tac.mta.ca/tac/volumes/8/n20/n20.pdf
http://www.tac.mta.ca/tac/volumes/8/n20/n20.pdf
https://mathoverflow.net/a/461814
https://mathoverflow.net/questions/353876
https://mathoverflow.net/questions/353876

10.1. To Do List 464

1. Internal Hom in categories of co/Cartesian fibrations.

2. Tensor structures on fibered categories by Luca Terenzi: https://arxiv.
org/abs/2401.13491. Check also the other papers by Luca Terenzi.

3. https://ncatlab.org/nlab/show/cartesian+natural+tran
sformation (thisis a cartesian morphismin Fun(C, D) apparently)

4. CoCartesian fibration classifying Fun(F, G), https://mathoverfl
ow.net/questions/457533/cocartesian-fibration-class
ifying-mathrmfunf-g

Monoidal categories:

1. Free braided monoidal category with a braided monoid: https://
ncatlab.org/nlab/show/vine

Skew monoidal categories:

1. Does the E; tensor product of monoids admit a skew monoidal cate-
gory structure?

2. Isthere a (right?) skew monoidal category structure on Fun(C, D)
using right Kan extensions instead of left Kan extensions?

3. Similarly, are there skew monoidal category structures on the subcat-
egory of Rel( A, B) spanned by the functions using left Kan extensions
and left Kan lifts?

Higher categories:

1. Internal adjunctionsin Mod as in [JY21, Section 6.3]; see [JY21, Exam-
ple 6.2.6].

2. Comonads in the bicategory of profunctors.
Monoids:

1. Isbell’s zigzag theorem for semigroups: the following conditions are
equivalent:
(@ Amorphismf: A — Bofsemigroupsisan epimorphism.
(b) Foreachb € B, one of the following conditions is satisfied:
- We havef(a) =b.
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- There exist some m € N1 and two factorisations

b=apy1,

b= xpaom
connected by relations

ap = x141,

aiy1 = az)2,

X1d2 = X243,

A2m-1Ym = A2m
such that, foreach 1 < i < m, we havea; € Im(f).

Wikipediasaysinhttps://en.wikipedia.org/wiki/Isbell%2
7s_zigzag_theorem:

For monoids, this theorem can be written more concisely:
Types of morphisms in bicategories:

1. Behaviour in 2-categories of pseudofunctors (or lax functors, etc.), e.g.
pointwise pseudoepic morphisms in vs. pseudoepic morphisms in
2-categories of pseudofunctors.

2. Statements like “coequifiers are lax epimorphisms”, Item 2 of Exam-
ples2.4 of https://arxiv.org/abs/2109.09836, along with
most of the other statements/examples there.

3. Dense, absolutely dense, etc. morphisms in bicategories
Other:

1. https://qchu.wordpress.com/

2. https://aroundtoposes.com/

3. https://ncatlab.org/nlab/show/essentially+surjective
+and+full+functor

4. https://mathoverflow.net/questions/415363/objects-w
hose-representable-presheaf-is-a-fibration

5. https://mathoverflow.net/questions/460146/universa
1-property-of-isbell-duality
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10.

11.

12.

13.

14.

15.

16.

17.

18.

. http://www.tac.mta.ca/tac/volumes/36/12/36-12abs.htm

1 (Isbell conjugacy and the reflexive completion)

. https://ncatlab.org/nlab/show/enrichment+versus+inte

rnalisation

. The works of Philip Saville, https://philipsaville.co.uk/

. https://golem.ph.utexas.edu/category/2024/02/from_ca

rtesian_to_symmetric_mo.html

https://mathoverflow.net/q/463855 (One-object lax transfor-
mations)

https://ncatlab.org/nlab/show/analytic+completion+of
+atring

https://en.wikipedia.org/wiki/Quaternionic_analysis

https://arxiv.org/abs/2401.15051 (The Norm Functor over
Schemes)

https://mathoverflow.net/questions/407291/ (Adjunctions
with respect to profunctors)

https://mathoverflow.net/a/462726 (Prof is free completion
of Cats under right extensions)

there’s some cool stuffinhttps://arxiv.org/abs/2312.00990
(Polynomial Functors: A Mathematical Theory of Interaction), e.g. on
cofunctors.

https://ncatlab.org/nlab/show/adjoint+lifting+theore
m

https://ncatlab.org/nlab/show/Gabriel%E2%80%93Ulmer+
duality
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Codement product, see natural
transformation,
horizontal composition

Grothendieck groupoid

of a category, 377

groupoid, 377

groupoid completion, 377

indiscrete category

on aset, 375
Isbell's zigzag theorem, 409
isomorphism, 377
isomorphism of categories, 405

M

middle four exchange
in Cats, 423, 427

N

natural isomorphism, 431
natural transformation, 420
associated to a functor, 390

487

equality of, 421

horizontal composition, 425

identity natural
transformation, 421

vertical composition, 421

O

ordinal category, 364

P

posetal category, 366
associated to a poset, 365

postcomposition, 369

precomposition, 368

punctual category, 362

S

singleton category, see punctual
category
subcategory, 367
full, 367
lluf, 367
strictly full, 367
wide, 367

T

transformation between functors,
420
2-category
of small categories, 436
of small groupoids, 437

W

whiskering
left, 426
right, 426

/

(0, 1)-category, 366
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D

double category
of relations, 251

E

epimorphism
strict, 456

M

monomorphism
strict, 447

O

1-morphism

corepresentably
conservative, 455

corepresentably essentially
injective, 455

corepresentably faithful,
449

corepresentably faithful on
cores, 452

corepresentably full, 450

corepresentably full on
cores, 453

corepresentably fully
faithful, 451

corepresentably fully
faithful on cores, 454

pseudoepic, 456

pseudomonic, 447

representably conservative,
446

representably essentially
injective, 446

representably faithful, 440

representably faithful on
cores, 443

representably full, 441

representably full on cores,
444

representably fully faithful,
442

representably fully faithful
on cores, 445
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