The Clowder Project

2017-2024

The Clowder Project Authors

Version 01f3714, compiled on Apr 04, 2024.

Contents

Part I Sets 1
1 Sets 2
1.1 Sets and Functions 2
1.2 The Enrichment of Sets in Classical Truth Values 4
1.A Other Chapters 10
2 Constructions With Sets 11
2.1 Limits of Sets 12
2.2 Colimits of Sets 32
2.3 Operations With Sets 46
2.4 Powersets 62
2.A Other Chapters 99
3 Pointed Sets 100
3.1 Pointed Sets 100
3.2 Limits of Pointed Sets 106
3.3 Colimits of Pointed Sets 116
3.4 Constructions With Pointed Sets 128
3.A Other Chapters 133
4 Tensor Products of Pointed Sets 134
4.1 Bilinear Morphisms of Pointed Sets 137
4.2 Tensors and Cotensors of Pointed Sets by Sets 140
4.3 The Left Tensor Product of Pointed Sets 154
4.4 The Right Tensor Product of Pointed Sets 174
4.5 The Smash Product of Pointed Sets 195
4.6 Miscellany 223
4.A Other Chapters 224
Part II Relations 225
5 Relations 226
5.1 Relations 228
5.2 Categories of Relations 236
5.3 Properties of the 2-Category of Relations 249
5.4 The Left Skew Monoidal Structure on $\operatorname{Rel}(A, B)$ 269
5.5 The Right Skew Monoidal Structure on $\operatorname{Rel}(A, B)$ 274
5.A Other Chapters 278
6 Constructions With Relations 279
6.1 Co/Limits in the Category of Relations 281
6.2 Kan Extensions and Kan Lifts in the 2-Category of Re-lations.281
6.3 More Constructions With Relations 285
6.4 Functoriality of Powersets. 305
6.A Other Chapters 327
7 Equivalence Relations and Apartness Relations 328
7.1 Reflexive Relations. 328
7.2 Symmetric Relations 331
7.3 Transitive Relations. 333
7.4 Equivalence Relations 336
7.5 Quotients by Equivalence Relations 338
7.A Other Chapters 342
Part III Category Theory 343
8 Categories 344
8.1 Categories 346
8.2 The Quadruple Adjunction With Sets 356
8.3 Groupoids 362
8.4 Functors. 368
8.5 Conditions on Functors 376
8.6 More Conditions on Functors 390
8.7 Even More Conditions on Functors 398
8.8 Natural Transformations 403
8.9 Categories of Categories 415
8.A Other Chapters 420
Part IV Bicategories 421
9 Types of Morphisms in Bicategories 422
9.1 Monomorphisms in Bicategories 423
Contents iv
9.2 Epimorphisms in Bicategories 432
9.A Other Chapters 440
Part V Extra Part 441
10 Miscellaneous Notes 442
10.1 To Do List. 442
10.A Other Chapters 448
Index of Notation 459
Index of Set Theory 462
Index of Category Theory 466
Index of Higher Category Theory 468

Contents

Part I Sets 1
1 Sets 2
1.1 Sets and Functions 2
1.1.1 Functions 2
1.2 The Enrichment of Sets in Classical Truth Values 4
1.2.1 (-2)-Categories 4
1.2.2 (-1)-Categories 4
1.2.3 0-Categories 8
1.2.4 Tables of Analogies Between Set Theory and Cat-
egory Theory 8
1.A Other Chapters 10
2 Constructions With Sets 11
2.1 Limits of Sets 12
2.1.1 The Terminal Set 12
2.1.2 Products of Families of Sets 13
2.1.3 Binary Products of Sets 15
2.1.4 Pullbacks 23
2.1.5 Equalisers. 28
2.2 Colimits of Sets 32
2.2.1 The Initial Set 32
2.2.2 Coproducts of Families of Sets 33
2.2.3 Binary Coproducts 34
2.2.4 Pushouts 37
2.2.5 Coequalisers 43
2.3 Operations With Sets 46
2.3.1 The Empty Set 46
2.3.2 Singleton Sets 46
2.3.3 Pairings of Sets 47
2.3.4 Ordered Pairs 47
2.3.5 Sets of Maps 47
2.3.6 Unions of Families 48
2.3.7 Binary Unions 48
2.3.8 Intersections of Families 50
2.3.9 Binary Intersections 50
2.3.10 Differences 54
2.3.11 Complements 57
2.3.12 Symmetric Differences 58
2.4 Powersets 62
2.4.1 Characteristic Functions 62
2.4.2 The Yoneda Lemma for Sets 67
2.4.3 Powersets 68
2.4.4 Direct Images 83
2.4.5 Inverse Images 88
2.4.6 Direct Images With Compact Support 92
2.A Other Chapters 99
3 Pointed Sets 100
3.1 Pointed Sets 100
3.1.1 Foundations 101
3.1.2 Morphisms of Pointed Sets 102
3.1.3 The Category of Pointed Sets 102
3.1.4 Elementary Properties of Pointed Sets 103
3.2 Limits of Pointed Sets 106
3.2.1 The Terminal Pointed Set 106
3.2.2 Products of Families of Pointed Sets 106
3.2.3 Products 108
3.2.4 Pullbacks 110
3.2.5 Equalisers 114
3.3 Colimits of Pointed Sets 116
3.3.1 The Initial Pointed Set 116
3.3.2 Coproducts of Families of Pointed Sets 117
3.3.3 Coproducts 118
3.3.4 Pushouts 122
3.3.5 Coequalisers 126
3.4 Constructions With Pointed Sets 128
3.4.1 Free Pointed Sets 128
3.A Other Chapters 133
4 Tensor Products of Pointed Sets 134
4.1 Bilinear Morphisms of Pointed Sets 137
4.1.1 Left Bilinear Morphisms of Pointed Sets 137
4.1.2 Right Bilinear Morphisms of Pointed Sets 138
4.1.3 Bilinear Morphisms of Pointed Sets 138
4.2 Tensors and Cotensors of Pointed Sets by Sets 140
4.2.1 Tensors of Pointed Sets by Sets 140
4.2.2 Cotensors of Pointed Sets by Sets 147
4.3 The Left Tensor Product of Pointed Sets 154
4.3.1 Foundations 154
4.3.2 The Left Internal Hom of Pointed Sets 157
4.3.3 The Left Skew Unit 159
4.3.4 The Left Skew Associator. 160
4.3.5 The Left Skew Left Unitor 162
4.3.6 The Left Skew Right Unitor 164
4.3.7 The Diagonal 166
4.3.8 The Left Skew Monoidal Structure on Pointed
Sets Associated to \triangleleft 167
4.3.9 Monoids With Respect to the Left Tensor Prod- 170uct of Pointed Sets
4.4 The Right Tensor Product of Pointed Sets. 174
4.4.1 Foundations 174
4.4.2 The Right Internal Hom of Pointed Sets 178
4.4.3 The Right Skew Unit 180
4.4.4 The Right Skew Associator 180
4.4.5 The Right Skew Left Unitor 183
4.4.6 The Right Skew Right Unitor 184
4.4.7 The Diagonal 187
4.4.8 The Right Skew Monoidal Structure on Pointed
Sets Associated to \triangleright 188
4.4.9 Monoids With Respect to the Right Tensor Prod-uct of Pointed Sets192
4.5 The Smash Product of Pointed Sets.... 195
4.5.1 Foundations 195
4.5.2 The Internal Hom of Pointed Sets 204
4.5.3 The Monoidal Unit 206
4.5.4 The Associator 207
4.5.5 The Left Unitor 208
4.5.6 The Right Unitor 211
4.5.7 The Symmetry 213
4.5.8 The Diagonal 215
4.5.9 The Monoidal Structure on Pointed Sets Associ-
ated to \wedge. 218
4.5.10 Universal Properties of the Smash Product of 222Pointed Sets I
4.5.11 Universal Properties of the Smash Product ofPointed Sets II222
4.5.12 Monoids With Respect to the Smash Product ofPointed Sets223
4.5.13 Comonoids With Respect to the Smash Product
of Pointed Sets 223
4.6 Miscellany 223
4.6.1 The Smash Product of a Family of Pointed Sets 223
4.A Other Chapters 224
Part II Relations 225
5 Relations 226
5.1 Relations 228
5.1.1 Foundations 228
5.1.2 Relations as Decategorifications of Profunctors 231
5.1.3 Examples of Relations. 233
5.1.4 Functional Relations. 235
5.1.5 Total Relations 236
5.2 Categories of Relations 236
5.2.1 The Category of Relations 236
5.2.2 The Closed Symmetric Monoidal Category of 237Relations
5.2.3 The 2-Category of Relations. 242
5.2.4 The Double Category of Relations 242
5.3 Properties of the 2-Category of Relations 249
5.3.1 Self-Duality 249
5.3.2 Isomorphisms and Equivalences in Rel 250
5.3.3 Adjunctions in Rel 251
5.3.4 Monads in Rel. 253
5.3.5 Comonads in Rel 254
5.3.6 Co/Monoids in Rel 255
5.3.7 Monomorphisms in Rel 255
5.3.8 2-Categorical Monomorphisms in Rel 258
5.3.9 Epimorphisms in Rel. 262
5.3.10 2-Categorical Epimorphisms in Rel 264
5.3.11 Co/Limits in Rel 268
5.3.12 Kan Extensions and Kan Lifts in Rel 268
5.3.13 Closedness of Rel 268
5.3.14 Rel as a Category of Free Algebras 269
5.4 The Left Skew Monoidal Structure on $\operatorname{Rel}(A, B)$ 269
5.4.1 The Left Skew Monoidal Product 269
5.4.2 The Left Skew Monoidal Unit 270
5.4.3 The Left Skew Associators. 270
5.4.4 The Left Skew Left Unitors 271
5.4.5 The Left Skew Right Unitors 272
5.4.6 The Left Skew Monoidal Structure on $\operatorname{Rel}(A, B)$. 273
5.5 The Right Skew Monoidal Structure on $\operatorname{Rel}(A, B)$ 274
5.5.1 The Right Skew Monoidal Product 274
5.5.2 The Right Skew Monoidal Unit 275
5.5.3 The Right Skew Associators 275
5.5.4 The Right Skew Left Unitors 276
5.5.5 The Right Skew Right Unitors 276
5.5.6 The Right Skew Monoidal Structure on $\operatorname{Rel}(A, B)$
277
5.A Other Chapters 278
6 Constructions With Relations 279
6.1 Co/Limits in the Category of Relations 281
6.2 Kan Extensions and Kan Lifts in the 2-Category of Re-
lations 281
6.2.1 Left Kan Extensions in Rel 281
6.2.2 Left Kan Lifts in Rel 282
6.2.3 Right Kan Extensions in Rel 282
6.2.4 Right Kan Lifts in Rel 284
6.3 More Constructions With Relations. 285
6.3.1 The Graph of a Function 285
6.3.2 The Inverse of a Function 288
6.3.3 Representable Relations 290
6.3.4 The Domain and Range of a Relation 291
6.3.5 Binary Unions of Relations 292
6.3.6 Unions of Families of Relations 293
6.3.7 Binary Intersections of Relations 293
6.3.8 Intersections of Families of Relations 294
6.3.9 Binary Products of Relations 295
6.3.10 Products of Families of Relations 297
6.3.11 The Inverse of a Relation 297
6.3.12 Composition of Relations.... 299
6.3.13 The Collage of a Relation 303
6.4 Functoriality of Powersets. 305
6.4.1 Direct Images 305
6.4.2 Strong Inverse Images 310
6.4.3 Weak Inverse Images 315
6.4.4 Direct Images With Compact Support 320
6.4.5 Functoriality of Powersets 325
6.4.6 Functoriality of Powersets: Relations on Power-
sets326
6.A Other Chapters 327
7 Equivalence Relations and Apartness Relations 328
7.1 Reflexive Relations 328
7.1.1 Foundations 328
7.1.2 The Reflexive Closure of a Relation. 329
7.2 Symmetric Relations 331
7.2.1 Foundations. 331
7.2.2 The Symmetric Closure of a Relation. 331
7.3 Transitive Relations 333
7.3.1 Foundations 333
7.3.2 The Transitive Closure of a Relation 334
7.4 Equivalence Relations 336
7.4.1 Foundations 336
7.4.2 The Equivalence Closure of a Relation 336
7.5 Quotients by Equivalence Relations. 338
7.5.1 Equivalence Classes. 338
7.5.2 Quotients of Sets by Equivalence Relations 338
7.A Other Chapters 342
Part III Category Theory 343
8 Categories 344
8.1 Categories 346
8.1.1 Foundations 346
8.1.2 Examples of Categories 348
8.1.3 Posetal Categories 351
8.1.4 Subcategories 352
8.1.5 Skeletons of Categories. 353
8.1.6 Precomposition and Postcomposition 354
8.2 The Quadruple Adjunction With Sets 356
8.2.1 Statement 356
8.2.2 Connected Components and Connected Cate-
gories357
8.2.3 Discrete Categories 359
8.2.4 Indiscrete Categories 361
8.3 Groupoids 362
8.3.1 Foundations 362
8.3.2 The Groupoid Completion of a Category 362
8.3.3 The Core of a Category. 365
8.4 Functors. 368
8.4.1 Foundations 368
8.4.2 Contravariant Functors 372
8.4.3 Forgetful Functors 373
8.4.4 The Natural Transformation Associated to a Func-
tor 375
8.5 Conditions on Functors 376
8.5.1 Faithful Functors 376
8.5.2 Full Functors 379
8.5.3 Fully Faithful Functors 381
8.5.4 Conservative Functors. 384
8.5.5 Essentially Injective Functors 386
8.5.6 Essentially Surjective Functors 386
8.5.7 Equivalences of Categories 387
8.5.8 Isomorphisms of Categories 389
8.6 More Conditions on Functors 390
8.6.1 Dominant Functors 390
8.6.2 Monomorphisms of Categories 392
8.6.3 Epimorphisms of Categories 393
8.6.4 Pseudomonic Functors 394
8.6.5 Pseudoepic Functors 396
8.7 Even More Conditions on Functors 398
8.7.1 Injective on Objects Functors 398
8.7.2 Surjective on Objects Functors 398
8.7.3 Bijective on Objects Functors 399
8.7.4 Functors Representably Faithful on Cores 399
8.7.5 Functors Representably Full on Cores 399
8.7.6 Functors Representably Fully Faithful on Cores 400
8.7.7 Functors Corepresentably Faithful on Cores 401
8.7.8 Functors Corepresentably Full on Cores 402
8.7.9 Functors Corepresentably Fully Faithful on Cores 402
8.8 Natural Transformations 403
8.8.1 Transformations 403
8.8.2 Natural Transformations 404
8.8.3 Vertical Composition of Natural Transformations. 405
8.8.4 Horizontal Composition of Natural Transforma- 408tions
8.8.5 Properties of Natural Transformations 413
8.8.6 Natural Isomorphisms 414
8.9 Categories of Categories 415
8.9.1 Functor Categories 415
8.9.2 The Category of Categories and Functors 418
8.9.3 The 2-Category of Categories, Functors, and Nat-ural Transformations419
8.9.4 The Category of Groupoids 420
8.9.5 The 2-Category of Groupoids 420
8.A Other Chapters 420
Part IV Bicategories 421
9 Types of Morphisms in Bicategories 422
9.1 Monomorphisms in Bicategories 423
9.1.1 Representably Faithful Morphisms 423
9.1.2 Representably Full Morphisms 424
9.1.3 Representably Fully Faithful Morphisms 425
9.1.4 Morphisms Representably Faithful on Cores 426
9.1.5 Morphisms Representably Full on Cores 426
9.1.6 Morphisms Representably Fully Faithful on Cores 427
9.1.7 Representably Essentially Injective Morphisms 428
9.1.8 Representably Conservative Morphisms 429
9.1.9 Strict Monomorphisms 429
9.1.10 Pseudomonic Morphisms 430
9.2 Epimorphisms in Bicategories 432
9.2.1 Corepresentably Faithful Morphisms 432
9.2.2 Corepresentably Full Morphisms 432
9.2.3 Corepresentably Fully Faithful Morphisms 433
9.2.4 Morphisms Corepresentably Faithful on Cores 435
9.2.5 Morphisms Corepresentably Full on Cores 435
9.2.6 Morphisms Corepresentably Fully Faithful on
Cores436
9.2.7 Corepresentably Essentially Injective Morphisms. 437
9.2.8 Corepresentably Conservative Morphisms 437
9.2.9 Strict Epimorphisms 438
9.2.10 Pseudoepic Morphisms 438
9.A Other Chapters 440
Part V Extra Part 441
10 Miscellaneous Notes 442
10.1 To Do List. 442
10.1.1 Omitted Proofs To Add 442
10.1.2 Things To Explore/Add 443
10.A Other Chapters 448
Index of Notation 459
Index of Set Theory 462
Index of Category Theory 466
Index of Higher Category Theory 468

Part I

Sets

Chapter 1

Sets

0000 This chapter (will eventually) contain material on axiomatic set theory, as well as a couple other things.

Contents

1.1 Sets and Functions.. 2
1.1.1 Functions... 2
1.2 The Enrichment of Sets in Classical Truth
\qquad
1.2.1 (-2)-Categories....................................... 4
1.2.2 (-1)-Categories... 4
1.2.3 0-Categories.. 8
1.2.4 Tables of Analogies Between Set Theory and

Category Theory... 8
1.A Other Chapters.. 10

0001 1.1 Sets and Functions
0002

1.1.1 Functions

0003 Definition 1.1.1.1.1. A function is a functional and total relation.
0004 Notation 1.1.1.1.2. Throughout this work, we will sometimes denote
a function $f: X \rightarrow Y$ by

$$
f \stackrel{\text { def }}{=} \llbracket x \mapsto f(x) \rrbracket .
$$

1. For example, given a function

$$
\Phi: \operatorname{Homs}_{\mathrm{ets}}(X, Y) \rightarrow K
$$

taking values on a set of functions such as $\operatorname{Hom}_{\text {Sets }}(X, Y)$, we will sometimes also write

$$
\Phi(f) \stackrel{\text { def }}{=} \Phi(\llbracket x \mapsto f(x) \rrbracket) .
$$

2. This notational choice is based on the lambda notation

$$
f \stackrel{\text { def }}{=}(\lambda x . f(x))
$$

but uses a " \mapsto " symbol for better spacing and double brackets instead of either:
(a) Square brackets $[x \mapsto f(x)]$;
(b) Parentheses $(x \mapsto f(x))$;
hoping to improve readability when dealing with e.g.:
(a) Equivalence classes, cf.:
i. $\llbracket[x] \mapsto f([x]) \rrbracket$
ii. $[[x] \mapsto f([x])]$
iii. $(\lambda[x] . f([x]))$
(b) Function evaluations, cf.:
i. $\Phi(\llbracket x \mapsto f(x) \rrbracket)$
ii. $\Phi((x \mapsto f(x)))$
iii. $\Phi((\lambda x . f(x)))$
3. We will also sometimes write $-_{1},-_{2}$, etc. for the arguments of a function. Some examples include:
(a) Writing $f(-1)$ for a function $f: A \rightarrow B$.
(b) Writing $f\left(-_{1},-_{2}\right)$ for a function $f: A \times B \rightarrow C$.
(c) Given a function $f: A \times B \rightarrow C$, writing

$$
f(a,-): B \rightarrow C
$$

for the function $\llbracket b \mapsto f(a, b) \rrbracket$.
(d) Denoting a composition of the form

$$
A \times B \xrightarrow{\phi \times \operatorname{id}_{B}} A^{\prime} \times B \xrightarrow{f} C
$$

by $f\left(\phi(-1),{ }_{2}\right)$.
4. Finally, given a function $f: A \rightarrow B$, we write

$$
\operatorname{ev}_{a}(f) \stackrel{\text { def }}{=} f(a)
$$

for the value of f at some $a \in A$.

For an example of the above notations being used in practice, see the proof of the adjunction
stated in Item 2 of Proposition 2.1.3.1.2.

1.2 The Enrichment of Sets in Classical Truth 0005 Values

0006 1.2.1 (-2)-Categories
0007 Definition 1.2.1.1.1. A (-2 -category is the "necessarily true" truth value. ${ }^{1,2,3}$

1.2.2 (-1)-Categories

Definition 1.2.2.1.1. A (-1)-category is a classical truth value.
Remark 1.2.2.1.2. ${ }^{4}(-1)$-categories should be thought of as being "categories enriched in (-2)-categories", having a collection of objects and, for each pair of objects, a Hom-object $\operatorname{Hom}(x, y)$ that is a (-2) category (i.e. trivial).
Therefore, a (-1)-category \mathcal{C} is either ([BS10, pp. 33-34]):

1. Empty, having no objects;
2. Contractible, having a collection of objects $\{a, b, c, \ldots\}$, but with $\operatorname{Hom}_{\mathcal{C}}(a, b)$ being a (-2 -category (i.e. trivial) for all $a, b \in \operatorname{Obj}(C)$, forcing all objects of C to be uniquely isomorphic to each other.

As such, there are only two (-1 -categories, up to equivalence:

- The (-1)-category false (the empty one);
- The (-1)-category true (the contractible one).

000B Definition 1.2.2.1.3. The poset of truth values ${ }^{5}$ is the poset (\{true, false $\}, \preceq$) consisting of

[^0]- The Underlying Set. The set $\{$ true, false $\}$ whose elements are the truth values true and false.
- The Partial Order. The partial order

$$
\preceq:\{\text { true }, \text { false }\} \times\{\text { true }, \text { false }\} \rightarrow\{\text { true }, \text { false }\}
$$

on $\{$ true, false $\}$ defined by ${ }^{6}$

$$
\begin{aligned}
& \text { false } \preceq \text { false } \stackrel{\text { def }}{=} \text { true }, \\
& \text { true } \preceq \text { false } \xlongequal{\text { def }} \text { false }, \\
& \text { false } \preceq \text { true } \xlongequal[=\text { def }]{=} \text { true }, \\
& \text { true } \preceq \text { true } \xlongequal{\text { ef }} \text { true. }
\end{aligned}
$$

000 C Notation 1.2.2.1.4. We also write $\{\mathrm{t}, \mathrm{f}\}$ for the poset $\{$ true, false $\}$.
000D Proposition 1.2.2.1.5. The poset of truth values $\{t, f\}$ is Cartesian closed with product given by ${ }^{7}$

$$
\begin{aligned}
& \mathrm{t} \times \mathrm{t}=\mathrm{t}, \\
& \mathrm{t} \times \mathrm{f}=\mathrm{f}, \\
& \mathrm{f} \times \mathrm{t}=\mathrm{f}, \\
& \mathrm{f} \times \mathrm{f}=\mathrm{f},
\end{aligned}
$$

and internal $\operatorname{Hom} \operatorname{Hom}_{\{t, f\}}$ given by the partial order of $\{t, f\}$, i.e. by

$$
\begin{aligned}
& \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{t})=\mathrm{t}, \\
& \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{f})=\mathrm{f}, \\
& \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{t})=\mathrm{t}, \\
& \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{f})=\mathrm{t} .
\end{aligned}
$$

Proof. Existence of Products: We claim that the products $\mathrm{t} \times \mathrm{t}, \mathrm{t} \times \mathrm{f}$, $\mathrm{f} \times \mathrm{t}$, and $\mathrm{f} \times \mathrm{f}$ satisfy the universal property of the product in $\{\mathrm{t}, \mathrm{f}\}$. Indeed, consider the diagrams

Here:

[^1]1. If $P_{1}=\mathrm{t}$, then $p_{1}^{1}=p_{2}^{1}=\mathrm{id}_{\mathrm{t}}$, and there's indeed a unique morphism from P_{1} to t making the diagram commute, namely id_{t};
2. If $P_{1}=\mathrm{f}$, then $p_{1}^{1}=p_{2}^{1}$ are given by the unique morphism from f to t , and there's indeed a unique morphism from P_{1} to t making the diagram commute, namely the unique morphism from f to t;
3. If $P_{2}=\mathrm{t}$, then there is no morphism p_{2}^{2}.
4. If $P_{2}=\mathrm{f}$, then p_{1}^{2} is the unique morphism from f to t while $p_{2}^{2}=\mathrm{id}_{\mathrm{f}}$, and there's indeed a unique morphism from P_{2} to f making the diagram commute, namely id_{f};
5. The proof for P_{3} is similar to the one for P_{2};
6. If $P_{4}=\mathrm{t}$, then there is no morphism p_{1}^{4} or p_{2}^{4}.
7. If $P_{4}=\mathrm{f}$, then $p_{1}^{4}=p_{2}^{4}=\mathrm{id}_{\mathrm{f}}$, and there's indeed a unique morphism from P_{4} to f making the diagram commute, namely idf.
Cartesian Closedness: We claim there's a bijection

$$
\operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(A \times B, C) \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(A, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(B, C)\right)
$$

natural in $A, B, C \in\{\mathrm{t}, \mathrm{f}\}$. Indeed:

- For $(A, B, C)=(\mathrm{t}, \mathrm{t}, \mathrm{t})$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\{t, f\}}(\mathrm{t} \times \mathrm{t}, \mathrm{t}) & \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{t}) \\
& =\left\{\operatorname{id}_{\mathrm{true}}\right\} \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{t}) \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(\mathrm{t}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{t})\right) .
\end{aligned}
$$

- For $(A, B, C)=(\mathrm{t}, \mathrm{t}, \mathrm{f})$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\{t, f\}}(\mathrm{t} \times \mathrm{t}, \mathrm{f}) & \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{f}) \\
& =\emptyset \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{f}) \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(\mathrm{t}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{f})\right) .
\end{aligned}
$$

- For $(A, B, C)=(\mathrm{t}, \mathrm{f}, \mathrm{t})$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t} \times \mathrm{f}, \mathrm{t}) & \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{t}) \\
& \cong \mathrm{pt} \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{t}) \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(\mathrm{f}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{t})\right) .
\end{aligned}
$$

- For $(A, B, C)=(\mathrm{t}, \mathrm{f}, \mathrm{f})$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t} \times \mathrm{f}, \mathrm{f}) & \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{f}) \\
& \cong\left\{\operatorname{id}_{\mathrm{false}}\right\} \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{f}) \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(\mathrm{t}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{f})\right)
\end{aligned}
$$

- For $(A, B, C)=(\mathrm{f}, \mathrm{t}, \mathrm{t})$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\{t, f\}}(f \times t, t) & \cong \operatorname{Hom}_{\{t, f\}}(f, t) \\
& \cong \mathrm{pt} \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{t}) \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(\mathrm{f}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{t})\right)
\end{aligned}
$$

- For $(A, B, C)=(\mathrm{f}, \mathrm{t}, \mathrm{f})$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f} \times \mathrm{t}, \mathrm{f}) & \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{f}) \\
& \cong\left\{\operatorname{id}_{\mathrm{false}}\right\} \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{f}) \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(\mathrm{f}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{t}, \mathrm{f})\right)
\end{aligned}
$$

- For $(A, B, C)=(\mathrm{f}, \mathrm{f}, \mathrm{t})$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f} \times \mathrm{f}, \mathrm{t}) & \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{t}) \\
& \cong \mathrm{pt} \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{t}) \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(\mathrm{f}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{t})\right)
\end{aligned}
$$

- For $(A, B, C)=(\mathrm{f}, \mathrm{f}, \mathrm{f})$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f} \times \mathrm{f}, \mathrm{f}) & \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{f}) \\
& =\left\{\operatorname{id}_{\mathrm{false}\}}\right\} \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{f}) \\
& \cong \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(\mathrm{f}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}(\mathrm{f}, \mathrm{f})\right)
\end{aligned}
$$

The proof of naturality is omitted.

000E
 1.2.3 0-Categories

000 F Definition 1.2.3.1.1. A 0 -category is a poset. ${ }^{8}$
000G Definition 1.2.3.1.2. A 0-groupoid is a 0-category in which every morphism is invertible. ${ }^{9}$

1.2.4 Tables of Analogies Between Set Theory and Category Theory

 000 HHere we record some analogies between notions in set theory and category theory. Note that the analogies relating to presheaves relate equally well to copresheaves, as the opposite X^{op} of a set X is just X again.
Basics:

Set Theory	Category Theory
Enrichment in $\{$ true, false $\}$	Enrichment in Sets
Set X	Category C
Element $x \in X$	Object $X \in \operatorname{Obj}(C)$
Function	Functor
Function $X \rightarrow\{$ true, false $\}$	Functor $C \rightarrow$ Sets
Function $X \rightarrow\{$ true, false $\}$	Presheaf $C^{\text {op }} \rightarrow$ Sets

Powersets and categories of presheaves:

[^2]| Set Theory | Category Theory |
| :---: | :---: |
| Powerset $\mathcal{P}(X)$ | Presheaf category PSh (C) |
| Characteristic function $\chi_{\{x\}}$ | Representable presheaf h_{X} |
| Characteristic embedding $\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)$ | Yoneda embedding よ: $C^{\mathrm{op}} \hookrightarrow \operatorname{PSh}(C)$ |
| Characteristic relation $\chi_{X}\left(-{ }_{1},-_{2}\right)$ | Hom profunctor $\operatorname{Hom}_{C}(-1,-2)$ |
| The Yoneda lemma for sets $\operatorname{Hom}_{\mathcal{P}(X)}\left(\chi_{x}, \chi_{U}\right)=\chi_{U}(x)$ | The Yoneda lemma for categories $\operatorname{Nat}\left(h_{X}, \mathscr{F}\right) \cong \mathscr{F}(X)$ |
| The characteristic embedding is fully faithful, $\operatorname{Hom}_{\mathcal{P}(X)}\left(\chi_{x}, \chi_{y}\right)=\chi_{X}(x, y)$ | The Yoneda embedding is fully faithful, $\operatorname{Nat}\left(h_{X}, h_{Y}\right) \cong \operatorname{Hom}_{C}(X, Y)$ |
| Subsets are unions of their elements $\begin{gathered} U=\bigcup_{x \in U}\{x\} \\ \text { or } \\ \chi_{U}=\underset{\chi_{x} \in \operatorname{Sets}(U,\{t, \mathrm{f}\})}{ }\left(\chi_{x}\right) \end{gathered}$ | Presheaves are colimits of representables, $\mathcal{F} \cong \operatorname{colim}_{h_{X} \in \int_{\mathcal{C}} \mathcal{F}}\left(h_{X}\right)$ |

Categories of elements:

Set Theory	Category Theory
Assignment $U \mapsto \chi_{U}$	Assignment $\mathcal{F} \mapsto \int_{C} \mathcal{F}$ (the category of elements)
Assignment $U \mapsto \chi_{U}$ giving an isomorphism $\mathcal{P}(X) \cong \operatorname{Sets}(X,\{\mathrm{t}, \mathrm{f}\})$	Assignment $\mathcal{F} \mapsto \int_{C} \mathcal{F}$ giving an equivalence PSh $(C) \stackrel{\text { eq }}{=} \mathrm{DFib}(C)$

Functions between powersets and functors between presheaf categories:

Set Theory	Category Theory
Direct image function	Inverse image functor
$f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$	$f^{-1}: \operatorname{PSh}(C) \rightarrow \operatorname{PSh}(\mathcal{D})$
Inverse image function	Direct image functor
$f^{-1}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$	$f_{*}: \operatorname{PSh}(\mathcal{D}) \rightarrow \operatorname{PSh}(C)$
Direct image with	Direct image with
compact support function	compact support functor
$f_{!}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$	$f_{!}: \operatorname{PSh}(C) \rightarrow \operatorname{PSh}(\mathcal{D})$

Relations and profunctors:

Set Theory	Category Theory
Relation $R: X \times Y \rightarrow\{\mathrm{t}, \mathrm{f}\}$	Profunctor $\mathfrak{p}: \mathcal{D}^{\circ \mathrm{p}} \times \mathcal{C} \rightarrow$ Sets
Relation $R: X \rightarrow \mathcal{P}(Y)$	Profunctor $\mathfrak{p}: \mathcal{C} \rightarrow \mathrm{PSh}(\mathcal{D})$
Relation as a	Profunctor as a
cocontinuous morphism of posets	colimit-preserving functor
$R:(\mathcal{P}(X), \subset) \rightarrow(\mathcal{P}(Y), \subset)$	$\mathfrak{p}: \operatorname{PSh}(C) \rightarrow \operatorname{PSh}(\mathcal{D})$

Appendices

1.A Other Chapters

Sets

1. Sets
2. Constructions With Sets
3. Pointed Sets
4. Tensor Products of Pointed Sets

Relations

5. Relations
6. Constructions With Relations
7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 2

Constructions With Sets

000 J This chapter develops some material relating to constructions with sets with an eye towards its categorical and higher-categorical counterparts to be introduced later in this work. In particular, it contains:

1. Explicit descriptions of the major types of co/limits in Sets, including in particular explicit descriptions of pushouts and coequalisers (see Definitions 2.2.4.1.1 and 2.2.5.1.1 and Remarks 2.2.4.1.2 and 2.2.5.1.2).
2. A discussion of powersets as decategorifications of categories of presheaves (Remarks 2.4.1.1.2 and 2.4.3.1.2), including a (-1)categorical analogue of un/straightening, described in Items 1 and 2 of Proposition 2.4.3.1.6 and Remark 2.4.3.1.7.
3. A lengthy discussion of the adjoint triple

$$
f_{*} \dashv f^{-1} \dashv f_{!}: \mathcal{P}(A) \xrightarrow{\rightrightarrows} \mathcal{P}(B)
$$

of functors (morphisms of posets) between $\mathcal{P}(A)$ and $\mathcal{P}(B)$ induced by a map of sets $f: A \rightarrow B$, along with a discussion of the properties of f_{*}, f^{-1}, and $f_{!}$.
In line with the categorical viewpoint developed here, this adjoint triple may be described in terms of Kan extensions, and, as it turns out, it also shows up in some definitions and results in point-set topology, such as in e.g. notions of continuity for functions (??).

Contents

2.1 Limits of Sets.. 12
2.1.1 The Terminal Set....................................... 12
2.1.2 Products of Families of Sets....................... 13
2.1.3 Binary Products of Sets 15
2.1.4 Pullbacks 23
2.1.5 Equalisers 28
2.2 Colimits of Sets 32
2.2.1 The Initial Set 32
2.2.2 Coproducts of Families of Sets 33
2.2.3 Binary Coproducts 34
2.2.4 Pushouts 37
2.2.5 Coequalisers 43
2.3 Operations With Sets 46
2.3.1 The Empty Set 46
2.3.2 Singleton Sets 46
2.3.3 Pairings of Sets 47
2.3.4 Ordered Pairs 47
2.3.5 Sets of Maps 47
2.3.6 Unions of Families 48
2.3.7 Binary Unions 48
2.3.8 Intersections of Families 50
2.3.9 Binary Intersections 50
2.3.10 Differences 54
2.3.11 Complements 57
2.3.12 Symmetric Differences 58
2.4 Powersets 62
2.4.1 Characteristic Functions 62
2.4.2 The Yoneda Lemma for Sets 67
2.4.3 Powersets 68
2.4.4 Direct Images 83
2.4.5 Inverse Images 88
2.4.6 Direct Images With Compact Support 92
2.A Other Chapters 99

000k 2.1 Limits of Sets

000L 2.1.1 The Terminal Set
000 M Definition 2.1.1.1.1. The terminal set is the pair $\left(\mathrm{pt},\left\{!_{A}\right\}_{A \in \mathrm{Obj}(\mathrm{Sets})}\right)$ consisting of:

- The Limit. The punctual set pt $\stackrel{\text { def }}{=}\{\star\}$.
- The Cone. The collection of maps

$$
\left\{!_{A}: A \rightarrow \mathrm{pt}\right\}_{A \in \mathrm{Obj}(\mathrm{Sets})}
$$

defined by

$$
!_{A}(a) \stackrel{\text { def }}{=} \star
$$

for each $a \in A$ and each $A \in \operatorname{Obj}$ (Sets).
Proof. We claim that pt is the terminal object of Sets. Indeed, suppose we have a diagram of the form

$$
A \quad \mathrm{pt}
$$

in Sets. Then there exists a unique map $\phi: A \rightarrow \mathrm{pt}$ making the diagram

$$
A \xrightarrow[-\frac{\phi}{\mathrm{j}} \rightarrow \mathrm{pt}]{\mathrm{l}}
$$

commute, namely $!_{A}$.

000N 2.1.2 Products of Families of Sets

Let $\left\{A_{i}\right\}_{i \in I}$ be a family of sets.
000P Definition 2.1.2.1.1. The product ${ }^{1}$ of $\left\{A_{i}\right\}_{i \in I}$ is the pair $\left(\prod_{i \in I} A_{i},\left\{\operatorname{pr}_{i}\right\}_{i \in I}\right)$ consisting of:

- The Limit. The set $\prod_{i \in I} A_{i}$ defined by ${ }^{2}$

$$
\prod_{i \in I} A_{i} \stackrel{\text { def }}{=}\left\{f \in \operatorname{Sets}\left(I, \bigcup_{i \in I} A_{i}\right) \left\lvert\, \begin{array}{l}
\text { for each } i \in I, \\
\text { we have } f(i) \in \\
A_{i}
\end{array}\right.\right\} .
$$

- The Cone. The collection

$$
\left\{\operatorname{pr}_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}\right\}_{i \in I}
$$

of maps given by

$$
\operatorname{pr}_{i}(f) \stackrel{\text { def }}{=} f(i)
$$

for each $f \in \prod_{i \in I} A_{i}$ and each $i \in I$.

[^3]Proof. We claim that $\prod_{i \in I} A_{i}$ is the categorical product of $\left\{A_{i}\right\}_{i \in I}$ in Sets. Indeed, suppose we have, for each $i \in I$, a diagram of the form

in Sets. Then there exists a unique map $\phi: P \rightarrow \prod_{i \in I} A_{i}$ making the diagram

commute, being uniquely determined by the condition $\mathrm{pr}_{i} \circ \phi=p_{i}$ for each $i \in I$ via

$$
\phi(x)=\left(p_{i}(x)\right)_{i \in I}
$$

for each $x \in P$.
000 Q Proposition 2.1.2.1.2. Let $\left\{A_{i}\right\}_{i \in I}$ be a family of sets.
000 R 1. Functoriality. The assignment $\left\{A_{i}\right\}_{i \in I} \mapsto \prod_{i \in I} A_{i}$ defines a functor

$$
\prod_{i \in I}: \operatorname{Fun}\left(I_{\mathrm{disc}}, \text { Sets }\right) \rightarrow \text { Sets }
$$

where

- Action on Objects. For each $\left(A_{i}\right)_{i \in I} \in \operatorname{Obj}\left(F u n\left(I_{\text {disc }}\right.\right.$, Sets $\left.)\right)$, we have

$$
\left[\prod_{i \in I}\right]\left(\left(A_{i}\right)_{i \in I}\right) \stackrel{\text { def }}{=} \prod_{i \in I} A_{i}
$$

- Action on Morphisms. For each $\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I} \in \operatorname{Obj}\left(\right.$ Fun $\left(I_{\text {disc }}\right.$, Sets $\left.)\right)$,
with $a_{i} \in A_{i}$ for each $i \in I$. The projection maps

$$
\left\{\operatorname{pr}_{i}: \prod_{i \in I} A_{i} \rightarrow A_{i}\right\}_{i \in I}
$$

are then given by

$$
\operatorname{pr}_{i}\left(\left(a_{j}\right)_{j \in I}\right) \stackrel{\text { def }}{=} a_{i}
$$

for each $\left(a_{j}\right)_{j \in I} \in \prod_{i \in I} A_{i}$ and each $i \in I$.
the action on Hom-sets

$$
\left(\prod_{i \in I}\right)_{\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}}: \operatorname{Nat}\left(\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}\right) \rightarrow \operatorname{Sets}\left(\prod_{i \in I} A_{i}, \prod_{i \in I} B_{i}\right)
$$

of $\prod_{i \in I}$ at $\left(\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}\right)$ is defined by sending a map

$$
\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}
$$

in $\operatorname{Nat}\left(\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}\right)$ to the map of sets

$$
\prod_{i \in I} f_{i}: \prod_{i \in I} A_{i} \rightarrow \prod_{i \in I} B_{i}
$$

defined by

$$
\left[\prod_{i \in I} f_{i}\right]\left(\left(a_{i}\right)_{i \in I}\right) \stackrel{\text { def }}{=}\left(f_{i}\left(a_{i}\right)\right)_{i \in I}
$$

for each $\left(a_{i}\right)_{i \in I} \in \prod_{i \in I} A_{i}$.
Proof. Item 1, Functoriality: This follows from ?? of ??.

2.1.3 Binary Products of Sets

Let A and B be sets.
000T Definition 2.1.3.1.1. The product ${ }^{3}$ of A and B is the pair $\left(A \times B,\left\{\operatorname{pr}_{1}, \operatorname{pr}_{2}\right\}\right)$ consisting of:

- The Limit. The set $A \times B$ defined by ${ }^{4}$

$$
\begin{aligned}
A \times B & \stackrel{\text { def }}{=} \prod_{z \in\{A, B\}} z \\
& \stackrel{\text { def }}{=}\{f \in \operatorname{Sets}(\{0,1\}, A \cup B) \mid \text { we have } f(0) \in A \text { and } f(1) \in B\} \\
& \cong\{\{\{a\},\{a, b\}\} \in \mathcal{P}(\mathcal{P}(A \cup B)) \mid \text { we have } a \in A \text { and } b \in B\} .
\end{aligned}
$$

- The Cone. The maps

$$
\begin{aligned}
& \mathrm{pr}_{1}: A \times B \rightarrow A, \\
& \operatorname{pr}_{2}: A \times B \rightarrow B
\end{aligned}
$$

[^4]defined by
\[

$$
\begin{aligned}
& \operatorname{pr}_{1}(a, b) \stackrel{\text { def }}{=} a, \\
& \operatorname{pr}_{2}(a, b) \stackrel{\text { def }}{=} b
\end{aligned}
$$
\]

for each $(a, b) \in A \times B$.
Proof. We claim that $A \times B$ is the categorical product of A and B in Sets. Indeed, suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: P \rightarrow A \times B$ making the diagram

commute, being uniquely determined by the conditions

$$
\begin{aligned}
& \mathrm{pr}_{1} \circ \phi=p_{1}, \\
& \mathrm{pr}_{2} \circ \phi=p_{2}
\end{aligned}
$$

via

$$
\phi(x)=\left(p_{1}(x), p_{2}(x)\right)
$$

for each $x \in P$.
Proposition 2.1.3.1.2. Let A, B, C, and X be sets.

1. Functoriality. The assignments $A, B,(A, B) \mapsto A \times B$ define functors

$$
\begin{gathered}
A \times-: \text { Sets } \rightarrow \text { Sets, } \\
-\times B: \text { Sets } \rightarrow \text { Sets, } \\
-_{1} \times-{ }_{2}: \text { Sets } \times \text { Sets } \rightarrow \text { Sets, }
\end{gathered}
$$

where -1×-2 is the functor where

- Action on Objects. For each $(A, B) \in \operatorname{Obj}($ Sets \times Sets $)$, we have

$$
\left[-1 \times--_{2}\right](A, B) \stackrel{\text { def }}{=} A \times B
$$

- Action on Morphisms. For each $(A, B),(X, Y) \in \operatorname{Obj}($ Sets $)$, the action on Hom-sets
$\times_{(A, B),(X, Y)}: \operatorname{Sets}(A, X) \times \operatorname{Sets}(B, Y) \rightarrow \operatorname{Sets}(A \times B, X \times Y)$
of \times at $((A, B),(X, Y))$ is defined by sending (f, g) to the function

$$
f \times g: A \times B \rightarrow X \times Y
$$

defined by

$$
[f \times g](a, b) \stackrel{\text { def }}{=}(f(a), g(b))
$$

for each $(a, b) \in A \times B$.
and where $A \times-$ and $-\times B$ are the partial functors of $-_{1} \times-{ }_{2}$ at $A, B \in \mathrm{Obj}$ (Sets).
2. Adjointness. We have adjunctions

$$
\begin{aligned}
\left(A \times-\dashv \operatorname{Hom}_{\text {Sets }}(A,-)\right): & \text { Sets } \stackrel{A \times-}{\stackrel{A \times-}{\perp} \text { Homsets }(A,-)} \text { Sets, } \\
\left(-\times B \dashv \operatorname{Hom}_{\text {Sets }}(B,-)\right): & \text { Sets } \stackrel{\substack{\perp}}{\stackrel{-\times B}{\perp} \text { Homsets }(B,-)} \text { Sets, }
\end{aligned}
$$

witnessed by bijections

$$
\begin{aligned}
& \operatorname{Hom}_{\text {Sets }}(A \times B, C) \cong \operatorname{Hom}_{\text {Sets }}\left(A, \operatorname{Hom}_{\text {Sets }}(B, C)\right), \\
& \operatorname{Hom}_{\text {Sets }}(A \times B, C) \cong \operatorname{Hom}_{\text {Sets }}\left(B, \operatorname{Hom}_{\text {Sets }}(A, C)\right),
\end{aligned}
$$

natural in $A, B, C \in \mathrm{Obj}($ Sets $)$.
3. Associativity. We have an isomorphism of sets

$$
(A \times B) \times C \cong A \times(B \times C)
$$

natural in $A, B, C \in \operatorname{Obj}($ Sets $)$.
4. Unitality. We have isomorphisms of sets

$$
\begin{aligned}
& \mathrm{pt} \times A \cong A \\
& A \times \mathrm{pt} \cong A
\end{aligned}
$$

natural in $A \in \operatorname{Obj}$ (Sets).
5. Commutativity. We have an isomorphism of sets

$$
A \times B \cong B \times A,
$$

natural in $A, B \in \operatorname{Obj}($ Sets $)$.
6. Annihilation With the Empty Set. We have isomorphisms of sets

$$
\begin{aligned}
& A \times \emptyset \cong \emptyset, \\
& \emptyset \times A \cong \emptyset,
\end{aligned}
$$

natural in $A \in \operatorname{Obj}$ (Sets).
7. Distributivity Over Unions. We have isomorphisms of sets

$$
\begin{aligned}
& A \times(B \cup C)=(A \times B) \cup(A \times C), \\
& (A \cup B) \times C=(A \times C) \cup(B \times C) .
\end{aligned}
$$

8. Distributivity Over Intersections. We have isomorphisms of sets

$$
\begin{aligned}
& A \times(B \cap C)=(A \times B) \cap(A \times C), \\
& (A \cap B) \times C=(A \times C) \cap(B \times C) .
\end{aligned}
$$

9. Middle-Four Exchange with Respect to Intersections. We have an isomorphism of sets

$$
(A \times B) \cap(C \times D) \cong(A \cap B) \times(C \cap D) .
$$

10. Distributivity Over Differences. We have isomorphisms of sets

$$
\begin{aligned}
& A \times(B \backslash C)=(A \times B) \backslash(A \times C), \\
& (A \backslash B) \times C=(A \times C) \backslash(B \times C),
\end{aligned}
$$

natural in $A, B, C \in \operatorname{Obj}($ Sets $)$.
11. Distributivity Over Symmetric Differences. We have isomorphisms of sets

$$
\begin{aligned}
& A \times(B \triangle C)=(A \times B) \triangle(A \times C), \\
& (A \triangle B) \times C=(A \times C) \triangle(B \times C),
\end{aligned}
$$

natural in $A, B, C \in \operatorname{Obj}($ Sets $)$.
12. Symmetric Monoidality. The triple (Sets, \times, pt) is a symmetric monoidal category.
13. Symmetric Bimonoidality. The quintuple (Sets, $\amalg, \emptyset, \times, \mathrm{pt})$ is a symmetric bimonoidal category.

Proof. Item 1, Functoriality: This follows from ?? of ??.
Item 2, Adjointness: We prove only that there's an adjunction $-\times B \dashv$ $\operatorname{Hom}_{\text {Sets }}(B,-)$, witnessed by a bijection

$$
\operatorname{Hom}_{\text {Sets }}(A \times B, C) \cong \operatorname{Hom}_{\text {Sets }}\left(A, \operatorname{Hom}_{\text {Sets }}(B, C)\right)
$$

natural in $B, C \in \operatorname{Obj}($ Sets $)$, as the proof of the existence of the adjunction $A \times-\dashv \operatorname{Homsets}^{\text {sen }}(A,-)$ follows almost exactly in the same way.

- Map I. We define a map

$$
\Phi_{B, C}: \operatorname{Hom}_{\text {Sets }}(A \times B, C) \rightarrow \operatorname{Hom}_{\text {Sets }}\left(A, \operatorname{Hom}_{\text {Sets }}(B, C)\right),
$$

by sending a function

$$
\xi: A \times B \rightarrow C
$$

to the function

$$
\begin{aligned}
\xi^{\dagger}: A & \rightarrow \operatorname{Hom}_{\mathrm{Sets}}(B, C), \\
a & \longmapsto\left(\xi_{a}^{\dagger}: B \rightarrow C\right),
\end{aligned}
$$

where we define

$$
\xi_{a}^{\dagger}(b) \stackrel{\text { def }}{=} \xi(a, b)
$$

for each $b \in B$. In terms of the $\llbracket a \mapsto f(a) \rrbracket$ notation of Notation 1.1.1.1.2, we have

$$
\xi^{\dagger} \stackrel{\text { def }}{=} \llbracket a \mapsto \llbracket b \mapsto \xi(a, b) \rrbracket \rrbracket .
$$

- Map II. We define a map

$$
\Psi_{B, C}: \operatorname{Hom}_{\mathrm{Sets}}\left(A, \operatorname{Hom}_{\mathrm{Sets}}(B, C)\right), \rightarrow \operatorname{Hom}_{\mathrm{Sets}}(A \times B, C)
$$

given by sending a function

$$
\begin{aligned}
\xi: A & \rightarrow \operatorname{Hom}_{\mathrm{Sets}}(B, C), \\
a & \longmapsto\left(\xi_{a}: B \rightarrow C\right),
\end{aligned}
$$

to the function

$$
\xi^{\dagger}: A \times B \rightarrow C
$$

defined by

$$
\begin{aligned}
\xi^{\dagger}(a, b) & \stackrel{\text { def }}{=} \mathrm{ev}_{b}\left(\mathrm{ev}_{a}(\xi)\right) \\
& \stackrel{\text { def }}{=} \mathrm{ev}_{b}\left(\xi_{a}\right) \\
& \xlongequal{\text { def }} \xi_{a}(b)
\end{aligned}
$$

for each $(a, b) \in A \times B$.

- Invertibility I. We claim that

$$
\Psi_{A, B} \circ \Phi_{A, B}=\mathrm{id}_{\operatorname{Hom}_{\mathrm{Sets}}(A \times B, C)}
$$

Indeed, given a function $\xi: A \times B \rightarrow C$, we have

$$
\begin{aligned}
{\left[\Psi_{A, B} \circ \Phi_{A, B}\right](\xi) } & =\Psi_{A, B}\left(\Phi_{A, B}(\xi)\right) \\
& =\Psi_{A, B}\left(\Phi_{A, B}(\llbracket(a, b) \mapsto \xi(a, b) \rrbracket)\right) \\
& =\Psi_{A, B}(\llbracket a \mapsto \llbracket b \mapsto \xi(a, b) \rrbracket \rrbracket) \\
& =\Psi_{A, B}\left(\llbracket a^{\prime} \mapsto \llbracket b^{\prime} \mapsto \xi\left(a^{\prime}, b^{\prime}\right) \rrbracket \rrbracket\right) \\
& =\llbracket(a, b) \mapsto \operatorname{ev}_{b}\left(\mathrm{ev}_{a}\left(\llbracket a^{\prime} \mapsto \llbracket b^{\prime} \mapsto \xi\left(a^{\prime}, b^{\prime}\right) \rrbracket \rrbracket\right)\right) \rrbracket \\
& =\llbracket(a, b) \mapsto \mathrm{ev}_{b}\left(\llbracket b^{\prime} \mapsto \xi\left(a, b^{\prime}\right) \rrbracket\right) \rrbracket \\
& =\llbracket(a, b) \mapsto \xi(a, b) \rrbracket \\
& =\xi
\end{aligned}
$$

- Invertibility II. We claim that

$$
\Phi_{A, B} \circ \Psi_{A, B}=\operatorname{id}_{\operatorname{Hom}_{\mathrm{Sets}}\left(A, \operatorname{Hom}_{\mathrm{Sets}}(B, C)\right)}
$$

Indeed, given a function

$$
\begin{aligned}
\xi: A & \rightarrow \operatorname{Hom}_{\text {Sets }}(B, C), \\
a & \longmapsto\left(\xi_{a}: B \rightarrow C\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
{\left[\Phi_{A, B} \circ \Psi_{A, B}\right](\xi) } & \stackrel{\text { def }}{=} \Phi_{A, B}\left(\Psi_{A, B}(\xi)\right) \\
& \stackrel{\text { def }}{=} \Phi_{A, B}\left(\llbracket(a, b) \mapsto \xi_{a}(b) \rrbracket\right) \\
& \stackrel{\text { def }}{=} \Phi_{A, B}\left(\llbracket\left(a^{\prime}, b^{\prime}\right) \mapsto \xi_{a^{\prime}}\left(b^{\prime}\right) \rrbracket\right) \\
& \stackrel{\text { def }}{=} \llbracket a \mapsto \llbracket b \mapsto \mathrm{ev}_{(a, b)}\left(\llbracket\left(a^{\prime}, b^{\prime}\right) \mapsto \xi_{a^{\prime}}\left(b^{\prime}\right) \rrbracket\right) \rrbracket \rrbracket \\
& \stackrel{\text { def }}{=} \llbracket a \mapsto \llbracket b \mapsto \xi_{a}(b) \rrbracket \rrbracket \\
& \stackrel{\text { def }}{=} \llbracket a \mapsto \xi_{a} \rrbracket \\
& \stackrel{\text { def }}{=} \xi .
\end{aligned}
$$

- Naturality for Φ, Part I. We need to show that, given a function $g: B \rightarrow B^{\prime}$, the diagram

commutes. Indeed, given a function

$$
\xi: A \times B^{\prime} \rightarrow C,
$$

we have

$$
\begin{aligned}
{\left[\Phi_{B, C} \circ\left(\mathrm{id}_{A} \times g^{*}\right)\right](\xi) } & =\Phi_{B, C}\left(\left[\mathrm{id}_{A} \times g^{*}\right](\xi)\right) \\
& =\Phi_{B, C}(\xi(-1, g(-2))) \\
& =\left[\xi\left(-{ }_{1}, g(-2)\right)\right]^{\dagger} \\
& =\xi_{-1}^{\dagger}(g(-2)) \\
& =\left(g^{*}\right)_{*}\left(\xi^{\dagger}\right) \\
& =\left(g^{*}\right)_{*}\left(\Phi_{B^{\prime}, C}(\xi)\right) \\
& =\left[\left(g^{*}\right)_{*} \circ \Phi_{B^{\prime}, C}\right](\xi) .
\end{aligned}
$$

Alternatively, using the $\llbracket a \mapsto f(a) \rrbracket$ notation of Notation 1.1.1.1.2, we have

$$
\begin{aligned}
{\left[\Phi_{B, C} \circ\left(\operatorname{id}_{A} \times g^{*}\right)\right](\xi) } & =\Phi_{B, C}\left(\left[\operatorname{id}_{A} \times g^{*}\right](\xi)\right) \\
& =\Phi_{B, C}\left(\left[\operatorname{id}_{A} \times g^{*}\right]\left(\llbracket\left(a, b^{\prime}\right) \mapsto \xi\left(a, b^{\prime}\right) \rrbracket\right)\right) \\
& =\Phi_{B, C}(\llbracket(a, b) \mapsto \xi(a, g(b)) \rrbracket) \\
& =\llbracket a \mapsto \llbracket b \mapsto \xi(a, g(b)) \rrbracket \rrbracket \\
& =\llbracket a \mapsto g^{*}\left(\llbracket b^{\prime} \mapsto \xi\left(a, b^{\prime}\right) \rrbracket\right) \rrbracket \\
& =\left(g^{*}\right)_{*}\left(\llbracket a \mapsto \llbracket b^{\prime} \mapsto \xi\left(a, b^{\prime}\right) \rrbracket \rrbracket\right) \\
& =\left(g^{*}\right)_{*}\left(\Phi_{B^{\prime}, C}\left(\llbracket\left(a, b^{\prime}\right) \mapsto \xi\left(a, b^{\prime}\right) \rrbracket\right)\right) \\
& =\left(g^{*}\right)_{*}\left(\Phi_{B^{\prime}, C}(\xi)\right) \\
& =\left[\left(g^{*}\right)_{*} \circ \Phi_{B^{\prime}, C}\right](\xi) .
\end{aligned}
$$

- Naturality for Φ, Part II. We need to show that, given a function
$h: C \rightarrow C^{\prime}$, the diagram

commutes. Indeed, given a function

$$
\xi: A \times B \rightarrow C
$$

we have

$$
\begin{aligned}
{\left[\Phi_{B, C} \circ h_{*}\right](\xi) } & =\Phi_{B, C}\left(h_{*}(\xi)\right) \\
& =\Phi_{B, C}\left(h_{*}(\llbracket(a, b) \mapsto \xi(a, b) \rrbracket)\right) \\
& =\Phi_{B, C}(\llbracket(a, b) \mapsto h(\xi(a, b)) \rrbracket) \\
& =\llbracket a \mapsto \llbracket b \mapsto h(\xi(a, b)) \rrbracket \rrbracket \\
& =\llbracket a \mapsto h_{*}(\llbracket b \mapsto \xi(a, b) \rrbracket \rrbracket) \\
& =\left(h_{*}\right)_{*}(\llbracket a \mapsto \llbracket b \mapsto \xi(a, b) \rrbracket \rrbracket) \\
& =\left(h_{*}\right)_{*}\left(\Phi_{B, C}(\llbracket(a, b) \mapsto \xi(a, b) \rrbracket)\right) \\
& =\left(h_{*}\right)_{*}\left(\Phi_{B, C}(\xi)\right) \\
& =\left[\left(h_{*}\right)_{*} \circ \Phi_{B, C}\right](\xi) .
\end{aligned}
$$

- Naturality for Ψ. Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Item 2 of Proposition 8.8.6.1.2 that Ψ is also natural in each argument.

Item 3, Associativity: See [Pro24a].
Item 4, Unitality: Clear.
Item 5, Commutativity: See [Pro24b].
Item 6, Annihilation With the Empty Set: See [Pro24f].
Item 7, Distributivity Over Unions: See [Pro24e].
Item 8, Distributivity Over Intersections: See [Pro24g, Corollary 1].
Item 9, Middle-Four Exchange With Respect to Intersections: See [Pro24g, Corollary 1].
Item 10, Distributivity Over Differences: See [Pro24c].
Item 11, Distributivity Over Symmetric Differences: See [Pro24d].
Item 12, Symmetric Monoidality: See [MO 382264].
Item 13, Symmetric Bimonoidality: Omitted.

0018

2.1.4 Pullbacks

Let A, B, and C be sets and let $f: A \rightarrow C$ and $g: B \rightarrow C$ be functions.
0019 Definition 2.1.4.1.1. The pullback of A and B over C along f and g^{5} is the pair ${ }^{6}\left(A \times_{C} B,\left\{\mathrm{pr}_{1}, \mathrm{pr}_{2}\right\}\right)$ consisting of:

- The Limit. The set $A \times{ }_{C} B$ defined by

$$
A \times_{C} B \stackrel{\text { def }}{=}\{(a, b) \in A \times B \mid f(a)=g(b)\}
$$

- The Cone. The maps

$$
\begin{aligned}
& \operatorname{pr}_{1}: A \times_{C} B \rightarrow A, \\
& \operatorname{pr}_{2}: A \times_{C} B \rightarrow B
\end{aligned}
$$

defined by

$$
\begin{aligned}
& \operatorname{pr}_{1}(a, b) \stackrel{\text { def }}{=} a \\
& \operatorname{pr}_{2}(a, b) \stackrel{\text { def }}{=} b
\end{aligned}
$$

for each $(a, b) \in A \times_{C} B$.
Proof. We claim that $A \times_{C} B$ is the categorical pullback of A and B over C with respect to (f, g) in Sets. First we need to check that the relevant pullback diagram commutes, i.e. that we have

Indeed, given $(a, b) \in A \times_{C} B$, we have

$$
\begin{aligned}
{\left[f \circ \operatorname{pr}_{1}\right](a, b) } & =f\left(\operatorname{pr}_{1}(a, b)\right) \\
& =f(a) \\
& =g(b) \\
& =g\left(\operatorname{pr}_{2}(a, b)\right) \\
& =\left[g \circ \operatorname{pr}_{2}\right](a, b)
\end{aligned}
$$

where $f(a)=g(b)$ since $(a, b) \in A \times_{C} B$. Next, we prove that $A \times_{C} B$

[^5]satisfies the universal property of the pullback. Suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: P \rightarrow A \times{ }_{C} B$ making the diagram

commute, being uniquely determined by the conditions
\[

$$
\begin{aligned}
& \mathrm{pr}_{1} \circ \phi=p_{1}, \\
& \mathrm{pr}_{2} \circ \phi=p_{2}
\end{aligned}
$$
\]

via

$$
\phi(x)=\left(p_{1}(x), p_{2}(x)\right)
$$

for each $x \in P$, where we note that $\left(p_{1}(x), p_{2}(x)\right) \in A \times B$ indeed lies in $A \times_{C} B$ by the condition

$$
f \circ p_{1}=g \circ p_{2},
$$

which gives

$$
f\left(p_{1}(x)\right)=g\left(p_{2}(x)\right)
$$

for each $x \in P$, so that $\left(p_{1}(x), p_{2}(x)\right) \in A \times_{C} B$.
001A Example 2.1.4.1.2. Here are some examples of pullbacks of sets.
001B 1. Unions via Intersections. Let $A, B \subset X$. We have a bijection of
sets

Proof. Item 1, Unions via Intersections: Indeed, we have

$$
\begin{aligned}
A \times_{A \cup B} B & \cong\{(x, y) \in A \times B \mid x=y\} \\
& \cong A \cap B
\end{aligned}
$$

This finishes the proof.
001 C Proposition 2.1.4.1.3. Let A, B, C, and X be sets.
001D

1. Functoriality. The assignment $(A, B, C, f, g) \mapsto A \times f, C, g$ B defines a functor

$$
-_{1} \times_{-3}-_{1}: \operatorname{Fun}(\mathcal{P}, \text { Sets }) \rightarrow \text { Sets, }
$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-{ }_{1} \times{ }_{-3}-_{1}$ is given by sending a morphism

in Fun $(\mathcal{P}$, Sets $)$ to the map $\xi: A \times_{C} B \xrightarrow{\exists!} A^{\prime} \times_{C^{\prime}} B^{\prime}$ given by

$$
\xi(a, b) \stackrel{\text { def }}{=}(\phi(a), \psi(b))
$$

for each $(a, b) \in A \times_{C} B$, which is the unique map making the diagram

commute.
2. Associativity. Given a diagram

in Sets, we have isomorphisms of sets
$\left(A \times_{X} B\right) \times_{Y} C \cong\left(A \times_{X} B\right) \times_{B}\left(B \times_{Y} C\right) \cong A \times_{X}\left(B \times_{Y} C\right)$,
where these pullbacks are built as in the diagrams

001F
3. Unitality. We have isomorphisms of sets

$X \times_{X} A \cong A$,
$A \times_{X} X \cong A$,

4. Commutativity. We have an isomorphism of sets

5. Annihilation With the Empty Set. We have isomorphisms of sets

6. Interaction With Products. We have an isomorphism of sets

7. Symmetric Monoidality. The triple (Sets, \times_{X}, X) is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pullback diagram.
Item 2, Associativity: Indeed, we have

$$
\begin{aligned}
\left(A \times_{X} B\right) \times_{Y} C & \cong\left\{((a, b), c) \in\left(A \times_{X} B\right) \times C \mid h(b)=k(c)\right\} \\
& \cong\{((a, b), c) \in(A \times B) \times C \mid f(a)=g(b) \text { and } h(b)=k(c)\} \\
& \cong\{(a,(b, c)) \in A \times(B \times C) \mid f(a)=g(b) \text { and } h(b)=k(c)\} \\
& \cong\left\{(a,(b, c)) \in A \times\left(B \times_{Y} C\right) \mid f(a)=g(b)\right\} \\
& \cong A \times_{X}\left(B \times_{Y} C\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(A \times_{X} B\right) \times_{B}\left(B \times_{Y} C\right) \cong\left\{\left((a, b),\left(b^{\prime}, c\right)\right) \in\left(A \times_{X} B\right) \times\left(B \times_{Y} C\right) \mid b=b^{\prime}\right\} \\
& \cong\left\{\begin{array}{l|l}
\left((a, b),\left(b^{\prime}, c\right)\right) \in(A \times B) \times(B \times C) & \begin{array}{l}
f(a)=g(b), b=b^{\prime}, \\
\text { and } h\left(b^{\prime}\right)=k(c)
\end{array}
\end{array}\right\} \\
& \cong\left\{\begin{array}{l|l}
\left(a,\left(b,\left(b^{\prime}, c\right)\right)\right) \in A \times(B \times(B \times C)) & \begin{array}{l}
f(a)=g(b), b=b^{\prime}, \\
\text { and } h\left(b^{\prime}\right)=k(c)
\end{array}
\end{array}\right\} \\
& \cong\left\{\begin{array}{l|l}
\left(a,\left(\left(b, b^{\prime}\right), c\right)\right) \in A \times((B \times B) \times C) & \begin{array}{l}
f(a)=g(b), b=b^{\prime} \\
\text { and } h\left(b^{\prime}\right)=k(c)
\end{array}
\end{array}\right\} \\
& \cong\left\{\begin{array}{l|l}
\left(a,\left(\left(b, b^{\prime}\right), c\right)\right) \in A \times\left(\left(B \times_{B} B\right) \times C\right) & \begin{array}{l}
f(a)=g(b) \text { and } \\
h\left(b^{\prime}\right)=k(c)
\end{array}
\end{array}\right\} \\
& \cong\{(a,(b, c)) \in A \times(B \times C) \mid f(a)=g(b) \text { and } h(b)=k(c)\} \\
& \cong A \times_{X}\left(B \times_{Y} C\right),
\end{aligned}
$$

where we have used Item 3 for the isomorphism $B \times_{B} B \cong B$.
Item 3, Unitality: Indeed, we have

$$
\begin{aligned}
& X \times_{X} A \cong\{(x, a) \in X \times A \mid f(a)=x\} \\
& A \times_{X} X \cong\{(a, x) \in X \times A \mid f(a)=x\}
\end{aligned}
$$

which are isomorphic to A via the maps $(x, a) \mapsto a$ and $(a, x) \mapsto a$.
Item 4, Commutativity: Clear.
Item 5, Annihilation With the Empty Set: Clear.
Item 6, Interaction With Products: Clear.
Item 7, Symmetric Monoidality: Omitted.

001L

2.1.5 Equalisers

Let A and B be sets and let $f, g: A \rightrightarrows B$ be functions.
001 M Definition 2.1.5.1.1. The equaliser of f and g is the pair $(\operatorname{Eq}(f, g), \mathrm{eq}(f, g))$ consisting of:

- The Limit. The set $\operatorname{Eq}(f, g)$ defined by

$$
\operatorname{Eq}(f, g) \stackrel{\text { def }}{=}\{a \in A \mid f(a)=g(a)\}
$$

- The Cone. The inclusion map

$$
\operatorname{eq}(f, g): \operatorname{Eq}(f, g) \hookrightarrow A .
$$

Proof. We claim that $\operatorname{Eq}(f, g)$ is the categorical equaliser of f and g in Sets. First we need to check that the relevant equaliser diagram commutes, i.e. that we have

$$
f \circ \mathrm{eq}(f, g)=g \circ \mathrm{eq}(f, g)
$$

which indeed holds by the definition of the set $\operatorname{Eq}(f, g)$. Next, we prove that $\operatorname{Eq}(f, g)$ satisfies the universal property of the equaliser. Suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: E \rightarrow \operatorname{Eq}(f, g)$ making the diagram

commute, being uniquely determined by the condition

$$
\mathrm{eq}(f, g) \circ \phi=e
$$

via

$$
\phi(x)=e(x)
$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in $\operatorname{Eq}(f, g)$ by the condition

$$
f \circ e=g \circ e
$$

which gives

$$
f(e(x))=g(e(x))
$$

for each $x \in E$, so that $e(x) \in \operatorname{Eq}(f, g)$.
001 N Proposition 2.1.5.1.2. Let A, B, and C be sets.
001P

1. Associativity. We have isomorphisms of sets ${ }^{7}$

$$
\underbrace{\operatorname{Eq}(f \circ \mathrm{eq}(g, h), g \circ \mathrm{eq}(g, h))}_{=\operatorname{Eq}(f \circ \mathrm{eq}(g, h), h \circ \mathrm{eq}(g, h))} \cong \operatorname{Eq}(f, g, h) \cong \underbrace{\operatorname{Eq}(f \circ \mathrm{eq}(f, g), h \circ \mathrm{eq}(f, g))}_{=\operatorname{Eq}(g \circ \mathrm{eq}(f, g), h \circ \mathrm{eq}(f, g))},
$$

[^6]$$
A \xrightarrow[h]{\stackrel{f}{-g}} B
$$
in Sets.
where $\operatorname{Eq}(f, g, h)$ is the limit of the diagram
$$
A \underset{h}{\stackrel{f}{\xrightarrow{-g}} B}
$$
in Sets, being explicitly given by
$$
\operatorname{Eq}(f, g, h) \cong\{a \in A \mid f(a)=g(a)=h(a)\} .
$$
6. Interaction With Composition. Let
$$
A \underset{g}{\stackrel{f}{\rightrightarrows}} B \underset{k}{\underset{\rightrightarrows}{h}} C
$$
2. First take the equaliser of f and g, forming a diagram
$$
\mathrm{Eq}(f, g) \stackrel{\mathrm{eq}(f, g)}{\longrightarrow} A \underset{g}{\stackrel{f}{\rightrightarrows}} B
$$
and then take the equaliser of the composition
$$
\operatorname{Eq}(f, g) \stackrel{\operatorname{eq}(f, g)}{\rightrightarrows} A \underset{h}{\stackrel{f}{\rightrightarrows}} B,
$$
obtaining a subset
$$
\operatorname{Eq}(f \circ \mathrm{eq}(f, g), h \circ \mathrm{eq}(f, g))=\operatorname{Eq}(g \circ \mathrm{eq}(f, g), h \circ \mathrm{eq}(f, g))
$$
of $\operatorname{Eq}(f, g)$.
3. First take the equaliser of g and h, forming a diagram
$$
\mathrm{Eq}(g, h) \stackrel{\mathrm{eq}(g, h)}{\longrightarrow} A \underset{h}{\stackrel{g}{\rightrightarrows}} B
$$
and then take the equaliser of the composition
$$
\mathrm{Eq}(g, h) \stackrel{\mathrm{eq}(g, h)}{\longrightarrow} A \underset{g}{\stackrel{f}{\rightrightarrows}} B,
$$
obtaining a subset
$$
\operatorname{Eq}(f \circ \operatorname{eq}(g, h), g \circ \mathrm{eq}(g, h))=\operatorname{Eq}(f \circ \mathrm{eq}(g, h), h \circ \mathrm{eq}(g, h))
$$
of $\operatorname{Eq}(g, h)$.
be functions. We have an inclusion of sets
$$
\operatorname{Eq}(h \circ f \circ \mathrm{eq}(f, g), k \circ g \circ \mathrm{eq}(f, g)) \subset \operatorname{Eq}(h \circ f, k \circ g),
$$
where $\operatorname{Eq}(h \circ f \circ \mathrm{eq}(f, g), k \circ g \circ \mathrm{eq}(f, g))$ is the equaliser of the composition
$$
\operatorname{Eq}(f, g) \stackrel{\operatorname{eq}(f, g)}{\rightrightarrows} A \underset{g}{\stackrel{f}{\rightrightarrows}} B \underset{k}{\stackrel{h}{\rightrightarrows}} C .
$$

Proof. Item 1, Associativity: We first prove that $\operatorname{Eq}(f, g, h)$ is indeed given by

$$
\operatorname{Eq}(f, g, h) \cong\{a \in A \mid f(a)=g(a)=h(a)\}
$$

Indeed, suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: E \rightarrow \operatorname{Eq}(f, g, h)$, uniquely determined by the condition

$$
\mathrm{eq}(f, g) \circ \phi=e
$$

being necessarily given by

$$
\phi(x)=e(x)
$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in $\operatorname{Eq}(f, g, h)$ by the condition

$$
f \circ e=g \circ e=h \circ e,
$$

which gives

$$
f(e(x))=g(e(x))=h(e(x))
$$

for each $x \in E$, so that $e(x) \in \operatorname{Eq}(f, g, h)$.
We now check the equalities
$\operatorname{Eq}(f \circ \mathrm{eq}(g, h), g \circ \mathrm{eq}(g, h)) \cong \operatorname{Eq}(f, g, h) \cong \operatorname{Eq}(f \circ \mathrm{eq}(f, g), h \circ \mathrm{eq}(f, g))$.
Indeed, we have

$$
\begin{aligned}
\operatorname{Eq}(f \circ \mathrm{eq}(g, h), g \circ \mathrm{eq}(g, h)) & \cong\{x \in \operatorname{Eq}(g, h) \mid[f \circ \mathrm{eq}(g, h)](a)=[g \circ \mathrm{eq}(g, h)](a)\} \\
& \cong\{x \in \operatorname{Eq}(g, h) \mid f(a)=g(a)\} \\
& \cong\{x \in A \mid f(a)=g(a) \text { and } g(a)=h(a)\} \\
& \cong\{x \in A \mid f(a)=g(a)=h(a)\} \\
& \cong \operatorname{Eq}(f, g, h) .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\operatorname{Eq}(f \circ \mathrm{eq}(f, g), h \circ \mathrm{eq}(f, g)) & \cong\{x \in \operatorname{Eq}(f, g) \mid[f \circ \operatorname{eq}(f, g)](a)=[h \circ \mathrm{eq}(f, g)](a)\} \\
& \cong\{x \in \operatorname{Eq}(f, g) \mid f(a)=h(a)\} \\
& \cong\{x \in A \mid f(a)=h(a) \text { and } f(a)=g(a)\} \\
& \cong\{x \in A \mid f(a)=g(a)=h(a)\} \\
& \cong \operatorname{Eq}(f, g, h) .
\end{aligned}
$$

Item 4, Unitality: Clear.
Item 5, Commutativity: Clear.
Item 6, Interaction With Composition: Indeed, we have

$$
\begin{aligned}
\operatorname{Eq}(h \circ f \circ \mathrm{eq}(f, g), k \circ g \circ \mathrm{eq}(f, g)) & \cong\{a \in \operatorname{Eq}(f, g) \mid h(f(a))=k(g(a))\} \\
& \cong\{a \in A \mid f(a)=g(a) \text { and } h(f(a))=k(g(a))\} .
\end{aligned}
$$

and

$$
\operatorname{Eq}(h \circ f, k \circ g) \cong\{a \in A \mid h(f(a))=k(g(a))\}
$$

and thus there's an inclusion from $\operatorname{Eq}(h \circ f \circ \mathrm{eq}(f, g), k \circ g \circ \mathrm{eq}(f, g))$ to $\mathrm{Eq}(h \circ f, k \circ g)$.

001T
 2.2 Colimits of Sets

001 U
 2.2.1 The Initial Set

$001 V$ Definition 2.2.1.1.1. The initial set is the pair $\left(\emptyset,\left\{\iota_{A}\right\}_{A \in \operatorname{Obj}(S e t s)}\right)$ consisting of:

- The Limit. The empty set \emptyset of Definition 2.3.1.1.1.
- The Cone. The collection of maps

$$
\left\{\iota_{A}: \emptyset \rightarrow A\right\}_{A \in \mathrm{Obj}(\text { Sets })}
$$

given by the inclusion maps from \emptyset to A.
Proof. We claim that \emptyset is the initial object of Sets. Indeed, suppose we have a diagram of the form

$$
\emptyset \quad A
$$

in Sets. Then there exists a unique map $\phi: \emptyset \rightarrow A$ making the diagram

$$
\emptyset \underset{\exists!}{\stackrel{\phi}{\Xi!}} A
$$

commute, namely the inclusion map ι_{A}.

2.2.2 Coproducts of Families of Sets

Let $\left\{A_{i}\right\}_{i \in I}$ be a family of sets.
001X Definition 2.2.2.1.1. The disjoint union of the family $\left\{A_{i}\right\}_{i \in I}$ is the pair ($\left.\amalg_{i \in I} A_{i},\left\{\operatorname{inj}_{i}\right\}_{i \in I}\right)$ consisting of:

- The Colimit. The set $\coprod_{i \in I} A_{i}$ defined by

$$
\coprod_{i \in I} A_{i} \stackrel{\text { def }}{=}\left\{(i, x) \in I \times\left(\bigcup_{i \in I} A_{i}\right) \mid x \in A_{i}\right\} .
$$

- The Cocone. The collection

$$
\left\{\operatorname{inj}_{i}: A_{i} \rightarrow \coprod_{i \in I} A_{i}\right\}_{i \in I}
$$

of maps given by

$$
\operatorname{inj}_{i}(x) \stackrel{\text { def }}{=}(i, x)
$$

for each $x \in A_{i}$ and each $i \in I$.
Proof. We claim that $\coprod_{i \in I} A_{i}$ is the categorical coproduct of $\left\{A_{i}\right\}_{i \in I}$ in Sets. Indeed, suppose we have, for each $i \in I$, a diagram of the form

in Sets. Then there exists a unique map $\phi: \coprod_{i \in I} A_{i} \rightarrow C$ making the diagram

commute, being uniquely determined by the condition $\phi \circ \operatorname{inj}_{i}=\iota_{i}$ for each $i \in I$ via

$$
\phi((i, x))=\iota_{i}(x)
$$

for each $(i, x) \in \coprod_{i \in I} A_{i}$.
$001 Z$ 1. Functoriality. The assignment $\left\{A_{i}\right\}_{i \in I} \mapsto \amalg_{i \in I} A_{i}$ defines a functor

$$
\coprod_{i \in I}: \operatorname{Fun}\left(I_{\text {disc }}, \text { Sets }\right) \rightarrow \text { Sets }
$$

where

- Action on Objects. For each $\left(A_{i}\right)_{i \in I} \in \operatorname{Obj}\left(F u n\left(I_{\text {disc }}\right.\right.$, Sets $\left.)\right)$, we have

$$
\left[\coprod_{i \in I}\right]\left(\left(A_{i}\right)_{i \in I}\right) \stackrel{\text { def }}{=} \coprod_{i \in I} A_{i}
$$

- Action on Morphisms. For each $\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I} \in \operatorname{Obj}\left(\operatorname{Fun}\left(I_{\text {disc }}\right.\right.$, Sets $\left.)\right)$, the action on Hom-sets
$\left(\coprod_{i \in I}\right)_{\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}}: \operatorname{Nat}\left(\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}\right) \rightarrow \operatorname{Sets}\left(\coprod_{i \in I} A_{i}, \coprod_{i \in I} B_{i}\right)$
of $\coprod_{i \in I}$ at $\left(\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}\right)$ is defined by sending a map

$$
\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}
$$

in $\operatorname{Nat}\left(\left(A_{i}\right)_{i \in I},\left(B_{i}\right)_{i \in I}\right)$ to the map of sets

$$
\coprod_{i \in I} f_{i}: \coprod_{i \in I} A_{i} \rightarrow \coprod_{i \in I} B_{i}
$$

defined by

$$
\left[\coprod_{i \in I} f_{i}\right](i, a) \stackrel{\text { def }}{=} f_{i}(a)
$$

for each $(i, a) \in \coprod_{i \in I} A_{i}$.
Proof. Item 1, Functoriality: This follows from ?? of ??.

2.2.3 Binary Coproducts

Let A and B be sets.
0021 Definition 2.2.3.1.1. The coproduct ${ }^{8}$ of A and B is the pair $\left(A \amalg B,\left\{\operatorname{inj}_{1}, \operatorname{inj}_{2}\right\}\right)$ consisting of:

- The Colimit. The set $A \amalg B$ defined by

$$
\begin{aligned}
A \amalg B & \stackrel{\text { def }}{=} \coprod_{z \in\{A, B\}} z \\
& \cong\{(0, a) \mid a \in A\} \cup\{(1, b) \mid b \in B\} .
\end{aligned}
$$

[^7]- The Cocone. The maps

$$
\begin{aligned}
& \operatorname{inj}_{1}: A \rightarrow A \amalg B, \\
& \operatorname{inj}_{2}: B \rightarrow A \amalg B,
\end{aligned}
$$

given by

$$
\begin{aligned}
& \operatorname{inj}_{1}(a) \stackrel{\text { def }}{=}(0, a), \\
& \operatorname{inj}_{2}(b) \stackrel{\text { def }}{=}(1, b),
\end{aligned}
$$

for each $a \in A$ and each $b \in B$.
Proof. We claim that $A \amalg B$ is the categorical coproduct of A and B in Sets. Indeed, suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: A \amalg B \rightarrow C$ making the diagram

commute, being uniquely determined by the conditions

$$
\begin{aligned}
& \phi \circ \operatorname{inj}_{A}=\iota_{A}, \\
& \phi \circ \operatorname{inj}_{B}=\iota_{B}
\end{aligned}
$$

via

$$
\phi(x)= \begin{cases}\iota_{A}(a) & \text { if } x=(0, a) \\ \iota_{B}(b) & \text { if } x=(1, b)\end{cases}
$$

for each $x \in A \amalg B$.
0022 Proposition 2.2.3.1.2. Let A, B, C, and X be sets.

1. Functoriality. The assignment $A, B,(A, B) \mapsto A \amalg B$ defines functors

$$
\begin{gathered}
A \amalg-: \text { Sets } \rightarrow \text { Sets, } \\
-\amalg B: \text { Sets } \rightarrow \text { Sets, } \\
-_{1} \amalg-_{2}: \text { Sets } \times \text { Sets } \rightarrow \text { Sets, }
\end{gathered}
$$

where $-{ }_{1} \amalg-2$ is the functor where

- Action on Objects. For each $(A, B) \in \operatorname{Obj}($ Sets \times Sets $)$, we have

$$
\left[-1 \amalg-_{2}\right](A, B) \stackrel{\text { def }}{=} A \amalg B
$$

- Action on Morphisms. For each $(A, B),(X, Y) \in \operatorname{Obj}($ Sets $)$, the action on Hom-sets
$\coprod_{(A, B),(X, Y)}: \operatorname{Sets}(A, X) \times \operatorname{Sets}(B, Y) \rightarrow \operatorname{Sets}(A \amalg B, X \amalg Y)$
of \amalg at $((A, B),(X, Y))$ is defined by sending (f, g) to the function

$$
f \amalg g: A \amalg B \rightarrow X \amalg Y
$$

defined by

$$
[f \amalg g](x) \stackrel{\text { def }}{=} \begin{cases}(0, f(a)) & \text { if } x=(0, a) \\ (1, g(b)) & \text { if } x=(1, b)\end{cases}
$$

for each $x \in A \amalg B$.
and where $A \amalg-$ and $-\amalg B$ are the partial functors of $-_{1} \amalg-_{2}$ at $A, B \in \mathrm{Obj}$ (Sets).
2. Associativity. We have an isomorphism of sets

$$
(A \amalg B) \amalg C \cong A \amalg(B \amalg C),
$$

natural in $A, B, C \in \mathrm{Obj}($ Sets $)$.
3. Unitality. We have isomorphisms of sets

$$
\begin{aligned}
& A \amalg \emptyset \cong A, \\
& \emptyset \amalg A \cong A,
\end{aligned}
$$

natural in $A \in \operatorname{Obj}$ (Sets).
4. Commutativity. We have an isomorphism of sets

$$
A \amalg B \cong B \amalg A,
$$

natural in $A, B \in \operatorname{Obj}($ Sets $)$.
5. Symmetric Monoidality. The triple (Sets, \amalg, \emptyset) is a symmetric monoidal category.

Proof. Item 1, Functoriality: This follows from ?? of ??.
Item 2, Associativity: Clear.
Item 3, Unitality: Clear.
Item 4, Commutativity: Clear.
Item 5, Symmetric Monoidality: Omitted.

2.2.4 Pushouts

Let A, B, and C be sets and let $f: C \rightarrow A$ and $g: C \rightarrow B$ be functions.
0029 Definition 2.2.4.1.1. The pushout of A and B over C along f and g^{9} is the pair ${ }^{10}\left(A \coprod_{C} B,\left\{\operatorname{inj}_{1}, \operatorname{inj}_{2}\right\}\right)$ consisting of:

- The Colimit. The set $A \coprod_{C} B$ defined by

$$
A \amalg_{C} B \stackrel{\text { def }}{=} A \amalg B / \sim_{C},
$$

where \sim_{C} is the equivalence relation on $A \amalg B$ generated by $(0, f(c)) \sim_{C}(1, g(c))$.

- The Cocone. The maps

$$
\begin{aligned}
& \mathrm{inj}_{1}: A \rightarrow A \coprod_{C} B, \\
& \mathrm{inj}_{2}: B \rightarrow A \coprod_{C} B
\end{aligned}
$$

given by

$$
\begin{aligned}
& \operatorname{inj}_{1}(a) \stackrel{\text { def }}{=}[(0, a)] \\
& \operatorname{inj}_{2}(b) \stackrel{\text { def }}{=}[(1, b)]
\end{aligned}
$$

for each $a \in A$ and each $b \in B$.
Proof. We claim that $A \coprod_{C} B$ is the categorical pushout of A and B over C with respect to (f, g) in Sets. First we need to check that the relevant pushout diagram commutes, i.e. that we have

Indeed, given $c \in C$, we have

$$
\begin{aligned}
{\left[\operatorname{inj}_{1} \circ f\right](c) } & =\operatorname{inj}_{1}(f(c)) \\
& =[(0, f(c))] \\
& =[(1, g(c))] \\
& =\operatorname{inj}_{2}(g(c)) \\
& =\left[\operatorname{inj}_{2} \circ g\right](c),
\end{aligned}
$$

[^8]where $[(0, f(c))]=[(1, g(c))]$ by the definition of the relation \sim on $A \amalg B$. Next, we prove that $A \coprod_{C} B$ satisfies the universal property of the pushout. Suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: A \coprod_{C} B \rightarrow P$ making the diagram

commute, being uniquely determined by the conditions
\[

$$
\begin{gathered}
\phi \circ \mathrm{inj}_{1}=\iota_{1}, \\
\phi \circ \mathrm{inj}_{2}=\iota_{2}
\end{gathered}
$$
\]

via

$$
\phi(x)= \begin{cases}\iota_{1}(a) & \text { if } x=[(0, a)] \\ \iota_{2}(b) & \text { if } x=[(1, b)]\end{cases}
$$

for each $x \in A \coprod_{C} B$, where the well-definedness of ϕ is guaranteed by the equality $\iota_{1} \circ f=\iota_{2} \circ g$ and the definition of the relation \sim on $A \amalg B$ as follows:

1. Case 1: Suppose we have $x=[(0, a)]=\left[\left(0, a^{\prime}\right)\right]$ for some $a, a^{\prime} \in A$. Then, by Remark 2.2.4.1.2, we have a sequence

$$
(0, a) \sim^{\prime} x_{1} \sim^{\prime} \cdots \sim^{\prime} x_{n} \sim^{\prime}\left(0, a^{\prime}\right)
$$

2. Case 2: Suppose we have $x=[(1, b)]=\left[\left(1, b^{\prime}\right)\right]$ for some $b, b^{\prime} \in B$. Then, by Remark 2.2.4.1.2, we have a sequence

$$
(1, b) \sim^{\prime} x_{1} \sim^{\prime} \cdots \sim^{\prime} x_{n} \sim^{\prime}\left(1, b^{\prime}\right)
$$

3. Case 3: Suppose we have $x=[(0, a)]=[(1, b)]$ for some $a \in A$ and $b \in B$. Then, by Remark 2.2.4.1.2, we have a sequence

$$
(0, a) \sim^{\prime} x_{1} \sim^{\prime} \cdots \sim^{\prime} x_{n} \sim^{\prime}(1, b)
$$

In all these cases, we declare $x \sim^{\prime} y$ iff there exists some $c \in C$ such that $x=(0, f(c))$ and $y=(1, g(c))$ or $x=(1, g(c))$ and $y=(0, f(c))$. Then, the equality $\iota_{1} \circ f=\iota_{2} \circ g$ gives

$$
\begin{aligned}
\phi([x]) & =\phi([(0, f(c))]) \\
& \stackrel{\text { def }}{=} \iota_{1}(f(c)) \\
& =\iota_{2}(g(c)) \\
& \stackrel{\text { def }}{=} \phi([(1, g(c))]) \\
& =\phi([y]),
\end{aligned}
$$

with the case where $x=(1, g(c))$ and $y=(0, f(c))$ similarly giving $\phi([x])=\phi([y])$. Thus, if $x \sim^{\prime} y$, then $\phi([x])=\phi([y])$. Applying this equality pairwise to the sequences

$$
\begin{aligned}
& (0, a) \sim^{\prime} x_{1} \sim^{\prime} \cdots \sim^{\prime} x_{n} \sim^{\prime}\left(0, a^{\prime}\right), \\
& (1, b) \sim^{\prime} x_{1} \sim^{\prime} \cdots \sim^{\prime} x_{n} \sim^{\prime}\left(1, b^{\prime}\right), \\
& (0, a) \sim^{\prime} x_{1} \sim^{\prime} \cdots \sim^{\prime} x_{n} \sim^{\prime}(1, b)
\end{aligned}
$$

gives

$$
\begin{aligned}
\phi([(0, a)]) & =\phi\left(\left[\left(0, a^{\prime}\right)\right]\right), \\
\phi([(1, b)]) & =\phi\left(\left[\left(1, b^{\prime}\right)\right]\right), \\
\phi([(0, a)]) & =\phi([(1, b)]),
\end{aligned}
$$

showing ϕ to be well-defined.
002A Remark 2.2.4.1.2. In detail, by Construction 7.4.2.1.2, the relation \sim of Definition 2.2.4.1.1 is given by declaring $a \sim b$ iff one of the following conditions is satisfied:

- We have $a, b \in A$ and $a=b$;
- We have $a, b \in B$ and $a=b$;
- There exist $x_{1}, \ldots, x_{n} \in A \amalg B$ such that $a \sim^{\prime} x_{1} \sim^{\prime} \cdots \sim^{\prime} x_{n} \sim^{\prime} b$, where we declare $x \sim^{\prime} y$ if one of the following conditions is satisfied:

1. There exists $c \in C$ such that $x=(0, f(c))$ and $y=(1, g(c))$.
2. There exists $c \in C$ such that $x=(1, g(c))$ and $y=(0, f(c))$.

That is: we require the following condition to be satisfied:
(\star) There exist $x_{1}, \ldots, x_{n} \in A \amalg B$ satisfying the following conditions:

1. There exists $c_{0} \in C$ satisfying one of the following conditions:
(a) We have $a=f\left(c_{0}\right)$ and $x_{1}=g\left(c_{0}\right)$.
(b) We have $a=g\left(c_{0}\right)$ and $x_{1}=f\left(c_{0}\right)$.
2. For each $1 \leq i \leq n-1$, there exists $c_{i} \in C$ satisfying one of the following conditions:
(a) We have $x_{i}=f\left(c_{i}\right)$ and $x_{i+1}=g\left(c_{i}\right)$.
(b) We have $x_{i}=g\left(c_{i}\right)$ and $x_{i+1}=f\left(c_{i}\right)$.
3. There exists $c_{n} \in C$ satisfying one of the following conditions:
(a) We have $x_{n}=f\left(c_{n}\right)$ and $b=g\left(c_{n}\right)$.
(b) We have $x_{n}=g\left(c_{n}\right)$ and $b=f\left(c_{n}\right)$.

Example 2.2.4.1.3. Here are some examples of pushouts of sets.

1. Wedge Sums of Pointed Sets. The wedge sum of two pointed sets of Definition 3.3.3.1.1 is an example of a pushout of sets.
2. Intersections via Unions. Let $A, B \subset X$. We have a bijection of sets

Proof. Item 1, Wedge Sums of Pointed Sets: Follows by definition. Item 2, Intersections via Unions: Indeed, $A \amalg_{A \cap B} B$ is the quotient of $A \amalg B$ by the equivalence relation obtained by declaring $(0, a) \sim(1, b)$ iff $a=b \in A \cap B$, which is in bijection with $A \cup B$ via the map with $[(0, a)] \mapsto a$ and $[(1, b)] \mapsto b$.

002E Proposition 2.2.4.1.4. Let A, B, C, and X be sets.

1. Functoriality. The assignment $(A, B, C, f, g) \mapsto A \coprod_{f, C, g} B$ defines a functor

$$
-_{1} \amalg_{-3}-{ }_{1}: \operatorname{Fun}(\mathcal{P}, \text { Sets }) \rightarrow \text { Sets, }
$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-_{1} \coprod_{-3}-_{1}$ is given by sending a morphism

in $\operatorname{Fun}(\mathcal{P}$, Sets $)$ to the map $\xi: A \coprod_{C} B \xrightarrow{\exists!} A^{\prime} \coprod_{C^{\prime}} B^{\prime}$ given by

$$
\xi(x) \stackrel{\text { def }}{=} \begin{cases}\phi(a) & \text { if } x=[(0, a)] \\ \psi(b) & \text { if } x=[(1, b)]\end{cases}
$$

for each $x \in A \coprod_{C} B$, which is the unique map making the diagram

commute.
2. Associativity. Given a diagram

in Sets, we have isomorphisms of sets

$$
\left(A \coprod_{X} B\right) \coprod_{Y} C \cong\left(A \coprod_{X} B\right) \coprod_{B}\left(B \coprod_{Y} C\right) \cong A \coprod_{X}\left(B \coprod_{Y} C\right),
$$

where these pullbacks are built as in the diagrams

3. Unitality. We have isomorphisms of sets

4. Commutativity. We have an isomorphism of sets
$A \coprod_{X} B \longleftarrow B$

$A \amalg_{X} B \cong B \amalg_{X} A$

5. Interaction With Coproducts. We have
6. Symmetric Monoidality. The triple (Sets, $\left.\amalg_{X}, X\right)$ is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pushout diagram.
Item 2, Associativity: Omitted.
Item 3, Unitality: Omitted.
Item 4, Commutativity: Clear.
Item 5, Interaction With Coproducts: Clear.
Item 6, Symmetric Monoidality: Omitted.

2.2.5 Coequalisers

Let A and B be sets and let $f, g: A \rightrightarrows B$ be functions.
002N Definition 2.2.5.1.1. The coequaliser of f and g is the pair $(\operatorname{CoEq}(f, g), \operatorname{coeq}(f, g))$ consisting of:

- The Colimit. The set $\operatorname{CoEq}(f, g)$ defined by

$$
\operatorname{CoEq}(f, g) \stackrel{\text { def }}{=} B / \sim,
$$

where \sim is the equivalence relation on B generated by $f(a) \sim g(a)$.

- The Cocone. The map

$$
\operatorname{coeq}(f, g): B \rightarrow \operatorname{CoEq}(f, g)
$$

given by the quotient map $\pi: B \rightarrow B / \sim$ with respect to the equivalence relation generated by $f(a) \sim g(a)$.

Proof. We claim that $\operatorname{CoEq}(f, g)$ is the categorical coequaliser of f and g in Sets. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have

$$
\operatorname{coeq}(f, g) \circ f=\operatorname{coeq}(f, g) \circ g .
$$

Indeed, we have

$$
\begin{aligned}
{[\operatorname{coeq}(f, g) \circ f](a) } & \stackrel{\text { def }}{\text { def }}[\operatorname{coeq}(f, g)](f(a)) \\
& \xlongequal{\text { def }}[f(a)] \\
& =[g(a)] \\
& \xlongequal{\text { def }}[\operatorname{coeq}(f, g)](g(a)) \\
& \xlongequal{\text { def }}[\operatorname{coeq}(f, g) \circ g](a)
\end{aligned}
$$

for each $a \in A$. Next, we prove that $\operatorname{CoEq}(f, g)$ satisfies the universal property of the coequaliser. Suppose we have a diagram of the form

$$
A \xlongequal[g]{f} B \stackrel{\operatorname{coeq}(f, g)}{\longrightarrow} \operatorname{CoEq}(f, g)
$$

in Sets. Then, since $c(f(a))=c(g(a))$ for each $a \in A$, it follows from Items 4 and 5 of Proposition 7.5.2.1.3 that there exists a unique map
$\operatorname{CoEq}(f, g) \xrightarrow{\exists!} C$ making the diagram

commute.
002P Remark 2.2.5.1.2. In detail, by Construction 7.4.2.1.2, the relation ~ of Definition 2.2.5.1.1 is given by declaring $a \sim b$ iff one of the following conditions is satisfied:

- We have $a=b$;
- There exist $x_{1}, \ldots, x_{n} \in B$ such that $a \sim^{\prime} x_{1} \sim^{\prime} \ldots \sim^{\prime} x_{n} \sim^{\prime} b$, where we declare $x \sim^{\prime} y$ if one of the following conditions is satisfied:

1. There exists $z \in A$ such that $x=f(z)$ and $y=g(z)$.
2. There exists $z \in A$ such that $x=g(z)$ and $y=f(z)$.

That is: we require the following condition to be satisfied:
(\star) There exist $x_{1}, \ldots, x_{n} \in B$ satisfying the following conditions:

1. There exists $z_{0} \in A$ satisfying one of the following conditions:
(a) We have $a=f\left(z_{0}\right)$ and $x_{1}=g\left(z_{0}\right)$.
(b) We have $a=g\left(z_{0}\right)$ and $x_{1}=f\left(z_{0}\right)$.
2. For each $1 \leq i \leq n-1$, there exists $z_{i} \in A$ satisfying one of the following conditions:
(a) We have $x_{i}=f\left(z_{i}\right)$ and $x_{i+1}=g\left(z_{i}\right)$.
(b) We have $x_{i}=g\left(z_{i}\right)$ and $x_{i+1}=f\left(z_{i}\right)$.
3. There exists $z_{n} \in A$ satisfying one of the following conditions:
(a) We have $x_{n}=f\left(z_{n}\right)$ and $b=g\left(z_{n}\right)$.
(b) We have $x_{n}=g\left(z_{n}\right)$ and $b=f\left(z_{n}\right)$.

002 Q Example 2.2.5.1.3. Here are some examples of coequalisers of sets.
002 R 1. Quotients by Equivalence Relations. Let R be an equivalence relation on a set X. We have a bijection of sets

$$
X / \sim_{R} \cong \operatorname{CoEq}\left(R \hookrightarrow X \times X \underset{\mathrm{pr}_{2}}{\stackrel{\mathrm{pr}_{1}}{\rightrightarrows}} X\right)
$$

Proof. Item 1, Quotients by Equivalence Relations: See [Pro24ad].
002 S Proposition 2.2.5.1.4. Let A, B, and C be sets.

1. Associativity. We have isomorphisms of sets ${ }^{11}$
$\underbrace{\operatorname{CoEq}(\operatorname{coeq}(f, g) \circ f, \operatorname{coeq}(f, g) \circ h)}_{=\operatorname{CoEq}(\operatorname{coeq}(f, g) \circ g, \operatorname{coeq}(f, g) \circ h)} \cong \operatorname{CoEq}(f, g, h) \cong \underbrace{\operatorname{CoEq}(\operatorname{coeq}(g, h) \circ f, \operatorname{coeq}(g, h) \circ g)}_{=\operatorname{CoEq}(\operatorname{coeq}(g, h) \circ f, \operatorname{coeq}(g, h) \circ h)}$,
where $\operatorname{CoEq}(f, g, h)$ is the colimit of the diagram

$$
A \xrightarrow[h]{\stackrel{f}{-g}} B
$$

in Sets.
${ }^{11}$ That is, the following three ways of forming "the" coequaliser of (f, g, h) agree:

1. Take the coequaliser of (f, g, h), i.e. the colimit of the diagram

$$
A \xrightarrow[h]{\stackrel{f}{-g \rightarrow}} B
$$

in Sets.
2. First take the coequaliser of f and g, forming a diagram

$$
A \xrightarrow[g]{\stackrel{f}{\rightrightarrows}} B \xrightarrow{\operatorname{coeq}(f, g)} \operatorname{CoEq}(f, g)
$$

and then take the coequaliser of the composition

$$
A \underset{h}{\stackrel{f}{\rightrightarrows}} B \xrightarrow{\operatorname{coeq}(f, g)} \operatorname{CoEq}(f, g),
$$

obtaining a quotient
$\operatorname{CoEq}(\operatorname{coeq}(f, g) \circ f, \operatorname{coeq}(f, g) \circ h)=\operatorname{CoEq}(\operatorname{coeq}(f, g) \circ g, \operatorname{coeq}(f, g) \circ h)$
of $\operatorname{CoEq}(f, g)$
3. First take the coequaliser of g and h, forming a diagram

$$
A \underset{h}{\stackrel{g}{\rightrightarrows}} B \xrightarrow{\operatorname{coeq}(g, h)} \operatorname{CoEq}(g, h)
$$

and then take the coequaliser of the composition

$$
A \underset{g}{\stackrel{f}{\rightrightarrows}} B \xrightarrow{\text { coeq }(g, h)} \operatorname{CoEq}(g, h),
$$

obtaining a quotient
$\operatorname{CoEq}(\operatorname{coeq}(g, h) \circ f, \operatorname{coeq}(g, h) \circ g)=\operatorname{CoEq}(\operatorname{coeq}(g, h) \circ f, \operatorname{coeq}(g, h) \circ h)$
of $\operatorname{CoEq}(g, h)$.
4. Unitality. We have an isomorphism of sets

$$
\operatorname{CoEq}(f, f) \cong B
$$

5. Commutativity. We have an isomorphism of sets

$$
\operatorname{CoEq}(f, g) \cong \operatorname{CoEq}(g, f)
$$

6. Interaction With Composition. Let

$$
A \underset{g}{\stackrel{f}{\rightrightarrows}} B \underset{k}{\stackrel{h}{\rightrightarrows}} C
$$

be functions. We have a surjection
$\operatorname{CoEq}(h \circ f, k \circ g) \rightarrow \operatorname{CoEq}(\operatorname{coeq}(h, k) \circ h \circ f, \operatorname{coeq}(h, k) \circ k \circ g)$
exhibiting $\operatorname{CoEq}(\operatorname{coeq}(h, k) \circ h \circ f, \operatorname{coeq}(h, k) \circ k \circ g)$ as a quotient of $\operatorname{CoEq}(h \circ f, k \circ g)$ by the relation generated by declaring $h(y) \sim$ $k(y)$ for each $y \in B$.

Proof. Item 1, Associativity: Omitted.
Item 4, Unitality: Clear.
Item 5, Commutativity: Clear.
Item 6, Interaction With Composition: Omitted.

2.3 Operations With Sets

2.3.1 The Empty Set

$002 Z$ Definition 2.3.1.1.1. The empty set is the set \emptyset defined by

$$
\emptyset \stackrel{\text { def }}{=}\{x \in X \mid x \neq x\}
$$

where A is the set in the set existence axiom, ?? of ??.

0030

2.3.2 Singleton Sets

Let X be a set.
0031 Definition 2.3.2.1.1. The singleton set containing X is the set $\{X\}$ defined by

$$
\{X\} \stackrel{\text { def }}{=}\{X, X\}
$$

where $\{X, X\}$ is the pairing of X with itself (Definition 2.3.3.1.1).

2.3.3 Pairings of Sets

Let X and Y be sets.
0033 Definition 2.3.3.1.1. The pairing of X and Y is the set $\{X, Y\}$ defined by

$$
\{X, Y\} \stackrel{\text { def }}{=}\{x \in A \mid x=X \text { or } x=Y\},
$$

where A is the set in the axiom of pairing, ?? of ??

0034 2.3.4 Ordered Pairs

Let A and B be sets.
0035 Definition 2.3.4.1.1. The ordered pair associated to A and B is the set (A, B) defined by

$$
(A, B) \stackrel{\text { def }}{=}\{\{A\},\{A, B\}\} .
$$

(b) We have $A=C$ and $B=D$.

Proof. Item 1, Uniqueness: See [Cie97, Theorem 1.2.3].

2.3.5 Sets of Maps

Let A and B be sets.
$003 B$ Definition 2.3.5.1.1. The set of maps from A to B^{12} is the set

003C Proposition 2.3.5.1.2. Let A and B be sets.

1. Functoriality. The assignments $X, Y,(X, Y) \mapsto \operatorname{Homsets}^{(X, Y)}$ define functors

$$
\begin{gathered}
\operatorname{Hom}_{\text {Sets }}(X,-): \text { Sets } \rightarrow \text { Sets, } \\
\operatorname{Hom}_{\text {Sets }}(-, Y): \text { Sets }^{\mathrm{op}} \rightarrow \text { Sets, } \\
\operatorname{Hom}_{\text {Sets }}\left(-{ }_{1},-2\right): \text { Sets }^{\mathrm{op}} \times \text { Sets } \rightarrow \text { Sets. }
\end{gathered}
$$

Proof. Item 1, Functoriality: This follows from Items 2 and 5 of Proposition 8.1.6.1.2.

[^9]
2.3.6 Unions of Families

Let $\left\{A_{i}\right\}_{i \in I}$ be a family of sets.
003F Definition 2.3.6.1.1. The union of the family $\left\{A_{i}\right\}_{i \in I}$ is the set $\bigcup_{i \in I} A_{i}$ defined by

$$
\bigcup_{i \in I} A_{i} \stackrel{\text { def }}{=}\left\{x \in F \mid \text { there exists some } i \in I \text { such that } x \in A_{i}\right\},
$$

where F is the set in the axiom of union, ?? of ??

003G 2.3.7 Binary Unions

Let A and B be sets.
003H Definition 2.3.7.1.1. The union ${ }^{14}$ of A and B is the set $A \cup B$ defined by

$$
A \cup B \xlongequal{\text { def }} \bigcup_{z \in\{A, B\}} z .
$$

Proposition 2.3.7.1.2. Let X be a set.

1. Functoriality. The assignments $U, V,(U, V) \mapsto U \cup V$ define functors

$$
\begin{gathered}
U \cup-:(\mathcal{P}(X), \subset) \rightarrow(\mathcal{P}(X), \subset), \\
-\cup V:(\mathcal{P}(X), \subset) \rightarrow(\mathcal{P}(X), \subset), \\
-_{1} \cup--_{2}:(\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \rightarrow(\mathcal{P}(X), \subset),
\end{gathered}
$$

where $-1 \cup-2$ is the functor where

- Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$
\left[-1 \cup-{ }_{2}\right](U, V) \stackrel{\text { def }}{=} U \cup V .
$$

- Action on Morphisms. For each pair of morphisms

$$
\begin{aligned}
& \iota_{U}: U \hookrightarrow U^{\prime}, \\
& \iota_{V}: V \hookrightarrow V^{\prime}
\end{aligned}
$$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$
\iota_{U} \cup \iota_{V}: U \cup V \hookrightarrow U^{\prime} \cup V^{\prime}
$$

of $\left(\iota_{U}, \iota_{V}\right)$ by \cup is the inclusion

$$
U \cup V \subset U^{\prime} \cup V^{\prime}
$$

i.e. where we have

[^10](*) If $U \subset U^{\prime}$ and $V \subset V^{\prime}$, then $U \cup V \subset U^{\prime} \cup V^{\prime}$.
and where $U \cup-$ and $-\cup V$ are the partial functors of $-{ }_{1} \cup-2$ at $U, V \in \mathcal{P}(X)$.
2. Via Intersections and Symmetric Differences. We have an equality of sets
$$
U \cup V=(U \triangle V) \triangle(U \cap V)
$$
for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
3. Associativity. We have an equality of sets
$$
(U \cup V) \cup W=U \cup(V \cup W)
$$
for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
4. Unitality. We have equalities of sets
\[

$$
\begin{aligned}
& U \cup \emptyset=U, \\
& \emptyset \cup U=U
\end{aligned}
$$
\]

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
5. Commutativity. We have an equality of sets

$$
U \cup V=V \cup U
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
6. Idempotency. We have an equality of sets

$$
U \cup U=U
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
7. Distributivity Over Intersections. We have equalities of sets

$$
\begin{aligned}
& U \cup(V \cap W)=(U \cup V) \cap(U \cup W), \\
& (U \cap V) \cup W=(U \cup W) \cap(V \cup W)
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
8. Interaction With Characteristic Functions I. We have

$$
\chi_{U U V}=\max \left(\chi_{U}, \chi_{V}\right)
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.

$$
\chi_{U \cup V}=\chi_{U}+\chi_{V}-\chi_{U \cap V}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
10. Interaction With Powersets and Semirings. The quintuple $(\mathcal{P}(X), \cup, \cap, \emptyset, X)$ is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Pro24ar].
Item 2, Via Intersections and Symmetric Differences: See [Pro24bc].
Item 3, Associativity: See [Pro24be].
Item 4, Unitality: This follows from [Pro24bh] and Item 5.
Item 5, Commutativity: See [Pro24bf].
Item 6, Idempotency: See [Pro24aq].
Item 7, Distributivity Over Intersections: See [Pro24bd].
Item 8, Interaction With Characteristic Functions I: See [Pro24k].
Item 9, Interaction With Characteristic Functions II: See [Pro24k].
Item 10, Interaction With Powersets and Semirings: This follows from Items 3 to 6 and Items 3 to 5,7 and 8 of Proposition 2.3.9.1.2.

003 V 2.3.8 Intersections of Families

Let \mathcal{F} be a family of sets.
003W Definition 2.3.8.1.1. The intersection of a family \mathcal{F} of sets is the set $\bigcap_{X \in \mathcal{F}} X$ defined by

$$
\bigcap_{X \in \mathcal{F}} X \stackrel{\text { def }}{=}\left\{z \in \bigcup_{X \in \mathcal{F}} X \mid \text { for each } X \in \mathcal{F}, \text { we have } z \in X\right\}
$$

003X 2.3.9 Binary Intersections

Let X and Y be sets.
$003 Y$ Definition 2.3.9.1.1. The intersection ${ }^{15}$ of X and Y is the set $X \cap Y$ defined by

$$
X \cap Y \xlongequal{\text { def }} \bigcap_{z \in\{X, Y\}} z
$$

$003 Z$ Proposition 2.3.9.1.2. Let X be a set.

1. Functoriality. The assignments $U, V,(U, V) \mapsto U \cap V$ define

[^11]functors
\[

$$
\begin{gathered}
U \cap-:(\mathcal{P}(X), \subset) \rightarrow(\mathcal{P}(X), \subset), \\
-\cap V:(\mathcal{P}(X), \subset) \rightarrow(\mathcal{P}(X), \subset) \\
-{ }_{1} \cap-{ }_{2}:(\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \rightarrow(\mathcal{P}(X), \subset),
\end{gathered}
$$
\]

where $-{ }_{1} \cap-2$ is the functor where

- Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$
\left[-{ }_{1} \cap-{ }_{2}\right](U, V) \stackrel{\text { def }}{=} U \cap V .
$$

- Action on Morphisms. For each pair of morphisms

$$
\begin{aligned}
& \iota_{U}: U \hookrightarrow U^{\prime}, \\
& \iota_{V}: V \hookrightarrow V^{\prime}
\end{aligned}
$$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$
\iota_{U} \cap \iota_{V}: U \cap V \hookrightarrow U^{\prime} \cap V^{\prime}
$$

of $\left(\iota_{U}, \iota_{V}\right)$ by \cap is the inclusion

$$
U \cap V \subset U^{\prime} \cap V^{\prime}
$$

i.e. where we have
(\star) If $U \subset U^{\prime}$ and $V \subset V^{\prime}$, then $U \cap V \subset U^{\prime} \cap V^{\prime}$.
and where $U \cap-$ and $-\cap V$ are the partial functors of $-{ }_{1} \cap-2$ at $U, V \in \mathcal{P}(X)$.
2. Adjointness. We have adjunctions

$$
\begin{aligned}
& \left(-\cap V \dashv \operatorname{Hom}_{\mathcal{P}(X)}(V,-)\right): \quad \mathcal{P}(X) \stackrel{\perp}{_^{-\cap V}} \mathcal{P}(X), \\
& \operatorname{Hom}_{\mathcal{P}(X)}(V,-)
\end{aligned}
$$

where

$$
\operatorname{Hom}_{\mathcal{P}(X)}\left(-{ }_{1},-{ }_{2}\right): \mathcal{P}(X)^{\mathrm{op}} \times \mathcal{P}(X) \rightarrow \mathcal{P}(X)
$$

is the bifunctor defined by ${ }^{16}$

$$
\operatorname{Hom}_{\mathcal{P}(X)}(U, V) \stackrel{\text { def }}{=}(X \backslash U) \cup V
$$

witnessed by bijections

$$
\begin{aligned}
& \operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}\left(U, \operatorname{Hom}_{\mathcal{P}(X)}(V, W)\right), \\
& \operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}\left(V, \operatorname{Hom}_{\mathcal{P}(X)}(U, W)\right),
\end{aligned}
$$

natural in $U, V, W \in \mathcal{P}(X)$, i.e. where:
(a) The following conditions are equivalent:
i. We have $U \cap V \subset W$.
ii. We have $U \subset \operatorname{Hom}_{\mathcal{P}(X)}(V, W)$.
iii. We have $U \subset(X \backslash V) \cup W$.
(b) The following conditions are equivalent:
i. We have $V \cap U \subset W$.
ii. We have $V \subset \operatorname{Hom}_{\mathcal{P}(X)}(U, W)$.
iii. We have $V \subset(X \backslash U) \cup W$.
3. Associativity. We have an equality of sets

$$
(U \cap V) \cap W=U \cap(V \cap W)
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
4. Unitality. Let X be a set and let $U \in \mathcal{P}(X)$. We have equalities of sets

$$
\begin{aligned}
& X \cap U=U \\
& U \cap X=U
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
5. Commutativity. We have an equality of sets

$$
U \cap V=V \cap U
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
6. Idempotency. We have an equality of sets

$$
U \cap U=U
$$

for each $X \in \operatorname{Obj}$ (Sets) and each $U \in \mathcal{P}(X)$.

[^12]7. Distributivity Over Unions. We have equalities of sets
\[

$$
\begin{aligned}
& U \cap(V \cup W)=(U \cap V) \cup(U \cap W), \\
& (U \cup V) \cap W=(U \cap W) \cup(V \cap W)
\end{aligned}
$$
\]

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
8. Annihilation With the Empty Set. We have an equality of sets

$$
\begin{aligned}
& \emptyset \cap X=\emptyset, \\
& X \cap \emptyset=\emptyset
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
9. Interaction With Characteristic Functions I. We have

$$
\chi_{U \cap V}=\chi_{U} \chi_{V}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
10. Interaction With Characteristic Functions II. We have

$$
\chi_{U \cap V}=\min \left(\chi_{U}, \chi_{V}\right)
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
11. Interaction With Powersets and Monoids With Zero. The quadruple $((\mathcal{P}(X), \emptyset), \cap, X)$ is a commutative monoid with zero.
12. Interaction With Powersets and Semirings. The quintuple $(\mathcal{P}(X), \cup, \cap, \emptyset, X)$ is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Pro24ap].
Item 2, Adjointness: See [MSE 267469].
Item 3, Associativity: See [Pro24v].
Item 4, Unitality: This follows from [Pro24z] and Item 5.
Item 5, Commutativity: See [Pro24w].
Item 6, Idempotency: See [Pro24ao].
Item 7, Distributivity Over Unions: See [Pro24an].
Item 8, Annihilation With the Empty Set: This follows from [Pro24x] and Item 5.
Item 9, Interaction With Characteristic Functions I: See [Pro24h]. Item 10, Interaction With Characteristic Functions II: See [Pro24h].
Item 11, Interaction With Powersets and Monoids With Zero: This follows from Items 3 to 5 and 8.
Item 12, Interaction With Powersets and Semirings: This follows from Items 3 to 6 and Items 3 to 5,7 and 8 of Proposition 2.3.9.1.2.

004C Remark 2.3.9.1.3. Since intersections are the products in $\mathcal{P}(X)$ (Item 1 of Proposition 2.4.3.1.3), the left adjoint $\operatorname{Hom}_{\mathcal{P}(X)}(U, V)$ may be thought of as a function type $[U, V]$.
Then, under the Curry-Howard correspondence, the function type $[U, V]$ corresponds to implication $U \Longrightarrow V$, which is logically equivalent to the statement $\neg U \vee V$. This in turn corresponds to the set $U^{\text {c }} \vee V=$ $(X \backslash U) \cup V$.

2.3.10 Differences

Let X and Y be sets.
004E Definition 2.3.10.1.1. The difference of X and Y is the set $X \backslash Y$ defined by

$$
X \backslash Y \stackrel{\text { def }}{=}\{a \in X \mid a \notin Y\}
$$

Proposition 2.3.10.1.2. Let X be a set.

1. Functoriality. The assignments $U, V,(U, V) \mapsto U \cap V$ define functors

$$
\begin{gathered}
U \backslash-:(\mathcal{P}(X), \supset) \rightarrow(\mathcal{P}(X), \subset), \\
-\backslash V:(\mathcal{P}(X), \subset) \rightarrow(\mathcal{P}(X), \subset) \\
-_{1} \backslash-_{2}:(\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \supset) \rightarrow(\mathcal{P}(X), \subset),
\end{gathered}
$$

where $-1 \backslash-2$ is the functor where

- Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$
\left[-1 \backslash--_{2}\right](U, V) \stackrel{\text { def }}{=} U \backslash V .
$$

- Action on Morphisms. For each pair of morphisms

$$
\begin{aligned}
& \iota_{A}: A \hookrightarrow B, \\
& \iota_{U}: U \hookrightarrow V
\end{aligned}
$$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$
\iota_{U} \backslash \iota_{V}: A \backslash V \hookrightarrow B \backslash U
$$

of $\left(\iota_{U}, \iota_{V}\right)$ by \backslash is the inclusion

$$
A \backslash V \subset B \backslash U
$$

i.e. where we have
(\star) If $A \subset B$ and $U \subset V$, then $A \backslash V \subset B \backslash U$.
and where $U \backslash-$ and $-\backslash V$ are the partial functors of $-_{1} \backslash-2$ at $U, V \in \mathcal{P}(X)$.
2. De Morgan's Laws. We have equalities of sets

$$
\begin{aligned}
& X \backslash(U \cup V)=(X \backslash U) \cap(X \backslash V), \\
& X \backslash(U \cap V)=(X \backslash U) \cup(X \backslash V)
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
3. Interaction With Unions I. We have equalities of sets

$$
U \backslash(V \cup W)=(U \backslash V) \cap(U \backslash W)
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
4. Interaction With Unions II. We have equalities of sets

$$
(U \backslash V) \cup W=(U \cup W) \backslash(V \backslash W)
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
5. Interaction With Unions III. We have equalities of sets

$$
\begin{aligned}
U \backslash(V \cup W) & =(U \cup W) \backslash(V \cup W) \\
& =(U \backslash V) \backslash W \\
& =(U \backslash W) \backslash V
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
6. Interaction With Unions IV. We have equalities of sets

$$
(U \cup V) \backslash W=(U \backslash W) \cup(V \backslash W)
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
7. Interaction With Intersections. We have equalities of sets

$$
\begin{aligned}
(U \backslash V) \cap W & =(U \cap W) \backslash V \\
& =U \cap(W \backslash V)
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
8. Interaction With Complements. We have an equality of sets

$$
U \backslash V=U \cap V^{c}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.

004Q
13. Invertibility. We have

$$
U \backslash U=\emptyset
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
14. Interaction With Containment. The following conditions are equivalent:
(a) We have $V \backslash U \subset W$.
(b) We have $V \backslash W \subset U$.
15. Interaction With Characteristic Functions. We have

$$
\chi_{U \backslash V}=\chi_{U}-\chi_{U \cap V}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
Proof. Item 1, Functoriality: See [Pro24ah] and [Pro24al]. Item 2, De Morgan's Laws: See [Pro24p].
Item 3, Interaction With Unions I: See [Pro24q].
Item 4, Interaction With Unions II: Omitted.
Item 5, Interaction With Unions III: See [Pro24am].
Item 6, Interaction With Unions IV: See [Pro24ag].
Item 7, Interaction With Intersections: See [Pro24y].

Item 8, Interaction With Complements: See [Pro24ae].
Item 9, Interaction With Symmetric Differences: See [Pro24af].
Item 10, Triple Differences: See [Pro24ak].
Item 11, Left Annihilation: Clear.
Item 12, Right Unitality: See [Pro24ai].
Item 13, Invertibility: See [Pro24aj].
Item 14, Interaction With Containment: Omitted.
Item 15, Interaction With Characteristic Functions: See [Pro24i].

$004 Z$ 2.3.11 Complements

Let X be a set and let $U \in \mathcal{P}(X)$.
0050 Definition 2.3.11.1.1. The complement of U is the set $U^{\text {c }}$ defined by

$$
\begin{aligned}
U^{\mathrm{C}} & \stackrel{\text { def }}{=} X \backslash U \\
& \stackrel{\text { def }}{=}\{a \in X \mid a \notin U\} .
\end{aligned}
$$

0051 Proposition 2.3.11.1.2. Let X be a set.
0052 1. Functoriality. The assignment $U \mapsto U^{\text {c }}$ defines a functor

$$
(-)^{\mathrm{c}}: \mathcal{P}(X)^{\mathrm{op}} \rightarrow \mathcal{P}(X)
$$

where

- Action on Objects. For each $U \in \mathcal{P}(X)$, we have

$$
\left[(-)^{\mathrm{c}}\right](U) \stackrel{\text { def }}{=} U^{\mathrm{c}}
$$

- Action on Morphisms. For each morphism $\iota_{U}: U \hookrightarrow V$ of $\mathcal{P}(X)$, the image

$$
\iota_{U}^{c}: V^{\mathrm{c}} \hookrightarrow U^{\mathrm{c}}
$$

of ι_{U} by $(-)^{c}$ is the inclusion

$$
V^{c} \subset U^{c}
$$

i.e. where we have
(*) If $U \subset V$, then $V^{c} \subset U^{c}$.
2. De Morgan's Laws. We have equalities of sets

$$
\begin{aligned}
& (U \cup V)^{\mathrm{c}}=U^{\mathrm{c}} \cap V^{\mathrm{c}}, \\
& (U \cap V)^{\mathrm{c}}=U^{\mathrm{c}} \cup V^{\mathrm{c}}
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
3. Involutority. We have

$$
\left(U^{c}\right)^{c}=U
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
4. Interaction With Characteristic Functions. We have

$$
\chi_{U^{\mathrm{c}}}=1-\chi_{U}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
Proof. Item 1, Functoriality: This follows from Item 1 of Proposition 2.3.10.1.2.
Item 2, De Morgan's Laws: See [Pro24p].
Item 3, Involutority: See [Pro241].
Item 4, Interaction With Characteristic Functions: Clear.

0056

2.3.12 Symmetric Differences

Let A and B be sets.
0057 Definition 2.3.12.1.1. The symmetric difference of A and B is the set $A \triangle B$ defined by

$$
A \triangle B \stackrel{\text { def }}{=}(A \backslash B) \cup(B \backslash A)
$$

0058 Proposition 2.3.12.1.2. Let X be a set.

1. Lack of Functoriality. The assignment $(U, V) \mapsto U \triangle V$ need not define functors

$$
\begin{gathered}
U \triangle-:(\mathcal{P}(X), \subset) \rightarrow(\mathcal{P}(X), \subset), \\
-\triangle V:(\mathcal{P}(X), \subset) \rightarrow(\mathcal{P}(X), \subset), \\
-_{1} \triangle-{ }_{2}:(\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \rightarrow(\mathcal{P}(X), \subset) .
\end{gathered}
$$

2. Via Unions and Intersections. We have ${ }^{17}$

$$
U \triangle V=(U \cup V) \backslash(U \cap V)
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.

3. Associativity. We have ${ }^{18}$
$(U \triangle V) \triangle W=U \triangle(V \triangle W)$
for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
4. Commutativity. We have

$$
U \triangle V=V \triangle U
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
5. Unitality. We have

$$
\begin{aligned}
& U \triangle \emptyset=U \\
& \emptyset \triangle U=U
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
6. Invertibility. We have

$$
U \triangle U=\emptyset
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
7. Interaction With Unions. We have

$$
(U \triangle V) \cup(V \triangle T)=(U \cup V \cup W) \backslash(U \cap V \cap W)
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
8. Interaction With Complements I. We have

$$
U \triangle U^{\mathrm{c}}=X
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
9. Interaction With Complements II. We have

$$
\begin{aligned}
& U \triangle X=U^{\mathrm{c}} \\
& X \triangle U=U^{\mathrm{c}}
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.

10. Interaction With Complements III. We have

$$
U^{\mathrm{c}} \triangle V^{\mathrm{c}}=U \triangle V
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
11. "Transitivity". We have

$$
(U \triangle V) \triangle(V \triangle W)=U \triangle W
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
12. The Triangle Inequality for Symmetric Differences. We have

$$
U \triangle W \subset U \triangle V \cup V \triangle W
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
13. Distributivity Over Intersections. We have

$$
\begin{aligned}
& U \cap(V \triangle W)=(U \cap V) \triangle(U \cap W) \\
& (U \triangle V) \cap W=(U \cap W) \triangle(V \cap W)
\end{aligned}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V, W \in \mathcal{P}(X)$.
14. Interaction With Characteristic Functions. We have

$$
\chi_{U \Delta V}=\chi_{U}+\chi_{V}-2 \chi_{U \cap V}
$$

and thus, in particular, we have

$$
\chi_{U \Delta V} \equiv \chi_{U}+\chi_{V} \quad \bmod 2
$$

for each $X \in \operatorname{Obj}($ Sets) and each $U, V \in \mathcal{P}(X)$.
15. Bijectivity. Given $A, B \subset \mathcal{P}(X)$, the maps

$$
\begin{aligned}
& A \triangle-: \mathcal{P}(X) \rightarrow \mathcal{P}(X), \\
& -\triangle B: \mathcal{P}(X) \rightarrow \mathcal{P}(X)
\end{aligned}
$$

are bijections with inverses given by

$$
\begin{aligned}
& (A \triangle-)^{-1}=-\cup(A \cap-), \\
& (-\triangle B)^{-1}=-\cup(B \cap-) .
\end{aligned}
$$

Moreover, the map

$$
C \mapsto C \triangle(A \triangle B)
$$

is a bijection of $\mathcal{P}(X)$ onto itself sending A to B and B to A.
16. Interaction With Powersets and Groups. Let X be a set.
(a) The quadruple $\left(\mathcal{P}(X), \triangle, \emptyset, \operatorname{id}_{\mathcal{P}(X)}\right)$ is an abelian group. ${ }^{19}$
(b) Every element of $\mathcal{P}(X)$ has order 2 with respect to \triangle, and thus $\mathcal{P}(X)$ is a Boolean group (i.e. an abelian 2-group).
4. Interaction With Powersets and Vector Spaces I. The pair $\left(\mathcal{P}(X), \alpha_{\mathcal{P}(X)}\right)$ consisting of

- The group $\mathcal{P}(X)$ of ??;
- The map $\alpha_{\mathcal{P}(X)}: \mathbb{F}_{2} \times \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ defined by

$$
\begin{aligned}
& 0 \cdot U \stackrel{\text { def }}{=} \emptyset \\
& 1 \cdot U \stackrel{\text { def }}{=} U
\end{aligned}
$$

is an \mathbb{F}_{2}-vector space.
5. Interaction With Powersets and Vector Spaces II. If X is finite, then:
(a) The set of singletons sets on the elements of X forms a basis for the \mathbb{F}_{2}-vector space $\left(\mathcal{P}(X), \alpha_{\mathcal{P}(X)}\right)$ of Item 4.
(b) We have

$$
\operatorname{dim}(\mathcal{P}(X))=\# \mathcal{P}(X)
$$

6. Interaction With Powersets and Rings. The quintuple $(\mathcal{P}(X), \triangle, \cap, \emptyset, X)$ is a commutative ring. ${ }^{20}$

Proof. Item 1, Lack of Functoriality: Omitted.
${ }^{19}$ Here are some examples:

1. When $X=\emptyset$, we have an isomorphism of groups between $\mathcal{P}(\emptyset)$ and the trivial group:

$$
\left(\mathcal{P}(\emptyset), \triangle, \emptyset, \operatorname{id}_{\mathcal{P}(\emptyset)}\right) \cong \mathrm{pt} .
$$

2. When $X=\mathrm{pt}$, we have an isomorphism of groups between $\mathcal{P}(\mathrm{pt})$ and $\mathbb{Z}_{/ 2}$:

$$
\left(\mathcal{P}(\mathrm{pt}), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\mathrm{pt})}\right) \cong \mathbb{Z}_{/ 2}
$$

3. When $X=\{0,1\}$, we have an isomorphism of groups between $\mathcal{P}(\{0,1\})$ and $\mathbb{Z}_{/ 2} \times \mathbb{Z}_{/ 2}:$

$$
\left(\mathcal{P}(\{0,1\}), \triangle, \emptyset, \operatorname{id}_{\mathcal{P}(\{0,1\})}\right) \cong \mathbb{Z}_{/ 2} \times \mathbb{Z}_{/ 2}
$$

${ }_{20}$ 2l Warning: The analogous statement replacing intersections by unions (i.e. that the quintuple $(\mathcal{P}(X), \triangle, \cup, \emptyset, X)$ is a ring) is false, however. See [Pro24ba] for a proof. END TEXTDBEND

Item 2, Via Unions and Intersections: See [Pro24r].
Item 3, Associativity: See [Pro24as].
Item 4, Commutativity: See [Pro24at].
Item 5, Unitality: This follows from Item 4 and [Pro24ax].
Item 6, Invertibility: See [Pro24az].
Item 7, Interaction With Unions: See [Pro24bg].
Item 8, Interaction With Complements I: See [Pro24aw].
Item 9, Interaction With Complements II: This follows from Item 4 and [Pro24bb].
Item 10, Interaction With Complements III: See [Pro24au].
Item 11, "Transitivity": We have

$$
\begin{aligned}
(U \triangle V) \Delta(V \triangle W) & =U \triangle(V \triangle(V \triangle W)) & & \text { (by Item 3) } \\
& =U \triangle((V \triangle V) \triangle W) & & \text { (by Item 3) } \\
& =U \triangle(\emptyset \triangle W) & & \text { (by Item 6) } \\
& =U \triangle W & & \text { (by Item 5) }
\end{aligned}
$$

Item 12, The Triangle Inequality for Symmetric Differences: This follows from Items 2 and 11.
Item 13, Distributivity Over Intersections: See [Pro24u].
Item 14, Interaction With Characteristic Functions: See [Pro24j].
Item 15, Bijectivity: Clear.
Item 16, Interaction With Powersets and Groups: Item 16a follows from ${ }^{21}$ Items 3 to 6 , while Item 3b follows from Item 6.
Item 4, Interaction With Powersets and Vector Spaces I: Clear.
Item 5, Interaction With Powersets and Vector Spaces II: Omitted.
Item 6, Interaction With Powersets and Rings: This follows from Items 8 and 11 of Proposition 2.3.9.1.2 and Items 13 and 16. ${ }^{22}$

005W 2.4 Powersets

005X 2.4.1 Characteristic Functions

Let X be a set.
005Y Definition 2.4.1.1.1. Let $U \subset X$ and let $x \in X$.

1. The characteristic function of $U{ }^{23}$ is the function ${ }^{24}$

$$
\chi_{U}: X \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$

[^13]defined by
\[

\chi_{U}(x) \stackrel{def}{=} $$
\begin{cases}\text { true } & \text { if } x \in U \\ \text { false } & \text { if } x \notin U\end{cases}
$$
\]

for each $x \in X$.
2. The characteristic function of x is the function ${ }^{25}$

$$
\chi_{x}: X \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$

defined by

$$
\chi_{x} \stackrel{\text { def }}{=} \chi_{\{x\}},
$$

i.e. by

$$
\chi_{x}(y) \stackrel{\text { def }}{=} \begin{cases}\text { true } & \text { if } x=y \\ \text { false } & \text { if } x \neq y\end{cases}
$$

for each $y \in X$.
3. The characteristic relation on X^{26} is the relation ${ }^{27}$

$$
\chi_{X}(-1,-2): X \times X \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$

on X defined by ${ }^{28}$

$$
\chi_{X}(x, y) \stackrel{\text { def }}{=} \begin{cases}\text { true } & \text { if } x=y \\ \text { false } & \text { if } x \neq y\end{cases}
$$

for each $x, y \in X$.
4. The characteristic embedding ${ }^{29}$ of X into $\mathcal{P}(X)$ is the function

$$
\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)
$$

defined by

$$
\chi_{(-)}(x) \stackrel{\text { def }}{=} \chi_{x}
$$

for each $x \in X$.

[^14]$$
\operatorname{Hom}_{\mathcal{P}(X)}\left(\chi_{x}, \chi_{y}\right)=\chi_{X}(x, y),
$$
for each $x, y \in X$. fications of co/presheaves, representable co/presheaves, Hom profunctors, and the Yoneda embedding: ${ }^{30}$

1. A function

$$
f: X \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$

is a decategorification of a presheaf

$$
\mathcal{F}: C^{\mathrm{op}} \rightarrow \text { Sets, }
$$

with the characteristic functions χ_{U} of the subsets of X being the primordial examples (and, in fact, all examples) of these.
2. The characteristic function

$$
\chi_{x}: X \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$

of an element x of X is a decategorification of the representable presheaf

$$
h_{X}: C^{\mathrm{op}} \rightarrow \text { Sets }
$$

of an object x of a category C.
3. The characteristic relation

$$
\chi_{X}\left(--_{1},-_{2}\right): X \times X \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$

[^15]of sets into categories and of classical truth values into sets.
For instance, in this approach the characteristic function
$$
\chi_{x}: X \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$
of an element x of X, defined by
\[

\chi_{x}(y) \stackrel{def}{=} $$
\begin{cases}\text { true } & \text { if } x=y \\ \text { false } & \text { if } x \neq y\end{cases}
$$
\]

for each $y \in X$, is recovered as the representable presheaf

$$
\operatorname{Hom}_{X_{\text {disc }}}(-, x): X_{\text {disc }} \rightarrow \text { Sets }
$$

of the corresponding object x of $X_{\text {disc }}$, defined on objects by

$$
\operatorname{Hom}_{X_{\text {disc }}}(y, x) \stackrel{\text { def }}{=} \begin{cases}\mathrm{pt} & \text { if } x=y \\ \emptyset & \text { if } x \neq y\end{cases}
$$

for each $y \in \operatorname{Obj}\left(X_{\mathrm{disc}}\right)$.
of X is a decategorification of the Hom profunctor

$$
\operatorname{Hom}_{C}\left(-1,--_{2}\right): C^{\mathrm{op}} \times C \rightarrow \text { Sets }
$$

of a category C.
4. The characteristic embedding

$$
\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)
$$

of X into $\mathcal{P}(X)$ is a decategorification of the Yoneda embedding

$$
\text { よ: } C^{\mathrm{op}} \hookrightarrow \mathrm{PSh}(C)
$$

of a category C into $\operatorname{PSh}(C)$.
5. There is also a direct parallel between unions and colimits:

- An element of $\mathcal{P}(X)$ is a union of elements of X, viewed as one-point subsets $\{x\} \in \mathcal{P}(A)$.
- An object of $\operatorname{PSh}(C)$ is a colimit of objects of C, viewed as representable presheaves $h_{X} \in \operatorname{Obj}(\operatorname{PSh}(C))$.

0069 Proposition 2.4.1.1.3. Let X be a set.

1. The Inclusion of Characteristic Relations Associated to a Function.

Let $f: A \rightarrow B$ be a function. We have an inclusion ${ }^{31}$

$$
\chi_{B} \circ(f \times f) \subset \chi_{A}, \quad A \times A \xrightarrow{\xrightarrow{f \times f}} B \times B
$$

2. Interaction With Unions I. We have

$$
\chi_{U \cup V}=\max \left(\chi_{U}, \chi_{V}\right)
$$

for each $X \in \mathrm{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.

$$
\chi_{U \cup V}=\chi_{U}+\chi_{V}-\chi_{U \cap V}
$$

for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.

[^16]4. Interaction With Intersections I. We have
$$
\chi_{U \cap V}=\chi_{U} \chi_{V}
$$
for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
5. Interaction With Intersections II. We have
$$
\chi_{U \cap V}=\min \left(\chi_{U}, \chi_{V}\right)
$$
for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
6. Interaction With Differences. We have
$$
\chi_{U \backslash V}=\chi_{U}-\chi_{U \cap V}
$$
for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
7. Interaction With Complements. We have
$$
\chi_{U^{\mathrm{c}}}=1-\chi_{U}
$$
for each $X \in \operatorname{Obj}($ Sets $)$ and each $U \in \mathcal{P}(X)$.
8. Interaction With Symmetric Differences. We have
$$
\chi_{U \Delta V}=\chi_{U}+\chi_{V}-2 \chi_{U \cap V}
$$
and thus, in particular, we have
$$
\chi_{U \Delta V} \equiv \chi_{U}+\chi_{V} \quad \bmod 2
$$
for each $X \in \operatorname{Obj}($ Sets $)$ and each $U, V \in \mathcal{P}(X)$.
9. Interaction Between the Characteristic Embedding and Morphisms. Let $f: X \rightarrow Y$ be a map of sets. The diagram
$$
f_{*} \circ \chi_{X}=\chi_{X^{\prime}} \circ f
$$

commutes.
Proof. Item 1, The Inclusion of Characteristic Relations Associated to a Function: The inclusion $\chi_{B}(f(a), f(b)) \subset \chi_{A}(a, b)$ is equivalent to the
statement "if $a=b$, then $f(a)=f(b)$ ", which is true.
Item 2, Interaction With Unions I : This is a repetition of Item 8 of Proposition 2.3.7.1.2 and is proved there.
Item 3, Interaction With Unions II: This is a repetition of Item 9 of Proposition 2.3.7.1.2 and is proved there.
Item 4, Interaction With Intersections I : This is a repetition of Item 9 of Proposition 2.3.9.1.2 and is proved there.
Item 5, Interaction With Intersections II: This is a repetition of Item 10 of Proposition 2.3.9.1.2 and is proved there.
Item 6, Interaction With Differences: This is a repetition of Item 15 of Proposition 2.3.10.1.2 and is proved there.
Item 7, Interaction With Complements: This is a repetition of Item 4 of Proposition 2.3.11.1.2 and is proved there.
Item 8, Interaction With Symmetric Differences: This is a repetition of Item 14 of Proposition 2.3.12.1.2 and is proved there.
Item 9, Interaction Between the Characteristic Embedding and Morphisms: Indeed, we have
\[

$$
\begin{aligned}
{\left[f_{*} \circ \chi_{X}\right](x) } & \stackrel{\text { def }}{=} f_{*}\left(\chi_{X}(x)\right) \\
& \stackrel{\text { def }}{=} f_{*}(\{x\}) \\
& =\{f(x)\} \\
& \stackrel{\text { def }}{=} \chi_{X^{\prime}}(f(x)) \\
& \stackrel{\text { def }}{=}\left[\chi_{X^{\prime}} \circ f\right](x),
\end{aligned}
$$
\]

for each $x \in X$, showing the desired equality.

006K 2.4.2 The Yoneda Lemma for Sets

Let X be a set and let $U \subset X$ be a subset of X.
006L Proposition 2.4.2.1.1. We have

$$
\chi_{\mathcal{P}(X)}\left(\chi_{x}, \chi_{U}\right)=\chi_{U}(x)
$$

for each $x \in X$, giving an equality of functions

$$
\chi_{\mathcal{P}(X)}\left(\chi_{(-)}, \chi_{U}\right)=\chi_{U}
$$

Proof. Clear.
006M Corollary 2.4.2.1.2. The characteristic embedding is fully faithful, i.e., we have

$$
\chi_{\mathcal{P}(X)}\left(\chi_{x}, \chi_{y}\right)=\chi_{X}(x, y)
$$

for each $x, y \in X$.
Proof. This follows from Proposition 2.4.2.1.1.

006N

2.4.3 Powersets

Let X be a set.
006P Definition 2.4.3.1.1. The powerset of X is the set $\mathcal{P}(X)$ defined by

$$
\mathcal{P}(X) \stackrel{\text { def }}{=}\{U \in P \mid U \subset X\},
$$

where P is the set in the axiom of powerset, ?? of ??.
006Q Remark 2.4.3.1.2. The powerset of a set is a decategorification of the category of presheaves of a category: while ${ }^{32}$

- The powerset of a set X is equivalently (Items 1 and 2 of Proposition 2.4.3.1.6) the set

$$
\operatorname{Sets}(X,\{\mathrm{t}, \mathrm{f}\})
$$

of functions from X to the set $\{\mathrm{t}, \mathrm{f}\}$ of classical truth values.

- The category of presheaves on a category C is the category

$$
\text { Fun(} \left.C^{\mathrm{op}}, \text { Sets }\right)
$$

of functors from $C^{o p}$ to the category Sets of sets.
Proposition 2.4.3.1.3. Let X be a set.

1. Co/Completeness. The (posetal) category (associated to) $(\mathcal{P}(X), \subset)$ is complete and cocomplete:
(a) Products. The products in $\mathcal{P}(X)$ are given by intersection of subsets.
(b) Coproducts. The coproducts in $\mathcal{P}(X)$ are given by union of subsets.
(c) Co/Equalisers. Being a posetal category, $\mathcal{P}(X)$ only has at

[^17]$$
\text { Sets } \stackrel{\text { def }}{=} \text { Cats }_{0}
$$
of sets (i.e. "0-categories"), with presheaves taking values on it.

- A set is enriched over the set

$$
\{t, f\} \stackrel{\text { def }}{=} C_{a t s}^{-1}
$$

of classical truth values (i.e. "(-1)-categories"), with characteristic functions taking values on it.
most one morphisms between any two objects, so co/equalisers are trivial.
2. Cartesian Closedness. The category $\mathcal{P}(X)$ is Cartesian closed with internal Hom

$$
\operatorname{Hom}_{\mathcal{P}(X)}\left(-_{1},-_{2}\right): \mathcal{P}(X)^{\mathrm{op}} \times \mathcal{P}(X) \rightarrow \mathcal{P}(X)
$$

given by ${ }^{33}$

$$
\operatorname{Hom}_{\mathcal{P}(X)}(U, V) \stackrel{\text { def }}{=}(X \backslash U) \cup V
$$

for each $U, V \in \operatorname{Obj}(\mathcal{P}(X))$.
Proof. Item 1, Co/Completeness: Clear.
Item 2, Cartesian Closedness: This follows from Item 2 of Proposition 2.3.9.1.2.

Proposition 2.4.3.1.4. Let X be a set.

1. Functoriality I. The assignment $X \mapsto \mathcal{P}(X)$ defines a functor

$$
\mathcal{P}_{*}: \text { Sets } \rightarrow \text { Sets }
$$

where

- Action on Objects. For each $A \in \operatorname{Obj}($ Sets $)$, we have

$$
\mathcal{P}_{*}(A) \stackrel{\text { def }}{=} \mathcal{P}(A) .
$$

- Action on Morphisms. For each $A, B \in \operatorname{Obj}($ Sets $)$, the action on morphisms

$$
\mathcal{P}_{* \mid A, B}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(A), \mathcal{P}(B))
$$

of \mathcal{P}_{*} at (A, B) is the map defined by by sending a map of sets $f: A \rightarrow B$ to the map

$$
\mathcal{P}_{*}(f): \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

defined by

$$
\mathcal{P}_{*}(f) \stackrel{\text { def }}{=} f_{*},
$$

as in Definition 2.4.4.1.1.

[^18]2. Functoriality II. The assignment $X \mapsto \mathcal{P}(X)$ defines a functor
$$
\mathcal{P}^{-1}: \text { Sets }{ }^{\text {op }} \rightarrow \text { Sets, }
$$
where

- Action on Objects. For each $A \in \operatorname{Obj}($ Sets $)$, we have

$$
\mathcal{P}^{-1}(A) \stackrel{\text { def }}{=} \mathcal{P}(A) .
$$

- Action on Morphisms. For each $A, B \in \operatorname{Obj}($ Sets $)$, the action on morphisms

$$
\mathcal{P}_{A, B}^{-1}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(B), \mathcal{P}(A))
$$

of \mathcal{P}^{-1} at (A, B) is the map defined by by sending a map of sets $f: A \rightarrow B$ to the map

$$
\mathcal{P}^{-1}(f): \mathcal{P}(B) \rightarrow \mathcal{P}(A)
$$

defined by

$$
\mathcal{P}^{-1}(f) \stackrel{\text { def }}{=} f^{-1},
$$

as in Definition 2.4.5.1.1.
3. Functoriality III. The assignment $X \mapsto \mathcal{P}(X)$ defines a functor

$$
\mathcal{P}_{!}: \text {Sets } \rightarrow \text { Sets, }
$$

where

- Action on Objects. For each $A \in \operatorname{Obj}($ Sets $)$, we have

$$
\mathcal{P}!(A) \xlongequal{\text { def }} \mathcal{P}(A) .
$$

- Action on Morphisms. For each $A, B \in \operatorname{Obj}($ Sets $)$, the action on morphisms

$$
\mathcal{P}_{!\mid A, B}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(A), \mathcal{P}(B))
$$

of $\mathcal{P}_{!}$at (A, B) is the map defined by by sending a map of sets $f: A \rightarrow B$ to the map

$$
\mathcal{P}!(f): \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

defined by

$$
\mathcal{P}_{!}(f) \stackrel{\text { def }}{=} f_{!},
$$

as in Definition 2.4.6.1.1.
4. Adjointness I. We have an adjunction

$$
\left(\mathcal{P}^{-1} \dashv \mathcal{P}^{-1, \mathrm{op}}\right): \quad \text { Sets }{ }^{\mathrm{op}} \underset{\mathcal{P}^{-1, \mathrm{op}}}{\frac{\mathcal{P}^{-1}}{\perp}} \text { Sets, }
$$

witnessed by a bijection

$$
\underbrace{\operatorname{Sets}^{\mathrm{op}}(\mathcal{P}(A), B)}_{\stackrel{\text { def }}{=} \operatorname{Sets}(B, \mathcal{P}(A))} \cong \operatorname{Sets}(A, \mathcal{P}(B))
$$

natural in $A \in \mathrm{Obj}$ (Sets) and $B \in \mathrm{Obj}\left(\right.$ Sets $\left.^{\mathrm{op}}\right)$.
5. Adjointness II. We have an adjunction

$$
\left(\mathrm{Gr} \dashv \mathcal{P}_{*}\right): \quad \text { Sets } \underset{\frac{\mathrm{P}}{\mathcal{P}_{*}}}{\frac{\mathrm{Gr}}{\perp}} \text { Rel, }
$$

witnessed by a bijection of sets

$$
\operatorname{Rel}(\operatorname{Gr}(A), B) \cong \operatorname{Sets}(A, \mathcal{P}(B))
$$

natural in $A \in \mathrm{Obj}$ (Sets) and $B \in \mathrm{Obj}(\mathrm{Rel})$, where Gr is the graph functor of Item 1 of Proposition 6.3.1.1.2 and \mathcal{P}_{*} is the functor of Proposition 6.4.5.1.1.

Proof. Item 1, Functoriality I : This follows from Items 3 and 4 of Proposition 2.4.4.1.5.
Item 2, Functoriality II: This follows Items 3 and 4 of Proposition 2.4.5.1.4. Item 3, Functoriality III: This follows Items 3 and 4 of Proposition 2.4.6.1.7. Item 4, Adjointness I: We have

$$
\begin{aligned}
& \operatorname{Sets}^{\mathrm{op}}(\mathcal{P}(A), B) \stackrel{\text { def }}{=} \operatorname{Sets}(B, \mathcal{P}(A)) \\
& \cong \operatorname{Sets}(B, \operatorname{Sets}(A,\{\mathrm{t}, \mathrm{f}\})) \\
& \quad \quad \text { by Item } 1 \text { of Proposition 2.4.3.1.6) } \\
& \cong \operatorname{Sets}(A \times B,\{\mathrm{t}, \mathrm{f}\}) \\
& \quad(\text { by Item } 2 \text { of Proposition 2.1.3.1.2) } \\
& \cong \operatorname{Sets}(A, \operatorname{Sets}(B,\{\mathrm{t}, \mathrm{f}\})) \\
& \quad \quad \text { by Item } 2 \text { of Proposition 2.1.3.1.2) } \\
& \cong \operatorname{Sets}(A, \mathcal{P}(B)) \quad(\text { by Item } 1 \text { of Proposition 2.4.3.1.6) }
\end{aligned}
$$

with all bijections natural in A and B (where we use Item 2 of Proposition 2.4.3.1.6 here).

Item 5, Adjointness II: We have

$$
\begin{align*}
& \operatorname{Rel}(\operatorname{Gr}(A), B) \cong \mathcal{P}(A \times B) \\
& \cong \operatorname{Sets}(A \times B,\{\mathrm{t}, \mathrm{f}\}) \tag{byItem1ofProposition2.4.3.1.6}\\
& \quad(\text { by Item } 1 \text { of Proposition 2.4.3.1.6) } \\
& \cong \operatorname{Sets}(A, \operatorname{Sets}(B,\{\mathrm{t}, \mathrm{f}\})) \\
& \quad(\text { by Item } 2 \text { of Proposition 2.1.3.1.2) } \\
& \cong \operatorname{Sets}(A, \mathcal{P}(B)) \quad(\text { by Item } 1 \text { of Proposition 2.4.3.1.6) }
\end{align*}
$$

with all bijections natural in A (where we use Item 2 of Proposition 2.4.3.1.6 here). Explicitly, this isomorphism is given by sending a relation $R: \operatorname{Gr}(A) \nrightarrow$ B to the map $R^{\dagger}: A \rightarrow \mathcal{P}(B)$ sending a to the subset $R(a)$ of B, as in Remark 5.1.1.1.4.
Naturality in B is then the statement that given a relation $R: B \rightarrow B^{\prime}$, the diagram

commutes, which follows from Remark 6.4.1.1.2.
0070 Proposition 2.4.3.1.5. Let X be a set.

1. Symmetric Strong Monoidality With Respect to Coproducts I. The powerset functor \mathcal{P}_{*} of Item 1 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure

$$
\left(\mathcal{P}_{*}, \mathcal{P}_{*}^{\amalg}, \mathcal{P}_{* \mid \mathbb{I}}^{\amalg}\right):(\text { Sets }, \times, \mathrm{pt}) \rightarrow(\text { Sets, } \amalg, \emptyset)
$$

being equipped with isomorphisms

$$
\begin{aligned}
& \mathcal{P} \coprod_{* \mid X, Y}: \mathcal{P}(X) \times \mathcal{P}(Y) \xrightarrow{\cong} \mathcal{P}(X \amalg Y), \\
& \mathcal{P} \underset{* \mid \mathbb{I}}{\amalg}: \mathrm{pt} \stackrel{\cong}{\rightrightarrows} \mathcal{P}(\emptyset),
\end{aligned}
$$

natural in $X, Y \in \operatorname{Obj}($ Sets $)$.
2. Symmetric Strong Monoidality With Respect to Coproducts II. The powerset functor \mathcal{P}^{-1} of Item 2 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure

$$
\left(\mathcal{P}^{-1}, \mathcal{P}^{-1 \mid \amalg}, \mathcal{P}_{\mathbb{1}}^{-1 \mid \amalg}\right):\left(\operatorname{Sets}^{\mathrm{op}}, \times^{\mathrm{op}}, \mathrm{pt}\right) \rightarrow(\text { Sets }, \amalg, \emptyset)
$$

being equipped with isomorphisms

$$
\begin{gathered}
\mathcal{P}_{X, Y}^{-1 \mid \amalg}: \mathcal{P}(X) \times \mathcal{P}(Y) \stackrel{\cong}{\leftrightarrows} \mathcal{P}(X \amalg Y), \\
\mathcal{P}_{\mathbb{1}}^{-1 \mid \amalg}: \mathrm{pt} \stackrel{\cong}{\leftrightarrows} \mathcal{P}(\emptyset),
\end{gathered}
$$

natural in $X, Y \in \operatorname{Obj}$ (Sets).
3. Symmetric Strong Monoidality With Respect to Coproducts III.

The powerset functor $\mathcal{P}_{!}$of Item 3 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure

$$
\left(\mathcal{P}_{!}, \mathcal{P}_{!}^{\amalg}, \mathcal{P}_{!!\mathbb{1}}^{\amalg}\right):(\text { Sets }, \times, \mathrm{pt}) \rightarrow(\text { Sets } \amalg, \emptyset)
$$

being equipped with isomorphisms

$$
\begin{array}{rl}
\mathcal{P}!\mid X, Y \\
\amalg & \mathcal{P}(X) \times \mathcal{P}(Y) \stackrel{\cong}{\leftrightarrows} \mathcal{P}(X \amalg Y), \\
\mathcal{P}!\mid \mathbb{1} & \mathrm{pt}
\end{array} \begin{aligned}
& \cong \\
& \mathcal{P}(\emptyset),
\end{aligned}
$$

natural in $X, Y \in \operatorname{Obj}($ Sets $)$.
4. Symmetric Lax Monoidality With Respect to Products I. The powerset functor \mathcal{P}_{*} of Item 1 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure

$$
\left(\mathcal{P}_{*}, \mathcal{P}_{*}^{\otimes}, \mathcal{P}_{* \mid \mathbb{1}}^{\otimes}\right):(\text { Sets }, \times, \mathrm{pt}) \rightarrow(\text { Sets }, \times, \mathrm{pt})
$$

being equipped with morphisms

$$
\begin{gathered}
\mathcal{P}_{* \mid X, Y}^{\times}: \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathcal{P}(X \times Y), \\
\mathcal{P}_{* \mid \mathbb{1}}^{\times}: \mathrm{pt} \rightarrow \mathcal{P}(\mathrm{pt}),
\end{gathered}
$$

natural in $X, Y \in \operatorname{Obj}($ Sets $)$, where

- The map $\mathcal{P}_{* \mid X, Y}^{\times}$is given by

$$
\mathcal{P}_{* \mid X, Y}^{\times}(U, V) \stackrel{\text { def }}{=} U \times V
$$

for each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(Y)$,

- The map $\mathcal{P}_{* \mid \mathbb{\mathbb { 1 }}}^{\times}$is given by

$$
\mathcal{P}_{* \mid \mathbb{1}}^{\times}(\star)=\mathrm{pt} .
$$

5. Symmetric Lax Monoidality With Respect to Products II. The powerset functor \mathcal{P}^{-1} of Item 2 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure

$$
\left(\mathcal{P}^{-1}, \mathcal{P}^{-1 \mid \otimes}, \mathcal{P}_{\mathbb{1}}^{-1 \mid \otimes}\right):\left(\text { Sets }^{\mathrm{op}}, \times^{\mathrm{op}}, \mathrm{pt}\right) \rightarrow(\text { Sets }, \times, \mathrm{pt})
$$

being equipped with morphisms

$$
\begin{gathered}
\mathcal{P}_{X, Y}^{-1 \mid \times}: \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathcal{P}(X \times Y) \\
\mathcal{P}_{\mathbb{1}}^{\times}: \mathrm{pt} \rightarrow \mathcal{P}(\emptyset)
\end{gathered}
$$

natural in $X, Y \in \operatorname{Obj}($ Sets $)$, defined as in Item 4.
6. Symmetric Lax Monoidality With Respect to Products III. The powerset functor $\mathcal{P}_{!}$of Item 3 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure

$$
\left(\mathcal{P}_{!}, \mathcal{P}_{!}^{\otimes}, \mathcal{P}_{!\mid \mathbb{1}}^{\otimes}\right):(\text { Sets }, \times, \mathrm{pt}) \rightarrow(\text { Sets }, \times, \mathrm{pt})
$$

being equipped with morphisms

$$
\begin{gathered}
\mathcal{P}_{!\mid X, Y}^{\times}: \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathcal{P}(X \times Y) \\
\mathcal{P}_{!\mid \mathbb{1}}^{\times}: \operatorname{pt} \rightarrow \mathcal{P}(\emptyset)
\end{gathered}
$$

natural in $X, Y \in \operatorname{Obj}($ Sets $)$, defined as in Item 4.
Proof. Item 1, Symmetric Strong Monoidality With Respect to Coproducts I : The isomorphism

$$
\mathcal{P}_{* \mid X, Y}^{\amalg}: \mathcal{P}(X) \times \mathcal{P}(Y) \rightarrow \mathcal{P}(X \amalg Y)
$$

is given by sending $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(Y)$ to $U \amalg V$, with inverse given by sending a subset S of $X \amalg Y$ to the pair $\left(S_{X}, S_{Y}\right) \in \mathcal{P}(X) \times \mathcal{P}(Y)$ with

$$
\begin{aligned}
& S_{X} \stackrel{\text { def }}{=}\{x \in X \mid(0, x) \in S\} \\
& S_{Y} \stackrel{\text { def }}{=}\{y \in Y \mid(1, y) \in S\}
\end{aligned}
$$

The isomorphism $\mathrm{pt} \cong \mathcal{P}(\emptyset)$ is given by $\star \mapsto \emptyset \in \mathcal{P}(\emptyset)$.
Naturality for the isomorphism $\mathcal{P}_{* \mid X, Y}^{\amalg}$ is the statement that, given maps of sets $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$, the diagram

commutes, which is clear, as it acts on elements as

where we are using Item 7 of Proposition 2.4.4.1.4.
Finally, monoidality, unity, and symmetry of \mathcal{P}_{*} as a monoidal functor follow by checking the commutativity of the relevant diagrams on elements.
Item 2, Symmetric Strong Monoidality With Respect to Coproducts II: The proof is similar to Item 1, and is hence omitted.
Item 3, Symmetric Strong Monoidality With Respect to Coproducts III: The proof is similar to Item 1, and is hence omitted.
Item 4, Symmetric Lax Monoidality With Respect to Products I: Naturality for the morphism $\mathcal{P}_{* \mid X, Y}^{\times}$is the statement that, given maps of sets $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$, the diagram

commutes, which is clear, as it acts on elements as

where we are using Item 8 of Proposition 2.4.4.1.4.
Finally, monoidality, unity, and symmetry of \mathcal{P}_{*} as a monoidal functor follow by checking the commutativity of the relevant diagrams on elements.
Item 5, Symmetric Lax Monoidality With Respect to Products II: The proof is similar to Item 4, and is hence omitted.
Item 6, Symmetric Lax Monoidality With Respect to Products III: The proof is similar to Item 4, and is hence omitted.

Proposition 2.4.3.1.6. Let X be a set.

1. Powersets as Sets of Functions I. The assignment $U \mapsto \chi_{U}$ defines a bijection

$$
\chi_{(-)}: \mathcal{P}(X) \stackrel{\cong}{\leftrightarrows} \operatorname{Sets}(X,\{\mathrm{t}, \mathrm{f}\})
$$

for each $X \in \operatorname{Obj}($ Sets $)$.
2. Powersets as Sets of Functions II. The bijection

$$
\mathcal{P}(X) \cong \operatorname{Sets}(X,\{\mathrm{t}, \mathrm{f}\})
$$

of Item 1 is natural in $X \in \operatorname{Obj}($ Sets $)$, refining to a natural isomorphism of functors

$$
\mathcal{P}^{-1} \cong \operatorname{Sets}(-,\{t, f\})
$$

3. Powersets as Sets of Relations. We have bijections

$$
\begin{aligned}
\mathcal{P}(X) & \cong \operatorname{Rel}(\mathrm{pt}, X) \\
\mathcal{P}(X) & \cong \operatorname{Rel}(X, \mathrm{pt})
\end{aligned}
$$

natural in $X \in \operatorname{Obj}$ (Sets).
Proof. Item 1, Powersets as Sets of Functions I: Indeed, the inverse of $\chi_{(-)}$is given by sending a function $f: X \rightarrow\{\mathrm{t}, \mathrm{f}\}$ to the subset U_{f} of $\mathcal{P}(X)$ defined by

$$
U_{f} \stackrel{\text { def }}{=}\{x \in X \mid f(x)=\text { true }\}
$$

i.e. by $U_{f}=f^{-1}$ (true). That $\chi_{(-)}$and $f \mapsto U_{f}$ are inverses is then straightforward to check.
Item 2, Powersets as Sets of Functions II: We need to check that, given a function $f: X \rightarrow Y$, the diagram

commutes, i.e. that for each $V \in \mathcal{P}(Y)$, we have

$$
\chi_{V} \circ f=\chi_{f-1}(V)
$$

And indeed, we have

$$
\begin{aligned}
{\left[\chi_{V} \circ f\right](v) } & \stackrel{\text { def }}{=} \chi_{V}(f(v)) \\
& = \begin{cases}\text { true } & \text { if } f(v) \in V, \\
\text { false } & \text { otherwise }\end{cases} \\
& = \begin{cases}\text { true } & \text { if } v \in f^{-1}(V), \\
\text { false } & \text { otherwise }\end{cases} \\
& \stackrel{\text { def }}{=} \chi_{f^{-1}(V)}(v)
\end{aligned}
$$

for each $v \in V$.
Item 3, Powersets as Sets of Relations: Indeed, we have

$$
\begin{aligned}
\operatorname{Rel}(\mathrm{pt}, X) & \stackrel{\text { def }}{=} \mathcal{P}(\mathrm{pt} \times X) \\
& \cong \mathcal{P}(X)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Rel}(X, \mathrm{pt}) & \stackrel{\text { def }}{=} \mathcal{P}(X \times \mathrm{pt}) \\
& \cong \mathcal{P}(X),
\end{aligned}
$$

where we have used Item 4 of Proposition 2.1.3.1.2.
007B Remark 2.4.3.1.7. The bijection

$$
\mathcal{P}(X) \cong \operatorname{Sets}(X,\{\mathrm{t}, \mathrm{f}\})
$$

of Item 1 of Proposition 2.4.3.1.6, which

- Takes a subset $U \hookrightarrow X$ of X and straightens it to a function $\chi_{U}: X \rightarrow\{$ true, false $\} ;$
- Takes a function $f: X \rightarrow\{$ true,false $\}$ and unstraightens it to a subset f^{-1} (true) $\hookrightarrow X$ of X;
may be viewed as the (-1)-categorical version of the un/straightening isomorphism for indexed and fibred sets
of ??, where we view:
- Subsets $U \hookrightarrow X$ as analogous to X-fibred sets $\phi_{X}: A \rightarrow X$.
- Functions $f: X \rightarrow\{\mathrm{t}, \mathrm{f}\}$ as analogous to X-indexed sets $A: X_{\mathrm{disc}} \rightarrow$ Sets.

007C Proposition 2.4.3.1.8. Let X be a set.

1. Universal Property. The pair $\left(\mathcal{P}(X), \chi_{(-)}\right)$consisting of

- The powerset $\mathcal{P}(X)$ of X;
- The characteristic embedding $\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)$ of X into $\mathcal{P}(X)$;
satisfies the following universal property:
(\star) Given another pair (Y, f) consisting of
- A cocomplete poset $(Y, \preceq) ;$
- A function $f: X \rightarrow Y$;
there exists a unique cocontinuous morphism of posets

$$
(\mathcal{P}(X), \subset) \xrightarrow{\exists!}(Y, \preceq)
$$

making the diagram

commute.
2. Adjointness. We have an adjunction ${ }^{34}$

$$
(\mathcal{P} \dashv \text { 忘 }): \quad \text { Sets } \frac{\mathcal{P}}{\frac{\perp}{\text { 忘 }}} \operatorname{Pos}^{\text {cocomp. }},
$$

witnessed by a bijection

$$
\operatorname{Pos}^{\text {cocomp. }}((\mathcal{P}(X), \subset),(Y, \preceq)) \cong \operatorname{Sets}(X, Y)
$$

natural in $X \in \operatorname{Obj}($ Sets $)$ and $(Y, \preceq) \in \operatorname{Obj}$ (Pos ${ }^{\text {cocomp. }}$), where the maps witnessing this bijection are given by

- The map

$$
\chi_{X}^{*}: \operatorname{Pos}^{\text {cocomp. }}((\mathcal{P}(X), \subset),(Y, \preceq)) \rightarrow \operatorname{Sets}(X, Y)
$$

[^19]defined by
$$
\chi_{X}^{*}(f) \stackrel{\text { def }}{=} f \circ \chi_{X},
$$
i.e. by sending a cocontinuous morphism of posets $f: \mathcal{P}(X) \rightarrow$ Y to the composition
$$
X \xrightarrow{\chi x} \mathcal{P}(X) \xrightarrow{f} Y .
$$

- The map
$\operatorname{Lan}_{\chi_{X}}: \operatorname{Sets}(X, Y) \rightarrow \operatorname{Pos}^{\text {cocomp. }}((\mathcal{P}(X), \subset),(Y, \preceq))$
is given by sending a function $f: X \rightarrow Y$ to its left Kan extension along χ_{X},

Moreover, $\operatorname{Lan}_{\chi_{X}}(f)$ can be explicitly computed by

$$
\begin{aligned}
{\left[\operatorname{Lan}_{\chi_{X}}(f)\right](U) } & \cong \int^{x \in X} \chi_{\mathcal{P}(X)}\left(\chi_{x}, U\right) \odot f(x) \\
& \cong \int^{x \in X} \chi_{U}(x) \odot f(x) \quad \text { (by Proposition 2.4.2.1.1) } \\
& \cong \bigvee_{x \in X}\left(\chi_{U}(x) \odot f(x)\right)
\end{aligned}
$$

for each $U \in \mathcal{P}(X)$, where:
$-\bigvee$ is the join in (Y, \preceq).

- We have

$$
\begin{aligned}
& \text { true } \odot f(x) \stackrel{\text { def }}{=} f(x), \\
& \text { false } \odot f(x) \stackrel{\text { def }}{=} \varnothing_{Y}
\end{aligned}
$$

where \varnothing_{Y} is the minimal element of (Y, \preceq).
Proof. Item 1, Universal Property: This is a rephrasing of Item 2.
Item 2, Adjointness: We claim we have adjunction $\mathcal{P} \dashv$ 忘, witnessed by a bijection

$$
\operatorname{Pos}^{\text {cocomp. }}((\mathcal{P}(X), \subset),(Y, \preceq)) \cong \operatorname{Sets}(X, Y)
$$

natural in $X \in \operatorname{Obj}($ Sets $)$ and $(Y, \preceq) \in \operatorname{Obj}$ (Pos $\left.{ }^{\text {cocomp. }}\right)$.

- Map I. We define a map

$$
\Phi_{X, Y}: \operatorname{Pos}^{\text {cocomp. }}((\mathcal{P}(X), \subset),(Y, \preceq)) \rightarrow \operatorname{Sets}(X, Y)
$$

as in the statement, by

$$
\Phi_{X, Y}(f) \stackrel{\text { def }}{=} f \circ \chi_{X}
$$

for each $f \in \operatorname{Pos}^{\text {cocomp. }}((\mathcal{P}(X), \subset),(Y, \preceq))$.

- Map II. We define a map

$$
\Psi_{X, Y}: \operatorname{Sets}(X, Y) \rightarrow \operatorname{Pos}^{\text {cocomp. }}((\mathcal{P}(X), \subset),(Y, \preceq))
$$

as in the statement, by

$$
\Psi_{X, Y}(f) \stackrel{\text { def }}{=} \operatorname{Lan}_{\chi_{X}}(f), \quad{ }_{X X} \xrightarrow[\left.\right|_{f}]{\mathcal{P}(X)} Y
$$

for each $f \in \operatorname{Sets}(X, Y)$.

- Invertibility I. We claim that

$$
\Psi_{X, Y} \circ \Phi_{X, Y}=\operatorname{id}_{\text {Pos }}{ }^{\text {cocomp. }}((\mathcal{P}(X), \subset),(Y, \preceq))
$$

Indeed, given a cocontinuous morphism of posets

$$
\xi:(\mathcal{P}(X), \subset) \rightarrow(Y, \preceq)
$$

we have

$$
\begin{aligned}
{\left[\Psi_{X, Y} \circ \Phi_{X, Y}\right](\xi) } & \stackrel{\text { def }}{=} \Psi_{X, Y}\left(\Phi_{X, Y}(\xi)\right) \\
& \stackrel{\text { def }}{=} \Psi_{X, Y}\left(\xi \circ \chi_{X}\right) \\
& \stackrel{\text { def }}{=} \operatorname{Lan}_{\chi_{X}}\left(\xi \circ \chi_{X}\right) \\
& \cong \bigvee_{x \in X} \chi_{(-)}(x) \odot \xi\left(\chi_{X}(x)\right) \\
& \stackrel{\text { clm }}{=} \xi
\end{aligned}
$$

where indeed

$$
\begin{aligned}
{\left[\bigvee_{x \in X} \chi_{(-)}(x) \odot \xi\left(\chi_{X}(x)\right)\right](U) } & \stackrel{\text { def }}{=} \bigvee_{x \in X} \chi_{U}(x) \odot \xi\left(\chi_{X}(x)\right) \\
& =\left(\bigvee_{x \in U} \chi_{U}(x) \odot \xi\left(\chi_{X}(x)\right)\right) \vee\left(\bigvee_{x \in X \backslash U} \chi_{U}(x) \odot \xi\left(\chi_{X}(x)\right)\right) \\
& =\left(\bigvee_{x \in U} \xi\left(\chi_{X}(x)\right)\right) \vee\left(\bigvee_{x \in X \backslash U} \varnothing_{Y}\right) \\
& =\bigvee_{x \in U} \xi\left(\chi_{X}(x)\right) \\
& \stackrel{(\dagger)}{=} \xi\left(\bigvee_{x \in U} \chi_{X}(x)\right) \\
& =\xi(U)
\end{aligned}
$$

for each $U \in \mathcal{P}(X)$, where we have used that ξ is cocontinuous for the equality $\stackrel{(\dagger)}{=}$.

- Invertibility II. We claim that

$$
\Phi_{X, Y} \circ \Psi_{X, Y}=\operatorname{id}_{\operatorname{Sets}(X, Y)}
$$

Indeed, given a function $f: X \rightarrow Y$, we have

$$
\begin{aligned}
{\left[\Phi_{X, Y} \circ \Psi_{X, Y}\right](f) } & \stackrel{\text { def }}{=} \Phi_{X, Y}\left(\Psi_{X, Y}(f)\right) \\
& \stackrel{\text { def }}{=} \Phi_{X, Y}\left(\operatorname{Lan}_{\chi_{X}}(f)\right) \\
& \stackrel{\text { def }}{=} \operatorname{Lan}_{\chi_{X}}(f) \circ \chi_{X} \\
& \stackrel{\text { clm }}{=} f,
\end{aligned}
$$

where indeed

$$
\begin{aligned}
{\left[\operatorname{Lan}_{\chi_{X}}(f) \circ \chi_{X}\right](x) } & \stackrel{\text { def }}{=} \bigvee_{y \in X} \chi_{\{x\}}(y) \odot f(y) \\
& =\left(\chi_{\{x\}}(x) \odot f(x)\right) \vee\left(\bigvee_{y \in X \backslash\{x\}} \chi_{\{x\}}(y) \odot f(y)\right) \\
& =f(x) \vee\left(\underset{y \in X \backslash\{x\}}{ } \varnothing_{Y}\right) \\
& =f(x) \vee \varnothing_{Y} \\
& =f(x)
\end{aligned}
$$

for each $x \in X$.

- Naturality for Φ, Part I. We need to show that, given a function $f: X \rightarrow X^{\prime}$, the diagram

commutes. Indeed, given a cocontinuous morphism of posets

$$
\xi:\left(\mathcal{P}\left(X^{\prime}\right), \subset\right) \rightarrow(Y, \preceq),
$$

we have

$$
\begin{aligned}
{\left[\Phi_{X, Y} \circ \mathcal{P}_{*}(f)^{*}\right] } & (\xi) \stackrel{\text { def }}{=} \Phi_{X, Y}\left(\mathcal{P}_{*}(f)^{*}(\xi)\right) \\
& \stackrel{\text { def }}{=} \Phi_{X, Y}\left(\xi \circ f_{*}\right) \\
& \stackrel{\text { def }}{=}\left(\xi \circ f_{*}\right) \circ \chi_{X} \\
& =\xi \circ\left(f_{*} \circ \chi_{X}\right) \\
& \stackrel{(\dagger)}{=} \xi \circ\left(\chi_{X^{\prime}} \circ f\right) \\
& =\left(\xi \circ \chi_{X^{\prime}}\right) \circ f \\
& \stackrel{\text { def }}{=} \Phi_{X^{\prime}, Y}(\xi) \circ f \\
& \stackrel{\text { def }}{=} f^{*}\left(\Phi_{X^{\prime}, Y}(\xi)\right) \\
& \stackrel{\text { def }}{=}\left[f^{*} \circ \Phi_{X^{\prime}, Y}\right](\xi),
\end{aligned}
$$

where we have used Item 9 of Proposition 2.4.1.1.3 for the equality $\stackrel{(\dagger)}{=}$ above.

- Naturality for Φ, Part II. We need to show that, given a cocontinuous morphism of posets

$$
g:\left(Y, \preceq_{Y}\right) \rightarrow\left(Y^{\prime}, \preceq_{Y^{\prime}}\right),
$$

the diagram

commutes. Indeed, given a cocontinuous morphism of posets

$$
\xi:(\mathcal{P}(X), \subset) \rightarrow(Y, \preceq),
$$

we have

$$
\begin{aligned}
{\left[\Phi_{X, Y^{\prime}} \circ g_{*}\right] } & (\xi) \\
& \stackrel{\text { def }}{=} \Phi_{X, Y^{\prime}}\left(g_{*}(\xi)\right) \\
& \xlongequal{\text { def }} \Phi_{X, Y^{\prime}}(g \circ \xi) \\
= & g \circ \xi) \circ \chi_{X} \\
& =\left(\xi \circ \chi_{X}\right) \\
& \stackrel{\text { def }}{=} g \circ\left(\Phi_{X, Y}(\xi)\right) \\
& \xlongequal{\text { def }} g_{*}\left(\Phi_{X, Y}(\xi)\right) \\
& \stackrel{\text { def }}{=}\left[g_{*} \circ \Phi_{X, Y}\right](\xi) .
\end{aligned}
$$

- Naturality for Ψ. Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Item 2 of Proposition 8.8.6.1.2 that Ψ is also natural in each argument.

This finishes the proof.

2.4.4 Direct Images

Let A and B be sets and let $f: A \rightarrow B$ be a function.
$007 G$ Definition 2.4.4.1.1. The direct image function associated to f is the function

$$
f_{*}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

defined by ${ }^{35,36}$

$$
\begin{aligned}
& f_{*}(U) \stackrel{\text { def }}{=} f(U) \\
& \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
b \in B & \begin{array}{l}
\text { there exists some } a \in U \\
\text { such that } b=f(a)
\end{array}
\end{array}\right\} \\
& =\{f(a) \in B \mid a \in U\}
\end{aligned}
$$

for each $U \in \mathcal{P}(A)$.
007H Notation 2.4.4.1.2. Sometimes one finds the notation

$$
\exists_{f}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

for f_{*}. This notation comes from the fact that the following statements are equivalent, where $b \in B$ and $U \in \mathcal{P}(A)$:

- We have $b \in \exists_{f}(U)$.

[^20]- There exists some $a \in U$ such that $f(a)=b$.

007J Remark 2.4.4.1.3. Identifying subsets of A with functions from A to \{true, false\} via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the direct image function associated to f is equivalently the function

$$
f_{*}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

defined by

$$
\begin{aligned}
f_{*}\left(\chi_{U}\right) & \stackrel{\text { def }}{=} \operatorname{Lan}_{f}\left(\chi_{U}\right) \\
& =\operatorname{colim}\left((f \overrightarrow{\times} \underline{(-1)}) \stackrel{\mathrm{pr}}{\rightarrow} A \xrightarrow{\chi_{U}}\{\mathrm{t}, \mathrm{f}\}\right) \\
& =\underset{\substack{a \in \operatorname{colim} \\
(a)=-1}}{ }\left(\chi_{U}(a)\right) \\
& =\bigvee_{\substack{a \in A \\
f(a)=-1}}\left(\chi_{U}(a)\right),
\end{aligned}
$$

where we have used ?? for the second equality. In other words, we have

$$
\begin{aligned}
{\left[f_{*}\left(\chi_{U}\right)\right](b) } & =\bigvee_{\substack{a \in A \\
f(a)=b}}\left(\chi_{U}(a)\right) \\
& = \begin{cases}\text { true } & \text { if there exists some } a \in A \text { such } \\
\text { false } & \text { otherwise } f(a)=b \text { and } a \in U,\end{cases} \\
& = \begin{cases}\text { true } & \text { if there exists some } a \in U \\
\text { false } & \text { such that } f(a)=b,\end{cases}
\end{aligned}
$$

for each $b \in B$.
007 K Proposition 2.4.4.1.4. Let $f: A \rightarrow B$ be a function.

1. Functoriality. The assignment $U \mapsto f_{*}(U)$ defines a functor

$$
f_{*}:(\mathcal{P}(A), \subset) \rightarrow(\mathcal{P}(B), \subset)
$$

where

- Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$
\left[f_{*}\right](U) \stackrel{\text { def }}{=} f_{*}(U) .
$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:
(\star) If $U \subset V$, then $f_{*}(U) \subset f_{*}(V)$.

2. Triple Adjointness. We have a triple adjunction

$$
\left(f_{*} \dashv f^{-1} \dashv f_{!}\right): \quad \mathcal{P}(A) \stackrel{f_{*}}{\frac{f_{*}}{\perp-1}-} \mathcal{P}(B),
$$

witnessed by bijections of sets

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{P}(B)}\left(f_{*}(U), V\right) & \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, f^{-1}(V)\right), \\
\operatorname{Hom}_{\mathcal{P}(A)}\left(f^{-1}(U), V\right) & \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, f_{!}(V)\right),
\end{aligned}
$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:
(a) The following conditions are equivalent:
i. We have $f_{*}(U) \subset V$.
ii. We have $U \subset f^{-1}(V)$.
(b) The following conditions are equivalent:
i. We have $f^{-1}(U) \subset V$.
ii. We have $U \subset f_{!}(V)$.
3. Preservation of Colimits. We have an equality of sets

$$
f_{*}\left(\bigcup_{i \in I} U_{i}\right)=\bigcup_{i \in I} f_{*}\left(U_{i}\right)
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$
\begin{aligned}
f_{*}(U) \cup f_{*}(V) & =f_{*}(U \cup V), \\
f_{*}(\emptyset) & =\emptyset,
\end{aligned}
$$

natural in $U, V \in \mathcal{P}(A)$.
4. Oplax Preservation of Limits. We have an inclusion of sets

$$
f_{*}\left(\bigcap_{i \in I} U_{i}\right) \subset \bigcap_{i \in I} f_{*}\left(U_{i}\right),
$$

see Item 9 of Proposition 2.4.4.1.4.
natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$
\begin{gathered}
f_{*}(U \cap V) \subset f_{*}(U) \cap f_{*}(V), \\
f_{*}(A) \subset B,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
5. Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure

$$
\left(f_{*}, f_{*}^{\otimes}, f_{* \mid \mathbb{I}}^{\otimes}\right):(\mathcal{P}(A), \cup, \emptyset) \rightarrow(\mathcal{P}(B), \cup, \emptyset),
$$

being equipped with equalities

$$
\begin{gathered}
f_{* \mid U, V}^{\otimes}: f_{*}(U) \cup f_{*}(V) \stackrel{\text { 解 }}{ }(U \cup V), \\
f_{* \mid \mathbb{I}}^{\otimes}: \emptyset \bar{\rightrightarrows} \emptyset,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure

$$
\left(f_{*}, f_{*}^{\otimes}, f_{* \mid \mathbb{1}}^{\otimes}\right):(\mathcal{P}(A), \cap, A) \rightarrow(\mathcal{P}(B), \cap, B),
$$

being equipped with inclusions

$$
\begin{gathered}
f_{* \mid U, V}^{\otimes}: f_{*}(U \cap V) \hookrightarrow f_{*}(U) \cap f_{*}(V), \\
f_{* \mid \mathbb{1}}^{\otimes}: f_{*}(A) \hookrightarrow B,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
7. Interaction With Coproducts. Let $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$ be maps of sets. We have

$$
(f \amalg g)_{*}(U \amalg V)=f_{*}(U) \amalg g_{*}(V)
$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.
8. Interaction With Products. Let $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$ be maps of sets. We have

$$
(f \times g)_{*}(U \times V)=f_{*}(U) \times g_{*}(V)
$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.

$$
f_{*}(U)=B \backslash f_{!}(A \backslash U)
$$

for each $U \in \mathcal{P}(A)$.
Proof. Item 1, Functoriality: Clear.
Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2, Remark 2.4.6.1.3, and ?? of ??.
Item 3, Preservation of Colimits: This follows from Item 2 and ?? of ??. ${ }^{37}$
Item 4, Oplax Preservation of Limits: The inclusion $f_{*}(A) \subset B$ is clear. See [Pro24s] for the other inclusions.
Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.
Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows from Item 4.
Item 7, Interaction With Coproducts: Clear.
Item 8, Interaction With Products: Clear.
Item 9, Relation to Direct Images With Compact Support: Applying Item 9 of Proposition 2.4.6.1.6 to $A \backslash U$, we have

$$
\begin{aligned}
f_{!}(A \backslash U) & =B \backslash f_{*}(A \backslash(A \backslash U)) \\
& =B \backslash f_{*}(U)
\end{aligned}
$$

Taking complements, we then obtain

$$
\begin{aligned}
f_{*}(U) & =B \backslash\left(B \backslash f_{*}(U)\right), \\
& =B \backslash f_{!}(A \backslash U)
\end{aligned}
$$

which finishes the proof.
$007 V$ Proposition 2.4.4.1.5. Let $f: A \rightarrow B$ be a function.

1. Functionality I. The assignment $f \mapsto f_{*}$ defines a function

$$
(-)_{* \mid A, B}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(A), \mathcal{P}(B))
$$

2. Functionality II. The assignment $f \mapsto f_{*}$ defines a function

$$
(-)_{* \mid A, B}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Pos}((\mathcal{P}(A), \subset),(\mathcal{P}(B), \subset))
$$

3. Interaction With Identities. For each $A \in \operatorname{Obj}($ Sets $)$, we have

$$
\left(\mathrm{id}_{A}\right)_{*}=\operatorname{id}_{\mathcal{P}(A)}
$$

[^21]4. Interaction With Composition. For each pair of composable functions $f: A \rightarrow B$ and $g: B \rightarrow C$, we have
$$
(g \circ f)_{*}=g_{*} \circ f_{*}, \quad \mathcal{P}(A) \xrightarrow{f_{*}} \mathcal{P}(B)
$$

Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: This follows from Remark 2.4.4.1.3 and ?? of ??.
Item 4, Interaction With Composition: This follows from Remark 2.4.4.1.3 and ?? of ??.

0080 2.4.5 Inverse Images

Let A and B be sets and let $f: A \rightarrow B$ be a function.
0081 Definition 2.4.5.1.1. The inverse image function associated to f is the function ${ }^{38}$

$$
f^{-1}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)
$$

defined by ${ }^{39}$

$$
f^{-1}(V) \stackrel{\text { def }}{=}\{a \in A \mid \text { we have } f(a) \in V\}
$$

for each $V \in \mathcal{P}(B)$.
0082 Remark 2.4.5.1.2. Identifying subsets of B with functions from B to \{true,false\} via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the inverse image function associated to f is equivalently the function

$$
f^{*}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)
$$

defined by

$$
f^{*}\left(\chi_{V}\right) \stackrel{\text { def }}{=} \chi_{V} \circ f
$$

for each $\chi_{V} \in \mathcal{P}(B)$, where $\chi_{V} \circ f$ is the composition

$$
A \xrightarrow{f} B \xrightarrow{\chi_{V}}\{\text { true, false }\}
$$

in Sets.

[^22]0083 Proposition 2.4.5.1.3. Let $f: A \rightarrow B$ be a function.

1. Functoriality. The assignment $V \mapsto f^{-1}(V)$ defines a functor

$$
f^{-1}:(\mathcal{P}(B), \subset) \rightarrow(\mathcal{P}(A), \subset)
$$

where

- Action on Objects. For each $V \in \mathcal{P}(B)$, we have

$$
\left[f^{-1}\right](V) \stackrel{\text { def }}{=} f^{-1}(V)
$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(B)$:
(\star) If $U \subset V$, then $f^{-1}(U) \subset f^{-1}(V)$.

2. Triple Adjointness. We have a triple adjunction

$$
\left(f_{*} \dashv f^{-1} \dashv f_{!}\right): \quad \mathcal{P}(A) \underset{f_{!}}{\frac{f_{*}}{\perp-f^{-1}-}-} \mathcal{P}(B),
$$

witnessed by bijections of sets

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{P}(B)}\left(f_{*}(U), V\right) & \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, f^{-1}(V)\right), \\
\operatorname{Hom}_{\mathcal{P}(A)}\left(f^{-1}(U), V\right) & \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, f_{!}(V)\right),
\end{aligned}
$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:
(a) The following conditions are equivalent:
i. We have $f_{*}(U) \subset V$;
ii. We have $U \subset f^{-1}(V)$;
(b) The following conditions are equivalent:
i. We have $f^{-1}(U) \subset V$.
ii. We have $U \subset f_{!}(V)$.
3. Preservation of Colimits. We have an equality of sets

$$
f^{-1}\left(\bigcup_{i \in I} U_{i}\right)=\bigcup_{i \in I} f^{-1}\left(U_{i}\right),
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$
\begin{aligned}
f^{-1}(U) \cup f^{-1}(V) & =f^{-1}(U \cup V), \\
f^{-1}(\emptyset) & =\emptyset,
\end{aligned}
$$

natural in $U, V \in \mathcal{P}(B)$.
4. Preservation of Limits. We have an equality of sets

$$
f^{-1}\left(\bigcap_{i \in I} U_{i}\right)=\bigcap_{i \in I} f^{-1}\left(U_{i}\right),
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$
\begin{aligned}
f^{-1}(U) \cap f^{-1}(V) & =f^{-1}(U \cap V), \\
f^{-1}(B) & =A,
\end{aligned}
$$

natural in $U, V \in \mathcal{P}(B)$.
5. Symmetric Strict Monoidality With Respect to Unions. The inverse image function of Item 1 has a symmetric strict monoidal structure

$$
\left(f^{-1}, f^{-1, \otimes}, f_{\mathbb{1}}^{-1, \otimes}\right):(\mathcal{P}(B), \cup \emptyset) \rightarrow(\mathcal{P}(A), \cup \emptyset),
$$

being equipped with equalities

$$
\begin{gathered}
f_{U, V}^{-1, \otimes}: f^{-1}(U) \cup f^{-1}(V) \rightrightarrows f^{-1}(U \cup V), \\
f_{\mathbb{1}}^{-1, \otimes}: \emptyset \stackrel{\text { f }}{\rightrightarrows}(\emptyset),
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(B)$.
6. Symmetric Strict Monoidality With Respect to Intersections. The inverse image function of Item 1 has a symmetric strict monoidal structure

$$
\left(f^{-1}, f^{-1, \otimes}, f_{\mathbb{1}}^{-1, \otimes}\right):(\mathcal{P}(B), \cap, B) \rightarrow(\mathcal{P}(A), \cap, A),
$$

being equipped with equalities

$$
\begin{gathered}
f_{U, V}^{-1, \otimes}: f^{-1}(U) \cap f^{-1}(V) \stackrel{\rightrightarrows}{\rightrightarrows} f^{-1}(U \cap V), \\
f_{\mathbb{1}}^{-1, \otimes}: A \xrightarrow{\rightrightarrows} f^{-1}(B),
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(B)$.
7. Interaction With Coproducts. Let $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$ be maps of sets. We have

$$
(f \amalg g)^{-1}\left(U^{\prime} \amalg V^{\prime}\right)=f^{-1}\left(U^{\prime}\right) \amalg g^{-1}\left(V^{\prime}\right)
$$

for each $U^{\prime} \in \mathcal{P}\left(A^{\prime}\right)$ and each $V^{\prime} \in \mathcal{P}\left(B^{\prime}\right)$.
8. Interaction With Products. Let $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$ be maps of sets. We have

$$
(f \times g)^{-1}\left(U^{\prime} \times V^{\prime}\right)=f^{-1}\left(U^{\prime}\right) \times g^{-1}\left(V^{\prime}\right)
$$

for each $U^{\prime} \in \mathcal{P}\left(A^{\prime}\right)$ and each $V^{\prime} \in \mathcal{P}\left(B^{\prime}\right)$.
Proof. Item 1, Functoriality: Clear.
Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2, Remark 2.4.6.1.3, and ?? of ??.
Item 3, Preservation of Colimits: This follows from Item 2 and ?? of ?? ${ }^{40}$
Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.41 Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.
Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4.
Item 7, Interaction With Coproducts: Clear. Item 8, Interaction With Products: Clear.

008 C Proposition 2.4.5.1.4. Let $f: A \rightarrow B$ be a function.

1. Functionality I. The assignment $f \mapsto f^{-1}$ defines a function

$$
(-)_{A, B}^{-1}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(B), \mathcal{P}(A))
$$

2. Functionality II. The assignment $f \mapsto f^{-1}$ defines a function

$$
(-)_{A, B}^{-1}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Pos}((\mathcal{P}(B), \subset),(\mathcal{P}(A), \subset))
$$

3. Interaction With Identities. For each $A \in \mathrm{Obj}($ Sets $)$, we have

$$
\operatorname{id}_{A}^{-1}=\operatorname{id}_{\mathcal{P}(A)}
$$

4. Interaction With Composition. For each pair of composable functions $f: A \rightarrow B$ and $g: B \rightarrow C$, we have

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}, \quad \underset{(g \circ f)^{-1} \searrow_{\mathcal{P}}(C) \xrightarrow{g^{-1}} \mathcal{P}(B)}{f^{-1}}
$$

[^23]Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: This follows from Remark 2.4.5.1.2 and Item 5 of Proposition 8.1.6.1.2.
Item 4, Interaction With Composition: This follows from Remark 2.4.5.1.2 and Item 2 of Proposition 8.1.6.1.2.

008H 2.4.6 Direct Images With Compact Support

Let A and B be sets and let $f: A \rightarrow B$ be a function.
008 J Definition 2.4.6.1.1. The direct image with compact support function associated to f is the function

$$
f_{!}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

defined by ${ }^{42,43}$

$$
\left.\begin{array}{rl}
f_{!}(U) & \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
b \in B & \begin{array}{l}
\text { for each } a \in A, \text { if we have } \\
f(a)=b, \text { then } a \in U
\end{array}
\end{array}\right\} \\
& =\left\{b \in B \mid \text { we have } f^{-1}(b) \subset U\right.
\end{array}\right\}
$$

for each $U \in \mathcal{P}(A)$.
008K Notation 2.4.6.1.2. Sometimes one finds the notation

$$
\forall_{f}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

for f_{*}. This notation comes from the fact that the following statements are equivalent, where $b \in B$ and $U \in \mathcal{P}(A)$:

- We have $b \in \forall_{f}(U)$.
- For each $a \in A$, if $b=f(a)$, then $a \in U$.

008L Remark 2.4.6.1.3. Identifying subsets of A with functions from A to \{true, false\} via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the direct image with compact support function associated to f is equivalently the function

$$
f_{!}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

[^24]see Item 9 of Proposition 2.4.6.1.6.
defined by
\[

$$
\begin{aligned}
f_{!}\left(\chi_{U}\right) & \stackrel{\text { def }}{=} \operatorname{Ran}_{f}\left(\chi_{U}\right) \\
& =\lim \left((\underline{(-1)} \overrightarrow{\times} f) \stackrel{\mathrm{pr}}{\rightarrow} A \xrightarrow{\chi_{U}}\{\text { true, false }\}\right) \\
& =\lim _{\substack{a \in A \\
f(a)=-1}}\left(\chi_{U}(a)\right) \\
& =\bigwedge_{\substack{a \in A \\
f(a)=-1}}\left(\chi_{U}(a)\right) .
\end{aligned}
$$
\]

where we have used ?? for the second equality. In other words, we have

$$
\begin{aligned}
{\left[f_{!}\left(\chi_{U}\right)\right](b) } & =\bigwedge_{\substack{a \in A \\
f(a)=b}}\left(\chi_{U}(a)\right) \\
& = \begin{cases}\text { true } & \text { if, for each } a \in A \text { such that } \\
\text { false } & f(a)=b, \text { we have } a \in U,\end{cases} \\
& = \begin{cases}\text { true } & \text { if } f^{-1}(b) \subset U \\
\text { false } & \text { otherwise }\end{cases}
\end{aligned}
$$

for each $b \in B$.
Definition 2.4.6.1.4. Let U be a subset of $A .^{44,45}$

1. The image part of the direct image with compact support

$$
{ }^{44} \text { Note that we have } \quad f_{!}(U)=f_{!, \mathrm{im}}(U) \cup f_{!, \mathrm{cp}}(U)
$$

as

$$
\begin{aligned}
f_{!}(U) & =f_{!}(U) \cap B \\
& =f_{!}(U) \cap(\operatorname{Im}(f) \cup(B \backslash \operatorname{Im}(f))) \\
& =\left(f_{!}(U) \cap \operatorname{Im}(f)\right) \cup\left(f_{!}(U) \cap(B \backslash \operatorname{Im}(f))\right) \\
& \xlongequal{\text { def }} f_{!, \mathrm{im}}(U) \cup f_{!, \mathrm{cp}}(U) .
\end{aligned}
$$

${ }^{45}$ In terms of the meet computation of $f_{!}(U)$ of Remark 2.4.6.1.3, namely

$$
f_{!}\left(\chi_{U}\right)=\bigwedge_{\substack{a \in A \\ f(a)=-1}}\left(\chi_{U}(a)\right),
$$

we see that $f_{!, \text {im }}$ corresponds to meets indexed over nonempty sets, while $f_{!, \text {cp }}$ corresponds to meets indexed over the empty set.

008N
$f_{!}(U)$ of U is the set $f_{!, \operatorname{im}}(U)$ defined by

$$
\begin{aligned}
f_{!, \mathrm{im}}(U) & \stackrel{\text { def }}{=} f_{!}(U) \cap \operatorname{Im}(f) \\
& =\left\{\begin{array}{l|l}
b \in B & \begin{array}{l}
\text { we have } f^{-1}(b) \subset \\
U \text { and } f^{-1}(b) \neq \emptyset
\end{array}
\end{array}\right\} .
\end{aligned}
$$

2. The complement part of the direct image with compact 008P support $f_{!}(U)$ of U is the set $f_{!, \text {cp }}(U)$ defined by

$$
\left.\begin{array}{rl}
f_{!, \mathrm{cp}}(U) & \stackrel{\text { def }}{=} f_{!}(U) \cap(B \backslash \operatorname{Im}(f)) \\
& =B \backslash \operatorname{Im}(f) \\
& =\left\{\begin{array}{l|l}
b \in B & \begin{array}{l}
\text { we have } f^{-1}(b) \subset \\
U \text { and } f^{-1}(b)=\emptyset
\end{array}
\end{array}\right\} \\
& =\left\{b \in B \mid f^{-1}(b)=\emptyset\right.
\end{array}\right\} .
$$

008 Example 2.4.6.1.5. Here are some examples of direct images with compact support.

1. The Multiplication by Two Map on the Natural Numbers. Consider the function $f: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
f(n) \stackrel{\text { def }}{=} 2 n
$$

for each $n \in \mathbb{N}$. Since f is injective, we have

$$
\begin{aligned}
f_{!, \mathrm{im}}(U) & =f_{*}(U) \\
f_{!, \mathrm{cp}}(U) & =\{\text { odd natural numbers }\}
\end{aligned}
$$

for any $U \subset \mathbb{N}$.
2. Parabolas. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x) \stackrel{\text { def }}{=} x^{2}
$$

for each $x \in \mathbb{R}$. We have

$$
f_{!, \mathrm{cp}}(U)=\mathbb{R}_{<0}
$$

for any $U \subset \mathbb{R}$. Moreover, since $f^{-1}(x)=\{-\sqrt{x}, \sqrt{x}\}$, we have e.g.:

$$
\begin{aligned}
f_{!, \mathrm{im}}([0,1]) & =\{0\}, \\
f_{!, \mathrm{im}}([-1,1]) & =[0,1], \\
f_{!, \mathrm{im}}([1,2]) & =\emptyset, \\
f_{!, \mathrm{im}}([-2,-1] \cup[1,2]) & =[1,4] .
\end{aligned}
$$

3. Circles. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y) \stackrel{\text { def }}{=} x^{2}+y^{2}
$$

for each $(x, y) \in \mathbb{R}^{2}$. We have

$$
f_{!, \mathrm{cp}}(U)=\mathbb{R}_{<0}
$$

for any $U \subset \mathbb{R}^{2}$, and since

$$
f^{-1}(r)= \begin{cases}\text { a circle of radius } r \text { about the origin } & \text { if } r>0 \\ \{(0,0)\} & \text { if } r=0 \\ \emptyset & \text { if } r<0\end{cases}
$$

we have e.g.:

$$
\begin{aligned}
f_{!, \mathrm{im}}([-1,1] \times[-1,1]) & =[0,1] \\
f_{!, \mathrm{im}}(([-1,1] \times[-1,1]) \backslash[-1,1] \times\{0\}) & =\emptyset
\end{aligned}
$$

008 R Proposition 2.4.6.1.6. Let $f: A \rightarrow B$ be a function.
008 S 1. Functoriality. The assignment $U \mapsto f_{!}(U)$ defines a functor

$$
f_{!}:(\mathcal{P}(A), \subset) \rightarrow(\mathcal{P}(B), \subset)
$$

where

- Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$
\left[f_{!}\right](U) \stackrel{\text { def }}{=} f_{!}(U) .
$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:
(\star) If $U \subset V$, then $f_{!}(U) \subset f_{!}(V)$.

2. Triple Adjointness. We have a triple adjunction

$$
\left(f_{*} \dashv f^{-1} \dashv f_{!}\right): \quad \mathcal{P}(A) \stackrel{f_{f_{!}}^{\perp}}{\frac{f_{*}^{-1}-}{\perp}} \mathcal{P}(B),
$$

witnessed by bijections of sets

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{P}(B)}\left(f_{*}(U), V\right) & \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, f^{-1}(V)\right), \\
\operatorname{Hom}_{\mathcal{P}(A)}\left(f^{-1}(U), V\right) & \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, f_{!}(V)\right)
\end{aligned}
$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:
(a) The following conditions are equivalent:
i. We have $f_{*}(U) \subset V$.
ii. We have $U \subset f^{-1}(V)$.
(b) The following conditions are equivalent:
i. We have $f^{-1}(U) \subset V$.
ii. We have $U \subset f_{!}(V)$.
3. Lax Preservation of Colimits. We have an inclusion of sets

$$
\bigcup_{i \in I} f_{!}\left(U_{i}\right) \subset f_{!}\left(\bigcup_{i \in I} U_{i}\right)
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$
\begin{gathered}
f_{!}(U) \cup f_{!}(V) \hookrightarrow f_{!}(U \cup V), \\
\emptyset \hookrightarrow f_{!}(\emptyset),
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
4. Preservation of Limits. We have an equality of sets

$$
f_{!}\left(\bigcap_{i \in I} U_{i}\right)=\bigcap_{i \in I} f_{!}\left(U_{i}\right)
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$
\begin{gathered}
f^{-1}(U \cap V)=f_{!}(U) \cap f^{-1}(V) \\
f_{!}(A)=B
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure

$$
\left(f_{!}, f_{!}^{\otimes}, f_{!\mid \mathbb{1}}^{\otimes}\right):(\mathcal{P}(A), \cup \emptyset) \rightarrow(\mathcal{P}(B), \cup, \emptyset)
$$

being equipped with inclusions

$$
\begin{gathered}
f_{!\mid U, V}^{\otimes}: f_{!}(U) \cup f_{!}(V) \hookrightarrow f_{!}(U \cup V), \\
f_{!\mid \mathbb{1}}^{\otimes}: \emptyset \hookrightarrow f_{!}(\emptyset),
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure

$$
\left(f_{!}, f_{!}^{\otimes}, f_{!\mid \mathbb{1}}^{\otimes}\right):(\mathcal{P}(A), \cap, A) \rightarrow(\mathcal{P}(B), \cap, B)
$$

being equipped with equalities

$$
\begin{aligned}
f_{!\mid U, V}^{\otimes}: f_{!}(U \cap V) & \stackrel{=}{\rightarrow} f_{!}(U) \cap f_{!}(V) \\
f_{!\mid \mathbb{1}}^{\otimes}: f_{!}(A) & \stackrel{=}{\rightrightarrows} B
\end{aligned}
$$

natural in $U, V \in \mathcal{P}(A)$.
7. Interaction With Coproducts. Let $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$ be maps of sets. We have

$$
(f \amalg g)_{!}(U \amalg V)=f_{!}(U) \amalg g_{!}(V)
$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.
8. Interaction With Products. Let $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$ be maps of sets. We have

$$
(f \times g)_{!}(U \times V)=f_{!}(U) \times g_{!}(V)
$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.
9. Relation to Direct Images. We have

$$
f_{!}(U)=B \backslash f_{*}(A \backslash U)
$$

for each $U \in \mathcal{P}(A)$.
10. Interaction With Injections. If f is injective, then we have

$$
\begin{aligned}
f_{!, \mathrm{im}}(U) & =f_{*}(U) \\
f_{!, \mathrm{cp}}(U) & =B \backslash \operatorname{Im}(f) \\
f_{!}(U) & =f_{!, \mathrm{im}}(U) \cup f_{!, \mathrm{cp}}(U) \\
& =f_{*}(U) \cup(B \backslash \operatorname{Im}(f))
\end{aligned}
$$

for each $U \in \mathcal{P}(A)$.
11. Interaction With Surjections. If f is surjective, then we have

$$
\begin{aligned}
f_{!, \mathrm{im}}(U) & \subset f_{*}(U) \\
f_{!, \mathrm{cp}}(U) & =\emptyset \\
f_{!}(U) & \subset f_{*}(U)
\end{aligned}
$$

for each $U \in \mathcal{P}(A)$.

Proof. Item 1, Functoriality: Clear.
Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2, Remark 2.4.6.1.3, and ?? of ??.
Item 3, Lax Preservation of Colimits: Omitted.
Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.
Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows from Item 3 .
Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4.
Item 7, Interaction With Coproducts: Clear.
Item 8, Interaction With Products: Clear.
Item 9, Relation to Direct Images: We claim that $f_{!}(U)=B \backslash f_{*}(A \backslash U)$.

- The First Implication. We claim that

$$
f_{!}(U) \subset B \backslash f_{*}(A \backslash U)
$$

Let $b \in f_{!}(U)$. We need to show that $b \notin f_{*}(A \backslash U)$, i.e. that there is no $a \in A \backslash U$ such that $f(a)=b$.
This is indeed the case, as otherwise we would have $a \in f^{-1}(b)$ and $a \notin U$, contradicting $f^{-1}(b) \subset U$ (which holds since $b \in f_{!}(U)$).
Thus $b \in B \backslash f_{*}(A \backslash U)$.

- The Second Implication. We claim that

$$
B \backslash f_{*}(A \backslash U) \subset f_{!}(U)
$$

Let $b \in B \backslash f_{*}(A \backslash U)$. We need to show that $b \in f_{!}(U)$, i.e. that $f^{-1}(b) \subset U$.
Since $b \notin f_{*}(A \backslash U)$, there exists no $a \in A \backslash U$ such that $b=f(a)$, and hence $f^{-1}(b) \subset U$.
Thus $b \in f_{!}(U)$.
This finishes the proof of Item 9.
Item 10, Interaction With Injections: Clear.
Item 11, Interaction With Surjections: Clear.
0093 Proposition 2.4.6.1.7. Let $f: A \rightarrow B$ be a function.

1. Functionality I. The assignment $f \mapsto f$! defines a function

$$
(-)_{!\mid A, B}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(A), \mathcal{P}(B))
$$

2. Functionality II. The assignment $f \mapsto f$! defines a function

$$
(-)_{!\mid A, B}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Pos}((\mathcal{P}(A), \subset),(\mathcal{P}(B), \subset))
$$

0096
3. Interaction With Identities. For each $A \in \mathrm{Obj}($ Sets $)$, we have

$$
\left(\mathrm{id}_{A}\right)_{!}=\operatorname{id}_{\mathcal{P}(A)} .
$$

4. Interaction With Composition. For each pair of composable functions $f: A \rightarrow B$ and $g: B \rightarrow C$, we have

$$
(g \circ f)_{!}=g_{!} \circ f_{!}, \quad \underset{(g \circ f)!\underbrace{}_{\downarrow!}}{\substack{\mathcal{P}(A) \\ \\ \mathcal{P}(C) . \\ f_{!}}} \mathcal{P}(B)
$$

Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: This follows from Remark 2.4.6.1.3 and ?? of ??.
Item 4, Interaction With Composition: This follows from Remark 2.4.6.1.3 and ?? of ??.

Appendices

2.A Other Chapters

Sets

1. Sets
2. Constructions With Sets
3. Pointed Sets
4. Tensor Products of Pointed Sets

Relations

5. Relations
6. Constructions With Relations
7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 3

Pointed Sets

0098 This chapter contains some foundational material on pointed sets.

Contents

3.1 Pointed Sets.. 100
3.1.1 Foundations.. 101
3.1.2 Morphisms of Pointed Sets 102
3.1.3 The Category of Pointed Sets...................... 102
3.1.4 Elementary Properties of Pointed Sets......... 103
3.2 Limits of Pointed Sets...................................... 106
3.2.1 The Terminal Pointed Set............................ 106
3.2.2 Products of Families of Pointed Sets............ 106
3.2.3 Products.. 108
3.2.4 Pullbacks .. 110
3.2.5 Equalisers... 114
3.3 Colimits of Pointed Sets................................... 116
3.3.1 The Initial Pointed Set 116
3.3.2 Coproducts of Families of Pointed Sets......... 117
3.3.3 Coproducts.. 118
3.3.4 Pushouts.. 122
3.3.5 Coequalisers.. 126
3.4 Constructions With Pointed Sets..................... 128
3.4.1 Free Pointed Sets....................................... 128
3.A Other Chapters... 133

009A 3.1.1 Foundations

009B Definition 3.1.1.1.1. A pointed set ${ }^{1}$ is equivalently:

- An \mathbb{E}_{0}-monoid in (N_{\bullet} (Sets), pt).
- A pointed object in (Sets, pt).

009C Remark 3.1.1.1.2. In detail, a pointed set is a pair (X, x_{0}) consisting of:

- The Underlying Set. A set X, called the underlying set of (X, x_{0}).
- The Basepoint. A morphism

$$
\left[x_{0}\right]: \mathrm{pt} \rightarrow X
$$

in Sets, determining an element $x_{0} \in X$, called the basepoint of X.

009D Example 3.1.1.1.3. The 0 -sphere ${ }^{2}$ is the pointed set $\left(S^{0}, 0\right)^{3}$ consisting of:

- The Underlying Set. The set S^{0} defined by

$$
S^{0} \stackrel{\text { def }}{=}\{0,1\}
$$

- The Basepoint. The element 0 of S^{0}.

009E Example 3.1.1.1.4. The trivial pointed set is the pointed set (pt, \star) consisting of:

- The Underlying Set. The punctual set pt $\stackrel{\text { def }}{=}\{\star\}$.
- The Basepoint. The element \star of pt.

009F Example 3.1.1.1.5. The underlying pointed set of a semimodule (M, α_{M}) is the pointed set $\left(M, 0_{M}\right)$.

009 Example 3.1.1.1.6. The underlying pointed set of a module (M, α_{M}) is the pointed set $\left(M, 0_{M}\right)$.

[^25]
009H 3.1.2 Morphisms of Pointed Sets

009 J Definition 3.1.2.1.1. A morphism of pointed sets ${ }^{4,5}$ is equivalently:

- A morphism of \mathbb{E}_{0}-monoids in ($\mathrm{N}_{\bullet}($ Sets $\left.), \mathrm{pt}\right)$.
- A morphism of pointed objects in (Sets, pt).

009K Remark 3.1.2.1.2. In detail, a morphism of pointed sets $f:\left(X, x_{0}\right) \rightarrow$ $\left(Y, y_{0}\right)$ is a morphism of sets $f: X \rightarrow Y$ such that the diagram

commutes, i.e. such that

$$
f\left(x_{0}\right)=y_{0} .
$$

009L 3.1.3 The Category of Pointed Sets

009 M Definition 3.1.3.1.1. The category of pointed sets is the category Sets* defined equivalently as

- The homotopy category of the ∞-category $\operatorname{Mon}_{\mathbb{E}_{0}}\left(\mathrm{~N}_{\bullet}(\right.$ Sets $\left.), \mathrm{pt}\right)$ of ??;
- The category Sets $_{*}$ of ??.

009N Remark 3.1.3.1.2. In detail, the category of pointed sets is the category Sets* where

- Objects. The objects of Sets* are pointed sets;
- Morphisms. The morphisms of Sets* ${ }_{*}$ are morphisms of pointed sets;
- Identities. For each $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, the unit map

$$
\mathbb{1}_{\left(X, x_{0}\right)}^{\text {Sets }_{*}}: \operatorname{pt} \rightarrow \operatorname{Sets}_{*}\left(\left(X, x_{0}\right),\left(X, x_{0}\right)\right)
$$

of Sets ${ }_{*}$ at $\left(X, x_{0}\right)$ is defined by ${ }^{6}$

$$
\operatorname{id}_{\left(X, x_{0}\right)}^{\text {Sets }_{*}} \stackrel{\text { def }}{=} \mathrm{id}_{X} ;
$$

[^26]- Composition. For each $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, the composition map
$0_{\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right)}^{\operatorname{secsit}^{2}} \operatorname{Sets}_{*}\left(\left(Y, y_{0}\right),\left(Z, z_{0}\right)\right) \times \operatorname{Sets}_{*}\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right) \rightarrow \operatorname{Sets}_{*}\left(\left(X, x_{0}\right),\left(Z, z_{0}\right)\right)$
of Sets $_{*}$ at $\left(\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right)\right)$ is defined by ${ }^{7}$

$$
g \circ \circ_{\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right)} f \stackrel{\text { Sets }}{=} g \circ f .
$$

009P 3.1.4 Elementary Properties of Pointed Sets
$009 Q$ Proposition 3.1.4.1.1. Let $\left(X, x_{0}\right)$ be a pointed set.
009R 1. Completeness. The category Sets* of pointed sets and morphisms between them is complete, having in particular:
(a) Products, described as in Definition 3.2.3.1.1;
(b) Pullbacks, described as in Definition 3.2.4.1.1;
(c) Equalisers, described as in Definition 3.2.5.1.1.
2. Cocompleteness. The category Sets* of pointed sets and morphisms between them is cocomplete, having in particular:
(a) Coproducts, described as in Definition 3.3.3.1.1;
(b) Pushouts, described as in Definition 3.3.4.1.1;
(c) Coequalisers, described as in Definition 3.3.5.1.1.
3. Failure To Be Cartesian Closed. The category Sets* is not Cartesian closed. ${ }^{8}$

[^27]4. Morphisms From the Monoidal Unit. We have a bijection of sets ${ }^{9}$
$$
\operatorname{Sets}_{*}\left(S^{0}, X\right) \cong X,
$$
natural in $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, internalising also to an isomorphism of pointed sets
$$
\operatorname{Sets}_{*}\left(S^{0}, X\right) \cong\left(X, x_{0}\right),
$$
again natural in $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
5. Relation to Partial Functions. We have an equivalence of categories ${ }^{10}$
$$
\text { Sets }_{*} \stackrel{\text { eq. }}{=} \text { Sets }^{\text {part. }}
$$
between the category of pointed sets and pointed functions between them and the category of sets and partial functions between them, where:
(a) From Pointed Sets to Sets With Partial Functions. The equivalence
$$
\xi: \text { Sets }_{*} \xlongequal{\cong} \text { Sets }^{\text {part. }}
$$
sends:
i. A pointed set $\left(X, x_{0}\right)$ to X.
ii. A pointed function
$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$
to the partial function
$$
\xi_{f}: X \rightarrow Y
$$
defined on $f^{-1}\left(Y \backslash y_{0}\right)$ and given by
$$
\xi_{f}(x) \stackrel{\text { def }}{=} f(x)
$$
for each $x \in f^{-1}\left(Y \backslash y_{0}\right)$.

[^28](b) From Sets With Partial Functions to Pointed Sets. The equivalence
$$
\xi^{-1}: \text { Sets }^{\text {part. }} \xlongequal{\cong} \text { Sets }_{*}
$$
sends:
i. A set X is to the pointed set (X, \star) with \star an element that is not in X.
ii. A partial function
$$
f: X \rightarrow Y
$$
defined on $U \subset X$ to the pointed function
$$
\xi_{f}^{-1}:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$
defined by
\[

\xi_{f}(x) \stackrel{def}{=} $$
\begin{cases}f(x) & \text { if } x \in U \\ y_{0} & \text { otherwise } .\end{cases}
$$
\]

for each $x \in X$.
Proof. Item 1, Completeness: This follows from (the proofs) of Definitions 3.2.3.1.1, 3.2.4.1.1 and 3.2.5.1.1 and ??.
Item 2, Cocompleteness: This follows from (the proofs) of Definitions 3.3.3.1.1, 3.3.4.1.1 and 3.3.5.1.1 and ??.

Item 3, Failure To Be Cartesian Closed: See [MSE 2855868].
Item 4, Morphisms From the Monoidal Unit: Since a morphism from S^{0} to a pointed set (X, x_{0}) sends $0 \in S^{0}$ to x_{0} and then can send $1 \in S^{0}$ to any element of X, we obtain a bijection between pointed maps $S^{0} \rightarrow X$ and the elements of X.
The isomorphism then

$$
\operatorname{Sets}_{*}\left(S^{0}, X\right) \cong\left(X, x_{0}\right)
$$

follows by noting that $\Delta_{x_{0}}: S^{0} \rightarrow X$, the basepoint of $\operatorname{Sets}_{*}\left(S^{0}, X\right)$, corresponds to the pointed map $S^{0} \rightarrow X$ picking the element x_{0} of X, and thus we see that the bijection between pointed maps $S^{0} \rightarrow X$ and elements of X is compatible with basepoints, lifting to an isomorphism of pointed sets.
Item 5, Relation to Partial Functions: See [MSE 884460].

00A2

3.2 Limits of Pointed Sets

00A3 3.2.1 The Terminal Pointed Set

00A4 Definition 3.2.1.1.1. The terminal pointed set is the pair $\left((\mathrm{pt}, \star),\left\{!_{X}\right\}_{\left(X, x_{0}\right) \in \operatorname{Obj}\left(\operatorname{Sets}_{*}\right)}\right)$ consisting of:

- The Limit. The pointed set (pt, \star).
- The Cone. The collection of morphisms of pointed sets

$$
\left\{!_{X}:\left(X, x_{0}\right) \rightarrow(\mathrm{pt}, \star)\right\}_{\left(X, x_{0}\right) \in \operatorname{Obj}(\text { Sets })}
$$

defined by

$$
!_{X}(x) \stackrel{\text { def }}{=} \star
$$

for each $x \in X$ and each $\left(X, x_{0}\right) \in \operatorname{Obj}($ Sets $)$.
Proof. We claim that (pt, \star) is the terminal object of Sets ${ }_{*}$. Indeed, suppose we have a diagram of the form

$$
\left(X, x_{0}\right) \quad(\mathrm{pt}, \star)
$$

in Sets ${ }_{*}$. Then there exists a unique morphism of pointed sets

$$
\phi:\left(X, x_{0}\right) \rightarrow(\mathrm{pt}, \star)
$$

making the diagram

$$
\left(X, x_{0}\right) \stackrel{\phi}{\exists!}(\mathrm{pt}, \star)
$$

commute, namely $!_{X}$.

00 A 5 3.2.2 Products of Families of Pointed Sets

Let $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$ be a family of pointed sets.
00A6 Definition 3.2.2.1.1. The product of $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$ is the pair $\left(\left(\prod_{i \in I} X_{i},\left(x_{0}^{i}\right)_{i \in I}\right),\left\{\operatorname{pr}_{i}\right\}_{i \in I}\right)$ consisting of:

- The Limit. The pointed set $\left(\prod_{i \in I} X_{i},\left(x_{0}^{i}\right)_{i \in I}\right)$.
- The Cone. The collection

$$
\left\{\operatorname{pr}_{i}:\left(\prod_{i \in I} X_{i},\left(x_{0}^{i}\right)_{i \in I}\right) \rightarrow\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}
$$

of maps given by

$$
\operatorname{pr}_{i}\left(\left(x_{j}\right)_{j \in I}\right) \stackrel{\text { def }}{=} x_{i}
$$

for each $\left(x_{j}\right)_{j \in I} \in \prod_{i \in I} X_{i}$ and each $i \in I$.

Proof. We claim that $\left(\prod_{i \in I} X_{i},\left(x_{0}^{i}\right)_{i \in I}\right)$ is the categorical product of $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$ in Sets*. Indeed, suppose we have, for each $i \in I$, a diagram of the form

$$
\left(\prod_{i \in I} X_{i},\left(x_{0}^{i}\right)_{i \in I}\right)_{\overrightarrow{\mathrm{pr}_{i}}}^{(P, *)}\left(X_{i}, x_{0}^{i}\right)
$$

in Sets*. Then there exists a unique morphism of pointed sets

$$
\phi:(P, *) \rightarrow\left(\prod_{i \in I} X_{i},\left(x_{0}^{i}\right)_{i \in I}\right)
$$

making the diagram

commute, being uniquely determined by the condition $\operatorname{pr}_{i} \circ \phi=p_{i}$ for each $i \in I$ via

$$
\phi(x)=\left(p_{i}(x)\right)_{i \in I}
$$

for each $x \in P$. Note that this is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\phi(*) & =\left(p_{i}(*)\right)_{i \in I} \\
& =\left(x_{0}^{i}\right)_{i \in I}
\end{aligned}
$$

where we have used that p_{i} is a morphism of pointed sets for each $i \in I$.

00A7 Proposition 3.2.2.1.2. Let $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$ be a family of pointed sets.
00 A 8 1. Functoriality. The assignment $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I} \mapsto\left(\prod_{i \in I} X_{i},\left(x_{0}^{i}\right)_{i \in I}\right)$ defines a functor

$$
\prod_{i \in I}: \operatorname{Fun}\left(I_{\mathrm{disc}}, \text { Sets }_{*}\right) \rightarrow \text { Sets }_{*}
$$

Proof. Item 1, Functoriality: This follows from ?? of ??.

00A9 3.2.3 Products

Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00AA Definition 3.2.3.1.1. The product of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ is the pair consisting of:

- The Limit. The pointed set $\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$.
- The Cone. The morphisms of pointed sets

$$
\begin{aligned}
& \operatorname{pr}_{1}:\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow\left(X, x_{0}\right), \\
& \operatorname{pr}_{2}:\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow\left(Y, y_{0}\right)
\end{aligned}
$$

defined by

$$
\begin{aligned}
& \operatorname{pr}_{1}(x, y) \stackrel{\text { def }}{=} x, \\
& \operatorname{pr}_{2}(x, y) \stackrel{\text { def }}{=} y
\end{aligned}
$$

for each $(x, y) \in X \times Y$.
Proof. We claim that $\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ is the categorical product of (X, x_{0}) and (Y, y_{0}) in Sets. . Indeed, suppose we have a diagram of the form

in Sets. Then there exists a unique morphism of pointed sets

$$
\phi:(P, *) \rightarrow\left(X \times Y,\left(x_{0}, y_{0}\right)\right)
$$

making the diagram

commute, being uniquely determined by the conditions

$$
\begin{aligned}
& \mathrm{pr}_{1} \circ \phi=p_{1}, \\
& \mathrm{pr}_{2} \circ \phi=p_{2}
\end{aligned}
$$

via

$$
\phi(x)=\left(p_{1}(x), p_{2}(x)\right)
$$

for each $x \in P$. Note that this is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\phi(*) & =\left(p_{1}(*), p_{2}(*)\right) \\
& =\left(x_{0}, y_{0}\right)
\end{aligned}
$$

where we have used that p_{1} and p_{2} are morphisms of pointed sets.

Proposition 3.2.3.1.2. Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$, and $\left(Z, z_{0}\right)$ be pointed sets.

1. Functoriality. The assignments

$$
\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right) \mapsto\left(X \times Y,\left(x_{0}, y_{0}\right)\right)
$$

define functors

$$
\begin{gathered}
X \times-: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
-\times Y: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
-_{1} \times-{ }_{2}: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
\end{gathered}
$$

defined in the same way as the functors of Item 1 of Proposition 2.1.3.1.2.
2. Associativity. We have an isomorphism of pointed sets
$\left((X \times Y) \times Z,\left(\left(x_{0}, y_{0}\right), z_{0}\right)\right) \cong\left(X \times(Y \times Z),\left(x_{0},\left(y_{0}, z_{0}\right)\right)\right)$
natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
3. Unitality. We have isomorphisms of pointed sets

$$
\begin{aligned}
& (\mathrm{pt}, \star) \times\left(X, x_{0}\right) \cong\left(X, x_{0}\right) \\
& \left(X, x_{0}\right) \times(\mathrm{pt}, \star) \cong\left(X, x_{0}\right)
\end{aligned}
$$

natural in $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
4. Commutativity. We have an isomorphism of pointed sets

$$
\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \cong\left(Y \times X,\left(y_{0}, x_{0}\right)\right)
$$

natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
5. Symmetric Monoidality. The triple (Sets $*, \times,(\mathrm{pt}, \star))$ is a symmetric monoidal category.
Proof. Item 1, Functoriality: This is a special case of functoriality of limits, ?? of ??.
Item 2, Associativity: This follows from Item 3 of Proposition 2.1.3.1.2. Item 3, Unitality: This follows from Item 4 of Proposition 2.1.3.1.2.
Item 4, Commutativity: This follows from Item 5 of Proposition 2.1.3.1.2. Item 5, Symmetric Monoidality: This follows from Item 12 of Proposition 2.1.3.1.2.

00AH 3.2.4 Pullbacks

Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$, and $\left(Z, z_{0}\right)$ be pointed sets and let $f:\left(X, x_{0}\right) \rightarrow$ $\left(Z, z_{0}\right)$ and $g:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$ be morphisms of pointed sets.

00AJ Definition 3.2.4.1.1. The pullback of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ over $\left(Z, z_{0}\right)$ along (f, g) is the pair consisting of:

- The Limit. The pointed set $\left(X \times_{Z} Y,\left(x_{0}, y_{0}\right)\right)$.
- The Cone. The morphisms of pointed sets

$$
\begin{aligned}
& \operatorname{pr}_{1}:\left(X \times_{Z} Y,\left(x_{0}, y_{0}\right)\right) \rightarrow\left(X, x_{0}\right), \\
& \operatorname{pr}_{2}:\left(X \times_{Z} Y,\left(x_{0}, y_{0}\right)\right) \rightarrow\left(Y, y_{0}\right)
\end{aligned}
$$

defined by

$$
\begin{aligned}
& \operatorname{pr}_{1}(x, y) \stackrel{\text { def }}{\text { def }} x \\
& \operatorname{pr}_{2}(x, y) \stackrel{\text { def }}{=} y
\end{aligned}
$$

for each $(x, y) \in X \times{ }_{Z} Y$.
Proof. We claim that $X \times_{Z} Y$ is the categorical pullback of (X, x_{0}) and $\left(Y, y_{0}\right)$ over $\left(Z, z_{0}\right)$ with respect to (f, g) in Sets $*_{*}$. First we need to check that the relevant pullback diagram commutes, i.e. that we have

$$
f \circ \operatorname{pr}_{1}=g \circ \operatorname{pr}_{2}, \quad \begin{gathered}
\left(X \times_{Z} Y,\left(x_{0}, y_{0}\right)\right) \xrightarrow{\mathrm{pr}_{2}}\left(Y, y_{0}\right) \\
\left.\left(X, x_{0}\right) \xrightarrow[f]{\operatorname{pr}_{1}}\right|_{\mathrm{f}}\left(Z, z_{0}\right) .
\end{gathered}
$$

Indeed, given $(x, y) \in X \times_{Z} Y$, we have

$$
\begin{aligned}
{\left[f \circ \operatorname{pr}_{1}\right](x, y) } & =f\left(\operatorname{pr}_{1}(x, y)\right) \\
& =f(x) \\
& =g(y) \\
& =g\left(\operatorname{pr}_{2}(x, y)\right) \\
& =\left[g \circ \operatorname{pr}_{2}\right](x, y),
\end{aligned}
$$

where $f(x)=g(y)$ since $(x, y) \in X \times_{Z} Y$. Next, we prove that $X \times_{Z} Y$ satisfies the universal property of the pullback. Suppose we have a
diagram of the form

in Sets ${ }_{*}$. Then there exists a unique morphism of pointed sets

$$
\phi:(P, *) \rightarrow\left(X \times_{Z} Y,\left(x_{0}, y_{0}\right)\right)
$$

making the diagram

commute, being uniquely determined by the conditions

$$
\begin{aligned}
& \mathrm{pr}_{1} \circ \phi=p_{1}, \\
& \mathrm{pr}_{2} \circ \phi=p_{2}
\end{aligned}
$$

via

$$
\phi(x)=\left(p_{1}(x), p_{2}(x)\right)
$$

for each $x \in P$, where we note that $\left(p_{1}(x), p_{2}(x)\right) \in X \times Y$ indeed lies in $X \times_{Z} Y$ by the condition

$$
f \circ p_{1}=g \circ p_{2}
$$

which gives

$$
f\left(p_{1}(x)\right)=g\left(p_{2}(x)\right)
$$

for each $x \in P$, so that $\left(p_{1}(x), p_{2}(x)\right) \in X \times_{Z} Y$. Lastly, we note that ϕ is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\phi(*) & =\left(p_{1}(*), p_{2}(*)\right) \\
& =\left(x_{0}, y_{0}\right)
\end{aligned}
$$

where we have used that p_{1} and p_{2} are morphisms of pointed sets.

00AK Proposition 3.2.4.1.2. Let $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right)$, and $\left(A, a_{0}\right)$ be pointed sets.

00 AL 1. Functoriality. The assignment $(X, Y, Z, f, g) \mapsto X \times_{f, Z, g} Y$ defines a functor

$$
-_{1} \times_{-3}-{ }_{1}: \operatorname{Fun}\left(\mathcal{P}, \text { Sets }_{*}\right) \rightarrow \text { Sets }_{*},
$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-_{1} \times_{-3}-_{1}$ is given by sending a morphism

in $\operatorname{Fun}\left(\mathcal{P}\right.$, Sets $\left._{*}\right)$ to the morphism of pointed sets

$$
\xi:\left(X \times_{Z} Y,\left(x_{0}, y_{0}\right)\right) \xrightarrow{\exists!}\left(X^{\prime} \times{ }_{Z^{\prime}} Y^{\prime},\left(x_{0}^{\prime}, y_{0}^{\prime}\right)\right)
$$

given by

$$
\xi(x, y) \stackrel{\text { def }}{=}(\phi(x), \psi(y))
$$

for each $(x, y) \in X \times_{Z} Y$, which is the unique morphism of pointed sets making the diagram

commute.
2. Associativity. Given a diagram

in Sets ${ }_{*}$, we have isomorphisms of pointed sets

$$
\left(X \times_{W} Y\right) \times_{V} Z \cong\left(X \times_{W} Y\right) \times_{Y}\left(Y \times_{V} Z\right) \cong X \times_{W}\left(Y \times_{V} Z\right)
$$

where these pullbacks are built as in the diagrams

00AN 3. Unitality. We have isomorphisms of pointed sets

4. Commutativity. We have an isomorphism of pointed sets

5. Interaction With Products. We have an isomorphism of pointed sets
6. Symmetric Monoidality. The triple $\left(\operatorname{Sets}_{*}, \times_{X}, X\right)$ is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pullback diagram.
Item 2, Associativity: This follows from Item 2 of Proposition 3.2.4.1.2. Item 3, Unitality: This follows from Item 3 of Proposition 2.1.4.1.3.
Item 4, Commutativity: This follows from Item 4 of Proposition 2.1.4.1.3. Item 5, Interaction With Products: This follows from Item 6 of Proposition 2.1.4.1.3.
Item 6, Symmetric Monoidality: This follows from Item 7 of Proposition 2.1.4.1.3.

00AS
 3.2.5 Equalisers

Let $f, g:\left(X, x_{0}\right) \rightrightarrows\left(Y, y_{0}\right)$ be morphisms of pointed sets.
00AT Definition 3.2.5.1.1. The equaliser of (f, g) is the pair consisting of:

- The Limit. The pointed set $\left(\operatorname{Eq}(f, g), x_{0}\right)$.
- The Cone. The morphism of pointed sets

$$
\operatorname{eq}(f, g):\left(\operatorname{Eq}(f, g), x_{0}\right) \hookrightarrow\left(X, x_{0}\right)
$$

given by the canonical inclusion $\mathrm{eq}(f, g) \hookrightarrow \operatorname{Eq}(f, g) \hookrightarrow X$.
Proof. We claim that $\left(\operatorname{Eq}(f, g), x_{0}\right)$ is the categorical equaliser of f and g in Sets*. First we need to check that the relevant equaliser diagram commutes, i.e. that we have

$$
f \circ \mathrm{eq}(f, g)=g \circ \mathrm{eq}(f, g),
$$

which indeed holds by the definition of the set $\operatorname{Eq}(f, g)$. Next, we prove that $\operatorname{Eq}(f, g)$ satisfies the universal property of the equaliser. Suppose we have a diagram of the form

in Sets. Then there exists a unique morphism of pointed sets

$$
\phi:(E, *) \rightarrow\left(\mathrm{Eq}(f, g), x_{0}\right)
$$

making the diagram

commute, being uniquely determined by the condition

$$
\mathrm{eq}(f, g) \circ \phi=e
$$

via

$$
\phi(x)=e(x)
$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in $\operatorname{Eq}(f, g)$ by the condition

$$
f \circ e=g \circ e,
$$

which gives

$$
f(e(x))=g(e(x))
$$

for each $x \in E$, so that $e(x) \in \operatorname{Eq}(f, g)$. Lastly, we note that ϕ is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\phi(*) & =e(*) \\
& =x_{0},
\end{aligned}
$$

where we have used that e is a morphism of pointed sets.
00 AU Proposition 3.2.5.1.2. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets and let $f, g, h:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be morphisms of pointed sets.

1. Associativity. We have isomorphisms of pointed sets
$\underbrace{\operatorname{Eq}(f \circ \mathrm{eq}(g, h), g \circ \mathrm{eq}(g, h))}_{=\operatorname{Eq}(f \circ \mathrm{eq}(g, h), h \circ \mathrm{eq}(g, h))} \cong \operatorname{Eq}(f, g, h) \cong \underbrace{\operatorname{Eq}(f \circ \mathrm{eq}(f, g), h \circ \mathrm{eq}(f, g))}_{=\operatorname{Eq}(g \circ \mathrm{eq}(f, g), h \circ \mathrm{eq}(f, g))}$,
where $\operatorname{Eq}(f, g, h)$ is the limit of the diagram

$$
\left(X, x_{0}\right) \xrightarrow[h]{\stackrel{f}{-g}}\left(Y, y_{0}\right)
$$

in Sets ${ }_{*}$, being explicitly given by

$$
\operatorname{Eq}(f, g, h) \cong\{a \in A \mid f(a)=g(a)=h(a)\}
$$

2. Unitality. We have an isomorphism of pointed sets

$$
\operatorname{Eq}(f, f) \cong X
$$

3. Commutativity. We have an isomorphism of pointed sets

$$
\operatorname{Eq}(f, g) \cong \operatorname{Eq}(g, f)
$$

Proof. Item 1, Associativity: This follows from Item 1 of Proposition 2.1.5.1.2.
Item 2, Unitality: This follows from Item 4 of Proposition 2.1.5.1.2.
Item 3, Commutativity: This follows from Item 5 of Proposition 2.1.5.1.2.

00Ay 3.3 Colimits of Pointed Sets

00AZ
 3.3.1 The Initial Pointed Set

00B0 Definition 3.3.1.1.1. The initial pointed set is the pair $\left((\mathrm{pt}, \star),\left\{\iota_{X}\right\}_{\left(X, x_{0}\right) \in \operatorname{Obj}\left(\operatorname{Sets}_{*}\right)}\right)$ consisting of:

- The Limit. The pointed set (pt, \star).
- The Cone. The collection of morphisms of pointed sets

$$
\left\{\iota_{X}:(\mathrm{pt}, \star) \rightarrow\left(X, x_{0}\right)\right\}_{\left(X, x_{0}\right) \in \operatorname{Obj}(\text { Sets })}
$$

defined by

$$
\iota_{X}(\star) \stackrel{\text { def }}{=} x_{0} .
$$

Proof. We claim that (pt, \star) is the initial object of Sets ${ }_{*}$. Indeed, suppose we have a diagram of the form

$$
(\mathrm{pt}, \star) \quad\left(X, x_{0}\right)
$$

in Sets ${ }_{*}$. Then there exists a unique morphism of pointed sets

$$
\phi:(\mathrm{pt}, \star) \rightarrow\left(X, x_{0}\right)
$$

making the diagram

$$
(\mathrm{pt}, \star) \xrightarrow[\exists!]{\stackrel{\phi}{\mathrm{J}!}}\left(X, x_{0}\right)
$$

commute, namely ι_{X}.

00B1 3.3.2 Coproducts of Families of Pointed Sets

Let $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$ be a family of pointed sets.
$00 B 2$ Definition 3.3.2.1.1. The coproduct of the family $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$, also called their wedge sum, is the pair consisting of:

- The Colimit. The pointed set $\left(\bigvee_{i \in I} X_{i}, p_{0}\right)$ consisting of:
- The Underlying Set. The set $\bigvee_{i \in I} X_{i}$ defined by

$$
\bigvee_{i \in I} X_{i} \stackrel{\text { def }}{=}\left(\coprod_{i \in I} X_{i}\right) / \sim,
$$

where \sim is the equivalence relation on $\coprod_{i \in I} X_{i}$ given by declaring

$$
\left(i, x_{0}^{i}\right) \sim\left(j, x_{0}^{j}\right)
$$

for each $i, j \in I$.

- The Basepoint. The element p_{0} of $\bigvee_{i \in I} X_{i}$ defined by

$$
\begin{aligned}
p_{0} & \stackrel{\text { def }}{=}\left[\left(i, x_{0}^{i}\right)\right] \\
& =\left[\left(j, x_{0}^{j}\right)\right]
\end{aligned}
$$

for any $i, j \in I$.

- The Cocone. The collection

$$
\left\{\operatorname{inj}_{i}:\left(X_{i}, x_{0}^{i}\right) \rightarrow\left(\bigvee_{i \in I} X_{i}, p_{0}\right)\right\}_{i \in I}
$$

of morphism of pointed sets given by

$$
\operatorname{inj}_{i}(x) \stackrel{\text { def }}{=}(i, x)
$$

for each $x \in X_{i}$ and each $i \in I$.
Proof. We claim that $\left(\bigvee_{i \in I} X_{i}, p_{0}\right)$ is the categorical coproduct of $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$ in Sets ${ }_{*}$. Indeed, suppose we have, for each $i \in I$, a diagram of the form

$$
\left(X_{i}, x_{0}^{i}\right) \underset{\operatorname{inj}_{i}}{\iota_{i}}\left(\bigvee_{i \in I} X_{i}, p_{0}\right)
$$

in Sets. . Then there exists a unique morphism of pointed sets

$$
\phi:\left(\bigvee_{i \in I} X_{i}, p_{0}\right) \rightarrow(C, *)
$$

making the diagram

$$
\left(X_{i}, x_{0}^{i}\right) \xrightarrow[\operatorname{inj}_{i}]{\stackrel{\iota_{i}}{\longrightarrow}}\left(\bigvee_{i \in I} X_{i}, p_{0}\right)
$$

commute, being uniquely determined by the condition $\phi \circ \operatorname{inj}_{i}=\iota_{i}$ for each $i \in I$ via

$$
\phi([(i, x)])=\iota_{i}(x)
$$

for each $[(i, x)] \in \bigvee_{i \in I} X_{i}$, where we note that ϕ is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\phi\left(p_{0}\right) & =\iota_{i}\left(\left[\left(i, x_{0}^{i}\right)\right]\right) \\
& =*,
\end{aligned}
$$

as ι_{i} is a morphism of pointed sets.
${ }^{0} 0 \mathrm{~B} 3$ Proposition 3.3.2.1.2. Let $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$ be a family of pointed sets.

1. Functoriality. The assignment $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I} \mapsto\left(\bigvee_{i \in I} X_{i}, p_{0}\right)$ defines a functor

$$
\bigvee_{i \in I}: \operatorname{Fun}\left(I_{\mathrm{disc}}, \text { Sets }_{*}\right) \rightarrow \text { Sets }_{*} .
$$

Proof. Item 1, Functoriality: This follows from ?? of ??.

00B5 3.3.3 Coproducts

Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00B6 Definition 3.3.3.1.1. The coproduct of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$, also called their wedge sum, is the pair consisting of:

- The Colimit. The pointed set ($X \vee Y, p_{0}$) consisting of:
- The Underlying Set. The set $X \vee Y$ defined by

$$
\begin{array}{rlrl}
\left(X \vee Y, p_{0}\right) & \stackrel{\text { def }}{=}\left(X, x_{0}\right) \amalg\left(Y, y_{0}\right) & X \vee Y \longleftarrow Y \\
& \cong\left(X \amalg_{\mathrm{pt}} Y, p_{0}\right) & & \int_{\left[y_{0}\right]} \\
& \cong\left(X \amalg Y / \sim, p_{0}\right), & & X \longleftarrow \mathrm{pt},
\end{array}
$$

where \sim is the equivalence relation on $X \amalg Y$ obtained by declaring $\left(0, x_{0}\right) \sim\left(1, y_{0}\right)$.

- The Basepoint. The element p_{0} of $X \vee Y$ defined by

$$
\begin{aligned}
p_{0} & \stackrel{\text { def }}{=}\left[\left(0, x_{0}\right)\right] \\
& =\left[\left(1, y_{0}\right)\right] .
\end{aligned}
$$

- The Cocone. The morphisms of pointed sets

$$
\begin{aligned}
& \operatorname{inj}_{1}:\left(X, x_{0}\right) \rightarrow\left(X \vee Y, p_{0}\right), \\
& \operatorname{inj}_{2}:\left(Y, y_{0}\right) \rightarrow\left(X \vee Y, p_{0}\right),
\end{aligned}
$$

given by

$$
\begin{aligned}
& \operatorname{inj}_{1}(x) \stackrel{\text { def }}{=}[(0, x)], \\
& \operatorname{inj}_{2}(y) \stackrel{\text { def }}{=}[(1, y)],
\end{aligned}
$$

for each $x \in X$ and each $y \in Y$.
Proof. We claim that $\left(X \vee Y, p_{0}\right)$ is the categorical coproduct of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ in Sets ${ }_{*}$. Indeed, suppose we have a diagram of the form

in Sets. Then there exists a unique morphism of pointed sets

$$
\phi:\left(X \vee Y, p_{0}\right) \rightarrow(C, *)
$$

making the diagram

commute, being uniquely determined by the conditions

$$
\begin{aligned}
\phi \circ \operatorname{inj}_{X} & =\iota_{X}, \\
\phi \circ \operatorname{inj}_{Y} & =\iota_{Y}
\end{aligned}
$$

via

$$
\phi(z)= \begin{cases}\iota_{X}(x) & \text { if } z=[(0, x)] \text { with } x \in X, \\ \iota_{Y}(y) & \text { if } z=[(1, y)] \text { with } y \in Y\end{cases}
$$

for each $z \in X \vee Y$, where we note that ϕ is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\phi\left(p_{0}\right) & =\iota_{X}\left(\left[\left(0, x_{0}\right)\right]\right) \\
& =\iota_{Y}\left(\left[\left(1, y_{0}\right)\right]\right) \\
& =*,
\end{aligned}
$$

as ι_{X} and ι_{Y} are morphisms of pointed sets.
00B7 Proposition 3.3.3.1.2. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00 B 8 1. Functoriality. The assignments

$$
\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right) \mapsto\left(X \vee Y, p_{0}\right)
$$

define functors

$$
\begin{aligned}
& X \vee-: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
& \quad-\vee Y: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
& -_{1} \vee-_{2}: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*} .
\end{aligned}
$$

2. Associativity. We have an isomorphism of pointed sets

$$
(X \vee Y) \vee Z \cong X \vee(Y \vee Z),
$$

natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in$ Sets $_{*}$.
3. Unitality. We have isomorphisms of pointed sets

$$
\begin{aligned}
& (\mathrm{pt}, *) \vee\left(X, x_{0}\right) \cong\left(X, x_{0}\right), \\
& \left(X, x_{0}\right) \vee(\mathrm{pt}, *) \cong\left(X, x_{0}\right),
\end{aligned}
$$

natural in $\left(X, x_{0}\right) \in$ Sets $_{*}$.
4. Commutativity. We have an isomorphism of pointed sets

$$
X \vee Y \cong Y \vee X,
$$

natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right) \in$ Sets $_{*}$.

00BC

00BD
5. Symmetric Monoidality. The triple (Sets $\left.{ }_{*}, \vee, \mathrm{pt}\right)$ is a symmetric monoidal category.
6. The Fold Map. We have a natural transformation

called the fold map, whose component

$$
\nabla_{X}: X \vee X \rightarrow X
$$

at X is given by

$$
\nabla_{X}(p) \stackrel{\text { def }}{=} \begin{cases}x & \text { if } p=[(0, x)], \\ x & \text { if } p=[(1, x)]\end{cases}
$$

for each $p \in X \vee X$.
Proof. Item 1, Functoriality: This follows from ?? of ??.
Item 2, Associativity: Clear.
Item 3, Unitality: Clear.
Item 4, Commutativity: Clear.
Item 5, Symmetric Monoidality: Omitted.
Item 6, The Fold Map: Naturality for the transformation ∇ is the statement that, given a morphism of pointed sets $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$, we have

$$
\begin{aligned}
\nabla_{Y} \circ(f \vee f)=f \circ \nabla_{X}, & f \vee f \mid \\
& X \vee X \xrightarrow{\nabla_{X}} X \\
Y \vee Y \underset{\nabla_{Y}}{ } & \stackrel{\downarrow}{Y} .
\end{aligned}
$$

Indeed, we have

$$
\begin{aligned}
{\left[\nabla_{Y} \circ(f \vee f)\right]([(i, x)]) } & =\nabla_{Y}([(i, f(x))]) \\
& =f(x) \\
& =f\left(\nabla_{X}([(i, x)])\right) \\
& =\left[f \circ \nabla_{X}\right]([(i, x)])
\end{aligned}
$$

for each $[(i, x)] \in X \vee X$, and thus ∇ is indeed a natural transformation.

00BE
 3.3.4 Pushouts

Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$, and $\left(Z, z_{0}\right)$ be pointed sets and let $f:\left(Z, z_{0}\right) \rightarrow$ $\left(X, x_{0}\right)$ and $g:\left(Z, z_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be morphisms of pointed sets.

00BF Definition 3.3.4.1.1. The pushout of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ over $\left(Z, z_{0}\right)$ along (f, g) is the pair consisting of:

- The Colimit. The pointed set $\left(X \coprod_{f, Z, g} Y, p_{0}\right)$, where:
- The set $X \coprod_{f, Z, g} Y$ is the pushout (of unpointed sets) of X and Y over Z with respect to f and g;
- We have $p_{0}=\left[x_{0}\right]=\left[y_{0}\right]$.
- The Cocone. The morphisms of pointed sets

$$
\begin{aligned}
& \operatorname{inj}_{1}:\left(X, x_{0}\right) \rightarrow\left(X \coprod_{Z} Y, p_{0}\right) \\
& \operatorname{inj}_{2}:\left(Y, y_{0}\right) \rightarrow\left(X \coprod_{Z} Y, p_{0}\right)
\end{aligned}
$$

given by

$$
\begin{aligned}
& \operatorname{inj}_{1}(x) \stackrel{\text { def }}{=}[(0, x)] \\
& \operatorname{inj}_{2}(y) \stackrel{\text { def }}{=}[(1, y)]
\end{aligned}
$$

for each $x \in X$ and each $y \in Y$.
Proof. Firstly, we note that indeed $\left[x_{0}\right]=\left[y_{0}\right]$, as we have

$$
\begin{aligned}
& x_{0}=f\left(z_{0}\right) \\
& y_{0}=g\left(z_{0}\right)
\end{aligned}
$$

since f and g are morphisms of pointed sets, with the relation \sim on $X \coprod_{Z} Y$ then identifying $x_{0}=f\left(z_{0}\right) \sim g\left(z_{0}\right)=y_{0}$.
We now claim that $\left(X \coprod_{Z} Y, p_{0}\right)$ is the categorical pushout of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ over $\left(Z, z_{0}\right)$ with respect to (f, g) in Sets ${ }_{*}$. First we need to check that the relevant pushout diagram commutes, i.e. that we have

$$
\begin{array}{r}
\left(X \coprod_{Z} Y, p_{0}\right) \stackrel{\mathrm{inj}_{2}}{\longleftarrow}\left(Y, y_{0}\right) \\
\mathrm{inj}_{1} \circ f=\mathrm{inj}_{2} \circ g, \quad \hat{\mathrm{inj}}_{1} \mathrm{i}_{\mathrm{i}} \\
\left(X, x_{0}\right) \longleftarrow{ }_{f}^{\longleftarrow}\left(Z, z_{0}\right) .
\end{array}
$$

Indeed, given $z \in Z$, we have

$$
\begin{aligned}
{\left[\mathrm{inj}_{1} \circ f\right](z) } & =\operatorname{inj}_{1}(f(z)) \\
& =[(0, f(z))] \\
& =[(1, g(z))] \\
& =\operatorname{inj}_{2}(g(z)) \\
& =\left[\operatorname{inj}_{2} \circ g\right](z),
\end{aligned}
$$

where $[(0, f(z))]=[(1, g(z))]$ by the definition of the relation \sim on $X \amalg Y$ (the coproduct of unpointed sets of X and Y). Next, we prove that $X \coprod_{Z} Y$ satisfies the universal property of the pushout. Suppose we have a diagram of the form

in Sets ${ }_{*}$. Then there exists a unique morphism of pointed sets

$$
\phi:\left(X \coprod_{Z} Y, p_{0}\right) \rightarrow(P, *)
$$

making the diagram

commute, being uniquely determined by the conditions

$$
\begin{aligned}
& \phi \circ \operatorname{inj}_{1}=\iota_{1}, \\
& \phi \circ \operatorname{inj}_{2}=\iota_{2}
\end{aligned}
$$

via

$$
\phi(p)= \begin{cases}\iota_{1}(x) & \text { if } x=[(0, x)] \\ \iota_{2}(y) & \text { if } x=[(1, y)]\end{cases}
$$

for each $p \in X \coprod_{Z} Y$, where the well-definedness of ϕ is proven in the same way as in the proof of Definition 2.2.4.1.1. Finally, we show that ϕ is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\phi\left(p_{0}\right) & =\phi\left(\left[\left(0, x_{0}\right)\right]\right) \\
& =\iota_{1}\left(x_{0}\right) \\
& =*,
\end{aligned}
$$

or alternatively

$$
\begin{aligned}
\phi\left(p_{0}\right) & =\phi\left(\left[\left(1, y_{0}\right)\right]\right) \\
& =\iota_{2}\left(y_{0}\right) \\
& =*,
\end{aligned}
$$

where we use that $\iota_{1}\left(\right.$ resp. $\left.\iota_{2}\right)$ is a morphism of pointed sets.
00BG Proposition 3.3.4.1.2. Let $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right)$, and $\left(A, a_{0}\right)$ be pointed sets.

1. Functoriality. The assignment $(X, Y, Z, f, g) \mapsto X \coprod_{f, Z, g} Y$ defines a functor

$$
-{ }_{1} \coprod_{-3}-_{1}: \operatorname{Fun}(\mathcal{P}, \text { Sets }) \rightarrow \text { Sets }_{*},
$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-_{1} \coprod_{-3}-_{1}$ is given by sending a morphism

in $\operatorname{Fun}\left(\mathcal{P}\right.$, Sets $\left._{*}\right)$ to the morphism of pointed sets

$$
\xi:\left(X \coprod_{Z} Y, p_{0}\right) \xrightarrow{\exists!}\left(X^{\prime} \coprod_{Z^{\prime}} Y^{\prime}, p_{0}^{\prime}\right)
$$

given by

$$
\xi(p) \stackrel{\text { def }}{=} \begin{cases}\phi(x) & \text { if } p=[(0, x)] \\ \psi(y) & \text { if } p=[(1, y)]\end{cases}
$$

for each $p \in X \coprod_{Z} Y$, which is the unique morphism of pointed
sets making the diagram

commute.
3. Unitality. We have isomorphisms of sets

$X \amalg_{X} A \cong A$,
$A \amalg_{X} X \cong A$,

00BL
4. Commutativity. We have an isomorphism of sets

5. Interaction With Coproducts. We have

00BN 6. Symmetric Monoidality. The triple $\left(\operatorname{Sets}_{*}, \amalg_{X},\left(X, x_{0}\right)\right)$ is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pushout diagram.
Item 2, Associativity: This follows from Item 2 of Proposition 2.2.4.1.4. Item 3, Unitality: This follows from Item 3 of Proposition 2.2.4.1.4.
Item 4, Commutativity: This follows from Item 4 of Proposition 2.2.4.1.4.
Item 5, Interaction With Coproducts: Clear.
Item 6, Symmetric Monoidality: Omitted.
00BP

3.3.5 Coequalisers

Let $f, g:\left(X, x_{0}\right) \rightrightarrows\left(Y, y_{0}\right)$ be morphisms of pointed sets.
00BQ Definition 3.3.5.1.1. The coequaliser of (f, g) is the pointed set $\left(\operatorname{CoEq}(f, g),\left[y_{0}\right]\right)$.

Proof. We claim that $\left(\operatorname{CoEq}(f, g),\left[y_{0}\right]\right)$ is the categorical coequaliser of f and g in Sets. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have

$$
\operatorname{coeq}(f, g) \circ f=\operatorname{coeq}(f, g) \circ g .
$$

Indeed, we have

$$
\begin{aligned}
{[\operatorname{coeq}(f, g) \circ f](x) } & \stackrel{\text { def }}{=}[\operatorname{coeq}(f, g)](f(x)) \\
& \stackrel{\text { def }}{=}[f(x)] \\
& =[g(x)] \\
& \stackrel{\text { def }}{\text { def }}[\operatorname{coeq}(f, g)](g(x)) \\
& \xlongequal{\text { def }}[\operatorname{coeq}(f, g) \circ g](x)
\end{aligned}
$$

for each $x \in X$. Next, we prove that $\operatorname{CoEq}(f, g)$ satisfies the universal
property of the coequaliser. Suppose we have a diagram of the form

$$
\left(X, x_{0}\right) \underset{g}{\stackrel{f}{\rightrightarrows}}\left(Y, y_{0}\right) \xrightarrow[c]{\stackrel{\operatorname{coeq}(f, g)}{\longrightarrow}}\left(\operatorname{CoEq}(f, g),\left[y_{0}\right]\right)
$$

in Sets. Then, since $c(f(a))=c(g(a))$ for each $a \in A$, it follows from Items 4 and 5 of Proposition 7.5.2.1.3 that there exists a unique map $\phi: \operatorname{CoEq}(f, g) \xrightarrow{\exists!} C$ making the diagram

$$
\left(X, x_{0}\right) \underset{g}{\stackrel{f}{\rightrightarrows}}\left(Y, y_{0}\right) \xrightarrow{\operatorname{coeq}(f, g)}\left(\mathrm{CoEq}(f, g),\left[y_{0}\right]\right)
$$

commute, where we note that ϕ is indeed a morphism of pointed sets since

$$
\begin{aligned}
\phi\left(\left[y_{0}\right]\right) & =[\phi \circ \operatorname{coeq}(f, g)]\left(\left[y_{0}\right]\right) \\
& =c\left(\left[y_{0}\right]\right) \\
& =*,
\end{aligned}
$$

where we have used that c is a morphism of pointed sets.
00BR Proposition 3.3.5.1.2. Let (X, x_{0}) and (Y, y_{0}) be pointed sets and let $f, g, h:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be morphisms of pointed sets.

1. Associativity. We have isomorphisms of pointed sets

$$
\underbrace{\operatorname{CoEq}(\operatorname{coeq}(f, g) \circ f, \operatorname{coeq}(f, g) \circ h)}_{=\operatorname{CoEq} q(\operatorname{coeq}(f, g) \circ g, \operatorname{coeq}(f, g) \circ h)} \cong \operatorname{CoEq}(f, g, h) \cong \underbrace{\operatorname{CoEq}(\operatorname{coeq}(g, h) \circ f, \operatorname{coeq}(g, h) \circ g)}_{=\operatorname{CoEq}(\operatorname{cooeq}(g, h) \circ f, \operatorname{coeq}(g, h) \circ h)},
$$

where $\operatorname{CoEq}(f, g, h)$ is the colimit of the diagram

$$
\left(X, x_{0}\right) \xrightarrow[h]{\stackrel{f}{-g}}\left(Y, y_{0}\right)
$$

in Sets*.
2. Unitality. We have an isomorphism of pointed sets

$$
\operatorname{CoEq}(f, f) \cong B .
$$

00BU
3. Commutativity. We have an isomorphism of pointed sets

$$
\operatorname{CoEq}(f, g) \cong \operatorname{CoEq}(g, f)
$$

Proof. Item 1, Associativity: This follows from Item 1 of Proposition 2.2.5.1.4.
Item 2, Unitality: This follows from Item 4 of Proposition 2.2.5.1.4.
Item 3, Commutativity: This follows from Item 5 of Proposition 2.2.5.1.4.

00Bv 3.4 Constructions With Pointed Sets

00BW 3.4.1 Free Pointed Sets
Let X be a set.
00BX Definition 3.4.1.1.1. The free pointed set on X is the pointed set X^{+}consisting of:

- The Underlying Set. The set X^{+}defined by ${ }^{11}$

$$
\begin{aligned}
X^{+} & \stackrel{\text { def }}{=} X \amalg \mathrm{pt} \\
& \stackrel{\text { def }}{=} X \amalg\{\star\} .
\end{aligned}
$$

- The Basepoint. The element \star of X^{+}.

00BY Proposition 3.4.1.1.2. Let X be a set.

1. Functoriality. The assignment $X \mapsto X^{+}$defines a functor

$$
(-)^{+}: \text {Sets } \rightarrow \text { Sets }_{*},
$$

where

- Action on Objects. For each $X \in \operatorname{Obj}($ Sets $)$, we have

$$
\left[(-)^{+}\right](X) \stackrel{\text { def }}{=} X^{+},
$$

where X^{+}is the pointed set of Definition 3.4.1.1.1;

- Action on Morphisms. For each morphism $f: X \rightarrow Y$ of Sets, the image

$$
f^{+}: X^{+} \rightarrow Y^{+}
$$

of f by $(-)^{+}$is the map of pointed sets defined by

$$
f^{+}(x) \stackrel{\text { def }}{=} \begin{cases}f(x) & \text { if } x \in X \\ \star_{Y} & \text { if } x=\star_{X}\end{cases}
$$

[^29]2. Adjointness. We have an adjunction
witnessed by a bijection of sets
$$
\operatorname{Sets}_{*}\left(\left(X^{+}, \star_{X}\right),\left(Y, y_{0}\right)\right) \cong \operatorname{Sets}(X, Y)
$$
natural in $X \in \operatorname{Obj}($ Sets $)$ and $\left(Y, y_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
3. Symmetric Strong Monoidality With Respect to Wedge Sums. The free pointed set functor of Item 1 has a symmetric strong monoidal structure
$$
\left((-)^{+},(-)^{+,} \amalg,(-)_{\mathbb{I}}^{+, \amalg}\right):(\text { Sets, } \amalg, \emptyset) \rightarrow\left(\text { Sets }_{*}, \vee, \mathrm{pt}\right),
$$
being equipped with isomorphisms of pointed sets
\[

$$
\begin{gathered}
(-)_{X, Y}^{+, \amalg}: X^{+} \vee Y^{+} \stackrel{\cong}{\leftrightarrows}(X \amalg Y)^{+} \\
(-)_{\mathbb{1}}^{+, \amalg}: \mathrm{pt} \stackrel{\cong}{\rightrightarrows} \emptyset^{+},
\end{gathered}
$$
\]

natural in $X, Y \in \operatorname{Obj}($ Sets $)$.
4. Symmetric Strong Monoidality With Respect to Smash Products. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

$$
\left((-)^{+},(-)^{+, \times},(-)_{\mathbb{1}}^{+, \times}\right):(\text {Sets }, \times, \mathrm{pt}) \rightarrow\left(\operatorname{Sets}_{*}, \wedge, S^{0}\right)
$$

being equipped with isomorphisms of pointed sets

$$
\begin{gathered}
(-)_{X, Y}^{+, \times,}: X^{+} \wedge Y^{+} \xlongequal{\cong}(X \times Y)^{+}, \\
(-)_{\mathbb{1}}^{+, \times}: S^{0} \xlongequal{\cong} \mathrm{pt}^{+},
\end{gathered}
$$

natural in $X, Y \in \operatorname{Obj}($ Sets $)$.
Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: We claim there's an adjunction $(-)^{+} \dashv$ 忘, witnessed by a bijection of sets

$$
\operatorname{Sets}_{*}\left(\left(X^{+}, \star_{X}\right),\left(Y, y_{0}\right)\right) \cong \operatorname{Sets}(X, Y)
$$

natural in $X \in \operatorname{Obj}($ Sets $)$ and $\left(Y, y_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.

- Map I. We define a map

$$
\Phi_{X, Y}: \operatorname{Sets}_{*}\left(\left(X^{+}, \star_{X}\right),\left(Y, y_{0}\right)\right) \rightarrow \operatorname{Sets}(X, Y)
$$

by sending a pointed function

$$
\xi:\left(X^{+}, \star_{X}\right) \rightarrow\left(Y, y_{0}\right)
$$

to the function

$$
\xi^{\dagger}: X \rightarrow Y
$$

given by

$$
\xi^{\dagger}(x) \stackrel{\text { def }}{=} \xi(x)
$$

for each $x \in X$.

- Map II. We define a map

$$
\Psi_{X, Y}: \operatorname{Sets}(X, Y) \rightarrow \operatorname{Sets}_{*}\left(\left(X^{+}, \star_{X}\right),\left(Y, y_{0}\right)\right)
$$

given by sending a function $\xi: X \rightarrow Y$ to the pointed function

$$
\xi^{\dagger}:\left(X^{+}, \star X\right) \rightarrow\left(Y, y_{0}\right)
$$

defined by

$$
\xi^{\dagger}(x) \stackrel{\text { def }}{=} \begin{cases}\xi(x) & \text { if } x \in X, \\ y_{0} & \text { if } x=\star_{X}\end{cases}
$$

for each $x \in X^{+}$.

- Invertibility I. We claim that

$$
\Psi_{X, Y} \circ \Phi_{X, Y}=\operatorname{id}_{\mathrm{Sets}_{*}\left(\left(X^{+}, \star x\right),\left(Y, y_{0}\right)\right)},
$$

which is clear.

- Invertibility II. We claim that

$$
\Phi_{X, Y} \circ \Psi_{X, Y}=\operatorname{id}_{\operatorname{sets}(X, Y)},
$$

which is clear.

- Naturality for Φ, Part I. We need to show that, given a pointed
when there are multiple free pointed sets involved in the current discussion.
function $g:\left(Y, y_{0}\right) \rightarrow\left(Y^{\prime}, y_{0}^{\prime}\right)$, the diagram

commutes. Indeed, given a pointed function

$$
\xi^{\dagger}:\left(X^{+}, \star_{X}\right) \rightarrow\left(Y, y_{0}\right)
$$

we have

$$
\begin{aligned}
{\left[\Phi_{X, Y^{\prime}} \circ g_{*}\right](\xi) } & =\Phi_{X, Y^{\prime}}\left(g_{*}(\xi)\right) \\
& =\Phi_{X, Y^{\prime}}(g \circ \xi) \\
& =g \circ \xi \\
& =g \circ \Phi_{X, Y^{\prime}}(\xi) \\
& =g_{*}\left(\Phi_{X, Y^{\prime}}(\xi)\right) \\
& =\left[g_{*} \circ \Phi_{X, Y^{\prime}}\right](\xi)
\end{aligned}
$$

- Naturality for Φ, Part II. We need to show that, given a pointed function $f:\left(X, x_{0}\right) \rightarrow\left(X^{\prime}, x_{0}^{\prime}\right)$, the diagram

$$
\begin{gathered}
\operatorname{Sets}_{*}\left(\left(X^{\prime},+, \star_{X}\right),\left(Y, y_{0}\right)\right) \xrightarrow{\Phi_{X^{\prime}, Y}} \operatorname{Sets}\left(X^{\prime}, Y\right) \\
f^{*} \downarrow \\
\operatorname{Sets}_{*}\left(\left(X^{+}, \star_{X}\right),\left(Y, y_{0}\right)\right) \xrightarrow[\Phi_{X, Y}]{ } \operatorname{Sets}(X, Y)
\end{gathered}
$$

commutes. Indeed, given a function

$$
\xi: X^{\prime} \rightarrow Y
$$

we have

$$
\begin{aligned}
{\left[\Phi_{X, Y} \circ f^{*}\right](\xi) } & =\Phi_{X, Y}\left(f^{*}(\xi)\right) \\
& =\Phi_{X, Y}(\xi \circ f) \\
& =\xi \circ f \\
& =\Phi_{X^{\prime}, Y}(\xi) \circ f \\
& =f^{*}\left(\Phi_{X^{\prime}, Y}(\xi)\right) \\
& =f^{*}\left(\Phi_{X^{\prime}, Y}(\xi)\right) \\
& =\left[f^{*} \circ \Phi_{X^{\prime}, Y}\right](\xi) .
\end{aligned}
$$

- Naturality for Ψ. Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Item 2 of Proposition 8.8.6.1.2 that Ψ is also natural in each argument.

Item 3, Symmetric Strong Monoidality With Respect to Wedge Sums: The isomorphism

$$
\phi: X^{+} \vee Y^{+} \xlongequal{\cong}(X \amalg Y)^{+}
$$

is given by

$$
\phi(z)= \begin{cases}x & \text { if } z=[(0, x)] \text { with } x \in X, \\ y & \text { if } z=[(1, y)] \text { with } y \in Y, \\ \star_{X \amalg Y} & \text { if } z=\left[\left(0, \star_{X}\right)\right], \\ \star_{X \amalg Y} & \text { if } z=\left[\left(1, \star_{Y}\right)\right]\end{cases}
$$

for each $z \in X^{+} \vee Y^{+}$, with inverse

$$
\phi^{-1}:(X \amalg Y)^{+} \xrightarrow{\cong} X^{+} \vee Y^{+}
$$

given by

$$
\phi^{-1}(z) \stackrel{\text { def }}{=} \begin{cases}{[(0, x)]} & \text { if } z=[(0, x)], \\ {[(0, y)]} & \text { if } z=[(1, y)], \\ p_{0} & \text { if } z=\star_{X \amalg Y}\end{cases}
$$

for each $z \in(X \amalg Y)^{+}$.
Meanwhile, the isomorphism pt $\cong \emptyset^{+}$is given by sending \star_{X} to \star_{\emptyset}.
That these isomorphisms satisfy the coherence conditions making the functor $(-)^{+}$symmetric strong monoidal can be directly checked element by element.
Item 4, Symmetric Strong Monoidality With Respect to Smash Products: The isomorphism

$$
\phi: X^{+} \wedge Y^{+} \cong(X \times Y)^{+}
$$

is given by

$$
\phi(x \wedge y)= \begin{cases}(x, y) & \text { if } x \neq \star_{X} \text { and } y \neq \star_{Y} \\ \star_{X \times Y} & \text { otherwise }\end{cases}
$$

for each $x \wedge y \in X^{+} \wedge Y^{+}$, with inverse

$$
\phi^{-1}:(X \times Y)^{+} \xlongequal{\cong} X^{+} \wedge Y^{+}
$$

given by

$$
\phi^{-1}(z) \stackrel{\text { def }}{=} \begin{cases}x \wedge y & \text { if } z=(x, y) \text { with }(x, y) \in X \times Y, \\ \star_{X} \wedge \star_{Y} & \text { if } z=\star_{X \times Y},\end{cases}
$$

for each $z \in(X \amalg Y)^{+}$.
Meanwhile, the isomorphism $S^{0} \cong \mathrm{pt}^{+}$is given by sending \star to $1 \in S^{0}=$ $\{0,1\}$ and \star_{pt} to $0 \in S^{0}$.
That these isomorphisms satisfy the coherence conditions making the functor $(-)^{+}$symmetric strong monoidal can be directly checked element by element.

Appendices

3.A Other Chapters

Sets

1. Sets
2. Constructions With Sets
3. Pointed Sets
4. Tensor Products of Pointed Sets

Relations

5. Relations
6. Constructions With Relations
7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 4

Tensor Products of Pointed Sets

00C3 In this chapter we introduce, construct, and study tensor products of pointed sets. The most well-known among these is the smash product of pointed sets

$$
\wedge: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

introduced in Section 4.5.1, defined via a universal property as inducing a bijection between the following data:

- Pointed maps $f: X \wedge Y \rightarrow Z$.
- Maps of sets $f: X \times Y \rightarrow Z$ satisfying

$$
\begin{aligned}
& f\left(x_{0}, y\right)=z_{0} \\
& f\left(x, y_{0}\right)=z_{0}
\end{aligned}
$$

for each $x \in X$ and each $y \in Y$.
As it turns out, however, dropping either of the bilinearity conditions

$$
\begin{aligned}
& f\left(x_{0}, y\right)=z_{0} \\
& f\left(x, y_{0}\right)=z_{0}
\end{aligned}
$$

while retaining the other leads to two other tensor products of pointed sets,

$$
\begin{aligned}
& \triangleleft: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
& \triangleright: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*},
\end{aligned}
$$

called the left and right tensor products of pointed sets. In contrast to \wedge, which turns out to endow Sets ${ }_{*}$ with a monoidal category structure
(Proposition 4.5.9.1.1), these do not admit invertible associators and unitors, but do endow Sets* with the structure of a skew monoidal category, however (Propositions 4.3.8.1.1 and 4.4.8.1.1).
Finally, in addition to the tensor products $\triangleleft, \triangleright$, and \wedge, we also have a "tensor product" of the form

$$
\odot: \text { Sets } \times \text { Sets }_{*} \rightarrow \text { Sets }_{*},
$$

called the tensor of sets with pointed sets. All in all, these tensor products assemble into a family of functors of the form

$$
\begin{aligned}
& \left.\otimes_{k, \ell}: \operatorname{Mon}_{\mathbb{E}_{k}} \text { (Sets }\right) \times \operatorname{Mon}_{\mathbb{E}_{\ell}}(\text { Sets }) \rightarrow \operatorname{Mon}_{\mathbb{E}_{k+\ell}}(\text { Sets }), \\
& \left.\triangleleft_{i, k}: \operatorname{Mon}_{\mathbb{E}_{k}} \text { Sets }\right) \times \operatorname{Mon}_{\mathbb{E}_{k}}\left(\text { Sets } \rightarrow \operatorname{Mon}_{\mathbb{E}_{k}} \text { (Sets },\right. \\
& \triangleright_{i, k}: \operatorname{Mon}_{\mathbb{E}_{k}}(\text { Sets }) \times \operatorname{Mon}_{\mathbb{E}_{k}}(\text { Sets }) \rightarrow \operatorname{Mon}_{\mathbb{E}_{k}}(\text { Sets }),
\end{aligned}
$$

where $k, \ell, i \in \mathbb{N}$ with $i \leq k-1$. Together with the Cartesian product \times of Sets, the tensor products studied in this chapter form the cases:

- $(k, \ell)=(-1,-1)$ for the Cartesian product of Sets;
- $(k, \ell)=(0,-1)$ and $(-1,0)$ for the tensor of sets with pointed sets of Definition 4.2.1.1.1;
- $(i, k)=(-1,0)$ for the left and right tensor products of pointed sets of Sections 4.3 and 4.4;
- $(k, \ell)=(-1,-1)$ for the smash product of pointed sets of Section 4.5.

In this chapter, we will carefully define and study bilinearity for pointed sets, as well as all the tensor products described above. Then, in ??, we will extend these to tensor products involving also monoids and commutative monoids, which will end up covering all cases up to $k, \ell \leq 2$, and hence all cases since \mathbb{E}_{k}-monoids on Sets are the same as \mathbb{E}_{2}-monoids on Sets when $k \geq 2$.

Contents

4.1 Bilinear Morphisms of Pointed Sets 137
4.1.1 Left Bilinear Morphisms of Pointed Sets 137
4.1.2 Right Bilinear Morphisms of Pointed Sets 138
4.1.3 Bilinear Morphisms of Pointed Sets 138
4.2 Tensors and Cotensors of Pointed Sets by Sets140
4.2.1 Tensors of Pointed Sets by Sets 140
4.2.2 Cotensors of Pointed Sets by Sets 147
4.3 The Left Tensor Product of Pointed Sets 154
4.3.1 Foundations 154
4.3.2 The Left Internal Hom of Pointed Sets 157
4.3.3 The Left Skew Unit 159
4.3.4 The Left Skew Associator 160
4.3.5 The Left Skew Left Unitor 162
4.3.6 The Left Skew Right Unitor 164
4.3.7 The Diagonal 166
4.3.8 The Left Skew Monoidal Structure on Pointed
Sets Associated to \triangleleft 167
4.3.9 Monoids With Respect to the Left Tensor 170Product of Pointed Sets
4.4 The Right Tensor Product of Pointed Sets 174
4.4.1 Foundations 174
4.4.2 The Right Internal Hom of Pointed Sets 178
4.4.3 The Right Skew Unit 180
4.4.4 The Right Skew Associator 180
4.4.5 The Right Skew Left Unitor 183
4.4.6 The Right Skew Right Unitor 184
4.4.7 The Diagonal 187
4.4.8 The Right Skew Monoidal Structure on PointedSets Associated to \triangleright188
4.4.9 Monoids With Respect to the Right Tensor 192Product of Pointed Sets.
4.5 The Smash Product of Pointed Sets 195
4.5.1 Foundations 195
4.5.2 The Internal Hom of Pointed Sets 204
4.5.3 The Monoidal Unit. 206
4.5.4 The Associator. 207
4.5.5 The Left Unitor 208
4.5.6 The Right Unitor 211
4.5.7 The Symmetry 213
4.5.8 The Diagonal 215
4.5.9 The Monoidal Structure on Pointed Sets
Associated to \wedge 218
4.5.10 Universal Properties of the Smash Product 222of Pointed Sets I
4.5.11 Universal Properties of the Smash Product 222of Pointed Sets II
4.5.12 Monoids With Respect to the Smash Prod- 223uct of Pointed Sets
4.5.13 Comonoids With Respect to the Smash Prod-uct of Pointed Sets223
4.6 Miscellany 223
4.6.1 The Smash Product of a Family of Pointed
Sets223
4.A Other Chapters 224

$00 c 4$ 4.1 Bilinear Morphisms of Pointed Sets

$00 C 5$ 4.1.1 Left Bilinear Morphisms of Pointed Sets

Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$, and $\left(Z, z_{0}\right)$ be pointed sets.
00 C 6 Definition 4.1 .1 .1 .1 . A left bilinear morphism of pointed sets from $\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ to $\left(Z, z_{0}\right)$ is a map of sets

$$
f: X \times Y \rightarrow Z
$$

satisfying the following condition: ${ }^{1,2}$
(\star) Left Unital Bilinearity. The diagram

commutes, i.e. for each $y \in Y$, we have

$$
f\left(x_{0}, y\right)=z_{0}
$$

00 C 7 Definition 4.1.1.1.2. The set of left bilinear morphisms of pointed sets from $\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ to $\left(Z, z_{0}\right)$ is the set $\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes, \mathrm{L}}(X \times Y, Z)$ defined by
$\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes, \mathrm{L}}(X \times Y, Z) \stackrel{\text { def }}{=}\left\{f \in \operatorname{Hom}_{\text {Sets }}(X \times Y, Z) \mid f\right.$ is left bilinear $\}$.

[^30]$$
f\left(x_{0}, y\right)=z_{0}
$$

4.1.2 Right Bilinear Morphisms of Pointed Sets

Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$, and $\left(Z, z_{0}\right)$ be pointed sets.
00C9 Definition 4.1.2.1.1. A right bilinear morphism of pointed sets from $\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ to $\left(Z, z_{0}\right)$ is a map of sets

$$
f: X \times Y \rightarrow Z
$$

satisfying the following condition: ${ }^{3,4}$
(*) Right Unital Bilinearity. The diagram

commutes, i.e. for each $x \in X$, we have

$$
f\left(x, y_{0}\right)=z_{0}
$$

00CA Definition 4.1.2.1.2. The set of right bilinear morphisms of pointed sets from $\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ to $\left(Z, z_{0}\right)$ is the set $\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes, \mathrm{R}}(X \times Y, Z)$ defined by

$$
\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes, \mathrm{R}}(X \times Y, Z) \stackrel{\text { def }}{=}\left\{f \in \operatorname{Hom}_{\text {Sets }}(X \times Y, Z) \mid f \text { is right bilinear }\right\}
$$

00CB 4.1.3 Bilinear Morphisms of Pointed Sets
Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$, and $\left(Z, z_{0}\right)$ be pointed sets.
00CC Definition 4.1.3.1.1. A bilinear morphism of pointed sets from $\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ to $\left(Z, z_{0}\right)$ is a map of sets

$$
f: X \times Y \rightarrow Z
$$

that is both left bilinear and right bilinear.

for each $y \in Y$.

${ }^{3}$ Slogan: The map f is right bilinear if it preserves basepoints in its second argument.
${ }^{4}$ Succinctly, f is bilinear if we have

$$
f\left(x, y_{0}\right)=z_{0}
$$

00CD Remark 4.1.3.1.2. In detail, a bilinear morphism of pointed sets from $\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ to $\left(Z, z_{0}\right)$ is a map of sets

$$
f:\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow\left(Z, z_{0}\right)
$$

satisfying the following conditions: ${ }^{5,6}$

1. Left Unital Bilinearity. The diagram

commutes, i.e. for each $y \in Y$, we have

$$
f\left(x_{0}, y\right)=z_{0}
$$

2. Right Unital Bilinearity. The diagram

commutes, i.e. for each $x \in X$, we have

$$
f\left(x, y_{0}\right)=z_{0}
$$

00CE Definition 4.1.3.1.3. The set of bilinear morphisms of pointed sets from $\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ to $\left(Z, z_{0}\right)$ is the set $\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes}(X \times Y, Z)$ defined by
$\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes}(X \times Y, Z) \stackrel{\text { def }}{=}\left\{f \in \operatorname{Hom}_{\text {Sets }}(X \times Y, Z) \mid f\right.$ is bilinear $\}$.
for each $x \in X$.
${ }^{5}$ Slogan: The map f is bilinear if it preserves basepoints in each argument.
${ }^{6}$ Succinctly, f is bilinear if we have

$$
\begin{aligned}
& f\left(x_{0}, y\right)=z_{0}, \\
& f\left(x, y_{0}\right)=z_{0}
\end{aligned}
$$

4.2 Tensors and Cotensors of Pointed Sets by Sets

 00CF
00CG 4.2.1 Tensors of Pointed Sets by Sets

Let $\left(X, x_{0}\right)$ be a pointed set and let A be a set.
00 CH Definition 4.2 .1 .1 .1 . The tensor of $\left(X, x_{0}\right)$ by A^{7} is the pointed set ${ }^{8}$ $A \odot\left(X, x_{0}\right)$ satisfying the following universal property:
(UP) We have a bijection

$$
\operatorname{Sets}_{*}(A \odot X, K) \cong \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(X, K)\right)
$$ natural in $\left(K, k_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.

00CJ Remark 4.2.1.1.2. The universal property in Definition 4.2.1.1.1 is equivalent to the following one:
(UP) We have a bijection

$$
\operatorname{Sets}_{*}(A \odot X, K) \cong \operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times X, K)
$$

natural in $\left(K, k_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, where $\operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times X, K)$ is the set defined by

$$
\operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times X, K) \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
f \in \operatorname{Sets}(A \times X, K) & \begin{array}{l}
\text { for each } a \in A, \text { we } \\
\text { have } f\left(a, x_{0}\right)=k_{0}
\end{array}
\end{array}\right\}
$$

Proof. We claim we have a bijection

$$
\operatorname{Sets}\left(A, \operatorname{Sets}_{*}(X, K)\right) \cong \operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times X, K)
$$

natural in $\left(K, k_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$. Indeed, this bijection is a restriction of the bijection

$$
\operatorname{Sets}(A, \operatorname{Sets}(X, K)) \cong \operatorname{Sets}(A \times X, K)
$$

of Item 2 of Proposition 2.1.3.1.2:

- A map

$$
\begin{aligned}
\xi: A & \rightarrow \operatorname{Sets}_{*}(X, K), \\
a & \mapsto\left(\xi_{a}: X \rightarrow K\right),
\end{aligned}
$$

for each $x \in X$ and each $y \in Y$.
${ }^{7}$ Further Terminology: Also called the copower of $\left(X, x_{0}\right)$ by A.
${ }^{8}$ Further Notation: Often written $A \odot X$ for simplicity.
in $\operatorname{Sets}\left(A, \operatorname{Sets}_{*}(X, K)\right)$ gets sent to the map

$$
\xi^{\dagger}: A \times X \rightarrow K
$$

defined by

$$
\xi^{\dagger}(a, x) \stackrel{\text { def }}{=} \xi_{a}(x)
$$

for each $(a, x) \in A \times X$, which indeed lies in $\operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times X, K)$, as we have

$$
\begin{aligned}
\xi^{\dagger}\left(a, x_{0}\right) & \stackrel{\text { def }}{=} \xi_{a}\left(x_{0}\right) \\
& \stackrel{\text { def }}{=} k_{0}
\end{aligned}
$$

for each $a \in A$, where we have used that $\xi_{a} \in \operatorname{Sets}_{*}(X, K)$ is a morphism of pointed sets.

- Conversely, a map

$$
\xi: A \times X \rightarrow K
$$

in $\operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times X, K)$ gets sent to the map

$$
\begin{aligned}
\xi^{\dagger}: A & \longrightarrow \operatorname{Sets}_{*}(X, K) \\
a & \mapsto\left(\xi_{a}^{\dagger}: X \rightarrow K\right)
\end{aligned}
$$

where

$$
\xi_{a}^{\dagger}: X \rightarrow K
$$

is the map defined by

$$
\xi_{a}^{\dagger}(x) \stackrel{\text { def }}{=} \xi(a, x)
$$

for each $x \in X$, and indeed lies in $\operatorname{Sets}_{*}(X, K)$, as we have

$$
\begin{aligned}
\xi_{a}^{\dagger}\left(x_{0}\right) & \stackrel{\text { def }}{=} \xi\left(a, x_{0}\right) \\
& \stackrel{\text { def }}{=} k_{0} .
\end{aligned}
$$

This finishes the proof.
00CK Construction 4.2.1.1.3. Concretely, the tensor of $\left(X, x_{0}\right)$ by A is the pointed set $A \odot\left(X, x_{0}\right)$ consisting of:

- The Underlying Set. The set $A \odot X$ given by

$$
A \odot X \cong \bigvee_{a \in A}\left(X, x_{0}\right)
$$

where $\bigvee_{a \in A}\left(X, x_{0}\right)$ is the wedge product of the A-indexed family $\left(\left(X, x_{0}\right)\right)_{a \in A}$ of Definition 3.3.2.1.1.

- The Basepoint. The point $\left[\left(a, x_{0}\right)\right]=\left[\left(a^{\prime}, x_{0}\right)\right]$ of $\bigvee_{a \in A}\left(X, x_{0}\right)$.

Proof. (Proven below in a bit.)
$00 C L$ Notation 4.2.1.1.4. We write $a \odot x$ for the element $[(a, x)]$ of

$$
\begin{aligned}
A \odot X & \cong \bigvee_{a \in A}\left(X, x_{0}\right) \\
& \stackrel{\text { def }}{=}\left(\coprod_{i \in I} X_{i}\right) / \sim .
\end{aligned}
$$

00CM Remark 4.2.1.1.5. Taking the tensor of any element of A with the basepoint x_{0} of X leads to the same element in $A \odot X$, i.e. we have

$$
a \odot x_{0}=a^{\prime} \odot x_{0}
$$

for each $a, a^{\prime} \in A$. This is due to the equivalence relation \sim on

$$
\bigvee_{a \in A}\left(X, x_{0}\right) \stackrel{\text { def }}{=} \coprod_{a \in A} X / \sim
$$

identifying (a, x_{0}) with (a^{\prime}, x_{0}), so that the equivalence class $a \odot x_{0}$ is independent from the choice of $a \in A$.

Proof. We claim we have a bijection

$$
\operatorname{Sets}_{*}(A \odot X, K) \cong \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(X, K)\right)
$$

natural in $\left(K, k_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.

- Map I. We define a map

$$
\Phi_{K}: \operatorname{Sets}_{*}(A \odot X, K) \rightarrow \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(X, K)\right)
$$

by sending a morphism of pointed sets

$$
\xi:\left(A \odot X, a \odot x_{0}\right) \rightarrow\left(K, k_{0}\right)
$$

to the map of sets

$$
\begin{aligned}
\xi^{\dagger}: A & \rightarrow \operatorname{Sets}_{*}(X, K), \\
a & \mapsto\left(\xi_{a}: X \rightarrow K\right),
\end{aligned}
$$

where

$$
\xi_{a}:\left(X, x_{0}\right) \rightarrow\left(K, k_{0}\right)
$$

is the morphism of pointed sets defined by

$$
\xi_{a}(x) \xlongequal{\text { def }} \xi(a \odot x)
$$

for each $x \in X$. Note that we have

$$
\begin{aligned}
\xi_{a}\left(x_{0}\right) & \stackrel{\text { def }}{=} \xi\left(a \odot x_{0}\right) \\
& =k_{0}
\end{aligned}
$$

so that ξ_{a} is indeed a morphism of pointed sets, where we have used that ξ is a morphism of pointed sets.

- Map II. We define a map

$$
\Psi_{K}: \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(X, K)\right) \rightarrow \operatorname{Sets}_{*}(A \odot X, K)
$$

given by sending a map

$$
\begin{aligned}
\xi: A & \longrightarrow \operatorname{Sets}_{*}(X, K) \\
a & \mapsto\left(\xi_{a}: X \rightarrow K\right)
\end{aligned}
$$

to the morphism of pointed sets

$$
\xi^{\dagger}:\left(A \odot X, a \odot x_{0}\right) \rightarrow\left(K, k_{0}\right)
$$

defined by

$$
\xi^{\dagger}(a \odot x) \stackrel{\text { def }}{=} \xi_{a}(x)
$$

for each $a \odot x \in A \odot X$. Note that ξ^{\dagger} is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\xi^{\dagger}\left(a \odot x_{0}\right) & \stackrel{\text { def }}{=} \xi_{a}\left(x_{0}\right) \\
& =k_{0},
\end{aligned}
$$

where we have used that $\xi(a) \in \operatorname{Sets}_{*}(X, K)$ is a morphism of pointed sets.

- Invertibility I. We claim that

$$
\Psi_{K} \circ \Phi_{K}=\operatorname{id}_{\operatorname{Sets}_{*}(A \odot X, K)}
$$

Indeed, given a morphism of pointed sets

$$
\xi:\left(A \odot X, a \odot x_{0}\right) \rightarrow\left(K, k_{0}\right)
$$

we have

$$
\begin{aligned}
{\left[\Psi_{K} \circ \Phi_{K}\right](\xi) } & =\Psi_{K}\left(\Phi_{K}(\xi)\right) \\
& =\Psi_{K}(\llbracket a \mapsto \llbracket x \mapsto \xi(a \odot x) \rrbracket \rrbracket) \\
& =\Psi_{K}\left(\llbracket a^{\prime} \mapsto \llbracket x^{\prime} \mapsto \xi\left(a^{\prime} \odot x^{\prime}\right) \rrbracket \rrbracket\right) \\
& =\llbracket a \odot x \mapsto \operatorname{ev}_{x}\left(\operatorname{ev}_{a}\left(\llbracket a^{\prime} \mapsto \llbracket x^{\prime} \mapsto \xi\left(a^{\prime} \odot x^{\prime}\right) \rrbracket \rrbracket\right)\right) \rrbracket \\
& =\llbracket a \odot x \mapsto \operatorname{ev}_{x}\left(\llbracket x^{\prime} \mapsto \xi\left(a \odot x^{\prime}\right) \rrbracket\right) \rrbracket \\
& =\llbracket a \odot x \mapsto \xi(a \odot x) \rrbracket \\
& =\xi
\end{aligned}
$$

- Invertibility II. We claim that

$$
\Phi_{K} \circ \Psi_{K}=\operatorname{id}_{\operatorname{Sets}\left(A, \operatorname{Sets}_{*}(X, K)\right)}
$$

Indeed, given a morphism $\xi: A \rightarrow \operatorname{Sets}_{*}(X, K)$, we have

$$
\begin{aligned}
{\left[\Phi_{K} \circ \Psi_{K}\right](\xi) } & =\Phi_{K}\left(\Psi_{K}(\xi)\right) \\
& =\Phi_{K}\left(\llbracket a \odot x \mapsto \xi_{a}(x) \rrbracket\right) \\
& =\llbracket a \mapsto \llbracket x \mapsto \xi_{a}(x) \rrbracket \rrbracket \\
& =\llbracket a \mapsto \xi(a) \rrbracket \\
& =\xi
\end{aligned}
$$

- Naturality of Φ. We need to show that, given a morphism of pointed sets

$$
\phi:\left(K, k_{0}\right) \rightarrow\left(K^{\prime}, k_{0}^{\prime}\right)
$$

the diagram

commutes. Indeed, given a morphism of pointed sets

$$
\xi:\left(A \odot X, a \odot x_{0}\right) \rightarrow\left(K, k_{0}\right)
$$

we have

$$
\begin{aligned}
{\left[\Phi_{K^{\prime}} \circ \phi_{*}\right](\xi) } & =\Phi_{K^{\prime}}\left(\phi_{*}(\xi)\right) \\
& =\Phi_{K^{\prime}}(\phi \circ \xi) \\
& =(\phi \circ \xi)^{\dagger} \\
& =\llbracket a \mapsto \phi \circ \xi(a \odot-) \rrbracket \\
& =\llbracket a \mapsto \phi_{*}(\xi(a \odot-)) \rrbracket \\
& =\left(\phi_{*}\right)_{*}(\llbracket a \mapsto \xi(a \odot-\rrbracket)) \\
& =\left(\phi_{*}\right)_{*}\left(\Phi_{K}(\xi)\right) \\
& =\left[\left(\phi_{*}\right)_{*} \circ \Phi_{K}\right](\xi) .
\end{aligned}
$$

- Naturality of Ψ. Since Φ is natural and Φ is a componentwise inverse to Ψ, it follows from Item 2 of Proposition 8.8.6.1.2 that Ψ is also natural.

This finishes the proof.
00 CN Proposition 4.2.1.1.6. Let $\left(X, x_{0}\right)$ be a pointed set and let A be a set.

1. Functoriality. The assignments $A,\left(X, x_{0}\right),\left(A,\left(X, x_{0}\right)\right)$ define functors

$$
\begin{gathered}
A \odot-: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
-\odot X: \text { Sets } \rightarrow \text { Sets }_{*}, \\
-_{1} \odot-{ }_{2}: \text { Sets } \times \text { Sets }_{*} \rightarrow \text { Sets }_{*} .
\end{gathered}
$$

In particular, given:

- A map of sets $f: A \rightarrow B$;
- A pointed map $\phi:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$;
the induced map

$$
f \odot \phi: A \odot X \rightarrow B \odot Y
$$

is given by

$$
[f \odot \phi](a \odot x) \stackrel{\text { def }}{=} f(a) \odot \phi(x)
$$

for each $a \odot x \in A \odot X$.
2. Adjointness I. We have an adjunction

$$
\left(-\odot X \dashv \operatorname{Sets}_{*}(X,-)\right): \quad \text { Sets } \underset{\operatorname{Sets}_{*}(X,-)}{\stackrel{-\odot X}{\perp} \operatorname{Sets}_{*},}
$$

witnessed by a bijection

$$
\operatorname{Sets}_{*}(A \odot X, K) \cong \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(X, K)\right)
$$

natural in $A \in \operatorname{Obj}$ (Sets) and $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
3. Adjointness II. We have an adjunctions

$$
(A \odot-\dashv A \pitchfork-): \quad \operatorname{Sets}_{*} \frac{A \odot-}{\frac{\perp}{A \pitchfork-}} \operatorname{Sets}_{*},
$$

witnessed by a bijection

$$
\operatorname{Homsets}_{*}(A \odot X, Y) \cong \operatorname{Hom}_{\text {Sets }_{*}}(X, A \pitchfork Y)
$$

natural in $A \in \operatorname{Obj}($ Sets $)$ and $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
4. As a Weighted Colimit. We have

$$
A \odot X \cong \operatorname{colim}^{[A]}(X)
$$

where in the right hand side we write:

- A for the functor $A:$ pt \rightarrow Sets picking $A \in \operatorname{Obj}($ Sets $)$;
- X for the functor $X:$ pt \rightarrow Sets $_{*}$ picking $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.

5. Iterated Tensors. We have an isomorphism of pointed sets

$$
A \odot(B \odot X) \cong(A \times B) \odot X
$$

natural in $A, B \in \mathrm{Obj}($ Sets $)$ and $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
6. Interaction With Homs. We have a natural isomorphism

$$
\operatorname{Sets}_{*}(A \odot X,-) \cong A \pitchfork \operatorname{Sets}_{*}(X,-)
$$

7. The Tensor Evaluation Map. For each $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, we have a map

$$
\operatorname{ev}_{X, Y}^{\ominus}: \operatorname{Sets}_{*}(X, Y) \odot X \rightarrow Y
$$

natural in $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, and given by

$$
\operatorname{ev}_{X, Y}^{\odot}(f \odot x) \stackrel{\text { def }}{=} f(x)
$$

for each $f \odot x \in \operatorname{Sets}_{*}(X, Y) \odot X$.
8. The Tensor Coevaluation Map. For each $A \in \operatorname{Obj}($ Sets $)$ and each $X \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, we have a map

$$
\operatorname{coev}_{A, X}^{\odot}: A \rightarrow \operatorname{Sets}_{*}(X, A \odot X)
$$

natural in $A \in \operatorname{Obj}($ Sets $)$ and $X \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, and given by

$$
\operatorname{coev}_{A, X}^{\odot}(a) \stackrel{\text { def }}{=} \llbracket x \mapsto a \odot x \rrbracket
$$

for each $a \in A$.
Proof. Item 1, Functoriality: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.
Item 2, Adjointness I : This is simply a rephrasing of Definition 4.2.1.1.1. Item 3, : Adjointness $I I$: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.
Item 4, As a Weighted Colimit: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.

Item 5, Iterated Tensors: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.
Item 6, Interaction With Homs: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.
Item 7, The Tensor Evaluation Map: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.
Item 8, The Tensor Coevaluation Map: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.

00CX 4.2.2 Cotensors of Pointed Sets by Sets

Let $\left(X, x_{0}\right)$ be a pointed set and let A be a set.
$00 C Y$ Definition 4.2.2.1.1. The cotensor of $\left(X, x_{0}\right)$ by A^{9} is the pointed set ${ }^{10} A \pitchfork\left(X, x_{0}\right)$ satisfying the following universal property:
(UP) We have a bijection

$$
\operatorname{Sets}_{*}(K, A \pitchfork X) \cong \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(K, X)\right)
$$

natural in $\left(K, k_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
00CZ Remark 4.2.2.1.2. The universal property of Definition 4.2.2.1.1 is equivalent to the following one:
(UP) We have a bijection

$$
\operatorname{Sets}_{*}(K, A \pitchfork X) \cong \operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times K, X),
$$

natural in $\left(K, k_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, where $\operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times K, X)$ is the set defined by

$$
\operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times K, X) \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
f \in \operatorname{Sets}(A \times K, X) & \begin{array}{l}
\text { for each } a \in A, \text { we } \\
\text { have } f\left(a, k_{0}\right)=x_{0}
\end{array}
\end{array}\right\}
$$

Proof. This follows from the bijection

$$
\operatorname{Sets}\left(A, \operatorname{Sets}_{*}(K, X)\right) \cong \operatorname{Sets}_{\mathbb{E}_{0}}^{\otimes}(A \times K, X)
$$

natural in $\left(K, k_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ constructed in the proof of Remark 4.2.1.1.2.

00D0 Construction 4.2 .2 .1 .3 . Concretely, the cotensor of $\left(X, x_{0}\right)$ by A is the pointed set $A \pitchfork\left(X, x_{0}\right)$ consisting of:

[^31]- The Underlying Set. The set $A \pitchfork X$ given by

$$
A \pitchfork X \cong \bigwedge_{a \in A}\left(X, x_{0}\right)
$$

where $\bigwedge_{a \in A}\left(X, x_{0}\right)$ is the smash product of the A-indexed family $\left(\left(X, x_{0}\right)\right)_{a \in A}$ of Definition 4.6.1.1.1.

- The Basepoint. The point $\left[\left(x_{0}\right)_{a \in A}\right]=\left[\left(x_{0}, x_{0}, x_{0}, \ldots\right)\right]$ of $\bigwedge_{a \in A}\left(X, x_{0}\right)$.

Proof. We claim we have a bijection

$$
\operatorname{Sets}_{*}(K, A \pitchfork X) \cong \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(K, X)\right)
$$

natural in $\left(K, k_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.

- Map I. We define a map

$$
\Phi_{K}: \operatorname{Sets}_{*}(K, A \pitchfork X) \rightarrow \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(K, X)\right)
$$

by sending a morphism of pointed sets

$$
\xi:\left(K, k_{0}\right) \rightarrow\left(A \pitchfork X,\left[\left(x_{0}\right)_{a \in A}\right]\right)
$$

to the map of sets

$$
\begin{aligned}
\xi^{\dagger}: A & \longrightarrow \operatorname{Sets}_{*}(K, X) \\
a & \mapsto\left(\xi_{a}: K \rightarrow X\right),
\end{aligned}
$$

where

$$
\xi_{a}:\left(K, k_{0}\right) \rightarrow\left(X, x_{0}\right)
$$

is the morphism of pointed sets defined by

$$
\xi_{a}(k)= \begin{cases}x_{a}^{k} & \text { if } \xi(k) \neq\left[\left(x_{0}\right)_{a \in A}\right] \\ x_{0} & \text { if } \xi(k)=\left[\left(x_{0}\right)_{a \in A}\right]\end{cases}
$$

for each $k \in K$, where x_{a}^{k} is the a th component of $\xi(k)=\left[\left(x_{a}^{k}\right)_{a \in A}\right]$. Note that:

1. The definition of $\xi_{a}(k)$ is independent of the choice of equivalence class. Indeed, suppose we have

$$
\begin{aligned}
\xi(k) & =\left[\left(x_{a}^{k}\right)_{a \in A}\right] \\
& =\left[\left(y_{a}^{k}\right)_{a \in A}\right]
\end{aligned}
$$

with $x_{a}^{k} \neq y_{a}^{k}$ for some $a \in A$. Then there exist $a_{x}, a_{y} \in A$ such that $x_{a_{x}}^{k}=y_{a_{y}}^{k}=x_{0}$. The equivalence relation \sim on $\prod_{a \in A} X$ then forces

$$
\begin{aligned}
& {\left[\left(x_{a}^{k}\right)_{a \in A}\right]=\left[\left(x_{0}\right)_{a \in A}\right],} \\
& {\left[\left(y_{a}^{k}\right)_{a \in A}\right]=\left[\left(x_{0}\right)_{a \in A}\right],}
\end{aligned}
$$

however, and $\xi_{a}(k)$ is defined to be x_{0} in this case.
2. The map ξ_{a} is indeed a morphism of pointed sets, as we have

$$
\xi_{a}\left(k_{0}\right)=x_{0}
$$

since $\xi\left(k_{0}\right)=\left[\left(x_{0}\right)_{a \in A}\right]$ as ξ is a morphism of pointed sets and $\xi_{a}\left(k_{0}\right)$, defined to be the a th component of $\left[\left(x_{0}\right)_{a \in A}\right]$, is equal to x_{0}.

- Map II. We define a map

$$
\Psi_{K}: \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(K, X)\right) \rightarrow \operatorname{Sets}_{*}(K, A \pitchfork X),
$$

given by sending a map

$$
\begin{aligned}
\xi: A & \rightarrow \operatorname{Sets}_{*}(K, X), \\
a & \mapsto\left(\xi_{a}: K \rightarrow X\right),
\end{aligned}
$$

to the morphism of pointed sets

$$
\xi^{\dagger}:\left(K, k_{0}\right) \rightarrow\left(A \pitchfork X,\left[\left(x_{0}\right)_{a \in A}\right]\right)
$$

defined by

$$
\xi^{\dagger}(k) \stackrel{\text { def }}{=}\left[\left(\xi_{a}(k)\right)_{a \in A}\right]
$$

for each $k \in K$. Note that ξ^{\dagger} is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\xi^{\dagger}\left(k_{0}\right) & \stackrel{\text { def }}{=}\left[\left(\xi_{a}\left(k_{0}\right)\right)_{a \in A}\right] \\
& =x_{0},
\end{aligned}
$$

where we have used that $\xi_{a} \in \operatorname{Sets}_{*}(K, X)$ is a morphism of pointed sets for each $a \in A$.

- Naturality of Ψ. We need to show that, given a morphism of pointed sets

$$
\phi:\left(K, k_{0}\right) \rightarrow\left(K^{\prime}, k_{0}^{\prime}\right),
$$

the diagram

commutes. Indeed, given a map of sets

$$
\begin{aligned}
\xi: A & \longrightarrow \operatorname{Sets}_{*}\left(K^{\prime}, X\right) \\
a & \mapsto\left(\xi_{a}: K^{\prime} \rightarrow X\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
{\left[\Psi_{K} \circ\left(\phi^{*}\right)_{*}\right](\xi) } & =\Psi_{K}\left(\left(\phi^{*}\right)_{*}(\xi)\right) \\
& =\Psi_{K}\left(\left(\phi^{*}\right)_{*}\left(\llbracket a \mapsto \xi_{a} \rrbracket\right)\right) \\
& =\Psi_{K}\left(\left(\llbracket a \mapsto \phi^{*}\left(\xi_{a}\right) \rrbracket\right)\right) \\
& =\Psi_{K}\left(\left(\llbracket a \mapsto \llbracket k \mapsto \xi_{a}(\phi(k)) \rrbracket \rrbracket\right)\right) \\
& =\llbracket k \mapsto\left[\left(\xi_{a}(\phi(k))\right)_{a \in A}\right\rceil \rrbracket \\
& =\phi^{*}\left(\llbracket k^{\prime} \mapsto\left[\left(\xi_{a}\left(k^{\prime}\right)\right)_{a \in A}\right\rceil \rrbracket\right) \\
& =\phi^{*}\left(\Psi_{K^{\prime}}(\xi)\right) \\
& =\left[\phi^{*} \circ \Psi_{K^{\prime}}\right](\xi) .
\end{aligned}
$$

- Naturality of Φ. Since Ψ is natural and Ψ is a componentwise inverse to Φ, it follows from Item 2 of Proposition 8.8.6.1.2 that Φ is also natural.
- Invertibility I. We claim that

$$
\Psi_{K} \circ \Phi_{K}=\operatorname{id}_{\mathrm{Sets}_{*}(K, A \pitchfork X)}
$$

Indeed, given a morphism of pointed sets

$$
\xi:\left(K, k_{0}\right) \rightarrow\left(A \pitchfork X,\left[\left(x_{0}\right)_{a \in A}\right]\right)
$$

we have

$$
\begin{aligned}
{\left[\Psi_{K} \circ \Phi_{K}\right](\xi) } & =\Psi_{K}\left(\Phi_{K}(\xi)\right) \\
& =\Psi_{K}\left(\llbracket a \mapsto \xi_{a} \rrbracket\right) \\
& =\Psi_{K}\left(\llbracket a^{\prime} \mapsto \xi_{a^{\prime}} \rrbracket\right) \\
& =\llbracket k \mapsto\left[\left(\operatorname{ev}_{a}\left(\llbracket a^{\prime} \mapsto \xi_{a^{\prime}}(k) \rrbracket\right)\right)_{a \in A}\right] \rrbracket \\
& =\llbracket k \mapsto\left[\left(\xi_{a}(k)\right)_{a \in A} \rrbracket \rrbracket .\right.
\end{aligned}
$$

Now, we have two cases:

1. If $\xi(k)=\left[\left(x_{0}\right)_{a \in A}\right]$, we have

$$
\begin{aligned}
{\left[\Psi_{K} \circ \Phi_{K}\right](\xi) } & =\cdots \\
& =\llbracket k \mapsto\left[\left(\xi_{a}(k)\right)_{a \in A}\right] \rrbracket \\
& =\llbracket k \mapsto\left[\left(x_{0}\right)_{a \in A}\right] \rrbracket \\
& =\llbracket k \mapsto \xi(k) \rrbracket \\
& =\xi .
\end{aligned}
$$

2. If $\xi(k) \neq\left[\left(x_{0}\right)_{a \in A}\right]$ and $\xi(k)=\left[\left(x_{a}^{k}\right)_{a \in A}\right]$ instead, we have

$$
\begin{aligned}
{\left[\Psi_{K} \circ \Phi_{K}\right](\xi) } & =\cdots \\
& =\llbracket k \mapsto\left[\left(\xi_{a}(k)\right)_{a \in A}\right] \rrbracket \\
& =\llbracket k \mapsto\left[\left(x_{a}^{k}\right)_{a \in A}\right] \rrbracket \\
& =\llbracket k \mapsto \xi(k) \rrbracket \\
& =\xi
\end{aligned}
$$

In both cases, we have $\left[\Psi_{K} \circ \Phi_{K}\right](\xi)=\xi$, and thus we are done.

- Invertibility II. We claim that

$$
\Phi_{K} \circ \Psi_{K}=\operatorname{id}_{\operatorname{Sets}\left(A, \operatorname{Sets}_{*}(K, X)\right)} .
$$

Indeed, given a morphism $\xi: A \rightarrow \operatorname{Sets}_{*}(K, X)$, we have

$$
\begin{aligned}
{\left[\Phi_{K} \circ \Psi_{K}\right](\xi) } & =\Phi_{K}\left(\Psi_{K}(\xi)\right) \\
& =\Phi_{K}\left(\llbracket k \mapsto\left[\left(\xi_{a}(k)\right)_{a \in A}\right\rfloor \rrbracket\right) \\
& =\llbracket a \mapsto \llbracket k \mapsto \xi_{a}(k) \rrbracket \rrbracket \\
& =\xi
\end{aligned}
$$

This finishes the proof.
00D1 Proposition 4.2.2.1.4. Let $\left(X, x_{0}\right)$ be a pointed set and let A be a set. 00D2

1. Functoriality. The assignments $A,\left(X, x_{0}\right),\left(A,\left(X, x_{0}\right)\right)$ define functors

$$
\begin{gathered}
A \pitchfork-: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
-\pitchfork X: \text { Sets }^{\mathrm{op}} \rightarrow \text { Sets }_{*}, \\
-{ }_{1} \pitchfork-2: \text { Sets }^{\mathrm{op}} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*} .
\end{gathered}
$$

In particular, given:

- A map of sets $f: A \rightarrow B$;
- A pointed map $\phi:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$;
the induced map

$$
f \odot \phi: A \pitchfork X \rightarrow B \pitchfork Y
$$

is given by

$$
[f \odot \phi]\left(\left[\left(x_{a}\right)_{a \in A}\right]\right) \stackrel{\text { def }}{=}\left[\left(\phi\left(x_{f(a)}\right)\right)_{a \in A}\right]
$$

for each $\left[\left(x_{a}\right)_{a \in A}\right] \in A \pitchfork X$.
2. Adjointness I. We have an adjunction

$$
\left(-\pitchfork X \dashv \operatorname{Sets}_{*}(-, X)\right): \quad \operatorname{Sets}_{\underset{\text { Sets }_{*}(-, X)}{\stackrel{-\pitchfork X}{\perp}} \operatorname{Sets}_{*},},
$$

witnessed by a bijection

$$
\operatorname{Sets}_{*}^{\mathrm{op}}(A \pitchfork X, K) \cong \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(K, X)\right),
$$

i.e. by a bijection

$$
\operatorname{Sets}_{*}(K, A \pitchfork X) \cong \operatorname{Sets}\left(A, \operatorname{Sets}_{*}(K, X)\right),
$$

natural in $A \in \operatorname{Obj}($ Sets $)$ and $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
3. Adjointness II. We have an adjunctions

$$
(A \odot-\dashv A \pitchfork-): \quad \operatorname{Sets}_{*} \frac{A \odot-}{\frac{A}{A \pitchfork-}} \operatorname{Sets}_{*},
$$

witnessed by a bijection

$$
\operatorname{Hom}_{\text {ets }_{*}}(A \odot X, Y) \cong \operatorname{Hom}_{\text {Sets }_{*}}(X, A \pitchfork Y),
$$

natural in $A \in \operatorname{Obj}($ Sets $)$ and $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
4. As a Weighted Limit. We have

$$
A \pitchfork X \cong \lim ^{[A]}(X),
$$

where in the right hand side we write:

- A for the functor $A:$ pt \rightarrow Sets picking $A \in \operatorname{Obj}($ Sets $)$;
- X for the functor $X:$ pt \rightarrow Sets $_{*}$ picking $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.

5. Iterated Cotensors. We have an isomorphism of pointed sets

$$
A \pitchfork(B \pitchfork X) \cong(A \times B) \pitchfork X,
$$

natural in $A, B \in \operatorname{Obj}($ Sets $)$ and $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
6. Commutativity With Homs. We have natural isomorphisms

$$
\begin{aligned}
& A \pitchfork \operatorname{Sets}_{*}(X,-) \cong \operatorname{Sets}_{*}(A \odot X,-), \\
& A \pitchfork \operatorname{Sets}_{*}(-, Y) \cong \operatorname{Sets}_{*}(-, A \pitchfork Y) .
\end{aligned}
$$

7. The Cotensor Evaluation Map. For each $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, we have a map

$$
\operatorname{ev}_{X, Y}^{\mathrm{\dagger}}: X \rightarrow \operatorname{Sets}_{*}(X, Y) \pitchfork Y,
$$

natural in $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, and given by

$$
\operatorname{ev}_{X, Y}^{\pitchfork}(x) \stackrel{\text { def }}{=}\left[(f(x))_{f \in \operatorname{Sets}_{*}(X, Y)}\right]
$$

for each $x \in X$.
8. The Cotensor Coevaluation Map. For each $X \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ and each $A \in \operatorname{Obj}($ Sets $)$, we have a map

$$
\operatorname{coev}_{A, X}^{\pitchfork}: A \rightarrow \operatorname{Sets}_{*}(A \pitchfork X, X),
$$

natural in $X \in \operatorname{Obj}^{\left(\text {Sets }_{*}\right)}$) and $A \in \operatorname{Obj}($ Sets $)$, and given by

$$
\left.\operatorname{coev}_{A, X}^{\pitchfork}(a) \xlongequal{\text { def }} \mathbb{=} \llbracket\left(x_{b}\right)_{b \in A}\right] \mapsto x_{a} \rrbracket
$$

for each $a \in A$.
Proof. Item 1, Functoriality: This is the special case of ?? of ?? for when $\mathcal{C}=$ Sets $_{*}$.
Item 2, Adjointness I: This is simply a rephrasing of Definition 4.2.2.1.1. Item 3, : Adjointness II: This is the special case of ?? of ?? for when $\mathcal{C}=$ Sets $_{*}$.
Item 4, As a Weighted Limit: This is the special case of ?? of ?? for when $\mathcal{C}=$ Sets $_{*}$.
Item 5, Iterated Cotensors: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.
Item 6, Commutativity With Homs: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.
Item 7, The Cotensor Evaluation Map: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.
Item 8, The Cotensor Coevaluation Map: This is the special case of ?? of ?? for when $C=$ Sets $_{*}$.

00DA 4.3 The Left Tensor Product of Pointed Sets

00DB 4.3.1 Foundations

Let (X, x_{0}) and (Y, y_{0}) be pointed sets.
00DC Definition 4.3.1.1.1. The left tensor product of pointed sets is the functor ${ }^{11}$

$$
\triangleleft: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

defined as the composition

where:

- 忘: Sets ${ }_{*} \rightarrow$ Sets is the forgetful functor from pointed sets to sets.
- $\beta_{\text {Sets }_{*}, \text { Sets }^{\text {Cats }}}^{\text {Sets }_{*}} \times$ Sets $\stackrel{\cong}{\leftrightarrows}$ Sets \times Sets $_{*}$ is the braiding of Cats 2 , i.e. the functor witnessing the isomorphism

$$
\text { Sets }_{*} \times \text { Sets } \cong \text { Sets } \times \text { Sets }_{*} .
$$

- $\odot:$ Sets \times Sets $_{*} \rightarrow$ Sets $_{*}$ is the tensor functor of Item 1 of Proposition 4.2.1.1.6.

00DD Remark 4.3.1.1.2. The left tensor product of pointed sets satisfies the following natural bijection:

$$
\operatorname{Sets}_{*}(X \triangleleft Y, Z) \cong \operatorname{Hom}_{\text {Sets }_{*}}^{\otimes, \mathrm{L}}(X \times Y, Z)
$$

That is to say, the following data are in natural bijection:

1. Pointed maps $f: X \triangleleft Y \rightarrow Z$.
2. Maps of sets $f: X \times Y \rightarrow Z$ satisfying $f\left(x_{0}, y\right)=z_{0}$ for each $y \in Y$.

00DE Remark 4.3.1.1.3. The left tensor product of pointed sets may be described as follows:

- The left tensor product of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ is the pair $\left(\left(X \triangleleft Y, x_{0} \triangleleft y_{0}\right), \iota\right)$ consisting of
- A pointed set $\left(X \triangleleft Y, x_{0} \triangleleft y_{0}\right)$;
- A left bilinear morphism of pointed sets $\iota:\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow$ $X \triangleleft Y$;

[^32]satisfying the following universal property:
(UP) Given another such pair $\left(\left(Z, z_{0}\right), f\right)$ consisting of

* A pointed set $\left(Z, z_{0}\right)$;
* A left bilinear morphism of pointed sets $f:\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow$ $X \triangleleft Y ;$
there exists a unique morphism of pointed sets $X \triangleleft Y \xrightarrow{\exists!} Z$ making the diagram

commute.
00DF Construction 4.3.1.1.4. In detail, the left tensor product of (X, x_{0}) and $\left(Y, y_{0}\right)$ is the pointed set $\left(X \triangleleft Y,\left[x_{0}\right]\right)$ consisting of
- The Underlying Set. The set $X \triangleleft Y$ defined by

$$
\begin{aligned}
X \triangleleft Y & \stackrel{\text { def }}{=}|Y| \odot X \\
& \cong \bigvee_{y \in Y}\left(X, x_{0}\right),
\end{aligned}
$$

where $|Y|$ denotes the underlying set of $\left(Y, y_{0}\right)$;

- The Underlying Basepoint. The point $\left[\left(y_{0}, x_{0}\right)\right]$ of $\bigvee_{y \in Y}\left(X, x_{0}\right)$, which is equal to $\left[\left(y, x_{0}\right)\right]$ for any $y \in Y$.

00DG Notation 4.3.1.1.5. We write ${ }^{12} x \triangleleft y$ for the element $[(y, x)]$ of

$$
X \triangleleft Y \cong|Y| \odot X .
$$

00DH Remark 4.3.1.1.6. Employing the notation introduced in Notation 4.3.1.1.5, we have

$$
x_{0} \triangleleft y_{0}=x_{0} \triangleleft y
$$

for each $y \in Y$, and

$$
x_{0} \triangleleft y=x_{0} \triangleleft y^{\prime}
$$

for each $y, y^{\prime} \in Y$.
00DJ Proposition 4.3.1.1.7. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.

[^33]00DK

00DL

1. Functoriality. The assignments $X, Y,(X, Y) \mapsto X \triangleleft Y$ define functors

$$
\begin{gathered}
X \triangleleft-: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
-\triangleleft Y: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
- \text { Sets }_{*} \triangleleft-{ }_{2}: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sel }^{2}
\end{gathered}
$$

In particular, given pointed maps

$$
\begin{gathered}
f:\left(X, x_{0}\right) \rightarrow\left(A, a_{0}\right), \\
g:\left(Y, y_{0}\right) \rightarrow\left(B, b_{0}\right),
\end{gathered}
$$

the induced map

$$
f \triangleleft g: X \triangleleft Y \rightarrow A \triangleleft B
$$

is given by

$$
[f \triangleleft g](x \triangleleft y) \xlongequal{\text { def }} f(x) \triangleleft g(y)
$$

for each $x \triangleleft y \in X \triangleleft Y$.
2. Adjointness I. We have an adjunction

$$
\left(-\triangleleft Y \dashv[Y,-]_{\text {Sets }_{*}}^{\triangleleft}\right): \quad \operatorname{Sets}_{\left[Y,-\operatorname{sets}_{*}\right.}^{\frac{-\triangleleft Y}{\perp}} \operatorname{Sets}_{*},
$$

witnessed by a bijection of sets

$$
\operatorname{Hom}_{\text {Sets }_{*}}(X \triangleleft Y, Z) \cong \operatorname{Hom}_{\text {Sets }_{*}}\left(X,[Y, Z]_{\text {Sets }_{*}}^{\triangleleft}\right)
$$

natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, where $[X, Y]_{\text {Sets }_{*}}^{\triangleleft}$ is the pointed set of Definition 4.3.2.1.1.
3. Adjointness II. The functor

$$
X \triangleleft-: \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

does not admit a right adjoint.
4. Adjointness III. We have a bijection of sets

$$
\operatorname{Hom}_{\text {Sets }_{*}}(X \triangleleft Y, Z) \cong \operatorname{Homsets}\left(|Y|, \operatorname{Sets}_{*}(X, Z)\right)
$$

natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness I : This follows from Item 3 of Proposition 4.2.1.1.6. Item 3, Adjointness $I I$: For $X \triangleleft-$ to admit a right adjoint would require it to preserve colimits by ?? of ??. However, we have

$$
\begin{aligned}
X \triangleleft \mathrm{pt} & \stackrel{\text { def }}{=}|\mathrm{pt}| \odot X \\
& \cong X \\
& \nsupseteq \mathrm{pt},
\end{aligned}
$$

and thus we see that $X \triangleleft-$ does not have a right adjoint.
Item 4, Adjointness III: This follows from Item 2 of Proposition 4.2.1.1.6.

00DP Remark 4.3.1.1.8. Here is some intuition on why $X \triangleleft-$ fails to be a left adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural bijection

$$
\operatorname{Hom}_{\text {Sets }_{*}}(X \triangleleft Y, Z) \cong \operatorname{Hom}_{\text {Sets }}\left(|Y|, \operatorname{Sets}_{*}(X, Z)\right)
$$

so it would be reasonable to wonder whether a natural bijection of the form

$$
\operatorname{Hom}_{\operatorname{Sets}_{*}}(X \triangleleft Y, Z) \cong \operatorname{Homsets}_{*}\left(Y, \operatorname{Sets}_{*}(X, Z)\right)
$$

also holds, which would give $X \triangleleft-\dashv \operatorname{Sets}_{*}(X,-)$. However, such a bijection would require every map

$$
f: X \triangleleft Y \rightarrow Z
$$

to satisfy

$$
f\left(x \triangleleft y_{0}\right)=z_{0}
$$

for each $x \in X$, whereas we are imposing such a basepoint preservation condition only for elements of the form $x_{0} \triangleleft y$. Thus Sets ${ }_{*}(X,-)$ can’t be a right adjoint for $X \triangleleft-$, and as shown by Item 3 of Proposition 4.3.1.1.7, no functor can. ${ }^{13}$

00DQ 4.3.2 The Left Internal Hom of Pointed Sets

Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00DR Definition 4.3.2.1.1. The left internal Hom of pointed sets is the functor

$$
[-,-]_{\text {Sets }_{*}}^{\triangleleft}: \text { Sets }_{*}^{\text {op }} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

[^34]defined as the composition
$$
\text { Sets }_{*}^{\mathrm{op}} \times \text { Sets }_{*} \xrightarrow{\text { 忘 } \times \text { id }} \text { Sets }^{\mathrm{op}} \times \text { Sets }_{*} \xrightarrow{\pitchfork} \text { Sets }_{*},
$$
where:

- 忘: Sets ${ }_{*} \rightarrow$ Sets is the forgetful functor from pointed sets to sets.
- $\mathrm{H}:$ Sets $^{\text {Op }} \times$ Sets $_{*} \rightarrow$ Sets $_{*}$ is the cotensor functor of Item 1 of Proposition 4.2.2.1.4.

Proof. For a proof that $[-,-]_{\text {Sets }_{*}}^{\triangleleft}$ is indeed the left internal Hom of Sets* with respect to the left tensor product of pointed sets, see Item 2 of Proposition 4.3.1.1.7.

00DS Remark 4.3.2.1.2. The left internal Hom of pointed sets satisfies the following universal property:

$$
\operatorname{Sets}_{*}(X \triangleleft Y, Z) \cong \operatorname{Sets}_{*}\left(X,[Y, Z]_{\text {Sets }_{*}}^{\triangleleft}\right)
$$

That is to say, the following data are in bijection:

1. Pointed maps $f: X \triangleleft Y \rightarrow Z$.
2. Pointed maps $f: X \rightarrow[Y, Z]_{\text {Sets }_{*}}^{\triangleleft}$.

00DT Remark 4.3.2.1.3. In detail, the left internal Hom of (X, x_{0}) and $\left(Y, y_{0}\right)$ is the pointed set $\left([X, Y]_{\text {Sets }_{*}}^{\triangleleft},\left[\left(y_{0}\right)_{x \in X}\right]\right)$ consisting of

- The Underlying Set. The set $[X, Y]_{\text {Sets }}^{\triangleleft}$ defined by

$$
\begin{aligned}
{[X, Y]_{\text {Sets }_{*}}^{\triangleleft} } & \stackrel{\text { def }}{=}|X| \pitchfork Y \\
& \cong \bigwedge_{x \in X}\left(Y, y_{0}\right),
\end{aligned}
$$

where $|X|$ denotes the underlying set of $\left(X, x_{0}\right)$;

- The Underlying Basepoint. The point $\left[\left(y_{0}\right)_{x \in X}\right]$ of $\bigwedge_{x \in X}\left(Y, y_{0}\right)$.

00DU Proposition 4.3.2.1.4. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00DV 1. Functoriality. The assignments $X, Y,(X, Y) \mapsto[X, Y]_{\text {Sets }_{*}}^{\triangleleft}$ define functors

$$
\begin{gathered}
{[X,-]_{\text {Sets }_{*}}^{\triangleleft}: \text { Sets }_{*} \rightarrow \text { Sets }_{*},} \\
{[-, Y]_{\text {Sets }_{*}}^{\triangleleft}: \text { Sets }_{*}^{\text {op }} \rightarrow \text { Sets }_{*},} \\
{[-1,-2]_{\text {Sets }_{*}} \text { Sets } \text { Sep }_{*}^{\text {op }} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*} .}
\end{gathered}
$$

In particular, given pointed maps

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(A, a_{0}\right), \\
& g:\left(Y, y_{0}\right) \rightarrow\left(B, b_{0}\right),
\end{aligned}
$$

the induced map

$$
[f, g]_{\text {Sets }_{*}}^{\triangleleft}:[A, Y]_{\text {Sets }_{*}}^{\triangleleft} \rightarrow[X, B]_{\text {Sets }_{*}}^{\triangleleft}
$$

is given by

$$
[f, g]_{\text {Sets }_{*}}^{\triangleleft}\left(\left[\left(y_{a}\right)_{a \in A}\right]\right) \stackrel{\text { def }}{=}\left[\left(g\left(y_{f(x)}\right)\right)_{x \in X}\right]
$$

for each $\left[\left(y_{a}\right)_{a \in A}\right] \in[A, Y]_{\text {Sets }_{*}}^{\triangleleft}$.
3. Adjointness II. The functor

$$
X \triangleleft-: \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

does not admit a right adjoint.
Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness I: This is a repetition of Item 2 of Proposition 4.3.1.1.7, and is proved there.
Item 3, Adjointness II: This is a repetition of Item 3 of Proposition 4.3.1.1.7, and is proved there.

00DY 4.3.3 The Left Skew Unit
00DZ Definition 4.3.3.1.1. The left skew unit of the left tensor product of pointed sets is the functor

$$
\mathbb{1}^{\text {Sets }_{*}, \triangleleft}: \mathrm{pt} \rightarrow \text { Sets }_{*}
$$

defined by

$$
\mathbb{1}_{\text {Sets }_{*}}^{\triangleleft} \stackrel{\text { def }}{=} S^{0} .
$$

00E0 4.3.4 The Left Skew Associator

00E1 Definition 4.3.4.1.1. The skew associator of the left tensor product of pointed sets is the natural transformation

$$
\alpha^{\text {Setss }_{*}, \triangleleft}: \triangleleft \circ\left(\triangleleft \times \text { id }_{\text {etss }_{*}}\right) \Longrightarrow \triangleleft \circ\left(\text { idsets }_{*} \times \triangleleft\right) \circ \boldsymbol{\alpha}_{\text {Sets }_{*}, \text { Sets }}^{*}, \text { Sets }{ }_{*}^{*}
$$

as in the diagram

whose component

$$
\alpha_{X, Y, Z}^{\text {Sets, }_{*}}:(X \triangleleft Y) \triangleleft Z \rightarrow X \triangleleft(Y \triangleleft Z)
$$

at $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by

$$
\begin{aligned}
(X \triangleleft Y) \triangleleft & \xlongequal{\text { def }}|Z| \odot(X \triangleleft Y) \\
& \stackrel{\text { def }}{=}|Z| \odot(|Y| \odot X) \\
& \cong \bigvee_{z \in Z}|Y| \odot X \\
& \cong \bigvee_{z \in Z}\left(\bigvee_{y \in Y} X\right) \\
& \rightarrow \bigvee_{[(z, y)] \in \bigvee_{z \in Z} Y} X \\
& \cong \bigvee^{[(z, y)] \in|Z| \odot Y} \text { } X \\
& \cong||Z| \odot Y| \odot X \\
& \stackrel{\text { def }}{\text { def }}|Y \triangleleft Z| \odot X \\
& \xlongequal{\text { def }} X \triangleleft(Y \triangleleft Z),
\end{aligned}
$$

where the map

$$
\bigvee_{z \in Z}\left(\bigvee_{y \in Y} X\right) \rightarrow \bigvee_{(z, y) \in \bigvee_{z \in Z} Y} X
$$

is given by $[(z,[(y, x)])] \mapsto[([(z, y)], x)]$.

Proof. (Proven below in a bit.)
00E2 Remark 4.3.4.1.2. Unwinding the notation for elements, we have

$$
\begin{aligned}
{[(z,[(y, x)])] } & \stackrel{\text { def }}{=}[(z, x \triangleleft y)] \\
& \stackrel{\text { def }}{=}(x \triangleleft y) \triangleleft z
\end{aligned}
$$

and

$$
\begin{aligned}
{[([(z, y)], x)] } & \stackrel{\text { def }}{=}[(y \triangleleft z, x)] \\
& \stackrel{\text { def }}{=} x \triangleleft(y \triangleleft z)
\end{aligned}
$$

So, in other words, $\alpha_{X, Y, Z}^{\text {Sets }_{*}, \triangleleft}$ acts on elements via

$$
\alpha_{X, Y, Z}^{\mathrm{Sets}_{*}, \triangleleft}((x \triangleleft y) \triangleleft z) \stackrel{\text { def }}{=} x \triangleleft(y \triangleleft z)
$$

for each $(x \triangleleft y) \triangleleft z \in(X \triangleleft Y) \triangleleft Z$.
00E3 Remark 4.3.4.1.3. Taking $y=y_{0}$, we see that the morphism $\alpha_{X, Y, Z}^{\text {Sets }_{*}, \triangleleft}$ acts on elements as

$$
\alpha_{X, Y, Z}^{\text {Sets }_{*}, \triangleleft}\left(\left(x \triangleleft y_{0}\right) \triangleleft z\right) \stackrel{\text { def }}{=} x \triangleleft\left(y_{0} \triangleleft z\right) .
$$

However, by the definition of \triangleleft, we have $y_{0} \triangleleft z=y_{0} \triangleleft z^{\prime}$ for all $z, z^{\prime} \in Z$, preventing $\alpha_{X, Y, Z}^{\text {Sets }_{*}, \triangleleft}$ from being non-invertible.

Proof. Firstly, note that, given $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, the map

$$
\alpha_{X, Y, Z}^{\text {Sets*, }}:(X \triangleleft Y) \triangleleft Z \rightarrow X \triangleleft(Y \triangleleft Z)
$$

is indeed a morphism of pointed sets, as we have

$$
\alpha_{X, Y, Z}^{\mathrm{Sett}_{*}, \triangleleft}\left(\left(x_{0} \triangleleft y_{0}\right) \triangleleft z_{0}\right)=x_{0} \triangleleft\left(y_{0} \triangleleft z_{0}\right) .
$$

Next, we claim that $\alpha^{\text {Sets }_{*}, \triangleleft}$ is a natural transformation. We need to show that, given morphisms of pointed sets

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(X^{\prime}, x_{0}^{\prime}\right) \\
& g:\left(Y, y_{0}\right) \rightarrow\left(Y^{\prime}, y_{0}^{\prime}\right) \\
& h:\left(Z, z_{0}\right) \rightarrow\left(Z^{\prime}, z_{0}^{\prime}\right)
\end{aligned}
$$

the diagram

$$
\begin{aligned}
& (X \triangleleft Y) \triangleleft Z \xrightarrow{(f \triangleleft g) \triangleleft h}\left(X^{\prime} \triangleleft Y^{\prime}\right) \triangleleft Z^{\prime} \\
& \begin{array}{l}
\alpha_{X, Y, Z}^{\text {Sets }, \triangleleft} \mid \\
\downarrow
\end{array} \left\lvert\, \begin{array}{l}
\alpha_{X^{\prime}, Y^{\prime}, Z^{\prime}}^{\text {Sets }, \triangleleft}
\end{array}\right. \\
& X \triangleleft(Y \triangleleft Z) \xrightarrow[f \triangleleft(g \triangleleft h)]{ } X^{\prime} \triangleleft\left(Y^{\prime} \triangleleft Z^{\prime}\right)
\end{aligned}
$$

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\alpha^{\text {Sets }_{*}, \triangleleft}$ to be a natural transformation. This finishes the proof.

00E4 4.3.5 The Left Skew Left Unitor

00E5 Definition 4.3.5.1.1. The skew left unitor of the left tensor product of pointed sets is the natural transformation
$\lambda^{\text {Sets }_{*}, \triangleleft}: \triangleleft \circ\left(\mathbb{1}^{\text {Sets }_{*}} \times\right.$ id $\left._{\text {Sets }_{*}}\right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\lambda}_{\text {Sets }_{*}}^{\text {Cats }_{2}}$

whose component

$$
\lambda_{X}^{\text {Sets }_{*}, \triangleleft}: S^{0} \triangleleft X \rightarrow X
$$

at $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by the composition

$$
\begin{aligned}
S^{0} \triangleleft X & \cong|X| \odot S^{0} \\
& \cong \bigvee_{x \in X} S^{0} \\
& \rightarrow X,
\end{aligned}
$$

where $\bigvee_{x \in X} S^{0} \rightarrow X$ is the map given by

$$
\begin{aligned}
& {[(x, 0)] \mapsto x_{0}} \\
& {[(x, 1)] \mapsto x}
\end{aligned}
$$

Proof. (Proven below in a bit.)
00 E 6 Remark 4.3.5.1.2. In other words, $\lambda_{X}^{\text {Sets }_{*}, \triangleleft}$ acts on elements as

$$
\begin{aligned}
& \lambda_{X}^{\text {Sets }_{*}, \triangleleft}(0 \triangleleft x) \stackrel{\text { def }}{=} x_{0}, \\
& \lambda_{X}^{\text {Sets }_{*}, \triangleleft}(1 \triangleleft x) \stackrel{\text { def }}{=} x
\end{aligned}
$$

for each $1 \triangleleft x \in S^{0} \triangleleft X$.

00E7 Remark 4.3.5.1.3. The morphism $\lambda_{X}^{\text {Sets }_{*}, \triangleleft}$ is almost invertible, with its would-be-inverse

$$
\phi_{X}: X \rightarrow S^{0} \triangleleft X
$$

given by

$$
\phi_{X}(x) \stackrel{\text { def }}{=} 1 \triangleleft x
$$

for each $x \in X$. Indeed, we have

$$
\begin{aligned}
{\left[\lambda_{X}^{\text {Sets }_{*}, \triangleleft} \circ \phi\right](x) } & =\lambda_{X}^{\text {Sets }_{*}, \triangleleft}(\phi(x)) \\
& =\lambda_{X}^{\text {Sets }_{*}, \triangleleft}(1 \triangleleft x) \\
& =x \\
& =\left[\operatorname{id}_{X}\right](x)
\end{aligned}
$$

so that

$$
\lambda_{X}^{\text {Sets }_{*}, \triangleleft} \circ \phi=\operatorname{id}_{X}
$$

and

$$
\begin{aligned}
{\left[\phi \circ \lambda_{X}^{\text {Sets }_{*}, \triangleleft}\right](1 \triangleleft x) } & =\phi\left(\lambda_{X}^{\text {Sets }_{*}, \triangleleft}(1 \triangleleft x)\right) \\
& =\phi(x) \\
& =1 \triangleleft x \\
& =\left[\operatorname{id}_{S^{0} \triangleleft X}\right](1 \triangleleft x)
\end{aligned}
$$

but

$$
\begin{aligned}
{\left[\phi \circ \lambda_{X}^{\text {Sets }_{*}, \triangleleft}\right](0 \triangleleft x) } & =\phi\left(\lambda_{X}^{\text {Sets }_{*}, \triangleleft}(0 \triangleleft x)\right) \\
& =\phi\left(x_{0}\right) \\
& =1 \triangleleft x_{0},
\end{aligned}
$$

where $0 \triangleleft x \neq 1 \triangleleft x_{0}$. Thus

$$
\phi \circ \lambda_{X}^{\text {Sets }_{*}, \triangleleft} \stackrel{?}{=} \operatorname{id}_{S^{0} \triangleleft X}
$$

holds for all elements in $S^{0} \triangleleft X$ except one.
Proof. Firstly, note that, given $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, the map

$$
\lambda_{X}^{\text {Sets }_{*}, \triangleleft}: S^{0} \triangleleft X \rightarrow X
$$

is indeed a morphism of pointed sets, as we have

$$
\lambda_{X}^{\text {Sets }_{*}, \triangleleft}\left(0 \triangleleft x_{0}\right)=x_{0} .
$$

Next, we claim that $\lambda^{\text {Sets }_{*}, \triangleleft}$ is a natural transformation. We need to show that, given a morphism of pointed sets

$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and

and hence indeed commutes, showing $\lambda^{\text {Sets }_{*}, \triangleleft}$ to be a natural transformation. This finishes the proof.

00E8 4.3.6 The Left Skew Right Unitor

00E9 Definition 4.3.6.1.1. The skew right unitor of the left tensor product of pointed sets is the natural transformation
$\rho^{\mathrm{Sets}_{*}, \triangleleft}: \rho_{\text {Sets }_{*}}^{\mathrm{Cats}_{2}} \xlongequal{\sim} \triangleleft \circ\left(\mathrm{id} \times \mathbb{1}^{\mathrm{Sets}_{*}}\right)$,

whose component

$$
\rho_{X}^{\text {Sets }_{*}, \triangleleft}: X \rightarrow X \triangleleft S^{0}
$$

at $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\operatorname{Sets}_{*}\right)$ is given by the composition

$$
\begin{aligned}
X & \rightarrow X \vee X \\
& \cong\left|S^{0}\right| \odot X \\
& \cong X \triangleleft S^{0},
\end{aligned}
$$

where $X \rightarrow X \vee X$ is the map sending X to the second factor of X in $X \vee X$.

Proof. (Proven below in a bit.)
00EA Remark 4.3.6.1.2. In other words, $\rho_{X}^{\text {Sets }_{*}, \triangleleft}$ acts on elements as

$$
\rho_{X}^{\text {Sets }_{*}, \triangleleft}(x) \stackrel{\text { def }}{=}[(1, x)]
$$

i.e. by

$$
\rho_{X}^{\text {Sets }_{*}, \triangleleft}(x) \stackrel{\text { def }}{=} x \triangleleft 1
$$

for each $x \in X$.
00EB Remark 4.3.6.1.3. The morphism $\rho_{X}^{\mathrm{Sets}_{*}, \triangleleft}$ is non-invertible, as it is non-surjective when viewed as a map of sets, since the elements $x \triangleleft 0$ of $X \triangleleft S^{0}$ with $x \neq x_{0}$ are outside the image of $\rho_{X}^{\text {Sets }}{ }^{,} \triangleleft$, which sends x to $x \triangleleft 1$.

Proof. Firstly, note that, given $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, the map

$$
\rho_{X}^{\text {Sets }_{*}, \triangleleft}: X \rightarrow X \triangleleft S^{0}
$$

is indeed a morphism of pointed sets as we have

$$
\begin{aligned}
\rho_{X}^{\mathrm{Sets}_{*}, \triangleleft}\left(x_{0}\right) & =x_{0} \triangleleft 1 \\
& =x_{0} \triangleleft 0 .
\end{aligned}
$$

Next, we claim that $\rho^{\text {Sets }_{*}, \triangleleft}$ is a natural transformation. We need to show that, given a morphism of pointed sets

$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\rho^{\text {Sets }_{*}, \triangleleft}$ to be a natural transformation. This finishes the proof.

00EC 4.3.7 The Diagonal

00ED Definition 4.3.7.1.1. The diagonal of the left tensor product of pointed sets is the natural transformation

$$
\Delta^{\triangleleft}: \mathrm{id}_{\mathrm{Sets}_{*}} \Longrightarrow \triangleleft \circ \Delta_{\mathrm{Sets}_{*}}^{\mathrm{Cats}_{2}}
$$

whose component

$$
\Delta_{X}^{\triangleleft}:\left(X, x_{0}\right) \rightarrow\left(X \triangleleft X, x_{0} \triangleleft x_{0}\right)
$$

at $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by

$$
\Delta_{X}^{\triangleleft}(x) \stackrel{\text { def }}{=} x \triangleleft x
$$

for each $x \in X$.
Proof. Being a Morphism of Pointed Sets: We have

$$
\Delta_{X}^{\unlhd}\left(x_{0}\right) \stackrel{\text { def }}{=} x_{0} \triangleleft x_{0}
$$

and thus $\Delta_{X}^{\triangleleft}$ is a morphism of pointed sets.
Naturality: We need to show that, given a morphism of pointed sets

$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right),
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing Δ^{\triangleleft} to be natural.

4.3.8 The Left Skew Monoidal Structure on Pointed Sets Associated to \triangleleft

 -00EF Proposition 4.3.8.1.1. The category Sets* admits a left-closed left skew monoidal category structure consisting of

- The Underlying Category. The category Sets* of pointed sets;
- The Left Skew Monoidal Product. The left tensor product functor

$$
\triangleleft: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

of Definition 4.3.1.1.1;

- The Left Internal Skew Hom. The left internal Hom functor

$$
[-,-]_{\text {Sets }_{*}}^{\triangleleft}: \text { Sets }_{*}^{\text {op }} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

of Definition 4.3.2.1.1;

- The Left Skew Monoidal Unit. The functor

$$
\mathbb{1}^{\text {Sets }_{*}, \triangleleft}: \mathrm{pt} \rightarrow \text { Sets }_{*}
$$

of Definition 4.3.3.1.1;

- The Left Skew Associators. The natural transformation
$\alpha^{\text {Sets }_{*}, \triangleleft}: \triangleleft \circ\left(\triangleleft \times \operatorname{id}_{\text {Sets }_{*}}\right) \Longrightarrow \triangleleft \circ\left(\operatorname{id}_{\text {Sets }_{*}} \times \triangleleft\right) \circ \boldsymbol{\alpha}_{\text {Sets }_{*}, \text { Sets }_{*}, \text { Sets }_{*}}^{\text {Cats }}$ of Definition 4.3.4.1.1;
- The Left Skew Left Unitors. The natural transformation

$$
\lambda^{\text {Sets }_{*}, \triangleleft}: \triangleleft \circ\left(\mathbb{1}^{\text {Sets }_{*}} \times \text { id }_{\text {Sets }_{*}}\right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\lambda}_{\text {Sets }_{*}}^{\text {Cats }_{2}}
$$

of Definition 4.3.5.1.1;

- The Left Skew Right Unitors. The natural transformation

$$
\rho^{\text {Sets }_{*}, \triangleleft}: \rho_{\text {Sets }_{*}}^{\text {Cats }_{2}} \xlongequal{\sim} \triangleleft \circ\left(\mathrm{id} \times \mathbb{1}^{\text {Sets }_{*}}\right)
$$

of Definition 4.3.6.1.1.
Proof. The Pentagon Identity: Let $\left(W, w_{0}\right),\left(X, x_{0}\right),\left(Y, y_{0}\right)$ and $\left(Z, z_{0}\right)$
be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the pentagon identity is satisfied.
The Left Skew Left Triangle Identity: Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

$$
(0 \triangleleft x) \triangleleft y \longmapsto 0 \triangleleft(x \triangleleft y)
$$

and

and hence indeed commutes. Thus the left skew triangle identity is satisfied.
The Left Skew Right Triangle Identity: Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes. Thus the right skew triangle identity is satisfied.
The Left Skew Middle Triangle Identity: Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets. We have to show that the diagram

$$
\begin{aligned}
& \begin{array}{cc}
X \triangleleft Y= & X \triangleleft Y \\
\rho_{X}^{\text {Sets }_{*}, \triangleleft} \triangleleft \text { id }_{Y} \mid & \uparrow \operatorname{id}_{A} \triangleleft \lambda_{Y}^{\text {Sets }_{*}, \triangleleft}
\end{array} \\
& \left(X \triangleleft S^{0}\right) \triangleleft Y \underset{\substack{\alpha_{X, S^{0}, Y}}}{\stackrel{S \text { ets }, \triangleleft}{\longrightarrow}} X \triangleleft\left(S^{0} \triangleleft Y\right)
\end{aligned}
$$

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes. Thus the right skew triangle identity is satisfied.
The Zig-Zag Identity: We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and

and hence indeed commutes. Thus the zig-zag identity is satisfied.
Left Skew Monoidal Left-Closedness: This follows from Item 2 of Proposition 4.3.1.1.7.

4.3.9 Monoids With Respect to the Left Tensor Product

Proposition 4.3 .9 .1 .1 . The category of monoids on (Sets ${ }_{*}, \triangleleft, S^{0}$) is isomorphic to the category of "monoids with left zero"14 and morphisms between them.

[^35]Proof. Monoids on $\left(\right.$ Sets $\left._{*}, \triangleleft, S^{0}\right)$: A monoid on (Sets ${ }_{*}, \triangleleft, S^{0}$) consists of:

- The Underlying Object. A pointed set $\left(A, 0_{A}\right)$.
- The Multiplication Morphism. A morphism of pointed sets

$$
\mu_{A}: A \triangleleft A \rightarrow A
$$

determining a left bilinear morphism of pointed sets

$$
\begin{aligned}
& A \times A \longrightarrow A \\
& (a, b) \longmapsto a b .
\end{aligned}
$$

- The Unit Morphism. A morphism of pointed sets

$$
\eta_{A}: S^{0} \rightarrow A
$$

picking an element 1_{A} of A.
satisfying the following conditions:

1. Associativity. The diagram

2. Left Unitality. The diagram

commutes.
for each $a \in A$.
3. Right Unitality. The diagram

commutes.
Being a left-bilinear morphism of pointed sets, the multiplication map satisfies

$$
0_{A} a=0_{A}
$$

for each $a \in A$. Now, the associativity, left unitality, and right unitality conditions act on elements as follows:

1. Associativity. The associativity condition acts as

This gives

$$
(a b) c=a(b c)
$$

for each $a, b, c \in A$.
2. Left Unitality. The left unitality condition acts:
(a) On $0 \triangleleft a$ as

(b) On $1 \triangleleft a$ as

This gives

$$
\begin{aligned}
& 1_{A} a=a \\
& 0_{A} a=0_{A}
\end{aligned}
$$

for each $a \in A$.
3. Right Unitality. The right unitality condition acts as

This gives

$$
a 1_{A}=a
$$

for each $a \in A$.
Thus we see that monoids with respect to \triangleleft are exactly monoids with left zero.
Morphisms of Monoids on (Sets ${ }_{*}, \triangleleft, S^{0}$): A morphism of monoids on $\left(\right.$ Sets $\left._{*}, \triangleleft, S^{0}\right)$ from $\left(A, \mu_{A}, \eta_{A}, 0_{A}\right)$ to $\left(B, \mu_{B}, \eta_{B}, 0_{B}\right)$ is a morphism of pointed sets

$$
f:\left(A, 0_{A}\right) \rightarrow\left(B, 0_{B}\right)
$$

satisfying the following conditions:

1. Compatibility With the Multiplication Morphisms. The diagram

commutes.
2. Compatibility With the Unit Morphisms. The diagram

commutes.

These act on elements as

and

and

giving

$$
\begin{gathered}
f(a b)=f(a) f(b), \\
f\left(0_{A}\right)=0_{B}, \\
f\left(1_{A}\right)=1_{B},
\end{gathered}
$$

for each $a, b \in A$, which is exactly a morphism of monoids with left zero. Identities and Composition: Similarly, the identities and composition of Mon(Sets ${ }_{*}, \triangleleft, S^{0}$) can be easily seen to agree with those of monoids with left zero, which finishes the proof.

00ed 4.4 The Right Tensor Product of Pointed Sets

00EK 4.4.1 Foundations

Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00EL Definition 4.4.1.1.1. The right tensor product of pointed sets is the functor ${ }^{15}$

$$
\triangleright: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

defined as the composition

$$
\text { Sets }_{*} \times \text { Sets }_{*} \xrightarrow{\text { 忘 } \times \text { id }} \text { Sets } \times \text { Sets }_{*} \xrightarrow{\odot} \text { Sets }_{*},
$$

where:

[^36]- 忘: Sets ${ }_{*} \rightarrow$ Sets is the forgetful functor from pointed sets to sets.
- \odot : Sets \times Sets $_{*} \rightarrow$ Sets $_{*}$ is the tensor functor of Item 1 of Proposition 4.2.1.1.6.

00EM Remark 4.4.1.1.2. The right tensor product of pointed sets satisfies the following natural bijection:

$$
\operatorname{Sets}_{*}(X \triangleright Y, Z) \cong \operatorname{Hom}_{\text {Sets }_{*}}^{\otimes, \mathrm{R}}(X \times Y, Z)
$$

That is to say, the following data are in natural bijection:

1. Pointed maps $f: X \triangleright Y \rightarrow Z$.
2. Maps of sets $f: X \times Y \rightarrow Z$ satisfying $f\left(x, y_{0}\right)=z_{0}$ for each $x \in X$.

00EN Remark 4.4.1.1.3. The right tensor product of pointed sets may be described as follows:

- The right tensor product of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ is the pair $\left(\left(X \triangleright Y, x_{0} \triangleright y_{0}\right), \iota\right)$ consisting of
- A pointed set ($X \triangleright Y, x_{0} \triangleright y_{0}$);
- A right bilinear morphism of pointed sets $\iota:\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow$ $X \triangleright Y$;
satisfying the following universal property:
(UP) Given another such pair $\left(\left(Z, z_{0}\right), f\right)$ consisting of
* A pointed set $\left(Z, z_{0}\right)$;
* A right bilinear morphism of pointed sets $f:\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow$ $X \triangleright Y$;
there exists a unique morphism of pointed sets $X \triangleright Y \xrightarrow{\exists!} Z$ making the diagram

commute.
00EP Construction 4.4.1.1.4. In detail, the right tensor product of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ is the pointed set $\left(X \triangleright Y,\left[y_{0}\right]\right)$ consisting of:
- The Underlying Set. The set $X \triangleright Y$ defined by

$$
\begin{aligned}
X \triangleright Y & \stackrel{\text { def }}{=}|X| \odot Y \\
& \cong \bigvee_{x \in X}\left(Y, y_{0}\right)
\end{aligned}
$$

where $|X|$ denotes the underlying set of $\left(X, x_{0}\right)$.

- The Underlying Basepoint. The point $\left[\left(x_{0}, y_{0}\right)\right]$ of $\bigvee_{x \in X}\left(Y, y_{0}\right)$, which is equal to $\left[\left(x, y_{0}\right)\right]$ for any $x \in X$.

00EQ Notation 4.4.1.1.5. We write ${ }^{16} x \triangleright y$ for the element $[(x, y)]$ of

$$
X \triangleright Y \cong|X| \odot Y
$$

00ER Remark 4.4.1.1.6. Employing the notation introduced in Notation 4.4.1.1.5, we have

$$
x_{0} \triangleright y_{0}=x \triangleright y_{0}
$$

for each $x \in X$, and

$$
x \triangleright y_{0}=x^{\prime} \triangleright y_{0}
$$

for each $x, x^{\prime} \in X$.
00ES Proposition 4.4.1.1.7. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00ET 1. Functoriality. The assignments $X, Y,(X, Y) \mapsto X \triangleright Y$ define functors

$$
\begin{gathered}
X \triangleright-: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
-\triangleright Y: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
-_{1} \triangleright-2: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*} .
\end{gathered}
$$

In particular, given pointed maps

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(A, a_{0}\right), \\
& g:\left(Y, y_{0}\right) \rightarrow\left(B, b_{0}\right),
\end{aligned}
$$

the induced map

$$
f \triangleright g: X \triangleright Y \rightarrow A \triangleright B
$$

is given by

$$
[f \triangleright g](x \triangleright y) \stackrel{\text { def }}{=} f(x) \triangleright g(y)
$$

for each $x \triangleright y \in X \triangleright Y$.

[^37]2. Adjointness I. We have an adjunction
$$
\left(X \triangleright-\dashv[X,-]_{\text {Sets }_{*}}^{\triangleright}\right): \quad \operatorname{Sets}_{*} \stackrel{X \triangleright-}{[X,-]_{\text {Sets }_{*}}^{\perp}} \operatorname{Sets}_{*},
$$
witnessed by a bijection of sets
$$
\operatorname{Homsets}_{S_{*}}(X \triangleright Y, Z) \cong \operatorname{Homsets}_{*}\left(Y,[X, Z]_{\text {Sets }_{*}}^{\triangleright}\right)
$$
natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, where $[X, Y]_{\text {Sets* }_{*}}^{\triangleright}$ is the pointed set of Definition 4.4.2.1.1.
3. Adjointness II. The functor
$$
-\triangleright Y: \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$
does not admit a right adjoint.
00EW
4. Adjointness III. We have a bijection of sets
$$
\operatorname{Hom}_{\text {Sets }_{*}}(X \triangleright Y, Z) \cong \operatorname{Hom}_{\text {Sets }}\left(|X|, \operatorname{Sets}_{*}(Y, Z)\right)
$$
natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness I : This follows from Item 3 of Proposition 4.2.1.1.6. Item 3, Adjointness $I I$: For $-\triangleright Y$ to admit a right adjoint would require it to preserve colimits by ?? of ??. However, we have
\[

$$
\begin{aligned}
\mathrm{pt} \triangleright X & \stackrel{\text { def }}{=}|\mathrm{pt}| \odot X \\
& \cong X \\
& \nsupseteq \mathrm{pt},
\end{aligned}
$$
\]

and thus we see that $-\triangleright Y$ does not have a right adjoint.
Item 4, Adjointness III: This follows from Item 2 of Proposition 4.2.1.1.6.

00EX Remark 4.4.1.1.8. Here is some intuition on why $-\triangleright Y$ fails to be a left adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural bijection

$$
\operatorname{Homsets}_{*}(X \triangleright Y, Z) \cong \operatorname{Homsets}\left(|X|, \operatorname{Sets}_{*}(Y, Z)\right),
$$

so it would be reasonable to wonder whether a natural bijection of the form

$$
\operatorname{Hom}_{\operatorname{Sets}_{*}}(X \triangleright Y, Z) \cong \operatorname{Hom}_{\text {ets }_{*}}\left(X, \operatorname{Sets}_{*}(Y, Z)\right),
$$

also holds, which would give $-\triangleright Y \dashv \operatorname{Sets}_{*}(Y,-)$. However, such a bijection would require every map

$$
f: X \triangleright Y \rightarrow Z
$$

to satisfy

$$
f\left(x_{0} \triangleright y\right)=z_{0}
$$

for each $x \in X$, whereas we are imposing such a basepoint preservation condition only for elements of the form $x \triangleright y_{0}$. Thus Sets $_{*}(Y,-)$ can't be a right adjoint for $-\triangleright Y$, and as shown by Item 3 of Proposition 4.4.1.1.7, no functor can. ${ }^{17}$

00EY 4.4.2 The Right Internal Hom of Pointed Sets

Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00EZ Definition 4.4.2.1.1. The right internal Hom of pointed sets is the functor

$$
[-,-]_{\text {Sets }_{*}}^{D}: \text { Sets }_{*}^{\mathrm{op}} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

defined as the composition

$$
\text { Sets }_{*}^{\mathrm{op}} \times \text { Sets }_{*} \xrightarrow{\text { 忘 } \times i d} \text { Sets }^{\mathrm{op}} \times \text { Sets }_{*} \xrightarrow{\pitchfork} \text { Sets }_{*},
$$

where:

- 忘: Sets ${ }_{*} \rightarrow$ Sets is the forgetful functor from pointed sets to sets.
- $\pitchfork:$ Sets $^{\text {op }} \times$ Sets $_{*} \rightarrow$ Sets $_{*}$ is the cotensor functor of Item 1 of Proposition 4.2.2.1.4.

Proof. For a proof that $[-,-]_{\text {Sets }}$ is indeed the right internal Hom of Sets $_{*}$ with respect to the right tensor product of pointed sets, see Item 2 of Proposition 4.4.1.1.7.

00F0 Remark 4.4.2.1.2. We have

$$
[-,-]_{\text {Sets }_{*}}^{\triangleleft}=[-,-]_{\text {Sets }_{*}}^{\triangleright} .
$$

$00 F 1$ Remark 4.4.2.1.3. The right internal Hom of pointed sets satisfies the following universal property:

$$
\operatorname{Sets}_{*}(X \triangleright Y, Z) \cong \operatorname{Sets}_{*}\left(Y,[X, Z]_{\text {Sets }_{*}}^{\triangleright}\right)
$$

That is to say, the following data are in bijection:

[^38]1. Pointed maps $f: X \triangleright Y \rightarrow Z$.
2. Pointed maps $f: Y \rightarrow[X, Z]_{\text {Sets }_{*}}^{\triangleright}$.

00F2 Remark 4.4.2.1.4. In detail, the right internal Hom of (X, x_{0}) and $\left(Y, y_{0}\right)$ is the pointed set $\left([X, Y]_{\text {Sets }_{*}}^{\triangleright},\left[\left(y_{0}\right)_{x \in X}\right]\right)$ consisting of

- The Underlying Set. The set $[X, Y]_{\text {Sets }_{*}}^{\perp}$ defined by

$$
\begin{aligned}
{[X, Y]_{\text {Sets }_{*}}^{\triangleright} } & \stackrel{\text { def }}{=}|X| \pitchfork Y \\
& \cong \bigwedge_{x \in X}\left(Y, y_{0}\right),
\end{aligned}
$$

where $|X|$ denotes the underlying set of $\left(X, x_{0}\right)$;

- The Underlying Basepoint. The point $\left[\left(y_{0}\right)_{x \in X}\right]$ of $\bigwedge_{x \in X}\left(Y, y_{0}\right)$.
$00 F 3$ Proposition 4.4.2.1.5. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
$00 F 4$ 1. Functoriality. The assignments $X, Y,(X, Y) \mapsto[X, Y]_{\text {Sets }_{*}}^{\triangleright}$ define functors

$$
\begin{aligned}
& {[X,-]_{\text {Sets }_{*}}^{\square}: \text { Sets }_{*} \rightarrow \text { Sets }_{*},} \\
& {[-, Y]_{\text {Sets }_{*}}^{\triangleright}: \text { Setss }_{*}^{\text {op }} \rightarrow \text { Sets }_{*},} \\
& {\left[-{ }_{1},-2\right]_{\text {Sets }_{*}}^{\triangleright}: \text { Sets }_{*}^{\text {op }} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*} .}
\end{aligned}
$$

In particular, given pointed maps

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(A, a_{0}\right), \\
& g:\left(Y, y_{0}\right) \rightarrow\left(B, b_{0}\right),
\end{aligned}
$$

the induced map

$$
[f, g]_{\text {Sets }_{*}}^{\triangleright}:[A, Y]_{\text {Sets }_{*}}^{\triangleright} \rightarrow[X, B]_{\text {Sets }_{*}}^{\triangleright}
$$

is given by

$$
[f, g]_{\text {Sets }_{*}}^{\triangleright}\left(\left[\left(y_{a}\right)_{a \in A}\right]\right) \stackrel{\text { def }}{=}\left[\left(g\left(y_{f(x)}\right)\right)_{x \in X}\right]
$$

for each $\left[\left(y_{a}\right)_{a \in A}\right] \in[A, Y]_{\text {Sets }_{*}}^{\triangleright}$.
2. Adjointness I. We have an adjunction
witnessed by a bijection of sets

$$
\operatorname{Hom}_{\text {ets }_{*}}(X \triangleright Y, Z) \cong \operatorname{Hom}_{\text {Sets }_{*}}\left(Y,[X, Z]_{\text {Sets }_{*}}^{\triangleright}\right)
$$

natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, where $[X, Y]_{\text {Sets* }}^{\triangleright}$ is the pointed set of Definition 4.4.2.1.1.
3. Adjointness II. The functor

$$
-\triangleright Y: \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

does not admit a right adjoint.
Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness I: This is a repetition of Item 2 of Proposition 4.4.1.1.7, and is proved there.
Item 3, Adjointness II: This is a repetition of Item 3 of Proposition 4.4.1.1.7, and is proved there.

00F7 4.4.3 The Right Skew Unit

00F8 Definition 4.4.3.1.1. The right skew unit of the right tensor product of pointed sets is the functor

$$
\mathbb{1}^{\text {Sets }_{*}, \triangleright}: \text { pt } \rightarrow \text { Sets }_{*}
$$

defined by

$$
\mathbb{1}_{\text {Sets }_{*}}^{\perp} \stackrel{\text { def }}{=} S^{0} .
$$

00F9 4.4.4 The Right Skew Associator

$00 F A$ Definition 4.4.4.1.1. The skew associator of the right tensor product of pointed sets is the natural transformation

$$
\alpha^{\text {Sets }_{*}, \triangleright}: \triangleright \circ\left(\mathrm{id}_{\text {Sets }_{*}} \times \triangleright\right) \Longrightarrow \triangleright \circ\left(\triangleright \times \text { id }_{\text {Sets }_{*}}\right) \circ \boldsymbol{\alpha}_{\text {Sets }_{*}, \text { Sets }}^{*}, \text { Sets }{ }_{*}^{*}
$$

as in the diagram

whose component

$$
\alpha_{X, Y, Z}^{\mathrm{Sets}_{*}, \triangleright}: X \triangleright(Y \triangleright Z) \rightarrow(X \triangleright Y) \triangleright Z
$$

at $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by

$$
\begin{aligned}
X \triangleright(Y \triangleright Z) & \stackrel{\text { def }}{=}|X| \odot(Y \triangleright Z) \\
& \stackrel{\text { def }}{=}|X| \odot(|Y| \odot Z) \\
& \cong \bigvee_{x \in X}(|Y| \odot Z) \\
& \cong \bigvee_{x \in X}\left(\bigvee_{y \in Y} Z\right) \\
& \rightarrow \bigvee_{[(x, y)] \in \bigvee_{x \in X} Y} Z \\
& \cong \bigvee Z \\
& \cong(x, y)] \in|X| \odot Y \\
& \cong||X| \odot Y| \odot Z \\
& \xlongequal{\text { def }}|X \triangleright Y| \odot Z \\
& \stackrel{\text { def }}{=}(X \triangleright Y) \triangleright Z
\end{aligned}
$$

where the map

$$
\bigvee_{x \in X}\left(\bigvee_{y \in Y} Z\right) \rightarrow \bigvee_{[(x, y)] \in \bigvee_{x \in X} Y} Z
$$

is given by $[(x,[(y, z)])] \mapsto[([(x, y)], z)]$.
Proof. (Proven below in a bit.)
00FB Remark 4.4.4.1.2. Unwinding the notation for elements, we have

$$
\begin{aligned}
{[(x,[(y, z)])] } & \stackrel{\text { def }}{=}[(x, y \triangleright z)] \\
& \xlongequal[\text { def }]{=} x \triangleright(y \triangleright z)
\end{aligned}
$$

and

$$
\begin{aligned}
{[([(x, y)], z)] } & \stackrel{\text { def }}{=}[(x \triangleright y, z)] \\
& \stackrel{\text { def }}{=}(x \triangleright y) \triangleright z .
\end{aligned}
$$

So, in other words, $\alpha_{X, Y, Z}^{\text {Sets }_{*, \triangleright}}$ acts on elements via

$$
\alpha_{X, Y, Z}^{\text {Sets }_{*}, \triangleright}(x \triangleright(y \triangleright z)) \stackrel{\text { def }}{=}(x \triangleright y) \triangleright z
$$

for each $x \triangleright(y \triangleright z) \in X \triangleright(Y \triangleright Z)$.

00FC Remark 4.4.4.1.3. Taking $y=y_{0}$, we see that the morphism $\alpha_{X, Y, Z}^{\text {Sets }_{*}, \triangleright}$ acts on elements as

$$
\alpha_{X, Y, Z}^{\text {Sets }_{*}, \triangleright}\left(x \triangleright\left(y_{0} \triangleright z\right)\right) \stackrel{\text { def }}{=}\left(x \triangleright y_{0}\right) \triangleright z .
$$

However, by the definition of \triangleright, we have $x \triangleright y_{0}=x^{\prime} \triangleright y_{0}$ for all $x, x^{\prime} \in X$, preventing $\alpha_{X, Y, Z}^{\text {Sets, } \triangleright}$ from being non-invertible.

Proof. Firstly, note that, given $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}^{\left(\text {Sets }_{*}\right) \text {, the }}$ map

$$
\alpha_{X, Y, Z}^{\text {Sets }_{*}, \triangleright}: X \triangleright(Y \triangleright Z) \rightarrow(X \triangleright Y) \triangleright Z
$$

is indeed a morphism of pointed sets, as we have

$$
\alpha_{X, Y, Z}^{\text {Sets }_{*, \triangleright}}\left(x_{0} \triangleright\left(y_{0} \triangleright z_{0}\right)\right)=\left(x_{0} \triangleright y_{0}\right) \triangleright z_{0} .
$$

Next, we claim that $\alpha^{\text {Sets }_{*}, \triangleright}$ is a natural transformation. We need to show that, given morphisms of pointed sets

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(X^{\prime}, x_{0}^{\prime}\right) \\
& g:\left(Y, y_{0}\right) \rightarrow\left(Y^{\prime}, y_{0}^{\prime}\right) \\
& h:\left(Z, z_{0}\right) \rightarrow\left(Z^{\prime}, z_{0}^{\prime}\right)
\end{aligned}
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\alpha^{\text {Sets }_{*}, \triangleright}$ to be a natural transformation. This finishes the proof.

00FD 4.4.5 The Right Skew Left Unitor

00FE Definition 4.4.5.1.1. The skew left unitor of the right tensor product of pointed sets is the natural transformation

$$
\lambda^{\text {Sets }_{*}, \triangleright}: \boldsymbol{\lambda}_{\text {Sets }_{*}}^{\text {Cats }_{2}} \stackrel{\sim}{\Longrightarrow} \triangleright \circ\left(\mathbb{1}^{\text {Sets }_{*}} \times \mathrm{id}_{\text {Sets }_{*}}\right)
$$

whose component

$$
\lambda_{X}^{\text {Sets }_{*}, \triangleright}: X \rightarrow S^{0} \triangleright X
$$

at $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by the composition

$$
\begin{aligned}
X & \rightarrow X \vee X \\
& \cong\left|S^{0}\right| \odot X \\
& \cong S^{0} \triangleright X,
\end{aligned}
$$

where $X \rightarrow X \vee X$ is the map sending X to the second factor of X in $X \vee X$.

Proof. (Proven below in a bit.)
00FF Remark 4.4.5.1.2. In other words, $\lambda_{X}^{\text {Sets }, \triangleright}$ acts on elements as

$$
\lambda_{X}^{\text {Sets } t_{*}, \triangleright}(x) \stackrel{\text { def }}{=}[(1, x)]
$$

i.e. by

$$
\lambda_{X}^{\text {Setts }_{*}, \triangleright}(x) \xlongequal{\text { def }} 1 \triangleright x
$$

for each $x \in X$.
00FG Remark 4.4.5.1.3. The morphism $\lambda_{X}^{\text {Sets }}{ }^{*}, \triangleright$ is non-invertible, as it is non-surjective when viewed as a map of sets, since the elements $0 \triangleright x$ of $S^{0} \triangleright X$ with $x \neq x_{0}$ are outside the image of $\lambda_{X}^{\text {Sets }_{*}, \triangleright}$, which sends x to $1 \triangleright x$.

Proof. Firstly, note that, given $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, the map

$$
\lambda_{X}^{\text {Sets }_{*}, \triangleright}: X \rightarrow S^{0} \triangleright X
$$

is indeed a morphism of pointed sets, as we have

$$
\begin{aligned}
\lambda_{X}^{\text {Sets }_{*}, \triangleright}\left(x_{0}\right) & =1 \triangleright x_{0} \\
& =0 \triangleright x_{0} .
\end{aligned}
$$

Next, we claim that $\lambda^{\text {Sets }_{*}, \triangleright}$ is a natural transformation. We need to show that, given a morphism of pointed sets

$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\lambda^{\text {Sets }_{*}, \triangleright}$ to be a natural transformation. This finishes the proof.

00FH 4.4.6 The Right Skew Right Unitor

00FJ Definition 4.4.6.1.1. The skew right unitor of the right tensor product of pointed sets is the natural transformation
$\rho^{\text {Sets }_{*}, \triangleright}: \triangleright \circ\left(\mathrm{id} \times \mathbb{1}^{\text {Sets }_{*}}\right) \stackrel{\sim}{\Longrightarrow} \rho_{\mathrm{Sets}_{*}}^{\mathrm{Cats}_{2}}$,

whose component

$$
\rho_{X}^{\text {Sets }_{*}, \triangleright}: X \triangleright S^{0} \rightarrow X
$$

at $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by the composition

$$
\begin{aligned}
X \triangleright S^{0} & \cong|X| \odot S^{0} \\
& \cong \bigvee_{x \in X} S^{0} \\
& \rightarrow X
\end{aligned}
$$

where $\bigvee_{x \in X} S^{0} \rightarrow X$ is the map given by

$$
\begin{aligned}
& {[(x, 0)] \mapsto x_{0}} \\
& {[(x, 1)] \mapsto x}
\end{aligned}
$$

Proof. (Proven below in a bit.)
00FK Remark 4.4.6.1.2. In other words, $\rho_{X}^{\text {Sets }_{*}, \triangleright}$ acts on elements as

$$
\begin{aligned}
& \rho_{X}^{\text {Sets }_{*}, \triangleright}(x \triangleright 0) \stackrel{\text { def }}{=} x_{0} \\
& \rho_{X}^{\text {Sets }_{*}, \triangleright}(x \triangleright 1) \stackrel{\text { def }}{=} x
\end{aligned}
$$

for each $x \triangleright 1 \in X \triangleright S^{0}$.
00FL Remark 4.4.6.1.3. The morphism $\rho_{X}^{\text {Sets }_{*}, \triangleright}$ is almost invertible, with its would-be-inverse

$$
\phi_{X}: X \rightarrow X \triangleright S^{0}
$$

given by

$$
\phi_{X}(x) \stackrel{\text { def }}{=} x \triangleright 1
$$

for each $x \in X$. Indeed, we have

$$
\begin{aligned}
{\left[\rho_{X}^{\text {Sets }_{*}, \triangleright} \circ \phi\right](x) } & =\rho_{X}^{\text {Sets }_{*}, \triangleright}(\phi(x)) \\
& =\rho_{X}^{\text {Sets }_{*}, \triangleright}(x \triangleright 1) \\
& =x \\
& =\left[\operatorname{id}_{X}\right](x)
\end{aligned}
$$

so that

$$
\rho_{X}^{\text {Sets }_{*}, \triangleright} \circ \phi=\mathrm{id}_{X}
$$

and

$$
\begin{aligned}
{\left[\phi \circ \rho_{X}^{\text {Sets }_{*}, \triangleright}\right](x \triangleright 1) } & =\phi\left(\rho_{X}^{\text {Sets }_{*}, \triangleright}(x \triangleright 1)\right) \\
& =\phi(x) \\
& =x \triangleright 1 \\
& =\left[\operatorname{id}_{X \triangleright S^{0}}\right](x \triangleright 1),
\end{aligned}
$$

but

$$
\begin{aligned}
{\left[\phi \circ \rho_{X}^{\mathrm{Sets}_{*}, \triangleright}\right](x \triangleright 0) } & =\phi\left(\rho_{X}^{\mathrm{Sets}_{*}, \triangleright}(x \triangleright 0)\right) \\
& =\phi\left(x_{0}\right) \\
& =1 \triangleright x_{0},
\end{aligned}
$$

where $x \triangleright 0 \neq 1 \triangleright x_{0}$. Thus

$$
\phi \circ \rho_{X}^{\text {Sets }_{*}, \triangleright} \stackrel{?}{=} \mathrm{id}_{X \triangleright S^{0}}
$$

holds for all elements in $X \triangleright S^{0}$ except one.
Proof. Firstly, note that, given $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, the map

$$
\rho_{X}^{\operatorname{Sets}_{*}, \triangleright}: X \triangleright S^{0} \rightarrow X
$$

is indeed a morphism of pointed sets as we have

$$
\rho_{X}^{\text {Sets }_{*}, \triangleright}\left(x_{0} \triangleright 0\right)=x_{0} .
$$

Next, we claim that $\rho^{\text {Sets }, \triangleright}$ is a natural transformation. We need to show that, given a morphism of pointed sets

$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and

and hence indeed commutes, showing $\rho^{\text {Sets }}, \downarrow$ to be a natural transformation. This finishes the proof.

00FM 4.4.7 The Diagonal

00FN Definition 4.4.7.1.1. The diagonal of the right tensor product of pointed sets is the natural transformation

$$
\Delta^{\triangleright}: \mathrm{id}_{\mathrm{Sets}_{*}} \Longrightarrow \triangleright \circ \Delta_{\mathrm{Sets}_{*}}^{\mathrm{Cats} 2}
$$

whose component

$$
\Delta_{X}^{\triangleright}:\left(X, x_{0}\right) \rightarrow\left(X \triangleright X, x_{0} \triangleright x_{0}\right)
$$

at $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by

$$
\Delta_{X}^{\triangleright}(x) \stackrel{\text { def }}{=} x \triangleright x
$$

for each $x \in X$.
Proof. Being a Morphism of Pointed Sets: We have

$$
\Delta_{X}^{\triangleright}\left(x_{0}\right) \stackrel{\text { def }}{=} x_{0} \triangleright x_{0}
$$

and thus $\Delta_{X}^{\triangleright}$ is a morphism of pointed sets.
Naturality: We need to show that, given a morphism of pointed sets

$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right),
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing Δ^{\triangleright} to be natural.

4.4.8 The Right Skew Monoidal Structure on Pointed Sets Associated to \triangleright

00FQ Proposition 4.4.8.1.1. The category Sets* admits a right-closed right skew monoidal category structure consisting of

- The Underlying Category. The category Sets* of pointed sets;
- The Right Skew Monoidal Product. The right tensor product functor

$$
\triangleright: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

of Definition 4.4.1.1.1;

- The Right Internal Skew Hom. The right internal Hom functor

$$
[-,-]_{\text {Sets }_{*}}^{\triangleright}: \text { Sets }_{*}^{\text {op }} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

of Definition 4.4.2.1.1;

- The Right Skew Monoidal Unit. The functor

$$
\mathbb{1}^{\text {Sets }_{*}, \triangleright}: \text { pt } \rightarrow \text { Sets }_{*}
$$

of Definition 4.4.3.1.1;

- The Right Skew Associators. The natural transformation
$\alpha^{\text {Sets }_{*}, \triangleright}: \triangleright \circ\left(\operatorname{id}_{\text {Sets }_{*}} \times \triangleright\right) \Longrightarrow \triangleright \circ\left(\triangleright \times \operatorname{id}_{\text {Sets }_{*}}\right) \circ \boldsymbol{\alpha}_{\text {Sets }_{*}, \text { Sets }_{*}, \text { Sets }_{*}}^{\mathrm{Cats},-1}$ of Definition 4.4.4.1.1;
- The Right Skew Left Unitors. The natural transformation

$$
\lambda^{\text {Sets }_{*}, \triangleright}: \lambda_{\text {Sets }_{*}}^{\text {Cats }_{2}} \xlongequal{\sim} \triangleright \circ\left(\mathbb{1}^{\text {Sets }_{*}} \times \operatorname{id}_{\text {Sets }_{*}}\right)
$$

of Definition 4.4.5.1.1;

- The Right Skew Right Unitors. The natural transformation

$$
\rho^{\mathrm{Sets}_{*}, \triangleright}: \triangleright \circ\left(\mathrm{id} \times \mathbb{1}^{\mathrm{Sets}_{*}}\right) \xlongequal{\sim} \boldsymbol{\rho}_{\mathrm{Sets}_{*}}^{\mathrm{Cats}_{2}}
$$

of Definition 4.4.6.1.1.
Proof. The Pentagon Identity: Let $\left(W, w_{0}\right),\left(X, x_{0}\right),\left(Y, y_{0}\right)$ and $\left(Z, z_{0}\right)$
be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the pentagon identity is satisfied.
The Right Skew Left Triangle Identity: Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed
sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes. Thus the left skew triangle identity is satisfied.
The Right Skew Right Triangle Identity: Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets. We have to show that the diagram

$$
X \triangleright\left(Y \triangleright S^{0}\right)^{\substack{\text { id }_{X} \triangleright \rho_{Y}^{\text {Sets }},, \triangleright}}(X \triangleright Y) \triangleright S^{0}
$$

commutes. Indeed, this diagram acts on elements as

and

and hence indeed commutes. Thus the right skew triangle identity is satisfied.
The Right Skew Middle Triangle Identity: Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be
pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes. Thus the right skew triangle identity is satisfied.
The Zig-Zag Identity: We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and

and hence indeed commutes. Thus the zig-zag identity is satisfied.
Right Skew Monoidal Right-Closedness: This follows from Item 2 of Proposition 4.4.1.1.7.

4.4.9 Monoids With Respect to the Right Tensor Product of Pointed Sets

$00 F S$ Proposition 4.4.9.1.1. The category of monoids on $\left(\right.$ Sets $\left._{*}, \triangleright, S^{0}\right)$ is isomorphic to the category of "monoids with right zero" ${ }^{18}$ and morphisms between them.

Proof. Monoids on $\left(\right.$ Sets $\left._{*}, \triangleright, S^{0}\right)$: A monoid on (Sets ${ }_{*}, \triangleright, S^{0}$) consists of:

- The Underlying Object. A pointed set $\left(A, 0_{A}\right)$.
- The Multiplication Morphism. A morphism of pointed sets

$$
\mu_{A}: A \triangleright A \rightarrow A
$$

determining a right bilinear morphism of pointed sets

$$
\begin{aligned}
& A \times A \longrightarrow A \\
& (a, b) \longmapsto a b .
\end{aligned}
$$

- The Unit Morphism. A morphism of pointed sets

$$
\eta_{A}: S^{0} \rightarrow A
$$

picking an element 1_{A} of A.
satisfying the following conditions:

1. Associativity. The diagram

[^39]for each $a \in A$.
2. Left Unitality. The diagram

commutes.
3. Right Unitality. The diagram

commutes.
Being a right-bilinear morphism of pointed sets, the multiplication map satisfies
$$
0_{A} a=0_{A}
$$
for each $a \in A$. Now, the associativity, left unitality, and right unitality conditions act on elements as follows:

1. Associativity. The associativity condition acts as

$(a \triangleright b) \triangleright c$

This gives

$$
(a b) c=a(b c)
$$

for each $a, b, c \in A$.
2. Left Unitality. The left unitality condition acts as

This gives

$$
1_{A} a=a
$$

for each $a \in A$.
3. Right Unitality. The right unitality condition acts:
(a) On $1 \triangleright 0$ as

(b) On $a \triangleright 1$ as

This gives

$$
\begin{aligned}
a 1_{A} & =a \\
a 0_{A} & =0_{A}
\end{aligned}
$$

for each $a \in A$.
Thus we see that monoids with respect to \triangleright are exactly monoids with right zero.
Morphisms of Monoids on (Sets ${ }_{*}, \triangleright, S^{0}$): A morphism of monoids on $\left(\right.$ Sets $\left._{*}, \triangleright, S^{0}\right)$ from $\left(A, \mu_{A}, \eta_{A}, 0_{A}\right)$ to $\left(B, \mu_{B}, \eta_{B}, 0_{B}\right)$ is a morphism of pointed sets

$$
f:\left(A, 0_{A}\right) \rightarrow\left(B, 0_{B}\right)
$$

satisfying the following conditions:

1. Compatibility With the Multiplication Morphisms. The diagram

commutes.
2. Compatibility With the Unit Morphisms. The diagram

commutes.
These act on elements as

and

and

giving

$$
\begin{gathered}
f(a b)=f(a) f(b), \\
f\left(0_{A}\right)=0_{B}, \\
f\left(1_{A}\right)=1_{B},
\end{gathered}
$$

for each $a, b \in A$, which is exactly a morphism of monoids with right zero.
Identities and Composition: Similarly, the identities and composition of Mon $\left(\right.$ Sets $_{*}, \triangleright, S^{0}$) can be easily seen to agree with those of monoids with right zero, which finishes the proof.

00FT 4.5 The Smash Product of Pointed Sets

00FU 4.5.1 Foundations
Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.

00FV Definition 4.5.1.1.1. The smash product of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)^{19}$ is the pointed set $X \wedge Y^{20}$ satisfying the bijection

$$
\operatorname{Sets}_{*}(X \wedge Y, Z) \cong \operatorname{Hom}_{\text {Sets }_{*}}^{\otimes}(X \times Y, Z),
$$

naturally in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\operatorname{Sets}_{*}\right)$.
00FW Remark 4.5.1.1.2. That is to say, the smash product of pointed sets is defined so as to induce a bijection between the following data:

- Pointed maps $f: X \wedge Y \rightarrow Z$.
- Maps of sets $f: X \times Y \rightarrow Z$ satisfying

$$
\begin{aligned}
& f\left(x_{0}, y\right)=z_{0}, \\
& f\left(x, y_{0}\right)=z_{0}
\end{aligned}
$$

for each $x \in X$ and each $y \in Y$.
00FX Remark 4.5.1.1.3. The smash product of pointed sets may be described as follows:

- The smash product of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ is the pair $\left(\left(X \wedge Y, x_{0} \wedge y_{0}\right), \iota\right)$ consisting of
- A pointed set $\left(X \wedge Y, x_{0} \wedge y_{0}\right)$;
- A bilinear morphism of pointed sets $\iota:\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow$ $X \wedge Y$;
satisfying the following universal property:
(UP) Given another such pair $\left(\left(Z, z_{0}\right), f\right)$ consisting of
* A pointed $\operatorname{set}\left(Z, z_{0}\right)$;
* A bilinear morphism of pointed sets $f:\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \rightarrow$ $X \wedge Y ;$
there exists a unique morphism of pointed sets $X \wedge Y \xrightarrow{\exists!} Z$ making the diagram

commute.

[^40]00FY Construction 4.5.1.1.4. Concretely, the smash product of (X, x_{0}) and $\left(Y, y_{0}\right)$ is the pointed set ($\left.X \wedge Y, x_{0} \wedge y_{0}\right)$ consisting of

- The Underlying Set. The set $X \wedge Y$ defined by

$$
X \wedge Y \cong(X \times Y) / \sim_{R}
$$

where \sim_{R} is the equivalence relation on $X \times Y$ obtained by declaring

$$
\begin{gathered}
\left(x_{0}, y\right) \sim_{R}\left(x_{0}, y^{\prime}\right), \\
\left(x, y_{0}\right) \sim_{R}\left(x^{\prime}, y_{0}\right)
\end{gathered}
$$

for each $x, x^{\prime} \in X$ and each $y, y^{\prime} \in Y$;

- The Basepoint. The element $\left[\left(x_{0}, y_{0}\right)\right]$ of $X \wedge Y$ given by the equivalence class of (x_{0}, y_{0}) under the equivalence relation \sim on $X \times Y$.

Proof. By Item 6 of Proposition 7.5.2.1.3, we have a natural bijection

$$
\operatorname{Sets}_{*}(X \wedge Y, Z) \cong \operatorname{Hom}_{\text {Sets }}^{R}(X \times Y, Z) .
$$

Now, by definition, $\operatorname{Hom}_{\text {Sets }}^{R}(X \times Y, Z)$ is the set

$$
\operatorname{Hom}_{\text {Sets }}^{R}(X \times Y, Z) \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
f \in \operatorname{Hom}_{\text {Sets }}(X \times Y, Z) & \begin{array}{l}
\text { for each } x, y \in X, \text { if } \\
(x, y) \sim_{R}\left(x^{\prime}, y^{\prime}\right), \text { then } \\
f(x, y)=f\left(x^{\prime}, y^{\prime}\right)
\end{array}
\end{array}\right\} .
$$

However, the condition $(x, y) \sim_{R}\left(x^{\prime}, y^{\prime}\right)$ only holds when:

1. We have $x=x^{\prime}$ and $y=y^{\prime}$.
2. The following conditions are satisfied:
(a) We have $x=x_{0}$ or $y=y_{0}$.
(b) We have $x^{\prime}=x_{0}$ or $y^{\prime}=y_{0}$.

So, given $f \in \operatorname{Hom}_{\text {Sets }}(X \times Y, Z)$ with a corresponding $\bar{f}: X \wedge Y \rightarrow Z$, the latter case above implies

$$
\begin{aligned}
f\left(x_{0}, y\right) & =f\left(x, y_{0}\right) \\
& =f\left(x_{0}, y_{0}\right),
\end{aligned}
$$

and since $\bar{f}: X \wedge Y \rightarrow Z$ is a pointed map, we have

$$
\begin{aligned}
f\left(x_{0}, y_{0}\right) & =\bar{f}\left(x_{0}, y_{0}\right) \\
& =z_{0} .
\end{aligned}
$$

Thus the elements f in $\operatorname{Hom}_{\text {Sets }}(X \times Y, Z)$ are precisely those functions $f: X \times Y \rightarrow Z$ satisfying the equalities

$$
\begin{aligned}
& f\left(x_{0}, y\right)=z_{0} \\
& f\left(x, y_{0}\right)=z_{0}
\end{aligned}
$$

for each $x \in X$ and each $y \in Y$, giving an equality

$$
\operatorname{Hom}_{\text {Sets }}^{R}(X \times Y, Z)=\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes}(X \times Y, Z)
$$

of sets, which when composed with our earlier isomorphism

$$
\operatorname{Sets}_{*}(X \wedge Y, Z) \cong \operatorname{Hom}_{\text {Sets }}^{R}(X \times Y, Z)
$$

gives our desired natural bijection, finishing the proof.
00FZ Remark 4.5.1.1.5. It is also somewhat common to write

$$
X \wedge Y \stackrel{\text { def }}{=} \frac{X \times Y}{X \vee Y}
$$

identifying $X \vee Y$ with the subspace $\left(\left\{x_{0}\right\} \times Y\right) \cup\left(X \times\left\{y_{0}\right\}\right)$ of $X \times Y$, and having the quotient be defined by declaring $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ iff we have $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \vee Y$.

00G0 Notation 4.5.1.1.6. We write $x \wedge y$ for the element $[(x, y)]$ of

$$
X \wedge Y \cong X \times Y / \sim
$$

00G1 Remark 4.5.1.1.7. Employing the notation introduced in Notation 4.5.1.1.6, we have

$$
\begin{aligned}
x_{0} \wedge y_{0} & =x \wedge y_{0}, \\
& =x_{0} \wedge y
\end{aligned}
$$

for each $x \in X$ and each $y \in Y$, and

$$
\begin{aligned}
& x \wedge y_{0}=x^{\prime} \wedge y_{0} \\
& x_{0} \wedge y=x_{0} \wedge y^{\prime}
\end{aligned}
$$

for each $x, x^{\prime} \in X$ and each $y, y^{\prime} \in Y$.
00G2 Example 4.5.1.1.8. Here are some examples of smash products of pointed sets.
the smash product $X \wedge Y$ is also denoted $X \otimes \mathbb{F}_{1} Y$.

1. Smashing With pt. For any pointed set X, we have isomorphisms of pointed sets

$$
\begin{aligned}
& \mathrm{pt} \wedge X \cong \mathrm{pt} \\
& X \wedge \mathrm{pt} \cong \mathrm{pt}
\end{aligned}
$$

2. Smashing With S^{0}. For any pointed set X, we have isomorphisms of pointed sets

$$
\begin{aligned}
& S^{0} \wedge X \cong X \\
& X \wedge S^{0} \cong X
\end{aligned}
$$

00G5 Proposition 4.5.1.1.9. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.

1. Functoriality. The assignments $X, Y,(X, Y) \mapsto X \wedge Y$ define functors

$$
\begin{gathered}
X \wedge-: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
-\wedge Y: \text { Sets }_{*} \rightarrow \text { Sets }_{*}, \\
-_{1} \wedge-{ }_{2}: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
\end{gathered}
$$

In particular, given pointed maps

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(A, a_{0}\right), \\
& g:\left(Y, y_{0}\right) \rightarrow\left(B, b_{0}\right),
\end{aligned}
$$

the induced map

$$
f \wedge g: X \wedge Y \rightarrow A \wedge B
$$

is given by

$$
[f \wedge g](x \wedge y) \stackrel{\text { def }}{=} f(x) \wedge g(y)
$$

for each $x \wedge y \in X \wedge Y$.
2. Adjointness. We have adjunctions

$$
\begin{array}{r}
\left(X \wedge-\dashv \operatorname{Sets}_{*}(X,-)\right): \quad \operatorname{Sets}_{*}^{\frac{X \wedge-}{\perp} \operatorname{Sets}_{*}(X,-)} \operatorname{Sets}_{*}, \\
\left(-\wedge Y \dashv \operatorname{Sets}_{*}(Y,-)\right): \quad \operatorname{Sets}_{\operatorname{Sets}_{*} \stackrel{-\wedge Y}{\perp} \operatorname{Sets}_{*}(Y,-)} \operatorname{Sets}_{*},
\end{array}
$$

witnessed by bijections
$\operatorname{Homsets}_{*}(X \wedge Y, Z) \cong \operatorname{Homsets}_{*}\left(X, \operatorname{Sets}_{*}(Y, Z)\right)$,
$\operatorname{Homsets}_{*}(X \wedge Y, Z) \cong \operatorname{Hom}_{\operatorname{Sets}_{*}}\left(X, \operatorname{Sets}_{*}(A, Z)\right)$,
natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
3. Enriched Adjointness. We have Sets*-enriched adjunctions

$$
\begin{array}{cc}
\left(X \wedge-\dashv \operatorname{Sets}_{*}(X,-)\right): & \operatorname{Sets}_{*} \stackrel{X \wedge-}{\operatorname{Sets}_{*}(X,-)} \operatorname{Sets}_{*}, \\
\left(-\wedge Y \dashv \operatorname{Sets}_{*}(Y,-)\right): & \operatorname{Sets}_{*} \stackrel{-\wedge Y}{\perp} \operatorname{Sets}_{*},
\end{array}
$$

witnessed by isomorphisms of pointed sets
$\operatorname{Sets}_{*}(X \wedge Y, Z) \cong \boldsymbol{\operatorname { S e t s }}_{*}\left(X, \boldsymbol{\operatorname { S e t s }}_{*}(Y, Z)\right)$,
$\operatorname{Sets}_{*}(X \wedge Y, Z) \cong \boldsymbol{S e t s}_{*}\left(X, \boldsymbol{S e t s}_{*}(A, Z)\right)$,
natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\boldsymbol{S e t s}_{*}\right)$.
4. As a Pushout. We have an isomorphism

$$
X \wedge Y \cong \mathrm{pt} \underset{X \vee Y}{\amalg}(X \times Y), \quad \overbrace{\mathrm{pt}}^{\longleftarrow} \quad \int_{!}^{\ulcorner }
$$

natural in $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, where the pushout is taken in Sets, and the embedding $\iota: X \vee Y \hookrightarrow X \times Y$ is defined following Remark 4.5.1.1.5.
5. Distributivity Over Wedge Sums. We have isomorphisms of pointed sets

$$
\begin{aligned}
& X \wedge(Y \vee Z) \cong(X \wedge Y) \vee(X \wedge Z) \\
& (X \vee Y) \wedge Z \cong(X \wedge Z) \vee(Y \wedge Z)
\end{aligned}
$$

natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
Proof. Item 1, Functoriality: The map $f \wedge g$ comes from Item 4 of Proposition 7.5.2.1.3 via the map

$$
f \wedge g: X \times Y \rightarrow A \wedge B
$$

sending (x, y) to $f(x) \wedge g(y)$, which we need to show satisfies

$$
[f \wedge g](x, y)=[f \wedge g]\left(x^{\prime}, y^{\prime}\right)
$$

for each $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \times Y$ with $(x, y) \sim_{R}\left(x^{\prime}, y^{\prime}\right)$, where \sim_{R} is the relation constructing $X \wedge Y$ as

$$
X \wedge Y \cong(X \times Y) / \sim_{R}
$$

in Construction 4.5.1.1.4. The condition defining \sim is that at least one of the following conditions is satisfied:

1. We have $x=x^{\prime}$ and $y=y^{\prime}$;
2. Both of the following conditions are satisfied:
(a) We have $x=x_{0}$ or $y=y_{0}$.
(b) We have $x^{\prime}=x_{0}$ or $y^{\prime}=y_{0}$.

We have five cases:

1. In the first case, we clearly have

$$
[f \wedge g](x, y)=[f \wedge g]\left(x^{\prime}, y^{\prime}\right)
$$

since $x=x^{\prime}$ and $y=y^{\prime}$.
2. If $x=x_{0}$ and $x^{\prime}=x_{0}$, we have

$$
\begin{aligned}
{[f \wedge g]\left(x_{0}, y\right) } & \stackrel{\text { def }}{=} f\left(x_{0}\right) \wedge g(y) \\
& =a_{0} \wedge g(y) \\
& =a_{0} \wedge g\left(y^{\prime}\right) \\
& =f\left(x_{0}\right) \wedge g\left(y^{\prime}\right) \\
& \stackrel{\text { def }}{=}[f \wedge g]\left(x_{0}, y^{\prime}\right)
\end{aligned}
$$

3. If $x=x_{0}$ and $y^{\prime}=y_{0}$, we have

$$
\begin{aligned}
{[f \wedge g]\left(x_{0}, y\right) } & \stackrel{\text { def }}{=} f\left(x_{0}\right) \wedge g(y) \\
& =a_{0} \wedge g(y) \\
& =a_{0} \wedge b_{0} \\
& =f\left(x^{\prime}\right) \wedge b_{0} \\
& =f\left(x^{\prime}\right) \wedge g\left(y_{0}\right) \\
& \stackrel{\text { def }}{=}[f \wedge g]\left(x^{\prime}, y_{0}\right)
\end{aligned}
$$

4. If $y=y_{0}$ and $x^{\prime}=x_{0}$, we have

$$
\begin{aligned}
{[f \wedge g]\left(x, y_{0}\right) } & \stackrel{\text { def }}{=} f(x) \wedge g\left(y_{0}\right) \\
& =f(x) \wedge b_{0} \\
& =a_{0} \wedge b_{0} \\
& =a_{0} \wedge g\left(y^{\prime}\right) \\
& =f\left(x_{0}\right) \wedge g\left(y^{\prime}\right) \\
& \stackrel{\text { def }}{=}[f \wedge g]\left(x_{0}, y^{\prime}\right)
\end{aligned}
$$

5. If $y=y_{0}$ and $y^{\prime}=y_{0}$, we have

$$
\begin{aligned}
{[f \wedge g]\left(x, y_{0}\right) } & \stackrel{\text { def }}{=} f(x) \wedge g\left(y_{0}\right) \\
& =f(x) \wedge b_{0} \\
& =f\left(x^{\prime}\right) \wedge b_{0} \\
& =f(x) \wedge g\left(y_{0}\right) \\
& \stackrel{\text { def }}{=}[f \wedge g]\left(x^{\prime}, y_{0}\right)
\end{aligned}
$$

Thus $f \wedge g$ is well-defined. Next, we claim that \wedge preserves identities and composition:

- Preservation of Identities. We have

$$
\begin{aligned}
{\left[\operatorname{id}_{X} \wedge \operatorname{id}_{Y}\right](x \wedge y) } & \stackrel{\text { def }}{=} \operatorname{id}_{X}(x) \wedge \operatorname{id}_{Y}(y) \\
& =x \wedge y \\
& =\left[\operatorname{id}_{X \wedge Y}\right](x \wedge y)
\end{aligned}
$$

for each $x \wedge y \in X \wedge Y$, and thus

$$
\operatorname{id}_{X} \wedge \operatorname{id}_{Y}=\operatorname{id}_{X \wedge Y}
$$

- Preservation of Composition. Given pointed maps

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(X^{\prime}, x_{0}^{\prime}\right), \\
& h:\left(X^{\prime}, x_{0}^{\prime}\right) \rightarrow\left(X^{\prime \prime}, x_{0}^{\prime \prime}\right), \\
& g:\left(Y, y_{0}\right) \rightarrow\left(Y^{\prime}, y_{0}^{\prime}\right), \\
& k:\left(Y^{\prime}, y_{0}^{\prime}\right) \rightarrow\left(Y^{\prime \prime}, y_{0}^{\prime \prime}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
{[(h \circ f) \wedge(k \circ g)](x \wedge y) } & \stackrel{\text { def }}{=} h(f(x)) \wedge k(g(y)) \\
& \stackrel{\text { def }}{=}[h \wedge k](f(x) \wedge g(y)) \\
& \stackrel{\text { def }}{=}[h \wedge k]([f \wedge g](x \wedge y)) \\
& \stackrel{\text { def }}{=}[(h \wedge k) \circ(f \wedge g)](x \wedge y)
\end{aligned}
$$

for each $x \wedge y \in X \wedge Y$, and thus

$$
(h \circ f) \wedge(k \circ g)=(h \wedge k) \circ(f \wedge g)
$$

This finishes the proof.
Item 2, Adjointness: We prove only the adjunction $-\wedge Y \dashv \operatorname{Sets}_{*}(Y,-)$, witnessed by a natural bijection

$$
\operatorname{Hom}_{\text {Sets }_{*}}(X \wedge Y, Z) \cong \operatorname{Hom}_{\text {Sets }_{*}}\left(X, \operatorname{Sets}_{*}(Y, Z)\right)
$$

as the proof of the adjunction $X \wedge-\dashv \operatorname{Sets}_{*}(X,-)$ is similar. We claim we have a bijection

$$
\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes}(X \times Y, Z) \cong \operatorname{Homsets}_{*}\left(X, \operatorname{Sets}_{*}(Y, Z)\right)
$$

natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, impliying the desired adjunction. Indeed, this bijection is a restriction of the bijection

$$
\operatorname{Sets}(X \times Y, Z) \cong \operatorname{Sets}(X, \operatorname{Sets}(Y, Z))
$$

of Item 2 of Proposition 2.1.3.1.2:

- A map

$$
\xi: X \times Y \rightarrow Z
$$

in $\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes}(X \times Y, Z)$ gets sent to the pointed map

$$
\begin{aligned}
\xi^{\dagger}:\left(X, x_{0}\right) & \rightarrow\left(\operatorname{Sets}_{*}(Y, Z), \Delta_{z_{0}}\right), \\
x & \longmapsto\left(\xi_{x}^{\dagger}: Y \rightarrow Z\right),
\end{aligned}
$$

where $\xi_{x}^{\dagger}: Y \rightarrow Z$ is the map defined by

$$
\xi_{x}^{\dagger}(y) \stackrel{\text { def }}{=} \xi(x, y)
$$

for each $y \in Y$, where:

- The map ξ^{\dagger} is indeed pointed, as we have

$$
\begin{aligned}
\xi_{x_{0}}^{\dagger}(y) & \stackrel{\text { def }}{=} \xi\left(x_{0}, y\right) \\
& \stackrel{\text { def }}{=} z_{0}
\end{aligned}
$$

for each $y \in Y$. Thus $\xi_{x_{0}}^{\dagger}=\Delta_{z_{0}}$ and ξ^{\dagger} is pointed.

- The map ξ_{x}^{\dagger} indeed lies in $\operatorname{Sets}_{*}(Y, Z)$, as we have

$$
\begin{aligned}
\xi_{x}^{\dagger}\left(y_{0}\right) & \stackrel{\text { def }}{=} \xi\left(x, y_{0}\right) \\
& \stackrel{\text { def }}{=} z_{0} .
\end{aligned}
$$

- Conversely, a map

$$
\begin{aligned}
\xi:\left(X, x_{0}\right) & \rightarrow\left(\operatorname{Sets}_{*}(Y, Z), \Delta_{z_{0}}\right), \\
x & \longmapsto\left(\xi_{x}: Y \rightarrow Z\right),
\end{aligned}
$$

in $\operatorname{Hom}_{\text {Sets }_{*}}\left(X, \operatorname{Sets}_{*}(Y, Z)\right)$ gets sent to the map

$$
\xi^{\dagger}: X \times Y \rightarrow Z
$$

defined by

$$
\xi^{\dagger}(x, y) \stackrel{\text { def }}{=} \xi_{x}(y)
$$

for each $(x, y) \in X \times Y$, which indeed lies in $\operatorname{Hom}_{\text {Sets }}^{*}(X \times Y, Z)$, as:

- Left Bilinearity. We have

$$
\begin{aligned}
\xi^{\dagger}\left(x_{0}, y\right) & \stackrel{\text { def }}{=} \xi_{x_{0}}(y) \\
& \stackrel{\text { def }}{=} \Delta_{z_{0}}(y) \\
& \stackrel{\text { def }}{=} z_{0}
\end{aligned}
$$

for each $y \in Y$, since $\xi_{x_{0}}=\Delta_{z_{0}}$ as ξ is assumed to be a pointed map.

- Right Bilinearity. We have

$$
\begin{aligned}
\xi^{\dagger}\left(x, y_{0}\right) & \stackrel{\text { def }}{=} \xi_{x}\left(y_{0}\right) \\
& \stackrel{\text { def }}{=} z_{0}
\end{aligned}
$$

for each $x \in X$, since $\xi_{x} \in \operatorname{Sets}_{*}(Y, Z)$ is a morphism of pointed sets.

This finishes the proof.
Item 3, Enriched Adjointness: This follows from Item 2 and ?? of ??.
Item 4, As a Pushout: Following the description of Remark 2.2.4.1.2, we have

$$
\text { pt } \amalg X \vee Y(X \times Y) \cong(\operatorname{pt} \times(X \times Y)) / \sim,
$$

where \sim identifies the elemenet \star in pt with all elements of the form $\left(x_{0}, y\right)$ and $\left(x, y_{0}\right)$ in $X \times Y$. Thus Item 4 of Proposition 7.5.2.1.3 coupled with Remark 4.5.1.1.7 then gives us a well-defined map

$$
\text { pt } \amalg X \vee Y(X \times Y) \rightarrow X \wedge Y
$$

via $[(\star,(x, y))] \mapsto x \wedge y$, with inverse

$$
X \wedge Y \rightarrow \operatorname{pt} \amalg X \vee Y(X \times Y)
$$

given by $x \wedge y \mapsto[(\star,(x, y))]$.
Item 5, Distributivity Over Wedge Sums: This follows from Proposition 4.5.9.1.1, ?? of ??, and the fact that \vee is the coproduct in Sets ${ }_{*}$ (Definition 3.3.3.1.1).

4.5.2 The Internal Hom of Pointed Sets

Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00GC Definition 4.5.2.1.1. The internal Hom ${ }^{21}$ of pointed sets from $\left(X, x_{0}\right)$ to $\left(Y, y_{0}\right)$ is the pointed set Sets $_{*}\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right)^{22}$ consisting of:

[^41]- The Underlying Set. The set $\operatorname{Sets}_{*}\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right)$ of morphisms of pointed sets from $\left(X, x_{0}\right)$ to $\left(Y, y_{0}\right)$.
- The Basepoint. The element

$$
\Delta_{y_{0}}:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$

of $\operatorname{Sets}_{*}\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right)$ given by

$$
\Delta_{y_{0}}(x) \stackrel{\text { def }}{=} y_{0}
$$

for each $x \in X$.
Proof. For a proof that Sets ${ }_{*}$ is indeed the internal Hom of Sets ${ }_{*}$ with respect to the smash product of pointed sets, see Item 2 of Proposition 4.5.1.1.9.

00GD Proposition 4.5.2.1.2. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets.
00GE 1. Functoriality. The assignments $X, Y,(X, Y) \mapsto \mathbf{S e t s}_{*}(X, Y)$ define functors

$$
\begin{gathered}
\operatorname{Sets}_{*}(X,-): \operatorname{Sets}_{*} \rightarrow \operatorname{Sets}_{*}, \\
\operatorname{Sets}_{*}(-, Y): \operatorname{Sets}_{*}^{\text {op }} \rightarrow \operatorname{Sets}_{*}, \\
\operatorname{Sets}_{*}(-1,-2): \operatorname{Sets}_{*}^{\text {op }} \times \operatorname{Sets}_{*} \rightarrow \operatorname{Sets}_{*} .
\end{gathered}
$$

In particular, given pointed maps

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(A, a_{0}\right), \\
& g:\left(Y, y_{0}\right) \rightarrow\left(B, b_{0}\right),
\end{aligned}
$$

the induced map

$$
\boldsymbol{\operatorname { S e t s }}_{*}(f, g): \boldsymbol{\operatorname { S e t s }}_{*}(A, Y) \rightarrow \boldsymbol{\operatorname { S e t s }}_{*}(X, B)
$$

is given by

$$
\left[\operatorname{Sets}_{*}(f, g)\right](\phi) \stackrel{\text { def }}{=} g \circ \phi \circ f
$$

for each $\phi \in \operatorname{Sets}_{*}(A, Y)$.
2. Adjointness. We have adjunctions

$$
\begin{aligned}
& \left(X \wedge-\dashv \operatorname{Sets}_{*}(X,-)\right): \quad \operatorname{Sets}_{\operatorname{Sets}_{*}(X,-)}^{\stackrel{X \wedge-}{\perp}} \operatorname{Sets}_{*}, \\
& \left(-\wedge Y \dashv \operatorname{Sets}_{*}(Y,-)\right): \quad \operatorname{Sets}_{*} \stackrel{-\wedge Y}{\operatorname{Sets}_{*}(Y,-)} \operatorname{Sets}_{*},
\end{aligned}
$$

witnessed by bijections

$$
\begin{aligned}
& \operatorname{Hom}_{\text {Sets }_{*}}(X \wedge Y, Z) \cong \operatorname{Hom}_{\text {Sets }_{*}}\left(X, \operatorname{Sets}_{*}(Y, Z)\right), \\
& \operatorname{Hom}_{\text {Sets }_{*}}(X \wedge Y, Z) \cong \operatorname{Hom}_{\text {Sets }_{*}}\left(X, \operatorname{Sets}_{*}(A, Z)\right), \\
& \text { natural in }\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\operatorname{Sets}_{*}\right) .
\end{aligned}
$$

00GG
3. Enriched Adjointness. We have Sets ${ }_{*}$-enriched adjunctions

$$
\begin{array}{rr}
\left(X \wedge-\dashv \operatorname{Sets}_{*}(X,-)\right): & \operatorname{Sets}_{*} \stackrel{X \wedge-}{\operatorname{Sets}_{*}(X,-)} \operatorname{Sets}_{*}, \\
\left(-\wedge Y \dashv \operatorname{Sets}_{*}(Y,-)\right): & \operatorname{Sets}_{\underset{\operatorname{Sets}_{*}(Y,-)}{\perp}}^{\stackrel{-\wedge Y}{\perp}} \operatorname{Sets}_{*},
\end{array}
$$

witnessed by isomorphisms of pointed sets
$\operatorname{Sets}_{*}(X \wedge Y, Z) \cong \operatorname{Sets}_{*}\left(X, \operatorname{Sets}_{*}(Y, Z)\right)$,
$\operatorname{Sets}_{*}(X \wedge Y, Z) \cong \operatorname{Sets}_{*}\left(X, \operatorname{Sets}_{*}(A, Z)\right)$,
natural in $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.
Proof. Item 1, Functoriality: This follows from Item 1 of Proposition 2.3.5.1.2 and from the equalities

$$
\begin{aligned}
& g \circ \Delta_{y_{0}}=\Delta_{z_{0}}, \\
& \Delta_{y_{0}} \circ f=\Delta_{y_{0}}
\end{aligned}
$$

for morphisms $f:\left(K, k_{0}\right) \rightarrow\left(X, x_{0}\right)$ and $g:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$, which guarantee pre- and postcomposition by morphisms of pointed sets to also be morphisms of pointed sets.
Item 2, Adjointness: This is a repetition of Item 2 of Proposition 4.5.1.1.9, and is proved there.
Item 3, Enriched Adjointness: This is a repetition of Item 3 of Proposition 4.5.1.1.9, and is proved there.

00GH
 4.5.3 The Monoidal Unit

00GJ Definition 4.5.3.1.1. The monoidal unit of the smash product of pointed sets is the functor

$$
\mathbb{1}^{\text {Sets }_{*}}: \mathrm{pt} \rightarrow \text { Sets }_{*}
$$

defined by

$$
\mathbb{1}_{\text {Sets }_{*}} \xlongequal{\text { def }} S^{0} .
$$

00GK
 4.5.4 The Associator

00GL Definition 4.5.4.1.1. The associator of the smash product of pointed sets is the natural isomorphism

$$
\alpha^{\text {Sets }_{*}}: \wedge \circ\left(\wedge \times \operatorname{id}_{\text {Sets }_{*}}\right) \xlongequal{\sim} \wedge \circ\left(\operatorname{id}_{\text {Sets }_{*}} \times \wedge\right) \circ \boldsymbol{\alpha}_{\text {Sets }_{*}, \text { Sets }_{*}, \text { Sets }_{*}}^{\text {Cat }^{\prime}}
$$

as in the diagram

whose component

$$
\alpha_{X, Y, Z}^{\mathrm{Sett}_{*}}:(X \wedge Y) \wedge Z \xlongequal{\leftrightarrows} X \wedge(Y \wedge Z)
$$

at $\left(X, x_{0}\right),\left(Y, y_{0}\right),\left(Z, z_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by

$$
\alpha_{X, Y, Z}^{\text {Sets. }}((x \wedge y) \wedge z) \stackrel{\text { def }}{=} x \wedge(y \wedge z)
$$

for each $(x \wedge y) \wedge z \in(X \wedge Y) \wedge Z$.
Proof. Well-Definedness: Let $[((x, y), z)]=\left[\left(\left(x^{\prime}, y^{\prime}\right), z^{\prime}\right)\right]$ be an element in $(X \wedge Y) \wedge Z$. Then either:

1. We have $x=x^{\prime}, y=y^{\prime}$, and $z=z^{\prime}$.
2. Both of the following conditions are satisfied:
(a) We have $x=x_{0}$ or $y=y_{0}$ or $z=z_{0}$.
(b) We have $x^{\prime}=x_{0}$ or $y^{\prime}=y_{0}$ or $z^{\prime}=z_{0}$.

In the first case, $\alpha_{X, Y, Z}^{\text {Sets* }}$ clearly sends both elements to the same element in $X \wedge(Y \wedge Z)$. Meanwhile, in the latter case both elements are equal to the basepoint $\left(x_{0} \wedge y_{0}\right) \wedge z_{0}$ of $(X \wedge Y) \wedge Z$, which gets sent to the basepoint $x_{0} \wedge\left(y_{0} \wedge z_{0}\right)$ of $X \wedge(Y \wedge Z)$.
Being a Morphism of Pointed Sets: As just mentioned, we have

$$
\alpha_{X, Y, Z}^{\text {Sets }_{*}}\left(\left(x_{0} \wedge y_{0}\right) \wedge z_{0}\right) \stackrel{\text { def }}{=} x_{0} \wedge\left(y_{0} \wedge z_{0}\right),
$$

and thus $\alpha_{X, Y, Z}^{\text {Sets. }}$ is a morphism of pointed sets.

Invertibility: Clearly, the inverse of $\alpha_{X, Y, Z}^{\text {Sets }_{*}}$ is given by the morphism

$$
\alpha_{X, Y, Z}^{\text {Sets }_{*},-1}: X \wedge(Y \wedge Z) \xrightarrow{\cong}(X \wedge Y) \wedge Z
$$

defined by

$$
\alpha_{X, Y, Z}^{\text {Sets }_{*},-1}(x \wedge(y \wedge z)) \stackrel{\text { def }}{=}(x \wedge y) \wedge z
$$

for each $x \wedge(y \wedge z) \in X \wedge(Y \wedge Z)$.
Naturality: We need to show that, given morphisms of pointed sets

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(X^{\prime}, x_{0}^{\prime}\right) \\
& g:\left(Y, y_{0}\right) \rightarrow\left(Y^{\prime}, y_{0}^{\prime}\right) \\
& h:\left(Z, z_{0}\right) \rightarrow\left(Z^{\prime}, z_{0}^{\prime}\right)
\end{aligned}
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\alpha^{\text {Sets* }_{*}}$ to be a natural transformation.
Being a Natural Isomorphism: Since $\alpha^{\text {Sets }_{*}}$ is natural and $\alpha^{\text {Sets }_{*},-1}$ is a componentwise inverse to $\alpha^{\text {Sets }_{*}}$, it follows from Item 2 of Proposition 8.8.6.1.2 that $\alpha^{\text {Sets }_{*},-1}$ is also natural. Thus $\alpha^{\text {Sets }_{*}}$ is a natural isomorphism.

00GM 4.5.5 The Left Unitor

00GN Definition 4.5.5.1.1. The left unitor of the smash product of pointed sets is the natural isomorphism
$\lambda^{\text {Sets }_{*}}: \wedge \circ\left(\mathbb{1}^{\text {Sets }_{*}} \times\right.$ id $\left._{\text {Sets }_{*}}\right) \xlongequal{\sim} \boldsymbol{\lambda}_{\text {Sets }_{*}}^{\text {Cats }_{2}}$

whose component

$$
\lambda_{X}^{\text {Sets }_{*}}: S^{0} \wedge X \xrightarrow{\cong} X
$$

at $X \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by

$$
\begin{aligned}
& 0 \wedge x \mapsto x_{0} \\
& 1 \wedge x \mapsto x
\end{aligned}
$$

Proof. Well-Definedness: Let $[(x, y)]=\left[\left(x^{\prime}, y^{\prime}\right)\right]$ be an element in $S^{0} \wedge X$. Then either:

1. We have $x=x^{\prime}$ and $y=y^{\prime}$.
2. Both of the following conditions are satisfied:
(a) We have $x=0$ or $y=x_{0}$.
(b) We have $x^{\prime}=0$ or $y^{\prime}=x_{0}$.

In the first case, $\lambda_{X}^{\text {Sets* }}$ clearly sends both elements to the same element in X. Meanwhile, in the latter case both elements are equal to the basepoint $0 \wedge x_{0}$ of $S^{0} \wedge X$, which gets sent to the basepoint x_{0} of X. Being a Morphism of Pointed Sets: As just mentioned, we have

$$
\lambda_{X}^{\text {Sets }_{*}}\left(0 \wedge x_{0}\right) \stackrel{\text { def }}{=} x_{0}
$$

and thus $\lambda_{X}^{\text {Sets }_{*}}$ is a morphism of pointed sets.
Invertibility: The inverse of $\lambda_{X}^{\text {Sets }_{*}}$ is the morphism

$$
\lambda_{X}^{\text {Sets }_{*},-1}: X \xrightarrow{\cong} S^{0} \wedge X
$$

defined by

$$
\lambda_{X}^{\text {Sets }_{*},-1}(x) \stackrel{\text { def }}{=} 1 \wedge x
$$

for each $x \in X$. Indeed:

- Invertibility I. We have

$$
\begin{aligned}
{\left[\lambda_{X}^{\text {Sets }_{*},-1} \circ \lambda_{X}^{\text {Sets }_{*}}\right](0 \wedge x) } & =\lambda_{X}^{\text {Sets }_{*},-1}\left(\lambda_{X}^{\text {Sets }_{*}}(0 \wedge x)\right) \\
& =\lambda_{X}^{\text {Sets }_{*},-1}\left(x_{0}\right) \\
& =1 \wedge x_{0} \\
& =0 \wedge x
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\lambda_{X}^{\mathrm{Sets}_{*},-1} \circ \lambda_{X}^{\mathrm{Sets}_{*}}\right](1 \wedge x) } & =\lambda_{X}^{\mathrm{Sets}_{*},-1}\left(\lambda_{X}^{\mathrm{Sets}_{*}}(1 \wedge x)\right) \\
& =\lambda_{X}^{\mathrm{Sets}_{*},-1}(x) \\
& =1 \wedge x
\end{aligned}
$$

for each $x \in X$, and thus we have

$$
\lambda_{X}^{\text {Sets }_{*},-1} \circ \lambda_{X}^{\text {Sets }_{*}}=\operatorname{id}_{S^{0} \wedge X}
$$

- Invertibility II. We have

$$
\begin{aligned}
{\left[\lambda_{X}^{\text {Sets }_{*}} \circ \lambda_{X}^{\text {Sets }_{*},-1}\right](x) } & =\lambda_{X}^{\text {Sets }_{*}}\left(\lambda_{X}^{\text {Sets }_{*},-1}(x)\right) \\
& =\lambda_{X}^{\text {Sets }_{*},-1}(1 \wedge x) \\
& =x
\end{aligned}
$$

for each $x \in X$, and thus we have

$$
\lambda_{X}^{\text {Sets }_{*}} \circ \lambda_{X}^{\text {Sets }_{*},-1}=\operatorname{id}_{X}
$$

This shows $\lambda_{X}^{\text {Sets* }}$ to be invertible.
Naturality: We need to show that, given a morphism of pointed sets

$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and

and hence indeed commutes, showing $\lambda^{\text {Sets }_{*}}$ to be a natural transformation.
Being a Natural Isomorphism: Since $\lambda^{\text {Sets }_{*}}$ is natural and $\lambda^{\text {Sets }_{*},-1}$ is a componentwise inverse to $\lambda^{\text {Sets }_{*}}$, it follows from Item 2 of Proposition 8.8.6.1.2 that $\lambda^{\text {Sets }_{*},-1}$ is also natural. Thus $\lambda^{\text {Sets }_{*}}$ is a natural isomorphism.

00GP 4.5.6 The Right Unitor

00GQ Definition 4.5.6.1.1. The right unitor of the smash product of pointed sets is the natural isomorphism

$$
\rho^{\text {Sets }_{*}}: \wedge \circ\left(\mathrm{id} \times \mathbb{1}^{\text {Sets }_{*}}\right) \stackrel{\sim}{\Longrightarrow} \rho_{\mathrm{Sets}_{*}}^{\mathrm{Cats}_{2}},
$$

whose component

$$
\rho_{X}^{\text {Sets }_{*}}: X \wedge S^{0} \xrightarrow{\cong} X
$$

at $X \in \mathrm{Obj}\left(\mathrm{Sets}_{*}\right)$ is given by

$$
\begin{aligned}
& x \wedge 0 \mapsto x_{0} \\
& x \wedge 1 \mapsto x
\end{aligned}
$$

Proof. Well-Definedness: Let $[(x, y)]=\left[\left(x^{\prime}, y^{\prime}\right)\right]$ be an element in $X \wedge S^{0}$. Then either:

1. We have $x=x^{\prime}$ and $y=y^{\prime}$.
2. Both of the following conditions are satisfied:
(a) We have $x=x_{0}$ or $y=0$.
(b) We have $x^{\prime}=x_{0}$ or $y^{\prime}=0$.

In the first case, $\rho_{X}^{\text {Sets }_{*}}$ clearly sends both elements to the same element in X. Meanwhile, in the latter case both elements are equal to the basepoint $x_{0} \wedge 0$ of $X \wedge S^{0}$, which gets sent to the basepoint x_{0} of X.
Being a Morphism of Pointed Sets: As just mentioned, we have

$$
\rho_{X}^{\text {Sets }_{*}}\left(x_{0} \wedge 0\right) \stackrel{\text { def }}{=} x_{0},
$$

and thus $\rho_{X}^{\text {Sets }_{*}}$ is a morphism of pointed sets.
Invertibility: The inverse of $\rho_{X}^{\text {Sets }_{*}}$ is the morphism

$$
\rho_{X}^{\text {Sets }_{*},-1}: X \xrightarrow{\cong} X \wedge S^{0}
$$

defined by

$$
\rho_{X}^{\text {Sets }_{*},-1}(x) \stackrel{\text { def }}{=} x \wedge 1
$$

for each $x \in X$. Indeed:

- Invertibility I. We have

$$
\begin{aligned}
{\left[\rho_{X}^{\text {Sets }_{*},-1} \circ \rho_{X}^{\text {Sets }_{*}}\right](x \wedge 0) } & =\rho_{X}^{\text {Sets }_{*},-1}\left(\rho_{X}^{\text {Sets }_{*}}(x \wedge 0)\right) \\
& =\rho_{X}^{\text {Sets }_{*},-1}\left(x_{0}\right) \\
& =x_{0} \wedge 1 \\
& =x \wedge 0
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\rho_{X}^{\text {Sets }_{*},-1} \circ \rho_{X}^{\text {Sets }_{*}}\right](x \wedge 1) } & =\rho_{X}^{\text {Sets }_{*},-1}\left(\rho_{X}^{\text {Sets }_{*}}(x \wedge 1)\right) \\
& =\rho_{X}^{\text {Sets }_{*},-1}(x) \\
& =x \wedge 1
\end{aligned}
$$

for each $x \in X$, and thus we have

$$
\rho_{X}^{\text {Sets }_{*},-1} \circ \rho_{X}^{\text {Sets }_{*}}=\operatorname{id}_{X \wedge S^{0}}
$$

- Invertibility II. We have

$$
\begin{aligned}
{\left[\rho_{X}^{\text {Sets }_{*}} \circ \rho_{X}^{\text {Sets }_{*},-1}\right](x) } & =\rho_{X}^{\text {Sets }_{*}}\left(\rho_{X}^{\text {Sets }_{*},-1}(x)\right) \\
& =\rho_{X}^{\operatorname{Sets}_{*},-1}(x \wedge 1) \\
& =x
\end{aligned}
$$

for each $x \in X$, and thus we have

$$
\rho_{X}^{\text {Sets }_{*}} \circ \rho_{X}^{\text {Sets }_{*},-1}=\operatorname{id}_{X}
$$

This shows $\rho_{X}^{\text {Setss }_{*}}$ to be invertible.
Naturality: We need to show that, given a morphism of pointed sets

$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and

and hence indeed commutes, showing $\rho^{\text {Sets }_{*}}$ to be a natural transformation.
Being a Natural Isomorphism: Since $\rho^{\text {Sets }_{*}}$ is natural and $\rho^{\text {Sets }_{*},-1}$ is a componentwise inverse to $\rho^{\text {Sets }_{*}}$, it follows from Item 2 of Proposition 8.8.6.1.2 that $\rho^{\text {Sets }_{*},-1}$ is also natural. Thus $\rho^{\text {Sets }_{*}}$ is a natural isomorphism.

00GR 4.5.7 The Symmetry

00GS
Definition 4.5.7.1.1. The symmetry of the smash product of pointed sets is the natural isomorphism

$$
\sigma^{\text {Sets }_{*}}: \wedge \stackrel{\sim}{\Longrightarrow} \wedge \circ \sigma_{\text {Sets }_{*}, \text { Sets }_{*},}^{\text {Cats }_{2},} \begin{gathered}
\text { Sets }_{*} \times \text { Sets }_{*} \xrightarrow{\wedge} \boldsymbol{\sigma}_{\text {Sets }_{*}, \text { Sets }_{*}}^{\text {Cats }_{2}} \text { Sets }_{*}, \\
\operatorname{Sets}_{*} \times \text { Sets }_{*}
\end{gathered}
$$

whose component

$$
\sigma_{X, Y}^{\text {Sets }_{*}}: X \wedge Y \stackrel{\cong}{\cong} Y \wedge X
$$

at $X, Y \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is defined by

$$
\sigma_{X, Y}^{\text {Sets* }}(x \wedge y) \stackrel{\text { def }}{=} y \wedge x
$$

for each $x \wedge y \in X \wedge Y$.
Proof. Well-Definedness: Let $[(x, y)]=\left[\left(x^{\prime}, y^{\prime}\right)\right]$ be an element in $X \wedge Y$. Then either:

1. We have $x=x^{\prime}$ and $y=y^{\prime}$.
2. Both of the following conditions are satisfied:
(a) We have $x=x_{0}$ or $y=y_{0}$.
(b) We have $x^{\prime}=x_{0}$ or $y^{\prime}=y_{0}$.

In the first case, $\sigma_{X}^{\text {Sets }_{*}}$ clearly sends both elements to the same element in X. Meanwhile, in the latter case both elements are equal to the basepoint $x_{0} \wedge y_{0}$ of $X \wedge Y$, which gets sent to the basepoint $y_{0} \wedge x_{0}$ of $Y \wedge X$.
Being a Morphism of Pointed Sets: As just mentioned, we have

$$
\sigma_{X}^{\text {Sets }_{*}}\left(x_{0} \wedge y_{0}\right) \stackrel{\text { def }}{=} y_{0} \wedge x_{0}
$$

and thus $\sigma_{X}^{\text {Sets }_{*}}$ is a morphism of pointed sets.
Invertibility: Clearly, the inverse of $\sigma_{X, Y}^{\text {Sets* }}$ is given by the morphism

$$
\sigma_{X, Y}^{\mathrm{Sets}_{*},-1}: Y \wedge X \xrightarrow{\cong} X \wedge Y
$$

defined by

$$
\sigma_{X, Y}^{\text {Sets }_{*},-1}(y \wedge x) \stackrel{\text { def }}{=} x \wedge y
$$

for each $y \wedge x \in Y \wedge X$.
Naturality: We need to show that, given morphisms of pointed sets

$$
\begin{aligned}
& f:\left(X, x_{0}\right) \rightarrow\left(A, a_{0}\right), \\
& g:\left(Y, y_{0}\right) \rightarrow\left(B, b_{0}\right)
\end{aligned}
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\sigma^{\text {Sets }_{*}}$ to be a natural transformation.
Being a Natural Isomorphism: Since $\sigma^{\text {Sets }_{*}}$ is natural and $\sigma^{\text {Sets }_{*},-1}$ is a componentwise inverse to $\sigma^{\text {Sets }_{*}}$, it follows from Item 2 of Proposition 8.8.6.1.2 that $\sigma^{\text {Sets }_{*},-1}$ is also natural. Thus $\sigma^{\text {Sets }_{*}}$ is a natural isomorphism.

00GT 4.5.8 The Diagonal

00GU Definition 4.5.8.1.1. The diagonal of the smash product of pointed sets is the natural transformation

$$
\Delta^{\wedge}: \operatorname{id}_{\mathrm{Sets}_{*}} \Longrightarrow \wedge \circ \Delta_{\mathrm{Sets}_{*}}^{\mathrm{Cats}_{2}}
$$

whose component

$$
\Delta_{X}^{\wedge}:\left(X, x_{0}\right) \rightarrow\left(X \wedge X, x_{0} \wedge x_{0}\right)
$$

at $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by the composition

$$
\begin{aligned}
\left(X, x_{0}\right) & \xrightarrow{\Delta_{X}^{\wedge}}\left(X \times X,\left(x_{0}, x_{0}\right)\right) \\
& \longrightarrow\left((X \times X) / \sim,\left[\left(x_{0}, x_{0}\right)\right]\right) \\
& \xlongequal{\text { def }}\left(X \wedge X, x_{0} \wedge x_{0}\right)
\end{aligned}
$$

in Sets ${ }_{*}$, and thus by

$$
\Delta_{X}^{\wedge}(x) \stackrel{\text { def }}{=} x \wedge x
$$

for each $x \in X$.
Proof. Being a Morphism of Pointed Sets: We have

$$
\Delta_{X}^{\wedge}\left(x_{0}\right) \stackrel{\text { def }}{=} x_{0} \wedge x_{0}
$$

and thus Δ_{X} is a morphism of pointed sets.

Naturality: We need to show that, given a morphism of pointed sets

$$
f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)
$$

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing Δ^{\wedge} to be natural.
00 GV Proposition 4.5.8.1.2. Let $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$.

00GY

1. Monoidality. The diagonal

$$
\Delta^{\wedge}: \mathrm{id}_{\text {Sets }_{*}} \Longrightarrow \wedge \circ \Delta_{\text {Sets }_{*}}^{\mathrm{Cats}_{2}}
$$

of the smash product of pointed sets is a monoidal natural transformation:
(a) Compatibility With Strong Monoidality Constraints. For each $\left(X, x_{0}\right),\left(Y, y_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$, the diagram

commutes.
(b) Compatibility With Strong Unitality Constraints. The diagrams

commute, i.e. we have

$$
\begin{aligned}
\Delta_{S^{0}}^{\wedge} & =\lambda_{S^{0}}^{\text {Sets }_{*},-1} \\
& =\rho_{S^{0}}^{\mathrm{Sets}_{*},-1}
\end{aligned}
$$

where we recall that the equalities

$$
\begin{aligned}
\lambda_{S^{0}}^{\text {Sets }_{*}} & =\rho_{S^{0}}^{\text {Sets }_{*}}, \\
\lambda_{S^{0}}^{\text {Sets }_{*},-1} & =\rho_{S^{0}}^{\text {Sets }_{*},-1}
\end{aligned}
$$

are always true in any monoidal category by ?? of ??.
2. The Diagonal of the Unit. The component

$$
\Delta_{S^{0}}^{\wedge}: S^{0} \cong S^{0} \wedge S^{0}
$$

of Δ^{\wedge} at S^{0} is an isomorphism.
Proof. Item 1, Monoidality: We claim that Δ^{\wedge} is indeed monoidal:

1. Item 1a: Compatibility With Strong Monoidality Constraints: We need to show that the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes.
2. Item 1b: Compatibility With Strong Unitality Constraints: As shown in the proof of Definition 4.5.5.1.1, the inverse of the left unitor of Sets* with respect to to the smash product of pointed sets at $\left(X, x_{0}\right) \in \operatorname{Obj}\left(\right.$ Sets $\left._{*}\right)$ is given by

$$
\lambda_{X}^{\text {Sets }_{*},-1}(x) \stackrel{\text { def }}{=} 1 \wedge x
$$

for each $x \in X$, so when $X=S^{0}$, we have

$$
\begin{aligned}
& \lambda_{S^{0}}^{\text {Sets }_{*},-1}(0) \stackrel{\text { def }}{=} 1 \wedge 0, \\
& \lambda_{S^{0}}^{\text {Sets }},-1 \\
& (1) \stackrel{\text { def }}{=} 1 \wedge 1
\end{aligned}
$$

But since $1 \wedge 0=0 \wedge 0$ and

$$
\begin{aligned}
& \Delta_{S^{0}}(0) \stackrel{\text { def }}{=} 0 \wedge 0 \\
& \Delta_{S^{0}}(1) \stackrel{\text { def }}{=} 1 \wedge 1
\end{aligned}
$$

it follows that we indeed have $\Delta_{S^{0}}^{\wedge}=\lambda_{S^{0}}^{\text {Sets }_{*},-1}$.
This finishes the proof.
Item 2, The Diagonal of the Unit: This follows from Item 1 and the invertibility of the left/right unitor of Sets $*_{*}$ with respect to \wedge, proved in the proof of Definition 4.5.5.1.1 for the left unitor or the proof of Definition 4.5.6.1.1 for the right unitor.

4.5.9 The Monoidal Structure on Pointed Sets Associated

00 H 1 Proposition 4.5.9.1.1. The category Sets* admits a closed monoidal category with diagonals structure consisting of

- The Underlying Category. The category Sets* of pointed sets;
- The Monoidal Product. The smash product functor

$$
\wedge: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

of Item 1 of Proposition 4.5.1.1.9;

- The Internal Hom. The internal Hom functor

$$
\text { Sets }_{*}: \text { Sets }_{*}^{\text {op }} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

of Item 1 of Proposition 4.5.2.1.2;

- The Monoidal Unit. The functor

$$
\mathbb{1}^{\text {Sets }_{*}}: \text { pt } \rightarrow \text { Sets }_{*}
$$

of Definition 4.5.3.1.1;

- The Associators. The natural isomorphism

$$
\alpha^{\text {Sets }_{*}}: \wedge \circ\left(\wedge \times \operatorname{id}_{\text {Sets }_{*}}\right) \stackrel{\sim}{\Longrightarrow} \wedge \circ\left(\operatorname{id}_{\text {Sets }_{*}} \times \wedge\right) \circ \boldsymbol{\alpha}_{\text {Sets }_{*}, \text { Sets }_{*}, \text { Sets }_{*}}^{\text {Cats }}
$$

of Definition 4.5.4.1.1;

- The Left Unitors. The natural isomorphism

$$
\lambda^{\text {Sets }_{*}}: \wedge \circ\left(\mathbb{1}^{\text {Sets }_{*}} \times \text { id }_{\text {Sets }_{*}}\right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\lambda}_{\text {Sets }_{*}}^{\mathrm{Cats}_{2}}
$$

of Definition 4.5.5.1.1;

- The Right Unitors. The natural isomorphism

$$
\rho^{\text {Sets }_{*}}: \wedge \circ\left(\text { id } \times \mathbb{1}^{\text {Sets }_{*}}\right) \stackrel{\sim}{\Longrightarrow} \rho_{\text {Sets }_{*}}^{\mathrm{Cats}_{2}}
$$

of Definition 4.5.6.1.1;

- The Symmetry. The natural isomorphism

$$
\sigma^{\text {Sets }_{*}}: \wedge \xlongequal{\sim} \wedge \circ \sigma_{\text {Sets }_{*}, \text { Sets }_{*}}^{\mathrm{Cats}_{2}}
$$

of Definition 4.5.7.1.1;

- The Diagonals. The monoidal natural transformation

$$
\Delta^{\wedge}: \text { idsets }_{\text {Sets }_{*}} \Longrightarrow \wedge \circ \Delta_{\text {Sets }_{*}}^{\mathrm{Cats}_{2}}
$$

of Definition 4.5.8.1.1.
Proof. The Pentagon Identity: Let $\left(W, w_{0}\right),\left(X, x_{0}\right),\left(Y, y_{0}\right)$ and $\left(Z, z_{0}\right)$ be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the pentagon identity is satisfied.
The Triangle Identity: Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and

and thus we see that the triangle identity is satisfied.
The Left Hexagon Identity: Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$, and $\left(Z, z_{0}\right)$ be pointed
sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the left hexagon identity is satisfied.
The Right Hexagon Identity: Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$, and $\left(Z, z_{0}\right)$ be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the right hexagon identity is satisfied.
Monoidal Closedness: This follows from Item 2 of Proposition 4.5.1.1.9. Existence of Monoidal Diagonals: This follows from Items 1 and 2 of Proposition 4.5.8.1.2.

4.5.10 Universal Properties of the Smash Product of Pointed

Theorem 4.5.10.1.1. The symmetric monoidal structure on the category Sets $*_{*}$ is uniquely determined by the following requirements:

1. Two-Sided Preservation of Colimits. The smash product

$$
\wedge: \text { Sets }_{*} \times \text { Sets }_{*} \rightarrow \text { Sets }_{*}
$$

of Sets* preserves colimits separately in each variable.
2. The Unit Object Is S^{0}. We have $\mathbb{1}_{\text {Sets }_{*}}=S^{0}$.

Proof. Omitted.

4.5.11 Universal Properties of the Smash Product of Pointed Sets II

00H5 Theorem 4.5.11.1.1. The symmetric monoidal structure on the category Sets* is the unique symmetric monoidal structure on Sets* such that the free pointed set functor

$$
(-)^{+}: \text {Sets } \rightarrow \text { Sets }_{*}
$$

admits a symmetric monoidal structure.
Proof. See [GGN15, Theorem 5.1].

4.5.12 Monoids With Respect to the Smash Product of Pointed Sets

 00H600 H 7 Proposition 4.5 .12 .1 .1 . The category of monoids on (Sets ${ }_{*}, \wedge, S^{0}$) is isomorphic to the category of monoids with zero and morphisms between them.

Proof. See ??, in particular ??, ??, and ??.
4.5.13 Comonoids With Respect to the Smash Product of Pointed Sets

00H9
Proposition 4.5.13.1.1. The symmetric monoidal functor

$$
\left((-)^{+},(-)^{+, \times},(-)_{\mathbb{I}}^{+, \times}\right):(\text {Sets }, \times, \mathrm{pt}) \rightarrow\left(\operatorname{Sets}_{*}, \wedge, S^{0}\right)
$$

of Item 4 of Proposition 3.4.1.1.2 lifts to an equivalence of categories

$$
\begin{aligned}
& \operatorname{CoMon}\left(\operatorname{Sets}_{*}, \wedge, S^{0}\right) \stackrel{\text { eq }}{\cong} \operatorname{CoMon}(\operatorname{Sets}, \times, \mathrm{pt}) \\
& \cong \operatorname{Sets}
\end{aligned}
$$

Proof. See [PS19, Lemma 2.4].

00HA

4.6 Miscellany

00HB 4.6.1 The Smash Product of a Family of Pointed Sets
Let $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$ be a family of pointed sets.
00 HC Definition 4.6 .1 .1 .1 . The smash product of the family $\left\{\left(X_{i}, x_{0}^{i}\right)\right\}_{i \in I}$ is the pointed set $\bigwedge_{i \in I} X_{i}$ consisting of:

- The Underlying Set. The set $\bigwedge_{i \in I} X_{i}$ defined by

$$
\bigwedge_{i \in I} X_{i} \stackrel{\text { def }}{=}\left(\prod_{i \in I} X_{i}\right) / \sim,
$$

where \sim is the equivalence relation on $\prod_{i \in I} X_{i}$ obtained by declaring

$$
\left(x_{i}\right)_{i \in I} \sim\left(y_{i}\right)_{i \in I}
$$

if there exist $i_{0} \in I$ such that $x_{i_{0}}=x_{0}$ and $y_{i_{0}}=y_{0}$, for each $\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$.

- The Basepoint. The element $\left[\left(x_{0}\right)_{i \in I}\right]$ of $\bigwedge_{i \in I} X_{i}$.

Appendices

4.A Other Chapters

Sets
6. Constructions With Relations

1. Sets
2. Constructions With Sets
3. Pointed Sets
4. Tensor Products of Pointed Sets

Relations

5. Relations
6. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Part II

Relations

Chapter 5

Relations

00HD This chapter contains some material about relations. Notably, we discuss and explore:

1. The definition of relations (Section 5.1.1).
2. How relations may be viewed as decategorification of profunctors (Section 5.1.2).
3. The various kind of categories that relations form, namely:
(a) A category (Section 5.2.1).
(b) A monoidal category (Section 5.2.2).
(c) A 2-category (Section 5.2.3).
(d) A double category (Section 5.2.4).
4. The various categorical properties of the 2-category of relations, including:
(a) The self-duality of Rel and Rel (Proposition 5.3.1.1.1).
(b) Identifications of equivalences and isomorphisms in Rel with bijections (Proposition 5.3.2.1.1).
(c) Identifications of adjunctions in Rel with functions (Proposition 5.3.3.1.1).
(d) Identifications of monads in Rel with preorders (Proposition 5.3.4.1.1).
(e) Identifications of comonads in Rel with subsets (Proposition 5.3.5.1.1).
(f) A description of the monoids and comonoids in Rel with respect to the Cartesian product (Remark 5.3.6.1.1).
(g) Characterisations of monomorphisms in Rel (Proposition 5.3.7.1.1).
(h) Characterisations of 2-categorical notions of monomorphisms in Rel (Proposition 5.3.8.1.1).
(i) Characterisations of epimorphisms in Rel (Proposition 5.3.9.1.1).
(j) Characterisations of 2-categorical notions of epimorphisms in Rel (Proposition 5.3.10.1.1).
(k) The partial co/completeness of Rel (Proposition 5.3.11.1.1).
(1) The existence or non-existence of Kan extensions and Kan lifts in Rel (Remark 5.3.12.1.1).
(m) The closedness of Rel (Proposition 5.3.13.1.1).
(n) The identification of Rel with the category of free algebras of the powerset monad on Sets (Proposition 5.3.14.1.1).
5. A description of two notions of "skew composition" on $\operatorname{Rel}(A, B)$, giving rise to left and right skew monoidal structures analogous to the left skew monoidal structure on $\operatorname{Fun}(C, \mathcal{D})$ appearing in the definition of a relative monad (Sections 5.4 and 5.5).

Contents

5.1 Relations.. 228
5.1.1 Foundations.. 228
5.1.2 Relations as Decategorifications of Profunc-
tors... 231
5.1.3 Examples of Relations................................ 233
5.1.4 Functional Relations.................................. 235
5.1.5 Total Relations... 236
5.2 Categories of Relations..................................... 236
5.2.1 The Category of Relations......................... 236
5.2.2 The Closed Symmetric Monoidal Category
5.2.3 The 2-Category of Relations 242
5.2.4 The Double Category of Relations................ 242
5.3 Properties of the 2-Category of Relations....... 249
5.3.1 Self-Duality ... 249
5.3.2 Isomorphisms and Equivalences in Rel......... 250
5.3.3 Adjunctions in Rel.................................... 251
5.3.4 Monads in Rel.. 253
5.3.5 Comonads in Rel....................................... 254
5.3.6 Co/Monoids in Rel.................................... 255
5.3.7 Monomorphisms in Rel............................... 255
5.3.8 2-Categorical Monomorphisms in Rel........... 258
5.3.9 Epimorphisms in Rel 262
5.3.10 2-Categorical Epimorphisms in Rel 264
5.3.11 Co/Limits in Rel 268
5.3.12 Kan Extensions and Kan Lifts in Rel 268
5.3.13 Closedness of Rel 268
5.3.14 Rel as a Category of Free Algebras. 269
5.4 The Left Skew Monoidal Structure on $\operatorname{Rel}(A, B)$269
5.4.1 The Left Skew Monoidal Product 269
5.4.2 The Left Skew Monoidal Unit 270
5.4.3 The Left Skew Associators 270
5.4.4 The Left Skew Left Unitors. 271
5.4.5 The Left Skew Right Unitors. 272
5.4.6 The Left Skew Monoidal Structure on $\operatorname{Rel}(A, B)$2735.5 The Right Skew Monoidal Structure on $\operatorname{Rel}(A, B)$274
5.5.1 The Right Skew Monoidal Product 274
5.5.2 The Right Skew Monoidal Unit 275
5.5.3 The Right Skew Associators. 275
5.5.4 The Right Skew Left Unitors. 276
5.5.5 The Right Skew Right Unitors 276
5.5.6 The Right Skew Monoidal Structure on $\operatorname{Rel}(A, B)$277
5.A Other Chapters 278

00HE
 5.1 Relations

00HF

5.1.1 Foundations

Let A and B be sets.
$00 H G$ Definition 5.1.1.1.1. A relation $R: A \nrightarrow B$ from A to $B^{1,2}$ is a subset R of $A \times B$.

00 HH Notation 5.1.1.1.2. Let $R: A \rightarrow B$ be a relation.

1. Given elements $a \in A$ and $b \in B$ and a relation $R: A \nrightarrow B$, we write $a \sim_{R} b$ to mean $(a, b) \in R$.

[^42]2. Viewing R as a function
$$
R: A \times B \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$
via Remark 5.1.1.1.4, we write R_{a}^{b} for the value of R at $(a, b) .{ }^{3}$
00 HL Definition 5.1.1.1.3. Let A and B be sets.

1. The set of relations from A to B is the set $\operatorname{Rel}(A, B)$ defined
$00 H Q$ Remark 5.1.1.1.4. A relation from A to B is equivalently: ${ }^{5}$
2. A subset of $A \times B$.
3. A function from $A \times B$ to $\{$ true, false $\}$.
[^43]That is: we have bijections of sets

$$
\begin{aligned}
\operatorname{Rel}(A, B) & \stackrel{\text { def }}{=} \mathcal{P}(A \times B), \\
& \cong \operatorname{Hom}_{\text {Sets }}(A \times B,\{\text { true false }\}), \\
& \cong \operatorname{Hom}_{\text {Sets }}(A, \mathcal{P}(B)), \\
& \cong \operatorname{Hom}_{\text {Sets }}(B, \mathcal{P}(A)), \\
& \cong \operatorname{Hom}_{\text {Pocont }}^{\text {cocos }}(\mathcal{P}(A), \mathcal{P}(B)),
\end{aligned}
$$

natural in $A, B \in \operatorname{Obj}($ Sets $)$.
Proof. We claim that Items 1 to 5 are indeed equivalent:

- Item $1 \Longleftrightarrow$ Item 2: This is a special case of Items 1 and 2 of Proposition 2.4.3.1.6.
- Item 2 \Longleftrightarrow Item 3: This follows from the bijections

$$
\begin{aligned}
\operatorname{Hom}_{\text {Sets }}(A \times B,\{\text { true, false }\}) & \cong \operatorname{Hom}_{\text {Sets }}\left(A, \operatorname{Hom}_{\text {Sets }}(B,\{\text { true }, \text { false }\})\right) \\
& \cong \operatorname{Hom}_{\text {Sets }}(A, \mathcal{P}(B)),
\end{aligned}
$$

where the last bijection is from Items 1 and 2 of Proposition 2.4.3.1.6.

- Item $2 \Longleftrightarrow$ Item 4: This follows from the bijections
$\operatorname{Homsets}(A \times B,\{$ true, false $\}) \cong \operatorname{Homsets}\left(B, \operatorname{Hom}_{\text {Sets }}(B,\{\right.$ true, false $\left.\})\right)$

$$
\cong \operatorname{Hom}_{\mathrm{Sets}}(B, \mathcal{P}(A)),
$$

where again the last bijection is from Items 1 and 2 of Proposition 2.4.3.1.6.

- Item $2 \Longleftrightarrow$ Item 5: This follows from the universal property of the powerset $\mathcal{P}(X)$ of a set X as the free cocompletion of X via the characteristic embedding

$$
\chi_{X}: X \hookrightarrow \mathcal{P}(X)
$$

of X into $\mathcal{P}(X)$, Item 2 of Proposition 2.4.3.1.8.
In particular, the bijection

$$
\operatorname{Rel}(A, B) \cong \operatorname{Hom}_{\mathrm{Pos}}^{\text {cocont }}(\mathcal{P}(A), \mathcal{P}(B))
$$

is given by taking a relation $R: A \nrightarrow B$, passing to its associated function $f: A \rightarrow \mathcal{P}(B)$ from A to B and then extending f from A to all of $\mathcal{P}(A)$ by taking its left Kan extension along χ_{X}.

This coincides with the direct image function $f_{*}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ of Definition 2.4.4.1.1.

This finishes the proof.
00HW
Proposition 5.1.1.1.5. Let A and B be sets and let $R, S: A \rightarrow B$ be relations.

1. End Formula for the Set of Inclusions of Relations. We have

$$
\operatorname{Hom}_{\operatorname{Rel}(A, B)}(R, S) \cong \int_{a \in A} \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, S_{a}^{b}\right) .
$$

Proof. Item 1, End Formula for the Set of Inclusions of Relations: Unwinding the expression inside the end on the right hand side, we have $\int_{a \in A} \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, S_{a}^{b}\right) \cong \begin{cases}\mathrm{pt} & \text { if, for each } a \in A \text { and each } b \in B, \\ \text { we have } \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, S_{a}^{b}\right) \cong \mathrm{pt} \\ \emptyset & \text { otherwise. }\end{cases}$

Since we have $\operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, S_{a}^{b}\right)=\{$ true $\} \cong \mathrm{pt}$ exactly when $R_{a}^{b}=$ false or $R_{a}^{b}=S_{a}^{b}=$ true, we get

$$
\int_{a \in A} \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, S_{a}^{b}\right) \cong \begin{cases}\mathrm{pt} & \text { if, for each } a \in A \text { and each } b \in B, \\ \text { if } a \sim_{R} b, \text { then } a \sim_{S} b, \\ \emptyset & \text { otherwise } .\end{cases}
$$

On the left hand-side, we have

$$
\operatorname{Hom}_{\operatorname{Rel}(A, B)}(R, S) \cong \begin{cases}\mathrm{pt} & \text { if } R \subset S \\ \emptyset & \text { otherwise } .\end{cases}
$$

It is then clear that the conditions for each set to evaluate to pt (up to isomorphism) are equivalent, implying that those two sets are isomorphic.

00HY 5.1.2 Relations as Decategorifications of Profunctors

$00 H Z$ Remark 5.1.2.1.1. The notion of a relation is a decategorification of that of a profunctor:

1. A profunctor from a category \mathcal{C} to a category \mathcal{D} is a functor

$$
\mathfrak{p}: \mathcal{D}^{\mathrm{op}} \times C \rightarrow \text { Sets. }
$$

2. A relation on sets A and B is a function

$$
R: A \times B \rightarrow\{\text { true, false }\} .
$$

Here we notice that:

- The opposite X^{op} of a set X is itself, as $(-)^{\mathrm{op}}:$ Cats \rightarrow Cats restricts to the identity endofunctor on Sets.
- The values that profunctors and relations take are analogous:
- A category is enriched over the category

$$
\text { Sets } \stackrel{\text { def }}{=} \text { Cats }_{0}
$$

of sets, with profunctors taking values on it.

- A set is enriched over the set

$$
\{\text { true }, \text { false }\} \stackrel{\text { def }}{=} \text { Cats }_{-1}
$$

of classical truth values, with relations taking values on it.
00J0 Remark 5.1.2.1.2. Extending Remark 5.1.2.1.1, the equivalent definitions of relations in Remark 5.1.1.1.4 are also related to the corresponding ones for profunctors (??), which state that a profunctor $\mathfrak{p}: C \rightarrow \mathcal{D}$ is equivalently:

00J1 1. A functor $\mathfrak{p}: \mathcal{D}^{\mathrm{op}} \times \mathcal{C} \rightarrow$ Sets.
2. A functor $\mathfrak{p}: C \rightarrow \operatorname{PSh}(\mathcal{D})$.
3. A functor $\mathfrak{p}: \mathcal{D}^{\mathrm{op}} \rightarrow \operatorname{Fun}(C$, Sets $)$.
4. A colimit-preserving functor $\mathfrak{p}: \operatorname{PSh}(C) \rightarrow \operatorname{PSh}(\mathcal{D})$.

Indeed:

- The equivalence between Items 1 and 2 (and also that between Items 1 and 3, which is proved analogously) is an instance of currying, both for profunctors as well as for relations, using the isomorphisms

$$
\begin{aligned}
\operatorname{Sets}(A \times B,\{\operatorname{true}, \text { false }\}) & \cong \operatorname{Sets}(A, \operatorname{Sets}(B,\{\text { true }, \text { false }\})) \\
& \cong \operatorname{Sets}(A, \mathcal{P}(B)) \\
\operatorname{Fun}\left(\mathcal{D}^{\mathrm{op}} \times \mathcal{D}, \operatorname{Sets}\right) & \cong \operatorname{Fun}\left(C, \operatorname{Fun}\left(\mathcal{D}^{\mathrm{op}}, \text { Sets }\right)\right) \\
& \cong \operatorname{Fun}(C, \operatorname{PSh}(\mathcal{D}))
\end{aligned}
$$

- The equivalence between Items 1 and 3 follows from the universal properties of:
no value at all).
- The powerset $\mathcal{P}(X)$ of a set X as the free cocompletion of X via the characteristic embedding

$$
\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)
$$

of X into $\mathcal{P}(X)$, as stated and proved in Item 2 of Proposition 2.4.3.1.8.

- The category $\operatorname{PSh}(C)$ of presheaves on a category C as the free cocompletion of C via the Yoneda embedding

$$
\text { よ: } C \hookrightarrow \operatorname{PSh}(C)
$$

of C into $\operatorname{PSh}(C)$, as stated and proved in ?? of ??.

00J5 5.1.3 Examples of Relations

00J6 Example 5.1.3.1.1. The trivial relation on A and B is the relation $\sim_{\text {triv }}$ defined equivalently as follows:

1. As a subset of $A \times B$, we have

$$
\sim_{\text {triv }} \stackrel{\text { def }}{=} A \times B
$$

2. As a function from $A \times B$ to $\{$ true, false $\}$, the relation $\sim_{\text {triv }}$ is the constant function

$$
\Delta_{\text {true }}: A \times B \rightarrow\{\text { true }, \text { false }\}
$$

from $A \times B$ to $\{$ true, false $\}$ taking the value true.
3. As a function from A to $\mathcal{P}(B)$, the relation $\sim_{\text {triv }}$ is the function

$$
\Delta_{\text {true }}: A \rightarrow \mathcal{P}(B)
$$

defined by

$$
\Delta_{\text {true }}(a) \stackrel{\text { def }}{=} B
$$

for each $a \in A$.
4. Lastly, it is the unique relation R on A and B such that we have $a \sim_{R} b$ for each $a \in A$ and each $b \in B$.

00J7 Example 5.1.3.1.2. The cotrivial relation on A and B is the relation $\sim_{\text {cotriv }}$ defined equivalently as follows:

1. As a subset of $A \times B$, we have

$$
\sim_{\text {cotriv }} \stackrel{\text { def }}{=} \emptyset
$$

2. As a function from $A \times B$ to $\{$ true, false $\}$, the relation $\sim_{\text {cotriv }}$ is the constant function

$$
\Delta_{\text {false }}: A \times B \rightarrow\{\text { true }, \text { false }\}
$$

from $A \times B$ to $\{$ true, false $\}$ taking the value false.
3. As a function from A to $\mathcal{P}(B)$, the relation $\sim_{\text {cotriv }}$ is the function

$$
\Delta_{\text {false }}: A \rightarrow \mathcal{P}(B)
$$

defined by

$$
\Delta_{\mathrm{false}}(a) \stackrel{\text { def }}{=} \emptyset
$$

for each $a \in A$.
4. Lastly, it is the unique relation R on A and B such that we have $a \nsim_{R} b$ for each $a \in A$ and each $b \in B$.

00J8 Example 5.1.3.1.3. The characteristic relation

$$
\chi_{X}(-1,-2): X \times X \rightarrow\{\mathrm{t}, \mathrm{f}\}
$$

on X of Item 3 of Definition 2.4.1.1.1, defined by

$$
\chi_{X}(x, y) \xlongequal{\text { def }} \begin{cases}\text { true } & \text { if } x=y, \\ \text { false } & \text { if } x \neq y\end{cases}
$$

for each $x, y \in X$, is another example of a relation.
00J9 Example 5.1.3.1.4. Square roots are examples of relations:

1. Square Roots in \mathbb{R}. The assignment $x \mapsto \sqrt{x}$ defines a relation

$$
\sqrt{-}: \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})
$$

from \mathbb{R} to itself, being explicitly given by

$$
\sqrt{x} \stackrel{\text { def }}{=} \begin{cases}0 & \text { if } x=0 \\ \{-\sqrt{|x|}, \sqrt{|x|}\} & \text { if } x \neq 0\end{cases}
$$

2. Square Roots in \mathbb{Q}. Square roots in \mathbb{Q} are similar to square roots in \mathbb{R}, though now additionally it may also occur that $\sqrt{-}: \mathbb{Q} \rightarrow \mathcal{P}(\mathbb{Q})$ sends a rational number x (e.g. 2) to the empty set (since $\sqrt{2} \notin \mathbb{Q}$).

00JA Example 5.1.3.1.5. The complex logarithm defines a relation

$$
\log : \mathbb{C} \rightarrow \mathcal{P}(\mathbb{C})
$$

from \mathbb{C} to itself, where we have

$$
\log (a+b i) \stackrel{\text { def }}{=}\left\{\log \left(\sqrt{a^{2}+b^{2}}\right)+i \arg (a+b i)+(2 \pi i) k \mid k \in \mathbb{Z}\right\}
$$

for each $a+b i \in \mathbb{C}$.
00JB Example 5.1.3.1.6. See [Wik24] for more examples of relations, such as antiderivation, inverse trigonometric functions, and inverse hyperbolic functions.

00JC 5.1.4 Functional Relations

Let A and B be sets.
00JD Definition 5.1.4.1.1. A relation $R: A \nrightarrow B$ is functional if, for each $a \in A$, the set $R(a)$ is either empty or a singleton.
00JE Proposition 5.1.4.1.2. Let $R: A \nrightarrow B$ be a relation.

1. Characterisations. The following conditions are equivalent:
(a) The relation R is functional.
(b) We have $R \diamond R^{\dagger} \subset \chi_{B}$.

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed equivalent:

- Item $1 a \Longrightarrow$ Item $1 b$: Let $\left(b, b^{\prime}\right) \in B \times B$. We need to show that

$$
\left[R \diamond R^{\dagger}\right]\left(b, b^{\prime}\right) \preceq_{\{t, f\}} \chi_{B}\left(b, b^{\prime}\right),
$$

i.e. that if there exists some $a \in A$ such that $b \sim_{R^{\dagger}} a$ and $a \sim_{R} b^{\prime}$, then $b=b^{\prime}$. But since $b \sim_{R^{\dagger}} a$ is the same as $a \sim_{R} b$, we have both $a \sim_{R} b$ and $a \sim_{R} b^{\prime}$ at the same time, which implies $b=b^{\prime}$ since R is functional.

- Item $1 b \Longrightarrow$ Item 1a: Suppose that we have $a \sim_{R} b$ and $a \sim_{R} b^{\prime}$ for $b, b^{\prime} \in B$. We claim that $b=b^{\prime}$:

1. Since $a \sim_{R} b$, we have $b \sim_{R^{\dagger}} a$.
2. Since $R \diamond R^{\dagger} \subset \chi_{B}$, we have

$$
\left[R \diamond R^{\dagger}\right]\left(b, b^{\prime}\right) \preceq_{\{t, f\}} \chi_{B}\left(b, b^{\prime}\right),
$$

and since $b \sim_{R^{\dagger}} a$ and $a \sim_{R} b^{\prime}$, it follows that $\left[R \diamond R^{\dagger}\right]\left(b, b^{\prime}\right)=$ true, and thus $\chi_{B}\left(b, b^{\prime}\right)=$ true as well, i.e. $b=b^{\prime}$.

This finishes the proof.

00JJ 5.1.5 Total Relations

Let A and B be sets.
00JK Definition 5.1.5.1.1. A relation $R: A \rightarrow B$ is total if, for each $a \in A$, we have $R(a) \neq \emptyset$.

00JL Proposition 5.1.5.1.2. Let $R: A \nrightarrow B$ be a relation.
00JM 1. Characterisations. The following conditions are equivalent:

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed equivalent:

- Item $1 a \Longrightarrow$ Item $1 b:$ We have to show that, for each $\left(a, a^{\prime}\right) \in A$, we have

$$
\chi_{A}\left(a, a^{\prime}\right) \preceq_{\{\mathrm{t}, \mathrm{f}\}}\left[R^{\dagger} \diamond R\right]\left(a, a^{\prime}\right),
$$

i.e. that if $a=a^{\prime}$, then there exists some $b \in B$ such that $a \sim_{R} b$ and $b \sim_{R^{\dagger}} a^{\prime}$ (i.e. $a \sim_{R} b$ again), which follows from the totality of R.

- Item $1 b \Longrightarrow$ Item 1a: Given $a \in A$, since $\chi_{A} \subset R^{\dagger} \diamond R$, we must have

$$
\{a\} \subset\left[R^{\dagger} \diamond R\right](a),
$$

implying that there must exist some $b \in B$ such that $a \sim_{R} b$ and $b \sim_{R^{\dagger}} a$ (i.e. $a \sim_{R} b$) and thus $R(a) \neq \emptyset$, as $b \in R(a)$.

This finishes the proof.

5.2 Categories of Relations

00JR 5.2.1 The Category of Relations

00JS Definition 5.2.1.1.1. The category of relations is the category Rel where

- Objects. The objects of Rel are sets.
- Morphisms. For each $A, B \in \operatorname{Obj}($ Sets $)$, we have

$$
\operatorname{Rel}(A, B) \stackrel{\text { def }}{=} \operatorname{Rel}(A, B) .
$$

- Identities. For each $A \in \operatorname{Obj}($ Rel $)$, the unit map

$$
\mathbb{1}_{A}^{\mathrm{Rel}}: \mathrm{pt} \rightarrow \operatorname{Rel}(A, A)
$$

of Rel at A is defined by

$$
\mathrm{id}_{A}^{\mathrm{Rel}} \stackrel{\text { def }}{=} \chi_{A}\left(--_{1},-2\right),
$$

where $\chi_{A}(-1,-2)$ is the characteristic relation of A of Item 3 of Definition 2.4.1.1.1.

- Composition. For each $A, B, C \in \operatorname{Obj}(\mathrm{Rel})$, the composition map

$$
\circ_{A, B, C}^{\mathrm{Rel}}: \operatorname{Rel}(B, C) \times \operatorname{Rel}(A, B) \rightarrow \operatorname{Rel}(A, C)
$$

of Rel at (A, B, C) is defined by

$$
S \circ \circ_{A, B, C}^{\mathrm{Rel}} R \stackrel{\text { def }}{=} S \diamond R
$$

for each $(S, R) \in \operatorname{Rel}(B, C) \times \operatorname{Rel}(A, B)$, where $S \diamond R$ is the composition of S and R of Definition 6.3.12.1.1.

5.2.2 The Closed Symmetric Monoidal Category of Relations

00JU 5.2.2.1 The Monoidal Product
00JV Definition 5.2.2.1.1. The monoidal product of Rel is the functor

$$
x: \operatorname{Rel} \times \operatorname{Rel} \rightarrow \operatorname{Rel}
$$

where

- Action on Objects. For each $A, B \in \operatorname{Obj}($ Rel $)$, we have

$$
\times(A, B) \stackrel{\text { def }}{=} A \times B,
$$

where $A \times B$ is the Cartesian product of sets of Definition 2.1.3.1.1.

- Action on Morphisms. For each $(A, C),(B, D) \in \operatorname{Obj}(\operatorname{Rel} \times \operatorname{Rel})$, the action on morphisms

$$
\times_{(A, C),(B, D)}: \operatorname{Rel}(A, B) \times \operatorname{Rel}(C, D) \rightarrow \operatorname{Rel}(A \times C, B \times D)
$$

of \times is given by sending a pair of morphisms (R, S) of the form

$$
\begin{gathered}
R: A \nrightarrow B, \\
S: C \ngtr D
\end{gathered}
$$

to the relation

$$
R \times S: A \times C \nrightarrow B \times D
$$

of Definition 6.3.9.1.1.

00JW 5.2.2.2 The Monoidal Unit

00JX Definition 5.2.2.2.1. The monoidal unit of Rel is the functor

$$
\mathbb{1}^{\mathrm{Rel}}: \mathrm{pt} \rightarrow \operatorname{Rel}
$$

picking the set

$$
\mathbb{1}_{\text {Rel }} \stackrel{\text { def }}{=} \mathrm{pt}
$$

of Rel.

00JY 5.2.2.3 The Associator

Definition 5.2.2.3.1. The associator of Rel is the natural isomorphism

$$
\alpha^{\mathrm{Rel}}: \times \circ((\times) \times \mathrm{id}) \stackrel{\sim}{\Longrightarrow} \times \circ(\mathrm{id} \times(\times)) \circ \boldsymbol{\alpha}_{\text {Rel }}^{\text {Catel,Rel }},
$$

as in the diagram

whose component

$$
\alpha_{A, B, C}^{\mathrm{Rel}}:(A \times B) \times C \nrightarrow A \times(B \times C)
$$

at $A, B, C \in \mathrm{Obj}(\mathrm{Rel})$ is the relation defined by declaring

$$
((a, b), c) \sim_{\alpha_{A, B, C}^{\mathrm{Rel}}}\left(a^{\prime},\left(b^{\prime}, c^{\prime}\right)\right)
$$

iff $a=a^{\prime}, b=b^{\prime}$, and $c=c^{\prime}$.

00K0 5.2.2.4 The Left Unitor

00K1 Definition 5.2.2.4.1. The left unitor of Rel is the natural isomorphism

whose component

$$
\lambda_{A}^{\mathrm{Rel}}: \mathbb{1}_{\mathrm{Rel}} \times A \rightarrow A
$$

at A is defined by declaring

$$
(\star, a) \sim_{\lambda_{A}^{\mathrm{Rel}}} b
$$

iff $a=b$.

00K2 5.2.2.5 The Right Unitor

00 K 3 Definition 5.2 .2.5.1. The right unitor of Rel is the natural isomorphism

$$
\rho^{\mathrm{Rel}}: \times \circ\left(\mathrm{id} \times \mathbb{1}^{\mathrm{Rel}}\right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\rho}_{\mathrm{Rel}}^{\mathrm{Cats}_{2}},
$$

whose component

$$
\rho_{A}^{\mathrm{Rel}}: A \times \mathbb{1}_{\mathrm{Rel}} \nrightarrow A
$$

at A is defined by declaring

$$
(a, \star) \sim_{\rho_{A}^{\mathrm{Rel}}} b
$$

iff $a=b$.

00K4 5.2.2.6 The Symmetry
Definition 5.2 .2 .6.1. The symmetry of Rel is the natural isomorphism

whose component

$$
\sigma_{A, B}^{\mathrm{Rel}}: A \times B \rightarrow B \times A
$$

at (A, B) is defined by declaring

$$
(a, b) \sim_{\sigma_{A, B}^{\mathrm{Rel}}}\left(b^{\prime}, a^{\prime}\right)
$$

iff $a=a^{\prime}$ and $b=b^{\prime}$.

00K6 5.2.2.7 The Internal Hom

$00 K 7$ Definition 5.2.2.7.1. The internal Hom of Rel is the functor

$$
\text { Rel }: \operatorname{Rel}^{\mathrm{OP}} \times \operatorname{Rel} \rightarrow \text { Rel }
$$

defined

- On objects by sending $A, B \in \operatorname{Obj}(\operatorname{Rel})$ to the set $\operatorname{Rel}(A, B)$ of Item 1 of Definition 5.1.1.1.3.
- On morphisms by pre/post-composition defined as in Definition 6.3.12.1.1.

00 K 8 Proposition 5.2.2.7.2. Let $A, B, C \in \operatorname{Obj}($ Rel $)$.
00K9 1. Adjointness. We have adjunctions

$$
\begin{array}{cc}
(A \times-\dashv \operatorname{Rel}(A,-)): & \operatorname{Rel} \stackrel{\substack{\perp}}{\frac{A \times-}{\operatorname{Rel}(A,-)}} \operatorname{Rel}, \\
(-\times B \dashv \operatorname{Rel}(B,-)): & \underset{\substack{\perp \\
\operatorname{Rel}(B,-)}}{-\times B} \operatorname{Rel},
\end{array}
$$

witnessed by bijections

$$
\begin{aligned}
& \operatorname{Rel}(A \times B, C) \cong \operatorname{Rel}(A, \operatorname{Rel}(B, C)) \\
& \operatorname{Rel}(A \times B, C) \cong \operatorname{Rel}(B, \operatorname{Rel}(A, C))
\end{aligned}
$$

natural in $A, B, C \in \mathrm{Obj}(\mathrm{Rel})$.
Proof. Item 1, Adjointness: Indeed, we have

$$
\begin{aligned}
\operatorname{Rel}(A \times B, C) & \stackrel{\text { def }}{=} \operatorname{Sets}(A \times B \times C,\{\text { true }, \text { false }\}) \\
& \stackrel{\text { def }}{=} \operatorname{Rel}(A, B \times C) \\
& \stackrel{\text { def }}{=} \operatorname{Rel}(A, \operatorname{Rel}(B, C))
\end{aligned}
$$

and similarly for the bijection $\operatorname{Rel}(A \times B, C) \cong \operatorname{Rel}(B, \operatorname{Rel}(A, C))$.

00KA 5.2.2.8 The Closed Symmetric Monoidal Category of Relations
00 KB Proposition 5.2.2.8.1. The category Rel admits a closed symmetric monoidal category structure consisting of ${ }^{6}$

[^44]- The Underlying Category. The category Rel of sets and relations of Definition 5.2.1.1.1.
- The Monoidal Product. The functor

$$
\times: \operatorname{Rel} \times \operatorname{Rel} \rightarrow \operatorname{Rel}
$$

of Definition 5.2.2.1.1.

- The Internal Hom. The internal Hom functor

$$
\text { Rel }: \operatorname{Rel}^{\mathrm{op}} \times \operatorname{Rel} \rightarrow \operatorname{Rel}
$$

of Definition 5.2.2.7.1.

- The Monoidal Unit. The functor

$$
\mathbb{1}^{\mathrm{Rel}}: \mathrm{pt} \rightarrow \operatorname{Rel}
$$

of Definition 5.2.2.2.1.

- The Associators. The natural isomorphism

$$
\alpha^{\mathrm{Rel}}: \times \circ\left(\times \times \mathrm{id}_{\mathrm{Rel}}\right) \xlongequal{\sim} \times \circ\left(\mathrm{id}_{\mathrm{Rel}} \times \times\right) \circ \boldsymbol{\alpha}_{\mathrm{Rel}, \mathrm{Rel}, \mathrm{Rel}}^{\mathrm{Cats}}
$$

of Definition 5.2.2.3.1.

- The Left Unitors. The natural isomorphism

$$
\lambda^{\mathrm{Rel}}: \times \circ\left(\mathbb{1}^{\mathrm{Rel}} \times \mathrm{id}_{\mathrm{Rel}}\right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\lambda}_{\mathrm{Rel}}^{\mathrm{Cats}_{2}}
$$

of Definition 5.2.2.4.1.

- The Right Unitors. The natural isomorphism

$$
\rho^{\mathrm{Rel}}: \times \circ\left(\mathrm{id} \times \mathbb{1}^{\mathrm{Rel}}\right) \stackrel{\sim}{\Longrightarrow} \rho_{\mathrm{Rel}}^{\mathrm{Cats}_{2}}
$$

of Definition 5.2.2.5.1.

- The Symmetry. The natural isomorphism

$$
\sigma^{\mathrm{Rel}}: \times \stackrel{\sim}{\Longrightarrow} \times \circ \sigma_{\mathrm{Rel}, \mathrm{Rel}}^{\mathrm{Cats}_{2}}
$$

of Definition 5.2.2.6.1.
Proof. Omitted.
END TEXTDBEND

00KC 5.2.3 The 2-Category of Relations

$00 K D$ Definition 5.2.3.1.1. The 2-category of relations is the locally posetal 2-category Rel where

- Objects. The objects of Rel are sets.
- Hom-Objects. For each $A, B \in \operatorname{Obj}($ Sets $)$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{R e l}}(A, B) & \stackrel{\text { def }}{=} \operatorname{Rel}(A, B) \\
& \stackrel{\text { def }}{=}(\operatorname{Rel}(A, B), \subset)
\end{aligned}
$$

- Identities. For each $A \in \operatorname{Obj}(\mathbf{R e l})$, the unit map

$$
\mathbb{1}_{A}^{\mathrm{Rel}}: \mathrm{pt} \rightarrow \boldsymbol{\operatorname { R e l }}(A, A)
$$

of $\boldsymbol{\operatorname { R e l }}$ at A is defined by

$$
\operatorname{id}_{A}^{\text {Rel }} \stackrel{\text { def }}{=} \chi_{A}(-1,-2)
$$

where $\chi_{A}\left(-1,-_{2}\right)$ is the characteristic relation of A of Item 3 of Definition 2.4.1.1.1.

- Composition. For each $A, B, C \in \operatorname{Obj}(\mathbf{R e l})$, the composition map 7

$$
\stackrel{\text { orel }}{A, B, C}: \operatorname{Rel}(B, C) \times \boldsymbol{\operatorname { R e l }}(A, B) \rightarrow \boldsymbol{\operatorname { R e l }}(A, C)
$$

of Rel at (A, B, C) is defined by

$$
S \circ \circ_{A, B, C}^{\mathrm{Rel}} R \stackrel{\text { def }}{=} S \diamond R
$$

for each $(S, R) \in \boldsymbol{\operatorname { R e l }}(B, C) \times \boldsymbol{\operatorname { R e l }}(A, B)$, where $S \diamond R$ is the composition of S and R of Definition 6.3.12.1.1.

00KE 5.2.4 The Double Category of Relations

00KF 5.2.4.1 The Double Category of Relations

00KG Definition 5.2.4.1.1. The double category of relations is the locally posetal double category Rel ${ }^{\mathrm{dbl}}$ where

- Objects. The objects of Rel ${ }^{\text {dbl }}$ are sets.

[^45]- Vertical Morphisms. The vertical morphisms of Rel ${ }^{\mathrm{dbl}}$ are maps of sets $f: A \rightarrow B$.
- Horizontal Morphisms. The horizontal morphisms of Rel ${ }^{\mathrm{dbl}}$ are relations $R: A \nrightarrow X$.
- 2-Morphisms. A 2-cell

of $\operatorname{Rel}^{\mathrm{dbl}}$ is either non-existent or an inclusion of relations of the form

$$
\begin{aligned}
&A \times B \xrightarrow{R} \text { \{true, false }\} \\
& R \subset S \circ(f \times g), f \times g \mid \\
& X \times Y \underset{S}{\longrightarrow}\left\{{ }^{\text {id }}{ }_{\{\text {true }, \text { false }\}}\right.
\end{aligned}
$$

- Horizontal Identities. The horizontal unit functor of Rel ${ }^{\mathrm{dbl}}$ is the functor of Definition 5.2.4.2.1.
- Vertical Identities. For each $A \in \operatorname{Obj}\left(\operatorname{Rel}^{\mathrm{dbl}}\right)$, we have

$$
\mathrm{id}_{A}^{\mathrm{Rel}^{\mathrm{dbl}}} \stackrel{\text { def }}{=} \mathrm{id}_{A} .
$$

- Identity 2-Morphisms. For each horizontal morphism $R: A \nrightarrow B$ of Rel ${ }^{\mathrm{dbl}}$, the identity 2-morphism

of R is the identity inclusion

$$
\begin{aligned}
& B \times A \xrightarrow{R} \text { \{true, false }\} \\
& R \subset R, \quad \operatorname{id}_{B} \times \operatorname{id}_{A} \downarrow \quad \bigcup \quad \operatorname{id}_{\{\text {true }, \text { false }\}} \\
& B \times A \underset{R}{\longrightarrow} \text { \{true, false }\} \text {. }
\end{aligned}
$$

- Horizontal Composition. The horizontal composition functor of Rel ${ }^{\mathrm{dbl}}$ is the functor of Definition 5.2.4.3.1.
- Vertical Composition of 1-Morphisms. For each composable pair $A \xrightarrow{F} B \xrightarrow{G} C$ of vertical morphisms of Rel ${ }^{\mathrm{dbl}}$, i.e. maps of sets, we have

$$
g \circ \circ^{\text {Reldbl }} f \stackrel{\text { def }}{=} g \circ f .
$$

- Vertical Composition of 2-Morphisms. The vertical composition of 2-morphisms in Rel ${ }^{\mathrm{dbl}}$ is defined as in Definition 5.2.4.4.1.
- Associators. The associators of Rel ${ }^{\mathrm{dbl}}$ is defined as in Definition 5.2.4.5.1.
- Left Unitors. The left unitors of Rel ${ }^{\text {dbl }}$ is defined as in Definition 5.2.4.6.1.
- Right Unitors. The right unitors of Rel ${ }^{\mathrm{dbl}}$ is defined as in Definition 5.2.4.7.1.

00KH 5.2.4.2 Horizontal Identities

00KJ Definition 5.2.4.2.1. The horizontal unit functor of Rel ${ }^{d b l}$ is the functor

$$
\mathbb{1}^{\operatorname{Rel}^{|d|}}: \operatorname{Rel}_{0}^{\mathrm{dbl}} \rightarrow \operatorname{Rel}_{1}^{\mathrm{dbl}}
$$

of Rel ${ }^{\mathrm{dbl}}$ is the functor where

- Action on Objects. For each $A \in \operatorname{Obj}\left(\operatorname{Rel}_{0}^{\mathrm{dbl}}\right)$, we have

$$
\mathbb{1}_{A} \xlongequal{\text { def }} \chi_{A}(-1,-2) .
$$

- Action on Morphisms. For each vertical morphism $f: A \rightarrow B$ of Rel ${ }^{\mathrm{dbl}}$, i.e. each map of sets f from A to B, the identity 2-morphism

we have also $S_{1} \diamond R_{1} \subset S_{2} \diamond R_{2}$.
of f is the inclusion

$$
\begin{aligned}
A & \left.\times A \xrightarrow{\chi_{A}(-1,-2)} \text { \{true, false }\right\} \\
\chi_{B} \circ(f \times f) \subset \chi_{A}, \quad & f \times f \mid \\
B \times B \xrightarrow[\chi_{B}(-1,-2)]{ } & \left.\| \text { id }_{\{\text {true }, \text { false }\}}\right\} \\
& \text { false }\}
\end{aligned}
$$

of Item 1 of Proposition 2.4.1.1.3.

00KK 5.2.4.3 Horizontal Composition

00 KL Definition 5.2.4.3.1. The horizontal composition functor of Rel ${ }^{\mathrm{dbl}}$ is the functor

$$
\odot^{\operatorname{Rel}^{\mathrm{dbl}}}: \operatorname{Rel}_{1}^{\mathrm{dbl}} \underset{\operatorname{Rel}_{0}^{\mathrm{dbl}}}{\times} \operatorname{Rel}_{1}^{\mathrm{dbl}} \rightarrow \operatorname{Rel}_{1}^{\mathrm{dbl}}
$$

of $R e l^{\mathrm{dbl}}$ is the functor where

- Action on Objects. For each composable pair $A \stackrel{R}{+} B \stackrel{S}{\rightarrow} C$ of horizontal morphisms of Rel ${ }^{\text {dbl }}$, we have

$$
S \odot R \stackrel{\text { def }}{=} S \diamond R,
$$

where $S \diamond R$ is the composition of R and S of Definition 6.3.12.1.1.

- Action on Morphisms. For each horizontally composable pair

of 2-morphisms of Rel ${ }^{\mathrm{dbl}}$, i.e. for each pair
$A \times B \xrightarrow{R}$ \{true, false $\}$
$B \times C \xrightarrow{S}$ \{true, false $\}$
$f \times g \downarrow \quad$ \quad id $_{\{\text {true }, \text { false }\}}$
$g \times h \downarrow \quad$ $\quad \varliminf_{\left\{d_{\{\text {true }}, \text { false }\right\}}$
$X \times Y \underset{T}{\longrightarrow}$ \{true, false $\} \quad Y \times Z \underset{U}{\longrightarrow}\{$ true, false $\}$
of inclusions of relations, the horizontal composition

of α and β is the inclusion of relations ${ }^{8}$

$$
\begin{aligned}
& A \times C \xrightarrow{S \diamond R} \text { \{true, false }\} \\
(U \diamond T) \circ(f \times h) \subset(S \diamond R) & \\
f \times h \mid & \downarrow \text { id }_{\{\text {true, false }\}} \\
& X \times Z \xrightarrow[U \diamond T]{ } \text { \{true, false }\} .
\end{aligned}
$$

00KM 5.2.4.4 Vertical Composition of 2-Morphisms

00 KN Definition 5.2.4.4.1. The vertical composition in Rel ${ }^{\mathrm{dbl}}$ is defined as follows: for each vertically composable pair

of 2-morphisms of Rel ${ }^{d b l}$, i.e. for each each pair

of inclusions of relations, we define the vertical composition

${ }^{8}$ This is justified by noting that, given $(a, c) \in A \times C$, the statement

- We have $a \sim_{(U \diamond T) \circ(f \times h)} c$, i.e. $f(a) \sim_{U \diamond T} h(c)$, i.e. there exists some $y \in Y$ such that:

1. We have $f(a) \sim_{T} y$;
2. We have $y \sim_{U} h(c)$;
is implied by the statement

- We have $a \sim_{S \diamond R} c$, i.e. there exists some $b \in B$ such that:

1. We have $a \sim_{R} b$;
of α and β as the inclusion of relations

$$
\begin{aligned}
& A \times X \xrightarrow{R}\{\text { true, false }\} \\
& T \circ[(h \circ f) \times(k \circ g)] \subset R, \quad(h \circ f) \times(\text { kog }) \downarrow \quad \subset \quad \|_{\left.i d_{\{\text {true }, \text { fase }\}}\right\}} \\
& C \times Z \underset{T}{\longrightarrow} \text { \{true, false }\}
\end{aligned}
$$

given by the pasting of inclusions ${ }^{9}$

00KP 5.2.4.5 The Associators

00KQ Definition 5.2.4.5.1. For each composable triple

$$
A \stackrel{R}{\mapsto} B \stackrel{S}{\mapsto} C \stackrel{T}{\mapsto} D
$$

of horizontal morphisms of Rel ${ }^{\mathrm{dbl}}$, the component

$$
\alpha_{T, S, R}^{\mathrm{Refldb}}:(T \odot S) \odot R \xlongequal{\sim} T \odot(S \odot R),
$$

2. We have $b \sim_{S} c$;
since:

- If $a \sim_{R} b$, then $f(a) \sim_{T} g(b)$, as $T \circ(f \times g) \subset R$;
- If $b \sim_{S} c$, then $g(b) \sim_{U} h(c)$, as $U \circ(g \times h) \subset S$.
${ }^{9}$ This is justified by noting that, given $(a, x) \in A \times X$, the statement
- We have $h(f(a)) \sim_{T} k(g(x))$;
is implied by the statement
- We have $a \sim_{R} x$;
since
of the associator of $\operatorname{Rel}^{\mathrm{dbl}}$ at (R, S, T) is the identity inclusion ${ }^{10}$

$$
\begin{array}{cc}
A \times B \xrightarrow{(T \diamond S) \diamond R}\{\text { true, false }\} \\
(T \diamond S) \diamond R=T \diamond(S \diamond R) & \| \\
& A \times B \xrightarrow[T \diamond(S \diamond R)]{ }\left\{\begin{array}{l}
\text { id }\{\text { true,false }\}
\end{array}\right. \\
&
\end{array}
$$

00KR 5.2.4.6 The Left Unitors
00KS Definition 5.2.4.6.1. For each horizontal morphism R : $A \rightarrow B$ of $\operatorname{Rel}^{\mathrm{dbl}}$, the component

$$
\lambda_{R}^{\mathrm{Rel}^{\mathrm{dbl}}}: \mathbb{1}_{B} \odot R \xlongequal{\sim} R,
$$

of the left unitor of Rel ${ }^{\mathrm{dbl}}$ at R is the identity inclusion ${ }^{11}$

$$
R=\chi_{B} \diamond R, \quad A \times B \xrightarrow{\chi_{B} \diamond R}\{\text { true, false }\}
$$

00KT 5.2.4.7 The Right Unitors

00 KU Definition 5.2.4.7.1. For each horizontal morphism R : $A \rightarrow B$ of $\mathrm{Rel}^{\mathrm{dbl}}$, the component

- If $a \sim_{R} x$, then $f(a) \sim_{S} g(x)$, as $S \circ(f \times g) \subset R$;
- If $b \sim_{S} y$, then $h(b) \sim_{T} k(y)$, as $T \circ(h \times k) \subset S$, and thus, in particular:

$$
- \text { If } f(a) \sim_{S} g(x), \text { then } h(f(a)) \sim_{T} k(g(x)) .
$$

[^46]of the right unitor of Rel $^{\mathrm{dbl}}$ at R is the identity inclusion ${ }^{12}$
\[

$$
\begin{array}{rc}
A \times B \xrightarrow{R \diamond \chi_{A}}\{\text { true, false }\} \\
R=R \diamond \chi_{A}, & \| \geqslant\left.\right|_{\left.i d_{\{\text {true,fase }\}}\right\}} \\
& A \times B \xrightarrow[R]{ }\{\text { true, false }\} .
\end{array}
$$
\]

00kv 5.3 Properties of the 2-Category of Relations

00KW 5.3.1 Self-Duality

00KX Proposition 5.3.1.1.1. The (2-)category of relations is self-dual:
00KY

1. Self-Duality I. We have an isomorphism

$$
\operatorname{Rel}^{\text {op }} \stackrel{\text { eq. }}{\cong} \mathrm{Rel}
$$

of categories.
00KZ
2. Self-Duality II. We have a 2 -isomorphism

$$
\operatorname{Rel}^{\mathrm{op}} \stackrel{\mathrm{eq} .}{\cong} \operatorname{Rel}
$$

of 2-categories.
Proof. Item 1, Self-Duality I: We claim that the functor

$$
F: \operatorname{Rel}^{\mathrm{op}} \rightarrow \operatorname{Rel}
$$

given by the identity on objects and by $R \mapsto R^{\dagger}$ on morphisms is an isomorphism of categories.
By Item 1 of Proposition 8.5.8.1.3, it suffices to show that F is bijective on objects (which is clear) and fully faithful. Indeed, the map

$$
(-)^{\dagger}: \operatorname{Rel}(A, B) \rightarrow \operatorname{Rel}(B, A)
$$

defined by the assignment $R \mapsto R^{\dagger}$ is a bijection by Item 5 of Proposition 6.3.11.1.3, showing F to be fully faithful.
Item 2, Self-Duality II: We claim that the 2-functor

$$
F: \operatorname{Rel}^{\mathrm{op}} \rightarrow \operatorname{Rel}
$$

given by the identity on objects, by $R \mapsto R^{\dagger}$ on morphisms, and by preserving inclusions on 2-morphisms via Item 1 of Proposition 6.3.11.1.3, is an isomorphism of categories.
By ?? of ??, it suffices to show that F is:

[^47]- Bijective on objects, which is clear.
- Bijective on 1-morphisms, which was shown in Item 1.
- Bijective on 2-morphisms, which follows from Item 1 of Proposition 6.3.11.1.3.

Thus F is indeed a 2 -isomorphism of categories.

00 L 0 5.3.2 Isomorphisms and Equivalences in Rel

Let $R: A \nrightarrow B$ be a relation from A to B.
00L1 Proposition 5.3.2.1.1. The following conditions are equivalent:
00L2 1. The relation $R: A \rightarrow B$ is an equivalence in Rel, i.e.:
(\star) There exists a relation $R^{-1}: B \rightarrow A$ from B to A together with isomorphisms

$$
\begin{aligned}
& R^{-1} \diamond R \cong \chi_{A} \\
& R \diamond R^{-1} \cong \chi_{B}
\end{aligned}
$$

00L3 2. The relation $R: A \rightarrow B$ is an isomorphism in Rel, i.e.:
(\star) There exists a relation $R^{-1}: B \nrightarrow A$ from B to A such that we have

$$
\begin{aligned}
& R^{-1} \diamond R=\chi_{A} \\
& R \diamond R^{-1}=\chi_{B}
\end{aligned}
$$

00 L 4 3. There exists a bijection $f: A \stackrel{\cong}{\leftrightarrows} B$ with $R=\operatorname{Gr}(f)$.
Proof. We claim that Items 1 to 3 are indeed equivalent:

- Item $1 \Longleftrightarrow$ Item 2: This follows from the fact that Rel is locally posetal, so that natural isomorphisms and equalities of 1-morphisms in Rel coincide.
- Item 2 \Longrightarrow Item 3: The equalities in Item 2 imply $R \dashv R^{-1}$, and thus by Proposition 5.3.3.1.1, there exists a function $f_{R}: A \rightarrow B$ associated to R, where, for each $a \in A$, the image $f_{R}(a)$ of a by f_{R} is the unique element of $R(a)$, which implies $R=\operatorname{Gr}\left(f_{R}\right)$ in particular. Furthermore, we have $R^{-1}=f_{R}^{-1}$ (as in Definition 6.3.2.1.1). The conditions from Item 2 then become the following:

$$
\begin{aligned}
& f_{R}^{-1} \diamond f_{R}=\chi_{A} \\
& f_{R} \diamond f_{R}^{-1}=\chi_{B}
\end{aligned}
$$

All that is left is to show then is that f_{R} is a bijection:

- The Function f_{R} Is Injective. Let $a, b \in A$ and suppose that $f_{R}(a)=f_{R}(b)$. Since $a \sim_{R} f_{R}(a)$ and $f_{R}(a)=f_{R}(b) \sim_{R^{-1}} b$, the condition $f_{R}^{-1} \diamond f_{R}=\chi_{A}$ implies that $a=b$, showing f_{R} to be injective.
- The Function f_{R} Is Surjective. Let $b \in B$. Applying the condition $f_{R} \diamond f_{R}^{-1}=\chi_{B}$ to (b, b), it follows that there exists some $a \in A$ such that $f_{R}^{-1}(b)=a$ and $f_{R}(a)=b$. This shows f_{R} to be surjective.
- Item $3 \Longrightarrow$ Item 2: By Item 2 of Proposition 6.3.1.1.2, we have an adjunction $\operatorname{Gr}(f) \dashv f^{-1}$, giving inclusions

$$
\begin{aligned}
& \chi_{A} \subset f^{-1} \diamond \operatorname{Gr}(f) \\
& \operatorname{Gr}(f) \diamond f^{-1} \subset \chi_{B}
\end{aligned}
$$

We claim the reverse inclusions are also true:
$-f^{-1} \diamond G r(f) \subset \chi_{A}$: This is equivalent to the statement that if $f(a)=b$ and $f^{-1}(b)=a^{\prime}$, then $a=a^{\prime}$, which follows from the injectivity of f.
$-\chi_{B} \subset G r(f) \diamond f^{-1}$: This is equivalent to the statement that given $b \in B$ there exists some $a \in A$ such that $f^{-1}(b)=a$ and $f(a)=b$, which follows from the surjectivity of f.

This finishes the proof.

00L5 5.3.3 Adjunctions in Rel

Let A and B be sets.
00 L 6 Proposition 5.3.3.1.1. We have a natural bijection

$$
\left\{\begin{array}{c}
\text { Adjunctions in Rel } \\
\text { from } A \text { to } B
\end{array}\right\} \cong\left\{\begin{array}{c}
\text { Functions } \\
\text { from } A \text { to } B
\end{array}\right\}
$$

with every adjunction in Rel being of the form $\operatorname{Gr}(f) \dashv f^{-1}$ for some function f.

Proof. We proceed step by step:

1. From Adjunctions in Rel to Functions. An adjunction in Rel from A to B consists of a pair of relations

$$
\begin{gathered}
R: A \nrightarrow B, \\
S: B \rightarrow A,
\end{gathered}
$$

together with inclusions

$$
\begin{aligned}
\chi_{A} & \subset S \diamond R, \\
R \diamond S & \subset \chi_{B}
\end{aligned}
$$

We claim that these conditions imply that R is total and functional, i.e. that $R(a)$ is a singleton for each $a \in A$:
(a) $R(a)$ Has an Element. Given $a \in A$, since $\chi_{A} \subset S \diamond R$, we must have $\{a\} \subset S(R(a))$, implying that there exists some $b \in B$ such that $a \sim_{R} b$ and $b \sim_{S} a$, and thus $R(a) \neq \emptyset$, as $b \in R(a)$.
(b) $R(a)$ Has No More Than One Element. Suppose that we have $a \sim_{R} b$ and $a \sim_{R} b^{\prime}$ for $b, b^{\prime} \in B$. We claim that $b=b^{\prime}$:
i. Since $\chi_{A} \subset S \diamond R$, there exists some $k \in B$ such that $a \sim_{R} k$ and $k \sim_{S} a$.
ii. Since $R \diamond S \subset \chi_{B}$, if $b^{\prime \prime} \sim_{S} a^{\prime}$ and $a^{\prime} \sim_{R} b^{\prime \prime \prime}$, then $b^{\prime \prime}=b^{\prime \prime \prime}$.
iii. Applying the above to $b^{\prime \prime}=k, b^{\prime \prime \prime}=b$, and $a^{\prime}=a$, since $k \sim_{S} a$ and $a \sim_{R} b^{\prime}$, we have $k=b$.
iv. Similarly $k=b^{\prime}$.
v. Thus $b=b^{\prime}$.

Together, the above two items show $R(a)$ to be a singleton, being thus given by $\operatorname{Gr}(f)$ for some function $f: A \rightarrow B$, which gives a map

$$
\left\{\begin{array}{c}
\text { Adjunctions in Rel } \\
\text { from } A \text { to } B
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Functions } \\
\text { from } A \text { to } B
\end{array}\right\}
$$

Moreover, by uniqueness of adjoints (?? of ??), this implies also that $S=f^{-1}$.
2. From Functions to Adjunctions in Rel. By Item 2 of Proposition 6.3.1.1.2, every function $f: A \rightarrow B$ gives rise to an adjunction $\operatorname{Gr}(f) \dashv f^{-1}$ in Rel, giving a map

$$
\left\{\begin{array}{c}
\text { Functions } \\
\text { from } A \text { to } B
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Adjunctions in Rel } \\
\text { from } A \text { to } B
\end{array}\right\}
$$

3. Invertibility: From Functions to Adjunctions Back to Functions. We need to show that starting with a function $f: A \rightarrow B$, passing to $\operatorname{Gr}(f) \dashv f^{-1}$, and then passing again to a function gives f again. This is clear however, since we have $a \sim_{\operatorname{Gr}(f)} b$ iff $f(a)=b$.
4. Invertibility: From Adjunctions to Functions Back to Adjunctions. We need to show that, given an adjunction $R \dashv S$ in Rel giving rise to a function $f_{R, S}: A \rightarrow B$, we have

$$
\begin{aligned}
\operatorname{Gr}\left(f_{R, S}\right) & =R \\
f_{R, S}^{-1} & =S
\end{aligned}
$$

We check these explicitly:

- $G r\left(f_{R, S}\right)=R$. We have

$$
\begin{aligned}
\operatorname{Gr}\left(f_{R, S}\right) & \stackrel{\text { def }}{=}\left\{\left(a, f_{R, S}(a)\right) \in A \times B \mid a \in A\right\} \\
& \stackrel{\text { def }}{=}\{(a, R(a)) \in A \times B \mid a \in A\} \\
& =R
\end{aligned}
$$

- $f_{R, S}^{-1}=S$. We first claim that, given $a \in A$ and $b \in B$, the following conditions are equivalent:
- We have $a \sim_{R} b$.
- We have $b \sim_{S} a$.

Indeed:

- If $a \sim_{R} b$, then $b \sim_{S} a$: Since $\chi_{A} \subset S \diamond R$, there exists $k \in B$ such that $a \sim_{R} k$ and $k \sim_{S} a$, but since $a \sim_{R} b$ and R is functional, we have $k=b$ and thus $b \sim_{S} a$.
- If $b \sim_{S} a$, then $a \sim_{R} b$: First note that since R is total we have $a \sim_{R} b^{\prime}$ for some $b^{\prime} \in B$. Now, since $R \diamond S \subset \chi_{B}$, $b \sim_{S} a$, and $a \sim_{R} b^{\prime}$, we have $b=b^{\prime}$, and thus $a \sim_{R} b$.
Having show this, we now have

$$
\begin{aligned}
f_{R, S}^{-1}(b) & \stackrel{\text { def }}{=}\left\{a \in A \mid f_{R, S}(a)=b\right\} \\
& \stackrel{\text { def }}{=}\left\{a \in A \mid a \sim_{R} b\right\} \\
& =\left\{a \in A \mid b \sim_{S} a\right\} \\
& \stackrel{\text { def }}{=} S(b) .
\end{aligned}
$$

for each $b \in B$, showing $f_{R, S}^{-1}=S$.
This finishes the proof.

00L7 5.3.4 Monads in Rel

Let A be a set.

00 L 8 Proposition 5.3.4.1.1. We have a natural identification ${ }^{13}$

$$
\left\{\begin{array}{c}
\text { Monads in } \\
\operatorname{Rel} \text { on } A
\end{array}\right\} \cong\{\text { Preorders on } A\}
$$

Proof. A monad in Rel on A consists of a relation $R: A \rightarrow A$ together with maps

$$
\begin{aligned}
& \mu_{R}: R \diamond R \subset R, \\
& \eta_{R}: \chi_{A} \subset R
\end{aligned}
$$

making the diagrams

commute. However, since all morphisms involved are inclusions, the commutativity of the above diagrams is automatic, and hence all that is left is the data of the two maps μ_{R} and η_{R}, which correspond respectively to the following conditions:

1. For each $a, b, c \in A$, if $a \sim_{R} b$ and $b \sim_{R} c$, then $a \sim_{R} c$.
2. For each $a \in A$, we have $a \sim_{R} a$.

These are exactly the requirements for R to be a preorder (??). Conversely any preorder \preceq gives rise to a pair of maps $\mu \preceq$ and η_{\preceq}, forming a monad on A.

00L9 5.3.5 Comonads in Rel

Let A be a set.
00LA Proposition 5.3.5.1.1. We have a natural identification

$$
\left\{\begin{array}{c}
\text { Comonads in } \\
\text { Rel on } A
\end{array}\right\} \cong\{\text { Subsets of } A\}
$$

[^48]Proof. A comonad in Rel on A consists of a relation $R: A \nrightarrow A$ together with maps

$$
\begin{aligned}
\Delta_{R} & : R \subset R \diamond R, \\
\epsilon_{R} & : R \subset \chi_{A}
\end{aligned}
$$

making the diagrams

commute. However, since all morphisms involved are inclusions, the commutativity of the above diagrams is automatic, and hence all that is left is the data of the two maps Δ_{R} and ϵ_{R}, which correspond respectively to the following conditions:

1. For each $a, b \in A$, if $a \sim_{R} b$, then there exists some $k \in A$ such that $a \sim_{R} k$ and $k \sim_{R} b$.
2. For each $a, b \in A$, if $a \sim_{R} b$, then $a=b$.

Taking $k=b$ in the first condition above shows it to be trivially satisfied, while the second condition implies $R \subset \Delta_{A}$, i.e. R must be a subset of A. Conversely, any subset U of A satisfies $U \subset \Delta_{A}$, defining a comonad as above.

00LB 5.3.6 Co/Monoids in Rel

00LC Remark 5.3.6.1.1. The monoids in Rel with respect to the Cartesian monoidal structure of Proposition 5.2.2.8.1 are called hypermonoids, and their theory is explored in ??. Similarly, the comonoids in Rel are called hypercomonoids, and they are defined and studied in ??.

00LD 5.3.7 Monomorphisms in Rel

In this section we characterise the epimorphisms in the category Rel, following ??.

00LE Proposition 5.3.7.1.1. Let $R: A \nrightarrow B$ be a relation. The following conditions are equivalent:

00 LF 1. The relation R is a monomorphism in Rel.
00LG 2. The direct image function

$$
R_{*}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

associated to R is injective.
00LH 3. The direct image with compact support function

$$
R_{!}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

associated to R is injective.
Moreover, if R is a monomorphism, then it satisfies the following condition, and the converse holds if R is total:
(\star) For each $a, a^{\prime} \in A$, if there exists some $b \in B$ such that

$$
\begin{aligned}
a & \sim_{R} b, \\
a^{\prime} & \sim_{R} b,
\end{aligned}
$$

then $a=a^{\prime}$.
Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Proposition 6.4.1.1.3. We then claim that Items 1 and 2 are also equivalent:

- Item $1 \Longrightarrow$ Item 2: Let $U, V \in \mathcal{P}(A)$ and consider the diagram

$$
\mathrm{pt} \stackrel{V}{\underset{V}{\longleftrightarrow}} A \xrightarrow{R} B .
$$

By Remark 6.4.1.1.2, we have

$$
\begin{aligned}
R_{*}(U) & =R \diamond U \\
R_{*}(V) & =R \diamond V
\end{aligned}
$$

Now, if $R \diamond U=R \diamond V$, i.e. $R_{*}(U)=R_{*}(V)$, then $U=V$ since R is assumed to be a monomorphism, showing R_{*} to be injective.

- Item $2 \Longrightarrow$ Item 1: Conversely, suppose that R_{*} is injective, consider the diagram

$$
X \underset{T}{\stackrel{S}{\longrightarrow}} A \stackrel{R}{\stackrel{ }{\longrightarrow}} B
$$

and suppose that $R \diamond S=R \diamond T$. Note that, since R_{*} is injective,
given a diagram of the form

$$
\mathrm{pt} \stackrel{V}{\stackrel{U}{\longrightarrow}} A \xrightarrow{R} B
$$

if $R_{*}(U)=R \diamond U=R \diamond V=R_{*}(V)$, then $U=V$. In particular, for each $x \in X$, we may consider the diagram

$$
\mathrm{pt} \stackrel{[x]}{\longmapsto} X \stackrel{S}{\underset{T}{S}} A \stackrel{R}{\longleftrightarrow} B
$$

for which we have $R \diamond S \diamond[x]=R \diamond T \diamond[x]$, implying that we have

$$
S(x)=S \diamond[x]=T \diamond[x]=T(x)
$$

for each $x \in X$, implying $S=T$, and thus R is a monomorphism.
We can also prove this in a more abstract way, following [MSE 350788]:

- Item $1 \Longrightarrow$ Item 2: Assume that R is a monomorphism.
- We first notice that the functor $\operatorname{Rel}(\mathrm{pt},-): \operatorname{Rel} \rightarrow$ Sets maps R to R_{*} by Remark 6.4.1.1.2.
- Since Rel(pt, -) preserves all limits by ?? of ??, it follows by ?? of ?? that $\operatorname{Rel}(\mathrm{pt},-)$ also preserves monomorphisms.
- Since R is a monomorphism and $\operatorname{Rel}(\mathrm{pt},-) \operatorname{maps} R$ to R_{*}, it follows that R_{*} is also a monomorphism.
- Since the monomorphisms in Sets are precisely the injections (?? of ??), it follows that R_{*} is injective.
- Item $2 \Longrightarrow$ Item 1: Assume that R_{*} is injective.
- We first notice that the functor $\operatorname{Rel}(\mathrm{pt},-): \operatorname{Rel} \rightarrow$ Sets maps R to R_{*} by Remark 6.4.1.1.2.
- Since the monomorphisms in Sets are precisely the injections (?? of ??), it follows that R_{*} is a monomorphism.
- Since $\operatorname{Rel}(\mathrm{pt},-)$ is faithful, it follows by ?? of ? ? that $\operatorname{Rel}(\mathrm{pt},-)$ reflects monomorphisms.
- Since R_{*} is a monomorphism and $\operatorname{Rel}(\mathrm{pt},-) \operatorname{maps} R$ to R_{*}, it follows that R is also a monomorphism.

Finally, we prove the second part of the statement. Assume that R is a monomorphism, let $a, a^{\prime} \in A$ such that $a \sim_{R} b$ and $a^{\prime} \sim_{R} b$ for some $b \in B$, and consider the diagram

$$
\mathrm{pt} \underset{\left[a^{\prime}\right]}{\stackrel{[a]}{\longrightarrow}} A \xrightarrow{R} B
$$

Since $\star \sim_{[a]} a$ and $a \sim_{R} b$, we have $\star \sim_{R \diamond[a]} b$. Similarly, $\star \sim_{R \diamond\left[a^{\prime}\right]} b$. Thus $R \diamond[a]=R \diamond\left[a^{\prime}\right]$, and since R is a monomorphism, we have $[a]=\left[a^{\prime}\right]$, i.e. $a=a^{\prime}$.

Conversely, assume the condition
(\star) For each $a, a^{\prime} \in A$, if there exists some $b \in B$ such that

$$
\begin{aligned}
a & \sim_{R} b \\
a^{\prime} & \sim_{R} b
\end{aligned}
$$

then $a=a^{\prime}$.
consider the diagram

$$
X \underset{T}{\stackrel{S}{\rightrightarrows}} A \stackrel{R}{\longmapsto} B
$$

and let $(x, a) \in S$. Since R is total and $a \in A$, there exists some $b \in B$ such that $a \sim_{R} b$. In this case, we have $x \sim_{R \diamond S} b$, and since $R \diamond S=R \diamond T$, we have also $x \sim_{R \diamond T} b$. Thus there must exist some $a^{\prime} \in A$ such that $x \sim_{T} a^{\prime}$ and $a^{\prime} \sim_{R} b$. However, since $a, a^{\prime} \sim_{R} b$, we must have $a=a^{\prime}$, and thus $(x, a) \in T$ as well.
A similar argument shows that if $(x, a) \in T$, then $(x, a) \in S$, and thus $S=T$ and it follows that R is a monomorphism.

00LJ 5.3.8 2-Categorical Monomorphisms in Rel

In this section we characterise (for now, some of) the 2-categorical monomorphisms in Rel, following Section 9.1.

00LK Proposition 5.3.8.1.1. Let $R: A \rightarrow B$ be a relation.

1. Representably Faithful Morphisms in Rel. Every morphism of Rel is a representably faithful morphism.
2. Representably Full Morphisms in Rel. The following conditions are equivalent:
(a) The morphism $R: A \nrightarrow B$ is a representably full morphism.
(b) For each pair of relations $S, T: X \nRightarrow A$, the following condition is satisfied:
(\star) If $R \diamond S \subset R \diamond T$, then $S \subset T$.
(c) The functor

$$
R_{*}:(\mathcal{P}(A), \subset) \rightarrow(\mathcal{P}(B), \subset)
$$

is full.

00LR
(d) For each $U, V \in \mathcal{P}(A)$, if $R_{*}(U) \subset R_{*}(V)$, then $U \subset V$.
(e) The functor

$$
R_{!}:(\mathcal{P}(A), \subset) \rightarrow(\mathcal{P}(B), \subset)
$$

is full.
(f) For each $U, V \in \mathcal{P}(A)$, if $R_{!}(U) \subset R_{!}(V)$, then $U \subset V$.
3. Representably Fully Faithful Morphisms in Rel. Every representaly full morphism in Rel is a representably fully faithful morphism.

Proof. Item 1, Representably Faithful Morphisms in Rel: The relation R is a representably faithful morphism in Rel iff, for each $X \in \operatorname{Obj}(\mathbf{R e l})$, the functor

$$
R_{*}: \operatorname{Rel}(X, A) \rightarrow \boldsymbol{\operatorname { R e l }}(X, B)
$$

is faithful, i.e. iff the morphism

$$
R_{* \mid S, T}: \operatorname{Hom}_{\operatorname{Rel}(X, A)}(S, T) \rightarrow \operatorname{Hom}_{\operatorname{Rel}(X, B)}(R \diamond S, R \diamond T)
$$

is injective for each $S, T \in \operatorname{Obj}(\operatorname{Rel}(X, A))$. However, $\operatorname{Hom}_{\operatorname{Rel}(X, A)}(S, T)$ is either empty or a singleton, in either case of which the map $R_{* \mid S, T}$ is necessarily injective.
Item 2, Representably Full Morphisms in Rel: We claim Items 2a to 2f are indeed equivalent:

- Item $2 a \Longleftrightarrow$ Item 2b: This is simply a matter of unwinding definitions: The relation R is a representably full morphism in Rel iff, for each $X \in \operatorname{Obj}(\mathbf{R e l})$, the functor

$$
R_{*}: \operatorname{Rel}(X, A) \rightarrow \boldsymbol{\operatorname { R e l }}(X, B)
$$

is full, i.e. iff the morphism

$$
R_{* \mid S, T}: \operatorname{Hom}_{\operatorname{Rel}(X, A)}(S, T) \rightarrow \operatorname{Hom}_{\operatorname{Rel}(X, B)}(R \diamond S, R \diamond T)
$$

is surjective for each $S, T \in \operatorname{Obj}(\boldsymbol{\operatorname { R e l }}(X, A))$, i.e. iff, whenever $R \diamond S \subset R \diamond T$, we also have $S \subset T$.

- Item $2 c \Longleftrightarrow$ Item 2d: This is also simply a matter of unwinding definitions: The functor

$$
R_{*}:(\mathcal{P}(A), \subset) \rightarrow(\mathcal{P}(B), \subset)
$$

is full iff, for each $U, V \in \mathcal{P}(A)$, the morphism

$$
R_{* \mid U, V}: \operatorname{Hom}_{\mathcal{P}(A)}(U, V) \rightarrow \operatorname{Hom}_{\mathcal{P}(B)}\left(R_{*}(U), R_{*}(V)\right)
$$

is surjective, i.e. iff whenever $R_{*}(U) \subset R_{*}(V)$, we also necessarily have $U \subset V$.

- Item $2 e \Longleftrightarrow$ Item 2f: This is once again simply a matter of unwinding definitions, and proceeds exactly in the same way as in the proof of the equivalence between Items 2 c and 2 d given above.
- Item 2d \Longrightarrow Item 2f: Suppose that the following condition is true:
(*) For each $U, V \in \mathcal{P}(A)$, if $R_{*}(U) \subset R_{*}(V)$, then $U \subset V$.
We need to show that the condition
(\star) For each $U, V \in \mathcal{P}(A)$, if $R_{!}(U) \subset R_{!}(V)$, then $U \subset V$.
is also true. We proceed step by step:

1. Suppose we have $U, V \in \mathcal{P}(A)$ with $R_{!}(U) \subset R_{!}(V)$.
2. By Item 7 of Proposition 6.4.4.1.3, we have

$$
\begin{aligned}
& R_{!}(U)=B \backslash R_{*}(A \backslash U) \\
& R_{!}(V)=B \backslash R_{*}(A \backslash V)
\end{aligned}
$$

3. By Item 1 of Proposition 2.3.10.1.2 we have $R_{*}(A \backslash V) \subset$ $R_{*}(A \backslash U)$.
4. By assumption, we then have $A \backslash V \subset A \backslash U$.
5. By Item 1 of Proposition 2.3.10.1.2 again, we have $U \subset V$.

- Item $2 f \Longrightarrow$ Item 2d: Suppose that the following condition is true:
(\star) For each $U, V \in \mathcal{P}(A)$, if $R_{!}(U) \subset R_{!}(V)$, then $U \subset V$.
We need to show that the condition
(*) For each $U, V \in \mathcal{P}(A)$, if $R_{*}(U) \subset R_{*}(V)$, then $U \subset V$.
is also true. We proceed step by step:

1. Suppose we have $U, V \in \mathcal{P}(A)$ with $R_{*}(U) \subset R_{*}(V)$.
2. By Item 7 of Proposition 6.4.1.1.3, we have

$$
\begin{aligned}
& R_{*}(U)=B \backslash R_{!}(A \backslash U) \\
& R_{*}(V)=B \backslash R_{!}(A \backslash V)
\end{aligned}
$$

3. By Item 1 of Proposition 2.3.10.1.2 we have $R_{!}(A \backslash V) \subset$ $R_{!}(A \backslash U)$.
4. By assumption, we then have $A \backslash V \subset A \backslash U$.
5. By Item 1 of Proposition 2.3.10.1.2 again, we have $U \subset V$.

- Item $2 b \Longrightarrow$ Item 2d: Consider the diagram

$$
X \underset{T}{\stackrel{S}{\rightrightarrows}} A \stackrel{R}{\mid} B
$$

and suppose that $R \diamond S \subset R \diamond T$. Note that, by assumption, given a diagram of the form

$$
\mathrm{pt} \stackrel{U}{\stackrel{U}{\longrightarrow}} A \stackrel{R}{\xrightarrow{\longrightarrow}} B
$$

if $R_{*}(U)=R \diamond U \subset R \diamond V=R_{*}(V)$, then $U \subset V$. In particular, for each $x \in X$, we may consider the diagram

$$
\mathrm{pt} \stackrel{[x]}{\longrightarrow} X \underset{T}{\stackrel{S}{\rightrightarrows}} A \xrightarrow{R} B
$$

for which we have $R \diamond S \diamond[x] \subset R \diamond T \diamond[x]$, implying that we have

$$
S(x)=S \diamond[x] \subset T \diamond[x]=T(x)
$$

for each $x \in X$, implying $S \subset T$.

- Item $2 d \Longrightarrow$ Item 2b: Let $U, V \in \mathcal{P}(A)$ and consider the diagram

$$
\mathrm{pt} \stackrel{U}{\stackrel{U}{\longrightarrow}} A \xrightarrow{R} B
$$

By Remark 6.4.1.1.2, we have

$$
\begin{aligned}
& R_{*}(U)=R \diamond U \\
& R_{*}(V)=R \diamond V
\end{aligned}
$$

Now, if $R_{*}(U) \subset R_{*}(V)$, i.e. $R \diamond U \subset R \diamond V$, then $U \subset V$ by assumption.
??, Fully Faithful Monomorphisms in Rel: This follows from Items 1 and 2.

00LV Question 5.3.8.1.2. Item 2 of Proposition 5.3.8.1.1 gives a characterisation of the representably full morphisms in Rel.
Are there other nice characterisations of these?
This question also appears as [MO 467527].

00LW 5.3.9 Epimorphisms in Rel

In this section we characterise the epimorphisms in the category Rel, following ??.

00LX Proposition 5.3.9.1.1. Let $R: A \rightarrow B$ be a relation. The following conditions are equivalent:

00LY 1. The relation R is an epimorphism in Rel.
00 LZ 2. The weak inverse image function

$$
R^{-1}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)
$$

associated to R is injective.
3. The strong inverse image function

$$
R_{-1}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)
$$

associated to R is injective.
00M1
4. The function $R: A \rightarrow \mathcal{P}(B)$ is "surjective on singletons":
(\star) For each $b \in B$, there exists some $a \in A$ such that $R(a)=\{b\}$.
Moreover, if R is total and an epimorphism, then it satisfies the following equivalent conditions:

1. For each $b \in B$, there exists some $a \in A$ such that $a \sim_{R} b$.
2. We have $\operatorname{Im}(R)=B$.

Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Proposition 6.4.2.1.3. We then claim that Items 1 and 2 are also equivalent:

- Item $1 \Longrightarrow$ Item 2: Let $U, V \in \mathcal{P}(A)$ and consider the diagram

$$
A \xrightarrow{R} B \underset{V}{\stackrel{U}{\longrightarrow}} \mathrm{pt} .
$$

By Remark 6.4.1.1.2, we have

$$
\begin{aligned}
& R^{-1}(U)=U \diamond R \\
& R^{-1}(V)=V \diamond R
\end{aligned}
$$

Now, if $U \diamond R=V \diamond R$, i.e. $R^{-1}(U)=R^{-1}(V)$, then $U=V$ since R is assumed to be an epimorphism, showing R^{-1} to be injective.

- Item $2 \Longrightarrow$ Item 1: Conversely, suppose that R^{-1} is injective, consider the diagram

$$
A \xrightarrow{R} B \underset{T}{\stackrel{S}{\longrightarrow}} X,
$$

and suppose that $S \diamond R=T \diamond R$. Note that, since R^{-1} is injective, given a diagram of the form

$$
A \xrightarrow[\mid]{R} B \underset{V}{\stackrel{U}{\longrightarrow}} \mathrm{pt}
$$

if $R^{-1}(U)=U \diamond R=V \diamond R=R^{-1}(V)$, then $U=V$. In particular, for each $x \in X$, we may consider the diagram

$$
A \xrightarrow{R} B \xrightarrow[T]{\stackrel{S}{\longrightarrow}} X \xrightarrow{[x]} \mathrm{pt}
$$

for which we have $[x] \diamond S \diamond R=[x] \diamond T \diamond R$, implying that we have

$$
S^{-1}(x)=[x] \diamond S=[x] \diamond T=T^{-1}(x)
$$

for each $x \in X$, implying $S=T$, and thus R is an epimorphism.
We can also prove this in a more abstract way, following [MSE 350788]:

- Item $1 \Longrightarrow$ Item 2: Assume that R is an epimorphism.
- We first notice that the functor $\operatorname{Rel}(-, \mathrm{pt}): \operatorname{Rel}^{\mathrm{op}} \rightarrow$ Sets maps R to R^{-1} by Remark 6.4.3.1.2.
- Since $\operatorname{Rel}(-, \mathrm{pt})$ preserves limits by ?? of ??, it follows by ?? of ?? that $\operatorname{Rel}(-, \mathrm{pt})$ also preserves monomorphisms.
- That is: Rel(-, pt) sends monomorphisms in $\operatorname{Rel}^{\mathrm{op}}$ to monomorphisms in Sets.
- The monomorphisms $\operatorname{Rel}^{\mathrm{op}}$ are precisely the epimorphisms in Rel by ?? of ??.
- Since R is an epimorphism and $\operatorname{Rel}(-, \mathrm{pt})$ maps R to R^{-1}, it follows that R^{-1} is a monomorphism.
- Since the monomorphisms in Sets are precisely the injections (?? of ??), it follows that R^{-1} is injective.
- Item $2 \Longrightarrow$ Item 1: Assume that R^{-1} is injective.
- We first notice that the functor $\operatorname{Rel}(-, \mathrm{pt}): \operatorname{Rel}^{\mathrm{op}} \rightarrow$ Sets maps R to R^{-1} by Remark 6.4.3.1.2.
- Since the monomorphisms in Sets are precisely the injections (?? of ??), it follows that R^{-1} is a monomorphism.
- Since $\operatorname{Rel}(-, \mathrm{pt})$ is faithful, it follows by ?? of ?? that $\operatorname{Rel}(, \mathrm{pt})$ reflects monomorphisms.
- That is: $\operatorname{Rel}(-, p t)$ reflects monomorphisms in Sets to monomorphisms in Rel ${ }^{\circ p}$.
- The monomorphisms Rel $^{\text {op }}$ are precisely the epimorphisms in Rel by ?? of ??
- Since R^{-1} is a monomorphism and $\operatorname{Rel}(-, \mathrm{pt})$ maps R to R^{-1}, it follows that R is an epimorphism.

We also claim that Items 2 and 4 are equivalent, following [MO 350788]:

- Item $2 \Longrightarrow$ Item 4: Since $B \backslash\{b\} \subset B$ and R^{-1} is injective, we have $R^{-1}(B \backslash\{b\}) \subsetneq R^{-1}(B)$. So taking some $a \in R^{-1}(B) \backslash$ $R^{-1}(B \backslash\{b\})$ we get an element of A such that $R(a)=\{b\}$.
- Item $4 \Longrightarrow$ Item 2: Let $U, V \subset B$ with $U \neq V$. Without loss of generality, we can assume $U \backslash V \neq \emptyset$; otherwise just swap U and V. Let then $b \in U \backslash V$. By assumption, there exists an $a \in A$ with $R(a)=\{b\}$. Then $a \in R^{-1}(U)$ but $a \notin R^{-1}(V)$, and thus $R^{-1}(U) \neq R^{-1}(V)$, showing R^{-1} to be injective.

Finally, we prove the second part of the statement. So assume R is a total epimorphism in Rel and consider the diagram

$$
A \xrightarrow{R} B \underset{T}{\stackrel{S}{\rightrightarrows}}\{0,1\},
$$

where $b \sim_{S} 0$ for each $b \in B$ and where we have

$$
b \sim_{T} \begin{cases}0 & \text { if } b \in \operatorname{Im}(R) \\ 1 & \text { otherwise }\end{cases}
$$

for each $b \in B$. Since R is total, we have $a \sim_{S \diamond R} 0$ and $a \sim_{T \diamond R} 0$ for all $a \in A$, and no element of A is related to 1 by $S \diamond R$ or $T \diamond R$. Thus $S \diamond R=T \diamond R$, and since R is an epimorphism, we have $S=T$. But by the definition of T, this implies $\operatorname{Im}(R)=B$.

5.3.10 2-Categorical Epimorphisms in Rel

In this section we characterise (for now, some of) the 2-categorical epimorphisms in Rel, following Section 9.2.

1. Corepresentably Faithful Morphisms in Rel. Every morphism of Rel is a corepresentably faithful morphism.
2. Corepresentably Full Morphisms in Rel. The following conditions are equivalent:
(a) The morphism $R: A \nrightarrow B$ is a corepresentably full morphism.
(b) For each pair of relations $S, T: X \nexists A$, the following condition is satisfied:
(*) If $S \diamond R \subset T \diamond R$, then $S \subset T$.
(c) The functor

$$
R^{-1}:(\mathcal{P}(B), \subset) \rightarrow(\mathcal{P}(A), \subset)
$$

is full.
(d) For each $U, V \in \mathcal{P}(B)$, if $R^{-1}(U) \subset R^{-1}(V)$, then $U \subset V$.
(e) The functor

$$
R_{-1}:(\mathcal{P}(B), \subset) \rightarrow(\mathcal{P}(A), \subset)
$$

is full.
(f) For each $U, V \in \mathcal{P}(B)$, if $R_{-1}(U) \subset R_{-1}(V)$, then $U \subset V$.
3. Corepresentably Fully Faithful Morphisms in Rel. Every corepresentably full morphism of Rel is a corepresentably fully faithful morphism.

Proof. Item 1, Corepresentably Faithful Morphisms in Rel: The relation R is a corepresentably faithful morphism in Rel iff, for each $X \in \operatorname{Obj}(\mathbf{R e l})$, the functor

$$
R^{*}: \operatorname{Rel}(B, X) \rightarrow \boldsymbol{\operatorname { R e l }}(A, X)
$$

is faithful, i.e. iff the morphism

$$
R_{S, T}^{*}: \operatorname{Hom}_{\mathbf{R e l}(B, X)}(S, T) \rightarrow \operatorname{Hom}_{\mathbf{R e l}(A, X)}(S \diamond R, T \diamond R)
$$

is injective for each $S, T \in \operatorname{Obj}(\operatorname{Rel}(B, X))$. However, $\operatorname{Hom}_{\operatorname{Rel}(B, X)}(S, T)$ is either empty or a singleton, in either case of which the map $R_{S, T}^{*}$ is necessarily injective.
Item 2, Corepresentably Full Morphisms in Rel: We claim Items 2a to 2 f are indeed equivalent:

- Item $2 a \Longleftrightarrow$ Item 2b: This is simply a matter of unwinding definitions: The relation R is a corepresentably full morphism in

Rel iff, for each $X \in \operatorname{Obj}(\mathbf{R e l})$, the functor

$$
R^{*}: \operatorname{Rel}(B, X) \rightarrow \boldsymbol{\operatorname { R e l }}(A, X)
$$

is full, i.e. iff the morphism

$$
R_{S, T}^{*}: \operatorname{Hom}_{\operatorname{Rel}(B, X)}(S, T) \rightarrow \operatorname{Hom}_{\operatorname{Rel}(A, X)}(S \diamond R, T \diamond R)
$$

is surjective for each $S, T \in \operatorname{Obj}(\operatorname{Rel}(B, X))$, i.e. iff, whenever $S \diamond R \subset T \diamond R$, we also have $S \subset T$.

- Item $2 c \Longleftrightarrow$ Item 2d: This is also simply a matter of unwinding definitions: The functor

$$
R^{-1}:(\mathcal{P}(B), \subset) \rightarrow(\mathcal{P}(A), \subset)
$$

is full iff, for each $U, V \in \mathcal{P}(A)$, the morphism

$$
R_{U, V}^{-1}: \operatorname{Hom}_{\mathcal{P}(B)}(U, V) \rightarrow \operatorname{Hom}_{\mathcal{P}(A)}\left(R^{-1}(U), R^{-1}(V)\right)
$$

is surjective, i.e. iff whenever $R^{-1}(U) \subset R^{-1}(V)$, we also necessarily have $U \subset V$.

- Item 2e \Longleftrightarrow Item 2f: This is once again simply a matter of unwinding definitions, and proceeds exactly in the same way as in the proof of the equivalence between Items 2c and 2d given above.
- Item 2d \Longrightarrow Item 2f: Suppose that the following condition is true:
(夫) For each $U, V \in \mathcal{P}(B)$, if $R^{-1}(U) \subset R^{-1}(V)$, then $U \subset V$.
We need to show that the condition
(*) For each $U, V \in \mathcal{P}(B)$, if $R_{-1}(U) \subset R_{-1}(V)$, then $U \subset V$.
is also true. We proceed step by step:

1. Suppose we have $U, V \in \mathcal{P}(B)$ with $R_{-1}(U) \subset R_{-1}(V)$.
2. By Item 7 of Proposition 6.4.2.1.3, we have

$$
\begin{aligned}
& R_{-1}(U)=B \backslash R^{-1}(A \backslash U) \\
& R_{-1}(V)=B \backslash R^{-1}(A \backslash V)
\end{aligned}
$$

3. By Item 1 of Proposition 2.3.10.1.2 we have $R^{-1}(A \backslash V) \subset$ $R^{-1}(A \backslash U)$.
4. By assumption, we then have $A \backslash V \subset A \backslash U$.
5. By Item 1 of Proposition 2.3.10.1.2 again, we have $U \subset V$.

- Item $2 f \Longrightarrow$ Item 2d: Suppose that the following condition is true:
(\star) For each $U, V \in \mathcal{P}(B)$, if $R_{-1}(U) \subset R_{-1}(V)$, then $U \subset V$.
We need to show that the condition
(*) For each $U, V \in \mathcal{P}(B)$, if $R^{-1}(U) \subset R^{-1}(V)$, then $U \subset V$.
is also true. We proceed step by step:

1. Suppose we have $U, V \in \mathcal{P}(B)$ with $R^{-1}(U) \subset R^{-1}(V)$.
2. By Item 7 of Proposition 6.4.3.1.3, we have

$$
\begin{aligned}
& R^{-1}(U)=B \backslash R_{-1}(A \backslash U) \\
& R^{-1}(V)=B \backslash R_{-1}(A \backslash V)
\end{aligned}
$$

3. By Item 1 of Proposition 2.3.10.1.2 we have $R_{-1}(A \backslash V) \subset$ $R_{-1}(A \backslash U)$.
4. By assumption, we then have $A \backslash V \subset A \backslash U$.
5. By Item 1 of Proposition 2.3.10.1.2 again, we have $U \subset V$.

- Item $2 b \Longrightarrow$ Item 2d: Consider the diagram

$$
A \xrightarrow[\mid]{R} B \underset{T}{\stackrel{S}{\rightrightarrows}} X
$$

and suppose that $S \diamond R \subset T \diamond R$. Note that, by assumption, given a diagram of the form

$$
A \xrightarrow{R} B \xrightarrow[V]{\stackrel{U}{\longrightarrow}} \mathrm{pt}
$$

if $R^{-1}(U)=R \diamond U \subset R \diamond V=R^{-1}(V)$, then $U \subset V$. In particular, for each $x \in X$, we may consider the diagram

$$
A \stackrel{R}{\rightrightarrows} B \stackrel{S}{\underset{T}{\hookrightarrow}} X \xrightarrow{[x]} \mathrm{pt}
$$

for which we have $[x] \diamond S \diamond R \subset[x] \diamond T \diamond R$, implying that we have

$$
S^{-1}(x)=[x] \diamond S \subset[x] \diamond T=T^{-1}(x)
$$

for each $x \in X$, implying $S \subset T$.

- Item 2d \Longrightarrow Item 2b: Let $U, V \in \mathcal{P}(B)$ and consider the diagram

$$
A \xrightarrow{R} B \underset{V}{\stackrel{U}{\longrightarrow}} \mathrm{pt} .
$$

By Remark 6.4.1.1.2, we have

$$
\begin{aligned}
& R^{-1}(U)=U \diamond R \\
& R^{-1}(V)=V \diamond R
\end{aligned}
$$

Now, if $R^{-1}(U) \subset R^{-1}(V)$, i.e. $U \diamond R \subset V \diamond R$, then $U \subset V$ by assumption.

Item 3, Corepresentably Fully Faithful Morphisms in Rel: This follows from Items 1 and 2.

00MD Question 5.3.10.1.2. Item 2 of Proposition 5.3.10.1.1 gives a characterisation of the corepresentably full morphisms in Rel.
Are there other nice characterisations of these?
This question also appears as [MO 467527].

00ME 5.3.11 Co/Limits in Rel

00MF Proposition 5.3.11.1.1. This will be properly written later on.
Proof. Omitted.

00Mg 5.3.12 Kan Extensions and Kan Lifts in Rel

00MH Remark 5.3.12.1.1. The 2-category Rel admits all right Kan extensions and right Kan lifts, though not all left Kan extensions and neither does it admit all left Kan lifts. See Section 6.2 for a detailed discussion of this.

00MJ 5.3.13 Closedness of Rel

00 MK Proposition 5.3.13.1.1. The 2-category Rel is a closed bicategory, there being, for each $R: A \rightarrow B$ and set X, a pair of adjunctions

$$
\begin{array}{ll}
\left(R^{*} \dashv \operatorname{Ran}_{R}\right): & \operatorname{Rel}(B, X) \underset{\frac{R^{*}}{\operatorname{Ran}_{R}}}{\frac{\perp}{2}} \operatorname{Rel}(A, X), \\
\left(R_{*} \dashv \operatorname{Rift}_{R}\right): & \operatorname{Rel}(X, A) \underset{R_{*}}{\frac{R_{*}}{\operatorname{Rift}_{R}}} \operatorname{Rel}(X, B),
\end{array}
$$

witnessed by bijections

$$
\begin{aligned}
& \operatorname{Rel}(S \diamond R, T) \cong \operatorname{Rel}\left(S, \operatorname{Ran}_{R}(T)\right) \\
& \operatorname{Rel}(R \diamond U, V) \cong \operatorname{Rel}\left(U, \operatorname{Rift}_{R}(V)\right)
\end{aligned}
$$

natural in $S \in \operatorname{Rel}(B, X), T \in \operatorname{Rel}(A, X), U \in \operatorname{Rel}(X, A)$, and $V \in$ $\operatorname{Rel}(X, B)$.

Proof. This follows from Propositions 6.2.3.1.1 and 6.2.4.1.1.

00ML 5.3.14 Rel as a Category of Free Algebras

00 MM Proposition 5.3.14.1.1. We have an isomorphism of categories

$$
\mathrm{Rel} \cong \operatorname{FreeAlg}_{\mathcal{P}_{*}}(\text { Sets }),
$$

where \mathcal{P}_{*} is the powerset monad of ??
Proof. Omitted.
00MN 5.4 The Left Skew Monoidal Structure on $\operatorname{Rel}(A, B)$
00MP 5.4.1 The Left Skew Monoidal Product
Let A and B be sets and let $J: A \rightarrow B$ be a relation.
00MQ Definition 5.4.1.1.1. The left J-skew monoidal product of $\operatorname{Rel}(A, B)$ is the functor

$$
\triangleleft_{J}: \boldsymbol{\operatorname { R e l }}(A, B) \times \boldsymbol{\operatorname { R e l }}(A, B) \rightarrow \boldsymbol{\operatorname { R e l }}(A, B)
$$

where

- Action on Objects. For each $R, S \in \operatorname{Obj}(\operatorname{Rel}(A, B))$, we have
- Action on Morphisms. For each $R, S, R^{\prime}, S^{\prime} \in \operatorname{Obj}(\operatorname{Rel}(A, B))$, the action on Hom-sets
$\left(\triangleleft_{J}\right)_{(G, F),\left(G^{\prime}, F^{\prime}\right)}: \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(S, S^{\prime}\right) \times \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(R, R^{\prime}\right) \rightarrow \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(S \triangleleft_{J} R, S^{\prime} \triangleleft_{J} R^{\prime}\right)$
of \triangleleft_{J} at $\left((R, S),\left(R^{\prime}, S^{\prime}\right)\right)$ is defined by ${ }^{14}$

for each $\beta \in \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(S, S^{\prime}\right)$ and each $\alpha \in \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(R, R^{\prime}\right)$.

00MR 5.4.2 The Left Skew Monoidal Unit

Let A and B be sets and let $J: A \rightarrow B$ be a relation.
00MS Definition 5.4.2.1.1. The left J-skew monoidal unit of $\operatorname{Rel}(A, B)$ is the functor

$$
\mathbb{1}_{\triangleleft_{J}}^{\operatorname{Rel}(A, B)}: \mathrm{pt} \rightarrow \boldsymbol{\operatorname { R e l }}(A, B)
$$

picking the object

$$
\mathbb{1}_{\operatorname{Rel}(A, B)}^{\triangleleft J} \stackrel{\text { def }}{=} J
$$

of $\boldsymbol{\operatorname { R e l }}(A, B)$.

00MT 5.4.3 The Left Skew Associators
Let A and B be sets and let $J: A \rightarrow B$ be a relation.
00MU Definition 5.4.3.1.1. The left J-skew associator of $\operatorname{Rel}(A, B)$ is the natural transformation
$\alpha^{\operatorname{Rel}(A, B), \triangleleft_{J}}: \triangleleft_{J} \circ\left(\triangleleft_{J} \times \mathrm{id}\right) \Longrightarrow \triangleleft_{J} \circ\left(\mathrm{id} \times \triangleleft_{J}\right) \circ \boldsymbol{\alpha}_{\operatorname{Rel}(A, B), \operatorname{Rel}(A, B), \operatorname{Rel}(A, B)}^{\mathrm{Cats}}$,

[^49]as in the diagram

whose component
at (T, S, R) is given by
$$
\alpha_{T, S, R}^{\mathrm{Rel}(A, B), \triangleleft_{J}} \stackrel{\text { def }}{=} \mathrm{id}_{T} \diamond \gamma,
$$
where
$$
\gamma: \operatorname{Rift}_{J}(S) \diamond \operatorname{Rift}_{J}(R) \hookrightarrow \operatorname{Rift}_{J}\left(S \diamond \operatorname{Rift}_{J}(R)\right)
$$
is the inclusion adjunct to the inclusion
$$
\epsilon_{S} \star \operatorname{id}_{\text {Rift }_{J}(R)}: \underbrace{J \diamond \operatorname{Rift}_{J}(S) \diamond \operatorname{Rift}_{J}(R)}_{\text {def } \left._{J_{*}\left(\operatorname{Rift}_{J}\right.}(S) \diamond \operatorname{Rift}_{J}(R)\right)} \hookrightarrow S \diamond \operatorname{Rift}_{J}(R)
$$
under the adjunction $J_{*} \dashv \operatorname{Rift}_{J}$, where $\epsilon: J \diamond \operatorname{Rift}_{J} \Longrightarrow \operatorname{id}_{\operatorname{Rel}(A, B)}$ is the counit of the adjunction $J_{*} \dashv \operatorname{Rift}_{J}$.

00MV 5.4.4 The Left Skew Left Unitors

Let A and B be sets and let $J: A \rightarrow B$ be a relation.
$00 M W$ Definition 5.4.4.1.1. The left J-skew left unitor of $\operatorname{Rel}(A, B)$ is the natural transformation

$$
\lambda^{\operatorname{Rel}(A, B), \triangleleft_{J}}: \triangleleft_{J} \circ\left(\mathbb{1}_{\triangleleft_{J}}^{\operatorname{Rel}(A, B)} \times \mathrm{id}\right) \Longrightarrow \lambda_{\operatorname{Rel}(A, B)}^{\mathrm{Cats}_{2}}
$$

as in the diagram

whose component

$$
\lambda_{R}^{\operatorname{Rel}(A, B), \triangleleft_{J}}: \underbrace{J \triangleleft_{J} R}_{\text {def }_{=}^{\operatorname{donift}}{ }_{J}(R)} \hookrightarrow R
$$

at R is given by

$$
\lambda_{R}^{\boldsymbol{R e l}(A, B), \triangleleft_{J}} \stackrel{\text { def }}{=} \epsilon_{R},
$$

where $\epsilon: J_{*} \diamond \operatorname{Rift}_{J} \Longrightarrow \operatorname{id}_{\operatorname{Rel}(A, B)}$ is the counit of the adjunction $J_{*} \dashv$ Rift_{J}.

00MX 5.4.5 The Left Skew Right Unitors

Let A and B be sets and let $J: A \rightarrow B$ be a relation.
00 MY Definition 5.4.5.1.1. The left J-skew right unitor of $\operatorname{Rel}(A, B)$ is the natural transformation

$$
\rho^{\boldsymbol{\operatorname { R e l }}(A, B), \triangleleft_{J}}: \rho_{\operatorname{Rel}(A, B)}^{\mathrm{Cats}_{2}} \Longrightarrow \triangleleft_{J} \circ\left(\mathrm{id} \times \mathbb{1}_{\triangleleft_{J}}^{\boldsymbol{\operatorname { R e l } (A , B)}}\right)
$$

as in the diagram

whose component

$$
\rho_{R}^{\operatorname{Rel}(A, B), \triangleleft_{J}}: R \hookrightarrow \underbrace{R \triangleleft_{J} J}_{\stackrel{\text { def }}{=} R \diamond \operatorname{Rift}_{J}(J)}
$$

at R is given by the composition

$$
\begin{aligned}
R & \stackrel{\sim}{\Longrightarrow} R \diamond \chi_{A} \\
& \stackrel{\operatorname{id}_{R} \diamond \eta_{\chi}}{\Longrightarrow} R \diamond \operatorname{Rift}_{J}\left(J_{*}\left(\chi_{A}\right)\right) \\
& \stackrel{\text { def }}{=} \quad R \diamond \operatorname{Rift}_{J}\left(J \diamond \chi_{A}\right) \\
& \xlongequal{\Longrightarrow} R \diamond \operatorname{Rift}_{J}(J) \\
& \stackrel{\text { def }}{=} \quad R \triangleleft J J,
\end{aligned}
$$

where $\eta: \operatorname{id}_{\operatorname{Rel}(A, A)} \Longrightarrow \operatorname{Rift}_{J} \circ J_{*}$ is the unit of the adjunction $J_{*} \dashv \operatorname{Rift}_{J}$.

00MZ 5.4.6 The Left Skew Monoidal Structure on $\operatorname{Rel}(A, B)$

00N0 Proposition 5.4.6.1.1. The category $\operatorname{Rel}(A, B)$ admits a left skew monoidal category structure consisting of

- The Underlying Category. The posetal category associated to the poset $\operatorname{Rel}(A, B)$ of relations from A to B of Item 2 of Definition 5.1.1.1.3.
- The Left Skew Monoidal Product. The left J-skew monoidal product

$$
\triangleleft_{J}: \boldsymbol{\operatorname { R e l }}(A, B) \times \mathbf{\operatorname { R e l }}(A, B) \rightarrow \boldsymbol{\operatorname { R e l }}(A, B)
$$

of Definition 5.4.1.1.1.

- The Left Skew Monoidal Unit. The functor

$$
\mathbb{1}^{\operatorname{Rel}(A, B), \triangleleft_{J}}: \mathrm{pt} \rightarrow \boldsymbol{\operatorname { R e l }}(A, B)
$$

of Definition 5.4.2.1.1.

- The Left Skew Associators. The natural transformation

$$
\alpha^{\operatorname{Rel}(A, B), \triangleleft_{J}}: \triangleleft_{J} \circ\left(\triangleleft_{J} \times \mathrm{id}\right) \Longrightarrow \triangleleft_{J} \circ\left(\mathrm{id} \times \triangleleft_{J}\right) \circ \boldsymbol{\alpha}_{\boldsymbol{\operatorname { R e l }}(A, B), \boldsymbol{\operatorname { R e l }}(A, B), \boldsymbol{\operatorname { R e l }}(A, B)}^{\mathrm{Cats}}
$$

of Definition 5.4.3.1.1.

- The Left Skew Left Unitors. The natural transformation

$$
\lambda^{\operatorname{Rel}(A, B), \triangleleft_{J}}: \triangleleft_{J} \circ\left(\mathbb{1}_{\triangleleft_{J}}^{\operatorname{Rel}(A, B)} \times \mathrm{id}\right) \Longrightarrow \lambda_{\operatorname{Rel}(A, B)}^{\mathrm{Cats}_{2}}
$$

of Definition 5.4.4.1.1.

- The Left Skew Right Unitors. The natural transformation

$$
\rho^{\operatorname{Rel}(A, B), \triangleleft_{J}}: \rho_{\operatorname{Rel}(A, B)}^{\mathrm{Cats}_{2}} \Longrightarrow \triangleleft_{J} \circ\left(\mathrm{id} \times \mathbb{1}_{\triangleleft_{J}}^{\operatorname{Rel}(A, B)}\right)
$$

of Definition 5.4.5.1.1.

Proof. Since $\operatorname{Rel}(A, B)$ is posetal, the commutativity of the pentagon identity, the left skew left triangle identity, the left skew right triangle identity, the left skew middle triangle identity, and the zigzag identity is automatic, and thus $\operatorname{Rel}(A, B)$ together with the data in the statement forms a left skew monoidal category.

00N1

5.5 The Right Skew Monoidal Structure on $\operatorname{Rel}(A, B)$

Let A and B be sets and let $J: A \rightarrow B$ be a relation.

00N2

5.5.1 The Right Skew Monoidal Product

00N3 Definition 5.5.1.1.1. The right J-skew monoidal product of $\operatorname{Rel}(A, B)$ is the functor

$$
\triangleright_{J}: \boldsymbol{\operatorname { R e l }}(A, B) \times \operatorname{Rel}(A, B) \rightarrow \boldsymbol{\operatorname { R e l }}(A, B)
$$

where

- Action on Objects. For each $R, S \in \operatorname{Obj}(\boldsymbol{\operatorname { R e l }}(A, B))$, we have

- Action on Morphisms. For each $R, S, R^{\prime}, S^{\prime} \in \operatorname{Obj}(\operatorname{Rel}(A, B))$, the action on Hom-sets
$\left(\triangleright_{J}\right)_{(S, R),\left(S^{\prime}, R^{\prime}\right)}: \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(S, S^{\prime}\right) \times \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(R, R^{\prime}\right) \rightarrow \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(S \triangleright_{J} R, S^{\prime} \triangleright_{J} R^{\prime}\right)$
of \triangleright_{J} at $\left((S, R),\left(S^{\prime}, R^{\prime}\right)\right)$ is defined by ${ }^{15}$

for each $\beta \in \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(S, S^{\prime}\right)$ and each $\alpha \in \operatorname{Hom}_{\operatorname{Rel}(A, B)}\left(R, R^{\prime}\right)$.

[^50]
00N4 5.5.2 The Right Skew Monoidal Unit

00 N 5 Definition 5.5.2.1.1. The right J-skew monoidal unit of $\operatorname{Rel}(A, B)$ is the functor

$$
\mathbb{1}_{\triangleright_{J}}^{\operatorname{Rel}(A, B)}: \mathrm{pt} \rightarrow \boldsymbol{\operatorname { R e l }}(A, B)
$$

picking the object

$$
\mathbb{1}_{\operatorname{Rel}(A, B)}^{\triangleright J} \stackrel{\text { def }}{=} J
$$

of $\operatorname{Rel}(A, B)$.

00N6 5.5.3 The Right Skew Associators

00 N 7 Definition 5.5.3.1.1. The right J-skew associator of $\operatorname{Rel}(A, B)$ is the natural transformation
$\alpha^{\operatorname{Rel}(A, B), \triangleright_{J}}: \triangleright_{J} \circ\left(\mathrm{id} \times \triangleright_{J}\right) \Longrightarrow \triangleright_{J} \circ\left(\triangleright_{J} \times \mathrm{id}\right) \circ \boldsymbol{\alpha}_{\operatorname{Rel}(A, B), \operatorname{Rel}(A, B), \operatorname{Rel}(A, B)}^{\mathrm{Cats},-1}$, as in the diagram

whose component

$$
\alpha_{T, S, R}^{\operatorname{Rel}(A, B) \triangleright \triangleright}: \underbrace{T \triangleright_{J}\left(S \triangleright_{J} R\right)}_{\text {def } \operatorname{Ran}_{J}(T) \diamond \operatorname{Ran}_{J}(S) \diamond R} \hookrightarrow \underbrace{\left(T \triangleright_{J} S\right) \triangleright_{J} R}_{\text {def }^{\operatorname{Ran} \operatorname{Ran}_{J}\left(\operatorname{Ran}_{J}(T) \diamond S\right) \diamond R}}
$$

at (T, S, R) is given by

$$
\alpha_{T, S, R}^{\mathrm{Rel}(A, B), \triangleright} \stackrel{\text { def }}{=} \gamma \diamond \operatorname{id}_{R},
$$

where

$$
\gamma: \operatorname{Ran}_{J}(T) \diamond \operatorname{Ran}_{J}(S) \hookrightarrow \operatorname{Ran}_{J}\left(\operatorname{Ran}_{J}(T) \diamond S\right)
$$

is the inclusion adjunct to the inclusion

$$
\operatorname{id}_{\operatorname{Ran}_{J}(T)} \diamond \epsilon_{S}: \underbrace{\operatorname{Ran}_{J}(T) \diamond \operatorname{Ran}_{J}(S) \diamond J}_{\stackrel{\operatorname{dat}_{J}(T *}{=J^{*}}\left(\operatorname{Ran}_{J}(T) \diamond \operatorname{Ran}_{J}(S)\right)} \hookrightarrow \operatorname{Ran}_{J}(T) \diamond S
$$

under the adjunction $J^{*} \dashv \operatorname{Ran}_{J}$, where $\epsilon: \operatorname{Ran}_{J} \diamond J \Longrightarrow \operatorname{id}_{\operatorname{Rel}^{(A, B)}}$ is the counit of the adjunction $J^{*} \dashv \operatorname{Ran}_{J}$.

00N8 5.5.4 The Right Skew Left Unitors

00 N 9 Definition 5.5.4.1.1. The right J-skew left unitor of $\operatorname{Rel}(A, B)$ is the natural transformation

$$
\lambda^{\boldsymbol{\operatorname { R e l }}(A, B), \triangleright \triangleright_{J}}: \lambda_{\boldsymbol{\operatorname { R e l }}(A, B)}^{\mathrm{Cats}_{2}} \Longrightarrow \triangleright_{J} \circ\left(\mathbb{1}_{\triangleright}^{\boldsymbol{\operatorname { R e l }}(A, B)} \times \mathrm{id}\right),
$$

as in the diagram

whose component

$$
\lambda_{R}^{\operatorname{Rel}(A, B), \triangleright_{J}}: R \hookrightarrow \underbrace{J \triangleright_{J} R}_{\stackrel{\text { def }}{=} \operatorname{Ran}_{J}(J) \diamond R}
$$

at R is given by the composition

$$
\begin{aligned}
& R \xlongequal{\sim} \chi_{B} \diamond R \\
& \stackrel{\eta_{\chi_{B}}}{\Longrightarrow} \diamond \operatorname{iR}_{\AA_{J}}\left(J^{*}\left(\chi_{A}\right)\right) \diamond R \\
& \stackrel{\text { def }}{=} \\
& \operatorname{Ran}_{J}\left(J^{*} \diamond \chi_{A}\right) \diamond R \\
& \xlongequal{\sim} \operatorname{Ran}_{J}(J) \diamond R \\
& \stackrel{\text { def }}{=} \\
& \triangleright_{J} J,
\end{aligned}
$$

where $\eta: \operatorname{id}_{\operatorname{Rel}(B, B)} \Longrightarrow \operatorname{Ran}_{J} \circ J^{*}$ is the unit of the adjunction $J^{*} \dashv \operatorname{Ran}_{J}$.

5.5.5 The Right Skew Right Unitors

Definition 5.5.5.1.1. The right J-skew right unitor of $\operatorname{Rel}(A, B)$ is the natural transformation

$$
\rho^{\operatorname{Rel}(A, B), \triangleright_{J}}: \triangleright_{J} \circ\left(\mathrm{id} \times \mathbb{1}_{\triangleright}^{\operatorname{Rel}(A, B)}\right) \Longrightarrow \rho_{\operatorname{Rel}(A, B)}^{\mathrm{Cats}_{2}}
$$

$S \triangleright_{J} R \subset S^{\prime} \triangleright_{J} R^{\prime}$.
as in the diagram

whose component

$$
\rho_{S}^{\operatorname{Rel}(A, B), \triangleright_{J}}: \underbrace{S \triangleright_{J} J}_{\stackrel{\text { def }}{=\operatorname{Ran}_{J}(S) \diamond J}} \hookrightarrow S
$$

at S is given by

$$
\rho_{S}^{\operatorname{Rel}(A, B), \triangleright_{J}} \stackrel{\text { def }}{=} \epsilon_{R},
$$

where $\epsilon: J^{*} \circ \operatorname{Ran}_{J} \Longrightarrow \operatorname{id}_{\operatorname{Rel}(A, B)}$ is the counit of the adjunction $J^{*} \dashv$ Ran_{J}.

00NC 5.5.6 The Right Skew Monoidal Structure on $\operatorname{Rel}(A, B)$
00ND Proposition 5.5.6.1.1. The category $\operatorname{Rel}(A, B)$ admits a right skew monoidal category structure consisting of

- The Underlying Category. The posetal category associated to the poset $\operatorname{Rel}(A, B)$ of relations from A to B of Item 2 of Definition 5.1.1.1.3.
- The Right Skew Monoidal Product. The right J-skew monoidal product

$$
\triangleleft_{J}: \boldsymbol{\operatorname { R e l }}(A, B) \times \boldsymbol{\operatorname { R e l }}(A, B) \rightarrow \boldsymbol{\operatorname { R e l }}(A, B)
$$

of Definition 5.5.1.1.1.

- The Right Skew Monoidal Unit. The functor

$$
\mathbb{1}^{\boldsymbol{\operatorname { R e l }}(A, B), \triangleleft_{J}}: \mathrm{pt} \rightarrow \boldsymbol{\operatorname { R e l }}(A, B)
$$

of Definition 5.5.2.1.1.

- The Right Skew Associators. The natural transformation
$\alpha^{\operatorname{Rel}(A, B), \triangleright_{J}}: \triangleright_{J} \circ\left(\mathrm{id} \times \triangleright_{J}\right) \Longrightarrow \triangleright_{J} \circ\left(\triangleright_{J} \times \mathrm{id}\right) \circ \boldsymbol{\alpha}_{\operatorname{Rel}(A, B), \operatorname{Rel}(A, B), \operatorname{Rel}(A, B)}^{\mathrm{Cats}-1}$
of Definition 5.5.3.1.1.
- The Right Skew Left Unitors. The natural transformation

$$
\lambda^{\operatorname{Rel}(A, B), \triangleright_{J}}: \lambda_{\operatorname{Rel}(A, B)}^{\mathrm{Cats}_{2}} \Longrightarrow \triangleright_{J} \circ\left(\mathbb{1}_{\triangleright}^{\operatorname{Rel}(A, B)} \times \mathrm{id}\right)
$$

of Definition 5.5.4.1.1.

- The Right Skew Right Unitors. The natural transformation

$$
\rho^{\operatorname{Rel}(A, B), \triangleright_{J}}: \triangleright_{J} \circ\left(\mathrm{id} \times \mathbb{1}_{\triangleright}^{\operatorname{Rel}(A, B)}\right) \Longrightarrow \rho_{\operatorname{Rel}(A, B)}^{\mathrm{Cats}_{2}}
$$

of Definition 5.5.5.1.1.
Proof. Since $\operatorname{Rel}(A, B)$ is posetal, the commutativity of the pentagon identity, the right skew left triangle identity, the right skew right triangle identity, the right skew middle triangle identity, and the zigzag identity is automatic, and thus $\operatorname{Rel}(A, B)$ together with the data in the statement forms a right skew monoidal category.

Appendices

5.A Other Chapters

Sets

1. Sets
2. Constructions With Sets
3. Pointed Sets
4. Tensor Products of Pointed Sets

Relations

5. Relations
6. Constructions With Relations
7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 6

Constructions With Relations

00NE This chapter contains some material about constructions with relations. Notably, we discuss and explore:

1. The existence or non-existence of Kan extensions and Kan lifts in the 2-category Rel (Section 6.2).
2. The various kinds of constructions involving relations, such as graphs, domains, ranges, unions, intersections, products, inverse relations, composition of relations, and collages (Section 6.3).
3. The adjoint pairs

$$
\begin{aligned}
R_{*} \dashv R_{-1}: \mathcal{P}(A) & \rightleftarrows \mathcal{P}(B), \\
R^{-1} \dashv R_{!}: \mathcal{P}(B) & \rightleftarrows \mathcal{P}(A)
\end{aligned}
$$

of functors (morphisms of posets) between $\mathcal{P}(A)$ and $\mathcal{P}(B)$ induced by a relation $R: A \rightarrow B$, as well as the properties of R_{*}, R_{-1}, R^{-1}, and $R_{!}$(Section 6.4).

Of particular note are the following points:
(a) These two pairs of adjoint functors are the counterpart for relations of the adjoint triple $f_{*} \dashv f^{-1} \dashv f_{\text {! induced by a }}$ function $f: A \rightarrow B$ studied in Section 2.4.
(b) We have $R_{-1}=R^{-1}$ iff R is total and functional (Item 8 of Proposition 6.4.2.1.3).
(c) As a consequence of the previous item, when R comes from a function f, the pair of adjunctions

$$
R_{*} \dashv R_{-1}=R^{-1} \dashv R_{!}
$$

reduces to the triple adjunction

$$
f_{*} \dashv f^{-1} \dashv f_{!}
$$

from Section 2.4.
(d) The pairs $R_{*} \dashv R_{-1}$ and $R^{-1} \dashv R_{\text {! }}$ turn out to be rather important later on, as they appear in the definition and study of continuous, open, and closed relations between topological spaces (??).

Contents

6.1 Co/Limits in the Category of Relations.......... 281
6.2 Kan Extensions and Kan Lifts in the 2-Category of Relations.. 281
6.2.1 Left Kan Extensions in Rel......................... 281
6.2.2 Left Kan Lifts in Rel................................. 282
6.2.3 Right Kan Extensions in Rel....................... 282
6.2.4 Right Kan Lifts in Rel 284
6.3 More Constructions With Relations................ 285
6.3.1 The Graph of a Function........................... 285
6.3.2 The Inverse of a Function.......................... 288
6.3.3 Representable Relations 290
6.3.4 The Domain and Range of a Relation.......... 291
6.3.5 Binary Unions of Relations......................... 292
6.3.6 Unions of Families of Relations.................... 293
6.3.7 Binary Intersections of Relations.................. 293
6.3.8 Intersections of Families of Relations........... 294
6.3.9 Binary Products of Relations..................... 295
6.3.10 Products of Families of Relations................ 297
6.3.11 The Inverse of a Relation 297
6.3.12 Composition of Relations............................. 299
6.3.13 The Collage of a Relation.......................... 303
6.4 Functoriality of Powersets................................ 305
6.4.1 Direct Images... 305
6.4.2 Strong Inverse Images................................ 310
6.4.3 Weak Inverse Images 315
6.4.4 Direct Images With Compact Support......... 320
6.4.5 Functoriality of Powersets........................... 325
6.4.6 Functoriality of Powersets: Relations on

Powersets
6.A Other Chapters 327

00nF 6.1 Co/Limits in the Category of Relations

This section is currently just a stub, and will be properly developed later on.

6.2 Kan Extensions and Kan Lifts in the 2-Category of Relations

6.2.1 Left Kan Extensions in Rel

00NJ Proposition 6.2.1.1.1. Let $R: A \rightarrow B$ be a relation.
00NK 1. Non-Existence of All Left Kan Extensions in Rel. Not all relations in Rel admit left Kan extensions.
2. Characterisation of Relations Admitting Left Kan Extensions Along Them. The following conditions are equivalent:
(a) The left Kan extension

$$
\operatorname{Lan}_{R}: \boldsymbol{\operatorname { R e l }}(A, X) \rightarrow \boldsymbol{\operatorname { R e l }}(B, X)
$$

along R exists.
(b) The relation R admits a left adjoint in Rel.
(c) The relation R is of the form f^{-1} (as in Definition 6.3.2.1.1) for some function f.

Proof. Item 1, Non-Existence of All Left Kan Extensions in Rel: Omitted, but will eventually follow Fosco Loregian's comment on [MO 460656].
Item 2, Characterisation of Relations Admitting Left Kan Extensions Along Them: Omitted, but will eventually follow Tim Campion's answer to to [MO 460656].

00NM Question 6.2.1.1.2. Given relations $S: A \nrightarrow X$ and $R: A \nrightarrow B$, is there a characterisation of when the left Kan extension

$$
\operatorname{Lan}_{S}(R): B \rightarrow X
$$

exists in terms of properties of R and S ?
This question also appears as [MO 461592].
00NN Question 6.2.1.1.3. As shown in Item 2 of Proposition 6.2.1.1.1, the left Kan extension

$$
\operatorname{Lan}_{R}: \boldsymbol{\operatorname { R e l }}(A, X) \rightarrow \boldsymbol{\operatorname { R e l }}(B, X)
$$

along a relation of the form $R=f^{-1}$ exists. Is there a explicit description of it, similarly to the explicit description of right Kan extensions given in Proposition 6.2.3.1.1?
This question also appears as [MO 461592].

00NP
 6.2.2 Left Kan Lifts in Rel

00NQ Proposition 6.2.2.1.1. Let $R: A \nrightarrow B$ be a relation.
00NR 1. Non-Existence of All Left Kan Lifts in Rel. Not all relations in Rel admit left Kan lifts.
2. Characterisation of Relations Admitting Left Kan Lifts Along Them. The following conditions are equivalent:
(a) The left Kan lift

$$
\operatorname{Lift}_{R}: \operatorname{Rel}(X, B) \rightarrow \boldsymbol{\operatorname { R e l }}(X, A)
$$

along R exists.
(b) The relation R admits a right adjoint in Rel.
(c) The relation R is of the form $\operatorname{Gr}(f)$ (as in Definition 6.3.1.1.1) for some function f.

Proof. Item 1, Non-Existence of All Left Kan Lifts in Rel: Omitted, but will eventually follow (the dual of) Fosco Loregian's comment on [MO 460656].
Item 2, Characterisation of Relations Admitting Left Kan Lifts Along Them: Omitted, but will eventually follow Tim Campion's answer to to [MO 460656].

00NT Question 6.2.2.1.2. Given relations $S: A \nrightarrow X$ and $R: A \nrightarrow B$, is there a characterisation of when the left Kan lift

$$
\operatorname{Lift}_{S}(R): X \nrightarrow A
$$

exists in terms of properties of R and S ?
This question also appears as [MO 461592].
00NU Question 6.2.2.1.3. As shown in Item 2 of Proposition 6.2.2.1.1, the left Kan lift

$$
\operatorname{Lift}_{R}: \operatorname{Rel}(X, B) \rightarrow \boldsymbol{\operatorname { R e l }}(X, A)
$$

along a relation of the form $R=\operatorname{Gr}(f)$ exists. Is there a explicit description of it, similarly to the explicit description of right Kan lifts given in Proposition 6.2.4.1.1?
This question also appears as [MO 461592].

Let $R: A \rightarrow B$ be a relation.
00NW Proposition 6.2.3.1.1. The right Kan extension

$$
\operatorname{Ran}_{R}: \operatorname{Rel}(A, X) \rightarrow \operatorname{Rel}(B, X)
$$

along R in Rel exists and is given by

$$
\operatorname{Ran}_{R}(S) \stackrel{\text { def }}{=} \int_{a \in A} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{-2}, S_{a}^{-1}\right)
$$

for each $S \in \operatorname{Rel}(A, X)$, so that the following conditions are equivalent:

1. We have $b \sim_{\operatorname{Ran}_{R}(S)} x$.
2. For each $a \in A$, if $a \sim_{R} b$, then $a \sim_{S} x$.

Proof. We have

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{R e l}(A, X)}(S \diamond R, T) & \cong \int_{a \in A} \int_{x \in X} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left((S \diamond R)_{a}^{x}, T_{a}^{x}\right) \\
& \cong \int_{a \in A} \int_{x \in X} \operatorname{Hom}_{\{t, f\}}\left(\left(\int^{b \in B} S_{b}^{x} \times R_{a}^{b}\right), T_{a}^{x}\right) \\
& \cong \int_{a \in A} \int_{x \in X} \int_{b \in B} \operatorname{Hom}_{\{t, f\}}\left(S_{b}^{x} \times R_{a}^{b}, T_{a}^{x}\right) \\
& \cong \int_{a \in A} \int_{x \in X} \int_{b \in B} \operatorname{Hom}_{\{t, f\}\}}\left(S_{b}^{x}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, T_{a}^{x}\right)\right) \\
& \cong \int_{b \in B} \int_{x \in X} \int_{a \in A} \operatorname{Hom}_{\{t, f\}\}}\left(S_{b}^{x}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, T_{a}^{x}\right)\right) \\
& \cong \int_{b \in B} \int_{x \in X} \operatorname{Hom}_{\{t, f\}}\left(S_{b}^{x}, \int_{a \in A} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, T_{a}^{x}\right)\right) \\
& \cong \operatorname{Hom}_{\mathbf{R e l}(B, X)}\left(S, \int_{a \in A} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{-2}, T_{a}^{-1}\right)\right)
\end{aligned}
$$

naturally in each $S \in \operatorname{Rel}(B, X)$ and each $T \in \operatorname{Rel}(A, X)$, showing that

$$
\int_{a \in A} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{-2}, T_{a}^{-1}\right)
$$

is right adjoint to the precomposition functor $-\diamond R$, being thus the right Kan extension along R. Here we have used the following results, respectively (i.e. for each \cong sign):

1. Item 1 of Proposition 5.1.1.1.5.
2. Definition 6.3.12.1.1.
3. ?? of ??
4. Proposition 1.2.2.1.5.
5. ?? of ??
6. ?? of ??
7. Item 1 of Proposition 5.1.1.1.5.

This finishes the proof.

00NX 6.2.4 Right Kan Lifts in Rel

Let $R: A \nrightarrow B$ be a relation.
00NY Proposition 6.2.4.1.1. The right Kan lift

$$
\operatorname{Rift}_{R}: \operatorname{Rel}(X, B) \rightarrow \operatorname{Rel}(X, A)
$$

along R in Rel exists and is given by

$$
\operatorname{Rift}_{R}(S) \stackrel{\text { def }}{=} \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, f\}}\left(R_{-1}^{b}, S_{-2}^{b}\right)
$$

for each $S \in \operatorname{Rel}(X, B)$, so that the following conditions are equivalent:

1. We have $x \sim_{\text {Rift }_{R}(S)} a$.
2. For each $b \in B$, if $a \sim_{R} b$, then $x \sim_{S} b$.

Proof. We have

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{R e l}(X, B)}(R \diamond S, T) & \cong \int_{x \in X} \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left((R \diamond S)_{x}^{b}, T_{x}^{b}\right) \\
& \cong \int_{x \in X} \int_{b \in B} \operatorname{Hom}_{\{t, f\}}\left(\left(\int^{a \in A} R_{a}^{b} \times S_{x}^{a}\right), T_{x}^{b}\right) \\
& \cong \int_{x \in X} \int_{b \in B} \int_{a \in A} \operatorname{Hom}_{\{t, f\}}\left(R_{a}^{b} \times S_{x}^{a}, T_{x}^{b}\right) \\
& \cong \int_{x \in X} \int_{b \in B} \int_{a \in A} \operatorname{Hom}_{\{t, f\}}\left(S_{x}^{a}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, T_{x}^{b}\right)\right) \\
& \cong \int_{x \in X} \int_{a \in A} \int_{b \in B} \operatorname{Hom}_{\{t, f\}}\left(S_{x}^{a}, \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, T_{x}^{b}\right)\right) \\
& \cong \int_{x \in X} \int_{a \in A} \operatorname{Hom}_{\{t, f\}}\left(S_{x}^{a}, \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, T_{x}^{b}\right)\right) \\
& \cong \operatorname{Hom}_{\operatorname{Rel}(X, A)}\left(S, \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{-1}^{b}, T_{-2}^{b}\right)\right)
\end{aligned}
$$

naturally in each $S \in \operatorname{Rel}(X, A)$ and each $T \in \operatorname{Rel}(X, B)$, showing that

$$
\int_{b \in B} \operatorname{Hom}_{\{\mathbf{t}, \mathrm{f}\}}\left(R_{-1}^{b}, S_{-2}^{b}\right)
$$

is right adjoint to the postcomposition functor $R \diamond-$, being thus the right Kan lift along R. Here we have used the following results, respectively (i.e. for each \cong sign):

1. Item 1 of Proposition 5.1.1.1.5.
2. Definition 6.3.12.1.1.
3. ?? of ??.
4. Proposition 1.2.2.1.5.
5. ?? of ??.
6. ?? of ??
7. Item 1 of Proposition 5.1.1.1.5.

This finishes the proof.

00nz 6.3 More Constructions With Relations

00P0 6.3.1 The Graph of a Function

Let $f: A \rightarrow B$ be a function.
00P1 Definition 6.3.1.1.1. The graph of f is the relation $\operatorname{Gr}(f): A \rightarrow B$ defined as follows: ${ }^{1}$

- Viewing relations from A to B as subsets of $A \times B$, we define

$$
\operatorname{Gr}(f) \stackrel{\text { def }}{=}\{(a, f(a)) \in A \times B \mid a \in A\} .
$$

- Viewing relations from A to B as functions $A \times B \rightarrow\{$ true, false $\}$, we define

$$
[\operatorname{Gr}(f)](a, b) \stackrel{\text { def }}{=} \begin{cases}\text { true } & \text { if } b=f(a), \\ \text { false } & \text { otherwise }\end{cases}
$$

for each $(a, b) \in A \times B$.

- Viewing relations from A to B as functions $A \rightarrow \mathcal{P}(B)$, we define

$$
[\operatorname{Gr}(f)](a) \stackrel{\text { def }}{=}\{f(a)\}
$$

for each $a \in A$, i.e. we define $\operatorname{Gr}(f)$ as the composition

$$
A \xrightarrow{f} B \xrightarrow{\chi_{B}} \mathcal{P}(B) .
$$

[^51]00P2 Proposition 6.3.1.1.2. Let $f: A \rightarrow B$ be a function.
00P3 1. Functoriality. The assignment $A \mapsto \operatorname{Gr}(A)$ defines a functor

$$
\text { Gr: Sets } \rightarrow \text { Rel }
$$

where

- Action on Objects. For each $A \in \operatorname{Obj}($ Sets $)$, we have

$$
\operatorname{Gr}(A) \stackrel{\text { def }}{=} A
$$

- Action on Morphisms. For each $A, B \in \operatorname{Obj}($ Sets $)$, the action on Hom-sets

$$
\operatorname{Gr}_{A, B}: \operatorname{Sets}(A, B) \rightarrow \underbrace{\operatorname{Rel}(\operatorname{Gr}(A), \operatorname{Gr}(B))}_{\stackrel{\text { def }}{=} \operatorname{Rel}(A, B)}
$$

of Gr at (A, B) is defined by

$$
\operatorname{Gr}_{A, B}(f) \stackrel{\text { def }}{=} \operatorname{Gr}(f)
$$

where $\operatorname{Gr}(f)$ is the graph of f as in Definition 6.3.1.1.1.
In particular:

- Preservation of Identities. We have

$$
\operatorname{Gr}\left(\operatorname{id}_{A}\right)=\chi_{A}
$$

for each $A \in \operatorname{Obj}$ (Sets).

- Preservation of Composition. We have

$$
\operatorname{Gr}(g \circ f)=\operatorname{Gr}(g) \diamond \operatorname{Gr}(f)
$$

for each pair of functions $f: A \rightarrow B$ and $g: B \rightarrow C$.
2. Adjointness Inside Rel. We have an adjunction

$$
\left(\operatorname{Gr}(f) \dashv f^{-1}\right): A \overbrace{f_{f^{-1}}^{\perp}}^{\operatorname{Gr}(f)} B
$$

in Rel, where f^{-1} is the inverse of f of Definition 6.3.2.1.1.
3. Adjointness. We have an adjunction

$$
\left(\mathrm{Gr} \dashv \mathcal{P}_{*}\right): \quad \text { Sets } \underset{\frac{\mathrm{P}}{\frac{\mathrm{P}}{\mathcal{P}_{*}}}}{\stackrel{\mathrm{Gr}}{\mathrm{~L}}} \text { Rel, }
$$

witnessed by a bijection of sets

$$
\operatorname{Rel}(\operatorname{Gr}(A), B) \cong \operatorname{Sets}(A, \mathcal{P}(B))
$$

natural in $A \in \operatorname{Obj}$ (Sets) and $B \in \mathrm{Obj}(\mathrm{Rel})$.
4. Interaction With Inverses. We have

$$
\begin{aligned}
\operatorname{Gr}(f)^{\dagger} & =f^{-1} \\
\left(f^{-1}\right)^{\dagger} & =\operatorname{Gr}(f)
\end{aligned}
$$

5. Cocontinuity. The functor Gr : Sets \rightarrow Rel of Item 1 preserves colimits.
6. Characterisations. Let $R: A \rightarrow B$ be a relation. The following conditions are equivalent:
(a) There exists a function $f: A \rightarrow B$ such that $R=\operatorname{Gr}(f)$.
(b) The relation R is total and functional.
(c) The weak and strong inverse images of R agree, i.e. we have $R^{-1}=R_{-1}$.
(d) The relation R has a right adjoint R^{\dagger} in Rel.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness Inside Rel: We need to check that there are inclusions

$$
\begin{aligned}
\chi_{A} & \subset f^{-1} \diamond \operatorname{Gr}(f), \\
\operatorname{Gr}(f) \diamond f^{-1} & \subset \chi_{B} .
\end{aligned}
$$

These correspond respectively to the following conditions:

1. For each $a \in A$, there exists some $b \in B$ such that $a \sim_{\operatorname{Gr}(f)} b$ and $b \sim_{f^{-1}} a$.
2. For each $a, b \in A$, if $a \sim_{\operatorname{Gr}(f)} b$ and $b \sim_{f^{-1}} a$, then $a=b$.

In other words, the first condition states that the image of any $a \in A$ by f is nonempty, whereas the second condition states that f is not multivalued. As f is a function, both of these statements are true, and we are done.

Item 3, Adjointness: The stated bijection follows from Remark 5.1.1.1.4, with naturality being clear.
Item 4, Interaction With Inverses: Clear.
Item 5, Cocontinuity: Omitted.
Item 6, Characterisations: We claim that Items 6a to 6d are indeed equivalent:

- Item $6 a \Longleftrightarrow$ Item $6 b$. This is shown in the proof of ?? of ??.
- Item $6 b \Longrightarrow$ Item $6 c$. If R is total and functional, then, for each $a \in A$, the set $R(a)$ is a singleton, implying that

$$
\begin{aligned}
& R^{-1}(V) \stackrel{\text { def }}{=}\{a \in A \mid R(a) \cap V \neq \emptyset\}, \\
& R_{-1}(V) \stackrel{\text { def }}{=}\{a \in A \mid R(a) \subset V\}
\end{aligned}
$$

are equal for all $V \in \mathcal{P}(B)$, as the conditions $R(a) \cap V \neq \emptyset$ and $R(a) \subset V$ are equivalent when $R(a)$ is a singleton.

- Item $6 c \Longrightarrow$ Item $6 b$. We claim that R is indeed total and functional:
- Totality. If we had $R(a)=\emptyset$ for some $a \in A$, then we would have $a \in R_{-1}(\emptyset)$, so that $R_{-1}(\emptyset) \neq \emptyset$. But since $R^{-1}(\emptyset)=\emptyset$, this would imply $R_{-1}(\emptyset) \neq R^{-1}(\emptyset)$, a contradiction. Thus $R(a) \neq \emptyset$ for all $a \in A$ and R is total.
- Functionality. If $R^{-1}=R_{-1}$, then we have

$$
\begin{aligned}
\{a\} & =R^{-1}(\{b\}) \\
& =R_{-1}(\{b\})
\end{aligned}
$$

for each $b \in R(a)$ and each $a \in A$, and thus $R(a) \subset\{b\}$. But since R is total, we must have $R(a)=\{b\}$, and thus we see that R is functional.

- Item $6 a \Longleftrightarrow$ Item $6 d$. This follows from Proposition 5.3.3.1.1.

This finishes the proof.

6.3.2 The Inverse of a Function

Let $f: A \rightarrow B$ be a function.
00PE Definition 6.3.2.1.1. The inverse of f is the relation $f^{-1}: B \nrightarrow A$ defined as follows:

- Viewing relations from B to A as subsets of $B \times A$, we define

$$
f^{-1} \stackrel{\text { def }}{=}\left\{\left(b, f^{-1}(b)\right) \in B \times A \mid a \in A\right\}
$$

where

$$
f^{-1}(b) \stackrel{\text { def }}{=}\{a \in A \mid f(a)=b\}
$$

for each $b \in B$.

- Viewing relations from B to A as functions $B \times A \rightarrow\{$ true, false $\}$, we define

$$
f^{-1}(b, a) \stackrel{\text { def }}{=} \begin{cases}\text { true } & \text { if there exists } a \in A \text { with } f(a)=b, \\ \text { false } & \text { otherwise }\end{cases}
$$

for each $(b, a) \in B \times A$.

- Viewing relations from B to A as functions $B \rightarrow \mathcal{P}(A)$, we define

$$
f^{-1}(b) \stackrel{\text { def }}{=}\{a \in A \mid f(a)=b\}
$$

for each $b \in B$.
00PF Proposition 6.3.2.1.2. Let $f: A \rightarrow B$ be a function.
00PG

1. Functoriality. The assignment $A \mapsto A, f \mapsto f^{-1}$ defines a functor

$$
(-)^{-1}: \text { Sets } \rightarrow \text { Rel }
$$

where

- Action on Objects. For each $A \in \operatorname{Obj}($ Sets $)$, we have

$$
\left[(-)^{-1}\right](A) \stackrel{\text { def }}{=} A .
$$

- Action on Morphisms. For each $A, B \in \operatorname{Obj}$ (Sets), the action on Hom-sets

$$
(-)_{A, B}^{-1}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Rel}(A, B)
$$

of $(-)^{-1}$ at (A, B) is defined by

$$
(-)_{A, B}^{-1}(f) \stackrel{\text { def }}{=}\left[(-)^{-1}\right](f),
$$

where f^{-1} is the inverse of f as in Definition 6.3.2.1.1.
In particular:

- Preservation of Identities. We have

$$
\operatorname{id}_{A}^{-1}=\chi_{A}
$$

for each $A \in \operatorname{Obj}$ (Sets).

- Preservation of Composition. We have

$$
(g \circ f)^{-1}=g^{-1} \diamond f^{-1}
$$

for pair of functions $f: A \rightarrow B$ and $g: B \rightarrow C$.
2. Adjointness Inside Rel. We have an adjunction

$$
\left(\operatorname{Gr}(f) \dashv f^{-1}\right): \quad A \overbrace{\overbrace{f^{-1}}^{+}}^{\operatorname{Gr}(f)} B
$$

in Rel.
00PJ
3. Interaction With Inverses of Relations. We have

$$
\begin{aligned}
& \left(f^{-1}\right)^{\dagger}=\operatorname{Gr}(f) \\
& \operatorname{Gr}(f)^{\dagger}=f^{-1}
\end{aligned}
$$

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness Inside Rel: This is proved in Item 2 of Proposition 6.3.1.1.2.
Item 3, Interaction With Inverses of Relations: Clear.

00PK 6.3.3 Representable Relations

Let A and B be sets.
00PL Definition 6.3.3.1.1. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. ${ }^{2}$

1. The representable relation associated to f is the relation

[^52]$\chi_{f}: A \rightarrow B$ defined as the composition
$$
A \times B \xrightarrow{f \times \operatorname{id}_{B}} B \times B \xrightarrow{\chi_{B}}\{\text { true }, \text { false }\},
$$
i.e. given by declaring $a \sim_{\chi_{f}} b$ iff $f(a)=b$.
2. The corepresentable relation associated to g is the relation $\chi^{g}: B \rightarrow A$ defined as the composition
$$
B \times A \xrightarrow{g \times \operatorname{id}_{A}} A \times A \xrightarrow{\chi_{A}}\{\text { true }, \text { false }\}
$$
i.e. given by declaring $b \sim_{\chi^{g}} a$ iff $g(b)=a$.

00PM

6.3.4 The Domain and Range of a Relation

Let A and B be sets.
Definition 6.3.4.1.1. Let $R \subset A \times B$ be a relation. ${ }^{3,4}$

1. The domain of R is the subset $\operatorname{dom}(R)$ of A defined by

$$
\operatorname{dom}(R) \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
a \in A & \begin{array}{l}
\text { there exists some } b \in B \\
\text { such that } a \sim_{R} b
\end{array}
\end{array}\right\}
$$

2. The range of R is the subset range (R) of B defined by

$$
\operatorname{range}(R) \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
b \in B & \begin{array}{l}
\text { there exists some } a \in A \\
\text { such that } a \sim_{R} b
\end{array}
\end{array}\right\}
$$

[^53]
00PP 6.3.5 Binary Unions of Relations

Let A and B be sets and let R and S be relations from A to B.
00 PQ Definition 6.3.5.1.1. The union of R and S^{5} is the relation $R \cup S$ from A to B defined as follows:

- Viewing relations from A to B as subsets of $A \times B$, we define ${ }^{6}$

$$
R \cup S \stackrel{\text { def }}{=}\left\{(a, b) \in B \times A \mid \text { we have } a \sim_{R} b \text { or } a \sim_{S} b\right\} .
$$

- Viewing relations from A to B as functions $A \rightarrow \mathcal{P}(B)$, we define

$$
[R \cup S](a) \stackrel{\text { def }}{=} R(a) \cup S(a)
$$

for each $a \in A$.
00PR Proposition 6.3.5.1.2. Let R, S, R_{1}, and R_{2} be relations from A to B, and let S_{1} and S_{2} be relations from B to C.
00PS 1. Interaction With Inverses. We have

$$
(R \cup S)^{\dagger}=R^{\dagger} \cup S^{\dagger}
$$

00PT
2. Interaction With Composition. We have

$$
\left(S_{1} \diamond R_{1}\right) \cup\left(S_{2} \diamond R_{2}\right) \stackrel{\text { poss. }}{\neq}\left(S_{1} \cup S_{2}\right) \diamond\left(R_{1} \cup R_{2}\right)
$$

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Unwinding the definitions, we see that:

1. The condition for $\left(S_{1} \diamond R_{1}\right) \cup\left(S_{2} \diamond R_{2}\right)$ is:
(a) There exists some $b \in B$ such that:
i. $a \sim_{R_{1}} b$ and $b \sim_{S_{1}} c$;
or
i. $a \sim_{R_{2}} b$ and $b \sim_{S_{2}} c$;
2. The condition for $\left(S_{1} \cup S_{2}\right) \diamond\left(R_{1} \cup R_{2}\right)$ is:
(a) There exists some $b \in B$ such that:
i. $a \sim_{R_{1}} b$ or $a \sim_{R_{2}} b$;
and
i. $b \sim_{S_{1}} c$ or $b \sim_{S_{2}} c$.

These two conditions may fail to agree (counterexample omitted), and thus the two resulting relations on $A \times C$ may differ.

[^54]
DOPU 6.3.6 Unions of Families of Relations

Let A and B be sets and let $\left\{R_{i}\right\}_{i \in I}$ be a family of relations from A to B.

00PV Definition 6.3.6.1.1. The union of the family $\left\{R_{i}\right\}_{i \in I}$ is the relation $\bigcup_{i \in I} R_{i}$ from A to B defined as follows:

- Viewing relations from A to B as subsets of $A \times B$, we define ${ }^{7}$

$$
\bigcup_{i \in I} R_{i} \xlongequal{\text { def }}\left\{\begin{array}{l|l}
(a, b) \in(A \times B)^{\times I} & \begin{array}{l}
\text { there exists some } i \in I \\
\text { such that } a \sim_{R_{i}} b
\end{array}
\end{array}\right\} .
$$

- Viewing relations from A to B as functions $A \rightarrow \mathcal{P}(B)$, we define

$$
\left[\bigcup_{i \in I} R_{i}\right](a) \stackrel{\text { def }}{=} \bigcup_{i \in I} R_{i}(a)
$$

for each $a \in A$.
00PW Proposition 6.3.6.1.2. Let A and B be sets and let $\left\{R_{i}\right\}_{i \in I}$ be a family of relations from A to B.

00PX 1. Interaction With Inverses. We have

$$
\left(\bigcup_{i \in I} R_{i}\right)^{\dagger}=\bigcup_{i \in I} R_{i}^{\dagger}
$$

Proof. Item 1, Interaction With Inverses: Clear.

00PY 6.3.7 Binary Intersections of Relations

Let A and B be sets and let R and S be relations from A to B.
00PZ Definition 6.3.7.1.1. The intersection of R and S^{8} is the relation $R \cap S$ from A to B defined as follows:

- Viewing relations from A to B as subsets of $A \times B$, we define ${ }^{9}$

$$
R \cap S \stackrel{\text { def }}{=}\left\{(a, b) \in B \times A \mid \text { we have } a \sim_{R} b \text { and } a \sim_{S} b\right\} .
$$

[^55]- Viewing relations from A to B as functions $A \rightarrow \mathcal{P}(B)$, we define

$$
[R \cap S](a) \stackrel{\text { def }}{=} R(a) \cap S(a)
$$

for each $a \in A$.
00Q0 Proposition 6.3.7.1.2. Let R, S, R_{1}, and R_{2} be relations from A to B, and let S_{1} and S_{2} be relations from B to C.
$00 Q 1$

1. Interaction With Inverses. We have

$$
(R \cap S)^{\dagger}=R^{\dagger} \cap S^{\dagger} .
$$

2. Interaction With Composition. We have

$$
\left(S_{1} \diamond R_{1}\right) \cap\left(S_{2} \diamond R_{2}\right)=\left(S_{1} \cap S_{2}\right) \diamond\left(R_{1} \cap R_{2}\right) .
$$

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Unwinding the definitions, we see that:

1. The condition for $\left(S_{1} \diamond R_{1}\right) \cap\left(S_{2} \diamond R_{2}\right)$ is:
(a) There exists some $b \in B$ such that:
i. $a \sim_{R_{1}} b$ and $b \sim_{S_{1}} c$;
and
i. $a \sim_{R_{2}} b$ and $b \sim_{S_{2}} c$;
2. The condition for $\left(S_{1} \cap S_{2}\right) \diamond\left(R_{1} \cap R_{2}\right)$ is:
(a) There exists some $b \in B$ such that:
i. $a \sim_{R_{1}} b$ and $a \sim_{R_{2}} b$;
and
i. $b \sim_{S_{1}} c$ and $b \sim_{S_{2}} c$.

These two conditions agree, and thus so do the two resulting relations on $A \times C$.

00Q3 6.3.8 Intersections of Families of Relations

Let A and B be sets and let $\left\{R_{i}\right\}_{i \in I}$ be a family of relations from A to B.

Definition 6.3.8.1.1. The intersection of the family $\left\{R_{i}\right\}_{i \in I}$ is the relation $\bigcup_{i \in I} R_{i}$ defined as follows:

- Viewing relations from A to B as subsets of $A \times B$, we define ${ }^{10}$

$$
\bigcup_{i \in I} R_{i} \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
(a, b) \in(A \times B)^{\times I} & \begin{array}{l}
\text { for each } i \in I \\
\text { we have } a \sim_{R_{i}} b
\end{array}
\end{array}\right\}
$$

- Viewing relations from A to B as functions $A \rightarrow \mathcal{P}(B)$, we define

$$
\left[\bigcap_{i \in I} R_{i}\right](a) \stackrel{\text { def }}{=} \bigcap_{i \in I} R_{i}(a)
$$

for each $a \in A$.
00 Q5 Proposition 6.3.8.1.2. Let A and B be sets and let $\left\{R_{i}\right\}_{i \in I}$ be a family of relations from A to B.

00Q6

1. Interaction With Inverses. We have

$$
\left(\bigcap_{i \in I} R_{i}\right)^{\dagger}=\bigcap_{i \in I} R_{i}^{\dagger}
$$

Proof. Item 1, Interaction With Inverses: Clear.

00 6.3.9 Binary Products of Relations

Let A, B, X, and Y be sets, let $R: A \nrightarrow B$ be a relation from A to B, and let $S: X \nrightarrow Y$ be a relation from X to Y.

00Q8 Definition 6.3.9.1.1. The product of R and S^{11} is the relation $R \times S$ from $A \times X$ to $B \times Y$ defined as follows:

- Viewing relations from $A \times X$ to $B \times Y$ as subsets of $(A \times X) \times$ $(B \times Y)$, we define $R \times S$ as the Cartesian product of R and S as subsets of $A \times X$ and $B \times Y .{ }^{12}$
- Viewing relations from $A \times X$ to $B \times Y$ as functions $A \times X \rightarrow$ $\mathcal{P}(B \times Y)$, we define $R \times S$ as the composition

$$
A \times X \xrightarrow{R \times S} \mathcal{P}(B) \times \mathcal{P}(Y) \stackrel{\mathcal{P}_{B, Y}^{\otimes}}{\longrightarrow} \mathcal{P}(B \times Y)
$$

in Sets, i.e. by

$$
[R \times S](a, x) \stackrel{\text { def }}{=} R(a) \times S(x)
$$

for each $(a, x) \in A \times X$.

[^56]Proposition 6.3.9.1.2. Let A, B, X, and Y be sets.

00QA

1. Interaction With Inverses. Let

$$
\begin{array}{r}
R: A \nrightarrow A, \\
S: X \mapsto X
\end{array}
$$

We have

$$
(R \times S)^{\dagger}=R^{\dagger} \times S^{\dagger}
$$

00QB
2. Interaction With Composition. Let

$$
\begin{gathered}
R_{1}: A \nrightarrow B, \\
S_{1}: B \rightarrow C, \\
R_{2}: X \nrightarrow Y, \\
S_{2}: Y \nrightarrow Z
\end{gathered}
$$

be relations. We have

$$
\left(S_{1} \diamond R_{1}\right) \times\left(S_{2} \diamond R_{2}\right)=\left(S_{1} \times S_{2}\right) \diamond\left(R_{1} \times R_{2}\right)
$$

Proof. Item 1, Interaction With Inverses: Unwinding the definitions, we see that:

1. We have $(a, x) \sim_{(R \times S)^{\dagger}}(b, y)$ iff:

- We have $(b, y) \sim_{R \times S}(a, x)$, i.e. iff:
- We have $b \sim_{R} a$;
- We have $y \sim_{S} x$;

2. We have $(a, x) \sim_{R^{\dagger} \times S^{\dagger}}(b, y)$ iff:

- We have $a \sim_{R^{\dagger}} b$ and $x \sim_{S^{\dagger}} y$, i.e. iff:
- We have $b \sim_{R} a$;
- We have $y \sim_{S} x$.

These two conditions agree, and thus the two resulting relations on $A \times X$ are equal.
Item 2, Interaction With Composition: Unwinding the definitions, we see that:

1. We have $(a, x) \sim_{\left(S_{1} \diamond R_{1}\right) \times\left(S_{2} \diamond R_{2}\right)}(c, z)$ iff:
(a) We have $a \sim_{S_{1} \diamond R_{1}} c$ and $x \sim_{S_{2} \diamond R_{2}} z$, i.e. iff:
i. There exists some $b \in B$ such that $a \sim_{R_{1}} b$ and $b \sim_{S_{1}} c$;
ii. There exists some $y \in Y$ such that $x \sim_{R_{2}} y$ and $y \sim_{S_{2}} z$;
2. We have $(a, x) \sim_{\left(S_{1} \times S_{2}\right) \propto\left(R_{1} \times R_{2}\right)}(c, z)$ iff:
(a) There exists some $(b, y) \in B \times Y$ such that $(a, x) \sim_{R_{1} \times R_{2}}(b, y)$ and $(b, y) \sim_{S_{1} \times S_{2}}(c, z)$, i.e. such that:
i. We have $a \sim_{R_{1}} b$ and $x \sim_{R_{2}} y$;
ii. We have $b \sim_{S_{1}} c$ and $y \sim_{S_{2}} z$.

These two conditions agree, and thus the two resulting relations from $A \times X$ to $C \times Z$ are equal.

00QC 6.3.10 Products of Families of Relations

Let $\left\{A_{i}\right\}_{i \in I}$ and $\left\{B_{i}\right\}_{i \in I}$ be families of sets, and let $\left\{R_{i}: A_{i} \rightarrow B_{i}\right\}_{i \in I}$ be a family of relations.

00QD Definition 6.3.10.1.1. The product of the family $\left\{R_{i}\right\}_{i \in I}$ is the relation $\prod_{i \in I} R_{i}$ from $\prod_{i \in I} A_{i}$ to $\prod_{i \in I} B_{i}$ defined as follows:

- Viewing relations as subsets, we define $\prod_{i \in I} R_{i}$ as its product as a family of sets, i.e. we have

$$
\prod_{i \in I} R_{i} \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
\left(a_{i}, b_{i}\right)_{i \in I} \in \prod_{i \in I}\left(A_{i} \times B_{i}\right) & \begin{array}{l}
\text { for each } i \in I, \\
\text { we have } a_{i} \sim_{R_{i}} b_{i}
\end{array}
\end{array}\right\} .
$$

- Viewing relations as functions to powersets, we define

$$
\left[\prod_{i \in I} R_{i}\right]\left(\left(a_{i}\right)_{i \in I}\right) \stackrel{\text { def }}{=} \prod_{i \in I} R_{i}\left(a_{i}\right)
$$

for each $\left(a_{i}\right)_{i \in I} \in \prod_{i \in I} R_{i}$.

6.3.11 The Inverse of a Relation

Let A, B, and C be sets and let $R \subset A \times B$ be a relation.
00QF Definition 6.3.11.1.1. The inverse of R^{13} is the relation R^{\dagger} defined as follows:

- Viewing relations as subsets, we define

$$
R^{\dagger} \stackrel{\text { def }}{=}\left\{(b, a) \in B \times A \mid \text { we have } b \sim_{R} a\right\}
$$

[^57]${ }^{13}$ Further Terminology: Also called the opposite of R, the transpose of R, or

- Viewing relations as functions $A \times B \rightarrow\{$ true, false $\}$, we define

$$
\left[R^{\dagger}\right] a \stackrel{a}{b} \stackrel{\text { def }}{=} R_{a}^{b}
$$

for each $(b, a) \in B \times A$.

- Viewing relations as functions $A \rightarrow \mathcal{P}(B)$, we define

$$
\begin{aligned}
{\left[R^{\dagger}\right](b) } & \stackrel{\text { def }}{=} R^{\dagger}(\{b\}) \\
& \stackrel{\text { def }}{=}\{a \in A \mid b \in R(a)\}
\end{aligned}
$$

for each $b \in B$, where $R^{\dagger}(\{b\})$ is the fibre of R over $\{b\}$.
00QG Example 6.3.11.1.2. Here are some examples of inverses of relations.
00 QH 1. Less Than Equal Signs. We have $(\leq)^{\dagger}=\geq$.
00QJ
2. Greater Than Equal Signs. Dually to Item 1, we have $(\geq)^{\dagger}=\leq$.

00QK 3. Functions. Let $f: A \rightarrow B$ be a function. We have

$$
\begin{aligned}
\operatorname{Gr}(f)^{\dagger} & =f^{-1} \\
\left(f^{-1}\right)^{\dagger} & =\operatorname{Gr}(f)
\end{aligned}
$$

00QL Proposition 6.3.11.1.3. Let $R: A \rightarrow B$ and $S: B \rightarrow C$ be relations.
00QM 1. Functoriality. The assignment $R \mapsto R^{\dagger}$ defines a functor (i.e. morphism of posets)

$$
(-)^{\dagger}: \operatorname{Rel}(A, B) \rightarrow \mathbf{R e l}(B, A)
$$

In particular, given relations $R, S: A \nRightarrow B$, we have:
(\star) If $R \subset S$, then $R^{\dagger} \subset S^{\dagger}$.
2. Interaction With Ranges and Domains. We have

$$
\begin{aligned}
\operatorname{dom}\left(R^{\dagger}\right) & =\operatorname{range}(R) \\
\operatorname{range}\left(R^{\dagger}\right) & =\operatorname{dom}(R)
\end{aligned}
$$

3. Interaction With Composition I. We have

$$
(S \diamond R)^{\dagger}=R^{\dagger} \diamond S^{\dagger}
$$

4. Interaction With Composition II. We have

$$
\begin{aligned}
& \chi_{B} \subset R \diamond R^{\dagger} \\
& \chi_{A} \subset R^{\dagger} \diamond R .
\end{aligned}
$$

00QR
5. Invertibility. We have

$$
\left(R^{\dagger}\right)^{\dagger}=R
$$

00QS
6. Identity. We have

$$
\chi_{A}^{\dagger}=\chi_{A}
$$

Proof. Item 1, Functoriality: Clear.
Item 2, Interaction With Ranges and Domains: Clear.
Item 3, Interaction With Composition I: Clear.
Item 4, Interaction With Composition II: Clear.
Item 5, Invertibility: Clear.
Item 6, Identity: Clear.

00QT 6.3.12 Composition of Relations

Let A, B, and C be sets and let $R: A \nrightarrow B$ and $S: B \nrightarrow C$ be relations.
00QU Definition 6.3.12.1.1. The composition of R and S is the relation $S \diamond R$ defined as follows:

- Viewing relations from A to C as subsets of $A \times C$, we define

$$
S \diamond R \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
(a, c) \in A \times C & \begin{array}{l}
\text { there exists some } b \in B \text { such } \\
\text { that } a \sim_{R} b \text { and } b \sim_{S} c
\end{array}
\end{array}\right\}
$$

- Viewing relations as functions $A \times B \rightarrow\{$ true, false $\}$, we define

$$
\begin{aligned}
(S \diamond R)_{-2}^{-1} & \stackrel{\text { def }}{=} \int^{b \in B} S_{b}^{-1} \times R_{-2}^{b} \\
& =\bigvee_{b \in B} S_{b}^{-1} \times R_{-2}^{b}
\end{aligned}
$$

where the join \bigvee is taken in the poset ($\{$ true, false $\}, \preceq$) of Definition 1.2.2.1.3.

[^58]- Viewing relations as functions $A \rightarrow \mathcal{P}(B)$, we define

$$
S \diamond R \stackrel{\text { def }}{=} \operatorname{Lan}_{\chi_{B}}(S) \circ R, \quad \chi_{B} \int_{\operatorname{Lan}_{\chi_{B}}(S)}^{B \xrightarrow{B} \mathcal{P}(B)}
$$

where $\operatorname{Lan}_{\chi_{B}}(S)$ is computed by the formula

$$
\begin{aligned}
{\left[\operatorname{Lan}_{\chi_{B}}(S)\right](V) } & \cong \int^{y \in B} \chi_{\mathcal{P}(B)}\left(\chi_{y}, V\right) \odot S_{y} \\
& \cong \int^{y \in B} \chi_{V}(y) \odot S_{y} \\
& \cong \bigcup_{y \in B} \chi_{V}(y) \odot S_{y} \\
& \cong \bigcup_{y \in V} S_{y}
\end{aligned}
$$

for each $V \in \mathcal{P}(B)$. In other words, $S \diamond R$ is defined by ${ }^{14}$

$$
\begin{aligned}
{[S \diamond R](a) } & \stackrel{\text { def }}{=} S(R(a)) \\
& \stackrel{\text { def }}{=} \bigcup_{x \in R(a)} S(x)
\end{aligned}
$$

for each $a \in A$.
00QV Example 6.3.12.1.2. Here are some examples of composition of relations.

1. Composing Less/Greater Than Equal With Greater/Less Than Equal Signs. We have

$$
\begin{aligned}
& \leq \diamond \geq=\sim_{\text {triv }} \\
& \geq \diamond \leq=\sim_{\text {triv }}
\end{aligned}
$$

2. Composing Less/Greater Than Equal Signs With Less/Greater Than Equal Signs. We have

$$
\begin{aligned}
& \leq \diamond \leq=\leq \\
& \geq \diamond \geq=\geq
\end{aligned}
$$

[^59]00QW be relations.

1. Interaction With Ranges and Domains. We have

$$
\begin{aligned}
\operatorname{dom}(S \diamond R) & \subset \operatorname{dom}(R) \\
\operatorname{range}(S \diamond R) & \subset \operatorname{range}(S)
\end{aligned}
$$

2. Associativity. We have

$$
(T \diamond S) \diamond R=T \diamond(S \diamond R)
$$

3. Unitality. We have

$$
\begin{aligned}
& \chi_{B} \diamond R=R, \\
& R \diamond \chi_{A}=R .
\end{aligned}
$$

4. Interaction With Inverses. We have

$$
(S \diamond R)^{\dagger}=R^{\dagger} \diamond S^{\dagger}
$$

5. Interaction With Composition. We have

$$
\begin{aligned}
& \chi_{B} \subset R \diamond R^{\dagger}, \\
& \chi_{A} \subset R^{\dagger} \diamond R .
\end{aligned}
$$

Proof. Item 1, Interaction With Ranges and Domains: Clear. Item 2, Associativity: Indeed, we have

$$
\begin{aligned}
(T \diamond S) \diamond R & \stackrel{\text { def }}{=}\left(\int^{c \in C} T_{c}^{-1} \times S_{-_{2}}^{c}\right) \diamond R \\
& \stackrel{\text { def }}{=} \int^{b \in B}\left(\int^{c \in C} T_{c}^{-1} \times S_{b}^{c}\right) \diamond R_{-2}^{b} \\
& =\int^{b \in B} \int^{c \in C}\left(T_{c}^{-1} \times S_{b}^{c}\right) \diamond R_{-2}^{b} \\
& =\int^{c \in C} \int^{b \in B}\left(T_{c}^{-1} \times S_{b}^{c}\right) \diamond R_{-2}^{b} \\
& =\int^{c \in C} \int^{b \in B} T_{c}^{-1} \times\left(S_{b}^{c} \diamond R_{-2}^{b}\right) \\
& =\int^{c \in C} T_{c}^{-1} \times\left(\int^{b \in B} S_{b}^{c} \diamond R_{-2}^{b}\right) \\
& \stackrel{\text { def }}{=} \int^{c \in C} T_{c}^{-1} \times(S \diamond R)_{-_{2}}^{c} \\
& \stackrel{\text { def }}{=} T \diamond(S \diamond R) .
\end{aligned}
$$

In the language of relations, given $a \in A$ and $d \in D$, the stated equality witnesses the equivalence of the following two statements:

1. We have $a \sim_{(T \diamond S) \diamond R} d$, i.e. there exists some $b \in B$ such that:
(a) We have $a \sim_{R} b$;
(b) We have $b \sim_{T \diamond S} d$, i.e. there exists some $c \in C$ such that:
i. We have $b \sim_{S} c$;
ii. We have $c \sim_{T} d$;
2. We have $a \sim_{T \diamond(S \diamond R)} d$, i.e. there exists some $c \in C$ such that:
(a) We have $a \sim_{S \diamond R} c$, i.e. there exists some $b \in B$ such that:
i. We have $a \sim_{R} b$;
ii. We have $b \sim_{S} c$;
(b) We have $c \sim_{T} d$;
both of which are equivalent to the statement

- There exist $b \in B$ and $c \in C$ such that $a \sim_{R} b \sim_{S} c \sim_{T} d$.

Item 3, Unitality: Indeed, we have

$$
\begin{aligned}
\chi_{B} \diamond R & \stackrel{\text { def }}{=} \int^{x \in B}\left(\chi_{B}\right)_{x}^{-1} \times R_{-2}^{x} \\
& =\bigvee_{x \in B}\left(\chi_{B}\right)_{x}^{-1} \times R_{-2}^{x} \\
& =\bigvee_{\substack{x \in B \\
x=-1}} R_{-2}^{x} \\
& =R_{-2}^{-1},
\end{aligned}
$$

and

$$
\begin{aligned}
R \diamond \chi_{A} & \stackrel{\text { def }}{=} \int^{x \in A} R_{x}^{-1} \times\left(\chi_{A}\right)_{-2}^{x} \\
& =\bigvee_{x \in B} R_{x}^{-1} \times\left(\chi_{A}\right)_{-2}^{x} \\
& =\bigvee_{\substack{x \in B \\
x=-2}} R_{x}^{-1} \\
& =R_{-2}^{-1} .
\end{aligned}
$$

In the language of relations, given $a \in A$ and $b \in B$:

- The equality

$$
\chi_{B} \diamond R=R
$$

witnesses the equivalence of the following two statements:

1. We have $a \sim_{b} B$.
2. There exists some $b^{\prime} \in B$ such that:
(a) We have $a \sim_{R} b^{\prime}$
(b) We have $b^{\prime} \sim_{\chi_{B}} b$, i.e. $b^{\prime}=b$.

- The equality

$$
R \diamond \chi_{A}=R
$$

witnesses the equivalence of the following two statements:

1. There exists some $a^{\prime} \in A$ such that:
(a) We have $a \sim_{\chi_{B}} a^{\prime}$, i.e. $a=a^{\prime}$.
(b) We have $a^{\prime} \sim_{R} b$
2. We have $a \sim_{b} B$.

Item 4, Interaction With Inverses: Clear.
Item 5, Interaction With Composition: Clear.

00R2 6.3.13 The Collage of a Relation
Let A and B be sets and let $R: A \nrightarrow B$ be a relation from A to B.
00 R 3 Definition 6.3.13.1.1. The collage of R^{15} is the poset $\operatorname{Coll}(R) \stackrel{\text { def }}{=}(\operatorname{Coll}(R), \preceq \operatorname{Coll}(R))$ consisting of:

- The Underlying Set. The set $\operatorname{Coll}(R)$ defined by

$$
\operatorname{Coll}(R) \stackrel{\text { def }}{=} A \amalg B
$$

- The Partial Order. The partial order

$$
\preceq_{\operatorname{Coll}(R)}: \operatorname{Coll}(R) \times \operatorname{Coll}(R) \rightarrow\{\text { true }, \text { false }\}
$$

on $\operatorname{Coll}(R)$ defined by

$$
\preceq(a, b) \stackrel{\text { def }}{=} \begin{cases}\text { true } & \text { if } a=b \text { or } a \sim_{R} b \\ \text { false } & \text { otherwise }\end{cases}
$$

00R4 Proposition 6.3.13.1.2. Let A and B be sets and let $R: A \rightarrow B$ be a relation from A to B.

[^60]1. Functoriality I. The assignment $R \mapsto \mathbf{C o l l}(R)$ defines a functor ${ }^{16}$

$$
\operatorname{Coll}: \operatorname{Rel}(A, B) \rightarrow \operatorname{Pos}_{/ \Delta^{1}}(A, B),
$$

where

- Action on Objects. For each $R \in \operatorname{Obj}(\operatorname{Rel}(A, B))$, we have

$$
[\mathbf{C o l l}](R) \stackrel{\text { def }}{=}\left(\mathbf{C o l l}(R), \phi_{R}\right)
$$

for each $R \in \operatorname{Rel}(A, B)$, where

- The poset $\operatorname{Coll}(R)$ is the collage of R of Definition 6.3.13.1.1.
- The morphism $\phi_{R}: \operatorname{Coll}(R) \rightarrow \Delta^{1}$ is given by

$$
\phi_{R}(x) \stackrel{\text { def }}{=} \begin{cases}0 & \text { if } x \in A \\ 1 & \text { if } x \in B\end{cases}
$$

for each $x \in \operatorname{Coll}(R)$.

- Action on Morphisms. For each $R, S \in \operatorname{Obj}(\boldsymbol{\operatorname { R e l }}(A, B))$, the action on Hom-sets

$$
\operatorname{Coll}_{R, S}: \operatorname{Hom}_{\operatorname{Rel}(A, B)}(R, S) \rightarrow \operatorname{Pos}(\operatorname{Coll}(R), \operatorname{Coll}(S))
$$

of Coll at (R, S) is given by sending an inclusion

$$
\iota: R \subset S
$$

${ }^{16}$ Here Pos $_{/ \Delta}(A, B)$ is the category defined as the pullback

$$
\mathrm{Pos}_{/ \Delta^{1}}(A, B) \stackrel{\text { def }}{=} \mathrm{pt} \underset{[A],{\mathrm{Pos}, \mathrm{fib}_{0}}^{\times}}{\mathrm{Pos} / \Delta^{1}} \underset{\mathrm{fib}_{1}, \operatorname{Pos},[B]}{\times} \mathrm{pt},
$$

as in the diagram

Explicitly, an object of $\operatorname{Pos}_{/ \Delta^{1}}(A, B)$ is a pair $\left(X, \phi_{X}\right)$ consisting of

- A poset X;
- A morphism $\phi_{X}: X \rightarrow \Delta^{1}$;
to the morphism

$$
\operatorname{Coll}(\iota): \operatorname{Coll}(R) \rightarrow \operatorname{Coll}(S)
$$

of posets over Δ^{1} defined by

$$
[\operatorname{Coll}(\iota)](x) \stackrel{\text { def }}{=} x
$$

for each $x \in \mathbf{C o l l}(R) .{ }^{17}$
2. Equivalence. The functor of Item 1 is an equivalence of categories.

Proof. Item 1, Functoriality: Clear.
Item 2, Equivalence: Omitted.

00R7 6.4 Functoriality of Powersets

00R8 6.4.1 Direct Images
Let A and B be sets and let $R: A \rightarrow B$ be a relation.
00R9 Definition 6.4.1.1.1. The direct image function associated to R is the function

$$
R_{*}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

defined by ${ }^{18,19}$

$$
\begin{aligned}
& R_{*}(U) \stackrel{\text { def }}{=} R(U) \\
& \stackrel{\text { def }}{=} \bigcup_{a \in U} R(a) \\
& =\left\{\begin{array}{l|l}
b \in B & \begin{array}{l}
\text { there exists some } a \in U \\
\text { such that } b \in R(a)
\end{array}
\end{array}\right\}
\end{aligned}
$$

for each $U \in \mathcal{P}(A)$.
00RA Remark 6.4.1.1.2. Identifying subsets of A with relations from pt to A via Item 3 of Proposition 2.4.3.1.6, we see that the direct image function associated to R is equivalently the function

$$
R_{*}: \underbrace{\mathcal{P}(A)}_{\cong \operatorname{Rel}(\mathrm{pt}, A)} \rightarrow \underbrace{\mathcal{P}(B)}_{\cong \operatorname{Rel}(\mathrm{pt}, B)}
$$

such that $\phi_{X}^{-1}(0)=A$ and $\phi_{X}^{-1}(0)=B$, with morphisms between such objects being morphisms of posets over Δ^{1}.
${ }^{17}$ Note that this is indeed a morphism of posets: if $x \preceq \preceq_{\operatorname{Coll(R)}} y$, then $x=y$ or $x \sim_{R} y$, so we have either $x=y$ or $x \sim_{S} y$ (as $R \subset S$), and thus $x \preceq_{\operatorname{Coll(S)}(y)} y$.
${ }^{18}$ Further Terminology: The set $R(U)$ is called the direct image of U by R.
${ }^{19} \mathrm{We}$ also have

$$
R_{*}(U)=B \backslash R_{!}(A \backslash U) ;
$$

defined by

$$
R_{*}(U) \stackrel{\text { def }}{=} R \diamond U
$$

for each $U \in \mathcal{P}(A)$, where $R \diamond U$ is the composition

$$
\mathrm{pt} \stackrel{U}{\dagger} A \stackrel{R}{\mapsto} B .
$$

00RB Proposition 6.4.1.1.3. Let $R: A \rightarrow B$ be a relation.
00RC 1. Functoriality. The assignment $U \mapsto R_{*}(U)$ defines a functor

$$
R_{*}:(\mathcal{P}(A), \subset) \rightarrow(\mathcal{P}(B), \subset)
$$

where

- Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$
\left[R_{*}\right](U) \stackrel{\text { def }}{=} R_{*}(U)
$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:
- If $U \subset V$, then $R_{*}(U) \subset R_{*}(V)$.

2. Adjointness. We have an adjunction

$$
\left(R_{*} \dashv R_{-1}\right): \quad \mathcal{P}(A) \underset{R_{-1}}{\stackrel{R_{*}}{\perp}} \mathcal{P}(B),
$$

witnessed by a bijections of sets

$$
\operatorname{Hom}_{\mathcal{P}(A)}\left(R_{*}(U), V\right) \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, R_{-1}(V)\right)
$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$, i.e. such that:
(\star) The following conditions are equivalent:

- We have $R_{*}(U) \subset V$.
- We have $U \subset R_{-1}(V)$.

3. Preservation of Colimits. We have an equality of sets

$$
R_{*}\left(\bigcup_{i \in I} U_{i}\right)=\bigcup_{i \in I} R_{*}\left(U_{i}\right)
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$
\begin{aligned}
R_{*}(U) \cup R_{*}(V) & =R_{*}(U \cup V) \\
R_{*}(\emptyset) & =\emptyset
\end{aligned}
$$

natural in $U, V \in \mathcal{P}(A)$.

00RF 4. Oplax Preservation of Limits. We have an inclusion of sets

$$
R_{*}\left(\bigcap_{i \in I} U_{i}\right) \subset \bigcap_{i \in I} R_{*}\left(U_{i}\right),
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$
\begin{gathered}
R_{*}(U \cap V) \subset R_{*}(U) \cap R_{*}(V), \\
R_{*}(A) \subset B,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.

00RG

00RH
5. Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure

$$
\left(R_{*}, R_{*}^{\otimes}, R_{* \mid \mathbb{I}}^{\otimes}\right):(\mathcal{P}(A), \cup \emptyset) \rightarrow(\mathcal{P}(B), \cup \emptyset),
$$

being equipped with equalities

$$
\begin{aligned}
& R_{* \mid U, V}^{\otimes}: R_{*}(U) \cup R_{*}(V) \stackrel{\bar{\rightrightarrows}}{\rightrightarrows} R_{*}(U \cup V), \\
& R_{* \mid \mathbb{1}}^{\otimes}: \emptyset \stackrel{Э}{\Rightarrow} \emptyset,
\end{aligned}
$$

natural in $U, V \in \mathcal{P}(A)$.
6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure

$$
\left(R_{*}, R_{*}^{\otimes}, R_{* \mathbb{1}}^{\otimes}\right):(\mathcal{P}(A), \cap, A) \rightarrow(\mathcal{P}(B), \cap, B),
$$

being equipped with inclusions

$$
\begin{gathered}
R_{* \mid U, V}^{\otimes}: R_{*}(U \cap V) \subset R_{*}(U) \cap R_{*}(V), \\
R_{* \mid \mathbb{T}}^{\otimes}: R_{*}(A) \subset B,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
7. Relation to Direct Images With Compact Support. We have

$$
R_{*}(U)=B \backslash R_{!}(A \backslash U)
$$

for each $U \in \mathcal{P}(A)$.
Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This follows from ?? of ??.
Item 3, Preservation of Colimits: This follows from Item 2 and ?? of ??. Item 4, Oplax Preservation of Limits: Omitted.
Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.
Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows from Item 4.
Item 7, Relation to Direct Images With Compact Support: The proof proceeds in the same way as in the case of functions (?? of Proposition 2.4.4.1.4): applying Item 7 of Proposition 6.4.4.1.3 to $A \backslash U$, we have

$$
\begin{aligned}
R_{!}(A \backslash U) & =B \backslash R_{*}(A \backslash(A \backslash U)) \\
& =B \backslash R_{*}(U)
\end{aligned}
$$

Taking complements, we then obtain

$$
\begin{aligned}
R_{*}(U) & =B \backslash\left(B \backslash R_{*}(U)\right) \\
& =B \backslash R_{!}(A \backslash U)
\end{aligned}
$$

which finishes the proof.

00RK

Proposition 6.4.1.1.4. Let $R: A \nrightarrow B$ be a relation.

1. Functionality I. The assignment $R \mapsto R_{*}$ defines a function

$$
(-)_{*}: \operatorname{Rel}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(A), \mathcal{P}(B))
$$

2. Functionality II. The assignment $R \mapsto R_{*}$ defines a function

$$
(-)_{*}: \operatorname{Rel}(A, B) \rightarrow \operatorname{Pos}((\mathcal{P}(A), \subset),(\mathcal{P}(B), \subset))
$$

3. Interaction With Identities. For each $A \in \operatorname{Obj}($ Sets $)$, we have ${ }^{20}$

$$
\left(\chi_{A}\right)_{*}=\operatorname{id}_{\mathcal{P}(A)}
$$

4. Interaction With Composition. For each pair of composable
see Item 7 of Proposition 6.4.1.1.3.
${ }^{20}$ That is, the postcomposition function

$$
\left(\chi_{A}\right)_{*}: \operatorname{Rel}(\mathrm{pt}, A) \rightarrow \operatorname{Rel}(\mathrm{pt}, A)
$$

is equal to $\operatorname{id}_{\operatorname{Rel}(\mathrm{pt}, A)}$.
relations $R: A \nrightarrow B$ and $S: B \nrightarrow C$, we have ${ }^{21}$

Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: Indeed, we have

$$
\begin{aligned}
\left(\chi_{A}\right)_{*}(U) & \stackrel{\text { def }}{=} \bigcup_{a \in U} \chi_{A}(a) \\
& \stackrel{\text { def }}{=} \bigcup_{a \in U}\{a\} \\
& =U \\
& \stackrel{\text { def }}{=} \operatorname{id}_{\mathcal{P}(A)}(U)
\end{aligned}
$$

for each $U \in \mathcal{P}(A)$. Thus $\left(\chi_{A}\right)_{*}=\operatorname{id}_{\mathcal{P}(A)}$.
Item 4, Interaction With Composition: Indeed, we have

$$
\begin{aligned}
(S \diamond R)_{*}(U) & \stackrel{\text { def }}{=} \bigcup_{a \in U}[S \diamond R](a) \\
& \stackrel{\text { def }}{=} \bigcup_{a \in U} S(R(a)) \\
& \stackrel{\text { def }}{=} \bigcup_{a \in U} S_{*}(R(a)) \\
& =S_{*}\left(\bigcup_{a \in U} R(a)\right) \\
& \stackrel{\text { def }}{=} S_{*}\left(R_{*}(U)\right) \\
& \stackrel{\text { def }}{=}\left[S_{*} \circ R_{*}\right](U)
\end{aligned}
$$

for each $U \in \mathcal{P}(A)$, where we used Item 3 of Proposition 6.4.1.1.3. Thus $(S \diamond R)_{*}=S_{*} \circ R_{*}$.
${ }^{21}$ That is, we have

$$
(S \diamond R)_{*}=S_{*} \circ R_{*}, \quad \operatorname{Rel}(\mathrm{pt}, A) \xrightarrow{R_{*}} \operatorname{Rel}(\mathrm{pt}, B)
$$

00RQ 6.4.2 Strong Inverse Images

Let A and B be sets and let $R: A \rightarrow B$ be a relation.
00RR Definition 6.4.2.1.1. The strong inverse image function associated to R is the function

$$
R_{-1}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)
$$

defined by ${ }^{22}$

$$
R_{-1}(V) \stackrel{\text { def }}{=}\{a \in A \mid R(a) \subset V\}
$$

for each $V \in \mathcal{P}(B)$.
00RS Remark 6.4.2.1.2. Identifying subsets of B with relations from pt to B via Item 3 of Proposition 2.4.3.1.6, we see that the inverse image function associated to R is equivalently the function

$$
R_{-1}: \underbrace{\mathcal{P}(B)}_{\cong \operatorname{Rel}(\mathrm{pt}, B)} \rightarrow \underbrace{\mathcal{P}(A)}_{\cong \operatorname{Rel}(\mathrm{pt}, A)}
$$

defined by
and being explicitly computed by

$$
\begin{aligned}
R_{-1}(V) & \stackrel{\text { def }}{=} \operatorname{Rift}_{R}(V) \\
& \cong \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, f\}}\left(R_{-1}^{b}, V_{-2}^{b}\right),
\end{aligned}
$$

where we have used Proposition 6.2.4.1.1.

[^61]Proof. We have

$$
\left.\left.\left.\begin{array}{rl}
\operatorname{Rift}_{R}(V) & \cong \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{-1}^{b}, V_{-{ }_{-2}}^{b}\right) \\
& =\left\{a \in A \mid \int_{b \in B} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, V_{\star}^{b}\right)=\right.\text { true }
\end{array}\right\}, \begin{array}{l}
\text { for each } b \in B, \text { at least one of the } \\
\text { following conditions hold: }
\end{array}\right] \begin{array}{l}
\text { 1. We have } R_{a}^{b}=\text { false } \\
\text { 2. The following conditions hold: }
\end{array}\right\}
$$

This finishes the proof.
00RT Proposition 6.4.2.1.3. Let $R: A \nrightarrow B$ be a relation.
00 RU 1. Functoriality. The assignment $V \mapsto R_{-1}(V)$ defines a functor

$$
R_{-1}:(\mathcal{P}(B), \subset) \rightarrow(\mathcal{P}(A), \subset)
$$

where

- Action on Objects. For each $V \in \mathcal{P}(B)$, we have

$$
\left[R_{-1}\right](V) \stackrel{\text { def }}{=} R_{-1}(V) .
$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(B)$:
- If $U \subset V$, then $R_{-1}(U) \subset R_{-1}(V)$.

2. Adjointness. We have an adjunction

$$
\left(R_{*} \dashv R_{-1}\right): \quad \mathcal{P}(A) \frac{R_{*}}{\stackrel{\perp}{R_{-1}}} \mathcal{P}(B),
$$

witnessed by a bijections of sets

$$
\operatorname{Hom}_{\mathcal{P}(A)}\left(R_{*}(U), V\right) \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, R_{-1}(V)\right),
$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$, i.e. such that:
(\star) The following conditions are equivalent:

- We have $R_{*}(U) \subset V$.
- We have $U \subset R_{-1}(V)$.

3. Lax Preservation of Colimits. We have an inclusion of sets

$$
\bigcup_{i \in I} R_{-1}\left(U_{i}\right) \subset R_{-1}\left(\bigcup_{i \in I} U_{i}\right),
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(B)^{\times I}$. In particular, we have inclusions

$$
\begin{gathered}
R_{-1}(U) \cup R_{-1}(V) \subset R_{-1}(U \cup V), \\
\emptyset \subset R_{-1}(\emptyset),
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(B)$.
4. Preservation of Limits. We have an equality of sets

$$
R_{-1}\left(\bigcap_{i \in I} U_{i}\right)=\bigcap_{i \in I} R_{-1}\left(U_{i}\right)
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$
\begin{gathered}
R_{-1}(U \cap V)=R_{-1}(U) \cap R_{-1}(V), \\
R_{-1}(B)=B,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(B)$.
5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure

$$
\left(R_{-1}, R_{-1}^{\otimes}, R_{-1 \mid \mathbb{I}}^{\otimes}\right):(\mathcal{P}(A), \cup \emptyset) \rightarrow(\mathcal{P}(B), \cup \emptyset, \emptyset,
$$

being equipped with inclusions

$$
\begin{gathered}
R_{-1 \mid U, V}^{\otimes}: R_{-1}(U) \cup R_{-1}(V) \subset R_{-1}(U \cup V), \\
R_{-1 \mid \mathbb{1}}^{\otimes}: \emptyset \subset R_{-1}(\emptyset),
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(B)$.
6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure

$$
\left(R_{-1}, R_{-1}^{\otimes}, R_{-1 \mid \mathbb{1}}^{\otimes}\right):(\mathcal{P}(A), \cap, A) \rightarrow(\mathcal{P}(B), \cap, B)
$$

being equipped with equalities

$$
\begin{gathered}
R_{-1 \mid U, V}^{\otimes}: R_{-1}(U \cap V) \stackrel{\bar{\rightarrow}}{\rightarrow} R_{-1}(U) \cap R_{-1}(V), \\
R_{-1 \mid \mathbb{1}}^{\otimes}: R_{-1}(A) \stackrel{\rightrightarrows}{\rightrightarrows} B,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(B)$.
7. Interaction With Weak Inverse Images I. We have

$$
R_{-1}(V)=A \backslash R^{-1}(B \backslash V)
$$

for each $V \in \mathcal{P}(B)$.
8. Interaction With Weak Inverse Images II. Let $R: A \rightarrow B$ be a relation from A to B.
(a) If R is a total relation, then we have an inclusion of sets

$$
R_{-1}(V) \subset R^{-1}(V)
$$

natural in $V \in \mathcal{P}(B)$.
(b) If R is total and functional, then the above inclusion is in fact an equality.
(c) Conversely, if we have $R_{-1}=R^{-1}$, then R is total and functional.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This follows from ?? of ??.
Item 3, Lax Preservation of Colimits: Omitted.
Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.
Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows from Item 3 .

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4.
Item 7, Interaction With Weak Inverse Images I: We claim we have an equality

$$
R_{-1}(B \backslash V)=A \backslash R^{-1}(V)
$$

Indeed, we have

$$
\begin{aligned}
R_{-1}(B \backslash V) & =\{a \in A \mid R(a) \subset B \backslash V\} \\
A \backslash R^{-1}(V) & =\{a \in A \mid R(a) \cap V=\emptyset\}
\end{aligned}
$$

Taking $V=B \backslash V$ then implies the original statement.
Item 8, Interaction With Weak Inverse Images II: Item 8a is clear, while Items 8 b and 8 c follow from Item 6 of Proposition 6.3.1.1.2.

00S5 Proposition 6.4.2.1.4. Let $R: A \rightarrow B$ be a relation.

1. Functionality I. The assignment $R \mapsto R_{-1}$ defines a function

$$
(-)_{-1}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(A), \mathcal{P}(B))
$$

2. Functionality II. The assignment $R \mapsto R_{-1}$ defines a function

$$
(-)_{-1}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Pos}((\mathcal{P}(A), \subset),(\mathcal{P}(B), \subset))
$$

3. Interaction With Identities. For each $A \in \operatorname{Obj}($ Sets $)$, we have

$$
\left(\operatorname{id}_{A}\right)_{-1}=\operatorname{id}_{\mathcal{P}(A)}
$$

4. Interaction With Composition. For each pair of composable relations $R: A \rightarrow B$ and $S: B \rightarrow C$, we have

$$
(S \diamond R)_{-1}=R_{-1} \circ S_{-1}, \quad \underset{(S \diamond R)_{-1}}{\mathcal{P}(C) \xrightarrow{S_{-1}} \mathcal{P}(B)} \underset{\mathcal{P}(A) .}{ }
$$

Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: Indeed, we have

$$
\begin{aligned}
\left(\chi_{A}\right)_{-1}(U) & \stackrel{\text { def }}{=}\left\{a \in A \mid \chi_{A}(a) \subset U\right\} \\
& \stackrel{\text { def }}{=}\{a \in A \mid\{a\} \subset U\} \\
& =U
\end{aligned}
$$

for each $U \in \mathcal{P}(A)$. Thus $\left(\chi_{A}\right)_{-1}=\mathrm{id}_{\mathcal{P}(A)}$.
Item 4, Interaction With Composition: Indeed, we have

$$
\begin{aligned}
(S \diamond R)_{-1}(U) & \stackrel{\text { def }}{=}\{a \in A \mid[S \diamond R](a) \subset U\} \\
& \stackrel{\text { def }}{=}\{a \in A \mid S(R(a)) \subset U\} \\
& \stackrel{\text { def }}{=}\left\{a \in A \mid S_{*}(R(a)) \subset U\right\} \\
& =\left\{a \in A \mid R(a) \subset S_{-1}(U)\right\} \\
& \stackrel{\text { def }}{=} R_{-1}\left(S_{-1}(U)\right) \\
& \stackrel{\text { def }}{=}\left[R_{-1} \circ S_{-1}\right](U)
\end{aligned}
$$

for each $U \in \mathcal{P}(C)$, where we used Item 2 of Proposition 6.4.2.1.3, which implies that the conditions

- We have $S_{*}(R(a)) \subset U$.
- We have $R(a) \subset S_{-1}(U)$.
are equivalent. Thus $(S \diamond R)_{-1}=R_{-1} \circ S_{-1}$.

00SA 6.4.3 Weak Inverse Images

Let A and B be sets and let $R: A \nrightarrow B$ be a relation.
00SB Definition 6.4.3.1.1. The weak inverse image function associated to R^{23} is the function

$$
R^{-1}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)
$$

defined by ${ }^{24}$

$$
R^{-1}(V) \stackrel{\text { def }}{=}\{a \in A \mid R(a) \cap V \neq \emptyset\}
$$

for each $V \in \mathcal{P}(B)$.
00SC Remark 6.4.3.1.2. Identifying subsets of B with relations from B to pt via Item 3 of Proposition 2.4.3.1.6, we see that the weak inverse image function associated to R is equivalently the function

$$
R^{-1}: \underbrace{\mathcal{P}(B)}_{\cong \operatorname{Rel}(B, \mathrm{pt})} \rightarrow \underbrace{\mathcal{P}(A)}_{\cong \operatorname{Rel}(A, \mathrm{pt})}
$$

defined by

$$
R^{-1}(V) \stackrel{\text { def }}{=} V \diamond R
$$

[^62]for each $V \in \mathcal{P}(A)$, where $R \diamond V$ is the composition
$$
A \stackrel{R}{\mapsto} B \stackrel{V}{\mapsto} \mathrm{pt} .
$$

Explicitly, we have

$$
\begin{aligned}
R^{-1}(V) & \stackrel{\text { def }}{=} V \diamond R \\
& \stackrel{\text { def }}{=} \int^{b \in B} V_{b}^{-1} \times R_{-2}^{b}
\end{aligned}
$$

Proof. We have

$$
\left.\left.\begin{array}{rl}
V \diamond R & \stackrel{\text { def }}{=} \int^{b \in B} V_{b}^{-1} \times R_{-2}^{b} \\
& =\left\{a \in A \mid \int^{b \in B} V_{b}^{\star} \times R_{a}^{b}=\right.\text { true }
\end{array}\right\}, \begin{array}{l}
\text { there exists } b \in B \text { such that the } \\
\text { following conditions hold: } \\
\\
\\
\end{array} \begin{array}{l}
\left.a \in A \left\lvert\, \begin{array}{l}
\text { 1. We have } V_{b}^{\star}=\text { true } \\
2 . \text { We have } R_{a}^{b}=\text { true }
\end{array}\right.\right\} \\
\end{array}\right\}
$$

This finishes the proof.
00SD Proposition 6.4.3.1.3. Let $R: A \rightarrow B$ be a relation.

1. Functoriality. The assignment $V \mapsto R^{-1}(V)$ defines a functor

$$
R^{-1}:(\mathcal{P}(B), \subset) \rightarrow(\mathcal{P}(A), \subset)
$$

where

- Action on Objects. For each $V \in \mathcal{P}(B)$, we have

$$
\left[R^{-1}\right](V) \stackrel{\text { def }}{=} R^{-1}(V)
$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(B)$:
- If $U \subset V$, then $R^{-1}(U) \subset R^{-1}(V)$.

00SF
2. Adjointness. We have an adjunction

$$
\left(R^{-1} \dashv R_{!}\right): \quad \mathcal{P}(B) \underset{R!}{\frac{R^{-1}}{\perp}} \mathcal{P}(A),
$$

witnessed by a bijections of sets

$$
\operatorname{Hom}_{\mathcal{P}(A)}\left(R^{-1}(U), V\right) \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, R_{!}(V)\right),
$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$, i.e. such that:
(\star) The following conditions are equivalent:

- We have $R^{-1}(U) \subset V$.
- We have $U \subset R_{!}(V)$.

3. Preservation of Colimits. We have an equality of sets

$$
R^{-1}\left(\bigcup_{i \in I} U_{i}\right)=\bigcup_{i \in I} R^{-1}\left(U_{i}\right),
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$
\begin{aligned}
R^{-1}(U) \cup R^{-1}(V) & =R^{-1}(U \cup V), \\
R^{-1}(\emptyset) & =\emptyset,
\end{aligned}
$$

natural in $U, V \in \mathcal{P}(B)$.
4. Oplax Preservation of Limits. We have an inclusion of sets

$$
R^{-1}\left(\bigcap_{i \in I} U_{i}\right) \subset \bigcap_{i \in I} R^{-1}\left(U_{i}\right)
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(B)^{\times I}$. In particular, we have inclusions

$$
\begin{gathered}
R^{-1}(U \cap V) \subset R^{-1}(U) \cap R^{-1}(V), \\
R^{-1}(A) \subset B,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(B)$.
5. Symmetric Strict Monoidality With Respect to Unions. The direct
image function of Item 1 has a symmetric strict monoidal structure

$$
\left(R^{-1}, R^{-1, \otimes}, R_{\mathbb{1}}^{-1, \otimes}\right):(\mathcal{P}(A), \cup \emptyset) \rightarrow(\mathcal{P}(B), \cup, \emptyset)
$$

being equipped with equalities

$$
\begin{gathered}
R_{U, V}^{-1, \otimes}: R^{-1}(U) \cup R^{-1}(V) \stackrel{\text { § }}{\rightarrow} R^{-1}(U \cup V), \\
R_{\mathbb{1}}^{-1, \otimes}: \emptyset \stackrel{\text { — }}{\rightarrow} \emptyset
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(B)$.
00SK 6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure

$$
\left(R^{-1}, R^{-1, \otimes}, R_{\mathbb{1}}^{-1, \otimes}\right):(\mathcal{P}(A), \cap, A) \rightarrow(\mathcal{P}(B), \cap, B)
$$

being equipped with inclusions

$$
\begin{gathered}
R_{U, V}^{-1, \otimes}: R^{-1}(U \cap V) \subset R^{-1}(U) \cap R^{-1}(V), \\
R_{\mathbb{1}}^{-1, \otimes}: R^{-1}(A) \subset B
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(B)$.
7. Interaction With Strong Inverse Images I. We have

$$
R^{-1}(V)=A \backslash R_{-1}(B \backslash V)
$$

for each $V \in \mathcal{P}(B)$.
8. Interaction With Strong Inverse Images II. Let $R: A \rightarrow B$ be a relation from A to B.
(a) If R is a total relation, then we have an inclusion of sets

$$
R_{-1}(V) \subset R^{-1}(V)
$$

natural in $V \in \mathcal{P}(B)$.
(b) If R is total and functional, then the above inclusion is in fact an equality.
(c) Conversely, if we have $R_{-1}=R^{-1}$, then R is total and functional.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This follows from ?? of ??.

Item 3, Preservation of Colimits: This follows from Item 2 and ?? of ??. Item 4, Oplax Preservation of Limits: Omitted.
Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.
Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows from Item 4.
Item 7, Interaction With Strong Inverse Images I: This follows from Item 7 of Proposition 6.4.2.1.3.
Item 8, Interaction With Strong Inverse Images II: This was proved in Item 8 of Proposition 6.4.2.1.3.

00SR Proposition 6.4.3.1.4. Let $R: A \rightarrow B$ be a relation.

1. Functionality I. The assignment $R \mapsto R^{-1}$ defines a function

$$
(-)^{-1}: \operatorname{Rel}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(A), \mathcal{P}(B))
$$

2. Functionality II. The assignment $R \mapsto R^{-1}$ defines a function

$$
(-)^{-1}: \operatorname{Rel}(A, B) \rightarrow \operatorname{Pos}((\mathcal{P}(A), \subset),(\mathcal{P}(B), \subset))
$$

3. Interaction With Identities. For each $A \in \operatorname{Obj}($ Sets $)$, we have ${ }^{25}$

$$
\left(\chi_{A}\right)^{-1}=\operatorname{id}_{\mathcal{P}(A)} .
$$

4. Interaction With Composition. For each pair of composable relations $R: A \nrightarrow B$ and $S: B \rightarrow C$, we have ${ }^{26}$

$$
\begin{gathered}
\mathcal{P}(C) \xrightarrow{S^{-1}} \mathcal{P}(B) \\
(S \diamond R)^{-1} \searrow^{2} R^{-1} \\
\\
\\
\mathcal{P}(A) .
\end{gathered}
$$

[^63]Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: This follows from Item 5 of Proposition 8.1.6.1.2.
Item 4, Interaction With Composition: This follows from Item 2 of Proposition 8.1.6.1.2.

00SW 6.4.4 Direct Images With Compact Support

Let A and B be sets and let $R: A \nrightarrow B$ be a relation.
00SX Definition 6.4.4.1.1. The direct image with compact support function associated to R is the function

$$
R_{!}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

defined by ${ }^{27,28}$

$$
\begin{aligned}
R_{!}(U) & \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
b \in B & \begin{array}{l}
\text { for each } a \in A, \text { if we have } \\
b \in R(a), \text { then } a \in U
\end{array}
\end{array}\right\} \\
& =\left\{b \in B \mid R^{-1}(b) \subset U\right\}
\end{aligned}
$$

for each $U \in \mathcal{P}(A)$.
00SY Remark 6.4.4.1.2. Identifying subsets of B with relations from pt to B via Item 3 of Proposition 2.4.3.1.6, we see that the direct image with compact support function associated to R is equivalently the function

$$
R_{!}: \underbrace{\mathcal{P}(A)}_{\cong \operatorname{Rel}(A, \mathrm{pt})} \rightarrow \underbrace{\mathcal{P}(B)}_{\cong \operatorname{Rel}(B, \mathrm{pt})}
$$

defined by

$$
R_{!}(U) \stackrel{\text { def }}{=} \operatorname{Ran}_{R}(U)
$$

[^64]being explicitly computed by
\[

$$
\begin{aligned}
R^{*}(U) & \stackrel{\text { def }}{=} \operatorname{Ran}_{R}(U) \\
& \cong \int_{a \in A} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{-2}, U_{a}^{-1}\right)
\end{aligned}
$$
\]

where we have used Proposition 6.2.3.1.1.
Proof. We have

$$
\begin{aligned}
& \operatorname{Ran}_{R}(V) \cong \int_{a \in A} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{-2}, U_{a}^{-1}\right) \\
& =\left\{b \in B \mid \int_{a \in A} \operatorname{Hom}_{\{\mathrm{t}, \mathrm{f}\}}\left(R_{a}^{b}, U_{a}^{\star}\right)=\text { true }\right\} \\
& =\left\{b \in B \left\lvert\, \begin{array}{l}
\text { for each } a \in A, \text { at least one of the } \\
\text { following conditions hold: } \\
\text { 1. We have } R_{a}^{b}=\text { false } \\
\text { 2. The following conditions hold: }
\end{array}\right.\right\} \\
& \text { (a) We have } R_{a}^{b}=\text { true } \\
& \text { (b) We have } U_{a}^{\star}=\text { true } \\
& =\left\{b \in B \left\lvert\, \begin{array}{l}
\text { for each } a \in A, \text { at least one of the } \\
\text { following conditions hold: } \\
\text { 1. We have } b \notin R(A) \\
\text { 2. The following conditions hold: } \\
\text { (a) We have } b \in R(a) \\
\text { (b) We have } a \in U
\end{array}\right.\right\} \\
& =\left\{\begin{array}{l|l}
b \in B & \begin{array}{l}
\text { for each } a \in A, \text { if we have } \\
b \in R(a), \text { then } a \in U
\end{array}
\end{array}\right\} \\
& =\left\{b \in B \mid R^{-1}(b) \subset U\right\} \\
& \stackrel{\text { def }}{=} R^{-1}(U) \text {. }
\end{aligned}
$$

This finishes the proof.
00SZ Proposition 6.4.4.1.3. Let $R: A \rightarrow B$ be a relation.

1. Functoriality. The assignment $U \mapsto R_{!}(U)$ defines a functor

$$
R_{!}:(\mathcal{P}(A), \subset) \rightarrow(\mathcal{P}(B), \subset)
$$

where

- Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$
\left[R_{!}\right](U) \stackrel{\text { def }}{=} R_{!}(U)
$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:
- If $U \subset V$, then $R_{!}(U) \subset R_{!}(V)$.

2. Adjointness. We have an adjunction

$$
\left(R^{-1} \dashv R_{!}\right): \quad \mathcal{P}(B) \underset{R_{!}}{\frac{R^{-1}}{\perp}} \mathcal{P}(A),
$$

witnessed by a bijections of sets

$$
\operatorname{Hom}_{\mathcal{P}(A)}\left(R^{-1}(U), V\right) \cong \operatorname{Hom}_{\mathcal{P}(A)}\left(U, R_{!}(V)\right),
$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$, i.e. such that:
(\star) The following conditions are equivalent:

- We have $R^{-1}(U) \subset V$.
- We have $U \subset R_{!}(V)$.

3. Lax Preservation of Colimits. We have an inclusion of sets

$$
\bigcup_{i \in I} R_{!}\left(U_{i}\right) \subset R_{!}\left(\bigcup_{i \in I} U_{i}\right),
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$
\begin{gathered}
R_{!}(U) \cup R_{!}(V) \subset R_{!}(U \cup V), \\
\emptyset \subset R_{!}(\emptyset),
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
4. Preservation of Limits. We have an equality of sets

$$
R_{!}\left(\bigcap_{i \in I} U_{i}\right)=\bigcap_{i \in I} R_{!}\left(U_{i}\right),
$$

natural in $\left\{U_{i}\right\}_{i \in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$
\begin{gathered}
R_{!}(U \cap V)=R_{!}(U) \cap R_{!}(V), \\
R_{!}(A)=B,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure

$$
\left(R_{!}, R_{!}^{\otimes}, R_{!\mid \mathbb{1}}^{\otimes}\right):(\mathcal{P}(A), \cup \emptyset) \rightarrow(\mathcal{P}(B), \cup, \emptyset)
$$

being equipped with inclusions

$$
\begin{gathered}
R_{!\mid U, V}^{\otimes}: R_{!}(U) \cup R_{!}(V) \subset R_{!}(U \cup V), \\
R_{!\mid \mathbb{1}}^{\otimes}: \emptyset \subset R_{!}(\emptyset)
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure

$$
\left(R_{!}, R_{!}^{\otimes}, R_{!\mid \mathbb{1}}^{\otimes}\right):(\mathcal{P}(A), \cap, A) \rightarrow(\mathcal{P}(B), \cap, B)
$$

being equipped with equalities

$$
\begin{gathered}
R_{!\mid U, V}^{\otimes}: R_{!}(U \cap V) \stackrel{\rightrightarrows}{\rightarrow} R_{!}(U) \cap R_{!}(V), \\
R_{!\mid \mathbb{1}}^{\otimes}: R_{!}(A) \xrightarrow{\rightrightarrows} B,
\end{gathered}
$$

natural in $U, V \in \mathcal{P}(A)$.
7. Relation to Direct Images. We have

$$
R_{!}(U)=B \backslash R_{*}(A \backslash U)
$$

for each $U \in \mathcal{P}(A)$.
Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This follows from ?? of ??.
Item 3, Lax Preservation of Colimits: Omitted.
Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.
Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows
from Item 3 .
Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4.
Item 7, Relation to Direct Images: This follows from Item 7 of Proposition 6.4.1.1.3. Alternatively, we may prove it directly as follows, with the proof proceeding in the same way as in the case of functions (Item 9 of Proposition 2.4.6.1.6).
We claim that $R_{!}(U)=B \backslash R_{*}(A \backslash U)$:

- The First Implication. We claim that

$$
R_{!}(U) \subset B \backslash R_{*}(A \backslash U)
$$

Let $b \in R_{!}(U)$. We need to show that $b \notin R_{*}(A \backslash U)$, i.e. that there is no $a \in A \backslash U$ such that $b \in R(a)$.
This is indeed the case, as otherwise we would have $a \in R^{-1}(b)$ and $a \notin U$, contradicting $R^{-1}(b) \subset U$ (which holds since $b \in R_{!}(U)$). Thus $b \in B \backslash R_{*}(A \backslash U)$.

- The Second Implication. We claim that

$$
B \backslash R_{*}(A \backslash U) \subset R_{!}(U)
$$

Let $b \in B \backslash R_{*}(A \backslash U)$. We need to show that $b \in R_{!}(U)$, i.e. that $R^{-1}(b) \subset U$.
Since $b \notin R_{*}(A \backslash U)$, there exists no $a \in A \backslash U$ such that $b \in R(a)$, and hence $R^{-1}(b) \subset U$.
Thus $b \in R_{!}(U)$.
This finishes the proof.
$00 T 7$ Proposition 6.4.4.1.4. Let $R: A \nrightarrow B$ be a relation.
0078 1. Functionality I. The assignment $R \mapsto R!$ defines a function

$$
(-)_{!}: \operatorname{Sets}(A, B) \rightarrow \operatorname{Sets}(\mathcal{P}(A), \mathcal{P}(B)) .
$$

4. Interaction With Composition. For each pair of composable relations $R: A \nrightarrow B$ and $S: B \nrightarrow C$, we have

$$
\begin{aligned}
& \mathcal{P}(A) \xrightarrow{R_{!}} \\
(S \diamond R)_{!}=S_{!} \circ R_{!}, \quad & \searrow_{(S)} \\
& \left.\right|_{\downarrow}(C) .
\end{aligned}
$$

Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: Indeed, we have

$$
\begin{aligned}
\left(\chi_{A}\right)_{!}(U) & \stackrel{\text { def }}{=}\left\{a \in A \mid \chi_{A}^{-1}(a) \subset U\right\} \\
& \stackrel{\text { def }}{=}\{a \in A \mid\{a\} \subset U\} \\
& =U
\end{aligned}
$$

for each $U \in \mathcal{P}(A)$. Thus $\left(\chi_{A}\right)_{!}=\operatorname{id}_{\mathcal{P}(A)}$.
Item 4, Interaction With Composition: Indeed, we have

$$
\begin{aligned}
(S \diamond R)_{!}(U) & \stackrel{\text { def }}{=}\left\{c \in C \mid[S \diamond R]^{-1}(c) \subset U\right\} \\
& \stackrel{\text { def }}{=}\left\{c \in C \mid S^{-1}\left(R^{-1}(c)\right) \subset U\right\} \\
& =\left\{c \in C \mid R^{-1}(c) \subset S_{!}(U)\right\} \\
& \stackrel{\text { def }}{=} R_{!}\left(S_{!}(U)\right) \\
& \stackrel{\text { def }}{=}\left[R_{!} \circ S_{!}\right](U)
\end{aligned}
$$

for each $U \in \mathcal{P}(C)$, where we used Item 2 of Proposition 6.4.4.1.3, which implies that the conditions

- We have $S^{-1}\left(R^{-1}(c)\right) \subset U$.
- We have $R^{-1}(c) \subset S_{!}(U)$.
are equivalent. Thus $(S \diamond R)_{!}=S!\circ R_{!}$.

00TC 6.4.5 Functoriality of Powersets

00TD Proposition 6.4.5.1.1. The assignment $X \mapsto \mathcal{P}(X)$ defines functors ${ }^{29}$

$$
\begin{aligned}
\mathcal{P}_{*} & : \text { Rel } \rightarrow \text { Sets, } \\
\mathcal{P}_{-1} & : \text { Rel }^{\text {op }} \rightarrow \text { Sets }, \\
\mathcal{P}^{-1} & : \text { Rel }^{\text {op }} \rightarrow \text { Sets, } \\
\mathcal{P}_{1} & : \text { Rel } \rightarrow \text { Sets }
\end{aligned}
$$

where

- Action on Objects. For each $A \in \operatorname{Obj}(\mathrm{Rel})$, we have

$$
\begin{array}{r}
\mathcal{P}_{*}(A) \stackrel{\text { def }}{=} \mathcal{P}(A), \\
\mathcal{P}_{-1}(A) \stackrel{\text { def }}{=} \mathcal{P}(A), \\
\mathcal{P}^{-1}(A) \stackrel{\text { def }}{=} \mathcal{P}(A), \\
\mathcal{P}_{!}(A) \stackrel{\text { def }}{=} \mathcal{P}(A) .
\end{array}
$$

[^65]- Action on Morphisms. For each morphism $R: A \rightarrow B$ of Rel, the images

$$
\begin{aligned}
\mathcal{P}_{*}(R): \mathcal{P}(A) & \rightarrow \mathcal{P}(B), \\
\mathcal{P}_{-1}(R): \mathcal{P}(B) & \rightarrow \mathcal{P}(A), \\
\mathcal{P}^{-1}(R): \mathcal{P}(B) & \rightarrow \mathcal{P}(A), \\
\mathcal{P}_{!}(R): \mathcal{P}(A) & \rightarrow \mathcal{P}(B)
\end{aligned}
$$

of R by $\mathcal{P}_{*}, \mathcal{P}_{-1}, \mathcal{P}^{-1}$, and $\mathcal{P}_{!}$are defined by

$$
\begin{gathered}
\mathcal{P}_{*}(R) \stackrel{\text { def }}{=} R_{*}, \\
\mathcal{P}_{-1}(R) \stackrel{\text { def }}{=} R_{-1}, \\
\mathcal{P}^{-1}(R) \stackrel{\text { def }}{=} R^{-1}, \\
\mathcal{P}_{!}(R) \stackrel{\text { def }}{=} R_{!},
\end{gathered}
$$

as in Definitions 6.4.1.1.1, 6.4.2.1.1, 6.4.3.1.1 and 6.4.4.1.1.
Proof. This follows from Items 3 and 4 of Proposition 6.4.1.1.4, Items 3 and 4 of Proposition 6.4.2.1.4, Items 3 and 4 of Proposition 6.4.3.1.4, and Items 3 and 4 of Proposition 6.4.4.1.4.

6.4.6 Functoriality of Powersets: Relations on Powersets

00 TE Let A and B be sets and let $R: A \rightarrow B$ be a relation.
00TF Definition 6.4.6.1.1. The relation on powersets associated to R is the relation

$$
\mathcal{P}(R): \mathcal{P}(A) \nrightarrow \mathcal{P}(B)
$$

defined by ${ }^{30}$

$$
\mathcal{P}(R)_{U}^{V} \stackrel{\text { def }}{=} \mathbf{R e l}\left(\chi_{\mathrm{pt}}, V \diamond R \diamond U\right)
$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.
00TG Remark 6.4.6.1.2. In detail, we have $U \sim_{\mathcal{P}(R)} V$ iff the following equivalent conditions hold:

- We have $\chi_{\mathrm{pt}} \subset V \diamond R \diamond U$.
- We have $(V \diamond R \diamond U)_{\star}^{\star}=$ true, i.e. we have

Proposition 6.3.1.1.2.
${ }^{30}$ Illustration:

$$
\mathrm{pt} \xrightarrow[U]{\underset{R}{\longrightarrow} A \underset{V}{\chi_{\mathrm{pt}}}} B \underset{{ }_{V}}{\stackrel{1}{\longrightarrow}} \mathrm{pt} .
$$

- There exists some $a \in A$ and some $b \in B$ such that:
- We have $U_{\star}^{a}=$ true.
- We have $R_{a}^{b}=$ true.
- We have $V_{b}^{\star}=$ true.
- There exists some $a \in A$ and some $b \in B$ such that:
- We have $a \in U$.
- We have $a \sim_{R} b$.
- We have $b \in V$.

00TH Proposition 6.4.6.1.3. The assignment $R \mapsto \mathcal{P}(R)$ defines a functor

$$
\mathcal{P}: \text { Rel } \rightarrow \text { Rel. }
$$

Proof. Omitted.

Appendices

6.A Other Chapters

Sets

1. Sets
2. Constructions With Sets
3. Pointed Sets
4. Tensor Products of Pointed Sets

Relations

5. Relations
6. Constructions With Relations
7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 7

Equivalence Relations and Apartness Relations

00 TJ This chapter contains some material about reflexive, symmetric, transitive, equivalence, and apartness relations.

Contents

7.1 Reflexive Relations 328
7.1.1 Foundations 328
7.1.2 The Reflexive Closure of a Relation. 329
7.2 Symmetric Relations 331
7.2.1 Foundations 331
7.2.2 The Symmetric Closure of a Relation. 331
7.3 Transitive Relations 333
7.3.1 Foundations 333
7.3.2 The Transitive Closure of a Relation. 334
7.4 Equivalence Relations 336
7.4.1 Foundations 336
7.4.2 The Equivalence Closure of a Relation 336
7.5 Quotients by Equivalence Relations 338
7.5.1 Equivalence Classes 338
7.5.2 Quotients of Sets by Equivalence Relations 338
7.A Other Chapters 342
00TK 7.1 Reflexive Relations7.1.1 Foundations
Let A be a set.

00TM Definition 7.1.1.1.1. A reflexive relation is equivalently: ${ }^{1}$

- An \mathbb{E}_{0}-monoid in $\left(\mathrm{N}_{\bullet}(\operatorname{Rel}(A, A)), \chi_{A}\right)$.
- A pointed object in $\left(\boldsymbol{\operatorname { R e l }}(A, A), \chi_{A}\right)$.

00TN Remark 7.1.1.1.2. In detail, a relation R on A is reflexive if we have an inclusion

$$
\eta_{R}: \chi_{A} \subset R
$$

of relations in $\operatorname{Rel}(A, A)$, i.e. if, for each $a \in A$, we have $a \sim_{R} a$.
00TP Definition 7.1.1.1.3. Let A be a set.

1. The set of reflexive relations on A is the subset $\operatorname{Rel}^{\mathrm{refl}}(A, A)$ of $\operatorname{Rel}(A, A)$ spanned by the reflexive relations.
2. The poset of relations on A is is the subposet $\boldsymbol{R e l}^{\text {refl }}(A, A)$ of $\operatorname{Rel}(A, A)$ spanned by the reflexive relations.
00TS Proposition 7.1.1.1.4. Let R and S be relations on A.
00 TT 1. Interaction With Inverses. If R is reflexive, then so is R^{\dagger}.
00TU
3. Interaction With Composition. If R and S are reflexive, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Clear.
00TV 7.1.2 The Reflexive Closure of a Relation
Let R be a relation on A.
00TW Definition 7.1.2.1.1. The reflexive closure of \sim_{R} is the relation $\sim_{R}^{\text {reff } 2}$ satisfying the following universal property: ${ }^{3}$
(\star) Given another reflexive relation \sim_{S} on A such that $R \subset S$, there exists an inclusion $\sim_{R}^{\text {refl }} \subset \sim_{S}$.
00TX Construction 7.1.2.1.2. Concretely, $\sim_{R}^{\text {reff }}$ is the free pointed object on R in $\left(\operatorname{Rel}(A, A), \chi_{A}\right)^{4}$, being given by

$$
\begin{aligned}
R^{\mathrm{reff}} \stackrel{\text { def }}{=} & R \amalg^{\operatorname{Rel}(A, A)} \Delta_{A} \\
& =R \cup \Delta_{A} \\
& =\left\{(a, b) \in A \times A \mid \text { we have } a \sim_{R} b \text { or } a=b\right\} .
\end{aligned}
$$

[^66]Proof. Clear.

Proposition 7.1.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction
witnessed by a bijection of sets

$$
\boldsymbol{\operatorname { R e l }}^{\mathrm{refl}}\left(R^{\mathrm{refl}}, S\right) \cong \boldsymbol{\operatorname { R e l }}(R, S)
$$

natural in $R \in \operatorname{Obj}\left(\operatorname{Rel}^{\text {refl }}(A, A)\right)$ and $S \in \operatorname{Obj}(\boldsymbol{\operatorname { R e l }}(A, A))$.
2. The Reflexive Closure of a Reflexive Relation. If R is reflexive, then $R^{\text {refl }}=R$.
3. Idempotency. We have

$$
\left(R^{\mathrm{refl}}\right)^{\mathrm{refl}}=R^{\mathrm{refl}}
$$

4. Interaction With Inverses. We have

$$
\left(R^{\dagger}\right)^{\text {refl }}=\left(R^{\text {refl }}\right)^{\dagger}, \quad \begin{gathered}
\operatorname{Rel}(A, A) \xrightarrow{(-)^{\mathrm{refl}}} \operatorname{Rel}(A, A) \\
\\
\\
\\
\operatorname{Rel}(A, A) \xrightarrow[(-)^{\mathrm{ref}}]{ } \operatorname{Rel}(A, A) .
\end{gathered}
$$

5. Interaction With Composition. We have

$$
\begin{aligned}
& \operatorname{Rel}(A, A) \times \operatorname{Rel}(A, A) \stackrel{\diamond}{\rightarrow} \operatorname{Rel}(A, A) \\
&(S \diamond R)^{\mathrm{refl}}=S^{\mathrm{refl}} \diamond R^{\mathrm{refl}}, \quad(-)^{\mathrm{reff}} \times(-)^{\mathrm{refl}} \mid \\
& \operatorname{Rel}(A, A) \times \operatorname{Rel}(A, A) \stackrel{\rightharpoonup}{\diamond} \operatorname{Rel}(A, A) .
\end{aligned}
$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the reflexive closure of a relation, stated in Definition 7.1.2.1.1.
Item 2, The Reflexive Closure of a Reflexive Relation: Clear.
Item 3, Idempotency: This follows from Item 2.
Item 4, Interaction With Inverses: Clear.
Item 5, Interaction With Composition: This follows from Item 2 of Proposition 7.1.1.1.4.

$00 U 4$
 7.2 Symmetric Relations

00U5 7.2.1 Foundations

Let A be a set.
$00 \cup 6$ Definition 7.2.1.1.1. A relation R on A is symmetric if we have $R^{\dagger}=R$.

00 U Remark 7.2.1.1.2. In detail, a relation R is symmetric if it satisfies the following condition:
(*) For each $a, b \in A$, if $a \sim_{R} b$, then $b \sim_{R} a$.
00 U8 Definition 7.2.1.1.3. Let A be a set.

1. The set of symmetric relations on A is the subset $\operatorname{Rel}^{\text {symm }}(A, A)$ of $\operatorname{Rel}(A, A)$ spanned by the symmetric relations.
2. The poset of relations on A is is the subposet $\operatorname{Rel}^{\text {symm }}(A, A)$ of $\operatorname{Rel}(A, A)$ spanned by the symmetric relations.

00UB Proposition 7.2.1.1.4. Let R and S be relations on A.
00UC 1. Interaction With Inverses. If R is symmetric, then so is R^{\dagger}.
00UD 2. Interaction With Composition. If R and S are symmetric, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Clear.

00UE
 7.2.2 The Symmetric Closure of a Relation

Let R be a relation on A.
00UF Definition 7.2.2.1.1. The symmetric closure of \sim_{R} is the relation $\sim_{R}^{\text {symm } 5}$ satisfying the following universal property: ${ }^{6}$
(\star) Given another symmetric relation \sim_{S} on A such that $R \subset S$, there exists an inclusion $\sim_{R}^{\text {symm }} \subset \sim_{S}$.

00UG Construction 7.2.2.1.2. Concretely, $\sim_{R}^{\text {symm }}$ is the symmetric relation on A defined by

$$
\begin{aligned}
R^{\text {symm }} & \stackrel{\text { def }}{=} R \cup R^{\dagger} \\
& =\left\{(a, b) \in A \times A \mid \text { we have } a \sim_{R} b \text { or } b \sim_{R} a\right\} .
\end{aligned}
$$

[^67]Proof. Clear.

00UJ 1. Adjointness. We have an adjunction

00UH

Proposition 7.2.2.1.3. Let R be a relation on A.

$$
\left((-)^{\mathrm{symm}} \dashv \text { 忘 }\right): \quad \boldsymbol{\operatorname { R e l }}(A, A) \stackrel{(-)^{\text {symm }}}{\frac{\perp}{\perp}} \operatorname{Rel}^{\text {忘 }}{ }^{\text {symm }}(A, A),
$$

witnessed by a bijection of sets

$$
\boldsymbol{R e l}^{\text {symm }}\left(R^{\mathrm{symm}}, S\right) \cong \boldsymbol{\operatorname { R e l }}(R, S)
$$

natural in $R \in \operatorname{Obj}\left(\operatorname{Rel}^{\operatorname{symm}}(A, A)\right)$ and $S \in \operatorname{Obj}(\boldsymbol{\operatorname { R e l }}(A, A))$.
2. The Symmetric Closure of a Symmetric Relation. If R is symmetric, then $R^{\text {symm }}=R$.
3. Idempotency. We have

$$
\left(R^{\mathrm{symm}}\right)^{\mathrm{symm}}=R^{\mathrm{symm}} .
$$

4. Interaction With Inverses. We have

$$
\begin{aligned}
\left(R^{\dagger}\right)^{\text {symm }}=\left(R^{\text {symm }}\right)^{\dagger}, & (-)^{\dagger} \downarrow^{\operatorname{Rel}(A, A)} \xrightarrow{(-)^{\text {symm }}} \operatorname{Rel}(A, A) \\
& \downarrow^{(-)^{\dagger}} \\
& \operatorname{Rel}(A, A) \xrightarrow[(-)^{\text {symm }}]{ } \operatorname{Rel}(A, A) .
\end{aligned}
$$

5. Interaction With Composition. We have

$$
\begin{aligned}
\operatorname{Rel}(A, A) & \times \operatorname{Rel}(A, A) \stackrel{\diamond}{\rightarrow} \operatorname{Rel}(A, A) \\
(S \diamond R)^{\text {symm }}=S^{\text {symm }} \diamond R^{\text {symm }}, \quad(-)^{\text {symm }} \times(-)^{\text {symm }} \mid & \downarrow(-)^{\text {symm }} \\
\operatorname{Rel}(A, A) & \times \operatorname{Rel}(A, A) \stackrel{\rightharpoonup}{\diamond} \operatorname{Rel}(A, A) .
\end{aligned}
$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the symmetric closure of a relation, stated in Definition 7.2.2.1.1.
Item 2, The Symmetric Closure of a Symmetric Relation: Clear.
Item 3, Idempotency: This follows from Item 2.
Item 4, Interaction With Inverses: Clear.
Item 5, Interaction With Composition: This follows from Item 2 of Proposition 7.2.1.1.4.

00up 7.3 Transitive Relations

00UQ 7.3.1 Foundations

Let A be a set.
00UR Definition 7.3.1.1.1. A transitive relation is equivalently: ${ }^{7}$

- A non-unital \mathbb{E}_{1}-monoid in $\left(\mathrm{N}_{\bullet}(\operatorname{Rel}(A, A)), \diamond\right)$.
- A non-unital monoid in $(\boldsymbol{\operatorname { R e l }}(A, A), \diamond)$.

00US Remark 7.3.1.1.2. In detail, a relation R on A is transitive if we have an inclusion

$$
\mu_{R}: R \diamond R \subset R
$$

of relations in $\operatorname{Rel}(A, A)$, i.e. if, for each $a, c \in A$, the following condition is satisfied:
(\star) If there exists some $b \in A$ such that $a \sim_{R} b$ and $b \sim_{R} c$, then $a \sim_{R} c$.

00UT Definition 7.3.1.1.3. Let A be a set.

1. The set of transitive relations from A to B is the subset $\operatorname{Rel}^{\text {trans }}(A)$ of $\operatorname{Rel}(A, A)$ spanned by the transitive relations.
2. The poset of relations from A to B is is the subposet $\operatorname{Rel}^{\text {trans }}(A)$ of $\operatorname{Rel}(A, A)$ spanned by the transitive relations.

Proposition 7.3.1.1.4. Let R and S be relations on A.

1. Interaction With Inverses. If R is transitive, then so is R^{\dagger}.
2. Interaction With Composition. If R and S are transitive, then $S \diamond R$ may fail to be transitive.

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: See [MSE 2096272]. ${ }^{8}$
R.
${ }^{7}$ Note that since $\operatorname{Rel}(A, A)$ is posetal, transitivity is a property of a relation, rather than extra structure.
${ }^{8}$ Intuition: Transitivity for R and S fails to imply that of $S \diamond R$ because the composition operation for relations intertwines R and S in an incompatible way:

1. If $a \sim_{S \diamond R} c$ and $c \sim_{S \diamond r} e$, then:
(a) There is some $b \in A$ such that:
i. $a \sim_{R} b$;
ii. $b \sim_{S} c$;

00UZ 7.3.2 The Transitive Closure of a Relation

Let R be a relation on A.
00 V 0 Definition 7.3.2.1.1. The transitive closure of \sim_{R} is the relation $\sim_{R}^{\text {trans } 9}$ satisfying the following universal property: ${ }^{10}$
(\star) Given another transitive relation \sim_{S} on A such that $R \subset S$, there exists an inclusion $\sim_{R}^{\text {trans }} \subset \sim_{S}$.

00 V 1 Construction 7.3.2.1.2. Concretely, $\sim_{R}^{\text {trans }}$ is the free non-unital monoid on R in $(\operatorname{Rel}(A, A), \diamond)^{11}$, being given by

$$
\begin{aligned}
R^{\text {trans }} & \stackrel{\text { def }}{=} \coprod_{n=1}^{\infty} R^{\diamond n} \\
& \stackrel{\text { def }}{=} \bigcup_{n=1}^{\infty} R^{\diamond n} \\
& \stackrel{\text { def }}{=}\left\{(a, b) \in A \times B \left\lvert\, \begin{array}{l}
\text { there exists some }\left(x_{1}, \ldots, x_{n}\right) \in R^{\times n} \\
\text { such that } a \sim_{R} x_{1} \sim_{R} \cdots \sim_{R} x_{n} \sim_{R} b
\end{array}\right.\right\} .
\end{aligned}
$$

Proof. Clear.
00 V 2 Proposition 7.3.2.1.3. Let R be a relation on A.
00V3 1. Adjointness. We have an adjunction
witnessed by a bijection of sets

$$
\boldsymbol{\operatorname { R e l }}^{\text {trans }}\left(R^{\text {trans }}, S\right) \cong \boldsymbol{\operatorname { R e l }}(R, S)
$$

natural in $R \in \operatorname{Obj}\left(\boldsymbol{\operatorname { R e l }}^{\mathrm{trans}}(A, A)\right)$ and $S \in \operatorname{Obj}(\boldsymbol{\operatorname { R e l }}(A, B))$.
2. The Transitive Closure of a Transitive Relation. If R is transitive, then $R^{\text {trans }}=R$.
(b) There is some $d \in A$ such that:
i. $c \sim_{R} d$;
ii. $d \sim_{S} e$.
${ }^{9}$ Further Notation: Also written $R^{\text {trans }}$.
${ }^{10}$ Slogan: The transitive closure of R is the smallest transitive relation containing R.
${ }^{11} \mathrm{Or}$, equivalently, the free non-unital \mathbb{E}_{1}-monoid on R in $\left(\mathrm{N}_{\bullet}(\boldsymbol{\operatorname { R e l }}(A, A)), \diamond\right)$.
3. Idempotency. We have

$$
\left(R^{\text {trans }}\right)^{\operatorname{trans}}=R^{\text {trans }}
$$

4. Interaction With Inverses. We have

$$
\left(R^{\dagger}\right)^{\text {trans }}=\left(R^{\text {trans }}\right)^{\dagger}, \quad \begin{aligned}
& \operatorname{Rel}(A, A) \xrightarrow{(-)^{\text {trans }}} \operatorname{Rel}(A, A) \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

00V7
5. Interaction With Composition. We have

$$
\begin{aligned}
& \operatorname{Rel}(A, A) \times \operatorname{Rel}(A, A) \stackrel{\diamond}{\rightarrow} \operatorname{Rel}(A, A) \\
(S \diamond R)^{\text {trans }} \stackrel{\text { poss. }}{\neq} S^{\text {trans }} \diamond R^{\text {trans }}, & (-)^{\text {trans }} \times(-)^{\text {trans }} \mid \\
\operatorname{Rel}(A, A) \times \operatorname{Rel}(A, A) & \stackrel{\rightharpoonup}{\diamond} \operatorname{Rel}(A, A) .
\end{aligned}
$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the transitive closure of a relation, stated in Definition 7.3.2.1.1. Item 2, The Transitive Closure of a Transitive Relation: Clear.
Item 3, Idempotency: This follows from Item 2.
Item 4, Interaction With Inverses: We have

$$
\begin{aligned}
\left(R^{\dagger}\right)^{\operatorname{trans}} & =\bigcup_{n=1}^{\infty}\left(R^{\dagger}\right)^{\diamond n} \\
& =\bigcup_{n=1}^{\infty}\left(R^{\diamond n}\right)^{\dagger} \\
& =\left(\bigcup_{n=1}^{\infty} R^{\diamond n}\right)^{\dagger} \\
& =\left(R^{\text {trans }}\right)^{\dagger}
\end{aligned}
$$

where we have used, respectively:

1. Construction 7.3.2.1.2.
2. Item 4 of Proposition 6.3.12.1.3.
3. Item 1 of Proposition 6.3.6.1.2.
4. Construction 7.3.2.1.2.

Item 5, Interaction With Composition: This follows from Item 2 of Proposition 7.3.1.1.4.

7.4 Equivalence Relations

00V9 7.4.1 Foundations

Let A be a set.
00VA Definition 7.4.1.1.1. A relation R is an equivalence relation if it is reflexive, symmetric, and transitive. ${ }^{12}$

00 VB Example 7.4.1.1.2. The kernel of a function $f: A \rightarrow B$ is the equivalence relation $\sim_{\operatorname{Ker}(f)}$ on A obtained by declaring $a \sim_{\operatorname{Ker}(f)} b$ iff $f(a)=f(b) .{ }^{13}$

00VC Definition 7.4.1.1.3. Let A and B be sets.

1. The set of equivalence relations from A to B is the subset $\operatorname{Rel}^{\mathrm{eq}}(A, B)$ of $\operatorname{Rel}(A, B)$ spanned by the equivalence relations.
2. The poset of relations from A to B is is the subposet $\operatorname{Rel}^{\mathrm{eq}}(A, B)$ of $\operatorname{Rel}(A, B)$ spanned by the equivalence relations.

00VF 7.4.2 The Equivalence Closure of a Relation

Let R be a relation on A.
00VG Definition 7.4.2.1.1. The equivalence closure ${ }^{14}$ of \sim_{R} is the relation $\sim_{R}^{\text {eq15 }}$ satisfying the following universal property: ${ }^{16}$
(\star) Given another equivalence relation \sim_{S} on A such that $R \subset S$, there exists an inclusion $\sim_{R}^{\mathrm{eq}} \subset \sim_{S}$.

[^68]00 VH Construction 7.4.2.1.2. Concretely, \sim_{R}^{eq} is the equivalence relation on A defined by

$$
\begin{aligned}
R^{\text {eq }} \stackrel{\text { def }}{=} & \left.\left(R^{\text {reff }}\right)^{\text {symm }}\right)^{\text {trans }} \\
& =\left(\left(R^{\text {symm }}\right)^{\text {trans }}\right)^{\text {refl }}
\end{aligned}
$$

$$
=\left\{(a, b) \in A \times B \left\lvert\, \begin{array}{l}
\text { there exists }\left(x_{1}, \ldots, x_{n}\right) \in R^{\times n} \text { satisfying at } \\
\text { least one of the following conditions: } \\
\text { 1. The following conditions are satisfied: } \\
\text { (a) We have } a \sim_{R} x_{1} \text { or } x_{1} \sim_{R} a ; \\
\text { (b) We have } x_{i} \sim_{R} x_{i+1} \text { or } x_{i+1} \sim_{R} x_{i} \\
\text { for each } 1 \leq i \leq n-1 ; \\
\text { (c) We have } b \sim_{R} x_{n} \text { or } x_{n} \sim_{R} b ; \\
\text { 2. We have } a=b .
\end{array}\right.\right\} .
$$

Proof. From the universal properties of the reflexive, symmetric, and transitive closures of a relation (Definitions 7.1.2.1.1, 7.2.2.1.1 and 7.3.2.1.1), we see that it suffices to prove that:

00VJ 1. The symmetric closure of a reflexive relation is still reflexive.
00VK 2. The transitive closure of a symmetric relation is still symmetric. which are both clear.

00VL Proposition 7.4.2.1.3. Let R be a relation on A.
00 VM 1. Adjointness. We have an adjunction
witnessed by a bijection of sets

$$
\boldsymbol{\operatorname { R e l }}^{\mathrm{eq}}\left(R^{\mathrm{eq}}, S\right) \cong \boldsymbol{\operatorname { R e l }}(R, S)
$$

natural in $R \in \operatorname{Obj}\left(\boldsymbol{\operatorname { R e l }}^{\mathrm{eq}}(A, B)\right)$ and $S \in \operatorname{Obj}(\boldsymbol{\operatorname { R e l }}(A, B))$.
00 VN 2. The Equivalence Closure of an Equivalence Relation. If R is an equivalence relation, then $R^{\text {eq }}=R$.

00VP
3. Idempotency. We have

$$
\left(R^{\mathrm{eq}}\right)^{\mathrm{eq}}=R^{\mathrm{eq}} .
$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the equivalence closure of a relation, stated in Definition 7.4.2.1.1.
Item 2, The Equivalence Closure of an Equivalence Relation: Clear.
Item 3, Idempotency: This follows from Item 2.

00ve 7.5 Quotients by Equivalence Relations

7.5.1 Equivalence Classes

Let A be a set, let R be a relation on A, and let $a \in A$.
00VS Definition 7.5.1.1.1. The equivalence class associated to a is the set [a] defined by

$$
\begin{aligned}
{[a] } & \stackrel{\text { def }}{=}\left\{x \in X \mid x \sim_{R} a\right\} \\
& =\left\{x \in X \mid a \sim_{R} x\right\} . \quad \text { (since } R \text { is symmetric) }
\end{aligned}
$$

00VT 7.5.2 Quotients of Sets by Equivalence Relations

Let A be a set and let R be a relation on A.
00VU Definition 7.5.2.1.1. The quotient of X by R is the set X / \sim_{R} defined by

$$
X / \sim_{R} \stackrel{\text { def }}{=}\{[a] \in \mathcal{P}(X) \mid a \in X\} .
$$

00VV Remark 7.5.2.1.2. The reason we define quotient sets for equivalence relations only is that each of the properties of being an equivalence relation-reflexivity, symmetry, and transitivity - ensures that the equivalences classes $[a]$ of X under R are well-behaved:

- Reflexivity. If R is reflexive, then, for each $a \in X$, we have $a \in[a]$.
- Symmetry. The equivalence class $[a]$ of an element a of X is defined by

$$
[a] \stackrel{\text { def }}{=}\left\{x \in X \mid x \sim_{R} a\right\}
$$

but we could equally well define

$$
[a]^{\prime} \stackrel{\text { def }}{=}\left\{x \in X \mid a \sim_{R} x\right\}
$$

instead. This is not a problem when R is symmetric, as we then have $[a]=[a]^{\prime} .{ }^{17}$

- Transitivity. If R is transitive, then $[a]$ and $[b]$ are disjoint iff $a \nsim_{R} b$, and equal otherwise.

[^69]00VW Proposition 7.5.2.1.3. Let $f: X \rightarrow Y$ be a function and let R be a relation on X.

1. As a Coequaliser. We have an isomorphism of sets

$$
X / \sim_{R}^{\mathrm{eq}} \cong \operatorname{CoEq}\left(R \hookrightarrow X \times X \underset{\mathrm{pr} 2}{\stackrel{\mathrm{pr}_{1}}{\rightrightarrows}} X\right)
$$

where $\sim_{R}^{\text {eq }}$ is the equivalence relation generated by \sim_{R}.
2. As a Pushout. We have an isomorphism of sets ${ }^{18}$

where $\sim_{R}^{\text {eq }}$ is the equivalence relation generated by \sim_{R}.
3. The First Isomorphism Theorem for Sets. We have an isomorphism of sets ${ }^{19,20}$

$$
X / \sim_{\operatorname{Ker}(f)} \cong \operatorname{Im}(f) .
$$

presheaves and copresheaves; see ??.
${ }^{18}$ Dually, we also have an isomorphism of sets

${ }^{19}$ Further Terminology: The set $X / \sim_{\operatorname{Ker}(f)}$ is often called the coimage of f, and denoted by $\operatorname{Coim}(f)$.
${ }^{20}$ In a sense this is a result relating the monad in Rel induced by f with the comonad in $\mathbf{R e l}$ induced by f, as the kernel and image

$$
\begin{gathered}
\operatorname{Ker}(f): X \nrightarrow X, \\
\operatorname{Im}(f) \subset Y
\end{gathered}
$$

of f are the underlying functors of (respectively) the induced monad and comonad of the adjunction

$$
\left(\operatorname{Gr}(f) \dashv f^{-1}\right): A \overbrace{f_{f^{-1}}^{\perp}}^{\operatorname{Gr}(f)} B
$$

of Item 2 of Proposition 6.3.1.1.2.
4. Descending Functions to Quotient Sets, I. Let R be an equivalence relation on X. The following conditions are equivalent:
(a) There exists a map

$$
\bar{f}: X / \sim_{R} \rightarrow Y
$$

making the diagram

commute.
(b) We have $R \subset \operatorname{Ker}(f)$.
(c) For each $x, y \in X$, if $x \sim_{R} y$, then $f(x)=f(y)$.
5. Descending Functions to Quotient Sets, II. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then \bar{f} is the unique map making the diagram

commute.
6. Descending Functions to Quotient Sets, III. Let R be an equivalence relation on X. We have a bijection

$$
\operatorname{Hom}_{\text {Sets }}\left(X / \sim_{R}, Y\right) \cong \operatorname{Hom}_{\text {Sets }}^{R}(X, Y),
$$

natural in $X, Y \in \operatorname{Obj}($ Sets $)$, given by the assignment $f \mapsto \bar{f}$ of Items 4 and 5 , where $\operatorname{Hom}_{\text {Sets }}^{R}(X, Y)$ is the set defined by $\operatorname{Hom}_{\text {Sets }}^{R}(X, Y) \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}f \in \operatorname{Hom}_{\text {Sets }}(X, Y) & \begin{array}{l}\text { for each } x, y \in X, \\ \text { if } x \sim_{R} y, \text { then } \\ f(x)=f(y)\end{array}\end{array}\right\}$.
7. Descending Functions to Quotient Sets, IV. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:
(a) The map \bar{f} is an injection.
(b) We have $R=\operatorname{Ker}(f)$.
(c) For each $x, y \in X$, we have $x \sim_{R} y$ iff $f(x)=f(y)$.
8. Descending Functions to Quotient Sets, V. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:
(a) The map $f: X \rightarrow Y$ is surjective.
(b) The map $\bar{f}: X / \sim_{R} \rightarrow Y$ is surjective.
9. Descending Functions to Quotient Sets, VI. Let R be a relation on X and let $\sim_{R}^{\text {eq }}$ be the equivalence relation associated to R. The following conditions are equivalent:
(a) The map f satisfies the equivalent conditions of Item 4:

- There exists a map

$$
\bar{f}: X / \sim_{R}^{\mathrm{eq}} \rightarrow Y
$$

making the diagram

commute.

- For each $x, y \in X$, if $x \sim_{R}^{\mathrm{eq}} y$, then $f(x)=f(y)$.
(b) For each $x, y \in X$, if $x \sim_{R} y$, then $f(x)=f(y)$.

Proof. Item 1, As a Coequaliser: Omitted.
Item 2, As a Pushout: Omitted.
Item 3, The First Isomorphism Theorem for Sets: Clear.
Item 4, Descending Functions to Quotient Sets, I: See [Pro240].
Item 5, Descending Functions to Quotient Sets, II: See [Pro24aa].
Item 6, Descending Functions to Quotient Sets, III: This follows from Items 5 and 6.
Item 7, Descending Functions to Quotient Sets, IV: See [Pro24n].
Item 8, Descending Functions to Quotient Sets, V: See [Pro24m].
Item 9, Descending Functions to Quotient Sets, VI: The implication Item $9 \mathrm{a} \Longrightarrow$ Item 9 b is clear.
Conversely, suppose that, for each $x, y \in X$, if $x \sim_{R} y$, then $f(x)=f(y)$. Spelling out the definition of the equivalence closure of R, we see that the condition $x \sim_{R}^{\text {eq }} y$ unwinds to the following:
(\star) There exist $\left(x_{1}, \ldots, x_{n}\right) \in R^{\times n}$ satisfying at least one of the following conditions:

1. The following conditions are satisfied:
(a) We have $x \sim_{R} x_{1}$ or $x_{1} \sim_{R} x$;
(b) We have $x_{i} \sim_{R} x_{i+1}$ or $x_{i+1} \sim_{R} x_{i}$ for each $1 \leq i \leq n-1$;
(c) We have $y \sim_{R} x_{n}$ or $x_{n} \sim_{R} y$;
2. We have $x=y$.

Now, if $x=y$, then $f(x)=f(y)$ trivially; otherwise, we have

$$
\begin{aligned}
f(x) & =f\left(x_{1}\right), \\
f\left(x_{1}\right) & =f\left(x_{2}\right), \\
& \vdots \\
f\left(x_{n-1}\right) & =f\left(x_{n}\right), \\
f\left(x_{n}\right) & =f(y),
\end{aligned}
$$

and $f(x)=f(y)$, as we wanted to show.

Appendices

7.A Other Chapters

Sets

1. Sets
2. Constructions With Sets
3. Pointed Sets
4. Tensor Products of Pointed Sets

Relations

5. Relations
6. Constructions With Relations
7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Part III

Category Theory

Chapter 8

Categories

00W8 This chapter contains some elementary material about categories, functors, and natural transformations. Notably, we discuss and explore:

1. Categories (Section 8.1).
2. The quadruple adjunction $\pi_{0} \dashv(-)_{\text {disc }} \dashv \mathrm{Obj} \dashv(-)_{\text {indisc }}$ between the category of categories and the category of sets (Section 8.2).
3. Groupoids, categories in which all morphisms admit inverses (Section 8.3).
4. Functors (Section 8.4).
5. The conditions one may impose on functors in decreasing order of importance:
(a) Section 8.5 introduces the foundationally important conditions one may impose on functors, such as faithfulness, conservativity, essential surjectivity, etc.
(b) Section 8.6 introduces more conditions one may impose on functors that are still important but less omni-present than those of Section 8.5, such as being dominant, being a monomorphism, being pseudomonic, etc.
(c) Section 8.7 introduces some rather rare or uncommon conditions one may impose on functors that are nevertheless still useful to explicit record in this chapter.
6. Natural transformations (Section 8.8).
7. The various categorical and 2-categorical structures formed by categories, functors, and natural transformations (Section 8.9).

Contents

8.1 Categories 346
8.1.1 Foundations 346
8.1.2 Examples of Categories 348
8.1.3 Posetal Categories 351
8.1.4 Subcategories 352
8.1.5 Skeletons of Categories 353
8.1.6 Precomposition and Postcomposition 354
8.2 The Quadruple Adjunction With Sets 356
8.2.1 Statement 356
8.2.2 Connected Components and Connected Cat- 357egories
8.2.3 Discrete Categories 359
8.2.4 Indiscrete Categories 361
8.3 Groupoids 362
8.3.1 Foundations 362
8.3.2 The Groupoid Completion of a Category 362
8.3.3 The Core of a Category 365
8.4 Functors 368
8.4.1 Foundations 368
8.4.2 Contravariant Functors 372
8.4.3 Forgetful Functors. 373
8.4.4 The Natural Transformation Associated to 375a Functor
8.5 Conditions on Functors 376
8.5.1 Faithful Functors 376
8.5.2 Full Functors 379
8.5.3 Fully Faithful Functors 381
8.5.4 Conservative Functors. 384
8.5.5 Essentially Injective Functors 386
8.5.6 Essentially Surjective Functors 386
8.5.7 Equivalences of Categories 387
8.5.8 Isomorphisms of Categories 389
8.6 More Conditions on Functors 390
8.6.1 Dominant Functors 390
8.6.2 Monomorphisms of Categories 392
8.6.3 Epimorphisms of Categories 393
8.6.4 Pseudomonic Functors 394
8.6.5 Pseudoepic Functors 396
8.7 Even More Conditions on Functors 398
8.7.1 Injective on Objects Functors 398
8.7.2 Surjective on Objects Functors 398
8.7.3 Bijective on Objects Functors 399
8.7.4 Functors Representably Faithful on Cores 399
8.7.5 Functors Representably Full on Cores 399
8.7.6 Functors Representably Fully Faithful on 400Cores
8.7.7 Functors Corepresentably Faithful on Cores.. 401
8.7.8 Functors Corepresentably Full on Cores 402
8.7.9 Functors Corepresentably Fully Faithful on
Cores 402
8.8 Natural Transformations 403
8.8.1 Transformations 403
8.8.2 Natural Transformations 404
8.8.3 Vertical Composition of Natural Transfor- 405mations.
8.8.4 Horizontal Composition of Natural Transfor-mations.408
8.8.5 Properties of Natural Transformations 413
8.8.6 Natural Isomorphisms. 414
8.9 Categories of Categories 415
8.9.1 Functor Categories 415
8.9.2 The Category of Categories and Functors. 418
8.9.3 The 2-Category of Categories, Functors, andNatural Transformations419
8.9.4 The Category of Groupoids. 420
8.9.5 The 2-Category of Groupoids 420
8.A Other Chapters. 420

00W9
 8.1 Categories

00WA
 8.1.1 Foundations

00WB Definition 8.1.1.1.1. A category $\left(C, \circ^{C}, \mathbb{1}^{C}\right)$ consists of:

- Objects. A class $\operatorname{Obj}(C)$ of objects.
- Morphisms. For each $A, B \in \operatorname{Obj}(C)$, a class $\operatorname{Hom}_{\mathcal{C}}(A, B)$, called the class of morphisms of C from A to B.
- Identities. For each $A \in \operatorname{Obj}(C)$, a map of sets

$$
\mathbb{1}_{A}^{C}: \mathrm{pt} \rightarrow \operatorname{Hom}_{\mathcal{C}}(A, A),
$$

called the unit map of C at A, determining a morphism

$$
\operatorname{id}_{A}: A \rightarrow A
$$

of C, called the identity morphism of A.

- Composition. For each $A, B, C \in \operatorname{Obj}(C)$, a map of sets

$$
\circ_{A, B, C}^{C}: \operatorname{Hom}_{\mathcal{C}}(B, C) \times \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{C}}(A, C),
$$

called the composition map of C at (A, B, C).
such that the following conditions are satisfied:

1. Associativity. The diagram

commutes, i.e. for each composable triple (f, g, h) of morphisms of C, we have

$$
(f \circ g) \circ h=f \circ(g \circ h) .
$$

2. Left Unitality. The diagram
commutes, i.e. for each morphism $f: A \rightarrow B$ of C, we have

$$
\operatorname{id}_{B} \circ f=f .
$$

3. Right Unitality. The diagram

commutes, i.e. for each morphism $f: A \rightarrow B$ of C, we have

$$
f \circ \mathrm{id}_{A}=f
$$

00WC Notation 8.1.1.1.2. Let C be a category.

00WF Definition 8.1.1.1.3. Let κ be a regular cardinal. A category C is

1. Locally small if, for each $A, B \in \operatorname{Obj}(C)$, the class $\operatorname{Hom}_{C}(A, B)$

8.1.2 Examples of Categories

00WM Example 8.1.2.1.1. The punctual category ${ }^{1}$ is the category pt where

- Objects. We have

$$
\operatorname{Obj}(\mathrm{pt}) \stackrel{\text { def }}{=}\{\star\} .
$$

- Morphisms. The unique Hom-set of pt is defined by

$$
\operatorname{Hom}_{\mathrm{pt}}(\star, \star) \stackrel{\text { def }}{=}\left\{\mathrm{id}_{\star}\right\}
$$

[^70]- Identities. The unit map

$$
\mathbb{1}_{\star}^{\mathrm{pt}}: \mathrm{pt} \rightarrow \operatorname{Hom}_{\mathrm{pt}}(\star, \star)
$$

of pt at \star is defined by

$$
\mathrm{id}_{\star}^{\mathrm{pt}} \stackrel{\text { def }}{=} \mathrm{id}_{\star} \text {. }
$$

- Composition. The composition map

$$
\circ_{\star,, k, \star}^{\mathrm{pt}}: \operatorname{Hom}_{\mathrm{pt}}(\star, \star) \times \operatorname{Hom}_{\mathrm{pt}}(\star, \star) \rightarrow \operatorname{Hom}_{\mathrm{pt}}(\star, \star)
$$

of pt at (\star, \star, \star) is given by the bijection pt $\times \mathrm{pt} \cong \mathrm{pt}$.
00WN Example 8.1.2.1.2. We have an isomorphism of categories ${ }^{2}$

via the delooping functor B: Mon \rightarrow Cats of ?? of ??, exhibiting monoids as exactly those categories having a single object.

Proof. Omitted.
00WP Example 8.1.2.1.3. The empty category is the category $\emptyset_{\text {cat }}$ where

- Objects. We have

$$
\operatorname{Obj}\left(\emptyset_{c a t}\right) \xlongequal{\text { def }} \emptyset .
$$

- Morphisms. We have

$$
\operatorname{Mor}\left(\emptyset_{c a t}\right) \xlongequal{\text { def }} \emptyset .
$$

- Identities and Composition. Having no objects, $\emptyset_{\text {cat }}$ has no unit nor composition maps.

[^71]00WQ Example 8.1.2.1.4. The nth ordinal category is the category n where ${ }^{3}$

- Objects. We have

$$
\operatorname{Obj}(\mathfrak{n}) \stackrel{\text { def }}{=}\{[0], \ldots,[n]\} .
$$

- Morphisms. For each $[i],[j] \in \operatorname{Obj}(n)$, we have

$$
\operatorname{Hom}_{\mathrm{m}}([i],[j]) \stackrel{\text { def }}{=} \begin{cases}\left\{\operatorname{id}_{[i]}\right\} & \text { if }[i]=[j] \\ \{[i] \rightarrow[j]\} & \text { if }[j]<[i] \\ \emptyset & \text { if }[j]>[i]\end{cases}
$$

- Identities. For each $[i] \in \operatorname{Obj}(n)$, the unit map

$$
\mathbb{1}_{[i]}^{n}: \mathrm{pt} \rightarrow \operatorname{Hom}_{\mathrm{n}}([i],[i])
$$

of n at $[i]$ is defined by

$$
\mathrm{id}_{[i]}^{\mathrm{n}} \stackrel{\text { def }}{=} \mathrm{id}_{[i]} .
$$

- Composition. For each $[i],[j],[k] \in \operatorname{Obj}(n)$, the composition map

$$
\circ_{[i],[j],[k]}^{\mathfrak{m}}: \operatorname{Hom}_{\mathfrak{m}}([j],[k]) \times \operatorname{Hom}_{\mathfrak{m}}([i],[j]) \rightarrow \operatorname{Hom}_{\mathfrak{m}}([i],[k])
$$

of n at $([i],[j],[k])$ is defined by

$$
\begin{gathered}
\operatorname{id}_{[i]} \circ \operatorname{id}_{[i]}=\operatorname{id}_{[i]}, \\
([j] \rightarrow[k]) \circ([i] \rightarrow[j])=([i] \rightarrow[k]) .
\end{gathered}
$$

between the discrete 2-category $\mathrm{Mon}_{2 \text { disc }}$ on Mon and the 2-category of pointed categories with one object.
${ }^{3}$ In other words, m is the category associated to the poset

$$
[0] \rightarrow[1] \rightarrow \cdots \rightarrow[n-1] \rightarrow[n] .
$$

The category m for $n \geq 2$ may also be defined in terms of \mathbb{O} and joins (??): we have

00WR Example 8.1.2.1.5. Here we list some of the other categories appearing throughout this work.

00WS 1. The category Sets $_{*}$ of pointed sets of Definition 3.1.3.1.1.

00X2 8.1.3 Posetal Categories

Definition 8.1.3.1.1. Let $\left(X, \preceq_{X}\right)$ be a poset.

1. The posetal category associated to $\left(X, \preceq_{X}\right)$ is the category $X_{\text {pos }}$ where

- Objects. We have

$$
\operatorname{Obj}\left(X_{\mathrm{pos}}\right) \stackrel{\text { def }}{=} X .
$$

isomorphisms of categories

$$
\begin{aligned}
\mathbb{1} & \cong \mathbb{0} \star 0 \\
2 & \cong \mathbb{1} \star 0 \\
& \cong(\mathbb{0} \star 0) \star \mathbb{0}, \\
\mathbb{B} & \cong 2 \star 0 \\
& \cong(\mathbb{1} \star \mathbb{0}) \star \mathbb{0} \\
& \cong((0 \star 0) \star \mathbb{0}) \star \mathbb{0}, \\
\mathbb{4} & \cong \mathbb{B} \star 0 \\
& \cong(2 \star \mathbb{0}) \star \mathbb{0} \\
& \cong((\mathbb{1} \star \mathbb{0}) \star \mathbb{0}) \star \mathbb{0} \\
& \cong(((0) \mathbb{0}) \star \mathbb{0}) \star \mathbb{0}) \star \mathbb{0},
\end{aligned}
$$

and so on.

- Morphisms. For each $a, b \in \operatorname{Obj}\left(X_{\text {pos }}\right)$, we have

$$
\operatorname{Hom}_{X_{\text {pos }}}(a, b) \stackrel{\text { def }}{=} \begin{cases}\text { pt } & \text { if } a \preceq_{X} b, \\ \emptyset & \text { otherwise }\end{cases}
$$

- Identities. For each $a \in \operatorname{Obj}\left(X_{\text {pos }}\right)$, the unit map

$$
\mathbb{1}_{a}^{X_{\mathrm{pos}}}: \mathrm{pt} \rightarrow \operatorname{Hom}_{X_{\mathrm{pos}}}(a, a)
$$

of $X_{\text {pos }}$ at a is given by the identity map.

- Composition. For each $a, b, c \in \operatorname{Obj}\left(X_{\text {pos }}\right)$, the composition map
$0_{a, b, c}^{X_{\text {pos }}}: \operatorname{Hom}_{X_{\text {pos }}}(b, c) \times \operatorname{Hom}_{X_{\text {pos }}}(a, b) \rightarrow \operatorname{Hom}_{X_{\text {pos }}}(a, c)$
of $X_{\text {pos }}$ at (a, b, c) is defined as either the inclusion $\emptyset \hookrightarrow \mathrm{pt}$ or the identity map of pt , depending on whether we have $a \preceq_{X} b$, $b \preceq_{X} c$, and $a \preceq_{X} c$.

00X5 2. A category C is posetal ${ }^{4}$ if C is equivalent to $X_{\text {pos }}$ for some poset $\left(X, \preceq_{X}\right)$.

00x6 Proposition 8.1.3.1.2. Let $\left(X, \preceq_{X}\right)$ be a poset and let C be a category.
$00 \mathrm{X7}$ 1. Functoriality. The assignment $\left(X, \preceq_{X}\right) \mapsto X_{\text {pos }}$ defines a functor

$$
(-)_{\text {pos }}: \text { Pos } \rightarrow \text { Cats. }
$$

2. Fully Faithfulness. The functor $(-)_{\text {pos }}$ of Item 1 is fully faithful.
3. Characterisations. The following conditions are equivalent:
(a) The category C is posetal.
(b) For each $A, B \in \operatorname{Obj}(C)$ and each $f, g \in \operatorname{Hom}_{\mathcal{C}}(A, B)$, we have $f=g$.

Proof. Item 1, Functoriality: Omitted.
Item 2, Fully Faithfulness: Omitted.
Item 3, Characterisations: Clear.

00XC 8.1.4 Subcategories

Let C be a category.

[^72]00XD Definition 8.1.4.1.1. A subcategory of \mathcal{C} is a category \mathcal{A} satisfying the following conditions:

1. Objects. We have $\operatorname{Obj}(\mathcal{A}) \subset \operatorname{Obj}(C)$.
2. Morphisms. For each $A, B \in \operatorname{Obj}(\mathcal{A})$, we have

$$
\operatorname{Hom}_{\mathcal{A}}(A, B) \subset \operatorname{Hom}_{\mathcal{C}}(A, B) .
$$

3. Identities. For each $A \in \operatorname{Obj}(\mathcal{A})$, we have

$$
\mathbb{1}_{A}^{\mathcal{A}}=\mathbb{1}_{A}^{C}
$$

4. Composition. For each $A, B, C \in \operatorname{Obj}(\mathcal{A})$, we have

$$
\circ_{A, B, C}^{\mathcal{F}}=\circ_{A, B, C}^{\mathcal{C}} .
$$

00XE Definition 8.1.4.1.2. A subcategory \mathcal{A} of \mathcal{C} is full if the canonical inclusion functor $\mathcal{A} \rightarrow C$ is full, i.e. if, for each $A, B \in \operatorname{Obj}(\mathcal{A})$, the inclusion

$$
\iota_{A, B}: \operatorname{Hom}_{\mathcal{A}}(A, B) \hookrightarrow \operatorname{Hom}_{C}(A, B)
$$

is surjective (and thus bijective).
00XF Definition 8.1.4.1.3. A subcategory \mathcal{A} of a category C is strictly full if it satisfies the following conditions:

1. Fullness. The subcategory \mathcal{A} is full.
2. Closedness Under Isomorphisms. The class $\operatorname{Obj}(\mathcal{A})$ is closed under isomorphisms. ${ }^{5}$

00XG Definition 8.1.4.1.4. A subcategory \mathcal{A} of C is wide ${ }^{6}$ if $\operatorname{Obj}(\mathcal{A})=$ $\operatorname{Obj}(C)$.

00XH 8.1.5 Skeletons of Categories

00XJ Definition 8.1.5.1.1. A^{7} skeleton of a category C is a full subcategory $\mathrm{Sk}(C)$ with one object from each isomorphism class of objects of C.
00×K Definition 8.1.5.1.2. A category C is skeletal if $C \cong \operatorname{Sk}(C) .{ }^{8}$
00XL Proposition 8.1.5.1.3. Let \mathcal{C} be a category.

[^73]1. Existence. Assuming the axiom of choice, $\operatorname{Sk}(C)$ always exists.
2. Pseudofunctoriality. The assignment $\mathcal{C} \mapsto \mathrm{Sk}(\mathcal{C})$ defines a pseudofunctor

$$
\text { Sk: Cats } 2 \rightarrow \text { Cats }_{2} .
$$

3. Uniqueness Up to Equivalence. Any two skeletons of C are equivalent.

00XQ 4. Inclusions of Skeletons Are Equivalences. The inclusion

$$
\iota_{C}: \mathrm{Sk}(C) \hookrightarrow C
$$

of a skeleton of C into C is an equivalence of categories.
Proof. Item 1, Existence: See [nLab23, Section "Existence of Skeletons of Categories"].
Item 2, Pseudofunctoriality: See [nLab23, Section "Skeletons as an Endo-Pseudofunctor on $\mathfrak{C a t} "]$.
Item 3, Uniqueness Up to Equivalence: Clear.
Item 4, Inclusions of Skeletons Are Equivalences: Clear.
00XR 8.1.6 Precomposition and Postcomposition
Let C be a category and let $A, B, C \in \operatorname{Obj}(C)$.
00XS Definition 8.1.6.1.1. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be morphisms of C.

00XT 1. The precomposition function associated to f is the function

$$
f^{*}: \operatorname{Hom}_{\mathcal{C}}(B, C) \rightarrow \operatorname{Hom}_{\mathcal{C}}(A, C)
$$

defined by

$$
f^{*}(\phi) \stackrel{\text { def }}{=} \phi \circ f
$$

for each $\phi \in \operatorname{Hom}_{C}(B, C)$.
00XU 2. The postcomposition function associated to g is the function

$$
g_{*}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{C}}(A, C)
$$

defined by

$$
g_{*}(\phi) \stackrel{\text { def }}{=} g \circ \phi
$$

for each $\phi \in \operatorname{Hom}_{\mathcal{C}}(A, B)$.
00xV Proposition 8.1.6.1.2. Let $A, B, C, D \in \operatorname{Obj}(C)$ and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be morphisms of C.

00XW 1. Interaction Between Precomposition and Postcomposition. We have

$$
\begin{gathered}
\operatorname{Hom}_{C}(B, C) \xrightarrow{g_{*}} \operatorname{Hom}_{C}(B, D) \\
f^{*} \mid \\
\operatorname{Hom}_{C}(A, C) \xrightarrow[g_{*}]{\rightarrow \operatorname{Hom}_{C}}(A, D) .
\end{gathered}
$$

2. Interaction With Composition I. We have

$$
(g \circ f)^{*}=f^{*} \circ g^{*}, \quad \operatorname{Hom}_{\mathcal{C}}(X, A) \xrightarrow{f_{*}} \operatorname{Hom}_{C}(X, B)
$$

$\mathrm{pt} \xrightarrow{[f]} \operatorname{Hom}_{\mathcal{C}}(A, B)$		$\mathrm{pt} \xrightarrow{[g]} \operatorname{Hom}_{C}(B, C)$
	$\begin{aligned} & {[g \circ f]=g_{*} \circ[f],} \\ & {[g \circ f]=f^{*} \circ[g],} \end{aligned}$	$\underset{[g \circ f]}{\searrow} \downarrow^{f^{*}}$
$\operatorname{Hom}_{C}(A, C)$		$\operatorname{Hom}_{C}(A, C)$.

00Y0
5. Interaction With Identities. We have

$$
\begin{aligned}
& \left(\mathrm{id}_{A}\right)^{*}=\operatorname{id}_{\operatorname{Hom}_{C}(A, B)}, \\
& \left(\operatorname{id}_{B}\right)_{*}=\operatorname{id}_{\operatorname{Hom}_{C}(A, B)} .
\end{aligned}
$$

Proof. Item 1, Interaction Between Precomposition and Postcomposition: Clear.
Item 2, Interaction With Composition I: Clear.
Item 3, Interaction With Composition II: Clear.
Item 4, Interaction With Composition III: Clear.
Item 5, Interaction With Identities: Clear.

00Y1 8.2 The Quadruple Adjunction With Sets

00Y2 8.2.1 Statement

Let C be a category.
$00 Y 3$ Proposition 8.2.1.1.1. We have a quadruple adjunction

witnessed by bijections of sets

$$
\begin{aligned}
& \operatorname{Hom}_{\text {Sets }}\left(\pi_{0}(C), X\right) \cong \operatorname{Hom}_{\text {Cats }}\left(C, X_{\text {disc }}\right) \\
& \operatorname{Hom}_{\text {Cats }}\left(X_{\text {disc }}, C\right) \cong \operatorname{Hom}_{\text {Sets }}(X, \operatorname{Obj}(C)), \\
& \operatorname{Hom}_{\text {Sets }}(\operatorname{Obj}(C), X) \cong \operatorname{Hom}_{\text {Cats }}\left(C, X_{\text {indisc }}\right),
\end{aligned}
$$

natural in $C \in \operatorname{Obj}($ Cats $)$ and $X \in \operatorname{Obj}($ Sets $)$, where

- The functor

$$
\pi_{0}: \text { Cats } \rightarrow \text { Sets, }
$$

the connected components functor, is the functor sending a category to its set of connected components of Definition 8.2.2.2.1.

- The functor

$$
(-)_{\text {disc }}: \text { Sets } \rightarrow \text { Cats, }
$$

the discrete category functor, is the functor sending a set to its associated discrete category of Item 1 .

- The functor

$$
\text { Obj: Cats } \rightarrow \text { Sets, }
$$

the object functor, is the functor sending a category to its set of objects.

- The functor

$$
(-)_{\text {indisc }}: \text { Sets } \rightarrow \text { Cats, }
$$

the indiscrete category functor, is the functor sending a set to its associated indiscrete category of Item 1.

Proof. Omitted.

00Y4 8.2.2 Connected Components and Connected Categories

00 Y 5 8.2.2.1 Connected Components of Categories
Let C be a category.
00Y6 Definition 8.2 .2 .1 .1 . A connected component of C is a full subcategory \mathcal{I} of C satisfying the following conditions: ${ }^{9}$

1. Non-Emptiness. We have $\operatorname{Obj}(\mathcal{I}) \neq \emptyset$.
2. Connectedness. There exists a zigzag of arrows between any two objects of I.

$00 Y 7$ 8.2.2.2 Sets of Connected Components of Categories

 Let C be a category.$00 Y 8$ Definition $8.2 \cdot 2.2 .1$. The set of connected components of C is the set $\pi_{0}(C)$ whose elements are the connected components of C.
$00 Y 9$ Proposition 8.2 .2.2.2. Let C be a category.

1. Functoriality. The assignment $C \mapsto \pi_{0}(C)$ defines a functor

$$
\pi_{0}: \text { Cats } \rightarrow \text { Sets. }
$$

2. Adjointness. We have a quadruple adjunction

$$
\left(\pi_{0} \dashv(-)_{\text {disc }} \dashv \mathrm{Obj} \dashv(-)_{\text {indisc }}\right):
$$

[^74]00YC
3. Interaction With Groupoids. If C is a groupoid, then we have an isomorphism of categories

$$
\pi_{0}(C) \cong \mathrm{K}(C)
$$

where $\mathrm{K}(C)$ is the set of isomorphism classes of C of ??.
4. Preservation of Colimits. The functor π_{0} of Item 1 preserves colimits. In particular, we have bijections of sets

$$
\begin{aligned}
\pi_{0}(C \amalg \mathcal{D}) & \cong \pi_{0}(\mathcal{C}) \coprod \pi_{0}(\mathcal{D}) \\
\pi_{0}\left(C \coprod_{\mathcal{E}} \mathcal{D}\right) & \cong \pi_{0}(\mathcal{C}) \coprod_{\pi_{0}(\mathcal{E})} \pi_{0}(\mathcal{D}), \\
\pi_{0}(\operatorname{CoEq}(C \underset{G}{\rightrightarrows} \mathcal{D})) & \cong \operatorname{CoEq}\left(\pi_{0}(C) \underset{\pi_{0}(G)}{\rightrightarrows} \pi_{0}(\mathcal{D})\right),
\end{aligned}
$$

natural in $\mathcal{C}, \mathcal{D}, \mathcal{E} \in \operatorname{Obj}($ Cats $)$.
5. Symmetric Strong Monoidality With Respect to Coproducts. The connected components functor of Item 1 has a symmetric strong monoidal structure

$$
\left(\pi_{0}, \pi_{0}^{\amalg}, \pi_{0 \mid \mathbb{1}}^{\amalg}\right):\left(\text { Cats, } \amalg, \emptyset_{\text {cat }}\right) \rightarrow(\text { Sets, } \amalg, \emptyset),
$$

being equipped with isomorphisms

$$
\begin{gathered}
\pi_{0 \mid \mathcal{C}, \mathcal{D}}^{\amalg}: \pi_{0}(C) \amalg \pi_{0}(\mathcal{D}) \xrightarrow{\cong} \pi_{0}(C \amalg \mathcal{D}), \\
\pi_{0 \mid \mathbb{1}}^{\amalg}: \emptyset \stackrel{\cong}{\rightrightarrows} \pi_{0}\left(\emptyset_{\mathrm{cat}}\right),
\end{gathered}
$$

natural in $C, \mathcal{D} \in \operatorname{Obj}($ Cats $)$.
6. Symmetric Strong Monoidality With Respect to Products. The connected components functor of Item 1 has a symmetric strong monoidal structure

$$
\left(\pi_{0}, \pi_{0}^{\times}, \pi_{0 \mid \mathbb{1}}^{\times}\right):(\text {Cats }, \times, \mathrm{pt}) \rightarrow(\text { Sets }, \times, \mathrm{pt})
$$

being equipped with isomorphisms

$$
\begin{gathered}
\pi_{0 \mid C, \mathcal{D}}^{\times}: \pi_{0}(C) \times \pi_{0}(\mathcal{D}) \xrightarrow{\cong} \pi_{0}(C \times \mathcal{D}), \\
\pi_{0 \mid \mathbb{1}}^{\times}: \mathrm{pt} \stackrel{\cong}{\rightrightarrows} \pi_{0}(\mathrm{pt}),
\end{gathered}
$$

natural in $C, \mathcal{D} \in \operatorname{Obj}$ (Cats).

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.
Item 3, Interaction With Groupoids: Clear.
Item 4, Preservation of Colimits: This follows from Item 2 and ?? of ??.
Item 5, Symmetric Strong Monoidality With Respect to Coproducts:
Clear.
Item 6, Symmetric Strong Monoidality With Respect to Products: Clear.

00YG 8.2.2.3 Connected Categories

00 YH Definition 8.2 .2 .3 .1 . A category C is connected if $\pi_{0}(\mathcal{C}) \cong \mathrm{pt}^{10,11}$

00YJ 8.2.3 Discrete Categories

$00 Y K$ Definition 8.2.3.1.1. Let X be a set.
00 YL 1. The discrete category on X is the category $X_{\text {disc }}$ where

- Objects. We have

$$
\operatorname{Obj}\left(X_{\mathrm{disc}}\right) \stackrel{\text { def }}{=} X
$$

- Morphisms. For each $A, B \in \operatorname{Obj}\left(X_{\text {disc }}\right)$, we have

$$
\operatorname{Hom}_{X_{\text {disc }}}(A, B) \stackrel{\text { def }}{=} \begin{cases}\text { id }_{A} & \text { if } A=B \\ \emptyset & \text { if } A \neq B\end{cases}
$$

- Identities. For each $A \in \operatorname{Obj}\left(X_{\text {disc }}\right)$, the unit map

$$
\mathbb{1}_{A}^{X_{\text {disc }}}: \operatorname{pt} \rightarrow \operatorname{Hom}_{X_{\text {disc }}}(A, A)
$$

of $X_{\text {disc }}$ at A is defined by

$$
\mathrm{id}_{A}^{X_{\text {disc }}} \stackrel{\text { def }}{=} \operatorname{id}_{A} .
$$

- Composition. For each $A, B, C \in \operatorname{Obj}\left(X_{\text {disc }}\right)$, the composition map

$$
\circ_{A, B, C}^{X_{\text {disc }}}: \operatorname{Hom}_{X_{\text {disc }}}(B, C) \times \operatorname{Hom}_{X_{\text {disc }}}(A, B) \rightarrow \operatorname{Hom}_{X_{\text {disc }}}(A, C)
$$

of $X_{\text {disc }}$ at (A, B, C) is defined by

$$
\operatorname{id}_{A} \circ \operatorname{id}_{A} \stackrel{\text { def }}{=} \operatorname{id}_{A} .
$$

[^75]2. A category C is discrete if it is equivalent to $X_{\text {disc }}$ for some set X.

00 YM
00YN Proposition 8.2.3.1.2. Let X be a set.
00 YP 1. Functoriality. The assignment $X \mapsto X_{\text {disc }}$ defines a functor

$$
(-)_{\text {disc }}: \text { Sets } \rightarrow \text { Cats. }
$$

2. Adjointness. We have a quadruple adjunction

$$
\left(\pi_{0} \dashv(-)_{\text {disc }} \dashv \operatorname{Obj} \dashv(-)_{\text {indisc }}\right): \text { Sets } \stackrel{(-)_{\text {disc }}}{\perp} \text { Cats. }
$$

3. Symmetric Strong Monoidality With Respect to Coproducts. The functor of Item 1 has a symmetric strong monoidal structure

$$
\left((-)_{\text {disc }},(-) \frac{\amalg}{\text { disc }},(-) \frac{\amalg}{\text { disc } \mid \mathbb{I}}\right):(\text { Sets }, \amalg, \emptyset) \rightarrow\left(\text { Cats, } \amalg, \emptyset_{\text {cat }}\right),
$$

being equipped with isomorphisms

$$
\begin{aligned}
& \qquad(-)_{\mathrm{disc} \mid X, Y}: X_{\mathrm{disc}} \amalg Y_{\mathrm{disc}} \stackrel{\cong}{\leftrightarrows}(X \amalg Y)_{\mathrm{disc}}, \\
& \quad(-)_{\mathrm{disc} \mid \mathbb{I}}: \emptyset_{\mathrm{cat}} \xlongequal{\cong} \emptyset_{\mathrm{disc}}, \\
& \text { natural in } X, Y \in \mathrm{Obj}(\text { Sets }) .
\end{aligned}
$$

4. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure

$$
\left((-)_{\mathrm{disc}},(-)_{\mathrm{disc}}^{\times},(-)_{\mathrm{disc} \mid \mathbb{I}}^{\times}\right):(\text {Sets }, \times, \mathrm{pt}) \rightarrow(\text { Cats }, \times, \mathrm{pt}),
$$

being equipped with isomorphisms

$$
\begin{gathered}
(-)_{\text {disc } \mid X, Y}^{\times}: X_{\text {disc }} \times Y_{\text {disc }} \xlongequal{\cong}(X \times Y)_{\text {disc }}, \\
(-)_{\text {disc } \mid \mathbb{T}}^{\times}: \mathrm{pt} \xrightarrow{\cong} \mathrm{pt}_{\text {disc }},
\end{gathered}
$$

natural in $X, Y \in \operatorname{Obj}($ Sets $)$.
Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.
Item 3, Symmetric Strong Monoidality With Respect to Coproducts: Clear.
Item 4, Symmetric Strong Monoidality With Respect to Products: Clear.

00YT
 8.2.4 Indiscrete Categories

Definition 8.2.4.1.1. Let X be a set.
$00 Y X$ Proposition 8.2.4.1.2. Let X be a set.
2. Adjointness. We have a quadruple adjunction

$$
\left(\pi_{0} \dashv(-)_{\text {disc }} \dashv \mathrm{Obj} \dashv(-)_{\text {indisc }}\right):
$$

[^76]3. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure
$$
\left((-)_{\text {indisc }},(-)_{\text {indisc }}^{\times},(-)_{\text {indisc } \mid \mathbb{1}}^{\times}\right):(\text {Sets }, \times, \mathrm{pt}) \rightarrow(\text { Cats }, \times, \mathrm{pt}),
$$
being equipped with isomorphisms
\[

$$
\begin{gathered}
(-)_{\text {indisc } \mid X, Y}^{\times}: X_{\text {indisc }} \times Y_{\text {indisc }} \stackrel{\cong}{\cong}(X \times Y)_{\text {indisc }}, \\
(-)_{\text {indisc } \mid \mathbb{T}}^{\times}: \mathrm{pt} \stackrel{\cong}{\Longrightarrow} \mathrm{pt}_{\text {indisc }},
\end{gathered}
$$
\]

natural in $X, Y \in \operatorname{Obj}($ Sets $)$.
Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.
Item 3, Symmetric Strong Monoidality With Respect to Products: Clear.

0021 8.3 Groupoids

$00 Z 2$ 8.3.1 Foundations

Let C be a category.
$00 Z 3$ Definition 8.3.1.1.1. A morphism $f: A \rightarrow B$ of C is an isomorphism if there exists a morphism $f^{-1}: B \rightarrow A$ of C such that

$$
\begin{aligned}
& f \circ f^{-1}=\operatorname{id}_{B}, \\
& f^{-1} \circ f=\operatorname{id}_{A} .
\end{aligned}
$$

$00 Z 4$ Notation 8.3.1.1.2. We write $\operatorname{Iso}_{C}(A, B)$ for the set of all isomorphisms in C from A to B.
$00 Z 5$ Definition 8.3 .1 .1 .3 . A groupoid is a category in which every morphism is an isomorphism.

$00 Z 6$ 8.3.2 The Groupoid Completion of a Category

Let C be a category.
$00 Z 7$ Definition 8.3.2.1.1. The groupoid completion of C^{13} is the pair $\left(\mathrm{K}_{0}(C), \iota_{C}\right)$ consisting of

- A groupoid $K_{0}(C)$;

[^77]- A functor $\iota_{C}: C \rightarrow \mathrm{~K}_{0}(C)$;
satisfying the following universal property: ${ }^{14}$
(UP) Given another such pair (\mathcal{G}, i), there exists a unique functor $\mathrm{K}_{0}(C) \xrightarrow{\exists!} \mathcal{G}$ making the diagram

commute.
0028 Construction 8.3.2.1.2. Concretely, the groupoid completion of C is the Gabriel-Zisman localisation $\operatorname{Mor}(C)^{-1} C$ of C at the set $\operatorname{Mor}(C)$ of all morphisms of C; see ??.
(To be expanded upon later on.)
Proof. Omitted.
0029 Proposition 8.3.2.1.3. Let C be a category.

1. Functoriality. The assignment $\mathcal{C} \mapsto \mathrm{K}_{0}(C)$ defines a functor

$$
\mathrm{K}_{0}: \text { Cats } \rightarrow \text { Grpd. }
$$

2. 2-Functoriality. The assignment $\mathcal{C} \mapsto \mathrm{K}_{0}(C)$ defines a 2-functor

$$
\mathrm{K}_{0}: \text { Cats }_{2} \rightarrow \mathrm{Grpd}_{2} .
$$

3. Adjointness. We have an adjunction

$$
\left(\mathrm{K}_{0} \dashv \iota\right): \quad \mathrm{Cats} \underset{\stackrel{\mathrm{~K}}{0}}{\stackrel{\mathrm{~K}_{0}}{\perp}} \text { Grpd, }
$$

witnessed by a bijection of sets

$$
\operatorname{Hom}_{G r \operatorname{rpd}}\left(\mathrm{~K}_{0}(C), \mathcal{G}\right) \cong \operatorname{Hom}_{\text {Cats }}(C, \mathcal{G}),
$$

natural in $\mathcal{C} \in \operatorname{Obj}($ Cats $)$ and $\mathcal{G} \in \operatorname{Obj}(G r p d)$, forming, together with the functor Core of Item 1 of Proposition 8.3.3.1.4, a triple adjunction

$$
\left(\mathrm{K}_{0} \dashv \iota \dashv \text { Core }\right): \text { Cats }
$$

[^78]witnessed by bijections of sets
\[

$$
\begin{aligned}
\operatorname{Hom}_{G r p d}\left(\mathrm{~K}_{0}(\mathcal{C}), \mathcal{G}\right) & \cong \operatorname{Hom}_{\operatorname{Cats}}(\mathcal{C}, \mathcal{G}) \\
\operatorname{Hom}_{\text {Cats }}(\mathcal{G}, \mathcal{D}) & \cong \operatorname{Hom}_{\operatorname{Grpd}}(\mathcal{G}, \operatorname{Core}(\mathcal{D})),
\end{aligned}
$$
\]

natural in $\mathcal{C}, \mathcal{D} \in \operatorname{Obj}($ Cats $)$ and $\mathcal{G} \in \operatorname{Obj}($ Grpd $)$.
4. 2-Adjointness. We have a 2 -adjunction

$$
\left(\mathrm{K}_{0} \dashv \iota\right): \quad \text { Cats } \underset{\iota}{\stackrel{\mathrm{K}_{0}}{\perp_{2}}} \text { Grpd, }
$$

witnessed by an isomorphism of categories

$$
\operatorname{Fun}\left(\mathrm{K}_{0}(\mathcal{C}), \mathcal{G}\right) \cong \operatorname{Fun}(\mathcal{C}, \mathcal{G}),
$$

natural in $\mathcal{C} \in \operatorname{Obj}($ Cats $)$ and $\mathcal{G} \in \operatorname{Obj}(G r p d)$, forming, together with the 2 -functor Core of Item 2 of Proposition 8.3.3.1.4, a triple 2-adjunction

$$
\left(\mathrm{K}_{0} \dashv \iota \dashv \text { Core }\right): \quad \text { Cats }{\underset{\text { Core }}{\perp_{2}}}_{\mathrm{L}_{2}}^{\mathrm{K}_{0}} \mathrm{~L} \text {, } \mathrm{Crpd} \text {, }
$$

witnessed by isomorphisms of categories

$$
\begin{aligned}
\operatorname{Fun}\left(\mathrm{K}_{0}(\mathcal{C}), \mathcal{G}\right) & \cong \operatorname{Fun}(\mathcal{C}, \mathcal{G}), \\
\operatorname{Fun}(\mathcal{G}, \mathcal{D}) & \cong \operatorname{Fun}(\mathcal{G}, \operatorname{Core}(\mathcal{D})),
\end{aligned}
$$

natural in $\mathcal{C}, \mathcal{D} \in \operatorname{Obj}($ Cats $)$ and $\mathcal{G} \in \operatorname{Obj}(\mathrm{Grpd})$.
5. Interaction With Classifying Spaces. We have an isomorphism of groupoids

$$
\mathrm{K}_{0}(C) \cong \Pi_{\leq 1}\left(\left|\mathrm{~N}_{\bullet}(C)\right|\right),
$$

natural in $C \in \operatorname{Obj}($ Cats $)$; i.e. the diagram

commutes up to natural isomorphism.

00ZF

00ZG
6. Symmetric Strong Monoidality With Respect to Coproducts. The groupoid completion functor of Item 1 has a symmetric strong monoidal structure

$$
\left(\mathrm{K}_{0}, \mathrm{~K}_{0}^{\amalg}, \mathrm{K}_{0 \mid \mathbb{1}}^{\amalg}\right):\left(\text { Cats, } \amalg, \emptyset_{\text {cat }}\right) \rightarrow\left(\text { Grpd, } \amalg, \emptyset_{\text {cat }}\right)
$$

being equipped with isomorphisms

$$
\begin{gathered}
\mathrm{K}_{0 \mid C, \mathcal{D}}^{\amalg}: \mathrm{K}_{0}(C) \amalg \mathrm{K}_{0}(\mathcal{D}) \stackrel{\cong}{\leftrightarrows} \mathrm{K}_{0}(C \amalg \mathcal{D}), \\
\mathrm{K}_{0 \mid \mathbb{1}}^{\amalg}: \emptyset_{\mathrm{cat}} \xlongequal{\cong} \mathrm{~K}_{0}\left(\emptyset_{\mathrm{cat}}\right),
\end{gathered}
$$

natural in $\mathcal{C}, \mathcal{D} \in \operatorname{Obj}($ Cats $)$.
7. Symmetric Strong Monoidality With Respect to Products. The groupoid completion functor of Item 1 has a symmetric strong monoidal structure

$$
\left(\mathrm{K}_{0}, \mathrm{~K}_{0}^{\times}, \mathrm{K}_{0 \mid \mathbb{1}}^{\times}\right):(\text {Cats }, \times, \mathrm{pt}) \rightarrow(\mathrm{Grpd}, \times, \mathrm{pt})
$$

being equipped with isomorphisms

$$
\begin{gathered}
\mathrm{K}_{0 \mid C, \mathcal{D}}^{\times}: \mathrm{K}_{0}(C) \times \mathrm{K}_{0}(\mathcal{D}) \xrightarrow{\cong} \mathrm{K}_{0}(C \times \mathcal{D}), \\
\mathrm{K}_{0 \mid \mathbb{1}}^{\times}: \mathrm{pt} \xrightarrow{\cong} \mathrm{~K}_{0}(\mathrm{pt})
\end{gathered}
$$

natural in $C, \mathcal{D} \in \operatorname{Obj}$ (Cats).
Proof. Item 1, Functoriality: Omitted.
Item 2, 2-Functoriality: Omitted.
Item 3, Adjointness: Omitted.
Item 4, 2-Adjointness: Omitted.
Item 5, Interaction With Classifying Spaces: See Corollary 18.33 of https: //web.ma.utexas.edu/users/dafr/M392C-2012/Notes/lecture18.pdf.
Item 6, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.
Item 7, Symmetric Strong Monoidality With Respect to Products: Omitted.

00ZH 8.3.3 The Core of a Category

Let C be a category.
$00 Z J$ Definition 8.3 .3 .1 .1 . The core of C is the pair $\left(\operatorname{Core}(C), \iota_{C}\right)$ consisting of

- A groupoid Core(C);
- A functor $\iota_{C}: \operatorname{Core}(C) \hookrightarrow C$;
satisfying the following universal property:
(UP) Given another such pair (\mathcal{G}, i), there exists a unique functor $\mathcal{G} \xrightarrow{\exists!}$ Core (C) making the diagram

commute.
00ZK Notation 8.3.3.1.2. We also write C^{\simeq} for $\operatorname{Core}(C)$.
00ZL Construction 8.3 .3 .1 .3 . The core of C is the wide subcategory of C spanned by the isomorphisms of \mathcal{C}, i.e. the category Core (C) where ${ }^{15}$

1. Objects. We have

$$
\operatorname{Obj}(\operatorname{Core}(C)) \stackrel{\text { def }}{=} \operatorname{Obj}(C)
$$

2. Morphisms. The morphisms of $\operatorname{Core}(C)$ are the isomorphisms of C.

Proof. This follows from the fact that functors preserve isomorphisms (Item 1 of Proposition 8.4.1.1.6).

00ZM Proposition 8.3.3.1.4. Let C be a category.
00ZN 1. Functoriality. The assignment $C \mapsto \operatorname{Core}(C)$ defines a functor

$$
\text { Core: Cats } \rightarrow \text { Grpd. }
$$

3. Adjointness. We have an adjunction

$$
(\iota \dashv \text { Core }): \quad \text { Grpd } \underset{\overbrace{\text { Core }}^{\perp}}{\stackrel{\iota}{\perp}} \text { Cats },
$$

[^79]witnessed by a bijection of sets
$$
\operatorname{Hom}_{\text {Cats }}(\mathcal{G}, \mathcal{D}) \cong \operatorname{Hom}_{G r p d}(\mathcal{G}, \operatorname{Core}(\mathcal{D})),
$$
natural in $\mathcal{G} \in \operatorname{Obj}(G r p d)$ and $\mathcal{D} \in \operatorname{Obj}$ (Cats), forming, together with the functor K_{0} of Item 1 of Proposition 8.3.2.1.3, a triple adjunction
$$
\left(\mathrm{K}_{0} \dashv \iota \dashv \text { Core }\right): \text { Cats }
$$
witnessed by bijections of sets
\[

$$
\begin{aligned}
\operatorname{Hom}_{G r p d}\left(\mathrm{~K}_{0}(C), \mathcal{G}\right) & \cong \operatorname{Hom}_{\operatorname{Cats}}(\mathcal{C}, \mathcal{G}) \\
\operatorname{Hom}_{\mathrm{Cats}}(\mathcal{G}, \mathcal{D}) & \cong \operatorname{Hom}_{G \operatorname{rpd}}(\mathcal{G}, \operatorname{Core}(\mathcal{D})),
\end{aligned}
$$
\]

natural in $\mathcal{C}, \mathcal{D} \in \operatorname{Obj}$ (Cats) and $\mathcal{G} \in \operatorname{Obj}($ Grpd $)$.
4. 2-Adjointness. We have an adjunction

$$
(\iota \dashv \text { Core }): \quad \text { Grpd } \underset{\text { Core }}{\stackrel{\iota}{\perp_{2}}} \text { Cats },
$$

witnessed by an isomorphism of categories

$$
\operatorname{Fun}(\mathcal{G}, \mathcal{D}) \cong \operatorname{Fun}(\mathcal{G}, \operatorname{Core}(\mathcal{D}))
$$

natural in $\mathcal{G} \in \operatorname{Obj}(G r p d)$ and $\mathcal{D} \in \operatorname{Obj}$ (Cats), forming, together with the 2-functor K_{0} of Item 2 of Proposition 8.3.2.1.3, a triple 2 -adjunction

$$
\left(\mathrm{K}_{0} \dashv \iota \dashv \text { Core }\right):
$$

witnessed by isomorphisms of categories

$$
\begin{aligned}
\operatorname{Fun}\left(\mathrm{K}_{0}(\mathcal{C}), \mathcal{G}\right) & \cong \operatorname{Fun}(\mathcal{C}, \mathcal{G}) \\
\operatorname{Fun}(\mathcal{G}, \mathcal{D}) & \cong \operatorname{Fun}(\mathcal{G}, \operatorname{Core}(\mathcal{D})),
\end{aligned}
$$

natural in $\mathcal{C}, \mathcal{D} \in \operatorname{Obj}($ Cats $)$ and $\mathcal{G} \in \operatorname{Obj}($ Grpd $)$.
5. Symmetric Strong Monoidality With Respect to Products. The core functor of Item 1 has a symmetric strong monoidal structure

$$
\left(\text { Core, } \text { Core }^{\times}, \text {Core }_{\mathbb{1}}^{\times}\right):(\text {Cats, } \times, \text { pt }) \rightarrow(\text { Grpd }, \times, \text { pt })
$$

being equipped with isomorphisms

$$
\begin{gathered}
\operatorname{Core}_{\mathcal{C}, \mathcal{D}}^{\times}: \operatorname{Core}(C) \times \operatorname{Core}(\mathcal{D}) \stackrel{\cong}{\rightrightarrows} \operatorname{Core}(C \times \mathcal{D}), \\
\operatorname{Core}_{\mathbb{1}}^{\times}: \mathrm{pt} \stackrel{\cong}{\rightrightarrows} \operatorname{Core}(\mathrm{pt}),
\end{gathered}
$$

natural in $\mathcal{C}, \mathcal{D} \in \operatorname{Obj}($ Cats $)$.
. Symmetric Strong Monoidality With Respect to Coproducts. The core functor of Item 1 has a symmetric strong monoidal structure

$$
\left(\text { Core, Core } \amalg, \operatorname{Core}_{\mathbb{1}} I\right):\left(\text { Cats, } \amalg, \emptyset_{\text {cat }}\right) \rightarrow\left(\text { Grpd, } \amalg, \emptyset_{\text {cat }}\right)
$$

being equipped with isomorphisms

$$
\begin{gathered}
\operatorname{Core}_{C, \mathcal{D}}^{\amalg}: \operatorname{Core}(C) \amalg \operatorname{Core}(\mathcal{D}) \stackrel{\cong}{\rightrightarrows} \operatorname{Core}(C \amalg \mathcal{D}), \\
\operatorname{Core}_{\mathbb{1}}: \emptyset_{\text {cat }} \xlongequal{\rightrightarrows} \operatorname{Core}\left(\emptyset_{\text {cat }}\right),
\end{gathered}
$$

natural in $\mathcal{C}, \mathcal{D} \in \operatorname{Obj}$ (Cats).
Proof. Item 1, Functoriality: Omitted.
Item 2, 2-Functoriality: Omitted.
Item 3, Adjointness: Omitted.
Item 4, 2-Adjointness: Omitted.
Item 5, Symmetric Strong Monoidality With Respect to Products: Omitted.
Item 6, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.

oozU 8.4 Functors

00ZV 8.4.1 Foundations
Let C and \mathcal{D} be categories.
00ZW Definition 8.4.1.1.1. A functor $F: C \rightarrow \mathcal{D}$ from C to \mathcal{D}^{16} consists of:

[^80]1. Action on Objects. A map of sets

$$
F: \operatorname{Obj}(C) \rightarrow \operatorname{Obj}(\mathcal{D})
$$

called the action on objects of F.
2. Action on Morphisms. For each $A, B \in \operatorname{Obj}(C)$, a map

$$
F_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(A), F(B))
$$

called the action on morphisms of F at $(A, B)^{17}$.
satisfying the following conditions:

1. Preservation of Identities. For each $A \in \operatorname{Obj}(C)$, the diagram

commutes, i.e. we have

$$
F\left(\operatorname{id}_{A}\right)=\operatorname{id}_{F(A)}
$$

2. Preservation of Composition. For each $A, B, C \in \operatorname{Obj}(C)$, the diagram

$\operatorname{Hom}_{\mathcal{D}}(F(B), F(C)) \times \operatorname{Hom}_{\mathcal{D}}(F(A), F(B))_{\mathfrak{O}_{F(A), F(B), F(C)}} \operatorname{Hom}_{\mathcal{D}}(F(A), F(C))$
commutes, i.e. for each composable pair (g, f) of morphisms of C, we have

$$
F(g \circ f)=F(g) \circ F(f)
$$

00ZX Notation 8.4.1.1.2. Let C and \mathcal{D} be categories, and write C^{op} for the opposite category of C of ??.

1. Given a functor

$$
F: C \rightarrow \mathcal{D}
$$

we also write F_{A} for $F(A)$.

[^81]4. Given a functor
$$
F: C^{\mathrm{op}} \times C \rightarrow \mathcal{D}
$$
we also write F_{B}^{A} for $F(A, B)$.
We employ a similar notation for morphisms, writing e.g. F_{f} for $F(f)$ given a functor $F: C \rightarrow \mathcal{D}$.

0102 Notation 8.4.1.1.3. Following the notation $\llbracket x \mapsto f(x) \rrbracket$ for a function $f: X \rightarrow Y$ introduced in Notation 1.1.1.1.2, we will sometimes denote a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ by

$$
F \stackrel{\text { def }}{=} \llbracket A \mapsto F(A) \rrbracket,
$$

specially when the action on morphisms of F is clear from its action on objects.

0103 Example 8.4.1.1.4. The identity functor of a category C is the functor $\mathrm{id}_{C}: C \rightarrow C$ where

1. Action on Objects. For each $A \in \operatorname{Obj}(C)$, we have

$$
\operatorname{id}_{C}(A) \stackrel{\text { def }}{=} A
$$

2. Action on Morphisms. For each $A, B \in \operatorname{Obj}(C)$, the action on morphisms

$$
\left(\operatorname{idd}_{\mathcal{C}}\right)_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow \underbrace{\operatorname{Hom}_{\mathcal{C}}\left(\operatorname{id}_{C}(A), \mathrm{id}_{\mathcal{C}}(B)\right)}_{\substack{\text { def } \\=\operatorname{Hom}_{\mathcal{C}}(A, B)}}
$$

of id_{C} at (A, B) is defined by

$$
\left(\mathrm{id}_{C}\right)_{A, B} \stackrel{\text { def }}{=} \mathrm{id}_{\operatorname{Hom}_{C}(A, B)} .
$$

Proof. Preservation of Identities: We have $\operatorname{id}_{C}\left(\operatorname{id}_{A}\right) \stackrel{\text { def }}{=} \operatorname{id}_{A}$ for each $A \in \operatorname{Obj}(C)$ by definition.
Preservation of Compositions: For each composable pair $A \xrightarrow{f} B \xrightarrow{g} B$ of morphisms of \mathcal{C}, we have

$$
\begin{aligned}
\operatorname{id}_{\mathcal{C}}(g \circ f) & \stackrel{\text { def }}{=} g \circ f \\
& \stackrel{\text { def }}{=} \operatorname{id}_{\mathcal{C}}(g) \circ \operatorname{id}_{\mathcal{C}}(f) .
\end{aligned}
$$

This finishes the proof.

0104 Definition 8.4.1.1.5. The composition of two functors $F: C \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{E}$ is the functor $G \circ F$ where

- Action on Objects. For each $A \in \operatorname{Obj}(C)$, we have

$$
[G \circ F](A) \stackrel{\text { def }}{=} G(F(A)) .
$$

- Action on Morphisms. For each $A, B \in \operatorname{Obj}(C)$, the action on morphisms

$$
(G \circ F)_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{E}}\left(G_{F_{A}}, G_{F_{B}}\right)
$$

of $G \circ F$ at (A, B) is defined by

$$
[G \circ F](f) \stackrel{\text { def }}{=} G(F(f)) .
$$

Proof. Preservation of Identities: For each $A \in \operatorname{Obj}(C)$, we have

$$
\begin{aligned}
G_{F_{\mathrm{id}_{A}}} & =G_{\mathrm{id}_{F_{A}}} & & \text { (functoriality of } F) \\
& =\operatorname{id}_{G_{F_{A}}} . & & \text { (functoriality of } G)
\end{aligned}
$$

Preservation of Composition: For each composable pair (g, f) of morphisms of \mathcal{C}, we have

$$
\begin{aligned}
G_{F_{g \circ f}} & =G_{F_{g} \circ F_{f}} & & \text { (functoriality of } F) \\
& =G_{F_{g}} \circ G_{F_{f}} . & & \text { (functoriality of } G)
\end{aligned}
$$

This finishes the proof.
0105 Proposition 8.4.1.1.6. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor.
0106 1. Preservation of Isomorphisms. If f is an isomorphism in C, then $F(f)$ is an isomorphism in $\mathcal{D} .{ }^{18}$

Proof. Item 1, Preservation of Isomorphisms: Indeed, we have

$$
\begin{aligned}
F(f)^{-1} \circ F(f) & =F\left(f^{-1} \circ f\right) \\
& =F\left(\operatorname{id}_{A}\right) \\
& =\operatorname{id}_{F(A)}
\end{aligned}
$$

and

$$
\begin{aligned}
F(f) \circ F(f)^{-1} & =F\left(f \circ f^{-1}\right) \\
& =F\left(\operatorname{id}_{B}\right) \\
& =\operatorname{id}_{F(B)},
\end{aligned}
$$

showing $F(f)$ to be an isomorphism.

[^82]
0107 8.4.2 Contravariant Functors

Let \mathcal{C} and \mathcal{D} be categories, and let $C^{\circ \mathrm{p}}$ denote the opposite category of C of ??.

0108 Definition 8.4.2.1.1. A contravariant functor from C to \mathcal{D} is a functor from $C^{\text {op }}$ to \mathcal{D}.

0109 Remark 8.4.2.1.2. In detail, a contravariant functor from \mathcal{C} to \mathcal{D} consists of:

1. Action on Objects. A map of sets

$$
F: \operatorname{Obj}(C) \rightarrow \operatorname{Obj}(\mathcal{D}),
$$

called the action on objects of F.
2. Action on Morphisms. For each $A, B \in \operatorname{Obj}(C)$, a map

$$
F_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(B), F(A)),
$$

called the action on morphisms of F at (A, B).
satisfying the following conditions:

1. Preservation of Identities. For each $A \in \operatorname{Obj}(C)$, the diagram

commutes, i.e. we have

$$
F\left(\mathrm{id}_{A}\right)=\operatorname{id}_{F(A)} .
$$

2. Preservation of Composition. For each $A, B, C \in \operatorname{Obj}(C)$, the diagram

$$
\operatorname{Hom}_{\mathcal{D}}(F(C), F(B)) \times \operatorname{Hom}_{\mathcal{D}}(F(B), F(A))
$$

$\operatorname{Hom}_{\mathcal{C}}(B, C) \times \operatorname{Hom}_{\mathcal{C}}\left(A, B \operatorname{Kom}_{\mathcal{D}}(F(B), F(A)) \times \operatorname{Hom}_{\mathcal{D}}(F(C), F(B))\right.$

commutes, i.e. for each composable pair (g, f) of morphisms of C, we have

$$
F(g \circ f)=F(f) \circ F(g) .
$$

010A Remark 8.4.2.1.3. Throughout this work we will not use the term "contravariant" functor, speaking instead simply of functors $F: C^{\circ p} \rightarrow \mathcal{D}$. We will usually, however, write

$$
F_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(B), F(A))
$$

for the action on morphisms

$$
F_{A, B}: \operatorname{Hom}_{C \text { op }}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(A), F(B))
$$

of F, as well as write $F(g \circ f)=F(f) \circ F(g)$.

010B 8.4.3 Forgetful Functors

010C Definition 8.4.3.1.1. There isn't a precise definition of a forgetful functor.

010D Remark 8.4.3.1.2. Despite there not being a formal or precise definition of a forgetful functor, the term is often very useful in practice, similarly to the word "canonical". The idea is that a "forgetful functor" is a functor that forgets structure or properties, and is best explained through examples, such as the ones below (see Examples 8.4.3.1.3 and 8.4.3.1.4).

010E Example 8.4.3.1.3. Examples of forgetful functors that forget structure include:

010 F 1. Forgetting Group Structures. The functor Grp \rightarrow Sets sending a group $\left(G, \mu_{G}, \eta_{G}\right)$ to its underlying set G, forgetting the multiplication and unit maps μ_{G} and η_{G} of G.

010 G 2. Forgetting Topologies. The functor Top \rightarrow Sets sending a topological space $\left(X, \mathcal{T}_{X}\right)$ to its underlying set X, forgetting the topology \mathcal{T}_{X}.
3. Forgetting Fibrations. The functor FibSets $(K) \rightarrow$ Sets sending a K-fibred set $\phi_{X}: X \rightarrow K$ to the set X, forgetting the map ϕ_{X} and the base set K.

010J Example 8.4.3.1.4. Examples of forgetful functors that forget properties include:

010 K 1. Forgetting Commutativity. The inclusion functor ι : CMon \hookrightarrow Mon which forgets the property of being commutative.

2．Forgetting Inverses．The inclusion functor ι ：Grp \hookrightarrow Mon which forgets the property of having inverses．

010M Notation 8．4．3．1．5．Throughout this work，we will denote forgetful functors that forget structure by 忘，e．g．as in

$$
\text { 忘: Grp } \rightarrow \text { Sets. }
$$

The symbol 忘，pronounced wasureru（see Item 1 of Remark 8．4．3．1．6 below），means to forget，and is a kanji found in the following words in Japanese and Chinese：

1．忘れる，transcribed as wasureru，meaning to forget．
2．忘却関手，transcribed as boukyaku kanshu，meaning forgetful func－ tor．

3．忘记 or 忘記，transcribed as wàngji，meaning to forget．
4．遗忘函子 or 遺忘函子，transcribed as yíwàng hánzǐ，meaning for－ getful functor．

Remark 8．4．3．1．6．Here we collect the pronunciation of the words in Notation 8．4．3．1．5 for accuracy and completeness．

1．Pronunciation of 忘れる：
－Audio：see https：／／topological－modular－forms．github．io ／the－clowder－project／static／sounds／wasureru－01．mp3
－IPA broad transcription：［wäsureeru］．

2．Pronunciation of 忘却関手：Pronunciation：
－Audio：see https：／／topological－modular－forms．github．io ／the－clowder－project／static／sounds／wasureru－02．mp3
－IPA broad transcription：［bọ：kjäku kã̃ũgu］．
－IPA narrow transcription：［bọ：kjäkư ${ }^{\beta}$ kã̃ũ $\left.{ }^{(1)}{ }^{\beta}\right]$ ．
3．Pronunciation of 忘记：
－Audio：see https：／／topological－modular－forms．github．io ／the－clowder－project／static／sounds／wasureru－03．ogg
－Broad IPA transcription：［waytci］．
－Sinological IPA transcription：［wan ${ }^{51-53} \mathrm{fif}^{51}{ }^{51}$ ．
4．Pronunciation of 遗忘函子：

- Audio: see https://topological-modular-forms.github.io /the-clowder-project/static/sounds/wasureru-04.mp3
- Broad IPA transcription: [iwaŋ xäntszzi].
- Sinological IPA transcription: $\left[\mathrm{i}^{35} \mathrm{Wa}^{51}\right.$ xän $\left.{ }^{35} \mathrm{ts} z^{214-21(4)}\right]$.

010X 8.4.4 The Natural Transformation Associated to a Functor

010Y Definition 8.4.4.1.1. Every functor $F: C \rightarrow \mathcal{D}$ defines a natural transformation ${ }^{19}$

$$
F^{\dagger}: \operatorname{Hom}_{C} \Longrightarrow \operatorname{Hom}_{\mathcal{D}} \circ\left(F^{\mathrm{op}} \times F\right), \quad \mathcal{C o m}_{\mathcal{C}}^{\mathrm{op}} \times C \xrightarrow{F^{\mathrm{op}} \times F} \mathcal{D}^{\mathrm{op}} \times \mathcal{D}
$$

called the natural transformation associated to F, consisting of the collection

$$
\left\{F_{A, B}^{\dagger}: \operatorname{Hom}_{C}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{D}}\left(F_{A}, F_{B}\right)\right\}_{(A, B) \in \operatorname{Obj}\left(C^{\mathrm{op}} \times C\right)}
$$

with

$$
F_{A, B}^{\dagger} \stackrel{\text { def }}{=} F_{A, B} .
$$

Proof. The naturality condition for F^{\dagger} is the requirement that for each morphism

$$
(\phi, \psi):(X, Y) \rightarrow(A, B)
$$

of $C^{\mathrm{op}} \times C$, the diagram

acting on elements as

commutes, which follows from the functoriality of F.

[^83]010Z Proposition 8.4.4.1.2. Let $F: C \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{E}$ be functors.
2. Interaction With Composition. We have an equality of pasting diagrams

in Cats_{2}, i.e. we have

$$
(G \circ F)^{\dagger}=\left(G^{\dagger} \star \operatorname{id}_{F \circ \mathrm{op} \times F}\right) \circ F^{\dagger}
$$

3. Interaction With Identities. We have

$$
\operatorname{id}_{\mathcal{C}}^{\dagger}=\operatorname{id}_{\operatorname{Hom}_{\mathcal{C}}(-1,-2)}
$$

i.e. the natural transformation associated to id_{C} is the identity natural transformation of the functor $\operatorname{Hom}_{\mathcal{C}}\left(-{ }_{1},-_{2}\right)$.

Proof. Item 1, Interaction With Natural Isomorphisms: Clear.
Item 2, Interaction With Composition: Clear.
Item 3, Interaction With Identities: Clear.

0115 8.5 Conditions on Functors

0116 8.5.1 Faithful Functors

Let C and \mathcal{D} be categories.
0117 Definition 8.5.1.1.1. A functor $F: C \rightarrow \mathcal{D}$ is faithful if, for each $A, B \in \operatorname{Obj}(C)$, the action on morphisms

$$
F_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{D}}\left(F_{A}, F_{B}\right)
$$

of F at (A, B) is injective.
0118 Proposition 8.5.1.1.2. Let $F: C \rightarrow \mathcal{D}$ be a functor.

1. Interaction With Postcomposition. The following conditions are equivalent:
(a) The functor $F: C \rightarrow \mathcal{D}$ is faithful.
(b) For each $\mathcal{X} \in \operatorname{Obj}$ (Cats), the postcomposition functor

$$
F_{*}: \operatorname{Fun}(\mathcal{X}, \mathcal{C}) \rightarrow \operatorname{Fun}(\mathcal{X}, \mathcal{D})
$$

is faithful.
(c) The functor $F: C \rightarrow \mathcal{D}$ is a representably faithful morphism in Cats_{2} in the sense of Definition 9.1.1.1.1.
2. Interaction With Precomposition I. Let $F: C \rightarrow \mathcal{D}$ be a functor.
(a) If F is faithful, then the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

can fail to be faithful.
(b) Conversely, if the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is faithful, then F can fail to be faithful.
3. Interaction With Precomposition II. If F is essentially surjective, then the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is faithful.
4. Interaction With Precomposition III. The following conditions are equivalent:
(a) For each $X \in \operatorname{Obj}($ Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(\mathcal{C}, \mathcal{X})
$$

is faithful.
(b) For each $\mathcal{X} \in \operatorname{Obj}$ (Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is conservative.
(c) For each $\mathcal{X} \in \operatorname{Obj}$ (Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(\mathcal{C}, \mathcal{X})
$$

is monadic.
(d) The functor $F: C \rightarrow \mathcal{D}$ is a corepresentably faithful morphism in Cats 2 in the sense of Definition 9.2.1.1.1.
(e) The components

$$
\eta_{G}: G \Longrightarrow \operatorname{Ran}_{F}(G \circ F)
$$

of the unit

$$
\eta: \operatorname{id}_{\operatorname{Fun}(\mathcal{D}, \mathcal{X})} \Longrightarrow \operatorname{Ran}_{F} \circ F^{*}
$$

of the adjunction $F^{*} \dashv \operatorname{Ran}_{F}$ are all monomorphisms.
(f) The components

$$
\epsilon_{G}: \operatorname{Lan}_{F}(G \circ F) \Longrightarrow G
$$

of the counit

$$
\epsilon: \operatorname{Lan}_{F} \circ F^{*} \Longrightarrow \operatorname{id}_{\operatorname{Fun}(\mathcal{D}, X)}
$$

of the adjunction $\operatorname{Lan}_{F} \dashv F^{*}$ are all epimorphisms.
(g) The functor F is dominant (Definition 8.6.1.1.1), i.e. every object of \mathcal{D} is a retract of some object in $\operatorname{Im}(F)$:
(\star) For each $B \in \operatorname{Obj}(\mathcal{D})$, there exist:

- An object A of C;
- A morphism $s: B \rightarrow F(A)$ of \mathcal{D};
- A morphism $r: F(A) \rightarrow B$ of \mathcal{D};
such that $r \circ s=\operatorname{id}_{B}$.
Proof. Item 1, Interaction With Postcomposition: Omitted.
Item 2, Interaction With Precomposition I: See [MSE 733163] for Item 2a. Item 2 b follows from Item 3 and the fact that there are essentially surjective functors that are not faithful.
Item 3, Interaction With Precomposition II: Omitted, but see https: //unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor y.precomp_fully_faithful.html for a formalised proof.

Item 4, Interaction With Precomposition III: We claim Items 4 a to 4 g are equivalent:

- Items $4 a$ and $4 d$ Are Equivalent: This is true by the definition of corepresentably faithful morphism; see Definition 9.2.1.1.1.
- Items 4 a to $4 c$ and $4 g$ Are Equivalent: See [Adá+01, Proposition 4.1] or alternatively [Fre09, Lemmas 3.1 and 3.2] for the equivalence between Items 4 a and 4 g .
- Items $4 a$, $4 e$ and $4 f$ Are Equivalent: See ?? of ??.

This finishes the proof.

011R 8.5.2 Full Functors
Let C and \mathcal{D} be categories.
011 S Definition 8.5.2.1.1. A functor $F: C \rightarrow \mathcal{D}$ is full if, for each $A, B \in$ $\operatorname{Obj}(C)$, the action on morphisms

$$
F_{A, B}: \operatorname{Hom}_{C}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{D}}\left(F_{A}, F_{B}\right)
$$

of F at (A, B) is surjective.
011 T Proposition 8.5 .2 .1 .2 . Let $F: C \rightarrow \mathcal{D}$ be a functor.
011 U 1. Interaction With Postcomposition. The following conditions are equivalent:
(a) The functor $F: C \rightarrow \mathcal{D}$ is full.
(b) For each $\mathcal{X} \in \operatorname{Obj}($ Cats), the postcomposition functor

$$
F_{*}: \operatorname{Fun}(\mathcal{X}, \mathcal{C}) \rightarrow \operatorname{Fun}(\mathcal{X}, \mathcal{D})
$$

is full.
(c) The functor $F: C \rightarrow \mathcal{D}$ is a representably full morphism in Cats $_{2}$ in the sense of Definition 9.1.2.1.1.
2. Interaction With Precomposition I. If F is full, then the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

can fail to be full.
3. Interaction With Precomposition II. If the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is full, then F can fail to be full.
4. Interaction With Precomposition III. If F is essentially surjective
and full, then the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is full (and also faithful by Item 3 of Proposition 8.5.1.1.2).
5. Interaction With Precomposition IV. The following conditions are equivalent:
(a) For each $\mathcal{X} \in \operatorname{Obj}$ (Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is full.
(b) The functor $F: C \rightarrow \mathcal{D}$ is a corepresentably full morphism in Cats $_{2}$ in the sense of Definition 9.2.1.1.1.
(c) The components

$$
\eta_{G}: G \Longrightarrow \operatorname{Ran}_{F}(G \circ F)
$$

of the unit

$$
\eta: \operatorname{id}_{\mathrm{Fun}(\mathcal{D}, \mathcal{X})} \Longrightarrow \operatorname{Ran}_{F} \circ F^{*}
$$

of the adjunction $F^{*} \dashv \operatorname{Ran}_{F}$ are all retractions/split epimorphisms.
(d) The components

$$
\epsilon_{G}: \operatorname{Lan}_{F}(G \circ F) \Longrightarrow G
$$

of the counit

$$
\epsilon: \operatorname{Lan}_{F} \circ F^{*} \Longrightarrow \operatorname{id}_{\operatorname{Fun}(\mathcal{D}, \mathcal{X})}
$$

of the adjunction $\operatorname{Lan}_{F} \dashv F^{*}$ are all sections/split monomorphisms.
(e) For each $B \in \operatorname{Obj}(\mathcal{D})$, there exist:

- An object A_{B} of C;
- A morphism $s_{B}: B \rightarrow F\left(A_{B}\right)$ of $\mathcal{D} ;$
- A morphism $r_{B}: F\left(A_{B}\right) \rightarrow B$ of $\mathcal{D} ;$
satisfying the following condition:
(\star) For each $A \in \operatorname{Obj}(C)$ and each pair of morphisms

$$
\begin{aligned}
& r: F(A) \rightarrow B, \\
& s: B \rightarrow F(A)
\end{aligned}
$$

of \mathcal{D}, we have

$$
\begin{aligned}
& \quad\left[\left(A_{B}, s_{B}, r_{B}\right)\right]=\left[\left(A, s, r \circ s_{B} \circ r_{B}\right)\right] \\
& \text { in } \int^{A \in C} h_{F_{A}}^{B^{\prime}} \times h_{B}^{F_{A}} .
\end{aligned}
$$

Proof. Item 1, Interaction With Postcomposition: Omitted.
Item 2, Interaction With Precomposition I: Omitted.
Item 3, Interaction With Precomposition II: See [BS10, p. 47].
Item 4, Interaction With Precomposition III: Omitted, but see https: //unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor y.precomp_fully_faithful.html for a formalised proof.

Item 5, Interaction With Precomposition IV: We claim Items 5a to 5e are equivalent:

- Items 5a and 5b Are Equivalent: This is true by the definition of corepresentably full morphism; see Definition 9.2.2.1.1.
- Items 5a, 5c and 5d Are Equivalent: See ?? of ??.
- Items 5 a and 5e Are Equivalent: See [Adá+01, Item (b) of Remark 4.3].

This finishes the proof.
0127 Question 8.5.2.1.3. Item 5 of Proposition 8.5.2.1.2 gives a characterisation of the functors F for which F^{*} is full, but the characterisations given there are really messy. Are there better ones?
This question also appears as [MO 468121b].

0128 8.5.3 Fully Faithful Functors

Let C and \mathcal{D} be categories.
0129 Definition 8.5 .3 .1 .1 . A functor $F: C \rightarrow \mathcal{D}$ is fully faithful if F is full and faithful, i.e. if, for each $A, B \in \operatorname{Obj}(C)$, the action on morphisms

$$
F_{A, B}: \operatorname{Hom}_{C}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{D}}\left(F_{A}, F_{B}\right)
$$

of F at (A, B) is bijective.
012 A Proposition 8.5.3.1.2. Let $F: C \rightarrow \mathcal{D}$ be a functor.

012C
012D

1. Characterisations. The following conditions are equivalent:
(a) The functor F is fully faithful.
(b) We have a pullback square

$$
\begin{array}{rr}
\operatorname{Arr}(C) \xrightarrow{\operatorname{Arr}(F)} \operatorname{Arr}(\mathcal{D}) \\
\operatorname{Arr}(C) \cong(C \times C) \times_{\mathcal{D} \times \mathcal{D}} \operatorname{Arr}(\mathcal{D}),\left.\left.\quad \operatorname{src\times \operatorname {tgt}|}\right|_{\downarrow}\right|_{\operatorname{src\times tgt}} \\
C \times \mathcal{C} \xrightarrow[F \times F]{ } \mathcal{D} \times \mathcal{D}
\end{array}
$$

in Cats.
2. Conservativity. If F is fully faithful, then F is conservative.
3. Essential Injectivity. If F is fully faithful, then F is essentially injective.
4. Interaction With Co/Limits. If F is fully faithful, then F reflects co/limits.
5. Interaction With Postcomposition. The following conditions are equivalent:
(a) The functor $F: C \rightarrow \mathcal{D}$ is fully faithful.
(b) For each $\mathcal{X} \in \operatorname{Obj}$ (Cats), the postcomposition functor

$$
F_{*}: \operatorname{Fun}(X, C) \rightarrow \operatorname{Fun}(X, \mathcal{D})
$$

is fully faithful.
(c) The functor $F: C \rightarrow \mathcal{D}$ is a representably fully faithful morphism in Cats $_{2}$ in the sense of Definition 9.1.3.1.1.
6. Interaction With Precomposition I. If F is fully faithful, then the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

can fail to be fully faithful.
7. Interaction With Precomposition II. If the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is fully faithful, then F can fail to be fully faithful (and in fact it can also fail to be either full or faithful).
8. Interaction With Precomposition III. If F is essentially surjective and full, then the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is fully faithful.
9. Interaction With Precomposition IV. The following conditions are equivalent:
(a) For each $\mathcal{X} \in \operatorname{Obj}$ (Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is fully faithful.

012 S (b) The precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \text { Sets }) \rightarrow \operatorname{Fun}(C, \text { Sets })
$$

is fully faithful.
(c) The functor

$$
\operatorname{Lan}_{F}: \operatorname{Fun}(\mathcal{C}, \operatorname{Sets}) \rightarrow \operatorname{Fun}(\mathcal{D}, \text { Sets })
$$

is fully faithful.
(d) The functor F is a corepresentably fully faithful morphism in Cats 2 in the sense of Definition 9.2.3.1.1.
(e) The functor F is absolutely dense.
(f) The components

$$
\eta_{G}: G \Longrightarrow \operatorname{Ran}_{F}(G \circ F)
$$

of the unit

$$
\eta: \operatorname{id}_{\mathrm{Fun}(\mathcal{D}, \mathcal{X})} \Longrightarrow \operatorname{Ran}_{F} \circ F^{*}
$$

of the adjunction $F^{*} \dashv \operatorname{Ran}_{F}$ are all isomorphisms.
(g) The components

$$
\epsilon_{G}: \operatorname{Lan}_{F}(G \circ F) \Longrightarrow G
$$

of the counit

$$
\epsilon: \operatorname{Lan}_{F} \circ F^{*} \Longrightarrow \operatorname{id}_{\operatorname{Fun}(\mathcal{D}, \mathcal{X})}
$$

of the adjunction $\operatorname{Lan}_{F} \dashv F^{*}$ are all isomorphisms.
(h) The natural transformation

$$
\alpha: \operatorname{Lan}_{h_{F}}\left(h^{F}\right) \Longrightarrow h
$$

with components

$$
\alpha_{B^{\prime}, B}: \int^{A \in C} h_{F_{A}}^{B^{\prime}} \times h_{B}^{F_{A}} \rightarrow h_{B}^{B^{\prime}}
$$

given by

$$
\alpha_{B^{\prime}, B}([(\phi, \psi)])=\psi \circ \phi
$$

is a natural isomorphism.
(i) For each $B \in \operatorname{Obj}(\mathcal{D})$, there exist:

- An object A_{B} of C;
- A morphism $s_{B}: B \rightarrow F\left(A_{B}\right)$ of \mathcal{D};
- A morphism $r_{B}: F\left(A_{B}\right) \rightarrow B$ of \mathcal{D};
satisfying the following conditions:
i. The triple $\left(F\left(A_{B}\right), r_{B}, s_{B}\right)$ is a retract of B, i.e. we have $r_{B} \circ s_{B}=\operatorname{id}_{B}$.
ii. For each morphism $f: B^{\prime} \rightarrow B$ of \mathcal{D}, we have

$$
\left[\left(A_{B}, s_{B^{\prime}}, f \circ r_{B^{\prime}}\right)\right]=\left[\left(A_{B}, s_{B} \circ f, r_{B}\right)\right]
$$

in $\int^{A \in C} h_{F_{A}}^{B^{\prime}} \times h_{B}^{F_{A}}$.
Proof. Item 1, Characterisations: Omitted.
Item 2, Conservativity: This is a repetition of Item 2 of Proposition 8.5.4.1.2, and is proved there.
Item 3, Essential Injectivity: Omitted.
Item 4, Interaction With Co/Limits: Omitted.
Item 5, Interaction With Postcomposition: This follows from Item 1 of Proposition 8.5.1.1.2 and Item 1 of Proposition 8.5.2.1.2.
Item 6, Interaction With Precomposition I: See [MSE 733161] for an example of a fully faithful functor whose precomposition with which fails to be full.
Item 7, Interaction With Precomposition II: See [MSE 749304, Item 3].
Item 8, Interaction With Precomposition III: Omitted, but see https: //unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor y.precomp_fully_faithful.html for a formalised proof.

Item 9, Interaction With Precomposition IV: We claim Items 9a to 9i are equivalent:

- Items 9a and 9d Are Equivalent: This is true by the definition of corepresentably fully faithful morphism; see Definition 9.2.3.1.1.
- Items 9a, 9f and 9g Are Equivalent: See ?? of ??.
- Items 9a to 9c Are Equivalent: This follows from [Low15, Proposition A.1.5].
- Items 9a, 9e, 9h and 9i Are Equivalent: See [Fre09, Theorem 4.1] and [Adá 01 , Theorem 1.1].

This finishes the proof.

0132 8.5.4 Conservative Functors

Let \mathcal{C} and \mathcal{D} be categories.

0133 Definition 8.5.4.1.1. A functor $F: C \rightarrow \mathcal{D}$ is conservative if it satisfies the following condition: ${ }^{20}$
(*) For each $f \in \operatorname{Mor}(C)$, if $F(f)$ is an isomorphism in \mathcal{D}, then f is an isomorphism in C.

0134 Proposition 8.5.4.1.2. Let $F: C \rightarrow \mathcal{D}$ be a functor.

1. Characterisations. The following conditions are equivalent:
(a) The functor F is conservative.
(b) For each $f \in \operatorname{Mor}(C)$, the morphism $F(f)$ is an isomorphism in \mathcal{D} iff f is an isomorphism in C.
2. Interaction With Fully Faithfulness. Every fully faithful functor is conservative.
3. Interaction With Precomposition. The following conditions are equivalent:
(a) For each $X \in \operatorname{Obj}($ Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(\mathcal{C}, \mathcal{X})
$$

is conservative.
(b) The equivalent conditions of Item 4 of Proposition 8.5.1.1.2 are satisfied.

Proof. Item 1, Characterisations: This follows from Item 1 of Proposition 8.4.1.1.6.
Item 2, Interaction With Fully Faithfulness: Let $F: C \rightarrow \mathcal{D}$ be a fully faithful functor, let $f: A \rightarrow B$ be a morphism of C, and suppose that F_{f} is an isomorphism. We have

$$
\begin{aligned}
F\left(\operatorname{id}_{B}\right) & =\operatorname{id}_{F(B)} \\
& =F(f) \circ F(f)^{-1} \\
& =F\left(f \circ f^{-1}\right) .
\end{aligned}
$$

Similarly, $F\left(\operatorname{id}_{A}\right)=F\left(f^{-1} \circ f\right)$. But since F is fully faithful, we must have

$$
\begin{aligned}
& f \circ f^{-1}=\operatorname{id}_{B} \\
& f^{-1} \circ f=\operatorname{id}_{A}
\end{aligned}
$$

showing f to be an isomorphism. Thus F is conservative.

[^84]013C Question 8.5.4.1.3. Is there a characterisation of functors $F: \mathcal{C} \rightarrow \mathcal{D}$ satisfying the following condition:
(\star) For each $\mathcal{X} \in \operatorname{Obj}($ Cats), the postcomposition functor

$$
F_{*}: \operatorname{Fun}(X, C) \rightarrow \operatorname{Fun}(X, \mathcal{D})
$$

is conservative?
This question also appears as [MO 468121a].

013D 8.5.5 Essentially Injective Functors

Let \mathcal{C} and \mathcal{D} be categories.
013E Definition 8.5.5.1.1. A functor $F: C \rightarrow \mathcal{D}$ is essentially injective if it satisfies the following condition:
(\star) For each $A, B \in \operatorname{Obj}(C)$, if $F(A) \cong F(B)$, then $A \cong B$.
013F Question 8.5.5.1.2. Is there a characterisation of functors $F: C \rightarrow \mathcal{D}$ such that:

013 G 1. For each $\mathcal{X} \in \mathrm{Obj}($ Cats $)$, the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is essentially injective, i.e. if $\phi \circ F \cong \psi \circ F$, then $\phi \cong \psi$ for all functors ϕ and ψ ?
2. For each $\mathcal{X} \in \mathrm{Obj}($ Cats $)$, the postcomposition functor

$$
F_{*}: \operatorname{Fun}(X, C) \rightarrow \operatorname{Fun}(X, \mathcal{D})
$$ is essentially injective, i.e. if $F \circ \phi \cong F \circ \psi$, then $\phi \cong \psi$?

This question also appears as [MO 468121a].

013J 8.5.6 Essentially Surjective Functors

Let \mathcal{C} and \mathcal{D} be categories.
013K Definition 8.5.6.1.1. A functor $F: C \rightarrow \mathcal{D}$ is essentially surjective ${ }^{21}$ if it satisfies the following condition:
(*) For each $D \in \operatorname{Obj}(\mathcal{D})$, there exists some object A of \mathcal{C} such that $F(A) \cong D$.

[^85]013L Question $\mathbf{8 . 5 . 6 . 1}$. . Is there a characterisation of functors $F: C \rightarrow \mathcal{D}$ such that:

013M 1. For each $\mathcal{X} \in \mathrm{Obj}$ (Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is essentially surjective?
2. For each $X \in \operatorname{Obj}($ Cats $)$, the postcomposition functor

$$
F_{*}: \operatorname{Fun}(\mathcal{X}, C) \rightarrow \operatorname{Fun}(\mathcal{X}, \mathcal{D})
$$

is essentially surjective?
This question also appears as [MO 468121a].

013P 8.5.7 Equivalences of Categories

$013 Q$ Definition 8.5.7.1.1. Let C and \mathcal{D} be categories.

1. An equivalence of categories between C and \mathcal{D} consists of a
2. An adjoint equivalence of categories between C and \mathcal{D} is an equivalence (F, G, η, ϵ) between C and \mathcal{D} which is also an adjunc013 T Proposition 8.5.7.1.2. Let $F: C \rightarrow \mathcal{D}$ be a functor.
3. Characterisations. If C and \mathcal{D} are small ${ }^{22}$, then the following conditions are equivalent: ${ }^{23}$

[^86](a) The functor F is an equivalence of categories.
(b) The functor F is fully faithful and essentially surjective.
(c) The induced functor
$$
\left.F\right|_{\mathrm{Sk}(C)}: \operatorname{Sk}(C) \rightarrow \operatorname{Sk}(\mathcal{D})
$$
is an isomorphism of categories.
(d) For each $X \in \operatorname{Obj}$ (Cats), the precomposition functor
$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$
is an equivalence of categories.
(e) For each $X \in \mathrm{Obj}($ Cats), the postcomposition functor
$$
F_{*}: \operatorname{Fun}(\mathcal{X}, \mathcal{C}) \rightarrow \operatorname{Fun}(\mathcal{X}, \mathcal{D})
$$
is an equivalence of categories.
2. Two-Out-of-Three. Let
be a diagram in Cats. If two out of the three functors among F, G, and $G \circ F$ are equivalences of categories, then so is the third.
3. Stability Under Composition. Let
$$
C \underset{G}{\stackrel{F}{\rightleftarrows}} \mathcal{D} \underset{G^{\prime}}{\stackrel{F^{\prime}}{\leftrightarrows}} \mathcal{E}
$$
be a diagram in Cats. If (F, G) and $\left(F^{\prime}, G^{\prime}\right)$ are equivalences of categories, then so is their composite $\left(F^{\prime} \circ F, G^{\prime} \circ G\right)$.
4. Equivalences vs.Adjoint Equivalences. Every equivalence of categories can be promoted to an adjoint equivalence. ${ }^{24}$
5. Interaction With Groupoids. If \mathcal{C} and \mathcal{D} are groupoids, then the following conditions are equivalent:
(a) The functor F is an equivalence of groupoids.
(b) The following conditions are satisfied:

[^87]i. The functor F induces a bijection
$$
\pi_{0}(F): \pi_{0}(C) \rightarrow \pi_{0}(\mathcal{D})
$$
of sets.
ii. For each $A \in \operatorname{Obj}(C)$, the induced map
$$
F_{x, x}: \operatorname{Aut}_{C}(A) \rightarrow \operatorname{Aut}_{\mathcal{D}}\left(F_{A}\right)
$$
is an isomorphism of groups.
Proof. Item 1, Characterisations: We claim that Items 1a to 1e are indeed equivalent:

1. Item $1 a \Longrightarrow$ Item 1b: Clear.
2. Item $1 b \Longrightarrow$ Item $1 a$: Since F is essentially surjective and C and \mathcal{D} are small, we can choose, using the axiom of choice, for each $B \in \operatorname{Obj}(\mathcal{D})$, an object j_{B} of C and an isomorphism $i_{B}: B \rightarrow F_{j_{B}}$ of \mathcal{D}.

Since F is fully faithful, we can extend the assignment $B \mapsto j_{B}$ to a unique functor $j: \mathcal{D} \rightarrow C$ such that the isomorphisms $i_{B}: B \rightarrow F_{j_{B}}$ assemble into a natural isomorphism $\eta: \mathrm{id}_{\mathcal{D}} \stackrel{\sim}{\Longrightarrow} F \circ j$, with a similar natural isomorphism $\epsilon: \operatorname{id}_{C} \stackrel{\sim}{\Longrightarrow} j \circ F$. Hence F is an equivalence.
3. Item $1 a \Longrightarrow$ Item $1 c$: This follows from Item 4 of Proposition 8.1.5.1.3.
4. Item $1 c \Longrightarrow$ Item 1a: Omitted.
5. Items 1a, 1d and 1e Are Equivalent: This follows from ??.

This finishes the proof of Item 1.
Item 2, Two-Out-of-Three: Omitted.
Item 3, Stability Under Composition: Clear.
Item 4, Equivalences vs.Adjoint Equivalences: See [Rie17, Proposition 4.4.5].

Item 5, Interaction With Groupoids: See [nLa24, Proposition 4.4].

0148 8.5.8 Isomorphisms of Categories

0149 Definition 8.5.8.1.1. An isomorphism of categories is a pair of functors

$$
\begin{aligned}
& F: C \rightarrow \mathcal{D} \\
& G: \mathcal{D} \rightarrow C
\end{aligned}
$$

such that we have

$$
\begin{aligned}
& G \circ F=\operatorname{id}_{C}, \\
& F \circ G=\operatorname{id}_{\mathcal{D}} .
\end{aligned}
$$

014A Example 8.5.8.1.2. Categories can be equivalent but non-isomorphic. For example, the category consisting of two isomorphic objects is equivalent to pt, but not isomorphic to it.

014B Proposition 8.5.8.1.3. Let $F: C \rightarrow \mathcal{D}$ be a functor.
(d) For each $X \in \mathrm{Obj}$ (Cats), the postcomposition functor

$$
F_{*}: \operatorname{Fun}(\mathcal{X}, \mathcal{C}) \rightarrow \operatorname{Fun}(\mathcal{X}, \mathcal{D})
$$

is an isomorphism of categories.
Proof. Item 1, Characterisations: We claim that Items 1a to 1d are indeed equivalent:

1. Items 1 a and 1 b Are Equivalent: Omitted, but similar to Item 1 of Proposition 8.5.7.1.2.
2. Items 1a, 1c and 1d Are Equivalent: This follows from ??.

This finishes the proof.

014 8.6 More Conditions on Functors

014J 8.6.1 Dominant Functors

Let C and \mathcal{D} be categories.
014K Definition 8.6.1.1.1. A functor $F: C \rightarrow \mathcal{D}$ is dominant if every object of \mathcal{D} is a retract of some object in $\operatorname{Im}(F)$, i.e.:
(\star) For each $B \in \operatorname{Obj}(\mathcal{D})$, there exist:

- An object A of C;
- A morphism $r: F(A) \rightarrow B$ of \mathcal{D};
- A morphism $s: B \rightarrow F(A)$ of \mathcal{D};
such that we have

$$
r \circ s=\operatorname{id}_{B}
$$

014L Proposition 8.6.1.1.2. Let $F, G: C \rightrightarrows \mathcal{D}$ be functors and let $I: \mathcal{X} \rightarrow C$ be a functor.

014 M 1. Interaction With Right Whiskering. If I is full and dominant, then the map

$$
-\star \operatorname{id}_{I}: \operatorname{Nat}(F, G) \rightarrow \operatorname{Nat}(F \circ I, G \circ I)
$$

is a bijection.
2. Interaction With Adjunctions. Let $(F, G): C \rightleftarrows \mathcal{D}$ be an adjunction.
(a) If F is dominant, then G is faithful.
(b) The following conditions are equivalent:
i. The functor G is full.
ii. The restriction

$$
\left.G\right|_{\operatorname{Im}_{F}}: \operatorname{Im}(F) \rightarrow C
$$

of G to $\operatorname{Im}(F)$ is full.
Proof. Item 1, Interaction With Right Whiskering: See [DFH75, Proposition 1.4].
Item 2, Interaction With Adjunctions: See [DFH75, Proposition 1.7].
014T Question $\mathbf{8 . 6 . 1} \mathbf{1 . 3}$. Is there a characterisation of functors $F: C \rightarrow \mathcal{D}$ such that:

$$
\text { equivalences }\left(F, G, \eta^{\prime}, \epsilon\right) \text { and }\left(F, G, \eta, \epsilon^{\prime}\right)
$$

1. For each $\mathcal{X} \in \mathrm{Obj}($ Cats $)$, the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is dominant?
2. For each $X \in \operatorname{Obj}($ Cats $)$, the postcomposition functor

$$
F_{*}: \operatorname{Fun}(\mathcal{X}, C) \rightarrow \operatorname{Fun}(\mathcal{X}, \mathcal{D})
$$

is dominant?
This question also appears as [MO 468121a].

014W 8.6.2 Monomorphisms of Categories

Let C and \mathcal{D} be categories.
014X Definition 8.6.2.1.1. A functor $F: C \rightarrow \mathcal{D}$ is a monomorphism of categories if it is a monomorphism in Cats (see ??).

014 Y Proposition 8.6.2.1.2. Let $F: C \rightarrow \mathcal{D}$ be a functor. such that:

1. Characterisations. The following conditions are equivalent:
(a) The functor F is a monomorphism of categories.
(b) The functor F is injective on objects and morphisms, i.e. F is injective on objects and the map

$$
F: \operatorname{Mor}(\mathcal{C}) \rightarrow \operatorname{Mor}(\mathcal{D})
$$

is injective.
Proof. Item 1, Characterisations: Omitted.
0152 Question 8.6 .2 .1 .3 . Is there a characterisation of functors $F: C \rightarrow \mathcal{D}$

1. For each $\mathcal{X} \in \mathrm{Obj}$ (Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is a monomorphism of categories?
2. For each $\mathcal{X} \in \operatorname{Obj}($ Cats $)$, the postcomposition functor

$$
F_{*}: \operatorname{Fun}(\mathcal{X}, \mathcal{C}) \rightarrow \operatorname{Fun}(\mathcal{X}, \mathcal{D})
$$

is a monomorphism of categories?
This question also appears as [MO 468121a].

0155
 8.6.3 Epimorphisms of Categories

Let \mathcal{C} and \mathcal{D} be categories.
0156 Definition 8.6.3.1.1. A functor $F: C \rightarrow \mathcal{D}$ is a epimorphism of categories if it is a epimorphism in Cats (see ??).

0157 Proposition 8.6.3.1.2. Let $F: C \rightarrow \mathcal{D}$ be a functor.

1. Characterisations. The following conditions are equivalent: ${ }^{25}$
(a) The functor F is a epimorphism of categories.
(b) For each morphism $f: A \rightarrow B$ of \mathcal{D}, we have a diagram

in \mathcal{D} satisfying the following conditions:
i. We have $f=\alpha_{0} \circ \phi_{1}$.
ii. We have $f=\psi_{m} \circ \alpha_{2 m}$.
iii. For each $0 \leq i \leq 2 m$, we have $\alpha_{i} \in \operatorname{Mor}(\operatorname{Im}(F))$.
2. Surjectivity on Objects. If F is an epimorphism of categories, then F is surjective on objects.

Proof. Item 1, Characterisations: See [Isb68]. Item 2, Surjectivity on Objects: Omitted.

015F Question 8.6.3.1.3. Is there a characterisation of functors $F: \mathcal{C} \rightarrow \mathcal{D}$ such that:

1. For each $\mathcal{X} \in \operatorname{Obj}$ (Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(\mathcal{C}, \mathcal{X})
$$

is an epimorphism of categories?

[^88]2. For each $\mathcal{X} \in \operatorname{Obj}($ Cats $)$, the postcomposition functor
$$
F_{*}: \operatorname{Fun}(X, C) \rightarrow \operatorname{Fun}(X, \mathcal{D})
$$
is an epimorphism of categories?
This question also appears as [MO 468121a].
015J 8.6.4 Pseudomonic Functors
Let \mathcal{C} and \mathcal{D} be categories.
015K Definition 8.6.4.1.1. A functor $F: C \rightarrow \mathcal{D}$ is pseudomonic if it satisfies the following conditions:

015 L 1. For all diagrams of the form

$$
\mathcal{X} \underset{\psi}{\stackrel{\phi}{\alpha\|\| \beta}} C \xrightarrow{F} \mathcal{D}
$$

if we have

$$
\operatorname{id}_{F} \star \alpha=\operatorname{id}_{F} \star \beta,
$$

then $\alpha=\beta$.
2. For each $\mathcal{X} \in \operatorname{Obj}($ Cats $)$ and each natural isomorphism

$$
\beta: F \circ \phi \xlongequal{\sim} F \circ \psi, \quad \chi \underset{F \nmid}{\stackrel{F \circ \phi}{\beta \downarrow}} \mathcal{D},
$$

there exists a natural isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \underset{\psi}{\stackrel{\phi}{\alpha}} C
$$

such that we have an equality

$$
\mathcal{X} \xrightarrow[\sim]{\stackrel{\alpha \downarrow}{\phi}} \mathcal{C} \xrightarrow{F} \mathcal{D}=\mathcal{X} \underset{F \circ \psi}{\frac{F \circ \phi}{\beta \downarrow}} \mathcal{D}
$$

of pasting diagrams, i.e. such that we have

$$
\beta=\operatorname{id}_{F} \star \alpha .
$$

1. Characterisations. The following conditions are equivalent:
(a) The functor F is pseudomonic.
(b) The functor F satisfies the following conditions:
i. The functor F is faithful, i.e. for each $A, B \in \operatorname{Obj}(C)$, the action on morphisms

$$
F_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{Hom}_{\mathcal{D}}\left(F_{A}, F_{B}\right)
$$

of F at (A, B) is injective.
ii. For each $A, B \in \operatorname{Obj}(C)$, the restriction

$$
F_{A, B}^{\mathrm{iso}}: \operatorname{Iso}_{\mathcal{C}}(A, B) \rightarrow \operatorname{Iso}_{\mathcal{D}}\left(F_{A}, F_{B}\right)
$$

of the action on morphisms of F at (A, B) to isomorphisms is surjective.
(c) We have an isocomma square of the form

in Cats 2 up to equivalence.
(d) We have an isocomma square of the form
in Cats 2 up to equivalence.
(e) For each $\mathcal{X} \in \operatorname{Obj}$ (Cats), the postcomposition ${ }^{26}$ functor

$$
F_{*}: \operatorname{Fun}(X, C) \rightarrow \operatorname{Fun}(X, \mathcal{D})
$$

is pseudomonic.

[^89]015X 2. Conservativity. If F is pseudomonic, then F is conservative.
$015 Y$ 3. Essential Injectivity. If F is pseudomonic, then F is essentially injective.

Proof. Item 1, Characterisations: Omitted.
Item 2, Conservativity: Omitted.
Item 3, Essential Injectivity: Omitted.

0152 8.6.5 Pseudoepic Functors

Let \mathcal{C} and \mathcal{D} be categories.
0160 Definition 8.6.5.1.1. A functor $F: C \rightarrow \mathcal{D}$ is pseudoepic if it satisfies the following conditions:

0161 1. For all diagrams of the form

$$
C \xrightarrow{F} \mathcal{D} \xrightarrow[\underbrace{}_{\psi}]{\frac{\phi}{\alpha\|\| \beta}}, X,
$$

if we have

$$
\alpha \star \operatorname{id}_{F}=\beta \star \operatorname{id}_{F},
$$

then $\alpha=\beta$.
0162 2. For each $X \in \operatorname{Obj}(C)$ and each 2-isomorphism

$$
\beta: \phi \circ F \stackrel{\sim}{\Longrightarrow} \psi \circ F, \quad C \underset{\psi \vee F}{\stackrel{\phi \circ F}{\beta \downarrow}} \mathcal{X}
$$

of \mathcal{C}, there exists a 2 -isomorphism

of C such that we have an equality

$$
C \xrightarrow{F} \mathcal{D} \underset{\underbrace{\alpha \downarrow}_{\psi}}{\stackrel{\phi}{\alpha}} \mathcal{X}=C \underset{\psi \vee F}{\frac{\phi \circ F}{\beta \downarrow}} \mathcal{X}
$$

of pasting diagrams in \mathcal{C}, i.e. such that we have

$$
\beta=\alpha \star \operatorname{id}_{F} .
$$

0163 Proposition 8.6.5.1.2. Let $F: C \rightarrow \mathcal{D}$ be a functor.
0164 1. Characterisations. The following conditions are equivalent:
(c) We have an isococomma square of the form

in Cats ${ }_{2}$ up to equivalence.
2. Dominance. If F is pseudoepic, then F is dominant (Definition 8.6.1.1.1).

Proof. Item 1, Characterisations: Omitted.
Item 2, Dominance: If F is pseudoepic, then

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(C, \mathcal{X})
$$

is pseudomonic for all $\mathcal{X} \in \operatorname{Obj}$ (Cats), and thus in particular faithful. By Item 4 g of Item 4 of Proposition 8.5.1.1.2, this is equivalent to requiring F to be dominant.

0169 Question 8.6.5.1.3. Is there a nice characterisation of the pseudoepic functors, similarly to the characterisaiton of pseudomonic functors given in Item 1b of Item 1 of Proposition 8.6.4.1.2?
This question also appears as [MO 321971].
016 A Question 8.6.5.1.4. A pseudomonic and pseudoepic functor is dominant, faithful, essentially injective, and full on isomorphisms. Is it necessarily an equivalence of categories? If not, how bad can this fail, i.e. how far can a pseudomonic and pseudoepic functor be from an equivalence of categories?
This question also appears as [MO 468334].
to be pseudomonic leads to pseudoepic functors; see Item 1 b of Item 1 of Proposition 8.6.5.1.2.

016B Question 8.6.5.1.5. Is there a characterisation of functors $F: C \rightarrow \mathcal{D}$ such that:

016C 1. For each $\mathcal{X} \in \operatorname{Obj}($ Cats), the precomposition functor

$$
F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(\mathcal{C}, \mathcal{X})
$$

is pseudoepic?
2. For each $\mathcal{X} \in \operatorname{Obj}($ Cats $)$, the postcomposition functor

$$
F_{*}: \operatorname{Fun}(\mathcal{X}, C) \rightarrow \operatorname{Fun}(\mathcal{X}, \mathcal{D})
$$

is pseudoepic?
This question also appears as [MO 468121a].

016e 8.7 Even More Conditions on Functors

016F 8.7.1 Injective on Objects Functors

Let \mathcal{C} and \mathcal{D} be categories.
016 G Definition 8.7.1.1.1. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is injective on objects if the action on objects

$$
F: \operatorname{Obj}(C) \rightarrow \operatorname{Obj}(\mathcal{D})
$$

of F is injective.
016 H Proposition 8.7.1.1.2. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor.

1. Characterisations. The following conditions are equivalent:
(a) The functor F is injective on objects.
(b) The functor F is an isocofibration in Cats ${ }_{2}$.

Proof. Item 1, Characterisations: Omitted.

016M 8.7.2 Surjective on Objects Functors

Let \mathcal{C} and \mathcal{D} be categories.
016 N Definition 8.7.2.1.1. A functor $F: C \rightarrow \mathcal{D}$ is surjective on objects if the action on objects

$$
F: \operatorname{Obj}(C) \rightarrow \operatorname{Obj}(\mathcal{D})
$$

of F is surjective.

016P 8.7.3 Bijective on Objects Functors

Let \mathcal{C} and \mathcal{D} be categories.
$016 Q$ Definition 8.7.3.1.1. A functor $F: C \rightarrow \mathcal{D}$ is bijective on objects ${ }^{27}$ if the action on objects

$$
F: \operatorname{Obj}(C) \rightarrow \operatorname{Obj}(\mathcal{D})
$$

of F is a bijection.

016R 8.7.4 Functors Representably Faithful on Cores

Let \mathcal{C} and \mathcal{D} be categories.
016S Definition 8.7.4.1.1. A functor $F: C \rightarrow \mathcal{D}$ is representably faithful on cores if, for each $X \in \operatorname{Obj}($ Cats $)$, the postcomposition by F functor

$$
F_{*}: \operatorname{Core}(\operatorname{Fun}(X, C)) \rightarrow \operatorname{Core}(\operatorname{Fun}(X, \mathcal{D}))
$$

is faithful.
016T Remark 8.7.4.1.2. In detail, a functor $F: C \rightarrow \mathcal{D}$ is representably faithful on cores if, given a diagram of the form

$$
X \underset{\psi}{\stackrel{\phi}{\alpha\|\downarrow\| \beta}} C \xrightarrow{F} \mathcal{D},
$$

if α and β are natural isomorphisms and we have

$$
\operatorname{id}_{F} \star \alpha=\operatorname{id}_{F} \star \beta,
$$

then $\alpha=\beta$.
016 U Question 8.7.4.1.3. Is there a characterisation of functors representably faithful on cores?

016V 8.7.5 Functors Representably Full on Cores

Let \mathcal{C} and \mathcal{D} be categories.
016W Definition 8.7.5.1.1. A functor $F: C \rightarrow \mathcal{D}$ is representably full on cores if, for each $X \in \operatorname{Obj}($ Cats $)$, the postcomposition by F functor

$$
F_{*}: \operatorname{Core}(\operatorname{Fun}(X, C)) \rightarrow \operatorname{Core}(\operatorname{Fun}(X, \mathcal{D}))
$$

is full.

[^90]Remark 8.7.5.1.2. In detail, a functor $F: C \rightarrow \mathcal{D}$ is representably full on cores if, for each $\mathcal{X} \in \mathrm{Obj}($ Cats $)$ and each natural isomorphism

$$
\beta: F \circ \phi \stackrel{\sim}{\Longrightarrow} F \circ \psi, \quad \mathcal{X} \underset{F \downarrow \downarrow}{\stackrel{F \circ \phi}{\beta \downarrow}} \mathcal{D}
$$

there exists a natural isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \underset{\psi}{\underset{\psi}{\alpha \|}} C
$$

such that we have an equality

of pasting diagrams in Cats ${ }_{2}$, i.e. such that we have

$$
\beta=\operatorname{id}_{F} \star \alpha .
$$

016Y Question 8.7.5.1.3. Is there a characterisation of functors representably full on cores?
This question also appears as [MO 468121a].

016 Z 8.7.6 Functors Representably Fully Faithful on Cores

Let \mathcal{C} and \mathcal{D} be categories.
0170 Definition 8.7.6.1.1. A functor $F: C \rightarrow \mathcal{D}$ is representably fully faithful on cores if, for each $X \in \operatorname{Obj}$ (Cats), the postcomposition by F functor

$$
F_{*}: \operatorname{Core}(\operatorname{Fun}(\mathcal{X}, C)) \rightarrow \operatorname{Core}(\operatorname{Fun}(\mathcal{X}, \mathcal{D}))
$$

is fully faithful.
0171 Remark 8.7.6.1.2. In detail, a functor $F: C \rightarrow \mathcal{D}$ is representably fully faithful on cores if it satisfies the conditions in Remarks 8.7.4.1.2 and 8.7.5.1.2, i.e.:

0172 1. For all diagrams of the form

$$
X \underset{\psi}{\frac{\phi}{\alpha d \downarrow \sqrt{\beta}}} C \xrightarrow{F} \mathcal{D},
$$

with α and β natural isomorphisms, if we have $\operatorname{id}_{F} \star \alpha=\operatorname{id}_{F} \star \beta$, then $\alpha=\beta$.
2. For each $\mathcal{X} \in \mathrm{Obj}($ Cats $)$ and each natural isomorphism

$$
\beta: F \circ \phi \stackrel{\sim}{\Longrightarrow} F \circ \psi, \quad \chi \underset{F \downarrow \downarrow}{\stackrel{F \circ \phi}{\beta \downarrow}} \mathcal{D}
$$

of C, there exists a natural isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \underset{\frac{\alpha \downarrow}{\stackrel{\alpha}{\psi}}}{\stackrel{\phi}{\Longrightarrow}} C
$$

of C such that we have an equality

of pasting diagrams in Cats 2 , i.e. such that we have

$$
\beta=\operatorname{id}_{F} \star \alpha
$$

0174 Question 8.7 .6 .1 .3 . Is there a characterisation of functors representably fully faithful on cores?

0175 8.7.7 Functors Corepresentably Faithful on Cores

Let C and \mathcal{D} be categories.
0176 Definition 8.7.7.1.1. A functor $F: C \rightarrow \mathcal{D}$ is corepresentably faithful on cores if, for each $X \in \operatorname{Obj}($ Cats), the postcomposition by F functor

$$
F_{*}: \operatorname{Core}(\operatorname{Fun}(\mathcal{X}, C)) \rightarrow \operatorname{Core}(\operatorname{Fun}(\mathcal{X}, \mathcal{D}))
$$

is faithful.
0177 Remark 8.7.7.1.2. In detail, a functor $F: C \rightarrow \mathcal{D}$ is corepresentably faithful on cores if, given a diagram of the form
if α and β are natural isomorphisms and we have

$$
\alpha \star \operatorname{id}_{F}=\beta \star \operatorname{id}_{F},
$$

then $\alpha=\beta$.
0178 Question 8.7.7.1.3. Is there a characterisation of functors corepresentably faithful on cores?

0179 8.7.8 Functors Corepresentably Full on Cores

Let \mathcal{C} and \mathcal{D} be categories.
017A Definition 8.7.8.1.1. A functor $F: C \rightarrow \mathcal{D}$ is corepresentably full on cores if, for each $X \in \operatorname{Obj}($ Cats $)$, the postcomposition by F functor

$$
F_{*}: \operatorname{Core}(\operatorname{Fun}(X, C)) \rightarrow \operatorname{Core}(\operatorname{Fun}(X, \mathcal{D}))
$$

is full.
017B Remark 8.7.8.1.2. In detail, a functor $F: C \rightarrow \mathcal{D}$ is corepresentably full on cores if, for each $\mathcal{X} \in \operatorname{Obj}($ Cats $)$ and each natural isomorphism

$$
\beta: \phi \circ F \stackrel{\sim}{\Longrightarrow} \psi \circ F, \quad C \underset{\psi \downarrow}{\stackrel{\phi \circ F}{\beta \downarrow}} \mathcal{\not} \mathcal{Q},
$$

there exists a natural isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad \mathcal{D}{\underset{\sim}{\psi}}_{\frac{\phi}{\alpha}}^{\sim} \mathcal{X}
$$

such that we have an equality

of pasting diagrams in Cats $_{2}$, i.e. such that we have

$$
\beta=\alpha \star \operatorname{id}_{F} .
$$

$017 C$ Question 8.7.8.1.3. Is there a characterisation of functors corepresentably full on cores?
This question also appears as [MO 468121a].

017D 8.7.9 Functors Corepresentably Fully Faithful on Cores

Let \mathcal{C} and \mathcal{D} be categories.
017E Definition 8.7.9.1.1. A functor $F: C \rightarrow \mathcal{D}$ is corepresentably fully faithful on cores if, for each $X \in \operatorname{Obj}($ Cats $)$, the postcomposition by F functor

$$
F_{*}: \operatorname{Core}(\operatorname{Fun}(\mathcal{X}, C)) \rightarrow \operatorname{Core}(\operatorname{Fun}(\mathcal{X}, \mathcal{D}))
$$

is fully faithful.

017F Remark 8.7.9.1.2. In detail, a functor $F: C \rightarrow \mathcal{D}$ is corepresentably fully faithful on cores if it satisfies the conditions in Remarks 8.7.7.1.2 and 8.7.8.1.2, i.e.:

017 G 1. For all diagrams of the form
if α and β are natural isomorphisms and we have

$$
\alpha \star \operatorname{id}_{F}=\beta \star \operatorname{id}_{F},
$$

then $\alpha=\beta$.
2. For each $\mathcal{X} \in \mathrm{Obj}$ (Cats) and each natural isomorphism

$$
\beta: \phi \circ F \stackrel{\sim}{\Longrightarrow} \psi \circ F, \quad C \underset{\psi \downarrow}{\frac{\phi \circ F}{\beta \downarrow}} \mathcal{\not} \mathcal{Q},
$$

there exists a natural isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad \mathcal{D}{\underset{\psi}{\alpha \downarrow}}_{\stackrel{\phi}{\alpha}} \mathcal{X}
$$

such that we have an equality

of pasting diagrams in Cats 2 , i.e. such that we have

$$
\beta=\alpha \star \mathrm{id}_{F} .
$$

017 J Question 8.7 .9 .1 .3 . Is there a characterisation of functors corepresentably fully faithful on cores?

017k 8.8 Natural Transformations

017 L

8.8.1 Transformations

Let C and \mathcal{D} be categories and $F, G: C \rightrightarrows \mathcal{D}$ be functors.

017M Definition 8.8.1.1.1. A transformation ${ }^{28} \alpha: F \Rightarrow G$ from F to G is a collection

$$
\left\{\alpha_{A}: F(A) \rightarrow G(A)\right\}_{A \in \operatorname{Obj}(C)}
$$

of morphisms of \mathcal{D}.
017N Notation 8.8.1.1.2. We write $\operatorname{Trans}(F, G)$ for the set of transformations from F to G.

017P 8.8.2 Natural Transformations

Let C and \mathcal{D} be categories and $F, G: C \rightrightarrows \mathcal{D}$ be functors.
017Q Definition 8.8.2.1.1. A natural transformation $\alpha: F \Longrightarrow G$ from F to G is a transformation

$$
\left\{\alpha_{A}: F(A) \rightarrow G(A)\right\}_{A \in \operatorname{Obj}(C)}
$$

from F to G such that, for each morphism $f: A \rightarrow B$ of C, the diagram

commutes. ${ }^{29}$
017R Remark 8.8.2.1.2. We denote natural transformations in diagrams as
$017 S$ Notation 8.8.2.1.3. We write $\operatorname{Nat}(F, G)$ for the set of natural transformations from F to G.

017T Example 8.8.2.1.4. The identity natural transformation id $_{F}: F \Longrightarrow$ F of F is the natural transformation consisting of the collection

$$
\left\{\operatorname{id}_{F(A)}: F(A) \rightarrow F(A)\right\}_{A \in \operatorname{Obj}(C)}
$$

Proof. The naturality condition for id_{F} is the requirement that, for each

[^91]morphism $f: A \rightarrow B$ of C, the diagram

commutes, which follows from unitality of the composition of \mathcal{C}.
017U Definition 8.8.2.1.5. Two natural transformations $\alpha, \beta: F \Longrightarrow G$ are equal if we have
$$
\alpha_{A}=\beta_{A}
$$
for each $A \in \operatorname{Obj}(C)$.

017V 8.8.3 Vertical Composition of Natural Transformations

017W Definition 8.8.3.1.1. The vertical composition of two natural transformations $\alpha: F \Longrightarrow G$ and $\beta: G \Longrightarrow H$ as in the diagram

is the natural transformation $\beta \circ \alpha: F \Longrightarrow H$ consisting of the collection

$$
\left\{(\beta \circ \alpha)_{A}: F(A) \rightarrow H(A)\right\}_{A \in \operatorname{Obj}(C)}
$$

with

$$
(\beta \circ \alpha)_{A} \stackrel{\text { def }}{=} \beta_{A} \circ \alpha_{A}
$$

for each $A \in \operatorname{Obj}(C)$.
Proof. The naturality condition for $\beta \circ \alpha$ is the requirement that the boundary of the diagram

commutes. Since

1. Subdiagram (1) commutes by the naturality of α.
2. Subdiagram (2) commutes by the naturality of β. so does the boundary diagram. Hence $\beta \circ \alpha$ is a natural transformation.

017X Proposition 8.8.3.1.2. Let \mathcal{C}, \mathcal{D}, and \mathcal{E} be categories.

1. Functionality. The assignment $(\beta, \alpha) \mapsto \beta \circ \alpha$ defines a function

$$
\circ_{F, G, H}: \operatorname{Nat}(G, H) \times \operatorname{Nat}(F, G) \rightarrow \operatorname{Nat}(F, H) .
$$

2. Associativity. Let $F, G, H, K: C \stackrel{\rightrightarrows}{\rightrightarrows} \mathcal{D}$ be functors. The diagram

commutes, i.e. given natural transformations

$$
F \stackrel{\alpha}{\Longrightarrow} G \stackrel{\beta}{\Longrightarrow} H \stackrel{\gamma}{\Longrightarrow} K,
$$

we have

$$
(\gamma \circ \beta) \circ \alpha=\gamma \circ(\beta \circ \alpha) .
$$

3. Unitality. Let $F, G: C \rightrightarrows \mathcal{D}$ be functors.
(a) Left Unitality. The diagram

commutes, i.e. given a natural transformation $\alpha: F \Longrightarrow G$, we have

$$
\operatorname{id}_{G} \circ \alpha=\alpha .
$$

(b) Right Unitality. The diagram

commutes, i.e. given a natural transformation $\alpha: F \Longrightarrow G$, we have

$$
\alpha \circ \mathrm{id}_{F}=\alpha
$$

4. Middle Four Exchange. Let $F_{1}, F_{2}, F_{3}: C \rightarrow \mathcal{D}$ and $G_{1}, G_{2}, G_{3}: \mathcal{D} \rightarrow$ \mathcal{E} be functors. The diagram

commutes, i.e. given a diagram

in Cats 2 , we have

$$
\left(\beta^{\prime} \star \alpha^{\prime}\right) \circ(\beta \star \alpha)=\left(\beta^{\prime} \circ \beta\right) \star\left(\alpha^{\prime} \circ \alpha\right)
$$

Proof. Item 1, Functionality: Clear.
Item 2, Associativity: Indeed, we have

$$
\begin{aligned}
((\gamma \circ \beta) \circ \alpha)_{A} & \stackrel{\text { def }}{=}(\gamma \circ \beta)_{A} \circ \alpha_{A} \\
& \stackrel{\text { def }}{=}\left(\gamma_{A} \circ \beta_{A}\right) \circ \alpha_{A} \\
& =\gamma_{A} \circ\left(\beta_{A} \circ \alpha_{A}\right) \\
& \stackrel{\text { def }}{=} \gamma_{A} \circ(\beta \circ \alpha)_{A} \\
& \stackrel{\text { def }}{=}(\gamma \circ(\beta \circ \alpha))_{A}
\end{aligned}
$$

for each $A \in \operatorname{Obj}(C)$, showing the desired equality.
Item 3, Unitality: We have

$$
\begin{aligned}
\left(\mathrm{id}_{G} \circ \alpha\right)_{A} & =\operatorname{id}_{G} \circ \alpha_{A} \\
& =\alpha_{A}, \\
\left(\alpha \circ \operatorname{id}_{F}\right)_{A} & =\alpha_{A} \circ \operatorname{id}_{F} \\
& =\alpha_{A}
\end{aligned}
$$

for each $A \in \operatorname{Obj}(C)$, showing the desired equality.
Item 4, Middle Four Exchange: This is proved in Item 4 of Proposition 8.8.4.1.3.

0182 8.8.4 Horizontal Composition of Natural Transformations
0183 Definition 8.8.4.1.1. The horizontal composition ${ }^{30,31}$ of two natural transformations $\alpha: F \Longrightarrow G$ and $\beta: H \Longrightarrow K$ as in the diagram

$$
\mathcal{C} \underset{G}{\frac{\sigma}{\alpha}} \mathcal{D} \underset{\underbrace{\beta \Downarrow}_{K}}{\frac{H}{\beta}} \mathcal{E}
$$

of α and β is the natural transformation

$$
\beta \star \alpha:(H \circ F) \Longrightarrow(K \circ G),
$$

as in the diagram

consisting of the collection

$$
\left\{(\beta \star \alpha)_{A}: H(F(A)) \rightarrow K(G(A))\right\}_{A \in \operatorname{Obj}(C)},
$$

of morphisms of \mathcal{E} with

$$
\begin{aligned}
(\beta \star \alpha)_{A} \stackrel{\text { def }}{=} \beta_{G(A)} \circ H\left(\alpha_{A}\right) & H(F(A)) \xrightarrow{H\left(\alpha_{A}\right)} H(G(A)) \\
=K\left(\alpha_{A}\right) \circ \beta_{F(A)}, & \beta_{F(A)} \mid \\
& K(F(A)) \xrightarrow{\beta_{G(A)}} \\
& K(G(A)) .
\end{aligned}
$$

[^92]Proof. First, we claim that we indeed have

$$
\begin{array}{ll}
& H(F(A)) \xrightarrow{H\left(\alpha_{A}\right)} H(G(A)) \\
\beta_{G(A)} \circ H\left(\alpha_{A}\right)=K\left(\alpha_{A}\right) \circ \beta_{F(A)}, & \beta_{F(A)} \downarrow \\
& K(F(A)) \xrightarrow[K\left(\alpha_{A}\right)]{ } K(G(A))
\end{array}
$$

This is, however, simply the naturality square for β applied to the morphism $\alpha_{A}: F(A) \rightarrow G(A)$. Next, we check the naturality condition for $\beta \star \alpha$, which is the requirement that the boundary of the diagram

commutes. Since

1. Subdiagram (1) commutes by the naturality of α.
2. Subdiagram (2) commutes by the naturality of β.
so does the boundary diagram. Hence $\beta \circ \alpha$ is a natural transformation. ${ }^{32}$

0184 Definition 8.8.4.1.2. Let

$$
\mathcal{X} \xrightarrow{F} C \underset{\psi}{\stackrel{\phi \Downarrow}{\alpha \Downarrow}} \mathcal{D} \xrightarrow{G} y
$$

be a diagram in Cats ${ }_{2}$.

[^93]1. The left whiskering of α with G is the natural transformation ${ }^{33}$

$$
\operatorname{id}_{G} \star \alpha: G \circ \phi \Longrightarrow G \circ \psi
$$

2. The right whiskering of α with F is the natural transformation ${ }^{34}$

$$
\alpha \star \operatorname{id}_{F}: \phi \circ F \Longrightarrow \psi \circ F .
$$

Proposition 8.8.4.1.3. Let \mathcal{C}, \mathcal{D}, and \mathcal{E} be categories.

1. Functionality. The assignment $(\beta, \alpha) \mapsto \beta \star \alpha$ defines a function

$$
\star_{(F, G),(H, K)}: \operatorname{Nat}(H, K) \times \operatorname{Nat}(F, G) \rightarrow \operatorname{Nat}(H \circ F, K \circ G)
$$

2. Associativity. Let

$$
\mathcal{C} \underset{G_{1}}{\stackrel{F_{1}}{\rightrightarrows}} \mathcal{D} \underset{G_{2}}{\stackrel{F_{2}}{\rightrightarrows}} \mathcal{E} \underset{G_{3}}{\stackrel{F_{3}}{\rightrightarrows}} \mathcal{F}
$$

be a diagram in Cats 2 . The diagram

commutes, i.e. given natural transformations

we have

$$
(\gamma \star \beta) \star \alpha=\gamma \star(\beta \star \alpha) .
$$

3. Interaction With Identities. Let $F: C \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{E}$ be functors. The diagram

[^94]commutes, i.e. we have
$$
\operatorname{id}_{G} \star \operatorname{id}_{F}=\operatorname{id}_{G \circ F} .
$$
4. Middle Four Exchange. Let $F_{1}, F_{2}, F_{3}: C \rightarrow \mathcal{D}$ and $G_{1}, G_{2}, G_{3}: \mathcal{D} \rightarrow$ \mathcal{E} be functors. The diagram

commutes, i.e. given a diagram

in Cats 2 , we have
$$
\left(\beta^{\prime} \star \alpha^{\prime}\right) \circ(\beta \star \alpha)=\left(\beta^{\prime} \circ \beta\right) \star\left(\alpha^{\prime} \circ \alpha\right) .
$$

Proof. Item 1, Functionality: Clear.
Item 2, Associativity: Omitted.
Item 3, Interaction With Identities: We have

$$
\begin{aligned}
\left(\operatorname{id}_{G} \star \operatorname{id}_{F}\right)_{A} & \stackrel{\text { def }}{=}\left(\operatorname{id}_{G}\right)_{F_{A}} \circ G_{\left(\mathrm{id}_{F}\right)_{A}} \\
& \stackrel{\text { def }}{=} \operatorname{id}_{G_{F_{A}}} \circ G_{\mathrm{id}_{F_{A}}} \\
& =\operatorname{id}_{G_{F_{A}}} \circ \operatorname{id}_{G_{F_{A}}} \\
& =\operatorname{id}_{G_{F_{A}}} \\
& \stackrel{\text { def }}{=}\left(\operatorname{id}_{G \circ F}\right)_{A}
\end{aligned}
$$

for each $A \in \operatorname{Obj}(C)$, showing the desired equality.

[^95]Item 4, Middle Four Exchange: Let $A \in \operatorname{Obj}(C)$ and consider the diagram

The top composition

is given by $\left(\left(\beta^{\prime} \circ \beta\right) \star\left(\alpha^{\prime} \circ \alpha\right)\right)_{A}$, while the bottom composition

is given by $\left(\left(\beta^{\prime} \star \alpha^{\prime}\right) \circ(\beta \star \alpha)\right)_{A}$. Now, Subdiagram (1) corresponds to the naturality condition

$$
\begin{array}{ll}
G_{1}\left(\alpha_{A}^{\prime}\right) \circ \beta_{F_{2}(A)}=\beta_{F_{3}}(A) \circ F_{1}\left(\alpha_{A}^{\prime}\right), & \beta_{F_{2}(A)} \downarrow \\
& G_{2}\left(F_{2}(A)\right) \xrightarrow[G_{2}\left(\alpha_{A}^{\prime}\right)]{G_{1}\left(\alpha_{A}^{\prime}\right)} G_{1}\left(F_{3}(A)\right) \\
G_{2}\left(F_{3}(A)\right)
\end{array}
$$

for $\beta: G_{1} \Longrightarrow G_{2}$ at $\alpha_{A}^{\prime}: F_{2}(A) \rightarrow F_{3}(A)$, and thus commutes. Thus we have

$$
\left(\left(\beta^{\prime} \circ \beta\right) \star\left(\alpha^{\prime} \circ \alpha\right)\right)_{A}=\left(\left(\beta^{\prime} \star \alpha^{\prime}\right) \circ(\beta \star \alpha)\right)_{A}
$$

for each $A \in \operatorname{Obj}(C)$ and therefore

$$
\left(\beta^{\prime} \star \alpha^{\prime}\right) \circ(\beta \star \alpha)=\left(\beta^{\prime} \circ \beta\right) \star\left(\alpha^{\prime} \circ \alpha\right) .
$$

This finishes the proof.

018C 8.8.5 Properties of Natural Transformations

018 D Proposition 8.8.5.1.1. Let $F, G: C \rightrightarrows \mathcal{D}$ be functors. The following data are equivalent: ${ }^{35}$

018E 1. A natural transformation $\alpha: F \Longrightarrow G$.
$018 \mathrm{~F} \quad$ 2. A functor $[\alpha]: \mathcal{C} \rightarrow \mathcal{D}^{\mathbb{1}}$ filling the diagram

3. A functor $[\alpha]: \mathcal{C} \times \mathbb{1} \rightarrow \mathcal{D}$ filling the diagram

Proof. From Item 1 to Item 2 and Back: We may identify $\mathcal{D}^{\mathbb{1}}$ with

[^96]$\operatorname{Arr}(\mathcal{D})$. Given a natural transformation $\alpha: F \Longrightarrow G$, we have a functor
\[

$$
\begin{gathered}
{[\alpha]: C \longrightarrow \mathcal{D}^{\mathbb{1}}} \\
A \longmapsto(f: A \rightarrow B) \longmapsto\left(\begin{array}{c}
\alpha_{A} \\
\alpha_{A} \mid \\
F_{A} \xrightarrow[F_{f}]{F_{G_{f}}} F_{B} \\
G_{B}
\end{array}\right)
\end{gathered}
$$
\]

making the diagram in Item 2 commute. Conversely, every such functor gives rise to a natural transformation from F to G, and these constructions are inverse to each other.
From Item 2 to Item 3 and Back: This follows from Item 3 of Proposition 8.9.1.1.2.

018H 8.8.6 Natural Isomorphisms

Let \mathcal{C} and \mathcal{D} be categories and let $F, G: \mathcal{C} \rightrightarrows \mathcal{D}$ be functors.
018J Definition 8.8.6.1.1. A natural transformation $\alpha: F \Longrightarrow G$ is a natural isomorphism if there exists a natural transformation $\alpha^{-1}: G \Longrightarrow F$ such that

$$
\begin{aligned}
& \alpha^{-1} \circ \alpha=\operatorname{id}_{F}, \\
& \alpha \circ \alpha^{-1}=\operatorname{id}_{G} .
\end{aligned}
$$

018K Proposition 8.8.6.1.2. Let $\alpha: F \Longrightarrow G$ be a natural transformation.
018 L 1. Characterisations. The following conditions are equivalent:
(a) The natural transformation α is a natural isomorphism.
(b) For each $A \in \operatorname{Obj}(C)$, the morphism $\alpha_{A}: F_{A} \rightarrow G_{A}$ is an isomorphism.
2. Componentwise Inverses of Natural Transformations Assemble Into Natural Transformations. Let $\alpha^{-1}: G \Longrightarrow F$ be a transformation such that, for each $A \in \operatorname{Obj}(C)$, we have

$$
\begin{aligned}
& \alpha_{A}^{-1} \circ \alpha_{A}=\operatorname{id}_{F(A)}, \\
& \alpha_{A} \circ \alpha_{A}^{-1}=\operatorname{id}_{G(A)} .
\end{aligned}
$$

Then α^{-1} is a natural transformation.

Proof. Item 1, Characterisations: The implication Item 1a \Longrightarrow Item 1b is clear, whereas the implication Item $1 \mathrm{~b} \Longrightarrow$ Item 1a follows from Item 2. Item 2, Componentwise Inverses of Natural Transformations Assemble Into Natural Transformations: The naturality condition for α^{-1} corresponds to the commutativity of the diagram

for each $A, B \in \operatorname{Obj}(C)$ and each $f \in \operatorname{Hom}_{C}(A, B)$. Considering the diagram

where the boundary diagram as well as Subdiagram (2) commute, we have

$$
\begin{aligned}
G(f) & =G(f) \circ \operatorname{id}_{G(A)} \\
& =G(f) \circ \alpha_{A} \circ \alpha_{A}^{-1} \\
& =\alpha_{B} \circ F(f) \circ \alpha_{A}^{-1} .
\end{aligned}
$$

Postcomposing both sides with α_{B}^{-1}, we get

$$
\begin{aligned}
\alpha_{B}^{-1} \circ G(f) & =\alpha_{B}^{-1} \circ \alpha_{B} \circ F(f) \circ \alpha_{A}^{-1} \\
& =\operatorname{id}_{F(B)} \circ F(f) \circ \alpha_{A}^{-1} \\
& =F(f) \circ \alpha_{A}^{-1},
\end{aligned}
$$

which is the naturality condition we wanted to show. Thus α^{-1} is a natural transformation.

01808.9 Categories of Categories

018 R 8.9.1 Functor Categories

Let \mathcal{C} be a category and \mathcal{D} be a small category.

018 S Definition 8.9.1.1.1. The category of functors from C to \mathcal{D}^{36} is the category $\operatorname{Fun}(\boldsymbol{C}, \mathcal{D})^{37}$ where

- Objects. The objects of $\operatorname{Fun}(C, \mathcal{D})$ are functors from C to \mathcal{D}.
- Morphisms. For each $F, G \in \operatorname{Obj}(\operatorname{Fun}(C, \mathcal{D}))$, we have

$$
\operatorname{Hom}_{\text {Fun }(C, \mathcal{D})}(F, G) \stackrel{\text { def }}{=} \operatorname{Nat}(F, G)
$$

- Identities. For each $F \in \operatorname{Obj}(\operatorname{Fun}(C, \mathcal{D}))$, the unit map

$$
\mathbb{1}_{F}^{\text {Fun }(\mathcal{C}, \mathcal{D})}: \mathrm{pt} \rightarrow \operatorname{Nat}(F, F)
$$

of $\operatorname{Fun}(C, \mathcal{D})$ at F is given by

$$
\mathrm{id}_{F}^{\text {Fun }(C, \mathcal{D})} \stackrel{\text { def }}{=} \mathrm{id}_{F},
$$

where $\operatorname{id}_{F}: F \Longrightarrow F$ is the identity natural transformation of F of Example 8.8.2.1.4.

- Composition. For each $F, G, H \in \operatorname{Obj}(\operatorname{Fun}(C, \mathcal{D}))$, the composition map

$$
\circ_{F, G, H}^{\mathrm{Fun}(C, \mathcal{D})}: \operatorname{Nat}(G, H) \times \operatorname{Nat}(F, G) \rightarrow \operatorname{Nat}(F, H)
$$

of $\operatorname{Fun}(C, \mathcal{D})$ at (F, G, H) is given by

$$
\beta \circ \stackrel{\operatorname{Fun}(C, \mathcal{D})}{F, G, H} \stackrel{\text { def }}{=} \beta \circ \alpha,
$$

where $\beta \circ \alpha$ is the vertical composition of α and β of Item 1 of Proposition 8.8.3.1.2.

018 T Proposition 8.9.1.1.2. Let \mathcal{C} and \mathcal{D} be categories and let $F: C \rightarrow \mathcal{D}$ be a functor.

1. Functoriality. The assignments $C, \mathcal{D},(C, \mathcal{D}) \mapsto \operatorname{Fun}(C, \mathcal{D})$ define functors

$$
\begin{gathered}
\text { Fun }\left(C,-{ }_{2}\right): \text { Cats } \rightarrow \text { Cats, } \\
\text { Fun }(-1, \mathcal{D}): \text { Cats }^{\mathrm{op}} \rightarrow \text { Cats, } \\
\text { Fun }(-1,-2): \text { Cats }^{\mathrm{op}} \times \text { Cats } \rightarrow \text { Cats. }
\end{gathered}
$$

2. 2-Functoriality. The assignments $C, \mathcal{D},(C, \mathcal{D}) \mapsto \operatorname{Fun}(C, \mathcal{D})$ define 2-functors

$$
\begin{gathered}
\text { Fun }(C,-2): \text { Cats }_{2} \rightarrow \text { Cats }_{2}, \\
\text { Fun }(-1, \mathcal{D}): \text { Cats }_{2}^{\mathrm{op}} \rightarrow \text { Cats }_{2}, \\
\text { Fun }(-1,-2): \text { Cats }_{2}^{\mathrm{op}} \times \text { Cats }_{2} \rightarrow \text { Cats }_{2} .
\end{gathered}
$$

[^97]3. Adjointness. We have adjunctions
\[

$$
\begin{aligned}
(C \times-\dashv \operatorname{Fun}(C,-)): & \text { Cats } \frac{C \times-}{\frac{C \times-}{\perp}} \text { Cun }(C,-) \\
(-\times \mathcal{D} \dashv \operatorname{Fun}(\mathcal{D},-)): & \text { Cats, } \underset{\operatorname{Fun}(\mathcal{D},-)}{\frac{-\times \mathcal{D}}{\perp}} \text { Cats, }
\end{aligned}
$$
\]

witnessed by bijections of sets

$$
\begin{aligned}
& \operatorname{Hom}_{\text {Cats }}(C \times \mathcal{D}, \mathcal{E}) \cong \operatorname{Hom}_{\text {Cats }}(\mathcal{D}, \operatorname{Fun}(C, \mathcal{E})), \\
& \operatorname{Hom}_{\text {Cats }}(C \times \mathcal{D}, \mathcal{E}) \cong \operatorname{Hom}_{\text {Cats }}(C, \operatorname{Fun}(\mathcal{D}, \mathcal{E})), \\
& \text { natural in } C, \mathcal{D}, \mathcal{E} \in \operatorname{Obj}(\text { Cats }) .
\end{aligned}
$$

018X 4. 2-Adjointness. We have 2-adjunctions

$$
\begin{aligned}
& (C \times-\dashv \operatorname{Fun}(C,-)): \quad \operatorname{Cats}_{2} \underset{\operatorname{Fun}(C,-)}{\frac{C \times-}{\perp_{2}}} \mathrm{Cats}_{2}, \\
& (-\times \mathcal{D} \dashv \operatorname{Fun}(\mathcal{D},-)): \quad \operatorname{Cats}_{2} \xrightarrow[\operatorname{Fun(\mathcal {D},-)}]{\frac{-\times \mathcal{D}}{\perp_{2}}} \text { Cats }_{2},
\end{aligned}
$$

witnessed by isomorphisms of categories

$$
\begin{aligned}
& \operatorname{Fun}(C \times \mathcal{D}, \mathcal{E}) \cong \operatorname{Fun}(\mathcal{D}, \operatorname{Fun}(C, \mathcal{E})), \\
& \operatorname{Fun}(C \times \mathcal{D}, \mathcal{E}) \cong \operatorname{Fun}(C, \operatorname{Fun}(\mathcal{D}, \mathcal{E})), \\
& \text { natural in } C, \mathcal{D}, \mathcal{E} \in \mathrm{Obj}\left(\mathrm{Cats}_{2}\right)
\end{aligned}
$$

5. Interaction With Punctual Categories. We have a canonical isomorphism of categories

$$
\operatorname{Fun}(\mathrm{pt}, C) \cong C
$$

natural in $C \in \operatorname{Obj}$ (Cats).
6. Objectwise Computation of Co/Limits. Let

$$
D: \mathcal{I} \rightarrow \operatorname{Fun}(C, \mathcal{D})
$$

be a diagram in $\operatorname{Fun}(C, \mathcal{D})$. We have isomorphisms

$$
\begin{aligned}
\lim (D)_{A} & \cong \lim _{i \in I}\left(D_{i}(A)\right) \\
\operatorname{colim}(D)_{A} & \cong \operatorname{colim}_{i \in I}\left(D_{i}(A)\right),
\end{aligned}
$$

naturally in $A \in \operatorname{Obj}(C)$.
7. Interaction With Co/Completeness. If \mathcal{E} is co/complete, then so is $\operatorname{Fun}(C, \mathcal{E})$.
8. Monomorphisms and Epimorphisms. Let $\alpha: F \Longrightarrow G$ be a morphism of $\operatorname{Fun}(C, \mathcal{D})$. The following conditions are equivalent:
(a) The natural transformation

$$
\alpha: F \Longrightarrow G
$$

is a monomorphism (resp. epimorphism) in $\operatorname{Fun}(C, \mathcal{D})$.
(b) For each $A \in \operatorname{Obj}(C)$, the morphism

$$
\alpha_{A}: F_{A} \rightarrow G_{A}
$$

is a monomorphism (resp. epimorphism) in \mathcal{D}.
Proof. Item 1, Functoriality: Omitted.
Item 2, 2-Functoriality: Omitted.
Item 3, Adjointness: Omitted.
Item 4, 2-Adjointness: Omitted.
Item 5, Interaction With Punctual Categories: Omitted.
Item 6, Objectwise Computation of Co/Limits: Omitted.
Item 7, Interaction With Co/Completeness: This follows from ??.
Item 8, Monomorphisms and Epimorphisms: Omitted.

0194 8.9.2 The Category of Categories and Functors

0195 Definition 8.9.2.1.1. The category of (small) categories and functors is the category Cats where

- Objects. The objects of Cats are small categories.
- Morphisms. For each $C, \mathcal{D} \in \operatorname{Obj}($ Cats $)$, we have

$$
\operatorname{Hom}_{C a t s}(C, \mathcal{D}) \stackrel{\text { def }}{=} \operatorname{Obj}(\operatorname{Fun}(C, \mathcal{D}))
$$

- Identities. For each $C \in \operatorname{Obj}($ Cats $)$, the unit map

$$
\mathbb{1}_{C}^{\text {Cats }}: \mathrm{pt} \rightarrow \operatorname{Hom}_{\mathrm{Cats}}(C, C)
$$

of Cats at C is defined by

$$
\mathrm{id}_{C}^{C a t s} \stackrel{\text { def }}{=} \mathrm{id}_{C},
$$

where $\operatorname{id}_{C}: C \rightarrow C$ is the identity functor of C of Example 8.4.1.1.4.

- Composition. For each $\mathcal{C}, \mathcal{D}, \mathcal{E} \in \operatorname{Obj}($ Cats $)$, the composition map

$$
\circ_{C, \mathcal{D}, \mathcal{E}}^{\text {Cats }_{\text {ats }}^{C a t s}}(\mathcal{D}, \mathcal{E}) \times \operatorname{Hom}_{\text {Cats }}(C, \mathcal{D}) \rightarrow \operatorname{Hom}_{\text {Cats }}(C, \mathcal{E})
$$

of Cats at $(\mathcal{C}, \mathcal{D}, \mathcal{E})$ is given by

$$
G \circ \circ_{C, \mathcal{D}, \varepsilon}^{\text {Cats }} F \stackrel{\text { def }}{=} G \circ F,
$$

where $G \circ F: C \rightarrow \mathcal{E}$ is the composition of F and G of Definition 8.4.1.1.5.

0196 Proposition 8.9.2.1.2. Let C be a category.
0197 1. Co/Completeness. The category Cats is complete and cocomplete.
2. Cartesian Monoidal Structure. The quadruple (Cats, \times, pt, Fun) is a Cartesian closed monoidal category.

Proof. Item 1, Co/Completeness: Omitted.
Item 2, Cartesian Monoidal Structure: Omitted.

8.9.3 The 2-Category of Categories, Functors, and Natural

019A Definition 8.9.3.1.1. The 2-category of (small) categories, functors, and natural transformations is the 2-category Cats ${ }_{2}$ where

- Objects. The objects of Cats2 are small categories.
- Hom-Categories. For each $C, \mathcal{D} \in \operatorname{Obj}\left(\mathrm{Cats}_{2}\right)$, we have

$$
\operatorname{Hom}_{C_{\text {ats }}^{2}}(C, \mathcal{D}) \stackrel{\text { def }}{=} \operatorname{Fun}(C, \mathcal{D}) .
$$

- Identities. For each $C \in \operatorname{Obj}\left(\mathrm{Cats}_{2}\right)$, the unit functor

$$
\mathbb{1}_{\mathcal{C}}^{\text {Cats }_{2}}: \mathrm{pt} \rightarrow \operatorname{Fun}(C, C)
$$

of Cats 2 at \mathcal{C} is the functor picking the identity functor $\mathrm{id}_{\mathcal{C}}: \mathcal{C} \rightarrow C$ of C.

- Composition. For each $\mathcal{C}, \mathcal{D}, \mathcal{E} \in \operatorname{Obj}\left(\right.$ Cats $\left._{2}\right)$, the composition bifunctor
$\circ_{C, \mathcal{D}, \mathcal{E}}^{\text {Cats }_{2}}: \operatorname{Hom}_{\mathrm{Cats}_{2}}(\mathcal{D}, \mathcal{E}) \times \operatorname{Hom}_{\mathrm{Cats}_{2}}(C, \mathcal{D}) \rightarrow \operatorname{Hom}_{\mathrm{Cats}_{2}}(C, \mathcal{E})$
of Cats $_{2}$ at $(C, \mathcal{D}, \mathcal{E})$ is the functor where
- Action on Objects. For each object $(G, F) \in \operatorname{Obj}\left(\operatorname{Hom}_{C_{\text {ats }}^{2}}(\mathcal{D}, \mathcal{E}) \times \operatorname{Hom}_{C_{\text {ats }}^{2}}(\mathcal{C}, \mathcal{D})\right)$, we have

$$
\circ_{\mathcal{C}, \mathcal{D}, \mathcal{E}}^{\mathrm{Cats}_{2}}(G, F) \stackrel{\text { def }}{=} G \circ F .
$$

- Action on Morphisms. For each morphism $(\beta, \alpha):(K, H) \Longrightarrow$ (G, F) of $\operatorname{Hom}_{\mathrm{Cats}_{2}}(\mathcal{D}, \mathcal{E}) \times \operatorname{Hom}_{\mathrm{Cats}_{2}}(\mathcal{C}, \mathcal{D})$, we have

$$
0_{C, \mathcal{D}, \mathcal{E}}^{\text {Cats }_{2}}(\beta, \alpha) \stackrel{\text { def }}{=} \beta \star \alpha,
$$

where $\beta \star \alpha$ is the horizontal composition of α and β of Definition 8.8.4.1.1.

019B Proposition 8.9.3.1.2. Let \mathcal{C} be a category.
019C 1. 2-Categorical Co/Completeness. The 2-category Cats ${ }_{2}$ is complete and cocomplete as a 2-category, having all 2 -categorical and bicategorical co/limits.

Proof. Item 1, Co/Completeness: Omitted.

019D 8.9.4 The Category of Groupoids

019E Definition 8.9.4.1.1. The category of (small) groupoids is the full subcategory Grpd of Cats spanned by the groupoids.

019F 8.9.5 The 2-Category of Groupoids
$019 G$ Definition 8.9.5.1.1. The 2-category of (small) groupoids is the full sub-2-category Grpd_{2} of Cats_{2} spanned by the groupoids.

Appendices

8.A Other Chapters

Sets

1. Sets
2. Constructions With Sets
3. Pointed Sets
4. Tensor Products of Pointed Sets

Relations

5. Relations
6. Constructions With Relations
7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Part IV

Bicategories

Chapter 9

Types of Morphisms in Bicategories

019H In this chapter, we study special kinds of morphisms in bicategories:

1. Monomorphisms and Epimorphisms in Bicategories (Sections 9.1 and 9.2). There is a large number of different notions capturing the idea of a "monomorphism" or of an "epimorphism" in a bicategory.

Arguably, the notion that best captures these concepts is that of a pseudomonic morphism (Definition 9.1.10.1.1) and of a pseudoepic morphism (Definition 9.2.10.1.1), although the other notions introduced in Sections 9.1 and 9.2 are also interesting on their own.

Contents

9.1 Monomorphisms in Bicategories...................... 423
9.1.1 Representably Faithful Morphisms 423
9.1.2 Representably Full Morphisms..................... 424
9.1.3 Representably Fully Faithful Morphisms....... 425
9.1.4 Morphisms Representably Faithful on Cores.. 426
9.1.5 Morphisms Representably Full on Cores....... 426
9.1.6 Morphisms Representably Fully Faithful on

Cores. 427
9.1.7 Representably Essentially Injective Morphisms

428
9.1.8 Representably Conservative Morphisms........ 429
9.1.9 Strict Monomorphisms................................ 429
9.1.10 Pseudomonic Morphisms............................. 430
9.2 Epimorphisms in Bicategories.......................... 432
9.2.1 Corepresentably Faithful Morphisms............ 432
9.2.2 Corepresentably Full Morphisms 432
9.2.3 Corepresentably Fully Faithful Morphisms 433
9.2.4 Morphisms Corepresentably Faithful on Cores
4359.2.5 Morphisms Corepresentably Full on Cores.... 4359.2.6 Morphisms Corepresentably Fully Faithfulon Cores2.2.7 Corepresentably Essentially Injectiv MophismsCorepresentably Essentially Injective Mor
437
9.2.8 Corepresentably Conservative Morphisms 437
9.2.9 Strict Epimorphisms 438
9.2.10 Pseudoepic Morphisms 438
9.A Other Chapters 440

019J 9.1 Monomorphisms in Bicategories

019K 9.1.1 Representably Faithful Morphisms

Let C be a bicategory.
019L Definition 9.1.1.1.1. A 1-morphism $f: A \rightarrow B$ of C is representably faithful ${ }^{1}$ if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Hom}_{C}(X, A) \rightarrow \operatorname{Hom}_{C}(X, B)
$$

given by postcomposition by f is faithful.
019M Remark 9.1.1.1.2. In detail, f is representably faithful if, for all diagrams in C of the form

$$
X \underset{{ }_{\psi}}{\stackrel{\phi}{\alpha\|\| \beta}} A \xrightarrow{f} B,
$$

if we have

$$
\mathrm{id}_{f} \star \alpha=\mathrm{id}_{f} \star \beta
$$

then $\alpha=\beta$.
019 N Example 9.1.1.1.3. Here are some examples of representably faithful morphisms.

[^98]1. Representably Faithful Morphisms in Cats $_{2}$. The representably faithful morphisms in Cats $_{2}$ are precisely the faithful functors; see Item 1 of Proposition 8.5.1.1.2.

019 2 2. Representably Faithful Morphisms in Rel. Every morphism of Rel is representably faithful; see Item 1 of Proposition 5.3.8.1.1.

019R 9.1.2 Representably Full Morphisms

Let C be a bicategory.
019S Definition 9.1.2.1.1. A 1-morphism $f: A \rightarrow B$ of C is representably full 2 if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Hom}_{C}(X, A) \rightarrow \operatorname{Hom}_{C}(X, B)
$$

given by postcomposition by f is full.
$019 T$ Remark 9.1.2.1.2. In detail, f is representably full if, for each $X \in$ $\operatorname{Obj}(C)$ and each 2-morphism
of C, there exists a 2 -morphism

$$
\alpha: \phi \Longrightarrow \psi, \quad X{\underset{\sim}{\psi}}_{\stackrel{\phi}{\alpha \downarrow}}^{\psi} A
$$

of C such that we have an equality

of pasting diagrams in C, i.e. such that we have

$$
\beta=\operatorname{id}_{f} \star \alpha
$$

019 Example 9.1.2.1.3. Here are some examples of representably full morphisms.

019 V 1. Representably Full Morphisms in Cats $_{2}$. The representably full morphisms in Cats 2 are precisely the full functors; see Item 1 of Proposition 8.5.2.1.2.
2. Representably Full Morphisms in Rel. The representably full morphisms in Rel are characterised in Item 2 of Proposition 5.3.8.1.1.

[^99]
019X 9.1.3 Representably Fully Faithful Morphisms

Let C be a bicategory.
$019 Y$ Definition 9.1.3.1.1. A 1-morphism $f: A \rightarrow B$ of C is representably fully faithful ${ }^{3}$ if the following equivalent conditions are satisfied:

1. The 1 -morphism f is representably faithful (Definition 9.1.1.1.1)
2. For each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Hom}_{C}(X, A) \rightarrow \operatorname{Hom}_{C}(X, B)
$$

given by postcomposition by f is fully faithful.
$01 A 1$ Remark 9.1.3.1.2. In detail, f is representably fully faithful if the conditions in Remark 9.1.1.1.2 and Remark 9.1.2.1.2 hold:

1. For all diagrams in C of the form

$$
X \underset{\underset{\psi}{\alpha \downarrow \downarrow \|^{\beta}}}{\stackrel{\phi}{\alpha \|}} A \xrightarrow{f} B,
$$

if we have

$$
\operatorname{id}_{f} \star \alpha=\operatorname{id}_{f} \star \beta,
$$

then $\alpha=\beta$.
2. For each $X \in \operatorname{Obj}(C)$ and each 2-morphism

$$
\beta: f \circ \phi \Longrightarrow f \circ \psi, \quad X \underset{f \downarrow}{\frac{f \circ \phi}{\beta \nLeftarrow}} B
$$

of C, there exists a 2 -morphism
of C such that we have an equality

Example 9.1.2.1.3.
${ }^{3}$ Further Terminology: Also called simply a fully faithful morphism, based on
of pasting diagrams in C, i.e. such that we have

$$
\beta=\operatorname{id}_{f} \star \alpha
$$

01A2 Example 9.1.3.1.3. Here are some examples of representably fully faithful morphisms.

01A3 1. Representably Fully Faithful Morphisms in Cats 2 . The representably fully faithful morphisms in Cats 2 are precisely the fully faithful functors; see Item 5 of Proposition 8.5.3.1.2.

01A4 2. Representably Fully Faithful Morphisms in Rel. The representably fully faithful morphisms of Rel coincide (Item 3 of Proposition 5.3.8.1.1) with the representably full morphisms in Rel, which are characterised in Item 2 of Proposition 5.3.8.1.1.

01A5 9.1.4 Morphisms Representably Faithful on Cores

Let C be a bicategory.
01A6 Definition 9.1.4.1.1. A 1-morphism $f: A \rightarrow B$ of C is representably faithful on cores if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Core}\left(\operatorname{Hom}_{C}(X, A)\right) \rightarrow \operatorname{Core}\left(\operatorname{Hom}_{C}(X, B)\right)
$$

given by postcomposition by f is faithful.
01A7 Remark 9.1.4.1.2. In detail, f is representably faithful on cores if, for all diagrams in C of the form

$$
X \underset{{\underset{\psi}{*}}_{\alpha\| \| \beta}^{\alpha}}{\stackrel{\phi}{\alpha \|}} A \xrightarrow{f} B,
$$

if α and β are 2-isomorphisms and we have

$$
\mathrm{id}_{f} \star \alpha=\mathrm{id}_{f} \star \beta,
$$

then $\alpha=\beta$.

01A8 9.1.5 Morphisms Representably Full on Cores

Let C be a bicategory.

01A9 Definition 9.1.5.1.1. A 1-morphism $f: A \rightarrow B$ of C is representably full on cores if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Core}\left(\operatorname{Hom}_{C}(X, A)\right) \rightarrow \operatorname{Core}\left(\operatorname{Hom}_{C}(X, B)\right)
$$

given by postcomposition by f is full.
01 AA Remark 9.1.5.1.2. In detail, f is representably full on cores if, for each $X \in \operatorname{Obj}(C)$ and each 2-isomorphism

$$
\beta: f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \quad X \underset{f \downarrow}{\underset{f \circ \psi}{f \circ \phi}} B
$$

of C, there exists a 2 -isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \underset{\underset{\psi}{\alpha \downarrow}}{\stackrel{\phi}{\alpha}} A
$$

of C such that we have an equality

$$
X \underset{\underset{\psi}{\alpha \|}}{\stackrel{\phi}{\downarrow}} A \xrightarrow{f} B=X{\underset{f \circ}{\beta \neq}}_{\stackrel{f \circ \phi}{\beta \|}}^{>} B
$$

of pasting diagrams in C, i.e. such that we have

$$
\beta=\mathrm{id}_{f} \star \alpha
$$

9.1.6 Morphisms Representably Fully Faithful on Cores

Let C be a bicategory.
01AC Definition 9.1.6.1.1. A 1-morphism $f: A \rightarrow B$ of C is representably fully faithful on cores if the following equivalent conditions are satisfied:

1. The 1-morphism f is representably faithful on cores (Definition 9.1.5.1.1) and representably full on cores (Definition 9.1.4.1.1).

01AE
2. For each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Core}\left(\operatorname{Hom}_{C}(X, A)\right) \rightarrow \operatorname{Core}\left(\operatorname{Hom}_{C}(X, B)\right)
$$

given by postcomposition by f is fully faithful.

01AF Remark 9.1.6.1.2. In detail, f is representably fully faithful on cores if the conditions in Remark 9.1.4.1.2 and Remark 9.1.5.1.2 hold:

1. For all diagrams in C of the form

$$
X \underset{{\underset{\psi}{*}}_{\alpha \downarrow \| \beta}^{\alpha}}{\frac{\phi}{\alpha}} A \xrightarrow{f} B,
$$

if α and β are 2 -isomorphisms and we have

$$
\mathrm{id}_{f} \star \alpha=\mathrm{id}_{f} \star \beta
$$

then $\alpha=\beta$.
2. For each $X \in \operatorname{Obj}(C)$ and each 2-isomorphism
of C, there exists a 2 -isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \underset{\underset{\psi}{\alpha \downarrow}}{\stackrel{\phi}{\alpha}} A
$$

of C such that we have an equality

$$
X \underset{\underset{\psi}{\alpha \|}}{\stackrel{\phi}{\downarrow}} A \xrightarrow{f} B=X \underset{\underset{f \circ \psi}{\beta \downarrow}}{\stackrel{f \circ \phi}{\beta \|}} B
$$

of pasting diagrams in C, i.e. such that we have

$$
\beta=\operatorname{id}_{f} \star \alpha
$$

01AG 9.1.7 Representably Essentially Injective Morphisms

Let C be a bicategory.
01 AH Definition 9.1.7.1.1. A 1-morphism $f: A \rightarrow B$ of C is representably essentially injective if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Hom}_{C}(X, A) \rightarrow \operatorname{Hom}_{C}(X, B)
$$

given by postcomposition by f is essentially injective.
01AJ Remark 9.1.7.1.2. In detail, f is representably essentially injective if, for each pair of morphisms $\phi, \psi: X \rightrightarrows A$ of \mathcal{C}, the following condition is satisfied:
(\star) If $f \circ \phi \cong f \circ \psi$, then $\phi \cong \psi$.

01AK 9.1.8 Representably Conservative Morphisms

Let C be a bicategory.
01AL Definition 9.1.8.1.1. A 1-morphism $f: A \rightarrow B$ of C is representably conservative if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Hom}_{\mathcal{C}}(X, A) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, B)
$$

given by postcomposition by f is conservative.
01AM Remark 9.1.8.1.2. In detail, f is representably conservative if, for each pair of morphisms $\phi, \psi: X \rightrightarrows A$ and each 2-morphism

$$
\alpha: \phi \Longrightarrow \psi, \quad X{\underset{\underbrace{}}{\psi}}_{\frac{\phi}{\alpha \downarrow}}^{\psi} A
$$

of C, if the 2 -morphism

is a 2 -isomorphism, then so is α.
01AN 9.1.9 Strict Monomorphisms
Let \mathcal{C} be a bicategory.
01AP Definition 9.1.9.1.1. A 1 -morphism $f: A \rightarrow B$ of C is a strict monomorphism if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Hom}_{\mathcal{C}}(X, A) \rightarrow \operatorname{Hom}_{C}(X, B)
$$

given by postcomposition by f is injective on objects, i.e. its action on objects

$$
f_{*}: \operatorname{Obj}\left(\operatorname{Hom}_{\mathcal{C}}(X, A)\right) \rightarrow \operatorname{Obj}\left(\operatorname{Hom}_{\mathcal{C}}(X, B)\right)
$$

is injective.
01AQ Remark 9.1.9.1.2. In detail, f is a strict monomorphism in C if, for each diagram in C of the form

$$
X \underset{\psi}{\stackrel{\phi}{\longrightarrow}} A \xrightarrow{f} B,
$$

if $f \circ \phi=f \circ \psi$, then $\phi=\psi$.
$01 A R$ Example 9.1.9.1.3. Here are some examples of strict monomorphisms.
01 AS 1. Strict Monomorphisms in Cats $_{2}$. The strict monomorphisms in Cats $_{2}$ are precisely the functors which are injective on objects and injective on morphisms; see Item 1 of Proposition 8.6.2.1.2.
2. Strict Monomorphisms in Rel. The strict monomorphisms in Rel are characterised in Proposition 5.3.7.1.1.

01AU 9.1.10 Pseudomonic Morphisms

Let C be a bicategory.
01AV Definition 9.1.10.1.1. A 1-morphism $f: A \rightarrow B$ of C is pseudomonic if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f_{*}: \operatorname{Hom}_{C}(X, A) \rightarrow \operatorname{Hom}_{C}(X, B)
$$

given by postcomposition by f is pseudomonic.
01 AW Remark 9.1.10.1.2. In detail, a 1-morphism $f: A \rightarrow B$ of C is pseudomonic if it satisfies the following conditions:

01AX 1. For all diagrams in C of the form

$$
X \underset{\psi}{\stackrel{\alpha\|\| \beta}{\alpha}} \rightarrow \stackrel{f}{\rightarrow} B,
$$

if we have

$$
\mathrm{id}_{f} \star \alpha=\operatorname{id}_{f} \star \beta
$$

then $\alpha=\beta$.
2. For each $X \in \operatorname{Obj}(C)$ and each 2-isomorphism

$$
\beta: f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \quad X \underset{f \downarrow}{\underset{f \circ \psi}{f \circ \phi}} B
$$

of C, there exists a 2 -isomorphism
of C such that we have an equality

of pasting diagrams in C, i.e. such that we have

$$
\beta=\operatorname{id}_{f} \star \alpha
$$

01 AZ Proposition 9.1.10.1.3. Let $f: A \rightarrow B$ be a 1 -morphism of C.
01B0 1. Characterisations. The following conditions are equivalent:
(a) The morphism f is pseudomonic.
(b) The morphism f is representably full on cores and representably faithful.
(c) We have an isocomma square of the form
in C up to equivalence.
2. Interaction With Cotensors. If C has cotensors with $\mathbb{1}$, then the following conditions are equivalent:
(a) The morphism f is pseudomonic.
(b) We have an isocomma square of the form

in C up to equivalence.
Proof. Item 1, Characterisations: Omitted.
Item 2, Interaction With Cotensors: Omitted.

01B5
 9.2 Epimorphisms in Bicategories

$01 \mathrm{B6}$ 9.2.1 Corepresentably Faithful Morphisms
Let \mathcal{C} be a bicategory.
$01 B 7$ Definition 9.2.1.1.1. A 1 -morphism $f: A \rightarrow B$ of C is corepresentably faithful if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f^{*}: \operatorname{Hom}_{\mathcal{C}}(B, X) \rightarrow \operatorname{Hom}_{\mathcal{C}}(A, X)
$$

given by precomposition by f is faithful.
$01 B 8$ Remark 9.2.1.1.2. In detail, f is corepresentably faithful if, for all diagrams in C of the form

$$
A \xrightarrow{f} B \underset{\psi}{\frac{\phi}{\alpha \| \downarrow \beta}}, X,
$$

if we have

$$
\alpha \star \operatorname{id}_{f}=\beta \star \operatorname{id}_{f},
$$

then $\alpha=\beta$.
01B9 Example 9.2.1.1.3. Here are some examples of corepresentably faithful morphisms.

01BA 1. Corepresentably Faithful Morphisms in Cats 2_{2}. The corepresentably faithful morphisms in Cats ${ }_{2}$ are characterised in Item 4 of Proposition 8.5.1.1.2.
2. Corepresentably Faithful Morphisms in Rel. Every morphism of Rel is corepresentably faithful; see Item 1 of Proposition 5.3.10.1.1.

01BC 9.2.2 Corepresentably Full Morphisms
Let \mathcal{C} be a bicategory.
01BD Definition 9.2.2.1.1. A 1-morphism $f: A \rightarrow B$ of C is corepresentably full if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f^{*}: \operatorname{Hom}_{\mathcal{C}}(B, X) \rightarrow \operatorname{Hom}_{\mathcal{C}}(A, X)
$$

given by precomposition by f is full.

01BE Remark 9.2.2.1.2. In detail, f is corepresentably full if, for each $X \in \operatorname{Obj}(C)$ and each 2-morphism
of C, there exists a 2 -morphism

$$
\alpha: \phi \Longrightarrow \psi, \quad B \overbrace{\frac{\alpha \downarrow}{\psi}}^{\phi} X
$$

of C such that we have an equality

of pasting diagrams in C, i.e. such that we have

$$
\beta=\alpha \star \mathrm{id}_{f}
$$

01BF Example 9.2.2.1.3. Here are some examples of corepresentably full morphisms.

01BG 1. Corepresentably Full Morphisms in Cats 2 . The corepresentably full morphisms in Cats 2 are characterised in Item 5 of Proposition 8.5.2.1.2.
2. Corepresentably Full Morphisms in Rel. The corepresentably full morphisms in Rel are characterised in ?? of Proposition 5.3.8.1.1.

01BJ 9.2.3 Corepresentably Fully Faithful Morphisms

Let C be a bicategory.
01 BK Definition 9.2.3.1.1. A 1-morphism $f: A \rightarrow B$ of C is corepresentably fully faithful ${ }^{4}$ if the following equivalent conditions are satisfied:

1. The 1 -morphism f is corepresentably full (Definition 9.2.2.1.1) and corepresentably faithful (Definition 9.2.1.1.1).

[^100]2. For each $X \in \operatorname{Obj}(C)$, the functor
$$
f^{*}: \operatorname{Hom}_{C}(B, X) \rightarrow \operatorname{Hom}_{C}(A, X)
$$
given by precomposition by f is fully faithful.
01 BN Remark 9 .2.3.1.2. In detail, f is corepresentably fully faithful if the conditions in Remark 9.2.1.1.2 and Remark 9.2.2.1.2 hold:

1. For all diagrams in C of the form

$$
A \xrightarrow{f} B \underset{\psi}{\frac{\phi}{\alpha \| \downarrow \beta}}, X
$$

if we have

$$
\alpha \star \operatorname{id}_{f}=\beta \star \operatorname{id}_{f},
$$

then $\alpha=\beta$.
2. For each $X \in \operatorname{Obj}(C)$ and each 2-morphism

$$
\beta: \phi \circ f \Longrightarrow \psi \circ f, \quad A \underset{\underset{\psi \vee f}{\beta \nmid}}{\frac{\phi \circ f}{\beta}} X
$$

of C, there exists a 2 -morphism

$$
\alpha: \phi \Longrightarrow \psi, \quad B \overbrace{\underset{\psi}{\alpha \|}}^{\frac{\phi}{\psi}} X
$$

of C such that we have an equality
of pasting diagrams in C, i.e. such that we have

$$
\beta=\alpha \star \mathrm{id}_{f} .
$$

01BP Example 9.2.3.1.3. Here are some examples of corepresentably fully faithful morphisms.

1. Corepresentably Fully Faithful Morphisms in Cats 2 . The fully faithful epimorphisms in Cats 2 $_{2}$ are characterised in Item 9 of Proposition 8.5.3.1.2.
2. Corepresentably Fully Faithful Morphisms in Rel. The corepresentably fully faithful morphisms of Rel coincide (Item 3 of Proposition 5.3.10.1.1) with the corepresentably full morphisms in Rel, which are characterised in Item 2 of Proposition 5.3.10.1.1.

9.2.4 Morphisms Corepresentably Faithful on Cores

Let \mathcal{C} be a bicategory.
01BT Definition 9.2.4.1.1. A 1-morphism $f: A \rightarrow B$ of C is corepresentably faithful on cores if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f^{*}: \operatorname{Core}\left(\operatorname{Hom}_{\mathcal{C}}(B, X)\right) \rightarrow \operatorname{Core}\left(\operatorname{Hom}_{\mathcal{C}}(A, X)\right)
$$

given by precomposition by f is faithful.
01BU Remark 9.2.4.1.2. In detail, f is corepresentably faithful on cores if, for all diagrams in C of the form

$$
A \xrightarrow{f} B \underset{\psi}{\frac{\phi}{\alpha \downarrow \downarrow \beta}}, X,
$$

if α and β are 2-isomorphisms and we have

$$
\alpha \star \operatorname{id}_{f}=\beta \star \operatorname{id}_{f},
$$

then $\alpha=\beta$.

01BV 9.2.5 Morphisms Corepresentably Full on Cores

Let C be a bicategory.
01 BW Definition 9.2.5.1.1. A 1 -morphism $f: A \rightarrow B$ of C is corepresentably full on cores if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f^{*}: \operatorname{Core}\left(\operatorname{Hom}_{C}(B, X)\right) \rightarrow \operatorname{Core}\left(\operatorname{Hom}_{C}(A, X)\right)
$$

given by precomposition by f is full.
01BX Remark 9.2.5.1.2. In detail, f is corepresentably full on cores if, for each $X \in \operatorname{Obj}(C)$ and each 2-isomorphism

$$
\beta: \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \underset{\psi \nmid \stackrel{\beta \downarrow f}{~} \stackrel{\phi \circ f}{\Longrightarrow}}{\sim}
$$

of \mathcal{C}, there exists a 2 -isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \overbrace{\frac{\alpha \downarrow}{\psi}}^{\stackrel{\phi}{\Longrightarrow}} X
$$

of C such that we have an equality

$$
A \xrightarrow{f} B \overbrace{\psi}^{\stackrel{\phi \downarrow}{\alpha \downarrow}} X=A{\underset{\psi \vee f}{\beta \downarrow}}_{\frac{\phi \circ f}{\beta \|}} X
$$

of pasting diagrams in C, i.e. such that we have

$$
\beta=\alpha \star \operatorname{id}_{f}
$$

01BY
 9.2.6 Morphisms Corepresentably Fully Faithful on Cores

Let C be a bicategory.
01BZ Definition 9.2.6.1.1. A 1-morphism $f: A \rightarrow B$ of C is corepresentably fully faithful on cores if the following equivalent conditions are satisfied:

1. The 1-morphism f is corepresentably full on cores (Definition 9.2.5.1.1) and corepresentably faithful on cores (Definition 9.2.1.1.1).
2. For each $X \in \operatorname{Obj}(C)$, the functor

$$
f^{*}: \operatorname{Core}\left(\operatorname{Hom}_{C}(B, X)\right) \rightarrow \operatorname{Core}\left(\operatorname{Hom}_{C}(A, X)\right)
$$

given by precomposition by f is fully faithful.
Remark 9.2.6.1.2. In detail, f is corepresentably fully faithful on cores if the conditions in Remark 9.2.4.1.2 and Remark 9.2.5.1.2 hold:

1. For all diagrams in C of the form
if α and β are 2-isomorphisms and we have

$$
\alpha \star \operatorname{id}_{f}=\beta \star \operatorname{id}_{f}
$$

then $\alpha=\beta$.
2. For each $X \in \operatorname{Obj}(C)$ and each 2-isomorphism

$$
\beta: \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A{\underset{\psi \vee f}{\beta \downarrow}}_{\frac{\phi \circ f}{\Longrightarrow}} X
$$

of C, there exists a 2 -isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \overbrace{\frac{\alpha \downarrow}{\psi}}^{\stackrel{\phi}{\Longrightarrow}} X
$$

of C such that we have an equality

$$
A \xrightarrow{f} B \overbrace{\psi}^{\overbrace{\psi}^{\alpha \downarrow}} X=A{\underset{\psi \vee f}{\beta \downarrow}}_{\frac{\phi \circ f}{\beta \downarrow}}^{\langle }
$$

of pasting diagrams in \mathcal{C}, i.e. such that we have

$$
\beta=\alpha \star \mathrm{id}_{f}
$$

01C3 9.2.7 Corepresentably Essentially Injective Morphisms

Let C be a bicategory.
01C4 Definition 9.2 .7 .1 .1 . A 1-morphism $f: A \rightarrow B$ of C is corepresentably essentially injective if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f^{*}: \operatorname{Hom}_{C}(B, X) \rightarrow \operatorname{Hom}_{C}(A, X)
$$

given by precomposition by f is essentially injective.
Remark 9.2.7.1.2. In detail, f is corepresentably essentially injective if, for each pair of morphisms $\phi, \psi: B \rightrightarrows X$ of \mathcal{C}, the following condition is satisfied:
($)$ If $\phi \circ f \cong \psi \circ f$, then $\phi \cong \psi$.

01 C 6 9.2.8 Corepresentably Conservative Morphisms

Let C be a bicategory.
01 C 7 Definition 9.2 .8 .1 .1 . A 1-morphism $f: A \rightarrow B$ of C is corepresentably conservative if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f^{*}: \operatorname{Hom}_{C}(B, X) \rightarrow \operatorname{Hom}_{C}(A, X)
$$

given by precomposition by f is conservative.
01C8 Remark 9.2.8.1.2. In detail, f is corepresentably conservative if, for each pair of morphisms $\phi, \psi: B \rightrightarrows X$ and each 2-morphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \overbrace{\frac{\alpha \downarrow}{\psi}}^{\Longrightarrow} X
$$

of C, if the 2 -morphism

$$
\alpha \star \operatorname{id}_{f}: \phi \circ f \Longrightarrow \psi \circ f, \quad A \underset{\substack{\| \star i_{f} \\ \Downarrow}}{\substack{\| \circ f}} X
$$

is a 2 -isomorphism, then so is α.

01C9 9.2.9 Strict Epimorphisms

Let C be a bicategory.
$01 C A$ Definition 9.2.9.1.1. A 1-morphism $f: A \rightarrow B$ is a strict epimorphism in C if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f^{*}: \operatorname{Hom}_{C}(B, X) \rightarrow \operatorname{Hom}_{C}(A, X)
$$

given by precomposition by f is injective on objects, i.e. its action on objects

$$
f_{*}: \operatorname{Obj}\left(\operatorname{Hom}_{C}(B, X)\right) \rightarrow \operatorname{Obj}\left(\operatorname{Hom}_{C}(A, X)\right)
$$

is injective.
01CB Remark 9.2.9.1.2. In detail, f is a strict epimorphism if, for each diagram in C of the form

$$
A \xrightarrow{f} B \underset{\psi}{\stackrel{\phi}{\rightrightarrows}} X
$$

if $\phi \circ f=\psi \circ f$, then $\phi=\psi$.
01 CC Example 9.2.9.1.3. Here are some examples of strict epimorphisms.
01CD 1. Strict Epimorphisms in Cats 2 . The strict epimorphisms in Cats 2 are characterised in Item 1 of Proposition 8.6.3.1.2.
2. Strict Epimorphisms in Rel. The strict epimorphisms in Rel are characterised in Proposition 5.3.9.1.1.

01CF 9.2.10 Pseudoepic Morphisms
Let C be a bicategory.
01CG Definition 9.2.10.1.1. A 1-morphism $f: A \rightarrow B$ of C is pseudoepic if, for each $X \in \operatorname{Obj}(C)$, the functor

$$
f^{*}: \operatorname{Hom}_{C}(B, X) \rightarrow \operatorname{Hom}_{C}(A, X)
$$

given by precomposition by f is pseudomonic.

01 CH Remark 9.2.10.1.2. In detail, a 1-morphism $f: A \rightarrow B$ of C is pseudoepic if it satisfies the following conditions:

01 CJ 1. For all diagrams in C of the form
if we have

$$
\alpha \star \operatorname{id}_{f}=\beta \star \operatorname{id}_{f}
$$

then $\alpha=\beta$.
2. For each $X \in \operatorname{Obj}(C)$ and each 2-isomorphism
of C, there exists a 2 -isomorphism

$$
\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \overbrace{\underset{\psi}{\alpha \|}}^{\stackrel{\phi}{\Longrightarrow}} X
$$

of C such that we have an equality
of pasting diagrams in C, i.e. such that we have

$$
\beta=\alpha \star \operatorname{id}_{f}
$$

01 CL Proposition 9.2.10.1.3. Let $f: A \rightarrow B$ be a 1 -morphism of C.

1. Characterisations. The following conditions are equivalent:
(a) The morphism f is pseudoepic.
(b) The morphism f is corepresentably full on cores and corepresentably faithful.

01CQ
(c) We have an isococomma square of the form

in C up to equivalence.
Proof. Item 1, Characterisations: Omitted.

Appendices

9.A Other Chapters

Sets
6. Constructions With Relations

1. Sets
2. Constructions With Sets
3. Pointed Sets

Category Theory

4. Tensor Products of Pointed Sets
5. Categories

Bicategories

Relations

5. Relations
6. Types of Morphisms in Bicategories

Part V

Extra Part

Chapter 10

Miscellaneous Notes

01CR Contents
10.1 To Do List.. 442
10.1.1 Omitted Proofs To Add............................. 442
10.1.2 Things To Explore/Add.............................. 443
10.A Other Chapters... 448

01 C
10.1 To Do List

01CT 10.1.1 Omitted Proofs To Add

Не так благотворна истина, как зловредна ее видимость.

Даниил Данковский

Truth does not do as much good in the world as the appearance of truth does evil.

Daniil Dankovsky

There's a very large number of omitted proofs throughout these notes. Here I list them in decreasing order of how nice it would be to add them.

01CU Remark 10.1.1.1.1. Proofs that need to be added at some point:

1. ??.
2. ??.
3. Horizontal composition of natural transformations is associative: ?? of ??.
4. Fully faithful functors are essentially injective: ?? of ??.

Proofs that would be very nice to be added at some point:

1. Properties of pseudomonic functors: ??
2. Characterisation of fully faithful functors: ?? of ??.

Proofs that would be nice to be added at some point:

1. Properties of posetal categories: ??.
2. The quadruple adjunction between categories and sets: ??.
3. Properties of groupoid completions: ??.
4. Properties of cores: ??.
5. F_{*} faithful iff F faithful: ?? of ??.
6. F_{*} full iff F full: ?? of ??.
7. Injective on objects functors are precisely the isocofibrations in Cats $_{2}$: ?? of ??.
8. Characterisations of monomorphisms of categories: ?? of ??.
9. Epimorphisms of categories are surjective on objects: ?? of ??.
10. Properties of pseudoepic functors: ??.

01CV 10.1.2 Things To Explore/Add

Here we list things to be explored/added to this work in the future.
01CW Remark 10.1.2.1.1. Set theory through a category theory lens:

1. Isbell duality for sets.
2. Density comonads and codensity monads for sets.

Relations:

1. 2-Categorical monomorphisms and epimorphisms in Rel.
2. Co/limits in Rel.
3. Apartness composition, categorical properties of Rel with apartness, and apartness relations.
4. Apartness defines a composition for relations, but its analogue

$$
\mathfrak{q} \square \mathfrak{p} \stackrel{\text { def }}{=} \int_{A \in C} \mathfrak{p}_{A}^{-1} \amalg \mathfrak{q}_{-2}^{A}
$$

fails to be unital for profunctors. Is there a less obvious analogue of apartness composition for profunctors?
5. Codensity monad $\operatorname{Ran}_{J}(J)$ of a relation (What about $\operatorname{Rift}_{J}(J)$?)
6. Relative comonads in the 2-category of relations
7. Discrete fibrations and Street fibrations in Rel.
8. Consider adding the sections

- The Monoidal Bicategory of Relations
- The Monoidal Double Category of Relations to Relations.

Spans:

1. Universal property of the bicategory of spans, https://ncatlab. org/nlab/show/span
2. Write about cospans.

Un/Straightening:

1. Write proper sections on straightening for lax functors from sets to Rel or Span (displayed sets)

Categories:

1. Expand ?? and add a proof to it.
2. Sections and retractions; retracts, https://ncatlab.org/nlab/s how/retract.
3. Regular categories: https://arxiv.org/pdf/2004.08964.pdf.
4. Are pseudoepic functors those functors whose restricted Yoneda embedding is pseudomonic and Yoneda preserves absolute colimits?
5. Absolutely dense functors enriched over \mathbb{R}^{+}apparently reduce to topological density

Types of Morphisms in Categories:

1. Behaviour in $\operatorname{Fun}(C, \mathcal{D})$, e.g. pointwise sections vs. sections in Fun (C, \mathcal{D}).
2. A faithful functor from balanced category is conservative

Yoneda stuff:

1. Properties of restricted Yoneda embedding, e.g. if the restricted Yoneda embedding is full, then what can we conclude? Related: https://qchu.wordpress.com/2015/05/17/generators/

Adjunctions:

1. Adjunctions, units, counits, and fully faithfulness as in https: //mathoverflow.net/questions/100808/properties-of-functor s-and-their-adjoints.
2. Morphisms between adjunctions and bicategory $\operatorname{Adj}(C)$.
3. https://ncatlab.org/nlab/show/transformation+of+adjoints

Constructions With Categories:

1. Comparison between pseudopullbacks and isocomma categories: the "evident" functor $C \times{ }_{\mathcal{E}}^{\text {ps }} \mathcal{D} \rightarrow C \overleftrightarrow{×}_{\mathcal{E}} \mathcal{D}$ is essentially surjective and full, but not faithful in general.

Co/limits:

1. Add the characterisations of absolutely dense functors given in ?? to ??.
2. Absolutely dense functors, https://ncatlab.org/nlab/show/abso lutely+dense+functor. Also theorem 1.1 here: http://www.tac. mta.ca/tac/volumes/8/n20/n20.pdf.
3. Dense functors, codense functors, and absolutely codense functors. Co/ends:
4. Examples of co/ends: https://mathoverflow.net/a/461814
5. Cofinality for co/ends, https://mathoverflow.net/questions/3 53876

Fibred category theory:

1. Internal Hom in categories of co/Cartesian fibrations.
2. Tensor structures on fibered categories by Luca Terenzi: https: //arxiv.org/abs/2401.13491. Check also the other papers by Luca Terenzi.
3. https://ncatlab.org/nlab/show/cartesian+natural+transfor mation (this is a cartesian morphism in $\operatorname{Fun}(C, \mathcal{D})$ apparently)
4. CoCartesian fibration classifying $\operatorname{Fun}(F, G)$, https://mathoverfl ow.net/questions/457533/cocartesian-fibration-classifying -mathrmfunf-g

Monoidal categories:

1. Free braided monoidal category with a braided monoid: https: //ncatlab.org/nlab/show/vine

Skew monoidal categories:

1. Does the \mathbb{E}_{1} tensor product of monoids admit a skew monoidal category structure?
2. Is there a (right?) skew monoidal category structure on $\operatorname{Fun}(C, \mathcal{D})$ using right Kan extensions instead of left Kan extensions?
3. Similarly, are there skew monoidal category structures on the subcategory of $\operatorname{Rel}(A, B)$ spanned by the functions using left Kan extensions and left Kan lifts?

Higher categories:

1. Internal adjunctions in Mod as in [JY21, Section 6.3]; see [JY21, Example 6.2.6].
2. Comonads in the bicategory of profunctors.

Monoids:

1. Isbell's zigzag theorem for semigroups: the following conditions are equivalent:
(a) A morphism $f: A \rightarrow B$ of semigroups is an epimorphism.
(b) For each $b \in B$, one of the following conditions is satisfied:

- We have $f(a)=b$.
- There exist some $m \in \mathbb{N}_{\geq 1}$ and two factorisations

$$
\begin{aligned}
& b=a_{0} y_{1} \\
& b=x_{m} a_{2 m}
\end{aligned}
$$

connected by relations

$$
\begin{array}{r}
a_{0}=x_{1} a_{1}, \\
a_{1} y_{1}=a_{2} y_{2}, \\
x_{1} a_{2}=x_{2} a_{3}, \\
a_{2 m-1} y_{m}=a_{2 m}
\end{array}
$$

such that, for each $1 \leq i \leq m$, we have $a_{i} \in \operatorname{Im}(f)$.
Wikipedia says in https://en.wikipedia.org/wiki/Isbell\'s _zigzag_theorem:

For monoids, this theorem can be written more concisely:
Types of morphisms in bicategories:

1. Behaviour in 2-categories of pseudofunctors (or lax functors, etc.), e.g. pointwise pseudoepic morphisms in vs. pseudoepic morphisms in 2-categories of pseudofunctors.
2. Statements like "coequifiers are lax epimorphisms", Item 2 of Examples 2.4 of https://arxiv.org/abs/2109.09836, along with most of the other statements/examples there.
3. Dense, absolutely dense, etc. morphisms in bicategories

Other:

1. https://qchu.wordpress.com/
2. https://aroundtoposes.com/
3. https://ncatlab.org/nlab/show/essentially+surjective+and +full+functor
4. https://mathoverflow.net/questions/415363/objects-whose-r epresentable-presheaf-is-a-fibration
5. https://mathoverflow.net/questions/460146/universal-prope rty-of-isbell-duality
6. http://www.tac.mta.ca/tac/volumes/36/12/36-12abs.html (Isbell conjugacy and the reflexive completion)
7. https://ncatlab.org/nlab/show/enrichment+versus+internal isation
8. The works of Philip Saville, https://philipsaville.co.uk/
9. https://golem.ph.utexas.edu/category/2024/02/from_cartes ian_to_symmetric_mo.html
10. https://mathoverflow.net/q/463855 (One-object lax transformations)
11. https://ncatlab.org/nlab/show/analytic+completion+of+a+r ing
12. https://en.wikipedia.org/wiki/Quaternionic_analysis
13. https://arxiv.org/abs/2401. 15051 (The Norm Functor over Schemes)
14. https://mathoverflow.net/questions/407291/ (Adjunctions with respect to profunctors)
15. https://mathoverflow.net/a/462726 (Prof is free completion of Cats under right extensions)
16. there's some cool stuff in https://arxiv.org/abs/2312.00990 (Polynomial Functors: A Mathematical Theory of Interaction), e.g. on cofunctors.
17. https://ncatlab.org/nlab/show/adjoint+lifting+theorem
18. https://ncatlab.org/nlab/show/Gabriel\�\�\�Ulmer+dual ity

Appendices

10.A Other Chapters

Sets	6. Constructions With Relations
1. Sets	7. Equivalence Relations and
Apartness Relations	
2. Constructions With Sets	Category Theory
3. Pointed Sets	8. Categories
4. Tensor Products of Pointed Sets	(icategories
Relations	egories
5. Relations	

5. Relations

Bibliography

[MO 119454] user30818. Category and the axiom of choice. MathOverflow. URL: https://mathoverflow.net/q/119454 (cit. on p. 387).
[MO 321971] Ivan Di Liberti. Characterization of pseudo monomorphisms and pseudo epimorphisms in Cat. MathOverflow. URL: https: / / mathoverflow. net/q/321971 (cit. on p. 397).
[MO 350788] Peter LeFanu Lumsdaine. Epimorphisms of relations. MathOverflow. URL: https://mathoverflow. net/q/ 455260 (cit. on p. 264).
[MO 382264] Neil Strickland. Proof that a cartesian category is monoidal. MathOverflow. URL: https://mathoverflow.net/q/ 382264 (cit. on p. 22).
[MO 460656] Emily de Oliveira Santos. Existence and characterisations of left Kan extensions and liftings in the bicategory of relations I. MathOverflow. URL: https: / / mathoverflow.net/q/460656 (cit. on pp. 281, 282).
[MO 461592] Emily de Oliveira Santos. Existence and characterisations of left Kan extensions and liftings in the bicategory of relations II. MathOverflow. URL: https: / / mathoverflow.net/q/461592 (cit. on pp. 281, 282).
[MO 467527] Emily de Oliveira Santos. What are the 2-categorical mono/epimorphisms in the 2-category of relations? MathOverflow. URL: https://mathoverflow.net/q/467527 (cit. on pp. 261, 268).
[MO 468121a] Emily de Oliveira Santos. Characterisations of functors F such that F^{*} or F_{*} is [property], e.g. faithful, conservative, etc. MathOverflow. URL: https://mathoverflow. net/q/468125 (cit. on pp. 386, 387, 392, 394, 398, 400, 402).
[MO 468121b] Emily de Oliveira Santos. Looking for a nice characterisation of functors F whose precomposition functor F^{*} is full. MathOverflow. URL: https://mathoverflow.net/ q/468121 (cit. on p. 381).
[MO 468334] Emily de Oliveira Santos. Is a pseudomonic and pseudoepic functor necessarily an equivalence of categories? MathOverflow. URL: https://mathoverflow. net/q/ 468334 (cit. on p. 397).
[MO 64365] Giorgio Mossa. Natural transformations as categorical homotopies. MathOverflow. URL: https://mathoverflow. net/q/64365 (cit. on p. 413).
[MSE 1465107] kilian. Equivalence of categories and axiom of choice. Mathematics Stack Exchange. URL: https://math . stackexchange.com/q/1465107 (cit. on p. 387).
[MSE 2096272] Akiva Weinberger. Is composition of two transitive relations transitive? If not, can you give me a counterexample? Mathematics Stack Exchange. URL: https://math. stackexchange.com/q/2096272 (cit. on p. 333).
[MSE 267469] Zhen Lin. Show that the powerset partial order is a cartesian closed category. Mathematics Stack Exchange. URL: https://math. stackexchange.com/q/267469 (cit. on p. 53).
[MSE 2855868] Qiaochu Yuan. Is the category of pointed sets Cartesian closed? Mathematics Stack Exchange. URL: https: // math. stackexchange.com/q/2855868 (cit. on p. 105).
[MSE 350788] Qiaochu Yuan. Mono's and epi's in the category Rel? Mathematics Stack Exchange. URL: https: / / math . stackexchange.com/q/350788 (cit. on pp. 257, 263).
[MSE 733161] Stefan Hamcke. Precomposition with a faithful functor. Mathematics Stack Exchange. URL: https://math. stackexchange.com/q/733161 (cit. on p. 384).
[MSE 733163] Zhen Lin. Precomposition with a faithful functor. Mathematics Stack Exchange. URL: https: //math. stackexchange. com/q/733163 (cit. on p. 378).
[MSE 749304] Zhen Lin. If the functor on presheaf categories given by precomposition by F is ff, is F full? faithful? Mathematics Stack Exchange. URL: https://math. stackexchange. com/q/749304 (cit. on p. 384).

[MSE 884460]	Martin Brandenburg. Why are the category of pointed sets and the category of sets and partial functions "essentially the same"? Mathematics Stack Exchange. URL: https: //math.stackexchange.com/q/884460 (cit. on p. 105).
[Adá+01]	Jiří Adámek, Robert El Bashir, Manuela Sobral, and Jiří Velebil. "On Functors Which Are Lax Epimorphisms". In: Theory Appl. Categ. 8 (2001), pp. 509-521. ISSN: 1201-561X (cit. on pp. 379, 381, 384, 433).
[Bor94]	Francis Borceux. Handbook of Categorical Algebra I. Vol. 50. Encyclopedia of Mathematics and its Applications. Basic Category Theory. Cambridge University Press, Cambridge, 1994, pp. xvi+345. ISBN: 0-521-441781 (cit. on p. 409).
[BS10]	John C. Baez and Michael Shulman. "Lectures on n Categories and Cohomology". In: Towards higher categories. Vol. 152. IMA Vol. Math. Appl. Springer, New York, 2010, pp. 1-68. DOI: 10.1007/978-1-4419-15245_1. URL: https://doi.org/10.1007/978-1-4419-15245_1 (cit. on pp. 4, 381).
[Cie97]	Krzysztof Ciesielski. Set Theory for the Working Mathematician. Vol. 39. London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997, pp. xii+236. ISBN: 0-521-59441-3; 0-521-59465-0. DOI: 10.1017/CB09781139173131. URL: https://doi.org/10. 1017/CB09781139173131 (cit. on p. 47).
[DFH75]	Aristide Deleanu, Armin Frei, and Peter Hilton. "Idempotent Triples and Completion". In: Math. Z. 143 (1975), pp. 91-104. ISSN: 0025-5874,1432-1823. DOI: 10.1007/ BF01173053. URL: https://doi.org/10.1007/BF01173053 (cit. on p. 391).
[Fre09]	```Jonas Frey. On the 2-Categorical Duals of (Full and) Faithful Functors. https://citeseerx.ist.psu.edu/ document?repid=rep1&type=pdf&doi=4c289321d622f8fcf947e7a7cfd1bdf75c95ca Archived at https://web.archive.org/web/20240331195546/ https://citeseerx.ist.psu.edu/document?repid= rep1&type=pdf&doi=4c289321d622f8fcf947e7a7cfd1bdf75c95ca33. July 2009. URL: https://citeseerx.ist.psu.edu/ document?repid=rep1%5C&type=pdf%5C&doi=4c289321d622f8fcf947e7a7cfd1bdf7 (cit. on pp. 379, 384).```
[GGN15]	David Gepner, Moritz Groth, and Thomas Nikolaus. "Universality of Multiplicative Infinite Loop Space Ma-

chines". In: Algebr. Geom. Topol. 15.6 (2015), pp. 31073153. ISSN: 1472-2747. DOI: 10.2140/agt.2015.15.3107. URL: https://doi.org/10. 2140/agt. 2015.15. 3107 (cit. on p. 222).
[Isb68] John R. Isbell. "Epimorphisms and Dominions. III". In: Amer. J. Math. 90 (1968), pp. 1025-1030. ISSN: 0002-9327,1080-6377. DOI: 10.2307 / 2373286. URL: https : //doi.org/10. 2307/2373286 (cit. on p. 393).
[JY21] Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, Oxford, 2021, pp. xix+615. ISBN: 978-0-19-887138-5; 978-0-19-887137-8. DOI: 10. 1093/oso/9780198871378.001.0001. URL: https:// doi.org/10.1093/oso/9780198871378.001.0001 (cit. on p. 446).
[Low15] Zhen Lin Low. Notes on Homotopical Algebra. Nov. 2015. URL: https://zll22.user.srcf.net/writing/ homotopical-algebra/2015-11-10-Main.pdf (cit. on p. 384).
[nLa24] nLab Authors. Groupoid. https://ncatlab.org/nlab/ show/groupoid. Oct. 2024 (cit. on p. 389).
[nLab23] nLab Authors. Skeleton. 2024. URL: https://ncatlab. org/nlab/show/skeleton (cit. on p. 354).
[Pro24a] Proof Wiki Contributors. Bijection Between $R \times(S \times T)$ and $(R \times S) \times T$ - Proof Wiki. 2024. URL: https: //proofwiki.org/wiki/Bijection_between_R_x_(S_x_ T)_and_(R_x_S)_x_T (cit. on p. 22).
[Pro24b] Proof Wiki Contributors. Bijection Between $S \times T$ and $T \times S$ - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Bijection_between_S_x_T_and_T_x_S (cit. on p. 22).
[Pro24c] Proof Wiki Contributors. Cartesian Product Distributes Over Set Difference - Proof Wiki. 2024. url: https:// proofwiki.org/wiki/Cartesian_Product_Distributes_ over_Set_Difference (cit. on p. 22).
[Pro24d] Proof Wiki Contributors. Cartesian Product Distributes Over Symmetric Difference - Proof Wiki. 2024. URL: https://proofwiki.org/wiki / Cartesian_Product_ Distributes_over_Symmetric_Difference (cit. on p. 22).
[Pro24e] Proof Wiki Contributors. Cartesian Product Distributes Over Union - Proof Wiki. 2024. URL: https://proofwiki.

	org / wiki / Cartesian _Product _ Distributes _ over _ Union (cit. on p. 22).
[Pro24f]	Proof Wiki Contributors. Cartesian Product Is Empty Iff Factor Is Empty - Proof Wiki. 2024. URL: https: //proofwiki.org/wiki/Cartesian_Product_is_Empty_ iff_Factor_is_Empty (cit. on p. 22).
[Pro24g]	Proof Wiki Contributors. Cartesian Product of Intersections - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Cartesian_Product_of_Intersections (cit. on p. 22).
[Pro24h]	Proof Wiki Contributors. Characteristic Function of Intersection - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Characteristic_Function_of_Intersection (cit. on p. 53).
[Pro24i]	Proof Wiki Contributors. Characteristic Function of Set Difference - Proof Wiki. 2024. url: https:// proofwiki.org/wiki/Characteristic_Function_of_ Set_Difference (cit. on p. 57).
[Pro24j]	Proof Wiki Contributors. Characteristic Function of Symmetric Difference - Proof Wiki. 2024. URL: https: //proofwiki.org/wiki/Characteristic_Function_of_ Symmetric_Difference (cit. on p. 62).
[Pro24k]	Proof Wiki Contributors. Characteristic Function of Union - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Characteristic_Function_of_Union (cit. on p. 50).
[Pro241]	Proof Wiki Contributors. Complement of Complement Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Complement_of_Complement (cit. on p. 58).
[Pro24m]	Proof Wiki Contributors. Condition For Mapping from Quotient Set To Be A Surjection - Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Condition_for_ Mapping_from_Quotient_Set_to_be_Surjection (cit. on p. 341).
[Pro24n]	Proof Wiki Contributors. Condition For Mapping From Quotient Set To Be An Injection - Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Condition_for_ Mapping_from_Quotient_Set_to_be_Injection (cit. on p. 341).

[Pro24o]	Proof Wiki Contributors. Condition For Mapping From Quotient Set To Be Well-Defined - Proof Wiki. 2024 URL: https://proofwiki.org/wiki/Condition_for_ Mapping_from_Quotient_Set_to_be_Well-Defined (cit. on p. 341).
[Pro24p]	Proof Wiki Contributors. De Morgan's Laws (Set Theory) - Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ De_Morgan\%5C\%27s_Laws_(Set_Theory) (cit. on pp. 56, 58).
[Pro24q]	Proof Wiki Contributors. De Morgan's Laws (Set Theory)/Set Difference/Difference with Union - Proof Wiki. 2024. URL: https://proofwiki.org/wiki/De_ Morgan\%5C\%27s_Laws_(Set_Theory)/Set_Difference/ Difference_with_Union (cit. on p. 56).
[Pro24r]	Proof Wiki Contributors. Equivalence of Definitions of Symmetric Difference - Proof Wiki. 2024. URL: https: //proofwiki.org/wiki/Equivalence_of_Definitions_ of_Symmetric_Difference (cit. on p. 62).
[Pro24s]	Proof Wiki Contributors. Image of Intersection Under Mapping - Proof Wiki. 2024. URL: https://proofwiki org/wiki/Image_of_Intersection_under_Mapping (cit on p. 87).
[Pro24t]	Proof Wiki Contributors. Image of Union Under Mapping - Proof Wiki. 2024. URL: https://proofwiki.org/ wiki/Image_of_Union_under_Mapping (cit. on p. 87).
[Pro24u]	Proof Wiki Contributors. Intersection Distributes Over Symmetric Difference - Proof Wiki. 2024. URL: https: //proofwiki.org/wiki/Intersection_Distributes_ over_Symmetric_Difference (cit. on p. 62).
[Pro24v]	Proof Wiki Contributors. Intersection Is Associative Proof Wiki. 2024. url: https://proofwiki.org/wiki/ Intersection_is_Associative (cit. on p. 53).
[Pro24w]	Proof Wiki Contributors. Intersection Is Commutative - Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Intersection_is_Commutative (cit. on p. 53).
[Pro24x]	Proof Wiki Contributors. Intersection With Empty Set - Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Intersection_with_Empty_Set (cit. on p. 53).
[Pro24y]	Proof Wiki Contributors. Intersection With Set Difference Is Set Difference With Intersection - Proof Wiki

	2024. URL: https://proofwiki.org/wiki/Intersection_ with _ Set _ Difference _ is _ Set _ Difference _ with _ Intersection (cit. on p. 56).
[Pro24z]	Proof Wiki Contributors. Intersection With Subset Is Subset - Proof Wiki. 2024. url: https://proofwiki. org/wiki/Intersection_with_Subset_is_Subset (cit. on p. 53).
[Pro24aa]	Proof Wiki Contributors. Mapping From Quotient Set When Defined Is Unique - Proof Wiki. 2024. URL: https: //proofwiki.org/wiki/Mapping_from_Quotient_Set_ when_Defined_is_Unique (cit. on p. 341).
[Pro24ab]	Proof Wiki Contributors. Preimage of Intersection Under Mapping - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Preimage_of_Intersection_under_Mapping (cit. on p. 91).
[Pro24ac]	Proof Wiki Contributors. Preimage of Union Under Mapping - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Preimage_of_Union_under_Mapping (cit. on p. 91).
[Pro24ad]	Proof Wiki Contributors. Quotient Mapping Is Coequalizer - Proof Wiki. 2024. url: https://proofwiki. org/wiki/Quotient_Mapping_is_Coequalizer (cit. on p. 45).
[Pro24ae]	Proof Wiki Contributors. Set Difference as Intersection With Complement - Proof Wiki. 2024. URL: https:// proofwiki.org/wiki/Set_Difference_as_Intersection with_Complement (cit. on p. 57).
[Pro24af]	Proof Wiki Contributors. Set Difference as Symmetric Difference With Intersection - Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Difference_ as_Symmetric_Difference_with_Intersection (cit. on p. 57).
[Pro24ag]	Proof Wiki Contributors. Set Difference Is Right Distributive Over Union - Proof Wiki. 2024. URL: https: //proofwiki.org/wiki/Set_Difference_is_Right_ Distributive_over_Union (cit. on p. 56).
[Pro24ah]	Proof Wiki Contributors. Set Difference Over Subset Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Set_Difference_over_Subset (cit. on p. 56).

[Pro24ai]	Proof Wiki Contributors. Set Difference With Empty Set Is Self - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Set_Difference_with_Empty_Set_is_Self (cit. on p. 57).
[Pro24aj]	Proof Wiki Contributors. Set Difference With Self Is Empty Set - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Set_Difference_with_Self_is_Empty_Set (cit. on p. 57).
[Pro24ak]	Proof Wiki Contributors. Set Difference With Set Difference Is Union of Set Difference With Intersection Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Set_Difference_with_Set_Difference_is_Union_of_ Set_Difference_with_Intersection (cit. on p. 57).
[Pro24al]	Proof Wiki Contributors. Set Difference With Subset Is Superset of Set Difference - Proof Wiki. 2024. url: https://proofwiki.org/wiki/Set_Difference_with_ Subset_is_Superset_of_Set_Difference (cit. on p. 56).
[Pro24am]	Proof Wiki Contributors. Set Difference With Union Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Set_Difference_with_Union (cit. on p. 56).
[Pro24an]	Proof Wiki Contributors. Set Intersection Distributes Over Union - Proof Wiki. 2024. urL: https://proofwiki org/wiki/Intersection_Distributes_over_Union (cit. on p. 53).
[Pro24ao]	Proof Wiki Contributors. Set Intersection Is Idempotent - Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Set_Intersection_is_Idempotent (cit. on p. 53).
[Pro24ap]	Proof Wiki Contributors. Set Intersection Preserves Subsets - Proof Wiki. 2024. URL: https://proofwiki.org/ wiki/Set_Intersection_Preserves_Subsets (cit. on p. 53).
[Pro24aq]	Proof Wiki Contributors. Set Union Is Idempotent Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Set_Union_is_Idempotent (cit. on p. 50).
[Pro24ar]	Proof Wiki Contributors. Set Union Preserves Subsets Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Set_Union_Preserves_Subsets (cit. on p. 50).
[Pro24as]	Proof Wiki Contributors. Symmetric Difference Is Associative - Proof Wiki. 2024. URL: https://proofwiki.

	org/wiki/Symmetric_Difference_is_Associative (cit. on p. 62).
[Pro24at]	Proof Wiki Contributors. Symmetric Difference Is Commutative - Proof Wiki. 2024. urL: https://proofwiki. org/wiki/Symmetric_Difference_is_Commutative (cit. on p. 62).
[Pro24au]	Proof Wiki Contributors. Symmetric Difference of Complements - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Symmetric_Difference_of_Complements (cit. on p. 62).
[Pro24av]	Proof Wiki Contributors. Symmetric Difference on Power Set Forms Abelian Group - Proof Wiki. 2024. UrL: https://proofwiki.org/wiki/Symmetric_Difference_ on_Power_Set_forms_Abelian_Group (cit. on p. 62).
[Pro24aw]	Proof Wiki Contributors. Symmetric Difference With Complement - Proof Wiki. 2024. URL: https://proofwiki org / wiki / Symmetric_Difference_with_Complement (cit. on p. 62).
[Pro24ax]	Proof Wiki Contributors. Symmetric Difference With Empty Set - Proof Wiki. 2024. urL: https://proofwiki. org/wiki/Symmetric_Difference_with_Empty_Set (cit. on p. 62).
[Pro24ay]	Proof Wiki Contributors. Symmetric Difference With Intersection Forms Ring - Proof Wiki. 2024. URL: https: //proofwiki.org/wiki/Symmetric_Difference_with_ Intersection_forms_Ring (cit. on p. 62).
[Pro24az]	Proof Wiki Contributors. Symmetric Difference With Self Is Empty Set - Proof Wiki. 2024. url: https: //proofwiki.org/wiki/Symmetric_Difference_with_ Self_is_Empty_Set (cit. on p. 62).
[Pro24ba]	Proof Wiki Contributors. Symmetric Difference With Union Does Not Form Ring - Proof Wiki. 2024. url: https://proofwiki.org/wiki/Symmetric_Difference_ with_Union_does_not_form_Ring (cit. on p. 61).
[Pro24bb]	Proof Wiki Contributors. Symmetric Difference With Universe - Proof Wiki. 2024. urL: https://proofwiki. org/wiki/Symmetric_Difference_with_Universe (cit. on p. 62).
[Pro24bc]	Proof Wiki Contributors. Union as Symmetric Difference With Intersection - Proof Wiki. 2024. URL: https://

proofwiki.org/wiki/Union_as_Symmetric_Difference_ with_Intersection (cit. on p. 50).
[Pro24bd] Proof Wiki Contributors. Union Distributes Over Intersection - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Union_Distributes_over_Intersection (cit. on p. 50).
[Pro24be] Proof Wiki Contributors. Union Is Associative - Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Union_ is_Associative (cit. on p. 50).
[Pro24bf] Proof Wiki Contributors. Union Is Commutative Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Union_is_Commutative (cit. on p. 50).
[Pro24bg] Proof Wiki Contributors. Union of Symmetric Differences - Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Union_of_Symmetric_Differences (cit. on p. 62).
[Pro24bh] Proof Wiki Contributors. Union With Empty Set Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Union_with_Empty_Set (cit. on p. 50).
[PS19] Maximilien Péroux and Brooke Shipley. "Coalgebras in Symmetric Monoidal Categories of Spectra". In: Homology Homotopy Appl. 21.1 (2019), pp. 1-18. ISSN: 1532-0073. DOI: $10.4310 / \mathrm{HHA} .2019$.v21.n1.a1. URL: https://doi.org/10.4310/HHA. 2019.v21.n1.a1 (cit. on p. 223).
[Rie17] Emily Riehl. Category Theory in Context. Vol. 10. Aurora: Dover Modern Math Originals. Courier Dover Publications, 2017, pp. xviii+240. ISBN: 978-0486809038. URL: http://www.math. jhu.edu/~eriehl/context.pdf (cit. on p. 389).
[Wik24] Wikipedia Contributors. Multivalued Function - Wikipedia, The Free Encyclopedia. 2024. URL: https://en.wikipedia. org/wiki/Multivalued_function (cit. on p. 235).

Index of Notation

A
[a], 338
$(A, B), 47$
$A \amalg B, 34$
$A \coprod_{C} B, 37$
$\alpha F, 410$
$\alpha \star F, 410$
$A \odot X, 140$
$a \odot x, 142$
$A \odot\left(X, x_{0}\right), 140$
$A \pitchfork X, 147$
$A \pitchfork\left(X, x_{0}\right), 147$
$A \triangle B, 58$
$A \times B, 15$
$A \times{ }_{C} B, 23$
$A \times{ }_{f, C, g} B, 23$
$A \cup B, 48$
B
$\beta \circ \alpha, 405$
$\beta \star \alpha, 408$
Θ
$C(A, B), 348$
Cats, 418
Cats 2,419
[C, D], 416
$\chi_{(-)}, 63$
$\chi_{-2}^{-1}, 63$
$\chi_{U}, 62$
$\chi^{x}, 63$

$\chi_{x}, 63$
$\chi_{X}\left(-_{1},-{ }_{2}\right), 63$
$\chi_{X}(-, U), 62$
$\chi_{X}(-, x), 63$
$\chi_{X}(U,-), 62$
$\chi_{X}(x,-), 63$
$\operatorname{CoEq}(f, g), 43$
Coim (f), 339
$\operatorname{Coll}(R), 303$
Coll $(R), 303$
$\coprod_{i \in I} A_{i}, 33$
Core(C), 365
$C^{\simeq}, 366$
D
$\mathcal{D}^{C}, 416$
$\operatorname{dom}(R), 291$
E
$\emptyset_{\text {cat }}, 349$
$\emptyset, 32,46$
$\mathrm{Eq}(f, g), 28$
eq $(f, g), 28$

F

$F \alpha, 410$
$f^{-1}, 88$
$f^{-1}(V), 88$
$\mathbb{F}_{1}, 101$
$f_{!}, 92$
$f_{!, \text {cp }}(U), 94$
$f_{!, \operatorname{im}}(U), 94$
$f_{!}(U), 92$
$f^{*}, 83,354$
$F \star \alpha, 410$
$\alpha \star F, 410$
$f(U), 83$
Fun $(\mathcal{C}, \mathcal{D}), 416$

G

$\operatorname{Gr}(A), 285$
Grpd, 420
$\mathrm{Grpd}_{2}, 420$

$\operatorname{Hom}_{\text {Seets* }_{*}}^{\otimes, \mathrm{L}}(X \times Y, Z), 137$
$\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes, \mathrm{R}}(X \times Y, Z), 138$
$\operatorname{Hom}_{\text {Sets }_{*}}^{\otimes}(X \times Y, Z), 139$
$\operatorname{Hom}_{\text {Sets }}(A, B), 47$
$\operatorname{Hom}_{\text {Sets }_{*}}(X, Y), 204$

I

$\mathrm{id}_{\mathcal{C}}, 370$
$\mathrm{id}_{F}, 404$
$\operatorname{id}_{F} \star \alpha, 410$
$\bigcup_{i \in I} R_{i}, 294$
$\bigcap_{X \in \mathcal{F}} X, 50$
$\mathrm{Iso}_{C}(A, B), 362$
K
$\mathrm{K}_{0}(C), 362$
L
$\triangleleft, 154$
$[-,-]_{\text {Sets }_{*}}^{\triangleleft}, 157$
\triangleleft Sets $_{*}, 154$
M
$\operatorname{Mor}(\boldsymbol{C}), 348$

N
n, 350
$\operatorname{Nat}(F, G), 404$

$\pi_{0}(C), 357$
$\mathcal{P}^{-1}, 70,325$
$\star_{X}, 128$
$\prod_{i \in I} A_{i}, 13,106$
$\mathcal{P}_{!}, 70,325$
$\mathcal{P}_{*}, 69,325$
pt, 12, 101, 106, 116
pt, 348
$\mathcal{P}(X), 68$
R
range $(R), 291$
$R^{\dagger}, 297$
Rel, 236
Rel, 242
$\operatorname{Rel}(A, B), 229$
$\operatorname{Rel}(A, B), 229$
$\mathrm{Rel}^{\text {dbl }}, 242$
$\operatorname{Rel}^{\mathrm{eq}}(A, B), 336$
$\operatorname{Rel}^{\mathrm{eq}}(A, B), 336$
$\operatorname{Rel}^{\text {refl }}(A, A), 329$
$\operatorname{Rel}^{\text {refl }}(A, A), 329$
$\operatorname{Rel}^{\text {symm }}(A, A), 331$
$\operatorname{Rel}^{\text {symm }}(A, A), 331$
$\operatorname{Rel}^{\text {trans }}(A), 333$
$\operatorname{Rel}^{\text {trans }}(A), 333$
$R^{\text {eq }}, 336$
$\triangleright, 174$
$[-,-]_{\text {Sets } *}^{\triangleright}, 178$
\triangleright Sets $_{*}, 174$
$R \cap S, 293$
$R^{-1}, 315$
$R_{-1}, 310$
$R^{-1}(V), 315$
$R_{-1}(V), 310$
$R^{\text {refl }}, 329$
$R_{!}, 320$
$R_{!}(U), 320$
$R^{*}, 305$
$R^{\text {symm }}, 331$
$R \times S, 295$
$R^{\text {trans }}, 334$
$R(U), 305$
$R \cup S, 292$

N

$S \diamond R, 299$
Sets $(A, B), 47$
Sets $_{*}, 102$
Sets $_{*}\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right), 204$
$\sim_{\text {cotriv }}, 233$
$\sim_{i d}, 63$
$\sim_{R}^{\text {refl }}, 329$
$\sim_{R}^{\text {symm }}, 331$
$\sim_{R}^{\mathrm{eq}}, 336$
$\sim_{R}^{\text {trans }}, 334$
$\sim_{\text {triv }}, 233$
$S^{0}, 101$
T
$\{t, f\}, 5$
$\prod_{i \in I} R_{i}, 297$
Trans $(F, G), 404$
\{true, false\}, 4

U
$U^{\text {C }}, 57$
$\bigcup_{i \in I} A_{i}, 48$
$\bigcup_{i \in I} R_{i}, 293$
W
忘, 374
$\bigwedge_{i \in I} X_{i}, 223$
X
$\{X\}, 46$
$X_{\text {disc }}, 359$
$X_{\text {indisc }}, 361$
$X \cap Y, 50$
$x \triangleleft_{\text {Sets }_{*}} y, 155$
$x \triangleleft y, 155$
$X \backslash Y, 54$
$X / \sim_{R}, 338$
$X \otimes_{\mathbb{F}_{1}} Y, 198$
$X^{+}, 128$
$X_{\text {pos }}, 351$
$x \triangleright y, 176$
$x \triangleright$ Sets $_{*} y, 176$
$x \wedge y, 198$
$X \wedge Y, 196$
$\{X, Y\}, 47$

Index of Set Theory

B

bilinear morphism
of pointed sets, 138
bilinear morphism of pointed sets
left, 137
right, 138
binary intersection, 50

Cartesian product, 13, 15
category of relations, 236
associator of, 238
internal Hom of, 240
left unitor of, 238
monoidal product of, 237
monoidal unit of, 238
right unitor of, 239
symmetry of, 239
characteristic embedding, 63
characteristic function
of a set, 62
of an element, 63
characteristic relation, 63
coequaliser of sets, 43
coimage, 339
complement of a set, 57
coproduct
of a family of pointed sets, 117
difference of sets, 54
disjoint union, 34
of a family of sets, 33

E

empty set, 46
equaliser of sets, 28
equivalence class, 338
equivalence relation
kernel, 336

F

fibre coproduct of sets, 37
fibre product of sets, 23
field with one element
module over, 101
module over, morphism of, 102
function, 2
associated direct image function, 83
associated direct image with compact support function, 92
associated direct image with compact support function, complement part, 94
associated direct image with compact support function, image part, 93
associated inverse image
function, 88
coimage of, 339
graph of, 285
inverse of, 288
kernel of, 336

I

indicator function, see characteristic function
initial pointed set, 116
initial set, 32
intersection of a family of sets, 50

L

left tensor product of pointed sets
diagonal, 166
left skew unit of, 159
skew associator, 160
skew left unitor, 162
skew right unitor, 164

M

(-1)-category, 4
(-2)-category, 4
module
underlying pointed set of, 101

O

ordered pairing, 47

P

pairing of two sets, 47 pointed function, see pointed set, morphism of pointed set, 101 category of, 102
coequaliser of, 126
copower by a set, see pointed set, tensor by a set
coproduct of, 118
cotensor by a set, 147
equaliser of, 114
$\mathbb{F}_{1}, 101$
free, 128
internal Hom of, 204
left internal Hom of, 157
left tensor product, 154
morphism of, 102
of morphisms of pointed sets, 204
power by a set, see pointed set, cotensor by a set
product of, 108
pullback of, 110
pushout of, 122
right internal Hom of, 178
right tensor product, 174
tensor by a set, 140
trivial, 101
underlying a module, 101
underlying a semimodule, 101
wedge sum, 118
wedge sum of a family of pointed sets, 117
0 -sphere, 101
poset
of (-1)-categories, 4
of truth values, 4
powerset, 68
product of a family of pointed sets, 106
product of a family of sets, 13
product of sets, 15
pullback of sets, 23
pushout of sets, 37

quotient
by an equivalence relation, 338

R

relation, 228
associated direct image function, 305
associated direct image with compact support function, 320
associated strong inverse
image function, 310
associated weak inverse
image function, 315
category of, 229
category of, 236
closed symmetric monoidal
category of, 240
collage of, 303
composition of, 299
corepresentable, 291
cotrivial, 233
domain of, 291
double category of, 242
equivalence closure of, 336
equivalence relation, 336
equivalence, set of, 336
functional, 235
intersection of, 293
intersection of a family of, 294
inverse of, 297
on powersets associated to a relation, 326
partial equivalence relation, 336
poset of, 229, 331, 333, 336
product of, 295
product of a family of, 297
range of, 291
reflexive, 329
reflexive closure of, 329
reflexive, poset of, 329
reflexive, set of, 329
representable, 290
set of, 229
symmetric, 331
symmetric closure of, 331
symmetric, set of, 331
total, 236
transitive, 333
transitive closure of, 334
transitive, set of, 333
trivial, 233
2-category of, 242
union of, 292
union of a family of, 293
right tensor product of pointed sets
diagonal, 187
right skew unit of, 180
skew associator, 180
skew left unitor, 183
skew right unitor, 184

S

semimodule
underlying pointed set of, 101
set
Hom, 47
of maps, 47
set of bilinear morphisms of pointed sets, 139
left, 137
right, 138
singleton set, 46
smash product
of a family of pointed sets, 223
of pointed sets, 196
smash product of pointed sets
associator, 207
diagonal, 215
left unitor, 209
monoidal unit of, 206
right unitor, 211
symmetry, 213
symmetric difference of sets, 58

T

terminal pointed set, 106
terminal set, 12
U
union, 48
of a family of sets, 48
Z
0-category, 8
0 -groupoid, 8

Index of Category Theory

A

adjoint equivalence of categories, 387
Θ
category, 346
adjoint equivalence of, 387
connected, 359
connected component, 357
connected component, set of, 357
core of, 365
disconnected, 359
discrete, 360
empty, 349
equivalence of, 387
groupoid completion of, 362
indiscrete, 361
isomorphism of, 389
κ-small, 348
locally essentially small, 348
locally small, 348
of small groupoids, 420
skeletal, 353
skeleton of, 353
small, 348
thin, 352
category of categories, 418
contravariant functor, 372
D
discrete category on a set, 359

E

equivalence of categories, 387

F

forgetful functor, 373
functor, 368
bijective on objects, 399
bo, 399
composition of, 371
conservative, 385
contravariant, 372
corepresentably faithful on cores, 401
corepresentably full on cores, 402
corepresentably fully faithful on cores, 402
dominant, 390
epimorphism, 393
eso, 386
essentially injective, 386
essentially surjective, 386
faithful, 376
forgetful, 373
full, 379
fully faithful, 381
identity, 370
injective on objects, 398
monomorphism, 392
pseudoepic, 396
pseudomonic, 394
representably faithful on cores, 399
representably full on cores, 399
representably fully faithful on cores, 400
surjective on objects, 398
transformation of, 404
functor category, 416

G

Godement product, see natural transformation, horizontal composition
Grothendieck groupoid
of a category, 362
groupoid, 362
groupoid completion, 362

I

indiscrete category
on a set, 361
Isbell's zigzag theorem, 393
isomorphism, 362
isomorphism of categories, 389
M
middle four exchange
in Cats, 407,411

N

natural isomorphism, 414
natural transformation, 404
associated to a functor, 375
equality of, 405
horizontal composition, 408
identity natural
transformation, 404
vertical composition, 405

O

ordinal category, 350

P

posetal category, 352
associated to a poset, 351
postcomposition, 354
precomposition, 354
punctual category, 348

S

singleton category, see punctual category
subcategory, 353
full, 353
lluf, 353
strictly full, 353
wide, 353

T

transformation between
functors, 404
2-category
of small categories, 419
of small groupoids, 420

W

whiskering
left, 410
right, 410

Z

$(0,1)$-category, 352

Index of Higher Category Theory

D
double category
of relations, 242
E
epimorphism
strict, 438

monomorphism
strict, 429

1-morphism
corepresentably
conservative, 437
corepresentably essentially injective, 437
corepresentably faithful, 432
corepresentably faithful on cores, 435
corepresentably full, 432
corepresentably full on cores, 435
corepresentably fully faithful, 433
corepresentably fully faithful on cores, 436
pseudoepic, 438
pseudomonic, 430
representably conservative, 429
representably essentially injective, 428
representably faithful, 423
representably faithful on cores, 426
representably full, 424
representably full on cores, 427
representably fully faithful, 425
representably fully faithful on cores, 427

[^0]: ${ }^{1}$ Thus, there is only one (-2)-category.
 ${ }^{2} \mathrm{~A}(-n)$-category for $n=3,4, \ldots$ is also the "necessarily true" truth value, coinciding with a (-2)-category.
 ${ }^{3}$ For motivation, see [BS10, p. 13].
 ${ }^{4}$ For more motivation, see [BS10, p. 13].
 ${ }^{5}$ Further Terminology: Also called the poset of (-1)-categories.

[^1]: ${ }^{6}$ This partial order coincides with logical implication.
 ${ }^{7}$ Note that \times coincides with the "and" operator, while $\operatorname{Hom}_{\{t, f\}}$ coincides with

[^2]: ${ }^{8}$ Motivation: A 0-category is precisely a category enriched in the poset of (-1) categories.
 ${ }^{9}$ That is, a set.

[^3]: ${ }^{1}$ Further Terminology: Also called the Cartesian product of $\left\{A_{i}\right\}_{i \in I}$.
 ${ }^{2}$ Less formally, $\prod_{i \in I} A_{i}$ is the set whose elements are I-indexed collections $\left(a_{i}\right)_{i \in I}$

[^4]: ${ }^{3}$ Further Terminology: Also called the Cartesian product of A and B or the binary Cartesian product of A and B, for emphasis.

 This can also be thought of as the $\left(\mathbb{E}_{-1}, \mathbb{E}_{-1}\right)$-tensor product of A and B.
 ${ }^{4}$ In other words, $A \times B$ is the set whose elements are ordered pairs (a, b) with $a \in A$

[^5]: ${ }^{5}$ Further Terminology: Also called the fibre product of A and B over C along f and g.
 ${ }^{6}$ Further Notation: Also written $A \times_{f, C, g} B$.

[^6]: ${ }^{7}$ That is, the following three ways of forming "the" equaliser of (f, g, h) agree:

 1. Take the equaliser of (f, g, h), i.e. the limit of the diagram
[^7]: ${ }^{8}$ Further Terminology: Also called the disjoint union of A and B, or the binary

[^8]: disjoint union of A and B, for emphasis.
 ${ }^{9}$ Further Terminology: Also called the fibre coproduct of A and B over C along f and g.
 ${ }^{10}$ Further Notation: Also written $A \coprod_{f, C, g} B$.

[^9]: ${ }^{12}$ Further Terminology: Also called the Hom set from A to B.
 ${ }^{13}$ Further Notation: Also written Sets (A, B).

[^10]: ${ }^{14}$ Further Terminology: Also called the binary union of A and B, for emphasis.

[^11]: ${ }^{15}$ Further Terminology: Also called the binary intersection of X and Y, for emphasis.

[^12]: ${ }^{16}$ For intuition regarding the expression defining $\operatorname{Hom}_{\mathcal{P}(X)}(U, V)$, see

[^13]: ${ }^{21}$ Reference: [Pro24av].
 ${ }^{22}$ Reference: [Pro24ay].
 ${ }^{23}$ Further Terminology: Also called the indicator function of U.
 ${ }^{24}$ Further Notation: Also written $\chi_{X}(U,-)$ or $\chi_{X}(-, U)$.

[^14]: ${ }^{25}$ Further Notation: Also written $\chi^{x}, \chi_{X}(x,-)$, or $\chi_{X}(-, x)$.
 ${ }^{26}$ Further Terminology: Also called the identity relation on X.
 ${ }^{27}$ Further Notation: Also written χ_{-2}^{-1}, or $\sim_{\text {id }}$ in the context of relations.
 ${ }^{28}$ As a subset of $X \times X$, the relation χ_{X} corresponds to the diagonal $\Delta_{X} \subset X \times X$ of X.
 ${ }^{29}$ The name "characteristic embedding" comes from the fact that there is an analogue of fully faithfulness for $\chi_{(-)}$: given a set X, we have

[^15]: ${ }^{30}$ These statements can be made precise by using the embeddings

 $$
 \begin{aligned}
 & (-)_{\text {disc }}: \text { Sets } \hookrightarrow \text { Cats, } \\
 & (-)_{\text {disc }}:\{\mathrm{t}, \mathrm{f}\}_{\text {disc }} \hookrightarrow \text { Sets }
 \end{aligned}
 $$

[^16]: ${ }^{31}$ This is the 0 -categorical version of Definition 8.4.4.1.1.

[^17]: ${ }^{32}$ This parallel is based on the following comparison:

 - A category is enriched over the category

[^18]: ${ }^{33}$ For intuition regarding the expression defining $\operatorname{Hom}_{\mathcal{P}(X)}(U, V)$, see Remark 2.3.9.1.3.

[^19]: ${ }^{34}$ In this sense, $\mathcal{P}(A)$ is the free cocompletion of A. (Note that, despite its name, however, this is not an idempotent operation, as we have $\mathcal{P}(\mathcal{P}(A)) \neq \mathcal{P}(A)$.)

[^20]: ${ }^{35}$ Further Terminology: The set $f(U)$ is called the direct image of U by f.
 ${ }^{36}$ We also have

 $$
 f_{*}(U)=B \backslash f_{!}(A \backslash U)
 $$

[^21]: ${ }^{37}$ See also [Pro24t].

[^22]: ${ }^{38}$ Further Notation: Also written $f^{*}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)$.
 ${ }^{39}$ Further Terminology: The set $f^{-1}(V)$ is called the inverse image of V by f.

[^23]: ${ }^{40}$ See also [Pro24ac].
 ${ }^{41}$ See also [Pro24ab].

[^24]: ${ }^{42}$ Further Terminology: The set $f_{!}(U)$ is called the direct image with compact support of U by f.
 ${ }^{43} \mathrm{We}$ also have

 $$
 f_{!}(U)=B \backslash f_{*}(A \backslash U) ;
 $$

[^25]: ${ }^{1}$ Further Terminology: In the context of monoids with zero as models for \mathbb{F}_{1} algebras, pointed sets are viewed as \mathbb{F}_{1}-modules.
 ${ }^{2}$ Further Terminology: In the context of monoids with zero as models for \mathbb{F}_{1} algebras, the 0 -sphere is viewed as the underlying pointed set of the field with one element.
 ${ }^{3}$ Further Notation: In the context of monoids with zero as models for \mathbb{F}_{1}-algebras, S^{0} is also denoted $\left(\mathbb{F}_{1}, 0\right)$.

[^26]: ${ }^{4}$ Further Terminology: Also called a pointed function.
 ${ }^{5}$ Further Terminology: In the context of monoids with zero as models for \mathbb{F}_{1} algebras, morphisms of pointed sets are also called morphism of \mathbb{F}_{1}-modules.
 ${ }^{6}$ Note that id X is indeed a morphism of pointed sets, as we have $\operatorname{id}_{X}\left(x_{0}\right)=x_{0}$.

[^27]: ${ }^{7}$ Note that the composition of two morphisms of pointed sets is indeed a morphism of pointed sets, as we have

 $$
 \begin{aligned}
 g\left(f\left(x_{0}\right)\right) & =g\left(y_{0}\right) \\
 & =z_{0},
 \end{aligned}
 $$

 or

 in terms of diagrams.
 ${ }^{8}$ The category Sets ${ }_{*}$ does admit monoidal closed structures however; see Tensor Products of Pointed Sets.

[^28]: ${ }^{9}$ In other words, the forgetful functor

 $$
 \text { 忘: Sets } * \text { Sets }
 $$

 defined on objects by sending a pointed set to its underlying set is corepresentable by S^{0}. ${ }_{10}$ Warning: This is not an isomorphism of categories, only an equivalence. END TEXTDBEND

[^29]: ${ }^{11}$ Further Notation: We sometimes write \star_{X} for the basepoint of X^{+}for clarity

[^30]: ${ }^{1}$ Slogan: The map f is left bilinear if it preserves basepoints in its first argument.
 ${ }^{2}$ Succinctly, f is bilinear if we have

[^31]: ${ }^{9}$ Further Terminology: Also called the power of $\left(X, x_{0}\right)$ by A.
 ${ }^{10}$ Further Notation: Often written $A \pitchfork X$ for simplicity.

[^32]: ${ }^{11}$ Further Notation: Also written $\triangleleft_{\text {Sets* }}$.

[^33]: ${ }^{12}$ Further Notation: Also written $x \triangleleft$ Sets $_{*} y$.

[^34]: ${ }^{13}$ The functor $\operatorname{Sets}_{*}(X,-)$ is instead right adjoint to $X \wedge-$, the smash product of pointed sets of Definition 4.5.1.1.1. See Item 2 of Proposition 4.5.1.1.9.

[^35]: ${ }^{14}$ A monoid with left zero is defined similarly as the monoids with zero of ??. Succinctly, they are monoids $\left(A, \mu_{A}, \eta_{A}\right)$ with a special element 0_{A} satisfying

 $$
 0_{A} a=0_{A}
 $$

[^36]: ${ }^{15}$ Further Notation: Also written $\triangleright_{\text {Sets }}$.

[^37]: ${ }^{16}$ Further Notation: Also written $x \triangleright_{\text {Sets }_{*}} y$.

[^38]: ${ }^{17}$ The functor Sets $_{*}(Y,-)$ is instead right adjoint to $-\wedge Y$, the smash product of

[^39]: ${ }^{18} \mathrm{~A}$ monoid with right zero is defined similarly as the monoids with zero of ??. Succinctly, they are monoids $\left(A, \mu_{A}, \eta_{A}\right)$ with a special element 0_{A} satisfying

 $$
 0_{A} a=0_{A}
 $$

[^40]: ${ }^{19}$ Further Terminology: In the context of monoids with zero as models for \mathbb{F}_{1} algebras, the smash product $X \wedge Y$ is also called the tensor product of \mathbb{F}_{1}-modules of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ or the tensor product of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ over \mathbb{F}_{1}.
 ${ }^{20}$ Further Notation: In the context of monoids with zero as models for \mathbb{F}_{1}-algebras,

[^41]: ${ }^{21}$ The pointed set $\operatorname{Sets}_{*}(X, Y)$ is the internal Hom of Sets* with respect to the smash product of Definition 4.5.1.1.1; see Item 2 of Proposition 4.5.1.1.9.
 ${ }^{22}$ Further Notation: Also written Hom $_{\text {Sets }_{*}}(X, Y)$.

[^42]: ${ }^{1}$ Further Terminology: Also called a multivalued function from A to B, a relation over A and B, relation on A and B, a binary relation over A and B, or a binary relation on A and B.
 ${ }^{2}$ Further Terminology: When $A=B$, we also call $R \subset A \times A$ a relation on A.

[^43]: ${ }^{3}$ The choice R_{a}^{b} in place of R_{b}^{a} is to keep the notation consistent with the notation we will later employ for profunctors.
 ${ }^{4}$ Here we choose to slightly abuse notation by writing $\operatorname{Rel}(A, B)$ (instead of e.g. $\left.\operatorname{Rel}(A, B)_{\text {pos }}\right)$ for the posetal category of relations from A to B, even though the same notation is used for the poset of relations from A to B.
 ${ }^{5}$ Intuition: In particular, we may think of a relation $R: A \rightarrow \mathcal{P}(B)$ from A to B as a multivalued function from A to B (including the possibility of a given $a \in A$ having

[^44]: ${ }_{6}$ I. Warning: This is not a Cartesian monoidal structure, as the product on Rel is in fact given by the disjoint union of sets; see ??.

[^45]: ${ }^{7}$ Note that this is indeed a morphism of posets: given relations $R_{1}, R_{2} \in \operatorname{Rel}(A, B)$ and $S_{1}, S_{2} \in \operatorname{Rel}(B, C)$ such that

 $$
 \begin{aligned}
 & R_{1} \subset R_{2}, \\
 & S_{1} \subset S_{2},
 \end{aligned}
 $$

[^46]: ${ }^{10}$ This is justified by Item 2 of Proposition 6.3.12.1.3.
 ${ }^{11}$ This is justified by Item 3 of Proposition 6.3.12.1.3.

[^47]: ${ }^{12}$ This is justified by Item 3 of Proposition 6.3.12.1.3.

[^48]: ${ }^{13}$ See also ?? for an extension of this correspondence to "relative monads in Rel".

[^49]: ${ }^{14}$ Since $\operatorname{Rel}(A, B)$ is posetal, this is to say that if $S \subset S^{\prime}$ and $R \subset R^{\prime}$, then $S \triangleleft_{J} R \subset S^{\prime} \triangleleft_{J} R^{\prime}$.

[^50]: ${ }^{15}$ Since $\operatorname{Rel}(A, B)$ is posetal, this is to say that if $S \subset S^{\prime}$ and $R \subset R^{\prime}$, then

[^51]: ${ }^{1}$ Further Notation: We write $\operatorname{Gr}(A)$ for $\operatorname{Gr}\left(\mathrm{id}_{A}\right)$, and call it the graph of A.

[^52]: ${ }^{2}$ More generally, given functions

 $$
 \begin{aligned}
 & f: A \rightarrow C \\
 & g: B \rightarrow D
 \end{aligned}
 $$

 and a relation $B \nrightarrow D$, we may consider the composite relation

 $$
 A \times B \xrightarrow{f \times g} C \times D \xrightarrow{R}\{\text { true }, \text { false }\}
 $$

 for which we have $a \sim_{R \circ(f \times g)} b$ iff $f(a) \sim_{R} g(b)$.

[^53]: ${ }^{3}$ Following ??, we may compute the (characteristic functions associated to the) domain and range of a relation using the following colimit formulas:

 $$
 \begin{aligned}
 \chi_{\operatorname{dom}(R)}(a) & \cong \operatorname{colim}_{b \in B}\left(R_{a}^{b}\right) \quad(a \in A) \\
 & \cong \bigvee_{b \in B} R_{a}^{b}, \\
 \chi_{\text {range }(R)}(b) & \cong \operatorname{colim}_{a \in A}\left(R_{a}^{b}\right) \quad(b \in B) \\
 & \cong \bigvee_{a \in A} R_{a}^{b},
 \end{aligned}
 $$

 where the join \bigvee is taken in the poset ($\{$ true, false $\}, \preceq$) of Definition 1.2.2.1.3.
 ${ }^{4}$ Viewing R as a function $R: A \rightarrow \mathcal{P}(B)$, we have

 $$
 \begin{aligned}
 \operatorname{dom}(R) & \cong \operatorname{colim}_{y \in Y}(R(y)) \\
 & \cong \bigcup_{y \in Y} R(y), \\
 \operatorname{range}(R) & \cong \operatorname{colim}_{x \in X}(R(x)) \\
 & \cong \bigcup_{x \in X} R(x),
 \end{aligned}
 $$

[^54]: ${ }^{5}$ Further Terminology: Also called the binary union of R and S, for emphasis. ${ }^{6}$ This is the same as the union of R and S as subsets of $A \times B$.

[^55]: ${ }^{7}$ This is the same as the union of $\left\{R_{i}\right\}_{i \in I}$ as a collection of subsets of $A \times B$.
 ${ }^{8}$ Further Terminology: Also called the binary intersection of R and S, for emphasis.
 ${ }^{9}$ This is the same as the intersection of R and S as subsets of $A \times B$.

[^56]: ${ }^{10}$ This is the same as the intersection of $\left\{R_{i}\right\}_{i \in I}$ as a collection of subsets of $A \times B$.
 ${ }^{11}$ Further Terminology: Also called the binary product of R and S, for emphasis.
 ${ }^{12}$ That is, $R \times S$ is the relation given by declaring $(a, x) \sim_{R \times S}(b, y)$ iff $a \sim_{R} b$ and

[^57]: $x \sim_{S} y$.

[^58]: the converse of R.

[^59]: ${ }^{14}$ That is: the relation R may send $a \in A$ to a number of elements $\left\{b_{i}\right\}_{i \in I}$ in B, and then the relation S may send the image of each of the b_{i} 's to a number of elements $\left\{S\left(b_{i}\right)\right\}_{i \in I}=\left\{\left\{c_{j_{i}}\right\}_{j_{i} \in J_{i}}\right\}_{i \in I}$ in C.

[^60]: ${ }^{15}$ Further Terminology: Also called the cograph of R.

[^61]: ${ }^{22}$ Further Terminology: The set $R_{-1}(V)$ is called the strong inverse image of V by R.

[^62]: ${ }^{23}$ Further Terminology: Also called simply the inverse image function associated to R.
 ${ }^{24}$ Further Terminology: The set $R^{-1}(V)$ is called the weak inverse image of V by R or simply the inverse image of V by R.

[^63]: ${ }^{25}$ That is, the postcomposition

 $$
 \left(\chi_{A}\right)^{-1}: \operatorname{Rel}(\mathrm{pt}, A) \rightarrow \operatorname{Rel}(\mathrm{pt}, A)
 $$

 is equal to $\operatorname{id}_{\operatorname{Rel}(\mathrm{pt}, A)}$.
 ${ }^{26}$ That is, we have

 $$
 (S \diamond R)^{-1}=R^{-1} \circ S^{-1}, \quad \operatorname{Rel}(\mathrm{pt}, C) \xrightarrow{R^{-1}} \operatorname{Rel}(\mathrm{pt}, B)
 $$

[^64]: ${ }^{27}$ Further Terminology: The set $R_{!}(U)$ is called the direct image with compact support of U by R.
 ${ }^{28} \mathrm{We}$ also have

 $$
 R_{!}(U)=B \backslash R_{*}(A \backslash U) ;
 $$

 see Item 7 of Proposition 6.4.4.1.3.

[^65]: ${ }^{29}$ The functor $\mathcal{P}_{*}:$ Rel \rightarrow Sets admits a left adjoint; see Item 3 of

[^66]: ${ }^{1}$ Note that since $\operatorname{Rel}(A, A)$ is posetal, reflexivity is a property of a relation, rather than extra structure.
 ${ }^{2}$ Further Notation: Also written $R^{\text {refl }}$.
 ${ }^{3}$ Slogan: The reflexive closure of R is the smallest reflexive relation containing R.
 ${ }^{4}$ Or, equivalently, the free \mathbb{E}_{0}-monoid on R in $\left(\mathrm{N}_{\bullet}(\operatorname{Rel}(A, A)), \chi_{A}\right)$.

[^67]: ${ }^{5}$ Further Notation: Also written $R^{\text {symm }}$.
 ${ }^{6}$ Slogan: The symmetric closure of R is the smallest symmetric relation containing

[^68]: ${ }^{12}$ Further Terminology: If instead R is just symmetric and transitive, then it is called a partial equivalence relation.
 ${ }^{13}$ The kernel $\operatorname{Ker}(f): A \rightarrow A$ of f is the underlying functor of the monad induced by the adjunction $\operatorname{Gr}(f) \dashv f^{-1}: A \rightleftarrows B$ in Rel of Item 2 of Proposition 6.3.1.1.2.
 ${ }^{14}$ Further Terminology: Also called the equivalence relation associated to \sim_{R}.
 ${ }^{15}$ Further Notation: Also written R^{eq}.
 ${ }^{16}$ Slogan: The equivalence closure of R is the smallest equivalence relation containing R.

[^69]: ${ }^{17}$ When categorifying equivalence relations, one finds that $[a]$ and $[a]^{\prime}$ correspond to

[^70]: ${ }^{1}$ Further Terminology: Also called the singleton category.

[^71]: ${ }^{2}$ This can be enhanced to an isomorphism of 2-categories

 $$
 \text { Mon }_{2 \text { disc }} \cong \mathrm{pt}_{\mathrm{bi}} \underset{\text { Sets } \mathrm{Sdisc}^{\times}}{\times} \text {Cats }_{2, *}, \quad \text { Mon }_{2 \text { disc }}^{\longrightarrow} \text { Cats }_{2, *}
 $$

[^72]: ${ }^{4}$ Further Terminology: Also called a thin category or a (0,1)-category.

[^73]: ${ }^{5}$ That is, given $A \in \operatorname{Obj}(\mathcal{A})$ and $C \in \operatorname{Obj}(C)$, if $C \cong A$, then $C \in \operatorname{Obj}(\mathcal{A})$.
 ${ }^{6}$ Further Terminology: Also called lluf.
 ${ }^{7}$ Due to Item 3 of Proposition 8.1.5.1.3, we often refer to any such full subcategory $\mathrm{Sk}(C)$ of C as the skeleton of C.
 ${ }^{8}$ That is, C is skeletal if isomorphic objects of C are equal.

[^74]: ${ }^{9}$ In other words, a connected component of \mathcal{C} is an element of the set $\operatorname{Obj}(C) / \sim$

[^75]: with \sim the equivalence relation generated by the relation \sim^{\prime} obtained by declaring $A \sim^{\prime} B$ iff there exists a morphism of C from A to B.
 ${ }^{10}$ Further Terminology: A category is disconnected if it is not connected.
 ${ }^{11}$ Example: A groupoid is connected iff any two of its objects are isomorphic.

[^76]: ${ }^{12}$ Further Terminology: Sometimes called the chaotic category on X.

[^77]: ${ }^{13}$ Further Terminology: Also called the Grothendieck groupoid of C or the Grothendieck groupoid completion of C.

[^78]: ${ }^{14}$ See Item 5 of Proposition 8.3.2.1.3 for an explicit construction.

[^79]: ${ }^{15}$ Slogan: The groupoid $\operatorname{Core}(C)$ is the maximal subgroupoid of C.

[^80]: ${ }^{16}$ Further Terminology: Also called a covariant functor.

[^81]: ${ }^{17}$ Further Terminology: Also called action on Hom-sets of F at (A, B).

[^82]: ${ }^{18}$ When the converse holds, we call F conservative, see Definition 8.5.4.1.1.

[^83]: ${ }^{19}$ This is the 1-categorical version of Item 1 of Proposition 2.4.1.1.3.

[^84]: ${ }^{20}$ Slogan: A functor F is conservative if it reflects isomorphisms.

[^85]: ${ }^{21}$ Further Terminology: Also called an eso functor, where the name "eso" comes

[^86]: from essentially surjective on objects.
 ${ }^{22}$ Otherwise there will be size issues. One can also work with large categories and universes, or require F to be constructively essentially surjective; see [MSE 1465107].
 ${ }^{23}$ In ZFC, the equivalence between Item 1 a and Item 1 b is equivalent to the axiom of choice; see [MO 119454].

 In Univalent Foundations, this is true without requiring neither the axiom of choice nor the law of excluded middle.

[^87]: ${ }^{24}$ More precisely, we can promote an equivalence of categories (F, G, η, ϵ) to adjoint

[^88]: ${ }^{25}$ Further Terminology: This statement is known as Isbell's zigzag theorem.

[^89]: ${ }^{26}$ Asking the precomposition functors

 $$
 F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \rightarrow \operatorname{Fun}(\mathcal{C}, \mathcal{X})
 $$

[^90]: ${ }^{27}$ Further Terminology: Also called a bo functor.

[^91]: ${ }^{28}$ Further Terminology: Also called an unnatural transformation for emphasis.
 ${ }^{29}$ Further Terminology: The morphism $\alpha_{A}: F_{A} \rightarrow G_{A}$ is called the component of α at A.

[^92]: ${ }^{30}$ Further Terminology: Also called the Godement product of α and β.
 ${ }^{31}$ Horizontal composition forms a map

 $$
 \star_{(F, H),(G, K)}: \operatorname{Nat}(H, K) \times \operatorname{Nat}(F, G) \rightarrow \operatorname{Nat}(H \circ F, K \circ G)
 $$

[^93]: ${ }^{32}$ Reference: [Bor94, Proposition 1.3.4].

[^94]: ${ }^{33}$ Further Notation: Also written $G \alpha$ or $G \star \alpha$, although we won't use either of these notations in this work.
 ${ }^{34}$ Further Notation: Also written αF or $\alpha \star F$, although we won't use either of these

[^95]: notations in this work

[^96]: ${ }^{35}$ Taken from [MO 64365].

[^97]: ${ }^{36}$ Further Terminology: Also called the functor category Fun (C, \mathcal{D}).
 ${ }^{37}$ Further Notation: Also written \mathcal{D}^{C} and $[\mathcal{C}, \mathcal{D}]$.

[^98]: ${ }^{1}$ Further Terminology: Also called simply a faithful morphism, based on Item 1 of Example 9.1.1.1.3.

[^99]: ${ }^{2}$ Further Terminology: Also called simply a full morphism, based on Item 1 of

[^100]: ${ }^{4}$ Further Terminology: Corepresentably fully faithful morphisms have also been called lax epimorphisms in the literature (e.g. in [Adá +01]), though we will always use the name "corepresentably fully faithful morphism" instead in this work.

