The Clowder Project

2017-2024

The Clowder Project Authors

Version 01f3714, compiled on Apr 04, 2024.

Part I		Sets		
1	Sets		2	
	1.1	Sets and Functions	2	
	1.2	The Enrichment of Sets in Classical Truth Values	4	
	1.A	Other Chapters	10	
2	Con	structions With Sets	11	
	2.1	Limits of Sets		
	2.2	Colimits of Sets	32	
	2.3	Operations With Sets	46	
	2.4	Powersets	62	
	2.A	Other Chapters	99	
3	Poir	nted Sets	100	
	3.1	Pointed Sets	100	
	3.2	Limits of Pointed Sets	106	
	3.3	Colimits of Pointed Sets	116	
	3.4	Constructions With Pointed Sets	128	
	3.A	Other Chapters	133	
4	Tens	sor Products of Pointed Sets	134	
	4.1	Bilinear Morphisms of Pointed Sets		
	4.2	Tensors and Cotensors of Pointed Sets by Sets		
	4.3	The Left Tensor Product of Pointed Sets	154	
	4.4	The Right Tensor Product of Pointed Sets	174	
	4.5	The Smash Product of Pointed Sets	195	
	4.6	Miscellany	223	
	4 A	Other Chapters	224	

Pa	rt II	Relations	225
5	Rela	tions	226
	5.1	Relations	. 228
	5.2	Categories of Relations	. 236
	5.3	Properties of the 2-Category of Relations	. 249
	5.4	The Left Skew Monoidal Structure on $\mathbf{Rel}(A, B)$. 269
	5.5	The Right Skew Monoidal Structure on $Rel(A, B)$	
	5.A	Other Chapters	. 278
6	Cons	structions With Relations	.279
	6.1	Co/Limits in the Category of Relations	281
	6.2	Kan Extensions and Kan Lifts in the 2-Category of Re-	
lati			
	6.3	More Constructions With Relations	
	6.4	Functoriality of Powersets	
	6.A	Other Chapters	. 327
7	_	valence Relations and Apartness Relations	328
	7.1	Reflexive Relations	328
	7.2	Symmetric Relations	331
	7.3	Transitive Relations	
	7.4	Equivalence Relations	
	7.5	Quotients by Equivalence Relations	
	7.A	Other Chapters	. 342
Pa	rt II	I Category Theory	343
8	Cate	egories	344
	8.1	Categories	. 346
	8.2	The Quadruple Adjunction With Sets	. 356
	8.3	Groupoids	. 362
	8.4	Functors	
	8.5	Conditions on Functors	
	8.6	More Conditions on Functors	
	8.7	Even More Conditions on Functors	
	8.8	Natural Transformations	
	8.9	Categories of Categories	
	8.A	Other Chapters	. 420
Pa	rt IV	Bicategories	421
9	Тур	es of Morphisms in Bicategories	.422
	9.1	Monomorphisms in Bicategories	423

Contents	1V
Contents	1 V

		Epimorphisms in Bicategories	
Pa	${f rt} \; {f V}$	Extra Part	441
10	10.1	To Do List. Other Chapters	442
Ind	ex of I	Notation	459
Ind	ex of S	Set Theory	462
Ind	ex of (Category Theory	466
Ind	ex of l	Higher Category Theory	468

Pa	rt I	Sets		1
1	Sets	• • • • • • • • •		2
	1.1	Sets an	nd Functions	2
		1.1.1	Functions	2
	1.2	The E	nrichment of Sets in Classical Truth Values	4
		1.2.1	(-2)-Categories	4
		1.2.2	(-1)-Categories	4
		1.2.3	0-Categories	8
		1.2.4	Tables of Analogies Between Set Theory and Cat-	
ego	ry Th	eory		8
	1.A	Other	Chapters	10
2			ons With Sets	11
	2.1		of Sets	12
		2.1.1	The Terminal Set	12
		2.1.2	Products of Families of Sets	13
		2.1.3	Binary Products of Sets	15
		2.1.4	Pullbacks	23
		2.1.5	Equalisers	28
	2.2	Colimi	its of Sets	32
		2.2.1	The Initial Set	32
		2.2.2	Coproducts of Families of Sets	33
		2.2.3	Binary Coproducts	34
		2.2.4	Pushouts	37
		2.2.5	Coequalisers	43
	2.3	Opera	tions With Sets	46
		2.3.1	The Empty Set	46
		2.3.2	Singleton Sets	46
		2.3.3	Pairings of Sets	47
		2.3.4	Ordered Pairs	47
		2.3.5	Sets of Maps	47

Contents vi

		2.3.6	Unions of Families	48				
		2.3.7	Binary Unions	48				
		2.3.8	Intersections of Families	50				
		2.3.9	Binary Intersections	50				
		2.3.10	Differences	54				
		2.3.11	Complements	57				
		2.3.12	Symmetric Differences	58				
	2.4		sets					
		2.4.1	Characteristic Functions	62				
		2.4.2	The Yoneda Lemma for Sets	67				
		2.4.3	Powersets	68				
		2.4.4	Direct Images	83				
		2.4.5	Inverse Images					
		2.4.6	Direct Images With Compact Support	92				
	2.A	Other	Chapters					
			•					
3	Poir	Pointed Sets						
	3.1	Pointe	d Sets	100				
		3.1.1	Foundations	101				
		3.1.2	Morphisms of Pointed Sets	102				
		3.1.3	The Category of Pointed Sets	102				
		3.1.4	Elementary Properties of Pointed Sets	103				
	3.2	Limits	of Pointed Sets	106				
		3.2.1	The Terminal Pointed Set	106				
		3.2.2	Products of Families of Pointed Sets	106				
		3.2.3	Products	108				
		3.2.4	Pullbacks	110				
		3.2.5	Equalisers	114				
	3.3	Colimi	ts of Pointed Sets					
		3.3.1	The Initial Pointed Set	116				
		3.3.2	Coproducts of Families of Pointed Sets	117				
		3.3.3	Coproducts					
		3.3.4	Pushouts	122				
		3.3.5	Coequalisers	126				
	3.4	Constr	ructions With Pointed Sets	128				
		3.4.1	Free Pointed Sets	128				
	3.A	Other	Chapters					
				30				
4	Ten	sor Pro	oducts of Pointed Sets	13				
	4.1	Bilinea	ar Morphisms of Pointed Sets	137				
		4.1.1	Left Bilinear Morphisms of Pointed Sets	137				
		4.1.2	Right Bilinear Morphisms of Pointed Sets	138				
		4.1.3	Bilinear Morphisms of Pointed Sets					

Contents vii

4.2	Tenso	rs and Cotensors of Pointed Sets by Sets	140
	4.2.1	Tensors of Pointed Sets by Sets	
	4.2.2	Cotensors of Pointed Sets by Sets	
4.3	The L	eft Tensor Product of Pointed Sets	
	4.3.1	Foundations	
	4.3.2	The Left Internal Hom of Pointed Sets	157
	4.3.3	The Left Skew Unit	159
	4.3.4	The Left Skew Associator	. 160
	4.3.5	The Left Skew Left Unitor	162
	4.3.6	The Left Skew Right Unitor	164
	4.3.7	The Diagonal	. 166
	4.3.8	The Left Skew Monoidal Structure on Pointed	
Sets Asso	ociated	to <	167
	4.3.9	Monoids With Respect to the Left Tensor Prod-	
uct of Po	inted S	Sets	. 170
4.4	The R	Right Tensor Product of Pointed Sets	174
	4.4.1	Foundations	. 174
	4.4.2	The Right Internal Hom of Pointed Sets	178
	4.4.3	The Right Skew Unit	180
	4.4.4	The Right Skew Associator	. 180
	4.4.5	The Right Skew Left Unitor	183
	4.4.6	The Right Skew Right Unitor	184
	4.4.7	The Diagonal	. 187
	4.4.8	The Right Skew Monoidal Structure on Pointed	
Sets Asso	ociated	to >	188
	4.4.9	Monoids With Respect to the Right Tensor Prod-	
uct of Po		Sets	
4.5	The S	mash Product of Pointed Sets	
	4.5.1	Foundations	
	4.5.2	The Internal Hom of Pointed Sets	
	4.5.3	The Monoidal Unit	
	4.5.4	The Associator	
	4.5.5	The Left Unitor	
	4.5.6	The Right Unitor	
	4.5.7	The Symmetry	
	4.5.8	The Diagonal	. 215
	4.5.9	The Monoidal Structure on Pointed Sets Associ-	
ated to /			218
D 1 : 1 :		Universal Properties of the Smash Product of	225
Pointed S			222
D 1.7		Universal Properties of the Smash Product of	000
Pointed S	sets II.		. 222

Contents viii

			Monoids With Respect to the Smash Product of	
Poi	inted S			. 223
		4.5.13	Comonoids With Respect to the Smash Product	
of 1	Pointe	d Sets.		. 223
	4.6	Miscel	lany	
		4.6.1	The Smash Product of a Family of Pointed Sets.	. 223
	4.A	Other	Chapters	. 224
Pa	rt II	Rela	tions	225
5	Rela	tions		.226
	5.1	Relatio	ons	. 228
		5.1.1	Foundations	. 228
		5.1.2	Relations as Decategorifications of Profunctors	
		5.1.3	Examples of Relations	
		5.1.4	Functional Relations	
		5.1.5	Total Relations	. 236
	5.2	Catego	ories of Relations	. 236
		5.2.1	The Category of Relations	
		5.2.2	The Closed Symmetric Monoidal Category of	
Re	lations			. 237
		5.2.3	The 2-Category of Relations	.242
		5.2.4	The Double Category of Relations	. 242
	5.3	Proper	ties of the 2-Category of Relations	. 249
		5.3.1	Self-Duality	. 249
		5.3.2	Isomorphisms and Equivalences in Rel	. 250
		5.3.3	Adjunctions in Rel	. 251
		5.3.4	Monads in Rel	. 253
		5.3.5	Comonads in Rel	. 254
		5.3.6	Co/Monoids in Rel	. 255
		5.3.7	Monomorphisms in Rel	. 255
		5.3.8	2-Categorical Monomorphisms in Rel	. 258
		5.3.9	Epimorphisms in Rel	. 262
		5.3.10	2-Categorical Epimorphisms in Rel	. 264
		5.3.11	Co/Limits in Rel	. 268
		5.3.12	Kan Extensions and Kan Lifts in Rel	
			Closedness of Rel.	
			Rel as a Category of Free Algebras	
	5.4	The Le	eft Skew Monoidal Structure on $\mathbf{Rel}(A, B)$	
		5.4.1	The Left Skew Monoidal Product	
		5.4.2	The Left Skew Monoidal Unit	
		5.4.3	The Left Skew Associators	
		5.4.4	The Left Skew Left Unitors	.271

Contents ix

		5.4.5	The Left Skew Right Unitors	.272
		5.4.6	The Left Skew Monoidal Structure on $\mathbf{Rel}(A, B)$. 273
	5.5	The Ri	ight Skew Monoidal Structure on $\mathbf{Rel}(A, B)$. 274
		5.5.1	The Right Skew Monoidal Product	.274
		5.5.2	The Right Skew Monoidal Unit	. 275
		5.5.3	The Right Skew Associators	.275
		5.5.4	The Right Skew Left Unitors	.276
		5.5.5	The Right Skew Right Unitors	276
		5.5.6	The Right Skew Monoidal Structure on $\mathbf{Rel}(A, B)$	
277	7			
	5.A	Other	Chapters	. 278
6	Con	structio	ons With Relations	.279
	6.1	Co/Lir	nits in the Category of Relations	. 281
	6.2	,	xtensions and Kan Lifts in the 2-Category of Re-	
lati	ions			281
		6.2.1	Left Kan Extensions in Rel	. 281
		6.2.2	Left Kan Lifts in Rel	. 282
		6.2.3	Right Kan Extensions in Rel	. 282
		6.2.4	Right Kan Lifts in Rel	. 284
	6.3	More (Constructions With Relations	.285
		6.3.1	The Graph of a Function	. 285
		6.3.2	The Inverse of a Function	. 288
		6.3.3	Representable Relations	. 290
		6.3.4	The Domain and Range of a Relation	. 291
		6.3.5	Binary Unions of Relations	. 292
		6.3.6	Unions of Families of Relations	. 293
		6.3.7	Binary Intersections of Relations	. 293
		6.3.8	Intersections of Families of Relations	. 294
		6.3.9	Binary Products of Relations	. 295
		6.3.10	Products of Families of Relations	. 297
		6.3.11	The Inverse of a Relation	. 297
		6.3.12	Composition of Relations	299
		6.3.13	The Collage of a Relation	. 303
	6.4	Functo	riality of Powersets	.305
		6.4.1	Direct Images	.305
		6.4.2	Strong Inverse Images	.310
		6.4.3	Weak Inverse Images	. 315
		6.4.4	Direct Images With Compact Support	. 320
		6.4.5	Functoriality of Powersets	.325
		6.4.6	Functoriality of Powersets: Relations on Power-	
set	S			. 326
	6 A	Other	Chanters	327

Contents x

7	Equ	ivalenc	e Relations and Apartness Relations	328
	7.1	Reflex	ive Relations	328
		7.1.1	Foundations	328
		7.1.2	The Reflexive Closure of a Relation	329
	7.2	Symm	etric Relations	331
		7.2.1	Foundations	331
		7.2.2	The Symmetric Closure of a Relation	331
	7.3	Transi	tive Relations	333
		7.3.1	Foundations	333
		7.3.2	The Transitive Closure of a Relation	334
	7.4	Equiva	alence Relations	336
		7.4.1	Foundations	336
		7.4.2	The Equivalence Closure of a Relation	336
	7.5	Quotie	ents by Equivalence Relations	338
		7.5.1	Equivalence Classes	338
		7.5.2	Quotients of Sets by Equivalence Relations	338
	7.A	Other	Chapters	342
Pa	rt II	I Cat	tegory Theory	343
8	Cat	egories		344
	8.1	_	ories	
		8.1.1	Foundations	346
		8.1.2	Examples of Categories	348
		8.1.3	Posetal Categories	351
		8.1.4	Subcategories	352
		8.1.5	Skeletons of Categories	353
		8.1.6	Precomposition and Postcomposition	354
	8.2	The Q	uadruple Adjunction With Sets	356
		8.2.1	Statement	356
		8.2.2	Connected Components and Connected Cat	e-
goi	ies		-	357
		8.2.3	Discrete Categories	359
		8.2.4	Indiscrete Categories	361
	8.3	Group	oids	362
		8.3.1	Foundations	362
		8.3.2	The Groupoid Completion of a Category	362
		8.3.3	The Core of a Category	365
	8.4	Functo	ors	
		8.4.1	Foundations	
		8.4.2	Contravariant Functors	372
		8.4.3	Forgetful Functors	373

Contents xi

	8.4.4	The Natural Transformation Associated to a Func-	
tor			375
8.5	Condi	tions on Functors	376
	8.5.1	Faithful Functors	376
	8.5.2	Full Functors	379
	8.5.3	Fully Faithful Functors	381
	8.5.4	Conservative Functors	384
	8.5.5	Essentially Injective Functors	386
	8.5.6	Essentially Surjective Functors	386
	8.5.7	Equivalences of Categories	387
	8.5.8	Isomorphisms of Categories	389
8.6	More	Conditions on Functors	390
	8.6.1	Dominant Functors	390
	8.6.2	Monomorphisms of Categories	392
	8.6.3	Epimorphisms of Categories	393
	8.6.4	Pseudomonic Functors	394
	8.6.5	Pseudoepic Functors	396
8.7	Even	More Conditions on Functors	398
	8.7.1	Injective on Objects Functors	
	8.7.2	Surjective on Objects Functors	
	8.7.3	Bijective on Objects Functors	
	8.7.4	Functors Representably Faithful on Cores	
	8.7.5	Functors Representably Full on Cores	399
	8.7.6	Functors Representably Fully Faithful on Cores.	
	8.7.7	Functors Corepresentably Faithful on Cores	
	8.7.8	Functors Corepresentably Full on Cores	
	8.7.9	Functors Corepresentably Fully Faithful on Core	
8.8	Natur	al Transformations	
	8.8.1	Transformations	
	8.8.2	Natural Transformations	
	8.8.3	1	s. 405
	8.8.4	I I	
tions			
	8.8.5	Properties of Natural Transformations	
	8.8.6	Natural Isomorphisms	
8.9	_	ories of Categories	
	8.9.1	Functor Categories	
	8.9.2	The Category of Categories and Functors	418
_	8.9.3	The 2-Category of Categories, Functors, and Nat-	
ural Trai		ations	
	8.9.4	The Category of Groupoids	
	8.9.5	The 2-Category of Groupoids	
8.A	Other	Chapters	420

Contents xii

Pa	rt IV	Bic	ategories	421
9	Турс	es of N	forphisms in Bicategories	.422
	9.1	Monor	norphisms in Bicategories	. 423
		9.1.1	Representably Faithful Morphisms	. 423
		9.1.2	Representably Full Morphisms	.424
		9.1.3	Representably Fully Faithful Morphisms	.425
		9.1.4	Morphisms Representably Faithful on Cores	. 426
		9.1.5	Morphisms Representably Full on Cores	. 426
		9.1.6	Morphisms Representably Fully Faithful on Cores	427
		9.1.7	Representably Essentially Injective Morphisms	. 428
		9.1.8	Representably Conservative Morphisms	. 429
		9.1.9	Strict Monomorphisms	. 429
		9.1.10	Pseudomonic Morphisms	. 430
	9.2	Epimo	rphisms in Bicategories	
		9.2.1	Corepresentably Faithful Morphisms	. 432
		9.2.2	Corepresentably Full Morphisms	. 432
		9.2.3	Corepresentably Fully Faithful Morphisms	. 433
		9.2.4	Morphisms Corepresentably Faithful on Cores	. 435
		9.2.5	Morphisms Corepresentably Full on Cores	. 435
		9.2.6	Morphisms Corepresentably Fully Faithful on	
Cor	es			
		9.2.7	Corepresentably Essentially Injective Morphisms.	
		9.2.8	Corepresentably Conservative Morphisms	
		9.2.9	Strict Epimorphisms	
		9.2.10	r	
	9.A	Other	Chapters	. 440
Pa	${f rt} \; {f V}$	Extr	a Part	441
10	Misc	ellane	ous Notes	.442
	10.1		List	
		10.1.1	Omitted Proofs To Add	. 442
		10.1.2	Things To Explore/Add	. 443
	10.A	Other	Chapters	. 448
Ind	ex of	Notatio	n	.459
Ind	ex of	Set The	eory	.462
Ind	ex of	Categor	ry Theory	.466
Ind	ex of i	Higher	Category Theory	.468

Part I

Sets

Chapter 1

Sets

0000 This chapter (will eventually) contain material on axiomatic set theory, as well as a couple other things.

Contents

Contents			
1.1	Sets and	d Functions	2
	1.1.1 F	Functions	2
1.2	The En	richment of Sets in Classical Truth	
Values	• • • • • • • • • • • • • • • • • • • •		4
	1.2.1 (-2)-Categories	4
	1.2.2 (-1)-Categories	4
	1.2.3 0	-Categories	8
	1.2.4 T	Tables of Analogies Between Set Theory and	
Category	Theory		8
1.A	Other C	Chapters	10

0001 1.1 Sets and Functions

- **0002 1.1.1 Functions**
- 0003 **Definition 1.1.1.1.1.** A function is a functional and total relation.
- **Notation 1.1.1.1.2.** Throughout this work, we will sometimes denote a function $f\colon X\to Y$ by

$$f \stackrel{\text{def}}{=} [x \mapsto f(x)].$$

1. For example, given a function

$$\Phi \colon \operatorname{Hom}_{\mathsf{Sets}}(X,Y) \to K$$

taking values on a set of functions such as $\operatorname{Hom}_{\mathsf{Sets}}(X,Y)$, we will sometimes also write

$$\Phi(f) \stackrel{\text{def}}{=} \Phi(\llbracket x \mapsto f(x) \rrbracket).$$

2. This notational choice is based on the lambda notation

$$f \stackrel{\text{def}}{=} (\lambda x. \ f(x)),$$

but uses a " \mapsto " symbol for better spacing and double brackets instead of either:

- (a) Square brackets $[x \mapsto f(x)]$;
- (b) Parentheses $(x \mapsto f(x))$;

hoping to improve readability when dealing with e.g.:

- (a) Equivalence classes, cf.:
 - i. $[[x] \mapsto f([x])]$
 - ii. $[[x] \mapsto f([x])]$
 - iii. $(\lambda[x], f([x]))$
- (b) Function evaluations, cf.:
 - i. $\Phi(\llbracket x \mapsto f(x) \rrbracket)$
 - ii. $\Phi((x \mapsto f(x)))$
 - iii. $\Phi((\lambda x. f(x)))$
- 3. We will also sometimes write -1, -2, etc. for the arguments of a function. Some examples include:
 - (a) Writing f(-1) for a function $f: A \to B$.
 - (b) Writing f(-1, -2) for a function $f: A \times B \to C$.
 - (c) Given a function $f: A \times B \to C$, writing

$$f(a,-): B \to C$$

for the function $[\![b \mapsto f(a,b)]\!]$.

(d) Denoting a composition of the form

$$A \times B \xrightarrow{\phi \times \mathrm{id}_B} A' \times B \xrightarrow{f} C$$

by
$$f(\phi(-1), -2)$$
.

4. Finally, given a function $f: A \to B$, we write

$$\operatorname{ev}_a(f) \stackrel{\text{def}}{=} f(a)$$

for the value of f at some $a \in A$.

For an example of the above notations being used in practice, see the proof of the adjunction

$$(A \times - \dashv \operatorname{Hom}_{\mathsf{Sets}}(A, -))$$
: Sets $\underbrace{\bot}_{\mathsf{Hom}_{\mathsf{Sets}}(A, -)}$ Sets,

stated in Item 2 of Proposition 2.1.3.1.2.

1.2 The Enrichment of Sets in Classical Truth Values

- **0006 1.2.1** (-2)-Categories
- **Definition 1.2.1.1.1.** A (-2)-category is the "necessarily true" truth value. 1,2,3
- **0008 1.2.2** (-1)-Categories
- **Output** Definition 1.2.2.1.1. A (-1)-category is a classical truth value.
- **Remark 1.2.2.1.2.** $^{4}(-1)$ -categories should be thought of as being "categories enriched in (-2)-categories", having a collection of objects and, for each pair of objects, a Hom-object Hom(x,y) that is a (-2)-category (i.e. trivial).

Therefore, a (-1)-category C is either ([BS10, pp. 33–34]):

- 1. Empty, having no objects;
- 2. Contractible, having a collection of objects $\{a, b, c, \ldots\}$, but with $\operatorname{Hom}_{\mathcal{C}}(a, b)$ being a (-2)-category (i.e. trivial) for all $a, b \in \operatorname{Obj}(\mathcal{C})$, forcing all objects of \mathcal{C} to be uniquely isomorphic to each other.

As such, there are only two (-1)-categories, up to equivalence:

- The (-1)-category false (the empty one);
- The (-1)-category true (the contractible one).
- **Definition 1.2.2.1.3.** The **poset of truth values**⁵ is the poset ($\{\text{true}, \text{false}\}, \leq$) consisting of

¹Thus, there is only one (-2)-category.

 $^{^2}$ A (-n)-category for $n=3,4,\ldots$ is also the "necessarily true" truth value, coinciding with a (-2)-category.

³For motivation, see [BS10, p. 13].

⁴For more motivation, see [BS10, p. 13].

⁵ Further Terminology: Also called the **poset of** (-1)-categories.

- The Underlying Set. The set {true, false} whose elements are the truth values true and false.
- The Partial Order. The partial order

$$\leq$$
: {true, false} \times {true, false} \rightarrow {true, false}

on {true, false} defined by⁶

false
$$\leq$$
 false $\stackrel{\text{def}}{=}$ true,

true
$$\leq$$
 false $\stackrel{\text{def}}{=}$ false,

false
$$\leq$$
 true $\stackrel{\text{def}}{=}$ true,

true
$$\preceq$$
 true $\stackrel{\mathrm{def}}{=}$ true.

- **000C** Notation 1.2.2.1.4. We also write $\{t, f\}$ for the poset $\{true, false\}$.
- **Proposition 1.2.2.1.5.** The poset of truth values $\{t,f\}$ is Cartesian closed with product given by⁷

$$t \times t = t$$
,

$$t \times f = f$$
,

$$f \times t = f$$

$$f \times f = f$$

and internal Hom $\mathbf{Hom}_{\{t,f\}}$ given by the partial order of $\{t,f\},$ i.e. by

$$\mathbf{Hom}_{\{t,f\}}(t,t) = t,$$

$$\mathbf{Hom}_{\{t,f\}}(t,f)=f,$$

$$\mathbf{Hom}_{\{t,f\}}(f,t) = t,$$

$$\mathbf{Hom}_{\{t,f\}}(f,f)=t.$$

Proof. Existence of Products: We claim that the products $t \times t$, $t \times f$, $f \times t$, and $f \times f$ satisfy the universal property of the product in $\{t,f\}$. Indeed, consider the diagrams

Here:

 $^{^6{}m This}$ partial order coincides with logical implication.

⁷Note that \times coincides with the "and" operator, while $\mathbf{Hom}_{\{t,f\}}$ coincides with

- 1. If $P_1 = t$, then $p_1^1 = p_2^1 = id_t$, and there's indeed a unique morphism from P_1 to t making the diagram commute, namely id_t ;
- 2. If $P_1 = f$, then $p_1^1 = p_2^1$ are given by the unique morphism from f to t, and there's indeed a unique morphism from P_1 to t making the diagram commute, namely the unique morphism from f to t;
- 3. If $P_2 = t$, then there is no morphism p_2^2 .
- 4. If $P_2 = f$, then p_1^2 is the unique morphism from f to t while $p_2^2 = id_f$, and there's indeed a unique morphism from P_2 to f making the diagram commute, namely id_f ;
- 5. The proof for P_3 is similar to the one for P_2 ;
- 6. If $P_4 = t$, then there is no morphism p_1^4 or p_2^4 .
- 7. If $P_4 = f$, then $p_1^4 = p_2^4 = id_f$, and there's indeed a unique morphism from P_4 to f making the diagram commute, namely id_f .

Cartesian Closedness: We claim there's a bijection

$$\operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}(A \times B, C) \cong \operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}(A, \operatorname{\mathbf{Hom}}_{\{\mathsf{t},\mathsf{f}\}}(B, C))$$

natural in $A, B, C \in \{t, f\}$. Indeed:

• For (A, B, C) = (t, t, t), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(t\times t,t) &\cong \operatorname{Hom}_{\{t,f\}}(t,t) \\ &= \{\operatorname{id}_{\mathsf{true}}\} \\ &\cong \operatorname{Hom}_{\{t,f\}}(t,t) \\ &\cong \operatorname{Hom}_{\{t,f\}} \Big(t, \mathbf{Hom}_{\{t,f\}}(t,t) \Big). \end{split}$$

• For (A, B, C) = (t, t, f), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(t\times t,f) &\cong \operatorname{Hom}_{\{t,f\}}(t,f) \\ &= \emptyset \\ &\cong \operatorname{Hom}_{\{t,f\}}(t,f) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(t, \operatorname{\textbf{Hom}}_{\{t,f\}}(t,f) \big). \end{split}$$

• For (A, B, C) = (t, f, t), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(t\times f,t) &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{pt} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(f, \operatorname{\textbf{Hom}}_{\{t,f\}}(f,t) \big). \end{split}$$

• For (A, B, C) = (t, f, f), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(t\times f,f) &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \{\operatorname{id}_{\mathsf{false}}\} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(t,\mathbf{Hom}_{\{t,f\}}(f,f) \big). \end{split}$$

• For (A, B, C) = (f, t, t), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(f\times t,t) &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{pt} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(f, \mathbf{Hom}_{\{t,f\}}(t,t) \big). \end{split}$$

• For (A, B, C) = (f, t, f), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(f\times t,f) &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \{\operatorname{id}_{\mathsf{false}}\} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(f,\mathbf{Hom}_{\{t,f\}}(t,f) \big). \end{split}$$

• For (A, B, C) = (f, f, t), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(f\times f,t) &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{pt} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{Hom}_{\{t,f\}} \Big(f, \mathbf{Hom}_{\{t,f\}}(f,t)\Big). \end{split}$$

• For (A, B, C) = (f, f, f), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(f\times f,f) &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &= \{\operatorname{id}_{\mathsf{false}}\} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(f, \mathbf{Hom}_{\{t,f\}}(f,f) \big). \end{split}$$

The proof of naturality is omitted.

the logical implication operator.

- **000E 1.2.3 0-Categories**
- 000F Definition 1.2.3.1.1. A 0-category is a poset.⁸
- 000G **Definition 1.2.3.1.2.** A 0-groupoid is a 0-category in which every morphism is invertible. 9

1.2.4 Tables of Analogies Between Set Theory and Cate-900H gory Theory

Here we record some analogies between notions in set theory and category theory. Note that the analogies relating to presheaves relate equally well to copresheaves, as the opposite X^{op} of a set X is just X again. Basics:

Set Theory	CATEGORY THEORY
Enrichment in {true, false}	Enrichment in Sets
Set X	Category C
Element $x \in X$	Object $X \in \text{Obj}(\mathcal{C})$
Function	Functor
Function $X \to \{true, false\}$	Functor $\mathcal{C} o Sets$
Function $X \to \{true, false\}$	Presheaf $\mathcal{C}^{op} o Sets$

Powersets and categories of presheaves:

 $^{^8} Motivation:$ A 0-category is precisely a category enriched in the poset of (–1)-categories.

⁹That is, a *set*.

Set Theory	Category Theory
Powerset $\mathcal{P}(X)$	Presheaf category $PSh(\mathcal{C})$
Characteristic function $\chi_{\{x\}}$	Representable presheaf h_X
Characteristic embedding $\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$	Yoneda embedding $\mathcal{L}: C^{op} \hookrightarrow PSh(C)$
Characteristic relation $\chi_X(-1,-2)$	Hom profunctor $\operatorname{Hom}_{\mathcal{C}}(-1, -2)$
The Yoneda lemma for sets $\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_U) = \chi_U(x)$	The Yoneda lemma for categories $\operatorname{Nat}(h_X, \mathcal{F}) \cong \mathcal{F}(X)$
The characteristic embedding is fully faithful, $\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_y) = \chi_X(x, y)$	The Yoneda embedding is fully faithful, $\operatorname{Nat}(h_X, h_Y) \cong \operatorname{Hom}_{\mathcal{C}}(X, Y)$
Subsets are unions of their elements $U = \bigcup_{x \in U} \{x\}$ or $\chi_U = \operatorname*{colim}_{\chi_x \in Sets(U, \{t, f\})} (\chi_x)$	Presheaves are colimits of representables, $\mathcal{F} \cong \operatorname*{colim}_{h_X \in \int_{\mathcal{C}} \mathcal{F}} (h_X)$

Categories of elements:

Set Theory	Category Theory
Assignment $U \mapsto \chi_U$	Assignment $\mathcal{F} \mapsto \int_{\mathcal{C}} \mathcal{F}$ (the category of elements)
Assignment $U \mapsto \chi_U$ giving an isomorphism $\mathcal{P}(X) \cong Sets(X, \{t, f\})$	Assignment $\mathcal{F} \mapsto \int_{\mathcal{C}} \mathcal{F}$ giving an equivalence $PSh(\mathcal{C}) \stackrel{\text{eq.}}{\cong} DFib(\mathcal{C})$

Functions between powersets and functors between presheaf categories:

Set Theory	Category Theory
Direct image function $f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$	Inverse image functor $f^{-1} \colon PSh(\mathcal{C}) \to PSh(\mathcal{D})$
Inverse image function $f^{-1} \colon \mathcal{P}(Y) \to \mathcal{P}(X)$	Direct image functor $f_* \colon PSh(\mathcal{D}) \to PSh(\mathcal{C})$
Direct image with compact support function $f_! \colon \mathcal{P}(X) \to \mathcal{P}(Y)$	Direct image with compact support functor $f_! : PSh(\mathcal{C}) \to PSh(\mathcal{D})$

Relations and profunctors:

Set Theory	Category Theory
Relation $R: X \times Y \to \{t,f\}$	Profunctor $\mathfrak{p} \colon \mathcal{D}^{op} \times \mathcal{C} \to Sets$
Relation $R: X \to \mathcal{P}(Y)$	$\operatorname{Profunctor}\mathfrak{p}\colon \mathcal{C}\to\operatorname{PSh}(\mathcal{D})$
Relation as a cocontinuous morphism of posets $R \colon (\mathcal{P}(X), \subset) \to (\mathcal{P}(Y), \subset)$	Profunctor as a colimit-preserving functor $\mathfrak{p} \colon PSh(\mathcal{C}) \to PSh(\mathcal{D})$

Appendices

1.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 2

Constructions With Sets

- 000J This chapter develops some material relating to constructions with sets with an eye towards its categorical and higher-categorical counterparts to be introduced later in this work. In particular, it contains:
 - 1. Explicit descriptions of the major types of co/limits in Sets, including in particular explicit descriptions of pushouts and coequalisers (see Definitions 2.2.4.1.1 and 2.2.5.1.1 and Remarks 2.2.4.1.2 and 2.2.5.1.2).
 - 2. A discussion of powersets as decategorifications of categories of presheaves (Remarks 2.4.1.1.2 and 2.4.3.1.2), including a (-1)-categorical analogue of un/straightening, described in Items 1 and 2 of Proposition 2.4.3.1.6 and Remark 2.4.3.1.7.
 - 3. A lengthy discussion of the adjoint triple

$$f_* \dashv f^{-1} \dashv f_! \colon \mathcal{P}(A) \stackrel{\rightleftharpoons}{\to} \mathcal{P}(B)$$

of functors (morphisms of posets) between $\mathcal{P}(A)$ and $\mathcal{P}(B)$ induced by a map of sets $f: A \to B$, along with a discussion of the properties of f_* , f^{-1} , and $f_!$.

In line with the categorical viewpoint developed here, this adjoint triple may be described in terms of Kan extensions, and, as it turns out, it also shows up in some definitions and results in point-set topology, such as in e.g. notions of continuity for functions (??).

2.1	Limits of Sets		12
	2.1.1	The Terminal Set	12
	2.1.2	Products of Families of Sets	13

	2.1.3	Binary Products of Sets	15
	2.1.4	Pullbacks	23
	2.1.5	Equalisers	28
2.2	Colim	its of Sets	32
	2.2.1	The Initial Set	32
	2.2.2	Coproducts of Families of Sets	33
	2.2.3	Binary Coproducts	34
	2.2.4	Pushouts	37
	2.2.5	Coequalisers	43
2.3	Opera	tions With Sets	46
	2.3.1	The Empty Set	46
	2.3.2	Singleton Sets	46
	2.3.3	Pairings of Sets	47
	2.3.4	Ordered Pairs	47
	2.3.5	Sets of Maps	47
	2.3.6	Unions of Families	48
	2.3.7	Binary Unions	48
	2.3.8	Intersections of Families	50
	2.3.9	Binary Intersections	50
	2.3.10	Differences	54
	2.3.11	Complements	57
	2.3.12	Symmetric Differences	58
2.4	Power	sets	62
	2.4.1	Characteristic Functions	62
	2.4.2	The Yoneda Lemma for Sets	67
	2.4.3	Powersets	68
	2.4.4	Direct Images	83
	2.4.5	Inverse Images	88
	2.4.6	Direct Images With Compact Support	92
2.A	Other	Chapters	99

000K 2.1 Limits of Sets

000L 2.1.1 The Terminal Set

Definition 2.1.1.1.1. The **terminal set** is the pair $(pt, \{!_A\}_{A \in Obj(Sets)})$ consisting of:

• The Limit. The punctual set pt $\stackrel{\text{def}}{=} \{ \star \}$.

• The Cone. The collection of maps

$$\{!_A \colon A \to \operatorname{pt}\}_{A \in \operatorname{Obj}(\mathsf{Sets})}$$

defined by

$$!_A(a) \stackrel{\text{def}}{=} \star$$

for each $a \in A$ and each $A \in \text{Obj}(\mathsf{Sets})$.

Proof. We claim that pt is the terminal object of Sets. Indeed, suppose we have a diagram of the form

$$A$$
 pt

in Sets. Then there exists a unique map $\phi: A \to \operatorname{pt}$ making the diagram

$$A \xrightarrow{\phi} pt$$

commute, namely $!_A$.

000N 2.1.2 Products of Families of Sets

Let $\{A_i\}_{i\in I}$ be a family of sets.

- **Definition 2.1.2.1.1.** The **product**¹ of $\{A_i\}_{i\in I}$ is the pair $(\prod_{i\in I} A_i, \{\operatorname{pr}_i\}_{i\in I})$ consisting of:
 - The Limit. The set $\prod_{i \in I} A_i$ defined by²

$$\prod_{i \in I} A_i \stackrel{\text{def}}{=} \left\{ f \in \mathsf{Sets}\bigg(I, \bigcup_{i \in I} A_i\bigg) \;\middle|\; \begin{array}{l} \text{for each } i \; \in \; I, \\ \text{we have } f(i) \; \in \end{array} \right\}.$$

• The Cone. The collection

$$\left\{ \operatorname{pr}_i \colon \prod_{i \in I} A_i \to A_i \right\}_{i \in I}$$

of maps given by

$$\operatorname{pr}_i(f) \stackrel{\text{\tiny def}}{=} f(i)$$

for each $f \in \prod_{i \in I} A_i$ and each $i \in I$.

¹ Further Terminology: Also called the Cartesian product of $\{A_i\}_{i\in I}$.

²Less formally, $\prod_{i \in I} A_i$ is the set whose elements are *I*-indexed collections $(a_i)_{i \in I}$

Proof. We claim that $\prod_{i \in I} A_i$ is the categorical product of $\{A_i\}_{i \in I}$ in Sets. Indeed, suppose we have, for each $i \in I$, a diagram of the form

in Sets. Then there exists a unique map $\phi \colon P \to \prod_{i \in I} A_i$ making the diagram

commute, being uniquely determined by the condition $\operatorname{pr}_i \circ \phi = p_i$ for each $i \in I$ via

$$\phi(x) = (p_i(x))_{i \in I}$$

for each $x \in P$.

QUALITY Proposition 2.1.2.1.2. Let $\{A_i\}_{i\in I}$ be a family of sets.

000R 1. Functoriality. The assignment $\{A_i\}_{i\in I} \mapsto \prod_{i\in I} A_i$ defines a functor $\Pi: \operatorname{Fun}(I_{\operatorname{disc}},\operatorname{Sets}) \to \operatorname{Sets}$

 $\prod_{i \in I} \colon \mathsf{Fun}(I_{\mathsf{disc}},\mathsf{Sets}) \to \mathsf{Sets}$

where

• Action on Objects. For each $(A_i)_{i \in I} \in \text{Obj}(\mathsf{Fun}(I_{\mathsf{disc}},\mathsf{Sets})),$ we have

$$\left[\prod_{i\in I}\right]((A_i)_{i\in I})\stackrel{\text{def}}{=}\prod_{i\in I}A_i$$

• Action on Morphisms. For each $(A_i)_{i \in I}, (B_i)_{i \in I} \in \text{Obj}(\mathsf{Fun}(I_{\mathsf{disc}},\mathsf{Sets})),$

with $a_i \in A_i$ for each $i \in I$. The projection maps

$$\left\{ \operatorname{pr}_i \colon \prod_{i \in I} A_i \to A_i \right\}_{i \in I}$$

are then given by

$$\operatorname{pr}_i((a_j)_{j\in I})\stackrel{\mathrm{def}}{=} a_i$$

for each $(a_j)_{j\in I} \in \prod_{i\in I} A_i$ and each $i\in I$.

the action on Hom-sets

$$\left(\prod_{i\in I}\right)_{(A_i)_{i\in I},(B_i)_{i\in I}}:\operatorname{Nat}((A_i)_{i\in I},(B_i)_{i\in I})\to\operatorname{Sets}\left(\prod_{i\in I}A_i,\prod_{i\in I}B_i\right)$$

of $\prod_{i\in I}$ at $((A_i)_{i\in I},(B_i)_{i\in I})$ is defined by sending a map

$$\{f_i\colon A_i\to B_i\}_{i\in I}$$

in $\operatorname{Nat}((A_i)_{i\in I},(B_i)_{i\in I})$ to the map of sets

$$\prod_{i \in I} f_i \colon \prod_{i \in I} A_i \to \prod_{i \in I} B_i$$

defined by

$$\left[\prod_{i\in I} f_i\right] ((a_i)_{i\in I}) \stackrel{\text{def}}{=} (f_i(a_i))_{i\in I}$$

for each $(a_i)_{i \in I} \in \prod_{i \in I} A_i$.

Proof. Item 1, Functoriality: This follows from ?? of ??.

000S 2.1.3 Binary Products of Sets

Let A and B be sets.

- **Definition 2.1.3.1.1.** The **product**³ of A and B is the pair $(A \times B, \{pr_1, pr_2\})$ consisting of:
 - The Limit. The set $A \times B$ defined by⁴

$$\begin{split} A\times B &\stackrel{\mathrm{def}}{=} \prod_{z\in\{A,B\}} z \\ &\stackrel{\mathrm{def}}{=} \{f \in \mathsf{Sets}(\{0,1\},A \cup B) \mid \text{we have } f(0) \in A \text{ and } f(1) \in B\} \\ &\cong \{\{\{a\},\{a,b\}\} \in \mathcal{P}(\mathcal{P}(A \cup B)) \mid \text{we have } a \in A \text{ and } b \in B\}. \end{split}$$

• The Cone. The maps

$$\operatorname{pr}_1 \colon A \times B \to A$$

 $\operatorname{pr}_2 \colon A \times B \to B$

³Further Terminology: Also called the Cartesian product of A and B or the binary Cartesian product of A and B, for emphasis.

This can also be thought of as the $(\mathbb{E}_{-1}, \mathbb{E}_{-1})$ -tensor product of A and B.

⁴In other words, $A \times B$ is the set whose elements are ordered pairs (a, b) with $a \in A$

defined by

$$\operatorname{pr}_1(a,b) \stackrel{\text{def}}{=} a,$$

 $\operatorname{pr}_2(a,b) \stackrel{\text{def}}{=} b$

for each $(a, b) \in A \times B$.

Proof. We claim that $A \times B$ is the categorical product of A and B in Sets. Indeed, suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi \colon P \to A \times B$ making the diagram

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1,$$

 $\operatorname{pr}_2 \circ \phi = p_2$

via

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$.

OURSIGN 2.1.3.1.2. Let A, B, C, and X be sets.

000V 1. Functoriality. The assignments $A, B, (A, B) \mapsto A \times B$ define functors

$$A \times -: \mathsf{Sets} \to \mathsf{Sets},$$
 $- \times B : \mathsf{Sets} \to \mathsf{Sets},$
 $-_1 \times -_2 : \mathsf{Sets} \times \mathsf{Sets} \to \mathsf{Sets},$

where -1×-2 is the functor where

• Action on Objects. For each $(A, B) \in \text{Obj}(\mathsf{Sets} \times \mathsf{Sets})$, we have

$$[-1 \times -2](A,B) \stackrel{\text{def}}{=} A \times B.$$

• Action on Morphisms. For each $(A, B), (X, Y) \in \text{Obj}(\mathsf{Sets}),$ the action on Hom-sets

$$\times_{(A,B),(X,Y)} : \mathsf{Sets}(A,X) \times \mathsf{Sets}(B,Y) \to \mathsf{Sets}(A \times B, X \times Y)$$

of \times at ((A,B),(X,Y)) is defined by sending (f,g) to the function

$$f \times g \colon A \times B \to X \times Y$$

defined by

$$[f \times g](a,b) \stackrel{\text{def}}{=} (f(a),g(b))$$

for each $(a, b) \in A \times B$.

and where $A \times -$ and $- \times B$ are the partial functors of -1×-2 at $A, B \in \text{Obj}(\mathsf{Sets})$.

000W 2. Adjointness. We have adjunctions

$$(A \times - \dashv \operatorname{Hom}_{\mathsf{Sets}}(A, -)) \colon \operatorname{\mathsf{Sets}} \underbrace{\bot}^{A \times -} \operatorname{\mathsf{Sets}},$$

$$\operatorname{\mathsf{Hom}}_{\mathsf{Sets}}(A, -)$$

$$(- \times B \dashv \operatorname{\mathsf{Hom}}_{\mathsf{Sets}}(B, -)) \colon \operatorname{\mathsf{Sets}} \underbrace{\bot}^{- \times B} \operatorname{\mathsf{Sets}},$$

$$\operatorname{\mathsf{Hom}}_{\mathsf{Sets}}(B, -)$$

witnessed by bijections

$$\operatorname{Hom}_{\mathsf{Sets}}(A \times B, C) \cong \operatorname{Hom}_{\mathsf{Sets}}(A, \operatorname{Hom}_{\mathsf{Sets}}(B, C)),$$

 $\operatorname{Hom}_{\mathsf{Sets}}(A \times B, C) \cong \operatorname{Hom}_{\mathsf{Sets}}(B, \operatorname{Hom}_{\mathsf{Sets}}(A, C)),$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

000X 3. Associativity. We have an isomorphism of sets

$$(A \times B) \times C \cong A \times (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

000Y 4. Unitality. We have isomorphisms of sets

$$\operatorname{pt} \times A \cong A,$$

 $A \times \operatorname{pt} \cong A,$

natural in $A \in \text{Obj}(\mathsf{Sets})$.

000Z 5. Commutativity. We have an isomorphism of sets

$$A \times B \cong B \times A$$
.

natural in $A, B \in \text{Obj}(\mathsf{Sets})$.

6. Annihilation With the Empty Set. We have isomorphisms of sets

$$A \times \emptyset \cong \emptyset,$$
$$\emptyset \times A \cong \emptyset.$$

natural in $A \in \text{Obj}(\mathsf{Sets})$.

0011 7. Distributivity Over Unions. We have isomorphisms of sets

$$A \times (B \cup C) = (A \times B) \cup (A \times C),$$

$$(A \cup B) \times C = (A \times C) \cup (B \times C).$$

8. Distributivity Over Intersections. We have isomorphisms of sets

$$A \times (B \cap C) = (A \times B) \cap (A \times C),$$

$$(A \cap B) \times C = (A \times C) \cap (B \times C).$$

9. Middle-Four Exchange with Respect to Intersections. We have an isomorphism of sets

$$(A \times B) \cap (C \times D) \cong (A \cap B) \times (C \cap D).$$

0014 10. Distributivity Over Differences. We have isomorphisms of sets

$$A \times (B \setminus C) = (A \times B) \setminus (A \times C),$$

$$(A \setminus B) \times C = (A \times C) \setminus (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

0015 11. Distributivity Over Symmetric Differences. We have isomorphisms of sets

$$A \times (B \triangle C) = (A \times B) \triangle (A \times C),$$

$$(A \triangle B) \times C = (A \times C) \triangle (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

0016 12. Symmetric Monoidality. The triple (Sets, \times , pt) is a symmetric monoidal category.

0017 13. Symmetric Bimonoidality. The quintuple (Sets, \coprod , \emptyset , \times , pt) is a symmetric bimonoidal category.

Proof. Item 1, Functoriality: This follows from ?? of ??. Item 2, Adjointness: We prove only that there's an adjunction $- \times B \dashv \operatorname{Hom}_{\mathsf{Sets}}(B,-)$, witnessed by a bijection

$$\operatorname{Hom}_{\mathsf{Sets}}(A \times B, C) \cong \operatorname{Hom}_{\mathsf{Sets}}(A, \operatorname{Hom}_{\mathsf{Sets}}(B, C)),$$

natural in $B, C \in \text{Obj}(\mathsf{Sets})$, as the proof of the existence of the adjunction $A \times - \dashv \operatorname{Hom}_{\mathsf{Sets}}(A, -)$ follows almost exactly in the same way.

• Map I. We define a map

$$\Phi_{B,C} \colon \operatorname{Hom}_{\mathsf{Sets}}(A \times B, C) \to \operatorname{Hom}_{\mathsf{Sets}}(A, \operatorname{Hom}_{\mathsf{Sets}}(B, C)),$$

by sending a function

$$\xi \colon A \times B \to C$$

to the function

$$\xi^{\dagger} \colon A \to \operatorname{Hom}_{\mathsf{Sets}}(B, C),$$

 $a \longmapsto \left(\xi_a^{\dagger} \colon B \to C\right),$

where we define

$$\xi_a^{\dagger}(b) \stackrel{\text{def}}{=} \xi(a,b)$$

for each $b \in B$. In terms of the $[a \mapsto f(a)]$ notation of Notation 1.1.1.1.2, we have

$$\xi^\dagger \stackrel{\text{\tiny def}}{=} \llbracket a \mapsto \llbracket b \mapsto \xi(a,b) \rrbracket \rrbracket.$$

• Map II. We define a map

$$\Psi_{B,C} \colon \operatorname{Hom}_{\mathsf{Sets}}(A, \operatorname{Hom}_{\mathsf{Sets}}(B, C)), \to \operatorname{Hom}_{\mathsf{Sets}}(A \times B, C)$$

given by sending a function

$$\xi \colon A \to \operatorname{Hom}_{\mathsf{Sets}}(B,C),$$

 $a \longmapsto (\xi_a \colon B \to C),$

to the function

$$\xi^{\dagger} \colon A \times B \to C$$

defined by

$$\xi^{\dagger}(a,b) \stackrel{\text{def}}{=} \operatorname{ev}_b(\operatorname{ev}_a(\xi))$$

$$\stackrel{\text{def}}{=} \operatorname{ev}_b(\xi_a)$$

$$\stackrel{\text{def}}{=} \xi_a(b)$$

for each $(a, b) \in A \times B$.

• Invertibility I. We claim that

$$\Psi_{A,B} \circ \Phi_{A,B} = \mathrm{id}_{\mathrm{Hom}_{\mathsf{Sets}}(A \times B,C)}.$$

Indeed, given a function $\xi \colon A \times B \to C$, we have

$$\begin{split} [\Psi_{A,B} \circ \Phi_{A,B}](\xi) &= \Psi_{A,B}(\Phi_{A,B}(\xi)) \\ &= \Psi_{A,B}(\Phi_{A,B}([\![(a,b) \mapsto \xi(a,b)]\!])) \\ &= \Psi_{A,B}([\![a \mapsto [\![b \mapsto \xi(a,b)]\!]]) \\ &= \Psi_{A,B}([\![a' \mapsto [\![b' \mapsto \xi(a',b')]\!]]) \\ &= [\![(a,b) \mapsto \operatorname{ev}_b(\operatorname{ev}_a([\![a' \mapsto [\![b' \mapsto \xi(a',b')]\!]]))]] \\ &= [\![(a,b) \mapsto \operatorname{ev}_b([\![b' \mapsto \xi(a,b')]\!])]] \\ &= [\![(a,b) \mapsto \xi(a,b)]] \\ &= \xi. \end{split}$$

• Invertibility II. We claim that

$$\Phi_{A,B} \circ \Psi_{A,B} = \mathrm{id}_{\mathrm{Hom}_{\mathsf{Sets}}(A,\mathrm{Hom}_{\mathsf{Sets}}(B,C))}.$$

Indeed, given a function

$$\xi \colon A \to \operatorname{Hom}_{\mathsf{Sets}}(B, C),$$

 $a \longmapsto (\xi_a \colon B \to C),$

we have

$$\begin{split} [\Phi_{A,B} \circ \Psi_{A,B}](\xi) &\stackrel{\text{def}}{=} \Phi_{A,B}(\Psi_{A,B}(\xi)) \\ &\stackrel{\text{def}}{=} \Phi_{A,B}([\![(a,b) \mapsto \xi_a(b)]\!]) \\ &\stackrel{\text{def}}{=} \Phi_{A,B}([\![(a',b') \mapsto \xi_{a'}(b')]\!]) \\ &\stackrel{\text{def}}{=} [\![a \mapsto [\![b \mapsto \operatorname{ev}_{(a,b)}([\![(a',b') \mapsto \xi_{a'}(b')]\!])]\!]] \\ &\stackrel{\text{def}}{=} [\![a \mapsto [\![b \mapsto \xi_a(b)]\!]] \\ &\stackrel{\text{def}}{=} [\![a \mapsto \xi_a]\!] \\ &\stackrel{\text{def}}{=} \xi. \end{split}$$

• Naturality for Φ , Part I. We need to show that, given a function $g \colon B \to B'$, the diagram

$$\begin{split} \operatorname{Hom}_{\mathsf{Sets}}(A \times B', C) & \stackrel{\Phi_{B', C}}{\longrightarrow} \operatorname{Hom}_{\mathsf{Sets}}(A, \operatorname{Hom}_{\mathsf{Sets}}(B', C)), \\ \operatorname{id}_A \times g^* \bigg| & & & \downarrow (g^*)_* \\ \operatorname{Hom}_{\mathsf{Sets}}(A \times B, C) & \xrightarrow{\Phi_{B, C}} \operatorname{Hom}_{\mathsf{Sets}}(A, \operatorname{Hom}_{\mathsf{Sets}}(B, C)) \end{split}$$

commutes. Indeed, given a function

$$\xi \colon A \times B' \to C$$

we have

$$\begin{split} [\Phi_{B,C} \circ (\mathrm{id}_A \times g^*)](\xi) &= \Phi_{B,C}([\mathrm{id}_A \times g^*](\xi)) \\ &= \Phi_{B,C}(\xi(-_1,g(-_2))) \\ &= [\xi(-_1,g(-_2))]^\dagger \\ &= \xi^\dagger_{-_1}(g(-_2)) \\ &= (g^*)_* \left(\xi^\dagger\right) \\ &= (g^*)_* (\Phi_{B',C}(\xi)) \\ &= [(g^*)_* \circ \Phi_{B',C}](\xi). \end{split}$$

Alternatively, using the $[a \mapsto f(a)]$ notation of Notation 1.1.1.1.2, we have

$$[\Phi_{B,C} \circ (\mathrm{id}_{A} \times g^{*})](\xi) = \Phi_{B,C}([\mathrm{id}_{A} \times g^{*}](\xi))$$

$$= \Phi_{B,C}([\mathrm{id}_{A} \times g^{*}]([(a,b') \mapsto \xi(a,b')]))$$

$$= \Phi_{B,C}([(a,b) \mapsto \xi(a,g(b))])$$

$$= [a \mapsto [b \mapsto \xi(a,g(b))]]$$

$$= [a \mapsto g^{*}([b' \mapsto \xi(a,b')])]$$

$$= (g^{*})_{*}([a \mapsto [b' \mapsto \xi(a,b')]])$$

$$= (g^{*})_{*}(\Phi_{B',C}([(a,b') \mapsto \xi(a,b')]))$$

$$= (g^{*})_{*}(\Phi_{B',C}(\xi))$$

$$= [(g^{*})_{*} \circ \Phi_{B',C}](\xi).$$

• Naturality for Φ , Part II. We need to show that, given a function

2.1. Limits of Sets

 $h: C \to C'$, the diagram

$$\begin{split} \operatorname{Hom}_{\mathsf{Sets}}(A \times B, C) & \xrightarrow{\Phi_{B,C}} \operatorname{Hom}_{\mathsf{Sets}}(A, \operatorname{Hom}_{\mathsf{Sets}}(B, C)), \\ h_* & \downarrow \\ \operatorname{Hom}_{\mathsf{Sets}}(A \times B, C') \underset{\Phi_{B,C'}}{\longrightarrow} \operatorname{Hom}_{\mathsf{Sets}}(A, \operatorname{Hom}_{\mathsf{Sets}}(B, C')) \end{split}$$

commutes. Indeed, given a function

$$\xi \colon A \times B \to C$$
,

we have

$$\begin{split} [\Phi_{B,C} \circ h_*](\xi) &= \Phi_{B,C}(h_*(\xi)) \\ &= \Phi_{B,C}(h_*([(a,b) \mapsto \xi(a,b)])) \\ &= \Phi_{B,C}([(a,b) \mapsto h(\xi(a,b))]) \\ &= [a \mapsto [b \mapsto h(\xi(a,b))]] \\ &= [a \mapsto h_*([b \mapsto \xi(a,b)]]) \\ &= (h_*)_*([a \mapsto [b \mapsto \xi(a,b)]]) \\ &= (h_*)_*(\Phi_{B,C}([(a,b) \mapsto \xi(a,b)])) \\ &= (h_*)_*(\Phi_{B,C}(\xi)) \\ &= [(h_*)_* \circ \Phi_{B,C}](\xi). \end{split}$$

- Naturality for Ψ . Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Item 2 of Proposition 8.8.6.1.2 that Ψ is also natural in each argument.
- Item 3, Associativity: See [Pro24a].
- Item 4, Unitality: Clear.
- Item 5, Commutativity: See [Pro24b].
- Item 6, Annihilation With the Empty Set: See [Pro24f].
- Item 7, Distributivity Over Unions: See [Pro24e].
- Item 8, Distributivity Over Intersections: See [Pro24g, Corollary 1].
- *Item 9*, *Middle-Four Exchange With Respect to Intersections*: See [Pro24g, Corollary 1].

- Item 10, Distributivity Over Differences: See [Pro24c].
- Item 11, Distributivity Over Symmetric Differences: See [Pro24d].
- Item 12, Symmetric Monoidality: See [MO 382264].
- Item 13, Symmetric Bimonoidality: Omitted.

0018 2.1.4 Pullbacks

Let A, B, and C be sets and let $f: A \to C$ and $g: B \to C$ be functions.

23

- 0019 **Definition 2.1.4.1.1.** The pullback of A and B over C along f and g^5 is the pair⁶ $(A \times_C B, \{\text{pr}_1, \text{pr}_2\})$ consisting of:
 - The Limit. The set $A \times_C B$ defined by

$$A\times_C B\stackrel{\text{\tiny def}}{=}\{(a,b)\in A\times B\mid f(a)=g(b)\}.$$

• The Cone. The maps

$$\operatorname{pr}_1 \colon A \times_C B \to A,$$

 $\operatorname{pr}_2 \colon A \times_C B \to B$

defined by

$$\operatorname{pr}_1(a,b) \stackrel{\text{def}}{=} a,$$

 $\operatorname{pr}_2(a,b) \stackrel{\text{def}}{=} b$

for each $(a,b) \in A \times_C B$.

Proof. We claim that $A \times_C B$ is the categorical pullback of A and B over C with respect to (f,g) in Sets. First we need to check that the relevant pullback diagram commutes, i.e. that we have

$$f \circ \operatorname{pr}_1 = g \circ \operatorname{pr}_2, \qquad A \times_C B \xrightarrow{\operatorname{pr}_2} B$$

$$\downarrow^g$$

$$A \xrightarrow{f} C.$$

Indeed, given $(a, b) \in A \times_C B$, we have

$$\begin{split} [f \circ \mathrm{pr}_1](a,b) &= f(\mathrm{pr}_1(a,b)) \\ &= f(a) \\ &= g(b) \\ &= g(\mathrm{pr}_2(a,b)) \\ &= [g \circ \mathrm{pr}_2](a,b), \end{split}$$

where f(a) = g(b) since $(a, b) \in A \times_C B$. Next, we prove that $A \times_C B$

⁵ Further Terminology: Also called the **fibre product of** A **and** B **over** C **along** f **and** g.

⁶ Further Notation: Also written $A \times_{f,C,g} B$.

satisfies the universal property of the pullback. Suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi \colon P \to A \times_C B$ making the diagram

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1,$$
$$\operatorname{pr}_2 \circ \phi = p_2$$

via

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$, where we note that $(p_1(x), p_2(x)) \in A \times B$ indeed lies in $A \times_C B$ by the condition

$$f \circ p_1 = g \circ p_2$$

which gives

$$f(p_1(x)) = g(p_2(x))$$

for each $x \in P$, so that $(p_1(x), p_2(x)) \in A \times_C B$.

001A Example 2.1.4.1.2. Here are some examples of pullbacks of sets.

001B 1. Unions via Intersections. Let $A, B \subset X$. We have a bijection of

sets

$$A \cap B \cong A \times_{A \cup B} B,$$

$$A \cap B \longrightarrow B$$

$$\downarrow^{\iota_B}$$

$$A \xrightarrow{\iota_A} A \cup B.$$

Proof. Item 1, Unions via Intersections: Indeed, we have

$$A \times_{A \cup B} B \cong \{(x, y) \in A \times B \mid x = y\}$$

$$\cong A \cap B.$$

This finishes the proof.

OOIC Proposition 2.1.4.1.3. Let A, B, C, and X be sets.

001D 1. Functoriality. The assignment $(A, B, C, f, g) \mapsto A \times_{f,C,g} B$ defines a functor

$$-1 \times_{-3} -_1 : \mathsf{Fun}(\mathcal{P}, \mathsf{Sets}) \to \mathsf{Sets},$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-1 \times_{-3} -1$ is given by sending a morphism

in $\operatorname{\mathsf{Fun}}(\mathcal{P},\operatorname{\mathsf{Sets}})$ to the map $\xi\colon A\times_C B \xrightarrow{\exists !} A'\times_{C'} B'$ given by $\xi(a,b) \stackrel{\mathrm{def}}{=} (\phi(a),\psi(b))$

for each $(a,b) \in A \times_C B$, which is the unique map making the diagram

commute.

001E 2. Associativity. Given a diagram

in Sets, we have isomorphisms of sets

$$(A \times_X B) \times_Y C \cong (A \times_X B) \times_B (B \times_Y C) \cong A \times_X (B \times_Y C),$$

where these pullbacks are built as in the diagrams

001F 3. Unitality. We have isomorphisms of sets

$$A = A \qquad X \times_X A \cong A, \qquad A \xrightarrow{f} X$$

$$\downarrow^f \qquad A \times_X X \cong A, \qquad \parallel \qquad \parallel$$

$$X = X \qquad X \xrightarrow{f} X.$$

001G 4. Commutativity. We have an isomorphism of sets

001H 5. Annihilation With the Empty Set. We have isomorphisms of sets

6. Interaction With Products. We have an isomorphism of sets

$$A \times_{\mathrm{pt}} B \cong A \times B, \qquad A \times_{\mathrm{pt}} B \cong A \times B, \qquad \downarrow^{!_{B}}$$

$$A \xrightarrow{!_{A}} \mathrm{pt}.$$

001K 7. Symmetric Monoidality. The triple (Sets, \times_X , X) is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pullback diagram.

Item 2, Associativity: Indeed, we have

$$(A \times_X B) \times_Y C \cong \{((a,b),c) \in (A \times_X B) \times C \mid h(b) = k(c)\}$$

$$\cong \{((a,b),c) \in (A \times B) \times C \mid f(a) = g(b) \text{ and } h(b) = k(c)\}$$

$$\cong \{(a,(b,c)) \in A \times (B \times C) \mid f(a) = g(b) \text{ and } h(b) = k(c)\}$$

$$\cong \{(a,(b,c)) \in A \times (B \times_Y C) \mid f(a) = g(b)\}$$

$$\cong A \times_X (B \times_Y C)$$

and

$$(A \times_X B) \times_B (B \times_Y C) \cong \left\{ \left((a,b), \left(b',c \right) \right) \in (A \times_X B) \times (B \times_Y C) \mid b = b' \right\}$$

$$\cong \left\{ \left((a,b), \left(b',c \right) \right) \in (A \times B) \times (B \times C) \mid f(a) = g(b), b = b', \\ \text{and } h\left(b' \right) = k(c) \right\}$$

$$\cong \left\{ \left(a, \left(b, \left(b',c \right) \right) \right) \in A \times (B \times (B \times C)) \mid f(a) = g(b), b = b', \\ \text{and } h\left(b' \right) = k(c) \right\}$$

$$\cong \left\{ \left(a, \left(\left(b,b' \right),c \right) \right) \in A \times ((B \times B) \times C) \mid f(a) = g(b), b = b', \\ \text{and } h\left(b' \right) = k(c) \right\}$$

$$\cong \left\{ \left(a, \left(\left(b,b' \right),c \right) \right) \in A \times ((B \times_B B) \times C) \mid f(a) = g(b) \text{ and } \\ h\left(b' \right) = k(c) \right\}$$

$$\cong \left\{ (a, (b,c)) \in A \times (B \times C) \mid f(a) = g(b) \text{ and } h(b) = k(c) \right\}$$

$$\cong A \times_X (B \times_Y C),$$

where we have used Item 3 for the isomorphism $B \times_B B \cong B$. Item 3, Unitality: Indeed, we have

$$X \times_X A \cong \{(x, a) \in X \times A \mid f(a) = x\},\$$

$$A \times_X X \cong \{(a, x) \in X \times A \mid f(a) = x\},\$$

which are isomorphic to A via the maps $(x, a) \mapsto a$ and $(a, x) \mapsto a$.

Item 4, Commutativity: Clear.

Item 5, Annihilation With the Empty Set: Clear.

Item 6, Interaction With Products: Clear.

Item 7, Symmetric Monoidality: Omitted.

001L 2.1.5 Equalisers

Let A and B be sets and let $f, g: A \Rightarrow B$ be functions.

- **Definition 2.1.5.1.1.** The **equaliser of** f **and** g is the pair (Eq(f,g), eq(f,g)) consisting of:
 - The Limit. The set Eq(f, g) defined by

$$\mathrm{Eq}(f,g) \stackrel{\mathrm{def}}{=} \{ a \in A \mid f(a) = g(a) \}.$$

• The Cone. The inclusion map

$$eq(f,g) : Eq(f,g) \hookrightarrow A.$$

Proof. We claim that $\mathrm{Eq}(f,g)$ is the categorical equaliser of f and g in Sets. First we need to check that the relevant equaliser diagram commutes, i.e. that we have

$$f \circ \operatorname{eq}(f, q) = q \circ \operatorname{eq}(f, q),$$

which indeed holds by the definition of the set Eq(f,g). Next, we prove that Eq(f,g) satisfies the universal property of the equaliser. Suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi \colon E \to \mathrm{Eq}(f,g)$ making the diagram

commute, being uniquely determined by the condition

$$eq(f,g) \circ \phi = e$$

via

$$\phi(x) = e(x)$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in Eq(f,g) by the condition

$$f \circ e = g \circ e$$
,

which gives

$$f(e(x)) = g(e(x))$$

for each $x \in E$, so that $e(x) \in \text{Eq}(f, g)$.

001N Proposition 2.1.5.1.2. Let A, B, and C be sets.

001P 1. Associativity. We have isomorphisms of sets⁷

$$\underbrace{\mathrm{Eq}(f \circ \mathrm{eq}(g,h), g \circ \mathrm{eq}(g,h))}_{=\mathrm{Eq}(f \circ \mathrm{eq}(g,h), h \circ \mathrm{eq}(g,h))} \cong \underbrace{\mathrm{Eq}(f,g,h)}_{=\mathrm{Eq}(g \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))} = \underbrace{\mathrm{Eq}(g \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))}_{=\mathrm{Eq}(g \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))}$$

1. Take the equaliser of (f, g, h), i.e. the limit of the diagram

$$A \xrightarrow{f \atop -g \xrightarrow{h}} B$$

in Sets.

⁷That is, the following three ways of forming "the" equaliser of (f, g, h) agree:

where Eq(f, g, h) is the limit of the diagram

$$A \xrightarrow{f \atop -g \xrightarrow{h}} B$$

in Sets, being explicitly given by

$$Eq(f, g, h) \cong \{a \in A \mid f(a) = g(a) = h(a)\}.$$

001Q 4. Unitality. We have an isomorphism of sets

$$\operatorname{Eq}(f, f) \cong A.$$

001R 5. Commutativity. We have an isomorphism of sets

$$\operatorname{Eq}(f,g) \cong \operatorname{Eq}(g,f).$$

001S 6. Interaction With Composition. Let

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{h}{\underset{k}{\Longrightarrow}} C$$

2. First take the equaliser of f and g, forming a diagram

$$\operatorname{Eq}(f,g) \stackrel{\operatorname{eq}(f,g)}{\hookrightarrow} A \stackrel{f}{\underset{g}{\Longrightarrow}} B$$

and then take the equaliser of the composition

$$\mathrm{Eq}(f,g) \overset{\mathrm{eq}(f,g)}{\hookrightarrow} A \overset{f}{\underset{h}{\Longrightarrow}} B,$$

obtaining a subset

$$\mathrm{Eq}(f\circ\mathrm{eq}(f,g),h\circ\mathrm{eq}(f,g))=\mathrm{Eq}(g\circ\mathrm{eq}(f,g),h\circ\mathrm{eq}(f,g))$$
 of $\mathrm{Eq}(f,g).$

3. First take the equaliser of g and h, forming a diagram

$$\mathrm{Eq}(g,h) \overset{\mathrm{eq}(g,h)}{\hookrightarrow} A \overset{g}{\underset{h}{\Longrightarrow}} B$$

and then take the equaliser of the composition

$$\operatorname{Eq}(g,h) \stackrel{\operatorname{eq}(g,h)}{\hookrightarrow} A \stackrel{f}{\Longrightarrow} B,$$

obtaining a subset

$$\mathrm{Eq}(f\circ\mathrm{eq}(g,h),g\circ\mathrm{eq}(g,h))=\mathrm{Eq}(f\circ\mathrm{eq}(g,h),h\circ\mathrm{eq}(g,h))$$
 of $\mathrm{Eq}(g,h).$

be functions. We have an inclusion of sets

$$\operatorname{Eq}(h \circ f \circ \operatorname{eq}(f, g), k \circ g \circ \operatorname{eq}(f, g)) \subset \operatorname{Eq}(h \circ f, k \circ g),$$

where $\text{Eq}(h\circ f\circ \text{eq}(f,g),k\circ g\circ \text{eq}(f,g))$ is the equaliser of the composition

$$\operatorname{Eq}(f,g) \overset{\operatorname{eq}(f,g)}{\hookrightarrow} A \overset{f}{\underset{g}{\Longrightarrow}} B \overset{h}{\underset{k}{\Longrightarrow}} C.$$

Proof. Item 1, Associativity: We first prove that Eq(f, g, h) is indeed given by

$$\operatorname{Eq}(f, g, h) \cong \{ a \in A \mid f(a) = g(a) = h(a) \}.$$

Indeed, suppose we have a diagram of the form

$$\operatorname{Eq}(f,g,h) \xrightarrow{\operatorname{eq}(f,g,h)} A \xrightarrow{f \atop h} B$$

in Sets. Then there exists a unique map $\phi \colon E \to \text{Eq}(f,g,h)$, uniquely determined by the condition

$$eq(f,g) \circ \phi = e$$

being necessarily given by

$$\phi(x) = e(x)$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in Eq(f, g, h) by the condition

$$f \circ e = g \circ e = h \circ e$$
,

which gives

$$f(e(x)) = q(e(x)) = h(e(x))$$

for each $x \in E$, so that $e(x) \in \text{Eq}(f, g, h)$.

We now check the equalities

$$\operatorname{Eq}(f \circ \operatorname{eq}(g,h), g \circ \operatorname{eq}(g,h)) \cong \operatorname{Eq}(f,g,h) \cong \operatorname{Eq}(f \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g)).$$

Indeed, we have

$$\begin{split} \operatorname{Eq}(f \circ \operatorname{eq}(g,h), g \circ \operatorname{eq}(g,h)) &\cong \{x \in \operatorname{Eq}(g,h) \mid [f \circ \operatorname{eq}(g,h)](a) = [g \circ \operatorname{eq}(g,h)](a) \} \\ &\cong \{x \in \operatorname{Eq}(g,h) \mid f(a) = g(a) \} \\ &\cong \{x \in A \mid f(a) = g(a) \text{ and } g(a) = h(a) \} \\ &\cong \{x \in A \mid f(a) = g(a) = h(a) \} \\ &\cong \operatorname{Eq}(f,g,h). \end{split}$$

Similarly, we have

$$\begin{split} \operatorname{Eq}(f \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g)) & \cong \{x \in \operatorname{Eq}(f,g) \mid [f \circ \operatorname{eq}(f,g)](a) = [h \circ \operatorname{eq}(f,g)](a) \} \\ & \cong \{x \in \operatorname{Eq}(f,g) \mid f(a) = h(a) \} \\ & \cong \{x \in A \mid f(a) = h(a) \text{ and } f(a) = g(a) \} \\ & \cong \{x \in A \mid f(a) = g(a) = h(a) \} \\ & \cong \operatorname{Eq}(f,g,h). \end{split}$$

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.

Item 6, Interaction With Composition: Indeed, we have

$$\operatorname{Eq}(h \circ f \circ \operatorname{eq}(f, g), k \circ g \circ \operatorname{eq}(f, g)) \cong \{ a \in \operatorname{Eq}(f, g) \mid h(f(a)) = k(g(a)) \}$$

$$\cong \{ a \in A \mid f(a) = g(a) \text{ and } h(f(a)) = k(g(a)) \}.$$

and

$$Eq(h \circ f, k \circ g) \cong \{a \in A \mid h(f(a)) = k(g(a))\},\$$

and thus there's an inclusion from $\text{Eq}(h \circ f \circ \text{eq}(f, g), k \circ g \circ \text{eq}(f, g))$ to $\text{Eq}(h \circ f, k \circ g)$.

001T 2.2 Colimits of Sets

001U 2.2.1 The Initial Set

- **Definition 2.2.1.1.1.** The **initial set** is the pair $(\emptyset, \{\iota_A\}_{A \in \text{Obj}(\mathsf{Sets})})$ consisting of:
 - The Limit. The empty set \emptyset of Definition 2.3.1.1.1.
 - The Cone. The collection of maps

$$\{\iota_A \colon \emptyset \to A\}_{A \in \mathrm{Obj}(\mathsf{Sets})}$$

given by the inclusion maps from \emptyset to A.

Proof. We claim that \emptyset is the initial object of Sets. Indeed, suppose we have a diagram of the form

$$\emptyset$$
 A

in Sets. Then there exists a unique map $\phi \colon \emptyset \to A$ making the diagram

$$\emptyset \xrightarrow{-\frac{\phi}{\exists !}} A$$

commute, namely the inclusion map ι_A .

001W 2.2.2 Coproducts of Families of Sets

Let $\{A_i\}_{i\in I}$ be a family of sets.

001X Definition 2.2.2.1.1. The disjoint union of the family $\{A_i\}_{i\in I}$ is the pair $(\coprod_{i\in I} A_i, \{\operatorname{inj}_i\}_{i\in I})$ consisting of:

• The Colimit. The set $\coprod_{i \in I} A_i$ defined by

$$\prod_{i \in I} A_i \stackrel{\text{def}}{=} \bigg\{ (i, x) \in I \times \left(\bigcup_{i \in I} A_i \right) \bigg| x \in A_i \bigg\}.$$

• The Cocone. The collection

$$\left\{ \inf_i \colon A_i \to \coprod_{i \in I} A_i \right\}_{i \in I}$$

of maps given by

$$\operatorname{inj}_{i}(x) \stackrel{\text{def}}{=} (i, x)$$

for each $x \in A_i$ and each $i \in I$.

Proof. We claim that $\coprod_{i \in I} A_i$ is the categorical coproduct of $\{A_i\}_{i \in I}$ in Sets. Indeed, suppose we have, for each $i \in I$, a diagram of the form

in Sets. Then there exists a unique map $\phi \colon \coprod_{i \in I} A_i \to C$ making the diagram

$$A_i \xrightarrow[\operatorname{inj}_i]{C} A_i$$

commute, being uniquely determined by the condition $\phi\circ \mathrm{inj}_i=\iota_i$ for each $i\in I$ via

$$\phi((i,x)) = \iota_i(x)$$

for each $(i, x) \in \coprod_{i \in I} A_i$.

QUAL Proposition 2.2.2.1.2. Let $\{A_i\}_{i\in I}$ be a family of sets.

001Z 1. Functoriality. functor

The assignment $\{A_i\}_{i\in I} \mapsto \coprod_{i\in I} A_i$ defines a

$$\coprod_{i \in I} \colon \mathsf{Fun}(I_{\mathsf{disc}},\mathsf{Sets}) \to \mathsf{Sets}$$

where

• Action on Objects. For each $(A_i)_{i \in I} \in \text{Obj}(\mathsf{Fun}(I_{\mathsf{disc}},\mathsf{Sets}))$, we have

$$\left[\coprod_{i\in I}\right]((A_i)_{i\in I})\stackrel{\text{def}}{=}\coprod_{i\in I}A_i$$

• Action on Morphisms. For each $(A_i)_{i\in I}$, $(B_i)_{i\in I}\in \mathrm{Obj}(\mathsf{Fun}(I_{\mathsf{disc}},\mathsf{Sets}))$, the action on Hom-sets

$$\left(\coprod_{i\in I}\right)_{(A_i)_{i\in I},(B_i)_{i\in I}}:\operatorname{Nat}\left(\left(A_i\right)_{i\in I},\left(B_i\right)_{i\in I}\right)\to\operatorname{Sets}\left(\coprod_{i\in I}A_i,\coprod_{i\in I}B_i\right)$$

of $\coprod_{i\in I}$ at $((A_i)_{i\in I},(B_i)_{i\in I})$ is defined by sending a map

$$\{f_i\colon A_i\to B_i\}_{i\in I}$$

in $\operatorname{Nat}((A_i)_{i\in I},(B_i)_{i\in I})$ to the map of sets

$$\coprod_{i \in I} f_i \colon \coprod_{i \in I} A_i \to \coprod_{i \in I} B_i$$

defined by

$$\left[\coprod_{i\in I} f_i\right](i,a) \stackrel{\text{def}}{=} f_i(a)$$

for each $(i, a) \in \coprod_{i \in I} A_i$.

Proof. Item 1, Functoriality: This follows from ?? of ??.

0020 2.2.3 Binary Coproducts

Let A and B be sets.

- **Definition 2.2.3.1.1.** The **coproduct**⁸ **of** A **and** B is the pair $(A \coprod B, \{\text{inj}_1, \text{inj}_2\})$ consisting of:
 - The Colimit. The set $A \coprod B$ defined by

$$\begin{split} A \coprod B &\stackrel{\text{def}}{=} \coprod_{z \in \{A,B\}} z \\ &\cong \{(0,a) \mid a \in A\} \cup \{(1,b) \mid b \in B\}. \end{split}$$

⁸Further Terminology: Also called the **disjoint union of** A **and** B, or the **binary**

• The Cocone. The maps

$$\operatorname{inj}_1 \colon A \to A \coprod B,$$

 $\operatorname{inj}_2 \colon B \to A \coprod B,$

given by

$$inj_1(a) \stackrel{\text{def}}{=} (0, a),
inj_2(b) \stackrel{\text{def}}{=} (1, b),$$

for each $a \in A$ and each $b \in B$.

Proof. We claim that $A \coprod B$ is the categorical coproduct of A and B in Sets. Indeed, suppose we have a diagram of the form

$$A \xrightarrow[\operatorname{inj}_A]{C} \swarrow_{\iota_B}$$

$$A \coprod B \xleftarrow[\operatorname{inj}_B]{B}$$

in Sets. Then there exists a unique map $\phi \colon A \coprod B \to C$ making the diagram

$$A \xrightarrow[\operatorname{inj}_A]{C} \downarrow \iota_B$$

$$A \xrightarrow[\operatorname{inj}_A]{\phi} A \coprod B \xleftarrow[\operatorname{inj}_B]{B}$$

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_A = \iota_A,$$

$$\phi \circ \operatorname{inj}_B = \iota_B$$

via

$$\phi(x) = \begin{cases} \iota_A(a) & \text{if } x = (0, a), \\ \iota_B(b) & \text{if } x = (1, b) \end{cases}$$

for each $x \in A \coprod B$.

- **0022 Proposition 2.2.3.1.2.** Let A, B, C, and X be sets.
- 0023 1. Functoriality. The assignment $A, B, (A, B) \mapsto A \coprod B$ defines functors

$$\begin{split} A & \coprod -\colon \mathsf{Sets} \to \mathsf{Sets}, \\ & - \coprod B \colon \mathsf{Sets} \to \mathsf{Sets}, \\ & -_1 \coprod -_2 \colon \mathsf{Sets} \times \mathsf{Sets} \to \mathsf{Sets}, \end{split}$$

where $-1 \coprod -2$ is the functor where

• Action on Objects. For each $(A, B) \in \text{Obj}(\mathsf{Sets} \times \mathsf{Sets})$, we have

$$[-1 \coprod -2](A,B) \stackrel{\text{def}}{=} A \coprod B.$$

• Action on Morphisms. For each $(A, B), (X, Y) \in \text{Obj}(\mathsf{Sets}),$ the action on Hom-sets

 $\coprod_{(A,B),(X,Y)} \colon \mathsf{Sets}(A,X) \times \mathsf{Sets}(B,Y) \to \mathsf{Sets}(A \coprod B, X \coprod Y)$

of \coprod at ((A,B),(X,Y)) is defined by sending (f,g) to the function

$$f \coprod g \colon A \coprod B \to X \coprod Y$$

defined by

$$[f \coprod g](x) \stackrel{\text{def}}{=} \begin{cases} (0, f(a)) & \text{if } x = (0, a), \\ (1, g(b)) & \text{if } x = (1, b), \end{cases}$$

for each $x \in A \coprod B$.

and where $A \coprod -$ and $- \coprod B$ are the partial functors of $-1 \coprod -2$ at $A, B \in \text{Obj}(\mathsf{Sets})$.

0024 2. Associativity. We have an isomorphism of sets

$$(A \coprod B) \coprod C \cong A \coprod (B \coprod C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

0025 3. Unitality. We have isomorphisms of sets

$$A \coprod \emptyset \cong A,$$
$$\emptyset \coprod A \cong A,$$

natural in $A \in \text{Obj}(\mathsf{Sets})$.

0026 4. Commutativity. We have an isomorphism of sets

$$A \coprod B \cong B \coprod A$$
,

natural in $A, B \in \text{Obj}(\mathsf{Sets})$.

0027 5. Symmetric Monoidality. The triple (Sets, \coprod , \emptyset) is a symmetric monoidal category.

Proof. Item 1, Functoriality: This follows from ?? of ??.

Item 2, Associativity: Clear.

Item 3, Unitality: Clear.

Item 4, Commutativity: Clear.

Item 5, Symmetric Monoidality: Omitted.

0028 2.2.4 Pushouts

Let A, B, and C be sets and let $f: C \to A$ and $g: C \to B$ be functions.

- 0029 Definition 2.2.4.1.1. The pushout of A and B over C along f and g^9 is the pair $(A \coprod_C B, \{\text{inj}_1, \text{inj}_2\})$ consisting of:
 - The Colimit. The set $A \coprod_C B$ defined by

$$A \coprod_C B \stackrel{\text{def}}{=} A \coprod_C B / \sim_C$$

where \sim_C is the equivalence relation on $A \coprod B$ generated by $(0, f(c)) \sim_C (1, g(c))$.

• The Cocone. The maps

$$\operatorname{inj}_1 : A \to A \coprod_C B,$$

 $\operatorname{inj}_2 : B \to A \coprod_C B$

given by

$$\begin{aligned} & \operatorname{inj}_1(a) \stackrel{\text{\tiny def}}{=} [(0,a)] \\ & \operatorname{inj}_2(b) \stackrel{\text{\tiny def}}{=} [(1,b)] \end{aligned}$$

for each $a \in A$ and each $b \in B$.

Proof. We claim that $A \coprod_C B$ is the categorical pushout of A and B over C with respect to (f,g) in Sets. First we need to check that the relevant pushout diagram commutes, i.e. that we have

$$\begin{aligned} & A \coprod_C B \xleftarrow{\operatorname{inj}_2} B \\ \operatorname{inj}_1 \circ f &= \operatorname{inj}_2 \circ g, & & \underset{\operatorname{inj}_1}{\bigcap} & & \underset{f}{\bigcap} g \\ & & A \xleftarrow{f} & C. \end{aligned}$$

Indeed, given $c \in C$, we have

$$\begin{aligned} [\inf_1 \circ f](c) &= \inf_1(f(c)) \\ &= [(0, f(c))] \\ &= [(1, g(c))] \\ &= \inf_2(g(c)) \\ &= [\inf_2 \circ g](c), \end{aligned}$$

disjoint union of A and B, for emphasis.

⁹ Further Terminology: Also called the fibre coproduct of A and B over C along f and g.

¹⁰ Further Notation: Also written $A \coprod_{f,C,g} B$.

where [(0, f(c))] = [(1, g(c))] by the definition of the relation \sim on $A \coprod B$. Next, we prove that $A \coprod CB$ satisfies the universal property of the pushout. Suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi \colon A \coprod_C B \to P$ making the diagram

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_1 = \iota_1,$$

$$\phi \circ \operatorname{inj}_2 = \iota_2$$

via

$$\phi(x) = \begin{cases} \iota_1(a) & \text{if } x = [(0, a)], \\ \iota_2(b) & \text{if } x = [(1, b)] \end{cases}$$

for each $x \in A \coprod_C B$, where the well-definedness of ϕ is guaranteed by the equality $\iota_1 \circ f = \iota_2 \circ g$ and the definition of the relation \sim on $A \coprod B$ as follows:

1. Case 1: Suppose we have x = [(0, a)] = [(0, a')] for some $a, a' \in A$. Then, by Remark 2.2.4.1.2, we have a sequence

$$(0,a) \sim' x_1 \sim' \cdots \sim' x_n \sim' (0,a').$$

2. Case 2: Suppose we have x = [(1,b)] = [(1,b')] for some $b,b' \in B$. Then, by Remark 2.2.4.1.2, we have a sequence

$$(1,b) \sim' x_1 \sim' \cdots \sim' x_n \sim' (1,b').$$

3. Case 3: Suppose we have x = [(0, a)] = [(1, b)] for some $a \in A$ and $b \in B$. Then, by Remark 2.2.4.1.2, we have a sequence

$$(0,a) \sim' x_1 \sim' \cdots \sim' x_n \sim' (1,b).$$

In all these cases, we declare $x \sim' y$ iff there exists some $c \in C$ such that x = (0, f(c)) and y = (1, g(c)) or x = (1, g(c)) and y = (0, f(c)). Then, the equality $\iota_1 \circ f = \iota_2 \circ g$ gives

$$\phi([x]) = \phi([(0, f(c))])$$

$$\stackrel{\text{def}}{=} \iota_1(f(c))$$

$$= \iota_2(g(c))$$

$$\stackrel{\text{def}}{=} \phi([(1, g(c))])$$

$$= \phi([y]),$$

with the case where x=(1,g(c)) and y=(0,f(c)) similarly giving $\phi([x])=\phi([y])$. Thus, if $x\sim' y$, then $\phi([x])=\phi([y])$. Applying this equality pairwise to the sequences

$$(0,a) \sim' x_1 \sim' \cdots \sim' x_n \sim' (0,a'),$$

$$(1,b) \sim' x_1 \sim' \cdots \sim' x_n \sim' (1,b'),$$

$$(0,a) \sim' x_1 \sim' \cdots \sim' x_n \sim' (1,b)$$

gives

$$\phi([(0, a)]) = \phi([(0, a')]),$$

$$\phi([(1, b)]) = \phi([(1, b')]),$$

$$\phi([(0, a)]) = \phi([(1, b)]),$$

showing ϕ to be well-defined.

- **Remark 2.2.4.1.2.** In detail, by Construction 7.4.2.1.2, the relation \sim of Definition 2.2.4.1.1 is given by declaring $a \sim b$ iff one of the following conditions is satisfied:
 - We have $a, b \in A$ and a = b;
 - We have $a, b \in B$ and a = b;
 - There exist $x_1, \ldots, x_n \in A \coprod B$ such that $a \sim' x_1 \sim' \cdots \sim' x_n \sim' b$, where we declare $x \sim' y$ if one of the following conditions is satisfied:
 - 1. There exists $c \in C$ such that x = (0, f(c)) and y = (1, g(c)).
 - 2. There exists $c \in C$ such that x = (1, g(c)) and y = (0, f(c)).

That is: we require the following condition to be satisfied:

- (*) There exist $x_1, \ldots, x_n \in A \coprod B$ satisfying the following conditions:
 - 1. There exists $c_0 \in C$ satisfying one of the following conditions:
 - (a) We have $a = f(c_0)$ and $x_1 = g(c_0)$.
 - (b) We have $a = g(c_0)$ and $x_1 = f(c_0)$.
 - 2. For each $1 \le i \le n-1$, there exists $c_i \in C$ satisfying one of the following conditions:
 - (a) We have $x_i = f(c_i)$ and $x_{i+1} = g(c_i)$.
 - (b) We have $x_i = g(c_i)$ and $x_{i+1} = f(c_i)$.
 - 3. There exists $c_n \in C$ satisfying one of the following conditions:
 - (a) We have $x_n = f(c_n)$ and $b = g(c_n)$.
 - (b) We have $x_n = g(c_n)$ and $b = f(c_n)$.
- 002B Example 2.2.4.1.3. Here are some examples of pushouts of sets.
- 002C 1. Wedge Sums of Pointed Sets. The wedge sum of two pointed sets of Definition 3.3.3.1.1 is an example of a pushout of sets.
- 002D 2. Intersections via Unions. Let $A, B \subset X$. We have a bijection of sets

$$A \cup B \cong A \coprod_{A \cap B} B, \qquad A \cup B \longleftarrow B$$

$$A \cup B \cong A \coprod_{A \cap B} B, \qquad A \longleftarrow A \cap B$$

Proof. Item 1, Wedge Sums of Pointed Sets: Follows by definition. Item 2, Intersections via Unions: Indeed, $A \coprod_{A \cap B} B$ is the quotient of $A \coprod B$ by the equivalence relation obtained by declaring $(0, a) \sim (1, b)$ iff $a = b \in A \cap B$, which is in bijection with $A \cup B$ via the map with $[(0, a)] \mapsto a$ and $[(1, b)] \mapsto b$.

- **OURSE** Proposition 2.2.4.1.4. Let A, B, C, and X be sets.
- 002F 1. Functoriality. The assignment $(A,B,C,f,g)\mapsto A\coprod_{f,C,g} B$ defines a functor

$$-_1 \coprod_{-_3} -_1 : \mathsf{Fun}(\mathcal{P},\mathsf{Sets}) \to \mathsf{Sets},$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-1 \coprod_{-3} -1$ is given by sending a morphism

in $\operatorname{\sf Fun}(\mathcal P,\operatorname{\sf Sets})$ to the map $\xi\colon A\coprod_C B\xrightarrow{\exists!} A'\coprod_{C'} B'$ given by

$$\xi(x) \stackrel{\text{def}}{=} \begin{cases} \phi(a) & \text{if } x = [(0, a)], \\ \psi(b) & \text{if } x = [(1, b)] \end{cases}$$

for each $x \in A \coprod_C B$, which is the unique map making the diagram

commute.

002G 2. Associativity. Given a diagram

in Sets, we have isomorphisms of sets

$$(A \coprod_X B) \coprod_Y C \cong (A \coprod_X B) \coprod_B (B \coprod_Y C) \cong A \coprod_X (B \coprod_Y C),$$

where these pullbacks are built as in the diagrams

002H 3. Unitality. We have isomorphisms of sets

002J 4. Commutativity. We have an isomorphism of sets

002K 5. Interaction With Coproducts. We have

$$A \coprod_{\emptyset} B \cong A \coprod_{\square} B, \qquad \bigwedge_{\iota_{B}} \bigcap_{\iota_{B}} \bigcap_{\iota_{B}} \bigcap_{\iota_{B}} \emptyset.$$

6. Symmetric Monoidality. The triple (Sets, \coprod_X , X) is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pushout diagram.

Item 2, Associativity: Omitted.

Item 3, Unitality: Omitted.

Item 4, Commutativity: Clear.

Item 5, Interaction With Coproducts: Clear.

Item 6, Symmetric Monoidality: Omitted.

002M 2.2.5 Coequalisers

Let A and B be sets and let $f, g: A \Rightarrow B$ be functions.

- **Definition 2.2.5.1.1.** The **coequaliser of** f **and** g is the pair (CoEq(f, g), coeq(f, g)) consisting of:
 - The Colimit. The set CoEq(f, g) defined by

$$\operatorname{CoEq}(f,g) \stackrel{\text{def}}{=} B/\sim,$$

where \sim is the equivalence relation on B generated by $f(a) \sim g(a)$.

• The Cocone. The map

$$coeq(f, g) \colon B \to CoEq(f, g)$$

given by the quotient map $\pi \colon B \to B/\sim$ with respect to the equivalence relation generated by $f(a) \sim g(a)$.

Proof. We claim that CoEq(f,g) is the categorical coequaliser of f and g in Sets. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have

$$coeq(f, g) \circ f = coeq(f, g) \circ g.$$

Indeed, we have

$$[\operatorname{coeq}(f,g) \circ f](a) \stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](f(a))$$

$$\stackrel{\text{def}}{=} [f(a)]$$

$$= [g(a)]$$

$$\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](g(a))$$

$$\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g) \circ g](a)$$

for each $a \in A$. Next, we prove that CoEq(f, g) satisfies the universal property of the coequaliser. Suppose we have a diagram of the form

$$A \xrightarrow{f} B \xrightarrow{\operatorname{coeq}(f,g)} \operatorname{CoEq}(f,g)$$

in Sets. Then, since c(f(a)) = c(g(a)) for each $a \in A$, it follows from Items 4 and 5 of Proposition 7.5.2.1.3 that there exists a unique map

 $CoEq(f,g) \xrightarrow{\exists !} C$ making the diagram

commute.

Remark 2.2.5.1.2. In detail, by Construction 7.4.2.1.2, the relation \sim of Definition 2.2.5.1.1 is given by declaring $a \sim b$ iff one of the following conditions is satisfied:

- We have a = b;
- There exist $x_1, \ldots, x_n \in B$ such that $a \sim' x_1 \sim' \cdots \sim' x_n \sim' b$, where we declare $x \sim' y$ if one of the following conditions is satisfied:
 - 1. There exists $z \in A$ such that x = f(z) and y = g(z).
 - 2. There exists $z \in A$ such that x = g(z) and y = f(z).

That is: we require the following condition to be satisfied:

- (*) There exist $x_1, \ldots, x_n \in B$ satisfying the following conditions:
 - 1. There exists $z_0 \in A$ satisfying one of the following conditions:
 - (a) We have $a = f(z_0)$ and $x_1 = g(z_0)$.
 - (b) We have $a = g(z_0)$ and $x_1 = f(z_0)$.
 - 2. For each $1 \le i \le n-1$, there exists $z_i \in A$ satisfying one of the following conditions:
 - (a) We have $x_i = f(z_i)$ and $x_{i+1} = g(z_i)$.
 - (b) We have $x_i = g(z_i)$ and $x_{i+1} = f(z_i)$.
 - 3. There exists $z_n \in A$ satisfying one of the following conditions:
 - (a) We have $x_n = f(z_n)$ and $b = g(z_n)$.
 - (b) We have $x_n = g(z_n)$ and $b = f(z_n)$.
- **002Q** Example 2.2.5.1.3. Here are some examples of coequalisers of sets.
- 002R 1. Quotients by Equivalence Relations. Let R be an equivalence relation on a set X. We have a bijection of sets

$$X/\sim_R \cong \operatorname{CoEq}\left(R \hookrightarrow X \times X \overset{\operatorname{pr}_1}{\underset{\operatorname{pr}_2}{\rightrightarrows}} X\right).$$

Proof. Item 1, Quotients by Equivalence Relations: See [Pro24ad]. □

- **002S** Proposition 2.2.5.1.4. Let A, B, and C be sets.
- 002T 1. Associativity. We have isomorphisms of sets¹¹

$$\underbrace{\mathrm{CoEq}(\mathrm{coeq}(f,g)\circ f,\mathrm{coeq}(f,g)\circ h)}_{=\mathrm{CoEq}(\mathrm{coeq}(f,g)\circ g,\mathrm{coeq}(f,g)\circ h)}\cong \underbrace{\mathrm{CoEq}(f,g,h)\cong \underbrace{\mathrm{CoEq}(\mathrm{coeq}(g,h)\circ f,\mathrm{coeq}(g,h)\circ g)}_{=\mathrm{CoEq}(\mathrm{coeq}(g,h)\circ f,\mathrm{coeq}(g,h)\circ h)}$$

where CoEq(f, g, h) is the colimit of the diagram

$$A \xrightarrow{f \atop g \xrightarrow{h}} B$$

in Sets.

1. Take the coequaliser of (f,g,h), i.e. the colimit of the diagram

$$A \xrightarrow{f \atop -g \xrightarrow{h}} B$$

in Sets.

2. First take the coequaliser of f and g, forming a diagram

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(f,g)}{\xrightarrow{}} \operatorname{CoEq}(f,g)$$

and then take the coequaliser of the composition

$$A \stackrel{f}{\underset{h}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(f,g)}{\twoheadrightarrow} \operatorname{CoEq}(f,g),$$

obtaining a quotient

$$\label{eq:coeq} \begin{split} \operatorname{CoEq}(\operatorname{coeq}(f,g) \circ f, \operatorname{coeq}(f,g) \circ h) &= \operatorname{CoEq}(\operatorname{coeq}(f,g) \circ g, \operatorname{coeq}(f,g) \circ h) \\ \text{of } \operatorname{CoEq}(f,g) &= \operatorname{CoEq}(f,g) \circ f, \\ \operatorname{CoEq}(f,g) \circ f, \\ \operatorname{CoEq}(f,g) &= \operatorname{CoEq}(f,g) \circ f, \\ \operatorname{CoEq}(f,g) &= \operatorname{CoEq}(f,g) \circ f, \\ \operatorname{CoEq}(f,g) &= \operatorname{CoEq}(f,g) \circ f, \\ \operatorname{CoEq}(f,g) \circ f, \\ \operatorname{CoEq}(f,g) &= \operatorname{CoEq}(f,g) \circ f, \\ \operatorname{CoEq}(f,g) &= \operatorname{CoEq}(f,g) \circ f, \\ \operatorname{CoEq}(f,g) &= \operatorname{CoEq}(f,g) \circ f, \\ \operatorname{CoEq}(f,g) \circ$$

3. First take the coequaliser of g and h, forming a diagram

$$A \stackrel{g}{\underset{h}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(g,h)}{\twoheadrightarrow} \operatorname{CoEq}(g,h)$$

and then take the coequaliser of the composition

$$A \stackrel{f}{\rightrightarrows} B \stackrel{\operatorname{coeq}(g,h)}{\twoheadrightarrow} \operatorname{CoEq}(g,h),$$

obtaining a quotient

$$\label{eq:coeq} \begin{split} \operatorname{CoEq}(\operatorname{coeq}(g,h) \circ f, \operatorname{coeq}(g,h) \circ g) &= \operatorname{CoEq}(\operatorname{coeq}(g,h) \circ f, \operatorname{coeq}(g,h) \circ h) \\ \text{of } \operatorname{CoEq}(g,h). \end{split}$$

 $^{^{11}\}mathrm{That}$ is, the following three ways of forming "the" coequaliser of (f,g,h) agree:

002U 4. Unitality. We have an isomorphism of sets

$$CoEq(f, f) \cong B$$
.

002V 5. Commutativity. We have an isomorphism of sets

$$CoEq(f, g) \cong CoEq(g, f)$$
.

6. Interaction With Composition. Let

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{h}{\underset{k}{\Longrightarrow}} C$$

be functions. We have a surjection

$$CoEq(h \circ f, k \circ g) \rightarrow CoEq(coeq(h, k) \circ h \circ f, coeq(h, k) \circ k \circ g)$$

exhibiting CoEq(coeq(h, k) $\circ h \circ f$, coeq(h, k) $\circ k \circ g$) as a quotient of CoEq($h \circ f, k \circ g$) by the relation generated by declaring $h(y) \sim k(y)$ for each $y \in B$.

Proof. Item 1, Associativity: Omitted.

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.

Item 6, Interaction With Composition: Omitted.

002X 2.3 Operations With Sets

002Y 2.3.1 The Empty Set

Definition 2.3.1.1.1. The **empty set** is the set \emptyset defined by

$$\emptyset \stackrel{\text{\tiny def}}{=} \{x \in X \mid x \neq x\},\$$

where A is the set in the set existence axiom, ?? of ??.

0030 2.3.2 Singleton Sets

Let X be a set.

Definition 2.3.2.1.1. The singleton set containing X is the set $\{X\}$ defined by

$$\{X\} \stackrel{\mathrm{def}}{=} \{X, X\},$$

where $\{X, X\}$ is the pairing of X with itself (Definition 2.3.3.1.1).

0032 2.3.3 Pairings of Sets

Let X and Y be sets.

Definition 2.3.3.1.1. The **pairing of** X **and** Y is the set $\{X,Y\}$ defined by

$$\{X,Y\} \stackrel{\text{def}}{=} \{x \in A \mid x = X \text{ or } x = Y\},$$

where A is the set in the axiom of pairing, ?? of ??.

0034 2.3.4 Ordered Pairs

Let A and B be sets.

Definition 2.3.4.1.1. The **ordered pair associated to** A **and** B is the set (A, B) defined by

$$(A,B) \stackrel{\text{def}}{=} \{ \{A\}, \{A,B\} \}.$$

- **0036** Proposition 2.3.4.1.2. Let A and B be sets.
- 0037 1. Uniqueness. Let A, B, C, and D be sets. The following conditions are equivalent:
- 0038 (a) We have (A, B) = (C, D).
- 0039 (b) We have A = C and B = D.

Proof. Item 1, Uniqueness: See [Cie97, Theorem 1.2.3]. \Box

003A 2.3.5 Sets of Maps

Let A and B be sets.

- 003B Definition 2.3.5.1.1. The set of maps from A to B^{12} is the set $\operatorname{Hom}_{\mathsf{Sets}}(A,B)^{13}$ whose elements are the functions from A to B.
- **003C** Proposition 2.3.5.1.2. Let A and B be sets.
- 003D 1. Functoriality. The assignments $X, Y, (X, Y) \mapsto \operatorname{Hom}_{\mathsf{Sets}}(X, Y)$ define functors

$$\begin{split} \operatorname{Hom}_{\mathsf{Sets}}(X,-) \colon \mathsf{Sets} &\to \mathsf{Sets}, \\ \operatorname{Hom}_{\mathsf{Sets}}(-,Y) \colon \mathsf{Sets}^{\mathsf{op}} &\to \mathsf{Sets}, \\ \operatorname{Hom}_{\mathsf{Sets}}(-_1,-_2) \colon \mathsf{Sets}^{\mathsf{op}} &\times \mathsf{Sets} &\to \mathsf{Sets}. \end{split}$$

Proof. Item 1, Functoriality: This follows from Items 2 and 5 of Proposition 8.1.6.1.2.

¹² Further Terminology: Also called the **Hom set from** A **to** B.

¹³ Further Notation: Also written Sets(A, B).

003E 2.3.6 Unions of Families

Let $\{A_i\}_{i\in I}$ be a family of sets.

003F **Definition 2.3.6.1.1.** The union of the family $\{A_i\}_{i\in I}$ is the set $\bigcup_{i\in I} A_i$ defined by

$$\bigcup_{i \in I} A_i \stackrel{\text{def}}{=} \{x \in F \mid \text{there exists some } i \in I \text{ such that } x \in A_i\},$$

where F is the set in the axiom of union, ?? of ??.

003G 2.3.7 Binary Unions

Let A and B be sets.

Definition 2.3.7.1.1. The union 14 of A and B is the set $A \cup B$ defined by

$$A \cup B \stackrel{\text{def}}{=} \bigcup_{z \in \{A,B\}} z.$$

- **003J Proposition 2.3.7.1.2.** Let X be a set.
- 003K 1. Functoriality. The assignments $U, V, (U, V) \mapsto U \cup V$ define functors

$$U \cup -: (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$
$$- \cup V : (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$
$$-_1 \cup -_2 : (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset),$$

where $-1 \cup -2$ is the functor where

- Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have $[-_1 \cup -_2](U, V) \stackrel{\text{def}}{=} U \cup V.$
- Action on Morphisms. For each pair of morphisms

$$\iota_U \colon U \hookrightarrow U',$$

 $\iota_V \colon V \hookrightarrow V'$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$\iota_U \cup \iota_V \colon U \cup V \hookrightarrow U' \cup V'$$

of (ι_U, ι_V) by \cup is the inclusion

$$U \cup V \subset U' \cup V'$$

i.e. where we have

 $^{^{14}\}textit{Further Terminology:}$ Also called the binary union of A and B, for emphasis.

(*) If
$$U \subset U'$$
 and $V \subset V'$, then $U \cup V \subset U' \cup V'$.

and where $U \cup -$ and $- \cup V$ are the partial functors of $-_1 \cup -_2$ at $U, V \in \mathcal{P}(X)$.

003L 2. Via Intersections and Symmetric Differences. We have an equality of sets

$$U \cup V = (U \triangle V) \triangle (U \cap V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

003M 3. Associativity. We have an equality of sets

$$(U \cup V) \cup W = U \cup (V \cup W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

003N 4. Unitality. We have equalities of sets

$$U \cup \emptyset = U,$$

$$\emptyset \cup U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

003P 5. Commutativity. We have an equality of sets

$$U \cup V = V \cup U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

6. *Idempotency*. We have an equality of sets

$$U \cup U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

7. Distributivity Over Intersections. We have equalities of sets

$$U \cup (V \cap W) = (U \cup V) \cap (U \cup W),$$

$$(U \cap V) \cup W = (U \cup W) \cap (V \cup W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

8. Interaction With Characteristic Functions I. We have

$$\chi_{U \cup V} = \max(\chi_U, \chi_V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

9. Interaction With Characteristic Functions II. We have

$$\chi_{U \cup V} = \chi_U + \chi_V - \chi_{U \cap V}$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

003U 10. Interaction With Powersets and Semirings. The quintuple $(\mathcal{P}(X), \cup, \cap, \emptyset, X)$ is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Pro24ar].

Item 2, Via Intersections and Symmetric Differences: See [Pro24bc].

Item 3, Associativity: See [Pro24be].

Item 4, Unitality: This follows from [Pro24bh] and Item 5.

Item 5, Commutativity: See [Pro24bf].

Item 6, Idempotency: See [Pro24aq].

Item 7, Distributivity Over Intersections: See [Pro24bd].

Item 8, Interaction With Characteristic Functions I: See [Pro24k].

Item 9, Interaction With Characteristic Functions II: See [Pro24k].

Item 10, Interaction With Powersets and Semirings: This follows from

Items 3 to 6 and Items 3 to 5, 7 and 8 of Proposition 2.3.9.1.2.

003V 2.3.8 Intersections of Families

Let \mathcal{F} be a family of sets.

003W Definition 2.3.8.1.1. The intersection of a family \mathcal{F} of sets is the set $\bigcap_{X \in \mathcal{F}} X$ defined by

$$\bigcap_{X \in \mathcal{F}} X \stackrel{\text{def}}{=} \bigg\{ z \in \bigcup_{X \in \mathcal{F}} X \ \bigg| \ \text{for each } X \in \mathcal{F}, \text{ we have } z \in X \bigg\}.$$

003X 2.3.9 Binary Intersections

Let X and Y be sets.

Definition 2.3.9.1.1. The intersection of X and Y is the set $X \cap Y$ defined by

$$X\cap Y\stackrel{\mathrm{def}}{=}\bigcap_{z\in\{X,Y\}}z.$$

003Z Proposition 2.3.9.1.2. Let X be a set.

0040 1. Functoriality. The assignments $U, V, (U, V) \mapsto U \cap V$ define

The state of X and Y, for emphasis.

functors

$$U \cap -: (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$
$$- \cap V : (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$
$$-_1 \cap -_2 : (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset),$$

where $-_1 \cap -_2$ is the functor where

- Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have $[-1 \cap -2](U, V) \stackrel{\text{def}}{=} U \cap V.$
- Action on Morphisms. For each pair of morphisms

$$\iota_U \colon U \hookrightarrow U',$$

 $\iota_V \colon V \hookrightarrow V'$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$\iota_U \cap \iota_V \colon U \cap V \hookrightarrow U' \cap V'$$

of (ι_U, ι_V) by \cap is the inclusion

$$U \cap V \subset U' \cap V'$$

i.e. where we have

(*) If
$$U \subset U'$$
 and $V \subset V'$, then $U \cap V \subset U' \cap V'$.

and where $U \cap -$ and $- \cap V$ are the partial functors of $-_1 \cap -_2$ at $U, V \in \mathcal{P}(X)$.

0041 2. Adjointness. We have adjunctions

$$\left(U \cap - \dashv \mathbf{Hom}_{\mathcal{P}(X)}(U, -)\right) \colon \quad \mathcal{P}(X) \underbrace{\bot}_{\mathbf{Hom}_{\mathcal{P}(X)}(U, -)} \mathcal{P}(X),$$

$$\left(- \cap V \dashv \mathbf{Hom}_{\mathcal{P}(X)}(V, -)\right) \colon \quad \mathcal{P}(X) \underbrace{\bot}_{\mathbf{Hom}_{\mathcal{P}(X)}(V, -)} \mathcal{P}(X),$$

$$\left(- \cap V \dashv \mathbf{Hom}_{\mathcal{P}(X)}(V, -)\right) \colon \quad \mathcal{P}(X) \underbrace{\bot}_{\mathbf{Hom}_{\mathcal{P}(X)}(V, -)} \mathcal{P}(X),$$

where

$$\mathbf{Hom}_{\mathcal{P}(X)}(-_1,-_2) \colon \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \to \mathcal{P}(X)$$

is the bifunctor defined by 16

$$\mathbf{Hom}_{\mathcal{P}(X)}(U,V) \stackrel{\text{def}}{=} (X \setminus U) \cup V$$

witnessed by bijections

$$\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, \mathbf{Hom}_{\mathcal{P}(X)}(V, W)),$$

$$\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(V, \mathbf{Hom}_{\mathcal{P}(X)}(U, W)),$$

natural in $U, V, W \in \mathcal{P}(X)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $U \cap V \subset W$.
 - ii. We have $U \subset \mathbf{Hom}_{\mathcal{P}(X)}(V, W)$.
 - iii. We have $U \subset (X \setminus V) \cup W$.
- (b) The following conditions are equivalent:
 - i. We have $V \cap U \subset W$.
 - ii. We have $V \subset \mathbf{Hom}_{\mathcal{P}(X)}(U, W)$.
 - iii. We have $V \subset (X \setminus U) \cup W$.
- 0042 3. Associativity. We have an equality of sets

$$(U \cap V) \cap W = U \cap (V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

0043 4. Unitality. Let X be a set and let $U \in \mathcal{P}(X)$. We have equalities of sets

$$X \cap U = U,$$

$$U \cap X = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

0044 5. Commutativity. We have an equality of sets

$$U \cap V = V \cap U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

6. *Idempotency*. We have an equality of sets

$$U \cap U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

¹⁶For intuition regarding the expression defining $\mathbf{Hom}_{\mathcal{P}(X)}(U,V)$, see

0046 7. Distributivity Over Unions. We have equalities of sets

$$U \cap (V \cup W) = (U \cap V) \cup (U \cap W),$$

$$(U \cup V) \cap W = (U \cap W) \cup (V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

8. Annihilation With the Empty Set. We have an equality of sets

$$\emptyset \cap X = \emptyset,$$
$$X \cap \emptyset = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

9. Interaction With Characteristic Functions I. We have

$$\chi_{U\cap V} = \chi_U \chi_V$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

0049 10. Interaction With Characteristic Functions II. We have

$$\chi_{U\cap V}=\min(\chi_U,\chi_V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

- 004A 11. Interaction With Powersets and Monoids With Zero. The quadruple $((\mathcal{P}(X),\emptyset),\cap,X)$ is a commutative monoid with zero.
- 004B 12. Interaction With Powersets and Semirings. The quintuple $(\mathcal{P}(X), \cup, \cap, \emptyset, X)$ is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Pro24ap].

Item 2, Adjointness: See [MSE 267469].

Item 3, Associativity: See [Pro24v].

Item 4, Unitality: This follows from [Pro24z] and Item 5.

Item 5, Commutativity: See [Pro24w].

Item 6, Idempotency: See [Pro24ao].

Item 7, Distributivity Over Unions: See [Pro24an].

Item 8, Annihilation With the Empty Set: This follows from [Pro24x] and Item 5.

Item 9, Interaction With Characteristic Functions I: See [Pro24h].

Item 10, Interaction With Characteristic Functions II: See [Pro24h].

Item 11, Interaction With Powersets and Monoids With Zero: This follows from Items 3 to 5 and 8.

Item 12, Interaction With Powersets and Semirings: This follows from Items 3 to 6 and Items 3 to 5, 7 and 8 of Proposition 2.3.9.1.2. \Box

Q04C Remark 2.3.9.1.3. Since intersections are the products in $\mathcal{P}(X)$ (Item 1 of Proposition 2.4.3.1.3), the left adjoint $\mathbf{Hom}_{\mathcal{P}(X)}(U,V)$ may be thought of as a function type [U,V].

Then, under the Curry–Howard correspondence, the function type [U,V] corresponds to implication $U \Longrightarrow V$, which is logically equivalent to the statement $\neg U \lor V$. This in turn corresponds to the set $U^{\mathsf{c}} \lor V = (X \setminus U) \cup V$.

004D 2.3.10 Differences

Let X and Y be sets.

Definition 2.3.10.1.1. The **difference of** X **and** Y is the set $X \setminus Y$ defined by

$$X \setminus Y \stackrel{\text{def}}{=} \{ a \in X \mid a \notin Y \}.$$

004F Proposition 2.3.10.1.2. Let X be a set.

004G 1. Functoriality. The assignments $U,V,(U,V)\mapsto U\cap V$ define functors

$$U \setminus -: (\mathcal{P}(X), \supset) \to (\mathcal{P}(X), \subset),$$
$$- \setminus V: (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$
$$-_1 \setminus -_2: (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \supset) \to (\mathcal{P}(X), \subset),$$

where $-1 \setminus -2$ is the functor where

• Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$[-_1 \setminus -_2](U,V) \stackrel{\text{def}}{=} U \setminus V.$$

• Action on Morphisms. For each pair of morphisms

$$\iota_A \colon A \hookrightarrow B,$$

 $\iota_U \colon U \hookrightarrow V$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$\iota_U \setminus \iota_V \colon A \setminus V \hookrightarrow B \setminus U$$

of (ι_U, ι_V) by \ is the inclusion

$$A \setminus V \subset B \setminus U$$

i.e. where we have

$$(\star)$$
 If $A \subset B$ and $U \subset V$, then $A \setminus V \subset B \setminus U$.

and where $U \setminus -$ and $- \setminus V$ are the partial functors of $-1 \setminus -2$ at $U, V \in \mathcal{P}(X)$.

004H 2. De Morgan's Laws. We have equalities of sets

$$X \setminus (U \cup V) = (X \setminus U) \cap (X \setminus V),$$

$$X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

3. Interaction With Unions I. We have equalities of sets

$$U \setminus (V \cup W) = (U \setminus V) \cap (U \setminus W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

4. Interaction With Unions II. We have equalities of sets

$$(U \setminus V) \cup W = (U \cup W) \setminus (V \setminus W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

004L 5. Interaction With Unions III. We have equalities of sets

$$U \setminus (V \cup W) = (U \cup W) \setminus (V \cup W)$$
$$= (U \setminus V) \setminus W$$
$$= (U \setminus W) \setminus V$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

6. Interaction With Unions IV. We have equalities of sets

$$(U \cup V) \setminus W = (U \setminus W) \cup (V \setminus W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

7. Interaction With Intersections. We have equalities of sets

$$(U \setminus V) \cap W = (U \cap W) \setminus V$$
$$= U \cap (W \setminus V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

8. Interaction With Complements. We have an equality of sets

$$U \setminus V = U \cap V^{\mathsf{c}}$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

9. Interaction With Symmetric Differences. We have an equality of sets

$$U \setminus V = U \triangle (U \cap V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

004R 10. Triple Differences. We have

$$U \setminus (V \setminus W) = (U \cap W) \cup (U \setminus V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

004S 11. Left Annihilation. We have

$$\emptyset \setminus U = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

004T 12. Right Unitality. We have

$$U \setminus \emptyset = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

004U 13. Invertibility. We have

$$U \setminus U = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

- 004V 14. Interaction With Containment. The following conditions are equivalent:
- 004W (a) We have $V \setminus U \subset W$.
- 004X (b) We have $V \setminus W \subset U$.
- **004Y** 15. Interaction With Characteristic Functions. We have

$$\chi_{U\setminus V} = \chi_U - \chi_{U\cap V}$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

Proof. Item 1, Functoriality: See [Pro24ah] and [Pro24al].

Item 2, De Morgan's Laws: See [Pro24p].

Item 3, Interaction With Unions I: See [Pro24q].

Item 4, Interaction With Unions II: Omitted.

Item 5, Interaction With Unions III: See [Pro24am].

Item 6, Interaction With Unions IV: See [Pro24ag].

Item 7, Interaction With Intersections: See [Pro24y].

Item 8, Interaction With Complements: See [Pro24ae].

Item 9, Interaction With Symmetric Differences: See [Pro24af].

Item 10, Triple Differences: See [Pro24ak].

Item 11, Left Annihilation: Clear.

Item 12, Right Unitality: See [Pro24ai].

Item 13, Invertibility: See [Pro24aj].

Item 14, Interaction With Containment: Omitted.

Item 15, Interaction With Characteristic Functions: See [Pro24i]. \Box

004Z 2.3.11 Complements

Let X be a set and let $U \in \mathcal{P}(X)$.

0050 Definition 2.3.11.1.1. The complement of U is the set U^{c} defined by

$$U^{\mathbf{c}} \stackrel{\text{def}}{=} X \setminus U$$

$$\stackrel{\text{def}}{=} \{ a \in X \mid a \not\in U \}.$$

- **0051 Proposition 2.3.11.1.2.** Let X be a set.
- 0052 1. Functoriality. The assignment $U \mapsto U^{c}$ defines a functor

$$(-)^{\mathsf{c}} \colon \mathcal{P}(X)^{\mathsf{op}} \to \mathcal{P}(X),$$

where

• Action on Objects. For each $U \in \mathcal{P}(X)$, we have

$$[(-)^{\mathsf{c}}](U) \stackrel{\text{def}}{=} U^{\mathsf{c}}.$$

• Action on Morphisms. For each morphism $\iota_U : U \hookrightarrow V$ of $\mathcal{P}(X)$, the image

$$\iota_U^{\mathsf{c}} \colon V^{\mathsf{c}} \hookrightarrow U^{\mathsf{c}}$$

of ι_U by $(-)^c$ is the inclusion

$$V^{\mathsf{c}} \subset U^{\mathsf{c}}$$

i.e. where we have

$$(\star)$$
 If $U \subset V$, then $V^{\mathsf{c}} \subset U^{\mathsf{c}}$.

0053 2. De Morgan's Laws. We have equalities of sets

$$(U \cup V)^{c} = U^{c} \cap V^{c},$$

$$(U \cap V)^{c} = U^{c} \cup V^{c}$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

0054 3. Involutority. We have

$$(U^{\mathsf{c}})^{\mathsf{c}} = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

4. Interaction With Characteristic Functions. We have

$$\chi_{U^c} = 1 - \chi_U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

Proof. Item 1, Functoriality: This follows from Item 1 of Proposition 2.3.10.1.2.

Item 2, De Morgan's Laws: See [Pro24p].

Item 3, Involutority: See [Pro241].

Item 4, Interaction With Characteristic Functions: Clear.

0056 2.3.12 Symmetric Differences

Let A and B be sets.

0057 **Definition 2.3.12.1.1.** The symmetric difference of A and B is the set $A \triangle B$ defined by

$$A \triangle B \stackrel{\text{def}}{=} (A \setminus B) \cup (B \setminus A).$$

- **0058 Proposition 2.3.12.1.2.** Let X be a set.
- 0059 1. Lack of Functoriality. The assignment $(U, V) \mapsto U \triangle V$ need not define functors

$$\begin{split} U \bigtriangleup - \colon (\mathcal{P}(X), \subset) &\to (\mathcal{P}(X), \subset), \\ - \bigtriangleup V \colon (\mathcal{P}(X), \subset) &\to (\mathcal{P}(X), \subset), \\ -_1 \bigtriangleup -_2 \colon (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) &\to (\mathcal{P}(X), \subset). \end{split}$$

005A 2. Via Unions and Intersections. We have 17

$$U \triangle V = (U \cup V) \setminus (U \cap V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

¹⁷ Illustration:

005B 3. Associativity. We have 18

$$(U \triangle V) \triangle W = U \triangle (V \triangle W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

005C 4. Commutativity. We have

$$U \triangle V = V \triangle U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

005D 5. Unitality. We have

$$U \triangle \emptyset = U,$$
$$\emptyset \triangle U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

005E 6. *Invertibility*. We have

$$U \triangle U = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

005F 7. Interaction With Unions. We have

$$(U \triangle V) \cup (V \triangle T) = (U \cup V \cup W) \setminus (U \cap V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

8. Interaction With Complements I. We have

$$U \triangle U^{\mathsf{c}} = X$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

9. Interaction With Complements II. We have

$$U \triangle X = U^{c},$$
$$X \triangle U = U^{c}$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

 $[\]overline{\ }^{18}Illustration:$

005J 10. Interaction With Complements III. We have

$$U^{\mathsf{c}} \triangle V^{\mathsf{c}} = U \triangle V$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

005K 11. "Transitivity". We have

$$(U \triangle V) \triangle (V \triangle W) = U \triangle W$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

005L 12. The Triangle Inequality for Symmetric Differences. We have

$$U \bigtriangleup W \subset U \bigtriangleup V \cup V \bigtriangleup W$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

005M 13. Distributivity Over Intersections. We have

$$U \cap (V \triangle W) = (U \cap V) \triangle (U \cap W),$$

$$(U \triangle V) \cap W = (U \cap W) \triangle (V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

005N 14. Interaction With Characteristic Functions. We have

$$\chi_{U\triangle V} = \chi_U + \chi_V - 2\chi_{U\cap V}$$

and thus, in particular, we have

$$\chi_{U \triangle V} \equiv \chi_U + \chi_V \mod 2$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

005P 15. Bijectivity. Given $A, B \subset \mathcal{P}(X)$, the maps

$$A \triangle -: \mathcal{P}(X) \to \mathcal{P}(X),$$

 $- \triangle B: \mathcal{P}(X) \to \mathcal{P}(X)$

are bijections with inverses given by

$$(A \triangle -)^{-1} = - \cup (A \cap -),$$

$$(- \triangle B)^{-1} = - \cup (B \cap -).$$

Moreover, the map

$$C \mapsto C \triangle (A \triangle B)$$

is a bijection of $\mathcal{P}(X)$ onto itself sending A to B and B to A.

005S

005Q 16. Interaction With Powersets and Groups. Let X be a set.

005R (a) The quadruple $(\mathcal{P}(X), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(X)})$ is an abelian group. 19

(b) Every element of $\mathcal{P}(X)$ has order 2 with respect to \triangle , and thus $\mathcal{P}(X)$ is a *Boolean group* (i.e. an abelian 2-group).

- 4. Interaction With Powersets and Vector Spaces I. The pair $(\mathcal{P}(X), \alpha_{\mathcal{P}(X)})$ consisting of
 - The group $\mathcal{P}(X)$ of ??;
 - The map $\alpha_{\mathcal{P}(X)} \colon \mathbb{F}_2 \times \mathcal{P}(X) \to \mathcal{P}(X)$ defined by

$$0 \cdot U \stackrel{\text{def}}{=} \emptyset,$$
$$1 \cdot U \stackrel{\text{def}}{=} U;$$

is an \mathbb{F}_2 -vector space.

- 005U 5. Interaction With Powersets and Vector Spaces II. If X is finite, then:
 - (a) The set of singletons sets on the elements of X forms a basis for the \mathbb{F}_2 -vector space $(\mathcal{P}(X), \alpha_{\mathcal{P}(X)})$ of Item 4.
 - (b) We have

$$\dim(\mathcal{P}(X)) = \#\mathcal{P}(X).$$

6. Interaction With Powersets and Rings. The quintuple $(\mathcal{P}(X), \triangle, \cap, \emptyset, X)$ is a commutative ring.²⁰

Proof. Item 1, Lack of Functoriality: Omitted.

1. When $X = \emptyset$, we have an isomorphism of groups between $\mathcal{P}(\emptyset)$ and the trivial group:

$$(\mathcal{P}(\emptyset), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\emptyset)}) \cong \mathrm{pt}.$$

2. When X = pt, we have an isomorphism of groups between $\mathcal{P}(pt)$ and $\mathbb{Z}_{/2}$:

$$(\mathcal{P}(\mathrm{pt}), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\mathrm{pt})}) \cong \mathbb{Z}_{/2}.$$

3. When $X=\{0,1\}$, we have an isomorphism of groups between $\mathcal{P}(\{0,1\})$ and $\mathbb{Z}_{/2}\times\mathbb{Z}_{/2}$:

$$(\mathcal{P}(\{0,1\}), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\{0,1\})}) \cong \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}.$$

Warning: The analogous statement replacing intersections by unions (i.e. that the quintuple $(\mathcal{P}(X), \Delta, \cup, \emptyset, X)$ is a ring) is false, however. See [Pro24ba] for a proof. END TEXTDBEND

¹⁹Here are some examples:

Item 2, Via Unions and Intersections: See [Pro24r].

Item 3, Associativity: See [Pro24as].

Item 4, Commutativity: See [Pro24at].

Item 5, Unitality: This follows from Item 4 and [Pro24ax].

Item 6, Invertibility: See [Pro24az].

Item 7, Interaction With Unions: See [Pro24bg].

Item 8, Interaction With Complements I: See [Pro24aw].

Item 9, *Interaction With Complements II*: This follows from *Item 4* and [Pro24bb].

Item 10, Interaction With Complements III: See [Pro24au].

Item 11, "Transitivity": We have

$$(U \triangle V) \triangle (V \triangle W) = U \triangle (V \triangle (V \triangle W))$$
 (by Item 3)
$$= U \triangle ((V \triangle V) \triangle W)$$
 (by Item 3)
$$= U \triangle (\emptyset \triangle W)$$
 (by Item 6)
$$= U \triangle W$$
 (by Item 5)

Item 12, The Triangle Inequality for Symmetric Differences: This follows from Items 2 and 11.

Item 13, Distributivity Over Intersections: See [Pro24u].

Item 14, Interaction With Characteristic Functions: See [Pro24j].

Item 15, Bijectivity: Clear.

Item 16, Interaction With Powersets and Groups: Item 16a follows from 21

Items 3 to 6, while Item 3b follows from Item 6.

Item 4, Interaction With Powersets and Vector Spaces I: Clear.

Item 5, Interaction With Powersets and Vector Spaces II: Omitted.

Item 6, Interaction With Powersets and Rings: This follows from Items 8

and 11 of Proposition 2.3.9.1.2 and Items 13 and 16.²²

005W 2.4 Powersets

005X 2.4.1 Characteristic Functions

Let X be a set.

005Y Definition 2.4.1.1.1. Let $U \subset X$ and let $x \in X$.

005Z 1. The characteristic function of U^{23} is the function²⁴

$$\chi_U \colon X \to \{\mathsf{t},\mathsf{f}\}$$

²¹Reference: [Pro24av].

²² Reference: [Pro24ay].

²³ Further Terminology: Also called the **indicator function of** U.

²⁴ Further Notation: Also written $\chi_X(U,-)$ or $\chi_X(-,U)$.

63

defined by

$$\chi_U(x) \stackrel{\text{def}}{=} \begin{cases} \mathsf{true} & \text{if } x \in U, \\ \mathsf{false} & \text{if } x \notin U \end{cases}$$

for each $x \in X$.

0060 2. The characteristic function of x is the function $\frac{25}{x}$

$$\chi_x \colon X \to \{\mathsf{t},\mathsf{f}\}$$

defined by

$$\chi_x \stackrel{\text{def}}{=} \chi_{\{x\}},$$

i.e. by

$$\chi_x(y) \stackrel{\text{def}}{=} \begin{cases} \mathsf{true} & \text{if } x = y, \\ \mathsf{false} & \text{if } x \neq y \end{cases}$$

for each $y \in X$.

0061 3. The characteristic relation on X^{26} is the relation²⁷

$$\chi_X(-1,-2): X \times X \to \{\mathsf{t},\mathsf{f}\}$$

on X defined by 28

$$\chi_X(x,y) \stackrel{\text{def}}{=} \begin{cases} \mathsf{true} & \text{if } x = y, \\ \mathsf{false} & \text{if } x \neq y \end{cases}$$

for each $x, y \in X$.

0062 4. The characteristic embedding ²⁹ of X into $\mathcal{P}(X)$ is the function

$$\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$$

defined by

$$\chi_{(-)}(x) \stackrel{\mathrm{def}}{=} \chi_x$$

for each $x \in X$.

$$\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_y) = \chi_X(x, y),$$

for each $x, y \in X$.

²⁵ Further Notation: Also written χ^x , $\chi_X(x,-)$, or $\chi_X(-,x)$.

 $^{^{26}\}mathit{Further\ Terminology:}$ Also called the **identity relation on** X.

²⁷ Further Notation: Also written χ_{-2}^{-1} , or \sim_{id} in the context of relations.

²⁸As a subset of $X \times X$, the relation χ_X corresponds to the diagonal $\Delta_X \subset X \times X$ of X.

²⁹The name "characteristic *embedding*" comes from the fact that there is an analogue of fully faithfulness for $\chi_{(-)}$: given a set X, we have

Remark 2.4.1.1.2. The definitions in Definition 2.4.1.1.1 are decategorifications of co/presheaves, representable co/presheaves, Hom profunctors, and the Yoneda embedding:³⁰

0064 1. A function

$$f: X \to \{\mathsf{t},\mathsf{f}\}$$

is a decategorification of a presheaf

$$\mathcal{F} \colon \mathcal{C}^{\mathsf{op}} \to \mathsf{Sets}$$

with the characteristic functions χ_U of the subsets of X being the primordial examples (and, in fact, all examples) of these.

0065 2. The characteristic function

$$\chi_x \colon X \to \{\mathsf{t},\mathsf{f}\}$$

of an $element\ x$ of X is a decategorification of the representable presheaf

$$h_X \colon \mathcal{C}^{\mathsf{op}} \to \mathsf{Sets}$$

of an *object* x of a category C.

0066 3. The characteristic relation

$$\chi_X(-1,-2) \colon X \times X \to \{\mathsf{t},\mathsf{f}\}$$

³⁰These statements can be made precise by using the embeddings

$$\begin{aligned} &(-)_{\mathsf{disc}} \colon \mathsf{Sets} \hookrightarrow \mathsf{Cats}, \\ &(-)_{\mathsf{disc}} \colon \{\mathsf{t},\mathsf{f}\}_{\mathsf{disc}} \hookrightarrow \mathsf{Sets} \end{aligned}$$

of sets into categories and of classical truth values into sets. For instance, in this approach the characteristic function

$$\chi_x \colon X \to \{\mathsf{t},\mathsf{f}\}$$

of an element x of X, defined by

$$\chi_x(y) \stackrel{\mathrm{def}}{=} \begin{cases} \mathsf{true} & \text{if } x = y, \\ \mathsf{false} & \text{if } x \neq y \end{cases}$$

for each $y \in X$, is recovered as the representable presheaf

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(-,x)\colon X_{\operatorname{disc}}\to\operatorname{\mathsf{Sets}}$$

of the corresponding object x of X_{disc} , defined on objects by

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(y,x) \stackrel{\text{def}}{=} \begin{cases} \operatorname{pt} & \text{if } x = y, \\ \emptyset & \text{if } x \neq y \end{cases}$$

for each $y \in \text{Obj}(X_{\mathsf{disc}})$.

of X is a decategorification of the Hom profunctor

$$\operatorname{Hom}_{\mathcal{C}}(-_1, -_2) \colon \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to \mathsf{Sets}$$

of a category C.

0067 4. The characteristic embedding

$$\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$$

of X into $\mathcal{P}(X)$ is a decategorification of the Yoneda embedding

of a category C into PSh(C).

- 0068 5. There is also a direct parallel between unions and colimits:
 - An element of $\mathcal{P}(X)$ is a union of elements of X, viewed as one-point subsets $\{x\} \in \mathcal{P}(A)$.
 - An object of $\mathsf{PSh}(\mathcal{C})$ is a colimit of objects of \mathcal{C} , viewed as representable presheaves $h_X \in \mathsf{Obj}(\mathsf{PSh}(\mathcal{C}))$.
- **0069 Proposition 2.4.1.1.3.** Let X be a set.
- 1. The Inclusion of Characteristic Relations Associated to a Function. Let $f: A \to B$ be a function. We have an inclusion³¹

$$\chi_B \circ (f \times f) \subset \chi_A, \qquad A \times A \xrightarrow{f \times f} B \times B$$

$$\chi_A \searrow \chi_A \searrow \chi_B$$

$$\{t, f\}.$$

006B 2. Interaction With Unions I. We have

$$\chi_{U \cup V} = \max(\chi_U, \chi_V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

006C 3. Interaction With Unions II. We have

$$\chi_{U \cup V} = \chi_U + \chi_V - \chi_{U \cap V}$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

 $^{^{31}}$ This is the 0-categorical version of Definition 8.4.4.1.1.

006D 4. Interaction With Intersections I. We have

$$\chi_{U\cap V} = \chi_U \chi_V$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

6006E 5. Interaction With Intersections II. We have

$$\chi_{U\cap V} = \min(\chi_U, \chi_V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

006F 6. Interaction With Differences. We have

$$\chi_{U\setminus V} = \chi_U - \chi_{U\cap V}$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

006G 7. Interaction With Complements. We have

$$\chi_{U^c} = 1 - \chi_U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

8. Interaction With Symmetric Differences. We have

$$\chi_{U \wedge V} = \chi_U + \chi_V - 2\chi_{U \cap V}$$

and thus, in particular, we have

$$\chi_{U \triangle V} \equiv \chi_U + \chi_V \mod 2$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

9. Interaction Between the Characteristic Embedding and Morphisms.

1006 Let $f: X \to Y$ be a map of sets. The diagram

$$f_* \circ \chi_X = \chi_{X'} \circ f, \qquad \chi_X \downarrow \qquad \qquad \downarrow \chi_{X'} \downarrow$$

commutes.

Proof. Item 1, The Inclusion of Characteristic Relations Associated to a Function: The inclusion $\chi_B(f(a), f(b)) \subset \chi_A(a, b)$ is equivalent to the

statement "if a = b, then f(a) = f(b)", which is true.

Item 2, Interaction With Unions I: This is a repetition of Item 8 of Proposition 2.3.7.1.2 and is proved there.

Item 3, Interaction With Unions II: This is a repetition of Item 9 of Proposition 2.3.7.1.2 and is proved there.

Item 4, Interaction With Intersections I: This is a repetition of Item 9 of Proposition 2.3.9.1.2 and is proved there.

Item 5, Interaction With Intersections II: This is a repetition of Item 10 of Proposition 2.3.9.1.2 and is proved there.

Item 6, *Interaction With Differences*: This is a repetition of *Item 15* of Proposition 2.3.10.1.2 and is proved there.

Item 7, Interaction With Complements: This is a repetition of Item 4 of Proposition 2.3.11.1.2 and is proved there.

Item 8, Interaction With Symmetric Differences: This is a repetition of Item 14 of Proposition 2.3.12.1.2 and is proved there.

Item 9, Interaction Between the Characteristic Embedding and Morphisms: Indeed, we have

$$[f_* \circ \chi_X](x) \stackrel{\text{def}}{=} f_*(\chi_X(x))$$

$$\stackrel{\text{def}}{=} f_*(\{x\})$$

$$= \{f(x)\}$$

$$\stackrel{\text{def}}{=} \chi_{X'}(f(x))$$

$$\stackrel{\text{def}}{=} [\chi_{X'} \circ f](x),$$

for each $x \in X$, showing the desired equality.

006K 2.4.2 The Yoneda Lemma for Sets

Let X be a set and let $U \subset X$ be a subset of X.

006L Proposition 2.4.2.1.1. We have

$$\chi_{\mathcal{P}(X)}(\chi_x, \chi_U) = \chi_U(x)$$

for each $x \in X$, giving an equality of functions

$$\chi_{\mathcal{P}(X)}(\chi_{(-)},\chi_U)=\chi_U.$$

Proof. Clear.

Corollary 2.4.2.1.2. The characteristic embedding is fully faithful, i.e., we have

$$\chi_{\mathcal{P}(X)}(\chi_x, \chi_y) = \chi_X(x, y)$$

for each $x, y \in X$.

Proof. This follows from Proposition 2.4.2.1.1.

006N 2.4.3 Powersets

Let X be a set.

OUGP Definition 2.4.3.1.1. The powerset of X is the set $\mathcal{P}(X)$ defined by

$$\mathcal{P}(X) \stackrel{\text{def}}{=} \{ U \in P \mid U \subset X \},\$$

where P is the set in the axiom of powerset, ?? of ??.

- **Remark 2.4.3.1.2.** The powerset of a set is a decategorification of the category of presheaves of a category: while³²
 - The powerset of a set X is equivalently (Items 1 and 2 of Proposition 2.4.3.1.6) the set

$$\mathsf{Sets}(X, \{\mathsf{t},\mathsf{f}\})$$

of functions from X to the set $\{t, f\}$ of classical truth values.

• The category of presheaves on a category C is the category

$$\operatorname{Fun}(C^{\operatorname{op}},\operatorname{Sets})$$

of functors from C^{op} to the category Sets of sets.

- **006R** Proposition 2.4.3.1.3. Let X be a set.
- 006S 1. Co/Completeness. The (posetal) category (associated to) $(\mathcal{P}(X), \subset)$ is complete and cocomplete:
 - (a) *Products*. The products in $\mathcal{P}(X)$ are given by intersection of subsets.
 - (b) Coproducts. The coproducts in $\mathcal{P}(X)$ are given by union of subsets.
 - (c) Co/Equalisers. Being a posetal category, $\mathcal{P}(X)$ only has at

• A category is enriched over the category

$$\mathsf{Sets} \stackrel{\mathrm{def}}{=} \mathsf{Cats}_0$$

of sets (i.e. "0-categories"), with presheaves taking values on it.

• A set is enriched over the set

$$\{t,f\} \stackrel{\mathrm{def}}{=} \mathsf{Cats}_{-1}$$

of classical truth values (i.e. "(-1)-categories"), with characteristic functions taking values on it.

³²This parallel is based on the following comparison:

most one morphisms between any two objects, so co/equalisers are trivial.

006T 2. Cartesian Closedness. The category $\mathcal{P}(X)$ is Cartesian closed with internal Hom

$$\mathbf{Hom}_{\mathcal{P}(X)}(-_1, -_2) \colon \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \to \mathcal{P}(X)$$

given by³³

$$\mathbf{Hom}_{\mathcal{P}(X)}(U,V) \stackrel{\text{def}}{=} (X \setminus U) \cup V$$

for each $U, V \in \text{Obj}(\mathcal{P}(X))$.

Proof. Item 1, Co/Completeness: Clear.

Item 2, Cartesian Closedness: This follows from Item 2 of Proposition 2.3.9.1.2.

- **006U** Proposition 2.4.3.1.4. Let X be a set.
- 006V 1. Functoriality I. The assignment $X \mapsto \mathcal{P}(X)$ defines a functor

$$\mathcal{P}_* \colon \mathsf{Sets} \to \mathsf{Sets},$$

where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$\mathcal{P}_*(A) \stackrel{\text{def}}{=} \mathcal{P}(A).$$

• Action on Morphisms. For each $A, B \in \text{Obj}(\mathsf{Sets})$, the action on morphisms

$$\mathcal{P}_{*|A,B} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B))$$

of \mathcal{P}_* at (A, B) is the map defined by sending a map of sets $f: A \to B$ to the map

$$\mathcal{P}_*(f) \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by

$$\mathcal{P}_*(f) \stackrel{\text{def}}{=} f_*,$$

as in Definition 2.4.4.1.1.

³³For intuition regarding the expression defining $\mathbf{Hom}_{\mathcal{P}(X)}(U,V)$, see Remark 2.3.9.1.3.

006W 2. Functoriality II. The assignment $X \mapsto \mathcal{P}(X)$ defines a functor

$$\mathcal{P}^{-1} \colon \mathsf{Sets}^{\mathsf{op}} \to \mathsf{Sets},$$

where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$\mathcal{P}^{-1}(A) \stackrel{\text{def}}{=} \mathcal{P}(A).$$

• Action on Morphisms. For each $A, B \in \text{Obj}(\mathsf{Sets})$, the action on morphisms

$$\mathcal{P}_{A,B}^{-1} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(B),\mathcal{P}(A))$$

of \mathcal{P}^{-1} at (A, B) is the map defined by sending a map of sets $f: A \to B$ to the map

$$\mathcal{P}^{-1}(f) \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by

$$\mathcal{P}^{-1}(f) \stackrel{\text{def}}{=} f^{-1},$$

as in Definition 2.4.5.1.1.

006X 3. Functoriality III. The assignment $X \mapsto \mathcal{P}(X)$ defines a functor

$$\mathcal{P}_1 \colon \mathsf{Sets} \to \mathsf{Sets}$$
,

where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$\mathcal{P}_!(A) \stackrel{\text{def}}{=} \mathcal{P}(A).$$

• Action on Morphisms. For each $A, B \in \text{Obj}(\mathsf{Sets})$, the action on morphisms

$$\mathcal{P}_{!|A,B} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B))$$

of $\mathcal{P}_!$ at (A,B) is the map defined by sending a map of sets $f\colon A\to B$ to the map

$$\mathcal{P}_!(f) \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by

$$\mathcal{P}_!(f) \stackrel{\mathrm{def}}{=} f_!,$$

as in Definition 2.4.6.1.1.

006Y 4. Adjointness I. We have an adjunction

$$\left(\mathcal{P}^{-1}\dashv\mathcal{P}^{-1,\mathsf{op}}\right)$$
: Sets $\overset{\mathcal{P}^{-1}}{\underset{\mathcal{P}^{-1,\mathsf{op}}}{\smile}}\mathsf{Sets},$

witnessed by a bijection

$$\underbrace{\mathsf{Sets}^{\mathsf{op}}(\mathcal{P}(A),B)}_{\overset{\mathrm{def}}{=}\mathsf{Sets}(B,\mathcal{P}(A))} \cong \mathsf{Sets}(A,\mathcal{P}(B)),$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $B \in \text{Obj}(\mathsf{Sets}^{\mathsf{op}})$.

006Z 5. Adjointness II. We have an adjunction

$$(\operatorname{Gr} \dashv \mathcal{P}_*)$$
: Sets $\stackrel{\operatorname{Gr}}{\underset{\mathcal{P}_*}{\longleftarrow}} \operatorname{Rel},$

witnessed by a bijection of sets

$$Rel(Gr(A), B) \cong Sets(A, \mathcal{P}(B))$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $B \in \text{Obj}(\mathsf{Rel})$, where Gr is the graph functor of Item 1 of Proposition 6.3.1.1.2 and \mathcal{P}_* is the functor of Proposition 6.4.5.1.1.

Proof. Item 1, Functoriality I: This follows from Items 3 and 4 of Proposition 2.4.4.1.5.

Item 2, Functoriality II: This follows Items 3 and 4 of Proposition 2.4.5.1.4.

Item 3, Functoriality III: This follows Items 3 and 4 of Proposition 2.4.6.1.7.

Item 4, Adjointness I: We have

$$\begin{split} \mathsf{Sets}^\mathsf{op}(\mathcal{P}(A),B) &\stackrel{\mathsf{def}}{=} \mathsf{Sets}(B,\mathcal{P}(A)) \\ &\cong \mathsf{Sets}(B,\mathsf{Sets}(A,\{\mathsf{t},\mathsf{f}\})) \\ &\qquad \qquad (\mathsf{by \ Item \ 1 \ of \ Proposition \ 2.4.3.1.6}) \\ &\cong \mathsf{Sets}(A \times B,\{\mathsf{t},\mathsf{f}\}) \\ &\qquad \qquad (\mathsf{by \ Item \ 2 \ of \ Proposition \ 2.1.3.1.2}) \\ &\cong \mathsf{Sets}(A,\mathsf{Sets}(B,\{\mathsf{t},\mathsf{f}\})) \\ &\qquad \qquad (\mathsf{by \ Item \ 2 \ of \ Proposition \ 2.1.3.1.2}) \\ &\cong \mathsf{Sets}(A,\mathcal{P}(B)) \quad (\mathsf{by \ Item \ 1 \ of \ Proposition \ 2.4.3.1.6}) \end{split}$$

with all bijections natural in A and B (where we use Item 2 of Proposition 2.4.3.1.6 here).

Item 5, *Adjointness II*: We have

$$\begin{split} \operatorname{Rel}(\operatorname{Gr}(A),B) &\cong \mathcal{P}(A \times B) \\ &\cong \operatorname{\mathsf{Sets}}(A \times B, \{\mathsf{t},\mathsf{f}\}) \\ &\qquad \qquad (\text{by Item 1 of Proposition 2.4.3.1.6}) \\ &\cong \operatorname{\mathsf{Sets}}(A,\operatorname{\mathsf{Sets}}(B, \{\mathsf{t},\mathsf{f}\})) \\ &\qquad \qquad (\text{by Item 2 of Proposition 2.1.3.1.2}) \\ &\cong \operatorname{\mathsf{Sets}}(A,\mathcal{P}(B)) \quad (\text{by Item 1 of Proposition 2.4.3.1.6}) \end{split}$$

with all bijections natural in A (where we use Item 2 of Proposition 2.4.3.1.6 here). Explicitly, this isomorphism is given by sending a relation $R: Gr(A) \to B$ to the map $R^{\dagger}: A \to \mathcal{P}(B)$ sending a to the subset R(a) of B, as in Remark 5.1.1.1.4.

Naturality in B is then the statement that given a relation $R \colon B \to B',$ the diagram

$$\operatorname{Rel}(\operatorname{Gr}(A),B) \overset{R \diamond -}{\to} \operatorname{Rel}(\operatorname{Gr}(A),B')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

commutes, which follows from Remark 6.4.1.1.2.

0070 Proposition 2.4.3.1.5. Let X be a set.

0071 1. Symmetric Strong Monoidality With Respect to Coproducts I. The powerset functor \mathcal{P}_* of Item 1 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure

$$\left(\mathcal{P}_*,\mathcal{P}_*^{\coprod},\mathcal{P}_{*|\mathbb{1}}^{\coprod}\right)\colon (\mathsf{Sets},\times,\mathrm{pt}) \to (\mathsf{Sets}, \coprod, \emptyset)$$

being equipped with isomorphisms

$$\mathcal{P}^{\coprod}_{*|X,Y} \colon \mathcal{P}(X) \times \mathcal{P}(Y) \xrightarrow{\cong} \mathcal{P}(X \coprod Y),$$
$$\mathcal{P}^{\coprod}_{*|\mathfrak{1}} \colon \operatorname{pt} \xrightarrow{\cong} \mathcal{P}(\emptyset),$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

0072 2. Symmetric Strong Monoidality With Respect to Coproducts II. The powerset functor \mathcal{P}^{-1} of Item 2 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure

$$\left(\mathcal{P}^{-1},\mathcal{P}^{-1|\coprod},\mathcal{P}_{\mathbb{1}}^{-1|\coprod}\right)\colon(\mathsf{Sets}^{\mathsf{op}},\times^{\mathsf{op}},\mathsf{pt})\to(\mathsf{Sets},\coprod,\emptyset)$$

being equipped with isomorphisms

$$\begin{array}{ccc} \mathcal{P}_{X,Y}^{-1|\coprod} \colon \mathcal{P}(X) \times \mathcal{P}(Y) \xrightarrow{\cong} \mathcal{P}(X \coprod Y), \\ & \mathcal{P}_{\mathbb{I}}^{-1|\coprod} \colon \operatorname{pt} \xrightarrow{\cong} \mathcal{P}(\emptyset), \end{array}$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

3. Symmetric Strong Monoidality With Respect to Coproducts III.

The powerset functor $\mathcal{P}_!$ of Item 3 of Proposition 2.4.3.1.4 has a symmetric strong monoidal structure

$$\left(\mathcal{P}_!,\mathcal{P}_!^{\coprod},\mathcal{P}_{!|\mathbb{1}}^{\coprod}\right)\colon(\mathsf{Sets},\times,\mathrm{pt})\to(\mathsf{Sets},\underline{\coprod},\emptyset)$$

being equipped with isomorphisms

$$\mathcal{P}^{\coprod}_{!|X,Y} \colon \mathcal{P}(X) \times \mathcal{P}(Y) \xrightarrow{\cong} \mathcal{P}(X \coprod Y),$$

$$\mathcal{P}^{\coprod}_{!|\mathbb{1}} \colon \text{pt} \xrightarrow{\cong} \mathcal{P}(\emptyset),$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

4. Symmetric Lax Monoidality With Respect to Products I. The powerset functor \mathcal{P}_* of Item 1 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure

$$\left(\mathcal{P}_*,\mathcal{P}_*^\otimes,\mathcal{P}_{*|\mathbb{1}}^\otimes\right)\colon (\mathsf{Sets},\times,\mathrm{pt})\to (\mathsf{Sets},\times,\mathrm{pt})$$

being equipped with morphisms

$$\begin{aligned} \mathcal{P}_{*|X,Y}^{\times} \colon \mathcal{P}(X) \times \mathcal{P}(Y) &\to \mathcal{P}(X \times Y), \\ \mathcal{P}_{*|\mathbb{1}}^{\times} \colon \mathrm{pt} &\to \mathcal{P}(\mathrm{pt}), \end{aligned}$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$, where

• The map $\mathcal{P}_{*|X,Y}^{\times}$ is given by

$$\mathcal{P}_{*|X,Y}^{\times}(U,V) \stackrel{\text{def}}{=} U \times V$$

for each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(Y)$,

• The map $\mathcal{P}_{*|\mathbb{1}}^{\times}$ is given by

$$\mathcal{P}_{*|\mathbb{1}}^{\times}(\star)=\mathrm{pt}.$$

5. Symmetric Lax Monoidality With Respect to Products II. The powerset functor \mathcal{P}^{-1} of Item 2 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure

$$\left(\mathcal{P}^{-1},\mathcal{P}^{-1|\otimes},\mathcal{P}_{\mathbb{1}}^{-1|\otimes}\right)\colon(\mathsf{Sets}^{\mathsf{op}},\times^{\mathsf{op}},\mathrm{pt})\to(\mathsf{Sets},\times,\mathrm{pt})$$

being equipped with morphisms

$$\mathcal{P}_{X,Y}^{-1|\times} \colon \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathcal{P}(X \times Y),$$
$$\mathcal{P}_{1}^{\times} \colon \mathrm{pt} \to \mathcal{P}(\emptyset),$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$, defined as in Item 4.

6. Symmetric Lax Monoidality With Respect to Products III. The powerset functor $\mathcal{P}_!$ of Item 3 of Proposition 2.4.3.1.4 has a symmetric lax monoidal structure

$$\left(\mathcal{P}_!,\mathcal{P}_!^\otimes,\mathcal{P}_{!|\mathbb{1}}^\otimes\right)\colon(\mathsf{Sets},\times,\mathrm{pt})\to(\mathsf{Sets},\times,\mathrm{pt})$$

being equipped with morphisms

$$\begin{split} \mathcal{P}_{!|X,Y}^{\times} \colon \mathcal{P}(X) \times \mathcal{P}(Y) &\to \mathcal{P}(X \times Y), \\ \mathcal{P}_{!|\mathbb{1}}^{\times} \colon \mathrm{pt} &\to \mathcal{P}(\emptyset), \end{split}$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$, defined as in Item 4.

Proof. Item 1, Symmetric Strong Monoidality With Respect to Coproducts I: The isomorphism

$$\mathcal{P}^{\coprod}_{*|X,Y} \colon \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathcal{P}(X \coprod Y)$$

is given by sending $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(Y)$ to $U \coprod V$, with inverse given by sending a subset S of $X \coprod Y$ to the pair $(S_X, S_Y) \in \mathcal{P}(X) \times \mathcal{P}(Y)$ with

$$S_X \stackrel{\text{def}}{=} \{ x \in X \mid (0, x) \in S \}$$
$$S_Y \stackrel{\text{def}}{=} \{ y \in Y \mid (1, y) \in S \}.$$

The isomorphism pt $\cong \mathcal{P}(\emptyset)$ is given by $\star \mapsto \emptyset \in \mathcal{P}(\emptyset)$.

Naturality for the isomorphism $\mathcal{P}^{\coprod}_{*|X,Y}$ is the statement that, given maps of sets $f\colon X\to X'$ and $g\colon Y\to Y'$, the diagram

$$\mathcal{P}(X) \times \mathcal{P}(Y) \xrightarrow{f_* \times g_*} \mathcal{P}(X') \times \mathcal{P}(Y')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$$

commutes, which is clear, as it acts on elements as

$$(U,V) \longmapsto (f_*(U), g_*(V))$$

$$\downarrow \qquad \qquad \downarrow$$

$$U \coprod V \mapsto (f \coprod g)_*(U \coprod V) = f_*(U) \coprod g_*(V).$$

where we are using Item 7 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of \mathcal{P}_* as a monoidal functor follow by checking the commutativity of the relevant diagrams on elements.

Item 2, Symmetric Strong Monoidality With Respect to Coproducts II: The proof is similar to Item 1, and is hence omitted.

Item 3, Symmetric Strong Monoidality With Respect to Coproducts III: The proof is similar to Item 1, and is hence omitted.

Item 4, Symmetric Lax Monoidality With Respect to Products I: Naturality for the morphism $\mathcal{P}_{*|X,Y}^{\times}$ is the statement that, given maps of sets $f\colon X\to X'$ and $g\colon Y\to Y'$, the diagram

$$\mathcal{P}(X) \times \mathcal{P}(Y) \xrightarrow{f_* \times g_*} \mathcal{P}(X') \times \mathcal{P}(Y')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$$

commutes, which is clear, as it acts on elements as

$$(U,V) \longmapsto (f_*(U),g_*(V))$$

$$\downarrow \qquad \qquad \downarrow$$

$$U \times V \longmapsto (f \times g)_*(U \times V) = f_*(U) \times g_*(V),$$

where we are using Item 8 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of \mathcal{P}_* as a monoidal functor follow by checking the commutativity of the relevant diagrams on elements.

Item 5, Symmetric Lax Monoidality With Respect to Products II: The proof is similar to Item 4, and is hence omitted.

Item 6, Symmetric Lax Monoidality With Respect to Products III: The proof is similar to Item 4, and is hence omitted. □

0077 Proposition 2.4.3.1.6. Let X be a set.

0078 1. Powersets as Sets of Functions I. The assignment $U \mapsto \chi_U$ defines a bijection

$$\chi_{(-)} \colon \mathcal{P}(X) \xrightarrow{\cong} \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\}),$$

for each $X \in \text{Obj}(\mathsf{Sets})$.

0079 2. Powersets as Sets of Functions II. The bijection

$$\mathcal{P}(X) \cong \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\})$$

of Item 1 is natural in $X \in \text{Obj}(\mathsf{Sets})$, refining to a natural isomorphism of functors

$$\mathcal{P}^{-1} \cong \mathsf{Sets}(-, \{\mathsf{t}, \mathsf{f}\}).$$

007A 3. Powersets as Sets of Relations. We have bijections

$$\mathcal{P}(X) \cong \text{Rel}(\text{pt}, X),$$

 $\mathcal{P}(X) \cong \text{Rel}(X, \text{pt}).$

natural in $X \in \text{Obj}(\mathsf{Sets})$.

Proof. Item 1, Powersets as Sets of Functions I: Indeed, the inverse of $\chi_{(-)}$ is given by sending a function $f: X \to \{\mathsf{t}, \mathsf{f}\}$ to the subset U_f of $\mathcal{P}(X)$ defined by

$$U_f \stackrel{\text{def}}{=} \{x \in X \mid f(x) = \mathsf{true}\},\$$

i.e. by $U_f=f^{-1}(\mathsf{true}).$ That $\chi_{(-)}$ and $f\mapsto U_f$ are inverses is then straightforward to check.

Item 2, Powersets as Sets of Functions II: We need to check that, given a function $f: X \to Y$, the diagram

commutes, i.e. that for each $V \in \mathcal{P}(Y)$, we have

$$\chi_V \circ f = \chi_{f^{-1}(V)}$$
.

And indeed, we have

$$\begin{split} [\chi_V \circ f](v) &\stackrel{\text{def}}{=} \chi_V(f(v)) \\ &= \begin{cases} \text{true} & \text{if } f(v) \in V, \\ \text{false} & \text{otherwise} \end{cases} \\ &= \begin{cases} \text{true} & \text{if } v \in f^{-1}(V), \\ \text{false} & \text{otherwise} \end{cases} \\ &\stackrel{\text{def}}{=} \chi_{f^{-1}(V)}(v) \end{split}$$

for each $v \in V$.

Item 3, Powersets as Sets of Relations: Indeed, we have

$$Rel(pt, X) \stackrel{\text{def}}{=} \mathcal{P}(pt \times X)$$
$$\cong \mathcal{P}(X)$$

and

$$Rel(X, pt) \stackrel{\text{def}}{=} \mathcal{P}(X \times pt)$$

$$\cong \mathcal{P}(X),$$

where we have used Item 4 of Proposition 2.1.3.1.2.

007B Remark 2.4.3.1.7. The bijection

$$\mathcal{P}(X) \cong \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\})$$

of Item 1 of Proposition 2.4.3.1.6, which

- Takes a subset $U \hookrightarrow X$ of X and straightens it to a function $\chi_U \colon X \to \{\mathsf{true}, \mathsf{false}\};$
- Takes a function $f: X \to \{\text{true}, \text{false}\}$ and unstraightens it to a subset $f^{-1}(\text{true}) \hookrightarrow X$ of X;

may be viewed as the (-1)-categorical version of the un/straightening isomorphism for indexed and fibred sets

$$\underbrace{\mathsf{FibSets}(X)}_{\substack{\underline{\mathsf{def}}\\ = \mathsf{Sets}/X}} \cong \underbrace{\mathsf{ISets}(X)}_{\substack{\underline{\mathsf{def}}\\ = \mathsf{Fun}(X_{\mathsf{disc}},\mathsf{Sets})}}$$

of ??, where we view:

- Subsets $U \hookrightarrow X$ as analogous to X-fibred sets $\phi_X \colon A \to X$.
- Functions $f: X \to \{\mathsf{t},\mathsf{f}\}$ as analogous to X-indexed sets $A: X_{\mathsf{disc}} \to \mathsf{Sets}$.

007C Proposition 2.4.3.1.8. Let X be a set.

- 007D 1. Universal Property. The pair $(\mathcal{P}(X), \chi_{(-)})$ consisting of
 - The powerset $\mathcal{P}(X)$ of X;
 - The characteristic embedding $\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$ of X into $\mathcal{P}(X)$;

satisfies the following universal property:

- (\star) Given another pair (Y, f) consisting of
 - A cocomplete poset (Y, \preceq) ;
 - A function $f: X \to Y$;

there exists a unique cocontinuous morphism of posets

$$(\mathcal{P}(X),\subset) \xrightarrow{\exists !} (Y,\preceq)$$

making the diagram

commute.

007E 2. Adjointness. We have an adjunction³⁴

$$(\mathcal{P}\dashv \overline{\triangleright})$$
: Sets $\stackrel{\mathcal{P}}{\underset{\overline{\triangleright}}{\longleftarrow}}$ Pos^{cocomp.},

witnessed by a bijection

$$\mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq)) \cong \mathsf{Sets}(X,Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, \preceq) \in \text{Obj}(\mathsf{Pos}^{\mathsf{cocomp.}})$, where the maps witnessing this bijection are given by

• The map

$$\chi_X^* : \mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X), \subset), (Y, \preceq)) \to \mathsf{Sets}(X, Y)$$

³⁴In this sense, $\mathcal{P}(A)$ is the free cocompletion of A. (Note that, despite its name, however, this is not an idempotent operation, as we have $\mathcal{P}(\mathcal{P}(A)) \neq \mathcal{P}(A)$.)

defined by

$$\chi_X^*(f) \stackrel{\text{def}}{=} f \circ \chi_X,$$

i.e. by sending a cocontinuous morphism of posets $f : \mathcal{P}(X) \to Y$ to the composition

$$X \stackrel{\chi_X}{\hookrightarrow} \mathcal{P}(X) \stackrel{f}{\longrightarrow} Y.$$

• The map

$$\operatorname{Lan}_{\chi_X} \colon \mathsf{Sets}(X,Y) \to \mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq))$$

is given by sending a function $f: X \to Y$ to its left Kan extension along χ_X ,

$$\operatorname{Lan}_{\chi_X}(f) \colon \mathcal{P}(X) \to Y, \qquad \underset{f}{\chi_X} \nearrow \downarrow_{\operatorname{Lan}_{\chi_X}(f)}$$

Moreover, $\operatorname{Lan}_{\chi_X}(f)$ can be explicitly computed by

$$[\operatorname{Lan}_{\chi_X}(f)](U) \cong \int_{x \in X}^{x \in X} \chi_{\mathcal{P}(X)}(\chi_x, U) \odot f(x)$$

$$\cong \int_{x \in X}^{x \in X} \chi_U(x) \odot f(x) \qquad \text{(by Proposition 2.4.2.1.1)}$$

$$\cong \bigvee_{x \in X} (\chi_U(x) \odot f(x))$$

for each $U \in \mathcal{P}(X)$, where:

- \bigvee is the join in (Y, \preceq) .
- We have

$$\mathsf{true} \odot f(x) \stackrel{\mathrm{def}}{=} f(x),$$
$$\mathsf{false} \odot f(x) \stackrel{\mathrm{def}}{=} \varnothing_Y,$$

where \varnothing_Y is the minimal element of (Y, \preceq) .

Proof. Item 1, Universal Property: This is a rephrasing of Item 2. Item 2, Adjointness: We claim we have adjunction $\mathcal{P} \dashv \overline{\Sigma}$, witnessed by a bijection

$$\mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq)) \cong \mathsf{Sets}(X,Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, \preceq) \in \text{Obj}(\mathsf{Pos}^{\mathsf{cocomp.}})$.

• Map I. We define a map

$$\Phi_{X,Y} \colon \mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq)) \to \mathsf{Sets}(X,Y)$$

as in the statement, by

$$\Phi_{X,Y}(f) \stackrel{\mathrm{def}}{=} f \circ \chi_X$$

for each $f \in \mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq)).$

• Map II. We define a map

$$\Psi_{X,Y} \colon \mathsf{Sets}(X,Y) \to \mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq))$$

as in the statement, by

$$\Psi_{X,Y}(f) \stackrel{\text{def}}{=} \operatorname{Lan}_{\chi_X}(f), \qquad \stackrel{\chi_X}{\underset{f}{\swarrow}} \stackrel{\mid}{\underset{}{\downarrow}} \operatorname{Lan}_{\chi_X}(f)$$

for each $f \in \mathsf{Sets}(X,Y)$.

• Invertibility I. We claim that

$$\Psi_{X,Y} \circ \Phi_{X,Y} = \mathrm{id}_{\mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq))}.$$

Indeed, given a cocontinuous morphism of posets

$$\xi \colon (\mathcal{P}(X), \subset) \to (Y, \preceq),$$

we have

$$\begin{split} [\Psi_{X,Y} \circ \Phi_{X,Y}](\xi) &\stackrel{\text{def}}{=} \Psi_{X,Y}(\Phi_{X,Y}(\xi)) \\ &\stackrel{\text{def}}{=} \Psi_{X,Y}(\xi \circ \chi_X) \\ &\stackrel{\text{def}}{=} \operatorname{Lan}_{\chi_X}(\xi \circ \chi_X) \\ &\cong \bigvee_{x \in X} \chi_{(-)}(x) \odot \xi(\chi_X(x)) \\ &\stackrel{\text{clm}}{=} \xi, \end{split}$$

where indeed

$$\left[\bigvee_{x \in X} \chi_{(-)}(x) \odot \xi(\chi_X(x))\right](U) \stackrel{\text{def}}{=} \bigvee_{x \in X} \chi_U(x) \odot \xi(\chi_X(x))$$

$$= \left(\bigvee_{x \in U} \chi_U(x) \odot \xi(\chi_X(x))\right) \vee \left(\bigvee_{x \in X \setminus U} \chi_U(x) \odot \xi(\chi_X(x))\right)$$

$$= \left(\bigvee_{x \in U} \xi(\chi_X(x))\right) \vee \left(\bigvee_{x \in X \setminus U} \varnothing_Y\right)$$

$$= \bigvee_{x \in U} \xi(\chi_X(x))$$

$$\stackrel{(\dagger)}{=} \xi \left(\bigvee_{x \in U} \chi_X(x)\right)$$

$$= \xi(U)$$

for each $U \in \mathcal{P}(X)$, where we have used that ξ is cocontinuous for the equality $\stackrel{(\dagger)}{=}$.

• Invertibility II. We claim that

$$\Phi_{X,Y} \circ \Psi_{X,Y} = \mathrm{id}_{\mathsf{Sets}(X,Y)}.$$

Indeed, given a function $f: X \to Y$, we have

$$\begin{split} [\Phi_{X,Y} \circ \Psi_{X,Y}](f) &\stackrel{\text{def}}{=} \Phi_{X,Y}(\Psi_{X,Y}(f)) \\ &\stackrel{\text{def}}{=} \Phi_{X,Y}(\operatorname{Lan}_{\chi_X}(f)) \\ &\stackrel{\text{def}}{=} \operatorname{Lan}_{\chi_X}(f) \circ \chi_X \\ &\stackrel{\text{clm}}{=} f, \end{split}$$

where indeed

$$\begin{aligned} [\operatorname{Lan}_{\chi_X}(f) \circ \chi_X](x) &\stackrel{\text{def}}{=} \bigvee_{y \in X} \chi_{\{x\}}(y) \odot f(y) \\ &= \Big(\chi_{\{x\}}(x) \odot f(x)\Big) \vee \left(\bigvee_{y \in X \setminus \{x\}} \chi_{\{x\}}(y) \odot f(y)\right) \\ &= f(x) \vee \left(\bigvee_{y \in X \setminus \{x\}} \varnothing_Y\right) \\ &= f(x) \vee \varnothing_Y \\ &= f(x) \end{aligned}$$

for each $x \in X$.

• Naturality for Φ , Part I. We need to show that, given a function $f\colon X\to X',$ the diagram

$$\begin{array}{c|c} \mathsf{Pos^{cocomp.}}((\mathcal{P}(X'),\subset),(Y,\preceq)) \stackrel{\Phi_{X',Y}}{\longrightarrow} \mathsf{Sets}(X',Y) \\ & \qquad \qquad \downarrow^{f^*} \\ & \qquad \qquad \downarrow^{f^*} \\ \mathsf{Pos^{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq)) \xrightarrow{\Phi_{X,Y}} \mathsf{Sets}(X,Y) \end{array}$$

commutes. Indeed, given a cocontinuous morphism of posets

$$\xi \colon (\mathcal{P}(X'), \subset) \to (Y, \preceq),$$

we have

$$\begin{split} [\Phi_{X,Y} \circ \mathcal{P}_*(f)^*](\xi) &\stackrel{\text{def}}{=} \Phi_{X,Y}(\mathcal{P}_*(f)^*(\xi)) \\ &\stackrel{\text{def}}{=} \Phi_{X,Y}(\xi \circ f_*) \\ &\stackrel{\text{def}}{=} (\xi \circ f_*) \circ \chi_X \\ &= \xi \circ (f_* \circ \chi_X) \\ &\stackrel{\text{(t)}}{=} \xi \circ (\chi_{X'} \circ f) \\ &= (\xi \circ \chi_{X'}) \circ f \\ &\stackrel{\text{def}}{=} \Phi_{X',Y}(\xi) \circ f \\ &\stackrel{\text{def}}{=} f^*(\Phi_{X',Y}(\xi)) \\ &\stackrel{\text{def}}{=} [f^* \circ \Phi_{X',Y}](\xi), \end{split}$$

where we have used Item 9 of Proposition 2.4.1.1.3 for the equality $\stackrel{(\dagger)}{=}$ above.

• Naturality for Φ , Part II. We need to show that, given a cocontinuous morphism of posets

$$g: (Y, \preceq_Y) \to (Y', \preceq_{Y'}),$$

the diagram

$$\begin{array}{ccc} \mathsf{Pos^{\mathsf{cocomp.}}}((\mathcal{P}(X),\subset),(Y,\preceq)) & \xrightarrow{\Phi_{X,Y}} \mathsf{Sets}(X,Y) \\ & & \downarrow g_* & & \downarrow g_* \\ & & \downarrow g_* & & \downarrow g_* \end{array}$$

$$\mathsf{Pos^{\mathsf{cocomp.}}}((\mathcal{P}(X),\subset),(Y',\preceq)) \xrightarrow{\Phi_{X,Y'}} \mathsf{Sets}(X,Y')$$

commutes. Indeed, given a cocontinuous morphism of posets

$$\xi \colon (\mathcal{P}(X), \subset) \to (Y, \preceq),$$

we have

$$\begin{split} \big[\Phi_{X,Y'} \circ g_*\big](\xi) &\stackrel{\text{def}}{=} \Phi_{X,Y'}(g_*(\xi)) \\ &\stackrel{\text{def}}{=} \Phi_{X,Y'}(g \circ \xi) \\ &\stackrel{\text{def}}{=} (g \circ \xi) \circ \chi_X \\ &= g \circ (\xi \circ \chi_X) \\ &\stackrel{\text{def}}{=} g \circ (\Phi_{X,Y}(\xi)) \\ &\stackrel{\text{def}}{=} g_*(\Phi_{X,Y}(\xi)) \\ &\stackrel{\text{def}}{=} [g_* \circ \Phi_{X,Y}](\xi). \end{split}$$

• Naturality for Ψ . Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Item 2 of Proposition 8.8.6.1.2 that Ψ is also natural in each argument.

This finishes the proof.

007F 2.4.4 Direct Images

Let A and B be sets and let $f: A \to B$ be a function.

OOTG Definition 2.4.4.1.1. The direct image function associated to f is the function

$$f_* \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by 35,36

$$f_*(U) \stackrel{\text{def}}{=} f(U)$$

$$\stackrel{\text{def}}{=} \left\{ b \in B \mid \text{there exists some } a \in U \\ \text{such that } b = f(a) \right\}$$

$$= \left\{ f(a) \in B \mid a \in U \right\}$$

for each $U \in \mathcal{P}(A)$.

007H Notation 2.4.4.1.2. Sometimes one finds the notation

$$\exists_f \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

for f_* . This notation comes from the fact that the following statements are equivalent, where $b \in B$ and $U \in \mathcal{P}(A)$:

• We have $b \in \exists_f(U)$.

$$f_*(U) = B \setminus f_!(A \setminus U);$$

³⁵ Further Terminology: The set f(U) is called the **direct image of** U by f.

³⁶We also have

- There exists some $a \in U$ such that f(a) = b.
- **@07J** Remark 2.4.4.1.3. Identifying subsets of A with functions from A to $\{\text{true}, \text{false}\}\$ via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the direct image function associated to f is equivalently the function

$$f_* \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by

$$f_*(\chi_U) \stackrel{\text{def}}{=} \operatorname{Lan}_f(\chi_U)$$

$$= \operatorname{colim}\left(\left(f \stackrel{\rightarrow}{\times} (-1)\right) \stackrel{\text{pr}}{\twoheadrightarrow} A \stackrel{\chi_U}{\longrightarrow} \{\mathsf{t},\mathsf{f}\}\right)$$

$$= \operatorname{colim}_{\substack{a \in A \\ f(a) = -1}} (\chi_U(a))$$

$$= \bigvee_{\substack{a \in A \\ f(a) = -1}} (\chi_U(a)),$$

where we have used ?? for the second equality. In other words, we have

$$\begin{split} [f_*(\chi_U)](b) &= \bigvee_{\substack{a \in A \\ f(a) = b}} (\chi_U(a)) \\ &= \begin{cases} \text{true} & \text{if there exists some } a \in A \text{ such} \\ & \text{that } f(a) = b \text{ and } a \in U, \\ \text{false} & \text{otherwise} \end{cases} \\ &= \begin{cases} \text{true} & \text{if there exists some } a \in U \\ & \text{such that } f(a) = b, \\ \text{false} & \text{otherwise} \end{cases} \end{split}$$

for each $b \in B$.

- **007K** Proposition 2.4.4.1.4. Let $f: A \to B$ be a function.
- **007L** 1. Functoriality. The assignment $U \mapsto f_*(U)$ defines a functor

$$f_* \colon (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

where

• Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$[f_*](U) \stackrel{\mathrm{def}}{=} f_*(U).$$

Action on Morphisms. For each U, V ∈ P(A):
 (★) If U ⊂ V, then f_{*}(U) ⊂ f_{*}(V).

007M 2. Triple Adjointness. We have a triple adjunction

$$(f_* \dashv f^{-1} \dashv f_!): \mathcal{P}(A) \leftarrow f^{-1} - \mathcal{P}(B),$$

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(B)}(f_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(A)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f_!(V)),$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $f_*(U) \subset V$.
 - ii. We have $U \subset f^{-1}(V)$.
- (b) The following conditions are equivalent:
 - i. We have $f^{-1}(U) \subset V$.
 - ii. We have $U \subset f_!(V)$.
- **007N** 3. Preservation of Colimits. We have an equality of sets

$$f_*\left(\bigcup_{i\in I}U_i\right)=\bigcup_{i\in I}f_*(U_i),$$

natural in $\{U_i\}_{i\in I}\in\mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$f_*(U) \cup f_*(V) = f_*(U \cup V),$$

 $f_*(\emptyset) = \emptyset,$

natural in $U, V \in \mathcal{P}(A)$.

007P 4. Oplax Preservation of Limits. We have an inclusion of sets

$$f_*\left(\bigcap_{i\in I}U_i\right)\subset\bigcap_{i\in I}f_*(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$f_*(U \cap V) \subset f_*(U) \cap f_*(V),$$

 $f_*(A) \subset B,$

natural in $U, V \in \mathcal{P}(A)$.

5. Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure

$$(f_*, f_*^{\otimes}, f_{*|1}^{\otimes}) \colon (\mathcal{P}(A), \cup, \emptyset) \to (\mathcal{P}(B), \cup, \emptyset),$$

being equipped with equalities

$$f_{*|U,V}^{\otimes} \colon f_{*}(U) \cup f_{*}(V) \xrightarrow{=} f_{*}(U \cup V),$$
$$f_{*|1}^{\otimes} \colon \emptyset \xrightarrow{=} \emptyset,$$

natural in $U, V \in \mathcal{P}(A)$.

6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure

$$(f_*, f_*^{\otimes}, f_{*|\mathbb{1}}^{\otimes}) \colon (\mathcal{P}(A), \cap, A) \to (\mathcal{P}(B), \cap, B),$$

being equipped with inclusions

$$f_{*|U,V}^{\otimes} \colon f_{*}(U \cap V) \hookrightarrow f_{*}(U) \cap f_{*}(V),$$

 $f_{*|1}^{\otimes} \colon f_{*}(A) \hookrightarrow B,$

natural in $U, V \in \mathcal{P}(A)$.

007S 7. Interaction With Coproducts. Let $f: A \to A'$ and $g: B \to B'$ be maps of sets. We have

$$(f \coprod g)_*(U \coprod V) = f_*(U) \coprod g_*(V)$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.

007T 8. Interaction With Products. Let $f: A \to A'$ and $g: B \to B'$ be maps of sets. We have

$$(f \times g)_*(U \times V) = f_*(U) \times g_*(V)$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.

9. Relation to Direct Images With Compact Support. We have

$$f_*(U) = B \setminus f_!(A \setminus U)$$

for each $U \in \mathcal{P}(A)$.

Proof. Item 1, Functoriality: Clear.

Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2, Remark 2.4.6.1.3, and ?? of ??.

Item 3, Preservation of Colimits: This follows from Item 2 and ?? of ??.³⁷

Item 4, Oplax Preservation of Limits: The inclusion $f_*(A) \subset B$ is clear. See [Pro24s] for the other inclusions.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows from Item 4.

Item 7, Interaction With Coproducts: Clear.

Item 8, Interaction With Products: Clear.

Item 9, Relation to Direct Images With Compact Support: Applying Item 9 of Proposition 2.4.6.1.6 to $A \setminus U$, we have

$$f_!(A \setminus U) = B \setminus f_*(A \setminus (A \setminus U))$$

= $B \setminus f_*(U)$.

Taking complements, we then obtain

$$f_*(U) = B \setminus (B \setminus f_*(U)),$$

= $B \setminus f_!(A \setminus U),$

which finishes the proof.

007V Proposition 2.4.4.1.5. Let $f: A \to B$ be a function.

007W 1. Functionality I. The assignment $f \mapsto f_*$ defines a function

$$(-)_{*|A,B} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B)).$$

007X 2. Functionality II. The assignment $f \mapsto f_*$ defines a function

$$(-)_{*|A,B}$$
: Sets $(A,B) \to \mathsf{Pos}((\mathcal{P}(A),\subset),(\mathcal{P}(B),\subset)).$

007Y 3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$(\mathrm{id}_A)_* = \mathrm{id}_{\mathcal{P}(A)}.$$

 $^{^{37}}$ See also [Pro24t].

007Z 4. Interaction With Composition. For each pair of composable functions $f: A \to B$ and $g: B \to C$, we have

$$(g \circ f)_* = g_* \circ f_*,$$

$$(g \circ f)_* = g_* \circ f_*,$$

$$(g \circ f)_* \downarrow g_*$$

$$\mathcal{P}(C).$$

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Remark 2.4.4.1.3 and ?? of ??.

Item 4, Interaction With Composition: This follows from Remark 2.4.4.1.3 and ?? of ??.

0080 2.4.5 Inverse Images

Let A and B be sets and let $f: A \to B$ be a function.

0081 Definition 2.4.5.1.1. The inverse image function associated to f is the function 38

$$f^{-1} \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by³⁹

$$f^{-1}(V) \stackrel{\text{def}}{=} \{ a \in A \mid \text{we have } f(a) \in V \}$$

for each $V \in \mathcal{P}(B)$.

Remark 2.4.5.1.2. Identifying subsets of B with functions from B to $\{\text{true}, \text{false}\}\$ via $\{\text{Items 1 and 2 of Proposition 2.4.3.1.6},$ we see that the inverse image function associated to f is equivalently the function

$$f^* \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by

$$f^*(\chi_V) \stackrel{\mathrm{def}}{=} \chi_V \circ f$$

for each $\chi_V \in \mathcal{P}(B)$, where $\chi_V \circ f$ is the composition

$$A \xrightarrow{f} B \xrightarrow{\chi_V} \{\mathsf{true}, \mathsf{false}\}$$

in Sets.

³⁸ Further Notation: Also written $f^* : \mathcal{P}(B) \to \mathcal{P}(A)$.

³⁹ Further Terminology: The set $f^{-1}(V)$ is called the **inverse image of** V by f.

- **0083 Proposition 2.4.5.1.3.** Let $f: A \to B$ be a function.
- 0084 1. Functoriality. The assignment $V \mapsto f^{-1}(V)$ defines a functor

$$f^{-1}: (\mathcal{P}(B), \subset) \to (\mathcal{P}(A), \subset)$$

where

• Action on Objects. For each $V \in \mathcal{P}(B)$, we have

$$[f^{-1}](V) \stackrel{\text{def}}{=} f^{-1}(V).$$

- Action on Morphisms. For each U, V ∈ P(B):
 (★) If U ⊂ V, then f⁻¹(U) ⊂ f⁻¹(V).
- 0085 2. Triple Adjointness. We have a triple adjunction

$$(f_* \dashv f^{-1} \dashv f_!)$$
: $\mathcal{P}(A) \leftarrow f^{-1} - \mathcal{P}(B)$,

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(B)}(f_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(A)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f_!(V)),$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $f_*(U) \subset V$;
 - ii. We have $U \subset f^{-1}(V)$;
- (b) The following conditions are equivalent:
 - i. We have $f^{-1}(U) \subset V$.
 - ii. We have $U \subset f_!(V)$.
- 0086 3. Preservation of Colimits. We have an equality of sets

$$f^{-1}\left(\bigcup_{i\in I}U_i\right)=\bigcup_{i\in I}f^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$f^{-1}(U) \cup f^{-1}(V) = f^{-1}(U \cup V),$$

 $f^{-1}(\emptyset) = \emptyset,$

natural in $U, V \in \mathcal{P}(B)$.

0087 4. Preservation of Limits. We have an equality of sets

$$f^{-1}\left(\bigcap_{i\in I} U_i\right) = \bigcap_{i\in I} f^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V),$$

 $f^{-1}(B) = A,$

natural in $U, V \in \mathcal{P}(B)$.

5. Symmetric Strict Monoidality With Respect to Unions. The inverse image function of Item 1 has a symmetric strict monoidal structure

$$(f^{-1}, f^{-1, \otimes}, f_{\mathbb{1}}^{-1, \otimes}) \colon (\mathcal{P}(B), \cup, \emptyset) \to (\mathcal{P}(A), \cup, \emptyset),$$

being equipped with equalities

$$f_{U,V}^{-1,\otimes} \colon f^{-1}(U) \cup f^{-1}(V) \stackrel{=}{\to} f^{-1}(U \cup V),$$

 $f_{\mathbb{I}}^{-1,\otimes} \colon \emptyset \stackrel{=}{\to} f^{-1}(\emptyset),$

natural in $U, V \in \mathcal{P}(B)$.

0089 6. Symmetric Strict Monoidality With Respect to Intersections. The inverse image function of Item 1 has a symmetric strict monoidal structure

$$(f^{-1}, f^{-1, \otimes}, f_{\mathbb{1}}^{-1, \otimes}) \colon (\mathcal{P}(B), \cap, B) \to (\mathcal{P}(A), \cap, A),$$

being equipped with equalities

$$f_{U,V}^{-1,\otimes} \colon f^{-1}(U) \cap f^{-1}(V) \stackrel{=}{\to} f^{-1}(U \cap V),$$

 $f_{\mathbb{I}}^{-1,\otimes} \colon A \stackrel{=}{\to} f^{-1}(B),$

natural in $U, V \in \mathcal{P}(B)$.

008A 7. Interaction With Coproducts. Let $f: A \to A'$ and $g: B \to B'$ be maps of sets. We have

$$(f \coprod g)^{-1} \big(U' \coprod V' \big) = f^{-1} \big(U' \big) \coprod g^{-1} \big(V' \big)$$

for each $U' \in \mathcal{P}(A')$ and each $V' \in \mathcal{P}(B')$.

008B 8. Interaction With Products. Let $f: A \to A'$ and $g: B \to B'$ be maps of sets. We have

$$(f \times g)^{-1}(U' \times V') = f^{-1}(U') \times g^{-1}(V')$$

for each $U' \in \mathcal{P}(A')$ and each $V' \in \mathcal{P}(B')$.

Proof. Item 1, Functoriality: Clear.

Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2, Remark 2.4.6.1.3, and ?? of ??.

Item 3, *Preservation of Colimits*: This follows from *Item 2* and ?? of ??.⁴⁰

Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.⁴¹

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4.

Item 7, Interaction With Coproducts: Clear.

Item 8, Interaction With Products: Clear.

008C Proposition 2.4.5.1.4. Let $f: A \to B$ be a function.

008D 1. Functionality I. The assignment $f \mapsto f^{-1}$ defines a function

$$(-)_{A,B}^{-1} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(B),\mathcal{P}(A)).$$

008E 2. Functionality II. The assignment $f \mapsto f^{-1}$ defines a function

$$(-)_{A,B}^{-1} \colon \mathsf{Sets}(A,B) \to \mathsf{Pos}((\mathcal{P}(B),\subset),(\mathcal{P}(A),\subset)).$$

008F 3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$\mathrm{id}_A^{-1} = \mathrm{id}_{\mathcal{P}(A)}.$$

008G 4. Interaction With Composition. For each pair of composable functions $f: A \to B$ and $g: B \to C$, we have

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1},$$

$$\mathcal{P}(C) \xrightarrow{g^{-1}} \mathcal{P}(B)$$

$$(g \circ f)^{-1} \downarrow f^{-1}$$

$$\mathcal{P}(A).$$

⁴⁰See also [Pro24ac].

⁴¹See also [Pro24ab].

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Remark 2.4.5.1.2 and Item 5 of Proposition 8.1.6.1.2.

Item 4, Interaction With Composition: This follows from Remark 2.4.5.1.2 and Item 2 of Proposition 8.1.6.1.2. \Box

008H 2.4.6 Direct Images With Compact Support

Let A and B be sets and let $f: A \to B$ be a function.

008J Definition 2.4.6.1.1. The direct image with compact support function associated to f is the function

$$f_! \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by 42,43

$$f_!(U) \stackrel{\text{def}}{=} \left\{ b \in B \mid \text{ for each } a \in A, \text{ if we have } \right\}$$

= $\left\{ b \in B \mid \text{ we have } f^{-1}(b) \subset U \right\}$

for each $U \in \mathcal{P}(A)$.

008K Notation 2.4.6.1.2. Sometimes one finds the notation

$$\forall_f \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

for f_* . This notation comes from the fact that the following statements are equivalent, where $b \in B$ and $U \in \mathcal{P}(A)$:

- We have $b \in \forall_f(U)$.
- For each $a \in A$, if b = f(a), then $a \in U$.
- **Q08L** Remark 2.4.6.1.3. Identifying subsets of A with functions from A to $\{\text{true}, \text{false}\}\$ via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the direct image with compact support function associated to f is equivalently the function

$$f_! \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

$$f_!(U) = B \setminus f_*(A \setminus U);$$

see Item 9 of Proposition 2.4.6.1.6.

⁴² Further Terminology: The set $f_!(U)$ is called the **direct image with compact support of** U by f.

⁴³We also have

defined by

$$\begin{split} f_!(\chi_U) &\stackrel{\text{def}}{=} \operatorname{Ran}_f(\chi_U) \\ &= \lim \left(\left(\underbrace{(-_1)}_{\times} \stackrel{\rightarrow}{\times} f \right) \stackrel{\operatorname{pr}}{\twoheadrightarrow} A \xrightarrow{\chi_U} \left\{ \mathsf{true}, \mathsf{false} \right\} \right) \\ &= \lim_{\substack{a \in A \\ f(a) = -_1}} \left(\chi_U(a) \right) \\ &= \bigwedge_{\substack{a \in A \\ f(a) = -_1}} \left(\chi_U(a) \right). \end{split}$$

where we have used ?? for the second equality. In other words, we have

$$\begin{split} [f_!(\chi_U)](b) &= \bigwedge_{\substack{a \in A \\ f(a) = b}} (\chi_U(a)) \\ &= \begin{cases} \text{true} & \text{if, for each } a \in A \text{ such that} \\ & f(a) = b, \text{ we have } a \in U, \\ \text{false} & \text{otherwise} \end{cases} \\ &= \begin{cases} \text{true} & \text{if } f^{-1}(b) \subset U \\ \text{false} & \text{otherwise} \end{cases} \end{split}$$

for each $b \in B$.

008M Definition 2.4.6.1.4. Let *U* be a subset of A. ^{44,45}

1. The image part of the direct image with compact support

$$f_!(U) = f_{!,im}(U) \cup f_{!,cp}(U),$$

as

$$\begin{split} f_!(U) &= f_!(U) \cap B \\ &= f_!(U) \cap (\operatorname{Im}(f) \cup (B \setminus \operatorname{Im}(f))) \\ &= (f_!(U) \cap \operatorname{Im}(f)) \cup (f_!(U) \cap (B \setminus \operatorname{Im}(f))) \\ &\stackrel{\text{def}}{=} f_{!,\operatorname{im}}(U) \cup f_{!,\operatorname{cp}}(U). \end{split}$$

⁴⁵In terms of the meet computation of $f_!(U)$ of Remark 2.4.6.1.3, namely

$$f_!(\chi_U) = \bigwedge_{\substack{a \in A \\ f(a) = -1}} (\chi_U(a)),$$

we see that $f_{!,\text{im}}$ corresponds to meets indexed over nonempty sets, while $f_{!,\text{cp}}$ corresponds to meets indexed over the empty set.

⁴⁴Note that we have

008N $f_!(U)$ of U is the set $f_{!,im}(U)$ defined by

008P

$$f_{!,\text{im}}(U) \stackrel{\text{def}}{=} f_!(U) \cap \text{Im}(f)$$

$$= \left\{ b \in B \mid \text{we have } f^{-1}(b) \subset \right\}.$$

2. The complement part of the direct image with compact support $f_!(U)$ of U is the set $f_!,cp}(U)$ defined by

$$f_{!,\text{cp}}(U) \stackrel{\text{def}}{=} f_!(U) \cap (B \setminus \text{Im}(f))$$

$$= B \setminus \text{Im}(f)$$

$$= \left\{ b \in B \mid \text{we have } f^{-1}(b) \subset \right\}$$

$$= \left\{ b \in B \mid f^{-1}(b) = \emptyset \right\}.$$

- **Example 2.4.6.1.5.** Here are some examples of direct images with compact support.
 - 1. The Multiplication by Two Map on the Natural Numbers. Consider the function $f: \mathbb{N} \to \mathbb{N}$ given by

$$f(n) \stackrel{\text{def}}{=} 2n$$

for each $n \in \mathbb{N}$. Since f is injective, we have

$$f_{!,\text{im}}(U) = f_*(U)$$

 $f_{!,\text{cp}}(U) = \{\text{odd natural numbers}\}$

for any $U \subset \mathbb{N}$.

2. Parabolas. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) \stackrel{\text{def}}{=} x^2$$

for each $x \in \mathbb{R}$. We have

$$f_{!,cp}(U) = \mathbb{R}_{<0}$$

for any $U \subset \mathbb{R}$. Moreover, since $f^{-1}(x) = \{-\sqrt{x}, \sqrt{x}\}$, we have e.g.:

$$\begin{split} f_{!,\mathrm{im}}([0,1]) &= \{0\}, \\ f_{!,\mathrm{im}}([-1,1]) &= [0,1], \\ f_{!,\mathrm{im}}([1,2]) &= \emptyset, \\ f_{!,\mathrm{im}}([-2,-1] \cup [1,2]) &= [1,4]. \end{split}$$

3. Circles. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) \stackrel{\text{def}}{=} x^2 + y^2$$

for each $(x,y) \in \mathbb{R}^2$. We have

$$f_{!,cp}(U) = \mathbb{R}_{<0}$$

for any $U \subset \mathbb{R}^2$, and since

$$f^{-1}(r) = \begin{cases} \text{a circle of radius } r \text{ about the origin} & \text{if } r > 0, \\ \{(0,0)\} & \text{if } r = 0, \\ \emptyset & \text{if } r < 0, \end{cases}$$

we have e.g.:

$$f_{!,\text{im}}([-1,1] \times [-1,1]) = [0,1],$$

$$f_{!,\text{im}}(([-1,1] \times [-1,1]) \setminus [-1,1] \times \{0\}) = \emptyset.$$

008R Proposition 2.4.6.1.6. Let $f: A \to B$ be a function.

008S 1. Functoriality. The assignment $U \mapsto f_!(U)$ defines a functor

$$f_! \colon (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

where

• Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$[f_!](U) \stackrel{\mathrm{def}}{=} f_!(U).$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:
 - (*) If $U \subset V$, then $f_!(U) \subset f_!(V)$.

008T 2. Triple Adjointness. We have a triple adjunction

$$(f_* \dashv f^{-1} \dashv f_!)$$
: $\mathcal{P}(A) \leftarrow f^{-1} - \mathcal{P}(B)$,

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(B)}(f_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(A)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f_!(V)),$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $f_*(U) \subset V$.
 - ii. We have $U \subset f^{-1}(V)$.
- (b) The following conditions are equivalent:
 - i. We have $f^{-1}(U) \subset V$.
 - ii. We have $U \subset f_!(V)$.
- 008U 3. Lax Preservation of Colimits. We have an inclusion of sets

$$\bigcup_{i\in I} f_!(U_i) \subset f_!\left(\bigcup_{i\in I} U_i\right),\,$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$f_!(U) \cup f_!(V) \hookrightarrow f_!(U \cup V),$$

 $\emptyset \hookrightarrow f_!(\emptyset),$

natural in $U, V \in \mathcal{P}(A)$.

4. Preservation of Limits. We have an equality of sets

$$f_! \left(\bigcap_{i \in I} U_i \right) = \bigcap_{i \in I} f_! (U_i),$$

natural in $\{U_i\}_{i\in I}\in\mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$f^{-1}(U \cap V) = f_!(U) \cap f^{-1}(V),$$

 $f_!(A) = B,$

natural in $U, V \in \mathcal{P}(A)$.

5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure

$$(f_!, f_!^{\otimes}, f_{!|\mathbb{1}}^{\otimes}) \colon (\mathcal{P}(A), \cup, \emptyset) \to (\mathcal{P}(B), \cup, \emptyset),$$

being equipped with inclusions

$$f_{!|U,V}^{\otimes} \colon f_{!}(U) \cup f_{!}(V) \hookrightarrow f_{!}(U \cup V),$$
$$f_{!|\mathfrak{A}}^{\otimes} \colon \emptyset \hookrightarrow f_{!}(\emptyset),$$

natural in $U, V \in \mathcal{P}(A)$.

2.4. Powersets 97

6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure

$$(f_!, f_!^{\otimes}, f_{!!1}^{\otimes}) \colon (\mathcal{P}(A), \cap, A) \to (\mathcal{P}(B), \cap, B),$$

being equipped with equalities

$$f_{!|U,V}^{\otimes} \colon f_{!}(U \cap V) \stackrel{\equiv}{\to} f_{!}(U) \cap f_{!}(V),$$
$$f_{!|\mathbb{1}}^{\otimes} \colon f_{!}(A) \stackrel{\equiv}{\to} B,$$

natural in $U, V \in \mathcal{P}(A)$.

008Y 7. Interaction With Coproducts. Let $f: A \to A'$ and $g: B \to B'$ be maps of sets. We have

$$(f \coprod g)_!(U \coprod V) = f_!(U) \coprod g_!(V)$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.

008Z 8. Interaction With Products. Let $f: A \to A'$ and $g: B \to B'$ be maps of sets. We have

$$(f \times g)_!(U \times V) = f_!(U) \times g_!(V)$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.

9. Relation to Direct Images. We have

$$f_!(U) = B \setminus f_*(A \setminus U)$$

for each $U \in \mathcal{P}(A)$.

0091 10. Interaction With Injections. If f is injective, then we have

$$f_{!,\text{im}}(U) = f_*(U),$$

$$f_{!,\text{cp}}(U) = B \setminus \text{Im}(f),$$

$$f_!(U) = f_{!,\text{im}}(U) \cup f_{!,\text{cp}}(U)$$

$$= f_*(U) \cup (B \setminus \text{Im}(f))$$

for each $U \in \mathcal{P}(A)$.

0092 11. Interaction With Surjections. If f is surjective, then we have

$$f_{!,\text{im}}(U) \subset f_*(U),$$

 $f_{!,\text{cp}}(U) = \emptyset,$
 $f_!(U) \subset f_*(U)$

for each $U \in \mathcal{P}(A)$.

2.4. Powersets 98

Proof. Item 1, Functoriality: Clear.

Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2, Remark 2.4.6.1.3, and ?? of ??.

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.

Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows from Item 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4.

Item 7, Interaction With Coproducts: Clear.

Item 8, Interaction With Products: Clear.

Item 9, Relation to Direct Images: We claim that $f_!(U) = B \setminus f_*(A \setminus U)$.

• The First Implication. We claim that

$$f_!(U) \subset B \setminus f_*(A \setminus U).$$

Let $b \in f_!(U)$. We need to show that $b \notin f_*(A \setminus U)$, i.e. that there is no $a \in A \setminus U$ such that f(a) = b.

This is indeed the case, as otherwise we would have $a \in f^{-1}(b)$ and $a \notin U$, contradicting $f^{-1}(b) \subset U$ (which holds since $b \in f_!(U)$).

Thus $b \in B \setminus f_*(A \setminus U)$.

• The Second Implication. We claim that

$$B \setminus f_*(A \setminus U) \subset f_!(U)$$
.

Let $b \in B \setminus f_*(A \setminus U)$. We need to show that $b \in f_!(U)$, i.e. that $f^{-1}(b) \subset U$.

Since $b \notin f_*(A \setminus U)$, there exists no $a \in A \setminus U$ such that b = f(a), and hence $f^{-1}(b) \subset U$.

Thus $b \in f_!(U)$.

This finishes the proof of Item 9.

Item 10, Interaction With Injections: Clear.

Item 11, Interaction With Surjections: Clear.

0093 Proposition 2.4.6.1.7. Let $f: A \to B$ be a function.

0094 1. Functionality I. The assignment $f \mapsto f_!$ defines a function

$$(-)_{!|A,B} : \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B)).$$

0095 2. Functionality II. The assignment $f \mapsto f_!$ defines a function

$$(-)_{|A|B}: \mathsf{Sets}(A,B) \to \mathsf{Pos}((\mathcal{P}(A),\subset),(\mathcal{P}(B),\subset)).$$

0096 3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$(\mathrm{id}_A)_! = \mathrm{id}_{\mathcal{P}(A)}.$$

0097 4. Interaction With Composition. For each pair of composable functions $f: A \to B$ and $g: B \to C$, we have

$$(g \circ f)_! = g_! \circ f_!, \qquad \begin{array}{c} \mathcal{P}(A) \xrightarrow{f_!} \mathcal{P}(B) \\ & \downarrow^{g_!} \\ & \mathcal{P}(C). \end{array}$$

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Remark 2.4.6.1.3 and ?? of ??.

Item 4, Interaction With Composition: This follows from Remark 2.4.6.1.3 and ?? of ??. \Box

Appendices

2.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 3

Pointed Sets

 $0098\,$ This chapter contains some foundational material on pointed sets.

Contents

3.1	Pointed Sets100	
	3.1.1	Foundations
	3.1.2	Morphisms of Pointed Sets
	3.1.3	The Category of Pointed Sets
	3.1.4	Elementary Properties of Pointed Sets 103
3.2	Limits of Pointed Sets10	
	3.2.1	The Terminal Pointed Set106
	3.2.2	Products of Families of Pointed Sets 106
	3.2.3	Products
	3.2.4	Pullbacks
	3.2.5	Equalisers
3.3	Colimits of Pointed Sets11	
	3.3.1	The Initial Pointed Set
	3.3.2	Coproducts of Families of Pointed Sets 117
	3.3.3	Coproducts
	3.3.4	Pushouts
	3.3.5	Coequalisers
3.4	Constructions With Pointed Sets12	
	3.4.1	Free Pointed Sets
3.A	Other	Chapters

0099 3.1 Pointed Sets

3.1. Pointed Sets

009A 3.1.1 Foundations

- **OO9B** Definition 3.1.1.1.1. A pointed set¹ is equivalently:
 - An \mathbb{E}_0 -monoid in $(N_{\bullet}(\mathsf{Sets}), \mathsf{pt})$.
 - A pointed object in (Sets, pt).
- **Remark 3.1.1.1.2.** In detail, a **pointed set** is a pair (X, x_0) consisting of:
 - The Underlying Set. A set X, called the **underlying set of** (X, x_0) .
 - The Basepoint. A morphism

$$[x_0] \colon \mathrm{pt} \to X$$

in Sets, determining an element $x_0 \in X$, called the **basepoint of** X.

- **Example 3.1.1.1.3.** The 0-sphere² is the pointed set $(S^0, 0)^3$ consisting of:
 - The Underlying Set. The set S^0 defined by

$$S^0 \stackrel{\text{\tiny def}}{=} \{0,1\}.$$

- The Basepoint. The element 0 of S^0 .
- **Example 3.1.1.1.4.** The **trivial pointed set** is the pointed set (pt, \star) consisting of:
 - The Underlying Set. The punctual set $pt \stackrel{\text{def}}{=} \{ \star \}$.
 - The Basepoint. The element \star of pt.
- **Example 3.1.1.1.5.** The underlying pointed set of a semimodule (M, α_M) is the pointed set $(M, 0_M)$.
- **Example 3.1.1.1.6.** The underlying pointed set of a module (M, α_M) is the pointed set $(M, 0_M)$.

¹Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, pointed sets are viewed as \mathbb{F}_1 -modules.

² Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 algebras, the 0-sphere is viewed as the underlying pointed set of the field with
one element.

³ Further Notation: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, S^0 is also denoted $(\mathbb{F}_1, 0)$.

3.1. Pointed Sets

009H 3.1.2 Morphisms of Pointed Sets

- 009J Definition 3.1.2.1.1. A morphism of pointed sets 4,5 is equivalently:
 - A morphism of \mathbb{E}_0 -monoids in $(N_{\bullet}(\mathsf{Sets}), \mathsf{pt})$.
 - A morphism of pointed objects in (Sets, pt).
- **Remark 3.1.2.1.2.** In detail, a morphism of pointed sets $f: (X, x_0) \to (Y, y_0)$ is a morphism of sets $f: X \to Y$ such that the diagram

$$\begin{array}{ccc}
& \text{pt} \\
[x_0] & & [y_0] \\
X & \xrightarrow{f} Y
\end{array}$$

commutes, i.e. such that

$$f(x_0) = y_0.$$

009L 3.1.3 The Category of Pointed Sets

- **Definition 3.1.3.1.1.** The **category of pointed sets** is the category Sets* defined equivalently as
 - The homotopy category of the ∞ -category $\mathsf{Mon}_{\mathbb{E}_0}(N_{\bullet}(\mathsf{Sets}), pt)$ of $\ref{eq:posterior}$;
 - The category Sets* of ??.
- 009N Remark 3.1.3.1.2. In detail, the category of pointed sets is the category Sets* where
 - Objects. The objects of Sets* are pointed sets;
 - Morphisms. The morphisms of Sets* are morphisms of pointed sets;
 - Identities. For each $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$, the unit map

$$\mathbb{1}^{\mathsf{Sets}_*}_{(X,x_0)} \colon \mathrm{pt} \to \mathsf{Sets}_*((X,x_0),(X,x_0))$$

of Sets_{*} at (X, x_0) is defined by⁶

$$\operatorname{id}_{(X,x_0)}^{\mathsf{Sets}_*} \stackrel{\scriptscriptstyle{\operatorname{def}}}{=} \operatorname{id}_X;$$

⁴Further Terminology: Also called a **pointed function**.

⁵Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, morphisms of pointed sets are also called **morphism of** \mathbb{F}_1 -**modules**.

⁶Note that id_X is indeed a morphism of pointed sets, as we have id_X(x_0) = x_0 .

• Composition. For each $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$, the composition map

$$\circ^{\mathsf{Sets}_*}_{(X,x_0),(Y,y_0),(Z,z_0)} \colon \mathsf{Sets}_*((Y,y_0),(Z,z_0)) \times \mathsf{Sets}_*((X,x_0),(Y,y_0)) \to \mathsf{Sets}_*((X,x_0),(Z,z_0))$$

of Sets_{*} at $((X, x_0), (Y, y_0), (Z, z_0))$ is defined by⁷

$$g \circ^{\mathsf{Sets}_*}_{(X,x_0),(Y,y_0),(Z,z_0)} f \stackrel{\text{def}}{=} g \circ f.$$

009P 3.1.4 Elementary Properties of Pointed Sets

- **009Q** Proposition 3.1.4.1.1. Let (X, x_0) be a pointed set.
- 009R 1. Completeness. The category Sets_{*} of pointed sets and morphisms between them is complete, having in particular:
- 009S (a) Products, described as in Definition 3.2.3.1.1;
- 009T (b) Pullbacks, described as in Definition 3.2.4.1.1;
- 009U (c) Equalisers, described as in Definition 3.2.5.1.1.
- 2. Cocompleteness. The category Sets* of pointed sets and morphisms between them is cocomplete, having in particular:
- 009W (a) Coproducts, described as in Definition 3.3.3.1.1;
- 009X (b) Pushouts, described as in Definition 3.3.4.1.1;
- (c) Coequalisers, described as in Definition 3.3.5.1.1.
- 009Z 3. Failure To Be Cartesian Closed. The category Sets_{*} is not Cartesian closed.⁸

$$g(f(x_0)) = g(y_0)$$
$$= z_0,$$

or

in terms of diagrams.

 $^8{\rm The~category~Sets}_*$ does admit monoidal closed structures however; see Tensor Products of Pointed Sets.

⁷Note that the composition of two morphisms of pointed sets is indeed a morphism of pointed sets, as we have

4. Morphisms From the Monoidal Unit. We have a bijection of sets⁹

$$\mathsf{Sets}_* \Big(S^0, X \Big) \cong X,$$

natural in $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$, internalising also to an isomorphism of pointed sets

$$\mathbf{Sets}_* \Big(S^0, X \Big) \cong (X, x_0),$$

again natural in $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$.

00A1 5. Relation to Partial Functions. We have an equivalence of categories 10

$$\mathsf{Sets}_* \stackrel{\mathrm{eq.}}{\cong} \mathsf{Sets}^{\mathrm{part.}}$$

between the category of pointed sets and pointed functions between them and the category of sets and partial functions between them, where:

(a) From Pointed Sets to Sets With Partial Functions. The equivalence

$$\xi \colon \mathsf{Sets}_* \stackrel{\cong}{\to} \mathsf{Sets}^{\mathrm{part.}}$$

sends:

- i. A pointed set (X, x_0) to X.
- ii. A pointed function

$$f: (X, x_0) \to (Y, y_0)$$

to the partial function

$$\xi_f \colon X \to Y$$

defined on $f^{-1}(Y \setminus y_0)$ and given by

$$\xi_f(x) \stackrel{\text{def}}{=} f(x)$$

for each $x \in f^{-1}(Y \setminus y_0)$.

忘:
$$\mathsf{Sets}_* \to \mathsf{Sets}$$

defined on objects by sending a pointed set to its underlying set is corepresentable by S^0 .

Warning: This is not an isomorphism of categories, only an equivalence.

⁹In other words, the forgetful functor

3.1. Pointed Sets

(b) From Sets With Partial Functions to Pointed Sets. The equivalence

$$\xi^{-1}$$
: Sets^{part.} $\stackrel{\cong}{\to}$ Sets_{*}

sends:

- i. A set X is to the pointed set (X, \star) with \star an element that is not in X.
- ii. A partial function

$$f: X \to Y$$

defined on $U \subset X$ to the pointed function

$$\xi_f^{-1} \colon (X, x_0) \to (Y, y_0)$$

defined by

$$\xi_f(x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in U, \\ y_0 & \text{otherwise.} \end{cases}$$

for each $x \in X$.

Proof. Item 1, Completeness: This follows from (the proofs) of Definitions 3.2.3.1.1, 3.2.4.1.1 and 3.2.5.1.1 and ??.

Item 2, Cocompleteness: This follows from (the proofs) of Definitions 3.3.3.1.1, 3.3.4.1.1 and 3.3.5.1.1 and ??.

Item 3, Failure To Be Cartesian Closed: See [MSE 2855868].

Item 4, Morphisms From the Monoidal Unit: Since a morphism from S^0 to a pointed set (X, x_0) sends $0 \in S^0$ to x_0 and then can send $1 \in S^0$ to any element of X, we obtain a bijection between pointed maps $S^0 \to X$ and the elements of X.

The isomorphism then

$$\mathsf{Sets}_*ig(S^0,Xig)\cong (X,x_0)$$

follows by noting that $\Delta_{x_0} \colon S^0 \to X$, the basepoint of $\mathbf{Sets}_*(S^0, X)$, corresponds to the pointed map $S^0 \to X$ picking the element x_0 of X, and thus we see that the bijection between pointed maps $S^0 \to X$ and elements of X is compatible with basepoints, lifting to an isomorphism of pointed sets.

Item 5, *Relation to Partial Functions*: See [MSE 884460]. □

00A2 3.2 Limits of Pointed Sets

00A3 3.2.1 The Terminal Pointed Set

- **OOA4** Definition 3.2.1.1.1. The terminal pointed set is the pair $((pt, \star), \{!_X\}_{(X,x_0) \in Obj(Sets_*)})$ consisting of:
 - The Limit. The pointed set (pt, \star) .
 - The Cone. The collection of morphisms of pointed sets

$$\{!_X \colon (X, x_0) \to (\operatorname{pt}, \star)\}_{(X, x_0) \in \operatorname{Obj}(\mathsf{Sets})}$$

defined by

$$!_X(x) \stackrel{\text{def}}{=} \star$$

for each $x \in X$ and each $(X, x_0) \in \text{Obj}(\mathsf{Sets})$.

Proof. We claim that (pt, \star) is the terminal object of Sets_* . Indeed, suppose we have a diagram of the form

$$(X, x_0)$$
 (pt, \star)

in Sets_{*}. Then there exists a unique morphism of pointed sets

$$\phi \colon (X, x_0) \to (\operatorname{pt}, \star)$$

making the diagram

$$(X, x_0) \xrightarrow{-\frac{\phi}{\exists !}} (\operatorname{pt}, \star)$$

commute, namely $!_X$.

00A5 3.2.2 Products of Families of Pointed Sets

Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.

- **Definition 3.2.2.1.1.** The **product of** $\{(X_i, x_0^i)\}_{i \in I}$ is the pair $(\prod_{i \in I} X_i, (x_0^i)_{i \in I}), \{\operatorname{pr}_i\}_{i \in I})$ consisting of:
 - The Limit. The pointed set $\left(\prod_{i\in I} X_i, (x_0^i)_{i\in I}\right)$.
 - The Cone. The collection

$$\left\{ \operatorname{pr}_i : \left(\prod_{i \in I} X_i, \left(x_0^i \right)_{i \in I} \right) \to \left(X_i, x_0^i \right) \right\}_{i \in I}$$

of maps given by

$$\operatorname{pr}_i((x_j)_{j\in I}) \stackrel{\text{def}}{=} x_i$$

for each $(x_j)_{j \in I} \in \prod_{i \in I} X_i$ and each $i \in I$.

Proof. We claim that $\left(\prod_{i\in I}X_i, (x_0^i)_{i\in I}\right)$ is the categorical product of $\left\{(X_i, x_0^i)\right\}_{i\in I}$ in Sets_* . Indeed, suppose we have, for each $i\in I$, a diagram of the form

$$(P,*) \xrightarrow{p_i} \left(\prod_{i \in I} X_i, (x_0^i)_{i \in I}\right) \overrightarrow{\operatorname{pr}}_i (X_i, x_0^i)$$

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (P, *) \to \left(\prod_{i \in I} X_i, \left(x_0^i\right)_{i \in I}\right)$$

making the diagram

$$(P,*)$$

$$\phi \mid_{\exists !} p_{i}$$

$$\left(\prod_{i \in I} X_{i}, (x_{0}^{i})_{i \in I}\right) \overrightarrow{\operatorname{pr}}_{i} (X_{i}, x_{0}^{i})$$

commute, being uniquely determined by the condition $\operatorname{pr}_i \circ \phi = p_i$ for each $i \in I$ via

$$\phi(x) = (p_i(x))_{i \in I}$$

for each $x \in P$. Note that this is indeed a morphism of pointed sets, as we have

$$\phi(*) = (p_i(*))_{i \in I}$$
$$= (x_0^i)_{i \in I},$$

where we have used that p_i is a morphism of pointed sets for each $i \in I$.

ODA7 Proposition 3.2.2.1.2. Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.

00A8 1. Functoriality. The assignment $\{(X_i, x_0^i)\}_{i \in I} \mapsto (\prod_{i \in I} X_i, (x_0^i)_{i \in I})$ defines a functor

$$\prod_{i \in I} \colon \mathsf{Fun}(I_{\mathsf{disc}}, \mathsf{Sets}_*) \to \mathsf{Sets}_*.$$

Proof. Item 1, Functoriality: This follows from ?? of ??.

00A9 3.2.3 Products

Let (X, x_0) and (Y, y_0) be pointed sets.

- **OOAA Definition 3.2.3.1.1.** The **product of** (X, x_0) **and** (Y, y_0) is the pair consisting of:
 - The Limit. The pointed set $(X \times Y, (x_0, y_0))$.
 - The Cone. The morphisms of pointed sets

$$\operatorname{pr}_1 : (X \times Y, (x_0, y_0)) \to (X, x_0),$$

 $\operatorname{pr}_2 : (X \times Y, (x_0, y_0)) \to (Y, y_0)$

defined by

$$\operatorname{pr}_1(x,y) \stackrel{\text{def}}{=} x,$$

 $\operatorname{pr}_2(x,y) \stackrel{\text{def}}{=} y$

for each $(x, y) \in X \times Y$.

Proof. We claim that $(X \times Y, (x_0, y_0))$ is the categorical product of (X, x_0) and (Y, y_0) in Sets_* . Indeed, suppose we have a diagram of the form

$$(X, x_0) \underset{\text{pr}_1}{\longleftarrow} (X \times Y, (x_0, y_0)) \xrightarrow{p_2} (Y, y_0)$$

in Sets_{*}. Then there exists a unique morphism of pointed sets

$$\phi \colon (P, *) \to (X \times Y, (x_0, y_0))$$

making the diagram

$$(X, x_0) \underset{\text{pr}_1}{\longleftarrow} (X \times Y, (x_0, y_0)) \xrightarrow{p_2} (Y, y_0)$$

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1,$$

 $\operatorname{pr}_2 \circ \phi = p_2$

via

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$. Note that this is indeed a morphism of pointed sets, as we have

$$\phi(*) = (p_1(*), p_2(*))$$

= $(x_0, y_0),$

where we have used that p_1 and p_2 are morphisms of pointed sets. \square

- **OOAB** Proposition 3.2.3.1.2. Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.
- **00AC** 1. Functoriality. The assignments

$$(X, x_0), (Y, y_0), ((X, x_0), (Y, y_0)) \mapsto (X \times Y, (x_0, y_0))$$

define functors

$$X \times -\colon \mathsf{Sets}_* o \mathsf{Sets}_*, \ - \times Y \colon \mathsf{Sets}_* o \mathsf{Sets}_*, \ -_1 \times -_2 \colon \mathsf{Sets}_* imes \mathsf{Sets}_* o \mathsf{Sets}_*,$$

defined in the same way as the functors of Item 1 of Proposition 2.1.3.1.2.

00AD 2. Associativity. We have an isomorphism of pointed sets

$$((X \times Y) \times Z, ((x_0, y_0), z_0)) \cong (X \times (Y \times Z), (x_0, (y_0, z_0)))$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*).$

 $\text{flattifal in } (A, x_0), (1, y_0), (2, z_0) \in \text{Obj}(\text{SetS}_*).$

OOAE 3. Unitality. We have isomorphisms of pointed sets

$$(\mathrm{pt}, \star) \times (X, x_0) \cong (X, x_0),$$

 $(X, x_0) \times (\mathrm{pt}, \star) \cong (X, x_0),$

natural in $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$.

00AF 4. Commutativity. We have an isomorphism of pointed sets

$$(X \times Y, (x_0, y_0)) \cong (Y \times X, (y_0, x_0)),$$

natural in $(X, x_0), (Y, y_0) \in \text{Obj}(\mathsf{Sets}_*).$

00AG 5. Symmetric Monoidality. The triple $(Sets_*, \times, (pt, \star))$ is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of limits, ?? of ??.

Item 2, Associativity: This follows from Item 3 of Proposition 2.1.3.1.2.

Item 3, Unitality: This follows from Item 4 of Proposition 2.1.3.1.2.

Item 4, Commutativity: This follows from Item 5 of Proposition 2.1.3.1.2.

Item 5, Symmetric Monoidality: This follows from Item 12 of Proposition 2.1.3.1.2.

00AH 3.2.4 Pullbacks

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (X, x_0) \to (Z, z_0)$ and $g: (Y, y_0) \to (Z, z_0)$ be morphisms of pointed sets.

- OOAJ Definition 3.2.4.1.1. The pullback of (X, x_0) and (Y, y_0) over (Z, z_0) along (f, g) is the pair consisting of:
 - The Limit. The pointed set $(X \times_Z Y, (x_0, y_0))$.
 - The Cone. The morphisms of pointed sets

$$\operatorname{pr}_1 : (X \times_Z Y, (x_0, y_0)) \to (X, x_0),$$

 $\operatorname{pr}_2 : (X \times_Z Y, (x_0, y_0)) \to (Y, y_0)$

defined by

$$\operatorname{pr}_1(x,y) \stackrel{\text{def}}{=} x,$$

 $\operatorname{pr}_2(x,y) \stackrel{\text{def}}{=} y$

for each $(x, y) \in X \times_Z Y$.

Proof. We claim that $X \times_Z Y$ is the categorical pullback of (X, x_0) and (Y, y_0) over (Z, z_0) with respect to (f, g) in Sets_* . First we need to check that the relevant pullback diagram commutes, i.e. that we have

$$f \circ \operatorname{pr}_1 = g \circ \operatorname{pr}_2, \qquad (X \times_Z Y, (x_0, y_0)) \xrightarrow{\operatorname{pr}_2} (Y, y_0)$$
$$\downarrow^g \qquad \qquad (X, x_0) \xrightarrow{f} (Z, z_0).$$

Indeed, given $(x, y) \in X \times_Z Y$, we have

$$\begin{split} [f \circ \mathrm{pr}_1](x,y) &= f(\mathrm{pr}_1(x,y)) \\ &= f(x) \\ &= g(y) \\ &= g(\mathrm{pr}_2(x,y)) \\ &= [g \circ \mathrm{pr}_2](x,y), \end{split}$$

where f(x) = g(y) since $(x, y) \in X \times_Z Y$. Next, we prove that $X \times_Z Y$ satisfies the universal property of the pullback. Suppose we have a

diagram of the form

in Sets_{*}. Then there exists a unique morphism of pointed sets

$$\phi \colon (P, *) \to (X \times_Z Y, (x_0, y_0))$$

making the diagram

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1,$$
$$\operatorname{pr}_2 \circ \phi = p_2$$

via

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$, where we note that $(p_1(x), p_2(x)) \in X \times Y$ indeed lies in $X \times_Z Y$ by the condition

$$f \circ p_1 = g \circ p_2,$$

which gives

$$f(p_1(x)) = g(p_2(x))$$

for each $x \in P$, so that $(p_1(x), p_2(x)) \in X \times_Z Y$. Lastly, we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(*) = (p_1(*), p_2(*))$$

= $(x_0, y_0),$

where we have used that p_1 and p_2 are morphisms of pointed sets. \square

- **00AK Proposition 3.2.4.1.2.** Let (X, x_0) , (Y, y_0) , (Z, z_0) , and (A, a_0) be pointed sets.
- 00AL 1. Functoriality. The assignment $(X,Y,Z,f,g)\mapsto X\times_{f,Z,g}Y$ defines a functor

$$-1 \times_{-3} -1 \colon \mathsf{Fun}(\mathcal{P}, \mathsf{Sets}_*) \to \mathsf{Sets}_*,$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-1 \times_{-3} -1$ is given by sending a morphism

in $\operatorname{Fun}(\mathcal{P},\operatorname{\mathsf{Sets}}_*)$ to the morphism of pointed sets

$$\xi \colon (X \times_Z Y, (x_0, y_0)) \xrightarrow{\exists !} (X' \times_{Z'} Y', (x'_0, y'_0))$$

given by

$$\xi(x,y) \stackrel{\text{def}}{=} (\phi(x), \psi(y))$$

for each $(x, y) \in X \times_Z Y$, which is the unique morphism of pointed sets making the diagram

commute.

00AM 2. Associativity. Given a diagram

in Sets*, we have isomorphisms of pointed sets

$$(X \times_W Y) \times_V Z \cong (X \times_W Y) \times_Y (Y \times_V Z) \cong X \times_W (Y \times_V Z),$$

where these pullbacks are built as in the diagrams

00AN 3. Unitality. We have isomorphisms of pointed sets

00AP 4. Commutativity. We have an isomorphism of pointed sets

OOAQ 5. Interaction With Products. We have an isomorphism of pointed sets

$$X\times_{\mathrm{pt}}Y\cong X\times Y,\qquad \qquad \begin{matrix} X\times Y \longrightarrow Y \\ & & \downarrow !_{Y} \\ X \xrightarrow{\quad \ !_{X} \ \ } \mathrm{pt}. \end{matrix}$$

6. Symmetric Monoidality. The triple ($\mathsf{Sets}_*, \times_X, X$) is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pullback diagram.

Item 2, Associativity: This follows from Item 2 of Proposition 3.2.4.1.2.

Item 3, Unitality: This follows from Item 3 of Proposition 2.1.4.1.3.

Item 4, Commutativity: This follows from Item 4 of Proposition 2.1.4.1.3.

Item 5, Interaction With Products: This follows from Item 6 of Proposition 2.1.4.1.3.

Item 6, Symmetric Monoidality: This follows from Item 7 of Proposition 2.1.4.1.3.

00AS 3.2.5 Equalisers

Let $f, g: (X, x_0) \rightrightarrows (Y, y_0)$ be morphisms of pointed sets.

ODE Definition 3.2.5.1.1. The **equaliser of** (f,g) is the pair consisting of:

- The Limit. The pointed set $(Eq(f,g), x_0)$.
- The Cone. The morphism of pointed sets

$$\operatorname{eq}(f,g) \colon (\operatorname{Eq}(f,g),x_0) \hookrightarrow (X,x_0)$$

given by the canonical inclusion $\operatorname{eq}(f,g) \hookrightarrow \operatorname{Eq}(f,g) \hookrightarrow X.$

Proof. We claim that $(\text{Eq}(f,g),x_0)$ is the categorical equaliser of f and g in Sets_* . First we need to check that the relevant equaliser diagram commutes, i.e. that we have

$$f \circ \operatorname{eq}(f, q) = q \circ \operatorname{eq}(f, q),$$

which indeed holds by the definition of the set $\mathrm{Eq}(f,g)$. Next, we prove that $\mathrm{Eq}(f,g)$ satisfies the universal property of the equaliser. Suppose we have a diagram of the form

$$(\operatorname{Eq}(f,g),x_0) \xrightarrow{\operatorname{eq}(f,g)} (X,x_0) \xrightarrow{f} (Y,y_0)$$

$$(E,*)$$

in Sets_{*}. Then there exists a unique morphism of pointed sets

$$\phi \colon (E, *) \to (\text{Eq}(f, g), x_0)$$

making the diagram

$$(\operatorname{Eq}(f,g),x_0) \xrightarrow{\operatorname{eq}(f,g)} (X,x_0) \xrightarrow{f} (Y,y_0)$$

$$\downarrow \phi \mid \exists! \qquad e$$

$$(E,*)$$

commute, being uniquely determined by the condition

$$eq(f, q) \circ \phi = e$$

via

$$\phi(x) = e(x)$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in Eq(f,g) by the condition

$$f \circ e = g \circ e$$
,

which gives

$$f(e(x)) = g(e(x))$$

for each $x \in E$, so that $e(x) \in \text{Eq}(f, g)$. Lastly, we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(*) = e(*)$$
$$= x_0,$$

where we have used that e is a morphism of pointed sets.

QUAU Proposition 3.2.5.1.2. Let (X, x_0) and (Y, y_0) be pointed sets and let $f, g, h: (X, x_0) \to (Y, y_0)$ be morphisms of pointed sets.

00AV 1. Associativity. We have isomorphisms of pointed sets

$$\underbrace{\operatorname{Eq}(f \circ \operatorname{eq}(g,h), g \circ \operatorname{eq}(g,h))}_{=\operatorname{Eq}(f \circ \operatorname{eq}(g,h), h \circ \operatorname{eq}(g,h))} \cong \underbrace{\operatorname{Eq}(f,g,h)}_{=\operatorname{Eq}(g \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g))} = \underbrace{\operatorname{Eq}(g \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g))}_{=\operatorname{Eq}(g \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g))}$$

where Eq(f, g, h) is the limit of the diagram

$$(X, x_0) \xrightarrow{f} (Y, y_0)$$

in Sets*, being explicitly given by

$$\operatorname{Eq}(f, g, h) \cong \{ a \in A \mid f(a) = g(a) = h(a) \}.$$

00AW 2. Unitality. We have an isomorphism of pointed sets

$$\operatorname{Eq}(f, f) \cong X$$
.

00AX 3. Commutativity. We have an isomorphism of pointed sets

$$\operatorname{Eq}(f,g) \cong \operatorname{Eq}(g,f).$$

Proof. Item 1, Associativity: This follows from Item 1 of Proposition 2.1.5.1.2.

Item 2, Unitality: This follows from Item 4 of Proposition 2.1.5.1.2.

Item 3, Commutativity: This follows from Item 5 of Proposition 2.1.5.1.2.

ODAY 3.3 Colimits of Pointed Sets

- 00AZ 3.3.1 The Initial Pointed Set
- **OOBO** Definition 3.3.1.1.1. The initial pointed set is the pair $((pt, \star), \{\iota_X\}_{(X,x_0) \in \text{Obj}(\mathsf{Sets}_*)})$ consisting of:
 - The Limit. The pointed set (pt, \star) .
 - The Cone. The collection of morphisms of pointed sets

$$\{\iota_X \colon (\mathrm{pt},\star) \to (X,x_0)\}_{(X,x_0) \in \mathrm{Obj}(\mathsf{Sets})}$$

defined by

$$\iota_X(\star) \stackrel{\text{def}}{=} x_0.$$

Proof. We claim that (pt, \star) is the initial object of Sets_* . Indeed, suppose we have a diagram of the form

$$(pt, \star)$$
 (X, x_0)

in Sets_{*}. Then there exists a unique morphism of pointed sets

$$\phi \colon (\mathrm{pt}, \star) \to (X, x_0)$$

making the diagram

$$(\mathrm{pt},\star) \xrightarrow{-\frac{\phi}{\exists 1}} (X,x_0)$$

commute, namely ι_X .

00B1 3.3.2 Coproducts of Families of Pointed Sets

Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.

- 00B2 Definition 3.3.2.1.1. The coproduct of the family $\{(X_i, x_0^i)\}_{i \in I}$, also called their wedge sum, is the pair consisting of:
 - The Colimit. The pointed set $(\bigvee_{i\in I} X_i, p_0)$ consisting of:
 - The Underlying Set. The set $\bigvee_{i \in I} X_i$ defined by

$$\bigvee_{i \in I} X_i \stackrel{\text{def}}{=} \left(\coprod_{i \in I} X_i \right) / \sim,$$

where \sim is the equivalence relation on $\coprod_{i\in I} X_i$ given by declaring

$$(i, x_0^i) \sim (j, x_0^j)$$

for each $i, j \in I$.

- The Basepoint. The element p_0 of $\bigvee_{i \in I} X_i$ defined by

$$p_0 \stackrel{\text{def}}{=} \left[\left(i, x_0^i \right) \right]$$
$$= \left[\left(j, x_0^j \right) \right]$$

for any $i, j \in I$.

• The Cocone. The collection

$$\left\{ \operatorname{inj}_i \colon \left(X_i, x_0^i \right) \to \left(\bigvee_{i \in I} X_i, p_0 \right) \right\}_{i \in I}$$

of morphism of pointed sets given by

$$\operatorname{inj}_i(x) \stackrel{\text{\tiny def}}{=} (i,x)$$

for each $x \in X_i$ and each $i \in I$.

Proof. We claim that $(\bigvee_{i \in I} X_i, p_0)$ is the categorical coproduct of $\{(X_i, x_0^i)\}_{i \in I}$ in Sets_{*}. Indeed, suppose we have, for each $i \in I$, a diagram of the form

$$(X_i, x_0^i) \xrightarrow[\inf]{\iota_i} \left(\bigvee_{i \in I} X_i, p_0\right)$$

in Sets_{*}. Then there exists a unique morphism of pointed sets

$$\phi \colon \left(\bigvee_{i \in I} X_i, p_0\right) \to (C, *)$$

making the diagram

$$(C,*)$$

$$\phi \mid \exists !$$

$$(X_i, x_0^i) \xrightarrow{\operatorname{inj}_i} \left(\bigvee_{i \in I} X_i, p_0\right)$$

commute, being uniquely determined by the condition $\phi \circ \text{inj}_i = \iota_i$ for each $i \in I$ via

$$\phi([(i,x)]) = \iota_i(x)$$

for each $[(i,x)] \in \bigvee_{i \in I} X_i$, where we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(p_0) = \iota_i \left(\left[\left(i, x_0^i \right) \right] \right)$$
= *,

as ι_i is a morphism of pointed sets.

OOB3 Proposition 3.3.2.1.2. Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.

00B4 1. Functoriality. The assignment $\{(X_i, x_0^i)\}_{i \in I} \mapsto (\bigvee_{i \in I} X_i, p_0)$ defines a functor

$$\bigvee_{i \in I} : \mathsf{Fun}(I_{\mathsf{disc}}, \mathsf{Sets}_*) o \mathsf{Sets}_*.$$

Proof. Item 1, Functoriality: This follows from ?? of ??.

00B5 3.3.3 Coproducts

Let (X, x_0) and (Y, y_0) be pointed sets.

- **Definition 3.3.3.1.1.** The **coproduct of** (X, x_0) **and** (Y, y_0) , also called their **wedge sum**, is the pair consisting of:
 - The Colimit. The pointed set $(X \vee Y, p_0)$ consisting of:

- The Underlying Set. The set $X \vee Y$ defined by

$$(X \lor Y, p_0) \stackrel{\text{def}}{=} (X, x_0) \coprod (Y, y_0) \qquad X \lor Y \longleftarrow Y$$

$$\cong (X \coprod_{pt} Y, p_0) \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow_{[y_0]}$$

$$\cong (X \coprod Y/\sim, p_0), \qquad X \longleftarrow_{[x_0]} \text{pt},$$

where \sim is the equivalence relation on $X \coprod Y$ obtained by declaring $(0, x_0) \sim (1, y_0)$.

- The Basepoint. The element p_0 of $X \vee Y$ defined by

$$p_0 \stackrel{\text{def}}{=} [(0, x_0)]$$

= $[(1, y_0)].$

• The Cocone. The morphisms of pointed sets

$$\operatorname{inj}_1: (X, x_0) \to (X \vee Y, p_0),$$

 $\operatorname{inj}_2: (Y, y_0) \to (X \vee Y, p_0),$

given by

$$\operatorname{inj}_1(x) \stackrel{\text{def}}{=} [(0, x)],$$

 $\operatorname{inj}_2(y) \stackrel{\text{def}}{=} [(1, y)],$

for each $x \in X$ and each $y \in Y$.

Proof. We claim that $(X \vee Y, p_0)$ is the categorical coproduct of (X, x_0) and (Y, y_0) in Sets_{*}. Indeed, suppose we have a diagram of the form

$$(X, x_0) \xrightarrow[\operatorname{inj}_X]{(C, *)} \leftarrow \iota_Y$$

$$(X, x_0) \xrightarrow[\operatorname{inj}_X]{(X \vee Y, p_0)} \xleftarrow[\iota_Y]{(Y, y_0)}$$

in Sets. Then there exists a unique morphism of pointed sets

$$\phi \colon (X \vee Y, p_0) \to (C, *)$$

making the diagram

$$(X, x_0) \xrightarrow[\operatorname{inj}_X]{(C, *)} \leftarrow \iota_Y$$

$$\downarrow^{\iota_Y} \downarrow^{\iota_Y} \downarrow^{\iota_Y}$$

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_X = \iota_X,$$
$$\phi \circ \operatorname{inj}_Y = \iota_Y$$

via

$$\phi(z) = \begin{cases} \iota_X(x) & \text{if } z = [(0, x)] \text{ with } x \in X, \\ \iota_Y(y) & \text{if } z = [(1, y)] \text{ with } y \in Y \end{cases}$$

for each $z \in X \vee Y$, where we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(p_0) = \iota_X([(0, x_0)])$$

= $\iota_Y([(1, y_0)])$
= *,

as ι_X and ι_Y are morphisms of pointed sets.

00B7 Proposition 3.3.3.1.2. Let (X, x_0) and (Y, y_0) be pointed sets.

00B8 1. Functoriality. The assignments

$$(X, x_0), (Y, y_0), ((X, x_0), (Y, y_0)) \mapsto (X \vee Y, p_0)$$

define functors

$$X \lor -: \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

 $- \lor Y : \mathsf{Sets}_* \to \mathsf{Sets}_*,$
 $-_1 \lor -_2 : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*.$

00B9 2. Associativity. We have an isomorphism of pointed sets

$$(X \lor Y) \lor Z \cong X \lor (Y \lor Z),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \mathsf{Sets}_*$.

00BA 3. Unitality. We have isomorphisms of pointed sets

$$(pt, *) \lor (X, x_0) \cong (X, x_0),$$

 $(X, x_0) \lor (pt, *) \cong (X, x_0),$

natural in $(X, x_0) \in \mathsf{Sets}_*$.

00BB 4. Commutativity. We have an isomorphism of pointed sets

$$X \vee Y \cong Y \vee X$$

natural in $(X, x_0), (Y, y_0) \in \mathsf{Sets}_*$.

- 00BC 5. Symmetric Monoidality. The triple ($Sets_*, \lor, pt$) is a symmetric monoidal category.
- **00BD** 6. The Fold Map. We have a natural transformation

$$\nabla\colon \vee\circ\Delta^{\mathsf{Cats}}_{\mathsf{Sets}_*}\Longrightarrow \mathrm{id}_{\mathsf{Sets}_*}, \qquad \begin{array}{c} \mathsf{Sets}_*\times\mathsf{Sets}_*\\ \Delta^{\mathsf{Cats}}_{\mathsf{Sets}_*}& & \\ & & \nabla\\ \mathsf{Sets}_*& & \\ & & & \\ \mathsf{Sets}_*& & \\ & & & \\ \mathsf{Sets}_*, & & \\ \end{array}$$

called the **fold map**, whose component

$$\nabla_X \colon X \vee X \to X$$

at X is given by

$$\nabla_X(p) \stackrel{\text{def}}{=} \begin{cases} x & \text{if } p = [(0, x)], \\ x & \text{if } p = [(1, x)] \end{cases}$$

for each $p \in X \vee X$.

Proof. Item 1, Functoriality: This follows from ?? of ??.

Item 2, Associativity: Clear.

Item 3, Unitality: Clear.

Item 4, Commutativity: Clear.

Item 5, Symmetric Monoidality: Omitted.

Item 6, The Fold Map: Naturality for the transformation ∇ is the statement that, given a morphism of pointed sets $f:(X,x_0)\to (Y,y_0)$, we have

$$\nabla_{Y} \circ (f \vee f) = f \circ \nabla_{X}, \quad X \xrightarrow{T \times X} X$$

$$\downarrow f$$

$$Y \vee Y \xrightarrow{\nabla_{Y}} Y.$$

Indeed, we have

$$\begin{split} [\nabla_{Y} \circ (f \vee f)]([(i, x)]) &= \nabla_{Y}([(i, f(x))]) \\ &= f(x) \\ &= f(\nabla_{X}([(i, x)])) \\ &= [f \circ \nabla_{X}]([(i, x)]) \end{split}$$

for each $[(i,x)] \in X \vee X,$ and thus ∇ is indeed a natural transformation.

00BE 3.3.4 Pushouts

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (Z, z_0) \to (X, x_0)$ and $g: (Z, z_0) \to (Y, y_0)$ be morphisms of pointed sets.

OOBF Definition 3.3.4.1.1. The pushout of (X, x_0) and (Y, y_0) over (Z, z_0) along (f, g) is the pair consisting of:

- The Colimit. The pointed set $(X \coprod_{f,Z,g} Y, p_0)$, where:
 - The set $X \coprod_{f,Z,g} Y$ is the pushout (of unpointed sets) of X and Y over Z with respect to f and g;
 - We have $p_0 = [x_0] = [y_0]$.
- The Cocone. The morphisms of pointed sets

$$\operatorname{inj}_1 \colon (X, x_0) \to (X \coprod_Z Y, p_0),$$

 $\operatorname{inj}_2 \colon (Y, y_0) \to (X \coprod_Z Y, p_0)$

given by

$$\operatorname{inj}_{1}(x) \stackrel{\text{def}}{=} [(0, x)]
 \operatorname{inj}_{2}(y) \stackrel{\text{def}}{=} [(1, y)]$$

for each $x \in X$ and each $y \in Y$.

Proof. Firstly, we note that indeed $[x_0] = [y_0]$, as we have

$$x_0 = f(z_0),$$

$$y_0 = g(z_0)$$

since f and g are morphisms of pointed sets, with the relation \sim on $X \coprod_Z Y$ then identifying $x_0 = f(z_0) \sim g(z_0) = y_0$.

We now claim that $(X \coprod_Z Y, p_0)$ is the categorical pushout of (X, x_0) and (Y, y_0) over (Z, z_0) with respect to (f, g) in Sets_* . First we need to check that the relevant pushout diagram commutes, i.e. that we have

Indeed, given $z \in \mathbb{Z}$, we have

$$\begin{split} [\inf_1 \circ f](z) &= \inf_1 (f(z)) \\ &= [(0, f(z))] \\ &= [(1, g(z))] \\ &= \inf_2 (g(z)) \\ &= [\inf_2 \circ g](z), \end{split}$$

where [(0, f(z))] = [(1, g(z))] by the definition of the relation \sim on $X \coprod Y$ (the coproduct of unpointed sets of X and Y). Next, we prove that $X \coprod zY$ satisfies the universal property of the pushout. Suppose we have a diagram of the form

in Sets_{*}. Then there exists a unique morphism of pointed sets

$$\phi \colon (X \coprod_Z Y, p_0) \to (P, *)$$

making the diagram

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_1 = \iota_1,$$

$$\phi \circ \operatorname{inj}_2 = \iota_2$$

via

$$\phi(p) = \begin{cases} \iota_1(x) & \text{if } x = [(0, x)], \\ \iota_2(y) & \text{if } x = [(1, y)] \end{cases}$$

for each $p \in X \coprod_Z Y$, where the well-definedness of ϕ is proven in the same way as in the proof of Definition 2.2.4.1.1. Finally, we show that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(p_0) = \phi([(0, x_0)])$$

= $\iota_1(x_0)$
= *,

or alternatively

$$\phi(p_0) = \phi([(1, y_0)])$$

= $\iota_2(y_0)$
= *,

where we use that ι_1 (resp. ι_2) is a morphism of pointed sets.

00BG Proposition 3.3.4.1.2. Let (X, x_0) , (Y, y_0) , (Z, z_0) , and (A, a_0) be pointed sets.

00BH 1. Functoriality. The assignment $(X, Y, Z, f, g) \mapsto X \coprod_{f,Z,g} Y$ defines a functor

$$-_1 \coprod_{-_3} -_1 \colon \mathsf{Fun}(\mathcal{P},\mathsf{Sets}) o \mathsf{Sets}_*,$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-1 \coprod_{-3} -1$ is given by sending a morphism

in $Fun(\mathcal{P}, \mathsf{Sets}_*)$ to the morphism of pointed sets

$$\xi \colon (X \coprod_Z Y, p_0) \xrightarrow{\exists !} (X' \coprod_{Z'} Y', p'_0)$$

given by

$$\xi(p) \stackrel{\text{def}}{=} \begin{cases} \phi(x) & \text{if } p = [(0, x)], \\ \psi(y) & \text{if } p = [(1, y)] \end{cases}$$

for each $p \in X \coprod_Z Y$, which is the unique morphism of pointed

sets making the diagram

commute.

00BJ 2. Associativity. Given a diagram

in Sets, we have isomorphisms of pointed sets

$$(X \coprod_W Y) \coprod_V Z \cong (X \coprod_W Y) \coprod_Y (Y \coprod_V Z) \cong X \coprod_W (Y \coprod_V Z),$$

where these pullbacks are built as in the diagrams

00BK 3. Unitality. We have isomorphisms of sets

00BL 4. Commutativity. We have an isomorphism of sets

00BM 5. Interaction With Coproducts. We have

6. Symmetric Monoidality. The triple $(\mathsf{Sets}_*, \coprod_X, (X, x_0))$ is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pushout diagram.

Item 2, Associativity: This follows from Item 2 of Proposition 2.2.4.1.4.

Item 3, Unitality: This follows from Item 3 of Proposition 2.2.4.1.4.

Item 4, Commutativity: This follows from Item 4 of Proposition 2.2.4.1.4.

Item 5, Interaction With Coproducts: Clear.

Item 6, Symmetric Monoidality: Omitted.

00BP 3.3.5 Coequalisers

Let $f, g: (X, x_0) \rightrightarrows (Y, y_0)$ be morphisms of pointed sets.

OOBQ Definition 3.3.5.1.1. The coequaliser of (f, g) is the pointed set $(\text{CoEq}(f, g), [y_0])$.

Proof. We claim that $(CoEq(f, g), [y_0])$ is the categorical coequaliser of f and g in $Sets_*$. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have

$$coeq(f, g) \circ f = coeq(f, g) \circ g.$$

Indeed, we have

$$\begin{aligned} [\operatorname{coeq}(f,g) \circ f](x) &\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](f(x)) \\ &\stackrel{\text{def}}{=} [f(x)] \\ &= [g(x)] \\ &\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](g(x)) \\ &\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g) \circ g](x) \end{aligned}$$

for each $x \in X$. Next, we prove that CoEq(f,g) satisfies the universal

property of the coequaliser. Suppose we have a diagram of the form

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{\operatorname{coeq}(f,g)} (\operatorname{CoEq}(f,g), [y_0])$$

$$(C, *)$$

in Sets. Then, since c(f(a)) = c(g(a)) for each $a \in A$, it follows from Items 4 and 5 of Proposition 7.5.2.1.3 that there exists a unique map $\phi \colon \mathrm{CoEq}(f,g) \xrightarrow{\exists !} C$ making the diagram

commute, where we note that ϕ is indeed a morphism of pointed sets since

$$\phi([y_0]) = [\phi \circ \text{coeq}(f, g)]([y_0])$$

= $c([y_0])$
= *,

where we have used that c is a morphism of pointed sets.

OOBR Proposition 3.3.5.1.2. Let (X, x_0) and (Y, y_0) be pointed sets and let $f, g, h: (X, x_0) \to (Y, y_0)$ be morphisms of pointed sets.

00BS 1. Associativity. We have isomorphisms of pointed sets

$$\underbrace{\mathrm{CoEq}(\mathrm{coeq}(f,g)\circ f,\mathrm{coeq}(f,g)\circ h)}_{=\mathrm{CoEq}(\mathrm{coeq}(f,g)\circ g,\mathrm{coeq}(f,g)\circ h)}\cong \underbrace{\mathrm{CoEq}(f,g,h)\cong \underbrace{\mathrm{CoEq}(\mathrm{coeq}(g,h)\circ f,\mathrm{coeq}(g,h)\circ g)}_{=\mathrm{CoEq}(\mathrm{coeq}(g,h)\circ f,\mathrm{coeq}(g,h)\circ h)}$$

where CoEq(f, g, h) is the colimit of the diagram

$$(X, x_0) \xrightarrow{\frac{f}{-g}} (Y, y_0)$$

in $Sets_*$.

00BT 2. Unitality. We have an isomorphism of pointed sets

$$CoEq(f, f) \cong B$$
.

00BU 3. Commutativity. We have an isomorphism of pointed sets

$$CoEq(f, g) \cong CoEq(g, f)$$
.

Proof. Item 1, Associativity: This follows from Item 1 of Proposition 2.2.5.1.4.

Item 2, Unitality: This follows from Item 4 of Proposition 2.2.5.1.4.

Item 3, Commutativity: This follows from Item 5 of Proposition 2.2.5.1.4.

00BV 3.4 Constructions With Pointed Sets

00BW 3.4.1 Free Pointed Sets

Let X be a set.

- **OOBX** Definition 3.4.1.1.1. The free pointed set on X is the pointed set X^+ consisting of:
 - The Underlying Set. The set X^+ defined by 11

$$X^+ \stackrel{\mathrm{def}}{=} X \coprod \mathrm{pt}$$

$$\stackrel{\mathrm{def}}{=} X \coprod \{\star\}.$$

- The Basepoint. The element \star of X^+ .
- **OOBY** Proposition 3.4.1.1.2. Let X be a set.
- 00BZ 1. Functoriality. The assignment $X \mapsto X^+$ defines a functor

$$(-)^+$$
: Sets \rightarrow Sets_{*},

where

• Action on Objects. For each $X \in \text{Obj}(\mathsf{Sets})$, we have

$$\left[(-)^+ \right] (X) \stackrel{\text{def}}{=} X^+,$$

where X^+ is the pointed set of Definition 3.4.1.1.1;

• Action on Morphisms. For each morphism $f: X \to Y$ of Sets, the image

$$f^+\colon X^+\to Y^+$$

of f by $(-)^+$ is the map of pointed sets defined by

$$f^+(x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in X, \\ \star_Y & \text{if } x = \star_X. \end{cases}$$

¹¹ Further Notation: We sometimes write \star_X for the basepoint of X^+ for clarity

00C0 2. Adjointness. We have an adjunction

$$\left((-)^+ \dashv \overline{\varpi}\right)$$
: Sets $\underbrace{-}_{\overline{\varpi}}^{(-)^+}$ Sets_{*},

witnessed by a bijection of sets

$$\mathsf{Sets}_*\Big(\Big(X^+,\star_X\Big),(Y,y_0)\Big)\cong\mathsf{Sets}(X,Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, y_0) \in \text{Obj}(\mathsf{Sets}_*)$.

3. Symmetric Strong Monoidality With Respect to Wedge Sums. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)^+,(-)^{+,\coprod},(-)^{+,\coprod}_{1}\right)\colon(\mathsf{Sets},\coprod,\emptyset)\to(\mathsf{Sets}_*,\vee,\mathrm{pt}),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\coprod} \colon X^{+} \vee Y^{+} \xrightarrow{\cong} (X \coprod Y)^{+},$$
$$(-)_{1}^{+,\coprod} \colon \operatorname{pt} \xrightarrow{\cong} \emptyset^{+},$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

00C2

4. Symmetric Strong Monoidality With Respect to Smash Products.

The free pointed set functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)^+,(-)^{+,\times},(-)^{+,\times}_{\mathbb{1}}\right)\colon (\mathsf{Sets},\times,\mathrm{pt})\to \left(\mathsf{Sets}_*,\wedge,S^0\right),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\times} \colon X^+ \wedge Y^+ \xrightarrow{\cong} (X \times Y)^+,$$
$$(-)_{\mathbb{1}}^{+,\times} \colon S^0 \xrightarrow{\cong} \mathrm{pt}^+,$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: We claim there's an adjunction $(-)^+ \dashv \overline{\Sigma}$, witnessed by a bijection of sets

$$\mathsf{Sets}_* \Big(\Big(X^+, \star_X \Big), (Y, y_0) \Big) \cong \mathsf{Sets}(X, Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, y_0) \in \text{Obj}(\mathsf{Sets}_*)$.

• Map I. We define a map

$$\Phi_{X,Y} \colon \mathsf{Sets}_* \Big(\Big(X^+, \star_X \Big), (Y, y_0) \Big) \to \mathsf{Sets}(X,Y)$$

by sending a pointed function

$$\xi \colon \left(X^+, \star_X\right) \to (Y, y_0)$$

to the function

$$\xi^{\dagger} \colon X \to Y$$

given by

$$\xi^{\dagger}(x) \stackrel{\text{def}}{=} \xi(x)$$

for each $x \in X$.

• Map II. We define a map

$$\Psi_{X,Y} \colon \mathsf{Sets}(X,Y) \to \mathsf{Sets}_*\Big(\Big(X^+,\star_X\Big),(Y,y_0)\Big)$$

given by sending a function $\xi \colon X \to Y$ to the pointed function

$$\xi^{\dagger} \colon \left(X^+, \star_X \right) \to \left(Y, y_0 \right)$$

defined by

$$\xi^{\dagger}(x) \stackrel{\text{def}}{=} \begin{cases} \xi(x) & \text{if } x \in X, \\ y_0 & \text{if } x = \star_X \end{cases}$$

for each $x \in X^+$.

• Invertibility I. We claim that

$$\Psi_{X,Y} \circ \Phi_{X,Y} = \mathrm{id}_{\mathsf{Sets}_*((X^+,\star_X),(Y,y_0))},$$

which is clear.

• Invertibility II. We claim that

$$\Phi_{X,Y} \circ \Psi_{X,Y} = \mathrm{id}_{\mathsf{Sets}(X,Y)},$$

which is clear.

• Naturality for Φ , Part I. We need to show that, given a pointed

when there are multiple free pointed sets involved in the current discussion.

function $g: (Y, y_0) \to (Y', y_0')$, the diagram

$$\begin{split} \mathsf{Sets}_*\big(\big(X^+, \star_X\big), (Y, y_0)\big) & \stackrel{\Phi_{X,Y}}{\longrightarrow} \mathsf{Sets}(X, Y) \\ g_* & & \downarrow g_* \\ \mathsf{Sets}_*\big(\big(X^+, \star_X\big), (Y', y_0')\big),_{\Phi_{X,Y'}} \mathsf{Sets}(X, Y') \end{split}$$

commutes. Indeed, given a pointed function

$$\xi^{\dagger} \colon \left(X^+, \star_X \right) \to (Y, y_0)$$

we have

$$\begin{split} \big[\Phi_{X,Y'} \circ g_* \big] (\xi) &= \Phi_{X,Y'} (g_*(\xi)) \\ &= \Phi_{X,Y'} (g \circ \xi) \\ &= g \circ \xi \\ &= g \circ \Phi_{X,Y'} (\xi) \\ &= g_* \big(\Phi_{X,Y'} (\xi) \big) \\ &= \big[g_* \circ \Phi_{X,Y'} \big] (\xi). \end{split}$$

• Naturality for Φ , Part II. We need to show that, given a pointed function $f:(X,x_0)\to (X',x_0')$, the diagram

commutes. Indeed, given a function

$$\xi \colon X' \to Y$$

we have

$$[\Phi_{X,Y} \circ f^*](\xi) = \Phi_{X,Y}(f^*(\xi))$$

$$= \Phi_{X,Y}(\xi \circ f)$$

$$= \xi \circ f$$

$$= \Phi_{X',Y}(\xi) \circ f$$

$$= f^*(\Phi_{X',Y}(\xi))$$

$$= f^*(\Phi_{X',Y}(\xi))$$

$$= [f^* \circ \Phi_{X',Y}](\xi).$$

• Naturality for Ψ . Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Item 2 of Proposition 8.8.6.1.2 that Ψ is also natural in each argument.

Item 3, Symmetric Strong Monoidality With Respect to Wedge Sums: The isomorphism

$$\phi \colon X^+ \vee Y^+ \xrightarrow{\cong} (X \coprod Y)^+$$

is given by

$$\phi(z) = \begin{cases} x & \text{if } z = [(0, x)] \text{ with } x \in X, \\ y & \text{if } z = [(1, y)] \text{ with } y \in Y, \\ \star_{X \coprod Y} & \text{if } z = [(0, \star_X)], \\ \star_{X \coprod Y} & \text{if } z = [(1, \star_Y)] \end{cases}$$

for each $z \in X^+ \vee Y^+$, with inverse

$$\phi^{-1} \colon (X \coprod Y)^+ \xrightarrow{\cong} X^+ \lor Y^+$$

given by

$$\phi^{-1}(z) \stackrel{\text{def}}{=} \begin{cases} [(0, x)] & \text{if } z = [(0, x)], \\ [(0, y)] & \text{if } z = [(1, y)], \\ p_0 & \text{if } z = \star_{X \prod Y} \end{cases}$$

for each $z \in (X \coprod Y)^+$.

Meanwhile, the isomorphism pt $\cong \emptyset^+$ is given by sending \star_X to \star_{\emptyset} . That these isomorphisms satisfy the coherence conditions making the functor $(-)^+$ symmetric strong monoidal can be directly checked element by element.

Item 4, Symmetric Strong Monoidality With Respect to Smash Products: The isomorphism

$$\phi \colon X^+ \wedge Y^+ \xrightarrow{\cong} (X \times Y)^+$$

is given by

$$\phi(x \land y) = \begin{cases} (x, y) & \text{if } x \neq \star_X \text{ and } y \neq \star_Y \\ \star_{X \times Y} & \text{otherwise} \end{cases}$$

for each $x \wedge y \in X^+ \wedge Y^+$, with inverse

$$\phi^{-1} \colon (X \times Y)^+ \xrightarrow{\cong} X^+ \wedge Y^+$$

given by

$$\phi^{-1}(z) \stackrel{\text{def}}{=} \begin{cases} x \wedge y & \text{if } z = (x, y) \text{ with } (x, y) \in X \times Y, \\ \star_X \wedge \star_Y & \text{if } z = \star_{X \times Y}, \end{cases}$$

for each $z \in (X \coprod Y)^+$.

Meanwhile, the isomorphism $S^0 \cong \operatorname{pt}^+$ is given by sending \star to $1 \in S^0 = \{0,1\}$ and $\star_{\operatorname{pt}}$ to $0 \in S^0$.

That these isomorphisms satisfy the coherence conditions making the functor $(-)^+$ symmetric strong monoidal can be directly checked element by element.

Appendices

3.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 4

Tensor Products of Pointed Sets

00C3 In this chapter we introduce, construct, and study tensor products of pointed sets. The most well-known among these is the *smash product of pointed sets*

$$\wedge : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

introduced in Section 4.5.1, defined via a universal property as inducing a bijection between the following data:

- Pointed maps $f: X \wedge Y \to Z$.
- Maps of sets $f: X \times Y \to Z$ satisfying

$$f(x_0, y) = z_0,$$

$$f(x, y_0) = z_0$$

for each $x \in X$ and each $y \in Y$.

As it turns out, however, dropping either of the bilinearity conditions

$$f(x_0, y) = z_0,$$

$$f(x, y_0) = z_0$$

while retaining the other leads to two other tensor products of pointed sets,

$$\lhd$$
: Sets_{*} × Sets_{*} \rightarrow Sets_{*},
 \triangleright : Sets_{*} × Sets_{*} \rightarrow Sets_{*},

called the *left* and *right tensor products of pointed sets*. In contrast to \land , which turns out to endow Sets* with a monoidal category structure

(Proposition 4.5.9.1.1), these do not admit invertible associators and unitors, but do endow Sets_{*} with the structure of a skew monoidal category, however (Propositions 4.3.8.1.1 and 4.4.8.1.1).

Finally, in addition to the tensor products \triangleleft , \triangleright , and \wedge , we also have a "tensor product" of the form

$$\odot$$
: Sets \times Sets $_* \rightarrow$ Sets $_*$,

called the *tensor* of sets with pointed sets. All in all, these tensor products assemble into a family of functors of the form

```
\begin{split} & \otimes_{k,\ell} \colon \mathsf{Mon}_{\mathbb{E}_k}(\mathsf{Sets}) \times \mathsf{Mon}_{\mathbb{E}_\ell}(\mathsf{Sets}) \to \mathsf{Mon}_{\mathbb{E}_{k+\ell}}(\mathsf{Sets}), \\ & \lhd_{i,k} \colon \mathsf{Mon}_{\mathbb{E}_k}(\mathsf{Sets}) \times \mathsf{Mon}_{\mathbb{E}_k}(\mathsf{Sets}) \to \mathsf{Mon}_{\mathbb{E}_k}(\mathsf{Sets}), \\ & \rhd_{i,k} \colon \mathsf{Mon}_{\mathbb{E}_k}(\mathsf{Sets}) \times \mathsf{Mon}_{\mathbb{E}_k}(\mathsf{Sets}) \to \mathsf{Mon}_{\mathbb{E}_k}(\mathsf{Sets}), \end{split}
```

where $k, \ell, i \in \mathbb{N}$ with $i \leq k - 1$. Together with the Cartesian product \times of Sets, the tensor products studied in this chapter form the cases:

- $(k, \ell) = (-1, -1)$ for the Cartesian product of Sets;
- $(k, \ell) = (0, -1)$ and (-1, 0) for the tensor of sets with pointed sets of Definition 4.2.1.1.1;
- (i,k) = (-1,0) for the left and right tensor products of pointed sets of Sections 4.3 and 4.4;
- $(k, \ell) = (-1, -1)$ for the smash product of pointed sets of Section 4.5.

In this chapter, we will carefully define and study bilinearity for pointed sets, as well as all the tensor products described above. Then, in $\ref{eq:condition}$, we will extend these to tensor products involving also monoids and commutative monoids, which will end up covering all cases up to $k, \ell \leq 2$, and hence all cases since \mathbb{E}_k -monoids on Sets are the same as \mathbb{E}_2 -monoids on Sets when $k \geq 2$.

Contents

4.1	Bilinear Morphisms of Pointed Sets1		
	4.1.1	Left Bilinear Morphisms of Pointed Sets 137	
	4.1.2	Right Bilinear Morphisms of Pointed Sets 138	
	4.1.3	Bilinear Morphisms of Pointed Sets	
4.2	Tensors and Cotensors of Pointed Sets by Sets140		
	4.2.1	Tensors of Pointed Sets by Sets	
	4.2.2	Cotensors of Pointed Sets by Sets 147	
4.3	The I	Left Tensor Product of Pointed Sets154	
	4.3.1	Foundations	

	4.3.2	The Left Internal Hom of Pointed Sets 157
	4.3.3	The Left Skew Unit
	4.3.4	The Left Skew Associator
	4.3.5	The Left Skew Left Unitor
	4.3.6	The Left Skew Right Unitor
	4.3.7	The Diagonal
	4.3.8	The Left Skew Monoidal Structure on Pointed
Sets Asso	ociated	to <1
Product	4.3.9 of Point	Monoids With Respect to the Left Tensor ted Sets
4.4		Right Tensor Product of Pointed Sets174
	4.4.1	Foundations 174
	4.4.2	The Right Internal Hom of Pointed Sets 178
	4.4.3	The Right Skew Unit
	4.4.4	The Right Skew Associator
	4.4.5	The Right Skew Left Unitor
	4.4.6	The Right Skew Right Unitor
	4.4.7	The Diagonal
	4.4.8	The Right Skew Monoidal Structure on Pointed
Sets Asso	ociated	to >
	4.4.9	Monoids With Respect to the Right Tensor
	of Point	ted Sets
Product of 4.5	of Point The S	ted Sets
	of Point The S 4.5.1	ted Sets
	of Point The S 4.5.1 4.5.2	ted Sets
	The S 4.5.1 4.5.2 4.5.3	ted Sets
	The S 4.5.1 4.5.2 4.5.3 4.5.4	ted Sets
	The S 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5	ted Sets
	of Point The S 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6	ted Sets
	of Point The S 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7	ted Sets
	of Point The S 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8	ted Sets
4.5	of Point The S 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8 4.5.9	ted Sets
4.5	The S 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8 4.5.9 ed to \wedge	Smash Product of Pointed Sets 195 Foundations 195 The Internal Hom of Pointed Sets 204 The Monoidal Unit 206 The Associator 207 The Left Unitor 208 The Right Unitor 211 The Symmetry 213 The Diagonal 215 The Monoidal Structure on Pointed Sets 218
4.5 Associate	of Point The S $4.5.1$ $4.5.2$ $4.5.3$ $4.5.4$ $4.5.5$ $4.5.6$ $4.5.7$ $4.5.8$ $4.5.9$ ed to \land $4.5.10$	ted Sets
4.5 Associate	The S 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8 4.5.9 ed to \wedge 4.5.10 d Sets I	ted Sets. 192 Smash Product of Pointed Sets. 195 Foundations. 195 The Internal Hom of Pointed Sets. 204 The Monoidal Unit. 206 The Associator. 207 The Left Unitor. 208 The Right Unitor. 211 The Symmetry. 213 The Diagonal. 215 The Monoidal Structure on Pointed Sets 218 Universal Properties of the Smash Product 222
4.5 Associate of Pointe	of Point The S 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8 4.5.9 ed to \wedge 4.5.10 d Sets 1 4.5.11	ted Sets
4.5 Associate of Pointe	of Point The S 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8 4.5.9 ed to \(\) 4.5.10 d Sets 1 d Sets 1	ted Sets

	4.5.13 Comonoids With Respect to the Smash Prod-			
uct of Pointed Sets				
4.6	Miscellany223			
	4.6.1 The Smash Product of a Family of Pointed			
Sets				
4.A	Other Chapters224			

00C4 4.1 Bilinear Morphisms of Pointed Sets

00C5 4.1.1 Left Bilinear Morphisms of Pointed Sets

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

00C6 Definition 4.1.1.1.1. A left bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: X \times Y \to Z$$

satisfying the following condition:^{1,2}

 (\star) Left Unital Bilinearity. The diagram

commutes, i.e. for each $y \in Y$, we have

$$f(x_0, y) = z_0.$$

00C7 Definition 4.1.1.1.2. The set of left bilinear morphisms of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is the set $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, L}(X \times Y, Z)$ defined by

 $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathbf{L}}(X \times Y, Z) \stackrel{\text{\tiny def}}{=} \{ f \in \operatorname{Hom}_{\mathsf{Sets}}(X \times Y, Z) \mid f \text{ is left bilinear} \}.$

$$f(x_0, y) = z_0$$

 $^{^1}Slogan:$ The map f is left bilinear if it preserves basepoints in its first argument. $^2Succinctly,\,f$ is bilinear if we have

00C8 4.1.2 Right Bilinear Morphisms of Pointed Sets

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

00C9 Definition 4.1.2.1.1. A right bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: X \times Y \to Z$$

satisfying the following condition: 3,4

 (\star) Right Unital Bilinearity. The diagram

commutes, i.e. for each $x \in X$, we have

$$f(x, y_0) = z_0.$$

00CA Definition 4.1.2.1.2. The set of right bilinear morphisms of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is the set $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, R}(X \times Y, Z)$ defined by

 $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathbf{R}}(X \times Y, Z) \stackrel{\text{\tiny def}}{=} \{ f \in \operatorname{Hom}_{\mathsf{Sets}}(X \times Y, Z) \mid f \text{ is right bilinear} \}.$

00CB 4.1.3 Bilinear Morphisms of Pointed Sets

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

OOCC Definition 4.1.3.1.1. A bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: X \times Y \to Z$$

that is both left bilinear and right bilinear.

$$f(x, y_0) = z_0$$

for each $y \in Y$.

³ Slogan: The map f is right bilinear if it preserves basepoints in its second argument.

 $^{^4}$ Succinctly, f is bilinear if we have

00CD Remark 4.1.3.1.2. In detail, a bilinear morphism of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is a map of sets

$$f: (X \times Y, (x_0, y_0)) \to (Z, z_0)$$

satisfying the following conditions:^{5,6}

1. Left Unital Bilinearity. The diagram

commutes, i.e. for each $y \in Y$, we have

$$f(x_0, y) = z_0.$$

2. Right Unital Bilinearity. The diagram

commutes, i.e. for each $x \in X$, we have

$$f(x, y_0) = z_0.$$

00CE Definition 4.1.3.1.3. The set of bilinear morphisms of pointed sets from $(X \times Y, (x_0, y_0))$ to (Z, z_0) is the set $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z)$ defined by

$$\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes}(X\times Y,Z)\stackrel{\text{def}}{=}\{f\in\operatorname{Hom}_{\mathsf{Sets}}(X\times Y,Z)\mid f\text{ is bilinear}\}.$$

for each $x \in X$.

$$f(x_0, y) = z_0,$$

$$f(x, y_0) = z_0$$

⁵ Slogan: The map f is bilinear if it preserves basepoints in each argument.

⁶Succinctly, f is bilinear if we have

4.2 Tensors and Cotensors of Pointed Sets by Sets

00CG 4.2.1 Tensors of Pointed Sets by Sets

Let (X, x_0) be a pointed set and let A be a set.

- **Definition 4.2.1.1.1.** The **tensor of** (X, x_0) **by** A^7 is the pointed set⁸ $A \odot (X, x_0)$ satisfying the following universal property:
 - (UP) We have a bijection

$$\mathsf{Sets}_*(A \odot X, K) \cong \mathsf{Sets}(A, \mathsf{Sets}_*(X, K)),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$.

- **OOCJ** Remark 4.2.1.1.2. The universal property in Definition 4.2.1.1.1 is equivalent to the following one:
 - (UP) We have a bijection

$$\mathsf{Sets}_*(A \odot X, K) \cong \mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times X, K),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$, where $\mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times X, K)$ is the set defined by

$$\mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A\times X,K)\stackrel{\scriptscriptstyle\rm def}{=} \bigg\{f\in\mathsf{Sets}(A\times X,K)\ \bigg|\ \text{for each }a\in A,\ \text{we}\\ \text{have }f(a,x_0)=k_0\bigg\}.$$

Proof. We claim we have a bijection

$$\mathsf{Sets}(A,\mathsf{Sets}_*(X,K)) \cong \mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times X,K)$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$. Indeed, this bijection is a restriction of the bijection

$$\mathsf{Sets}(A,\mathsf{Sets}(X,K)) \cong \mathsf{Sets}(A \times X,K)$$

of Item 2 of Proposition 2.1.3.1.2:

• A map

$$\xi \colon A \longrightarrow \mathsf{Sets}_*(X, K),$$

 $a \mapsto (\xi_a \colon X \to K),$

for each $x \in X$ and each $y \in Y$.

⁷ Further Terminology: Also called the **copower of** (X, x_0) **by** A.

⁸ Further Notation: Often written $A \odot X$ for simplicity.

in $Sets(A, Sets_*(X, K))$ gets sent to the map

$$\xi^{\dagger} \colon A \times X \to K$$

defined by

$$\xi^{\dagger}(a,x) \stackrel{\text{def}}{=} \xi_a(x)$$

for each $(a,x) \in A \times X$, which indeed lies in $\mathsf{Sets}^\otimes_{\mathbb{E}_0}(A \times X,K)$, as we have

$$\xi^{\dagger}(a, x_0) \stackrel{\text{def}}{=} \xi_a(x_0)$$
$$\stackrel{\text{def}}{=} k_0$$

for each $a \in A$, where we have used that $\xi_a \in \mathsf{Sets}_*(X,K)$ is a morphism of pointed sets.

• Conversely, a map

$$\xi \colon A \times X \to K$$

in $\mathsf{Sets}^{\otimes}_{\mathbb{E}_0}(A \times X, K)$ gets sent to the map

$$\xi^{\dagger} \colon A \longrightarrow \mathsf{Sets}_{*}(X, K),$$

$$a \mapsto \left(\xi_{a}^{\dagger} \colon X \to K\right),$$

where

$$\xi_a^{\dagger} \colon X \to K$$

is the map defined by

$$\xi_a^{\dagger}(x) \stackrel{\text{def}}{=} \xi(a, x)$$

for each $x \in X$, and indeed lies in $Sets_*(X, K)$, as we have

$$\xi_a^{\dagger}(x_0) \stackrel{\text{def}}{=} \xi(a, x_0)$$
$$\stackrel{\text{def}}{=} k_0.$$

This finishes the proof.

- **©OCK Construction 4.2.1.1.3.** Concretely, the **tensor of** (X, x_0) **by** A is the pointed set $A \odot (X, x_0)$ consisting of:
 - The Underlying Set. The set $A \odot X$ given by

$$A \odot X \cong \bigvee_{a \in A} (X, x_0),$$

where $\bigvee_{a \in A} (X, x_0)$ is the wedge product of the A-indexed family $((X, x_0))_{a \in A}$ of Definition 3.3.2.1.1.

• The Basepoint. The point $[(a, x_0)] = [(a', x_0)]$ of $\bigvee_{a \in A} (X, x_0)$.

Proof. (Proven below in a bit.)

OOCL Notation 4.2.1.1.4. We write $a \odot x$ for the element [(a,x)] of

$$A \odot X \cong \bigvee_{a \in A} (X, x_0)$$
$$\stackrel{\text{def}}{=} \left(\coprod_{i \in I} X_i \right) / \sim.$$

QOCM Remark 4.2.1.1.5. Taking the tensor of any element of A with the basepoint x_0 of X leads to the same element in $A \odot X$, i.e. we have

$$a \odot x_0 = a' \odot x_0$$

for each $a, a' \in A$. This is due to the equivalence relation \sim on

$$\bigvee_{a\in A}(X,x_0)\stackrel{\mathrm{def}}{=}\coprod_{a\in A}X/\!\!\sim$$

identifying (a, x_0) with (a', x_0) , so that the equivalence class $a \odot x_0$ is independent from the choice of $a \in A$.

Proof. We claim we have a bijection

$$\mathsf{Sets}_*(A \odot X, K) \cong \mathsf{Sets}(A, \mathsf{Sets}_*(X, K))$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$.

• Map I. We define a map

$$\Phi_K : \mathsf{Sets}_*(A \odot X, K) \to \mathsf{Sets}(A, \mathsf{Sets}_*(X, K))$$

by sending a morphism of pointed sets

$$\xi \colon (A \odot X, a \odot x_0) \to (K, k_0)$$

to the map of sets

$$\xi^{\dagger} \colon A \longrightarrow \mathsf{Sets}_*(X, K),$$

 $a \mapsto (\xi_a \colon X \to K),$

where

$$\xi_a : (X, x_0) \to (K, k_0)$$

is the morphism of pointed sets defined by

$$\xi_a(x) \stackrel{\text{def}}{=} \xi(a \odot x)$$

for each $x \in X$. Note that we have

$$\xi_a(x_0) \stackrel{\text{def}}{=} \xi(a \odot x_0)$$
$$= k_0,$$

so that ξ_a is indeed a morphism of pointed sets, where we have used that ξ is a morphism of pointed sets.

• Map II. We define a map

$$\Psi_K \colon \mathsf{Sets}(A, \mathsf{Sets}_*(X, K)) \to \mathsf{Sets}_*(A \odot X, K)$$

given by sending a map

$$\xi \colon A \longrightarrow \mathsf{Sets}_*(X, K),$$

 $a \mapsto (\xi_a \colon X \to K),$

to the morphism of pointed sets

$$\xi^{\dagger} : (A \odot X, a \odot x_0) \rightarrow (K, k_0)$$

defined by

$$\xi^{\dagger}(a\odot x)\stackrel{\mathrm{def}}{=} \xi_a(x)$$

for each $a \odot x \in A \odot X$. Note that ξ^{\dagger} is indeed a morphism of pointed sets, as we have

$$\xi^{\dagger}(a \odot x_0) \stackrel{\text{def}}{=} \xi_a(x_0)$$
$$= k_0,$$

where we have used that $\xi(a) \in \mathsf{Sets}_*(X,K)$ is a morphism of pointed sets.

• Invertibility I. We claim that

$$\Psi_K \circ \Phi_K = \mathrm{id}_{\mathsf{Sets}_*(A \odot X, K)}.$$

Indeed, given a morphism of pointed sets

$$\xi \colon (A \odot X, a \odot x_0) \to (K, k_0),$$

we have

$$\begin{split} [\Psi_K \circ \Phi_K](\xi) &= \Psi_K(\Phi_K(\xi)) \\ &= \Psi_K(\llbracket a \mapsto \llbracket x \mapsto \xi(a \odot x) \rrbracket \rrbracket) \\ &= \Psi_K(\llbracket a' \mapsto \llbracket x' \mapsto \xi(a' \odot x') \rrbracket \rrbracket) \\ &= \llbracket a \odot x \mapsto \operatorname{ev}_x(\operatorname{ev}_a(\llbracket a' \mapsto \llbracket x' \mapsto \xi(a' \odot x') \rrbracket \rrbracket)) \rrbracket \\ &= \llbracket a \odot x \mapsto \operatorname{ev}_x(\llbracket x' \mapsto \xi(a \odot x') \rrbracket) \rrbracket \\ &= \llbracket a \odot x \mapsto \xi(a \odot x) \rrbracket \\ &= \xi. \end{split}$$

• Invertibility II. We claim that

$$\Phi_K \circ \Psi_K = \mathrm{id}_{\mathsf{Sets}(A,\mathsf{Sets}_*(X,K))}.$$

Indeed, given a morphism $\xi \colon A \to \mathsf{Sets}_*(X,K)$, we have

$$\begin{split} [\Phi_K \circ \Psi_K](\xi) &= \Phi_K(\Psi_K(\xi)) \\ &= \Phi_K(\llbracket a \odot x \mapsto \xi_a(x) \rrbracket) \\ &= \llbracket a \mapsto \llbracket x \mapsto \xi_a(x) \rrbracket \rrbracket \\ &= \llbracket a \mapsto \xi(a) \rrbracket \\ &= \xi. \end{split}$$

• Naturality of Φ . We need to show that, given a morphism of pointed sets

$$\phi \colon (K, k_0) \to (K', k'_0),$$

the diagram

$$\begin{split} \mathsf{Sets}_*(A \odot X, K) & \xrightarrow{\Phi_K} \mathsf{Sets}(A, \mathsf{Sets}_*(X, K)) \\ \phi_* \bigg| & & & & & & & & \\ \phi_* \bigg| & & & & & & & \\ & & & & & & & \\ \mathsf{Sets}_*(A \odot X, K') & \xrightarrow{\Phi_{K'}} \mathsf{Sets}(A, \mathsf{Sets}_*(X, K')) \end{split}$$

commutes. Indeed, given a morphism of pointed sets

$$\xi \colon (A \odot X, a \odot x_0) \to (K, k_0),$$

we have

$$\begin{split} [\Phi_{K'} \circ \phi_*](\xi) &= \Phi_{K'}(\phi_*(\xi)) \\ &= \Phi_{K'}(\phi \circ \xi) \\ &= (\phi \circ \xi)^{\dagger} \\ &= [\![a \mapsto \phi \circ \xi (a \odot -)]\!] \\ &= [\![a \mapsto \phi_*(\xi (a \odot -))]\!] \\ &= (\phi_*)_* ([\![a \mapsto \xi (a \odot -)]\!])) \\ &= (\phi_*)_* (\Phi_K(\xi)) \\ &= [(\phi_*)_* \circ \Phi_K](\xi). \end{split}$$

• Naturality of Ψ . Since Φ is natural and Φ is a componentwise inverse to Ψ , it follows from Item 2 of Proposition 8.8.6.1.2 that Ψ is also natural.

This finishes the proof.

OOCN Proposition 4.2.1.1.6. Let (X, x_0) be a pointed set and let A be a set.

00CP 1. Functoriality. The assignments $A, (X, x_0), (A, (X, x_0))$ define functors

$$\begin{split} A\odot -\colon \mathsf{Sets}_* \to \mathsf{Sets}_*, \\ -\odot X\colon \mathsf{Sets} \to \mathsf{Sets}_*, \\ -_1\odot -_2\colon \mathsf{Sets} \times \mathsf{Sets}_* \to \mathsf{Sets}_*. \end{split}$$

In particular, given:

- A map of sets $f: A \to B$;
- A pointed map $\phi: (X, x_0) \to (Y, y_0)$;

the induced map

$$f \odot \phi \colon A \odot X \to B \odot Y$$

is given by

$$[f \odot \phi](a \odot x) \stackrel{\text{def}}{=} f(a) \odot \phi(x)$$

for each $a \odot x \in A \odot X$.

00CQ 2. Adjointness I. We have an adjunction

$$(-\odot X\dashv \mathsf{Sets}_*(X,-))\colon \underbrace{\mathsf{Sets}_*^{-\odot X}}_{\mathsf{Sets}_*(X,-)}\mathsf{Sets}_*,$$

witnessed by a bijection

$$\mathsf{Sets}_*(A \odot X, K) \cong \mathsf{Sets}(A, \mathsf{Sets}_*(X, K)),$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $X, Y \in \text{Obj}(\mathsf{Sets}_*)$.

00CR 3. Adjointness II. We have an adjunctions

witnessed by a bijection

$$\operatorname{Hom}_{\mathsf{Sets}_*}(A \odot X, Y) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, A \pitchfork Y),$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $X, Y \in \text{Obj}(\mathsf{Sets}_*)$.

00CS 4. As a Weighted Colimit. We have

$$A \odot X \cong \operatorname{colim}^{[A]}(X),$$

where in the right hand side we write:

- A for the functor A: pt \rightarrow Sets picking $A \in \text{Obj}(\mathsf{Sets})$;
- X for the functor $X: pt \to \mathsf{Sets}_*$ picking $(X, x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$.
- **00CT** 5. Iterated Tensors. We have an isomorphism of pointed sets

$$A \odot (B \odot X) \cong (A \times B) \odot X$$

natural in $A, B \in \text{Obj}(\mathsf{Sets})$ and $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$.

00CU 6. Interaction With Homs. We have a natural isomorphism

$$\mathsf{Sets}_*(A\odot X,-)\cong A \pitchfork \mathsf{Sets}_*(X,-).$$

00CV 7. The Tensor Evaluation Map. For each $X, Y \in \text{Obj}(\mathsf{Sets}_*)$, we have a map

$$\operatorname{ev}_{X|Y}^{\odot} \colon \mathsf{Sets}_*(X,Y) \odot X \to Y,$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets}_*)$, and given by

$$\operatorname{ev}_{X,Y}^{\odot}(f\odot x)\stackrel{\scriptscriptstyle\rm def}{=} f(x)$$

for each $f \odot x \in \mathsf{Sets}_*(X,Y) \odot X$.

00CW 8. The Tensor Coevaluation Map. For each $A \in \text{Obj}(\mathsf{Sets})$ and each $X \in \text{Obj}(\mathsf{Sets}_*)$, we have a map

$$\mathrm{coev}_{A,X}^{\odot} \colon A \to \mathsf{Sets}_*(X, A \odot X),$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $X \in \text{Obj}(\mathsf{Sets}_*)$, and given by

$$\operatorname{coev}_{A,X}^{\odot}(a) \stackrel{\text{def}}{=} \llbracket x \mapsto a \odot x \rrbracket$$

for each $a \in A$.

Proof. Item 1, Functoriality: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 2, Adjointness I: This is simply a rephrasing of Definition 4.2.1.1.1. Item 3, : Adjointness II: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 4, As a Weighted Colimit: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 5, *Iterated Tensors*: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 6, *Interaction With Homs*: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 7, The Tensor Evaluation Map: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 8, The Tensor Coevaluation Map: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

00CX 4.2.2 Cotensors of Pointed Sets by Sets

Let (X, x_0) be a pointed set and let A be a set.

- **Definition 4.2.2.1.1.** The **cotensor of** (X, x_0) **by** A^9 is the pointed set $A \cap (X, x_0)$ satisfying the following universal property:
 - (**UP**) We have a bijection

$$\mathsf{Sets}_*(K, A \cap X) \cong \mathsf{Sets}(A, \mathsf{Sets}_*(K, X)),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$.

- **OOCZ Remark 4.2.2.1.2.** The universal property of Definition 4.2.2.1.1 is equivalent to the following one:
 - (UP) We have a bijection

$$\mathsf{Sets}_*(K,A \pitchfork X) \cong \mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times K,X),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$, where $\mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A \times K, X)$ is the set defined by

$$\mathsf{Sets}_{\mathbb{E}_0}^{\otimes}(A\times K,X) \stackrel{\text{\tiny def}}{=} \bigg\{ f \in \mathsf{Sets}(A\times K,X) \ \bigg| \ \text{for each } a\in A, \text{ we} \\ \text{have } f(a,k_0) = x_0 \bigg\}.$$

Proof. This follows from the bijection

$$\mathsf{Sets}(A,\mathsf{Sets}_*(K,X)) \cong \mathsf{Sets}^{\otimes}_{\mathbb{E}_0}(A \times K,X),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$ constructed in the proof of Remark 4.2.1.1.2.

Construction 4.2.2.1.3. Concretely, the **cotensor of** (X, x_0) **by** A is the pointed set $A \cap (X, x_0)$ consisting of:

⁹ Further Terminology: Also called the **power of** (X, x_0) by A.

¹⁰ Further Notation: Often written $A \cap X$ for simplicity.

• The Underlying Set. The set $A \cap X$ given by

$$A \pitchfork X \cong \bigwedge_{a \in A} (X, x_0),$$

where $\bigwedge_{a\in A}(X,x_0)$ is the smash product of the A-indexed family $((X,x_0))_{a\in A}$ of Definition 4.6.1.1.1.

• The Basepoint. The point $[(x_0)_{a\in A}] = [(x_0, x_0, x_0, \dots)]$ of $\bigwedge_{a\in A} (X, x_0)$.

Proof. We claim we have a bijection

$$\mathsf{Sets}_*(K, A \cap X) \cong \mathsf{Sets}(A, \mathsf{Sets}_*(K, X)),$$

natural in $(K, k_0) \in \text{Obj}(\mathsf{Sets}_*)$.

• Map I. We define a map

$$\Phi_K \colon \mathsf{Sets}_*(K, A \pitchfork X) \to \mathsf{Sets}(A, \mathsf{Sets}_*(K, X)),$$

by sending a morphism of pointed sets

$$\xi \colon (K, k_0) \to (A \pitchfork X, [(x_0)_{a \in A}])$$

to the map of sets

$$\xi^{\dagger} \colon A \longrightarrow \mathsf{Sets}_*(K, X),$$

 $a \mapsto (\xi_a \colon K \to X),$

where

$$\xi_a : (K, k_0) \to (X, x_0)$$

is the morphism of pointed sets defined by

$$\xi_a(k) = \begin{cases} x_a^k & \text{if } \xi(k) \neq [(x_0)_{a \in A}], \\ x_0 & \text{if } \xi(k) = [(x_0)_{a \in A}] \end{cases}$$

for each $k \in K$, where x_a^k is the ath component of $\xi(k) = \left[\left(x_a^k\right)_{a \in A}\right]$. Note that:

1. The definition of $\xi_a(k)$ is independent of the choice of equivalence class. Indeed, suppose we have

$$\xi(k) = \left[\left(x_a^k \right)_{a \in A} \right]$$
$$= \left[\left(y_a^k \right)_{a \in A} \right]$$

with $x_a^k \neq y_a^k$ for some $a \in A$. Then there exist $a_x, a_y \in A$ such that $x_{a_x}^k = y_{a_y}^k = x_0$. The equivalence relation \sim on $\prod_{a \in A} X$ then forces

$$\begin{bmatrix} \left(x_a^k \right)_{a \in A} \end{bmatrix} = \left[(x_0)_{a \in A} \right],$$
$$\begin{bmatrix} \left(y_a^k \right)_{a \in A} \end{bmatrix} = \left[(x_0)_{a \in A} \right],$$

however, and $\xi_a(k)$ is defined to be x_0 in this case.

2. The map ξ_a is indeed a morphism of pointed sets, as we have

$$\xi_a(k_0) = x_0$$

since $\xi(k_0) = [(x_0)_{a \in A}]$ as ξ is a morphism of pointed sets and $\xi_a(k_0)$, defined to be the *a*th component of $[(x_0)_{a \in A}]$, is equal to x_0 .

• Map II. We define a map

$$\Psi_K \colon \mathsf{Sets}(A, \mathsf{Sets}_*(K, X)) \to \mathsf{Sets}_*(K, A \pitchfork X),$$

given by sending a map

$$\xi \colon A \longrightarrow \mathsf{Sets}_*(K, X),$$

 $a \mapsto (\xi_a \colon K \to X),$

to the morphism of pointed sets

$$\xi^{\dagger} \colon (K, k_0) \to (A \pitchfork X, \lceil (x_0)_{a \in A} \rceil)$$

defined by

$$\xi^{\dagger}(k) \stackrel{\text{\tiny def}}{=} \left[(\xi_a(k))_{a \in A} \right]$$

for each $k \in K$. Note that ξ^{\dagger} is indeed a morphism of pointed sets, as we have

$$\xi^{\dagger}(k_0) \stackrel{\text{def}}{=} [(\xi_a(k_0))_{a \in A}]$$
$$= x_0,$$

where we have used that $\xi_a \in \mathsf{Sets}_*(K,X)$ is a morphism of pointed sets for each $a \in A$.

• Naturality of Ψ . We need to show that, given a morphism of pointed sets

$$\phi \colon (K, k_0) \to (K', k'_0),$$

the diagram

$$\begin{split} \mathsf{Sets}(A,\mathsf{Sets}_*(K',X)) & \xrightarrow{\Psi_{K'}} \mathsf{Sets}_*(K',A \pitchfork X) \\ & \downarrow^{\phi^*} \\ \mathsf{Sets}(A,\mathsf{Sets}_*(K,X)) & \xrightarrow{\Psi_K} \mathsf{Sets}_*(K,A \pitchfork X) \end{split}$$

commutes. Indeed, given a map of sets

$$\xi \colon A \longrightarrow \mathsf{Sets}_*(K', X),$$

 $a \mapsto (\xi_a \colon K' \to X),$

we have

$$\begin{split} [\Psi_{K} \circ (\phi^{*})_{*}](\xi) &= \Psi_{K}((\phi^{*})_{*}(\xi)) \\ &= \Psi_{K}((\phi^{*})_{*}(\llbracket a \mapsto \xi_{a} \rrbracket)) \\ &= \Psi_{K}((\llbracket a \mapsto \phi^{*}(\xi_{a}) \rrbracket)) \\ &= \Psi_{K}((\llbracket a \mapsto \llbracket k \mapsto \xi_{a}(\phi(k)) \rrbracket \rrbracket)) \\ &= \llbracket k \mapsto \left[(\xi_{a}(\phi(k)))_{a \in A} \right] \rrbracket \\ &= \phi^{*} \left(\llbracket k' \mapsto \left[(\xi_{a}(k'))_{a \in A} \right] \rrbracket \right) \\ &= \phi^{*}(\Psi_{K'}(\xi)) \\ &= [\phi^{*} \circ \Psi_{K'}](\xi). \end{split}$$

- Naturality of Φ . Since Ψ is natural and Ψ is a componentwise inverse to Φ , it follows from Item 2 of Proposition 8.8.6.1.2 that Φ is also natural.
- \bullet Invertibility I. We claim that

$$\Psi_K \circ \Phi_K = \mathrm{id}_{\mathsf{Sets}_*(K, A \cap X)}.$$

Indeed, given a morphism of pointed sets

$$\xi \colon (K, k_0) \to (A \pitchfork X, [(x_0)_{a \in A}])$$

we have

$$\begin{split} [\Psi_K \circ \Phi_K](\xi) &= \Psi_K(\Phi_K(\xi)) \\ &= \Psi_K(\llbracket a \mapsto \xi_a \rrbracket) \\ &= \Psi_K(\llbracket a' \mapsto \xi_{a'} \rrbracket) \\ &= \llbracket k \mapsto \left[\left(\operatorname{ev}_a(\llbracket a' \mapsto \xi_{a'}(k) \rrbracket) \right)_{a \in A} \right] \rrbracket \\ &= \llbracket k \mapsto \left[\left(\xi_a(k) \right)_{a \in A} \right] \rrbracket. \end{split}$$

Now, we have two cases:

1. If
$$\xi(k) = [(x_0)_{a \in A}]$$
, we have

$$\begin{split} [\Psi_K \circ \Phi_K](\xi) &= \cdots \\ &= \llbracket k \mapsto \bigl[(\xi_a(k))_{a \in A} \bigr] \rrbracket \\ &= \llbracket k \mapsto \bigl[(x_0)_{a \in A} \bigr] \rrbracket \\ &= \llbracket k \mapsto \xi(k) \rrbracket \\ &= \xi. \end{split}$$

2. If
$$\xi(k) \neq [(x_0)_{a \in A}]$$
 and $\xi(k) = [(x_a^k)_{a \in A}]$ instead, we have

$$\begin{split} [\Psi_K \circ \Phi_K](\xi) &= \cdots \\ &= [\![k \mapsto \left[(\xi_a(k))_{a \in A} \right]]\!] \\ &= [\![k \mapsto \left[\left(x_a^k \right)_{a \in A} \right]]\!] \\ &= [\![k \mapsto \xi(k)]\!] \\ &= \xi. \end{split}$$

In both cases, we have $[\Psi_K \circ \Phi_K](\xi) = \xi$, and thus we are done.

• Invertibility II. We claim that

$$\Phi_K \circ \Psi_K = \mathrm{id}_{\mathsf{Sets}(A,\mathsf{Sets}_*(K,X))}.$$

Indeed, given a morphism $\xi \colon A \to \mathsf{Sets}_*(K,X)$, we have

$$\begin{split} [\Phi_K \circ \Psi_K](\xi) &= \Phi_K(\Psi_K(\xi)) \\ &= \Phi_K \big(\llbracket k \mapsto \big[(\xi_a(k))_{a \in A} \big] \rrbracket \big) \\ &= \llbracket a \mapsto \llbracket k \mapsto \xi_a(k) \rrbracket \rrbracket \\ &= \xi \end{split}$$

This finishes the proof.

OOD1 Proposition 4.2.2.1.4. Let (X, x_0) be a pointed set and let A be a set.

00D2 1. Functoriality. The assignments $A, (X, x_0), (A, (X, x_0))$ define functors

$$\begin{split} A \pitchfork -\colon \mathsf{Sets}_* \to \mathsf{Sets}_*, \\ - \pitchfork X \colon \mathsf{Sets}^\mathsf{op} \to \mathsf{Sets}_*, \\ -_1 \pitchfork -_2 \colon \mathsf{Sets}^\mathsf{op} \times \mathsf{Sets}_* \to \mathsf{Sets}_*. \end{split}$$

In particular, given:

- A map of sets $f: A \to B$;
- A pointed map $\phi: (X, x_0) \to (Y, y_0)$;

the induced map

$$f \odot \phi \colon A \pitchfork X \to B \pitchfork Y$$

is given by

$$[f \odot \phi]([(x_a)_{a \in A}]) \stackrel{\text{def}}{=} [(\phi(x_{f(a)}))_{a \in A}]$$

for each $[(x_a)_{a\in A}] \in A \cap X$.

00D3 2. Adjointness I. We have an adjunction

$$(-\pitchfork X\dashv \mathsf{Sets}_*(-,X))\colon \ \ \mathsf{Sets}^{\mathsf{op}}\underbrace{\overset{-\pitchfork X}{}}_{\mathsf{Sets}_*(-,X)}\mathsf{Sets}_*,$$

witnessed by a bijection

$$\mathsf{Sets}^{\mathsf{op}}_*(A \pitchfork X, K) \cong \mathsf{Sets}_*(A, \mathsf{Sets}_*(K, X)),$$

i.e. by a bijection

$$\mathsf{Sets}_*(K, A \cap X) \cong \mathsf{Sets}(A, \mathsf{Sets}_*(K, X)),$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $X, Y \in \text{Obj}(\mathsf{Sets}_*)$.

00D4 3. Adjointness II. We have an adjunctions

witnessed by a bijection

$$\operatorname{Hom}_{\mathsf{Sets}_*}(A \odot X, Y) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, A \pitchfork Y),$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $X, Y \in \text{Obj}(\mathsf{Sets}_*)$.

00D5 4. As a Weighted Limit. We have

$$A \pitchfork X \cong \lim^{[A]}(X),$$

where in the right hand side we write:

• A for the functor $A : pt \to \mathsf{Sets}$ picking $A \in \mathsf{Obj}(\mathsf{Sets})$;

- X for the functor $X: pt \to \mathsf{Sets}_*$ picking $(X, x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$.
- 00D6 5. Iterated Cotensors. We have an isomorphism of pointed sets

$$A \pitchfork (B \pitchfork X) \cong (A \times B) \pitchfork X$$
,

natural in $A, B \in \text{Obj}(\mathsf{Sets})$ and $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$.

6. Commutativity With Homs. We have natural isomorphisms

$$A \pitchfork \mathsf{Sets}_*(X,-) \cong \mathsf{Sets}_*(A \odot X,-),$$

$$A \pitchfork \mathsf{Sets}_*(-,Y) \cong \mathsf{Sets}_*(-,A \pitchfork Y).$$

00D8 7. The Cotensor Evaluation Map. For each $X, Y \in \text{Obj}(\mathsf{Sets}_*)$, we have a map

$$\operatorname{ev}_{X,Y}^{\pitchfork} \colon X \to \operatorname{\mathsf{Sets}}_*(X,Y) \pitchfork Y,$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets}_*)$, and given by

$$\operatorname{ev}_{X,Y}^{\pitchfork}(x) \stackrel{\text{\tiny def}}{=} \left[(f(x))_{f \in \mathsf{Sets}_*(X,Y)} \right]$$

for each $x \in X$.

00D9 8. The Cotensor Coevaluation Map. For each $X \in \text{Obj}(\mathsf{Sets}_*)$ and each $A \in \text{Obj}(\mathsf{Sets})$, we have a map

$$\operatorname{coev}_{A,X}^{\pitchfork} \colon A \to \mathsf{Sets}_*(A \pitchfork X, X),$$

natural in $X \in \text{Obj}(\mathsf{Sets}_*)$ and $A \in \text{Obj}(\mathsf{Sets})$, and given by

$$\operatorname{coev}_{A,X}^{\uparrow}(a) \stackrel{\text{def}}{=} \llbracket [(x_b)_{b \in A}] \mapsto x_a \rrbracket$$

for each $a \in A$.

Proof. Item 1, Functoriality: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 2, Adjointness I: This is simply a rephrasing of Definition 4.2.2.1.1.

Item 3, : Adjointness II: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 4, As a Weighted Limit: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 5, *Iterated Cotensors*: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 6, Commutativity With Homs: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 7, The Cotensor Evaluation Map: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

Item 8, The Cotensor Coevaluation Map: This is the special case of ?? of ?? for when $C = \mathsf{Sets}_*$.

00DA 4.3 The Left Tensor Product of Pointed Sets

00DB 4.3.1 Foundations

Let (X, x_0) and (Y, y_0) be pointed sets.

00DC Definition 4.3.1.1.1. The left tensor product of pointed sets is the functor 11

$$\lhd : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

defined as the composition

$$\mathsf{Sets}_* \times \mathsf{Sets}_* \xrightarrow{\mathsf{id} \times \overline{\bowtie}} \mathsf{Sets}_* \times \mathsf{Sets} \xrightarrow{\beta_{\mathsf{Sets}_*,\mathsf{Sets}}^{\mathsf{Cats}_2}} \mathsf{Sets} \times \mathsf{Sets}_* \xrightarrow{\odot} \mathsf{Sets}_*,$$

where:

- \overline{a} : Sets* \rightarrow Sets is the forgetful functor from pointed sets to sets.
- $\beta^{\mathsf{Cats}_2}_{\mathsf{Sets}_*,\mathsf{Sets}}$: $\mathsf{Sets}_* \times \mathsf{Sets} \xrightarrow{\cong} \mathsf{Sets} \times \mathsf{Sets}_*$ is the braiding of Cats_2 , i.e. the functor witnessing the isomorphism

$$\mathsf{Sets}_* \times \mathsf{Sets} \cong \mathsf{Sets} \times \mathsf{Sets}_*$$
.

- \odot : Sets \times Sets_{*} \rightarrow Sets_{*} is the tensor functor of Item 1 of Proposition 4.2.1.1.6.
- **QUDD** Remark 4.3.1.1.2. The left tensor product of pointed sets satisfies the following natural bijection:

$$\mathsf{Sets}_*(X \lhd Y, Z) \cong \mathsf{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathsf{L}}(X \times Y, Z).$$

That is to say, the following data are in natural bijection:

- 1. Pointed maps $f: X \triangleleft Y \rightarrow Z$.
- 2. Maps of sets $f: X \times Y \to Z$ satisfying $f(x_0, y) = z_0$ for each $y \in Y$.
- **QUDE** Remark 4.3.1.1.3. The left tensor product of pointed sets may be described as follows:
 - The left tensor product of (X, x_0) and (Y, y_0) is the pair $((X \triangleleft Y, x_0 \triangleleft y_0), \iota)$ consisting of
 - A pointed set $(X \triangleleft Y, x_0 \triangleleft y_0)$;
 - A left bilinear morphism of pointed sets $\iota: (X \times Y, (x_0, y_0)) \to X \lhd Y;$

¹¹ Further Notation: Also written ⊲_{Sets*}.

satisfying the following universal property:

- (UP) Given another such pair $((Z, z_0), f)$ consisting of
 - * A pointed set (Z, z_0) ;
 - * A left bilinear morphism of pointed sets $f: (X \times Y, (x_0, y_0)) \to X \lhd Y;$

there exists a unique morphism of pointed sets $X \lhd Y \xrightarrow{\exists !} Z$ making the diagram

commute.

- OODF Construction 4.3.1.1.4. In detail, the left tensor product of (X, x_0) and (Y, y_0) is the pointed set $(X \triangleleft Y, [x_0])$ consisting of
 - The Underlying Set. The set $X \triangleleft Y$ defined by

$$X \lhd Y \stackrel{\text{def}}{=} |Y| \odot X$$
$$\cong \bigvee_{y \in Y} (X, x_0),$$

where |Y| denotes the underlying set of (Y, y_0) ;

- The Underlying Basepoint. The point $[(y_0, x_0)]$ of $\bigvee_{y \in Y} (X, x_0)$, which is equal to $[(y, x_0)]$ for any $y \in Y$.
- **OODG** Notation 4.3.1.1.5. We write 12 $x \triangleleft y$ for the element [(y,x)] of

$$X \lhd Y \cong |Y| \odot X.$$

Remark 4.3.1.1.6. Employing the notation introduced in Notation 4.3.1.1.5, we have

$$x_0 \triangleleft y_0 = x_0 \triangleleft y$$

for each $y \in Y$, and

$$x_0 \triangleleft y = x_0 \triangleleft y'$$

for each $y, y' \in Y$.

OODJ Proposition 4.3.1.1.7. Let (X, x_0) and (Y, y_0) be pointed sets.

¹² Further Notation: Also written $x \triangleleft_{\mathsf{Sets}_*} y$.

00DK 1. Functoriality. The assignments $X,Y,(X,Y)\mapsto X\lhd Y$ define functors

$$\begin{split} X \lhd -\colon \mathsf{Sets}_* \to \mathsf{Sets}_*, \\ - \lhd Y \colon \mathsf{Sets}_* \to \mathsf{Sets}_*, \\ -_1 \lhd -_2 \colon \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*. \end{split}$$

In particular, given pointed maps

$$f: (X, x_0) \to (A, a_0),$$

 $g: (Y, y_0) \to (B, b_0),$

the induced map

$$f \lhd q \colon X \lhd Y \to A \lhd B$$

is given by

$$[f \lhd g](x \lhd y) \stackrel{\text{\tiny def}}{=} f(x) \lhd g(y)$$

for each $x \triangleleft y \in X \triangleleft Y$.

00DL 2. Adjointness I. We have an adjunction

$$\left(-\lhd Y\dashv [Y,-]_{\mathsf{Sets}_*}^{\lhd}\right)\colon \quad \mathsf{Sets}_* \underbrace{\bot}_{[Y,-]_{\mathsf{Sets}_*}^{\lhd}} \mathsf{Sets}_*,$$

witnessed by a bijection of sets

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \lhd Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*} \Big(X, [Y, Z]^{\lhd}_{\mathsf{Sets}_*}\Big)$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$, where $[X, Y]_{\mathsf{Sets}_*}^{\triangleleft}$ is the pointed set of Definition 4.3.2.1.1.

00DM 3. Adjointness II. The functor

$$X \lhd -: \mathsf{Sets}_* \to \mathsf{Sets}_*$$

does not admit a right adjoint.

00DN 4. Adjointness III. We have a bijection of sets

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \lhd Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}}(|Y|, \mathsf{Sets}_*(X, Z))$$

natural in
$$(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$$
.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness I: This follows from Item 3 of Proposition 4.2.1.1.6. Item 3, Adjointness II: For $X \triangleleft -$ to admit a right adjoint would require it to preserve colimits by ?? of ??. However, we have

$$X \triangleleft \operatorname{pt} \stackrel{\operatorname{def}}{=} |\operatorname{pt}| \odot X$$
$$\cong X$$
$$\ncong \operatorname{pt},$$

and thus we see that $X \triangleleft -$ does not have a right adjoint.

Item 4, Adjointness III: This follows from Item 2 of Proposition 4.2.1.1.6.

@0DP Remark 4.3.1.1.8. Here is some intuition on why $X \triangleleft -$ fails to be a left adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural bijection

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \lhd Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}}(|Y|, \mathsf{Sets}_*(X, Z)),$$

so it would be reasonable to wonder whether a natural bijection of the form

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \lhd Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(Y, \mathsf{Sets}_*(X, Z)),$$

also holds, which would give $X \triangleleft - \dashv \mathbf{Sets}_*(X, -)$. However, such a bijection would require every map

$$f: X \triangleleft Y \rightarrow Z$$

to satisfy

$$f(x \triangleleft y_0) = z_0$$

for each $x \in X$, whereas we are imposing such a basepoint preservation condition only for elements of the form $x_0 \triangleleft y$. Thus $\mathbf{Sets}_*(X, -)$ can't be a right adjoint for $X \triangleleft -$, and as shown by Item 3 of Proposition 4.3.1.1.7, no functor can.¹³

00DQ 4.3.2 The Left Internal Hom of Pointed Sets

Let (X, x_0) and (Y, y_0) be pointed sets.

OODR Definition 4.3.2.1.1. The left internal Hom of pointed sets is the functor

$$[-,-]_{\mathsf{Sets}_*}^{\lhd} \colon \mathsf{Sets}_*^{\mathsf{op}} \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

¹³The functor $\mathsf{Sets}_*(X,-)$ is instead right adjoint to $X \land -$, the smash product of pointed sets of Definition 4.5.1.1.1. See Item 2 of Proposition 4.5.1.1.9.

defined as the composition

$$\mathsf{Sets}^{\mathsf{op}}_* \times \mathsf{Sets}_* \xrightarrow{\overline{\bowtie} \times \mathsf{id}} \mathsf{Sets}^{\mathsf{op}} \times \mathsf{Sets}_* \xrightarrow{\pitchfork} \mathsf{Sets}_*,$$

where:

- \overline{a} : Sets* \rightarrow Sets is the forgetful functor from pointed sets to sets.
- \pitchfork : Sets^{op} \times Sets_{*} \to Sets_{*} is the cotensor functor of Item 1 of Proposition 4.2.2.1.4.

Proof. For a proof that $[-,-]_{\mathsf{Sets}_*}^{\lhd}$ is indeed the left internal Hom of Sets_* with respect to the left tensor product of pointed sets, see Item 2 of Proposition 4.3.1.1.7.

QUDS Remark 4.3.2.1.2. The left internal Hom of pointed sets satisfies the following universal property:

$$\mathsf{Sets}_*(X \lhd Y, Z) \cong \mathsf{Sets}_* \Big(X, [Y, Z]^{\lhd}_{\mathsf{Sets}_*} \Big)$$

That is to say, the following data are in bijection:

- 1. Pointed maps $f: X \triangleleft Y \rightarrow Z$.
- 2. Pointed maps $f: X \to [Y, Z]_{\mathsf{Sets}_*}^{\lhd}$.
- **QUDT** Remark 4.3.2.1.3. In detail, the left internal Hom of (X, x_0) and (Y, y_0) is the pointed set $([X, Y]_{\mathsf{Sets}_*}^{\lhd}, [(y_0)_{x \in X}])$ consisting of
 - The Underlying Set. The set $[X,Y]_{\mathsf{Sets}_*}^{\lhd}$ defined by

$$\begin{split} [X,Y]^{\lhd}_{\mathsf{Sets}_*} &\stackrel{\text{def}}{=} |X| \pitchfork Y \\ &\cong \bigwedge_{x \in X} (Y,y_0), \end{split}$$

where |X| denotes the underlying set of (X, x_0) ;

- The Underlying Basepoint. The point $[(y_0)_{x\in X}]$ of $\bigwedge_{x\in X}(Y,y_0)$.
- **OODU** Proposition 4.3.2.1.4. Let (X, x_0) and (Y, y_0) be pointed sets.
- 00DV 1. Functoriality. The assignments $X,Y,(X,Y)\mapsto [X,Y]_{\mathsf{Sets}_*}^{\lhd}$ define functors

$$\begin{split} [X,-]_{\mathsf{Sets}_*}^{\lhd} \colon \mathsf{Sets}_* \to \mathsf{Sets}_*, \\ [-,Y]_{\mathsf{Sets}_*}^{\lhd} \colon \mathsf{Sets}_*^{\mathsf{op}} \to \mathsf{Sets}_*, \\ [-_1,-_2]_{\mathsf{Sets}_*}^{\lhd} \colon \mathsf{Sets}_*^{\mathsf{pp}} \times \mathsf{Sets}_* \to \mathsf{Sets}_*. \end{split}$$

In particular, given pointed maps

$$f: (X, x_0) \to (A, a_0),$$

 $g: (Y, y_0) \to (B, b_0),$

the induced map

$$[f,g]^{\triangleleft}_{\mathsf{Sets}_*} \colon [A,Y]^{\triangleleft}_{\mathsf{Sets}_*} \to [X,B]^{\triangleleft}_{\mathsf{Sets}_*}$$

is given by

$$[f,g]_{\mathsf{Sets}_*}^{\triangleleft} ([(y_a)_{a \in A}]) \stackrel{\text{def}}{=} [(g(y_{f(x)}))_{x \in X}]$$

for each $[(y_a)_{a\in A}] \in [A,Y]^{\triangleleft}_{\mathsf{Sets}_*}$.

00DW 2. Adjointness I. We have an adjunction

$$\left(- \lhd Y \dashv [Y,-]_{\mathsf{Sets}_*}^{\lhd}\right) \colon \quad \mathsf{Sets}_* \underbrace{\bot}_{[Y,-]_{\mathsf{Sets}_*}^{\lhd}} \mathsf{Sets}_*,$$

witnessed by a bijection of sets

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \triangleleft Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, [Y, Z]_{\mathsf{Sets}_*}^{\triangleleft})$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$

00DX 3. Adjointness II. The functor

$$X \lhd -: \mathsf{Sets}_* \to \mathsf{Sets}_*$$

does not admit a right adjoint.

Proof. Item 1, Functoriality: Clear.

Item 2, *Adjointness I*: This is a repetition of Item 2 of Proposition 4.3.1.1.7, and is proved there.

Item 3, Adjointness II: This is a repetition of Item 3 of Proposition 4.3.1.1.7, and is proved there.

00DY 4.3.3 The Left Skew Unit

OODZ Definition 4.3.3.1.1. The left skew unit of the left tensor product of pointed sets is the functor

$$\mathbb{1}^{\mathsf{Sets}_*, \lhd} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

defined by

$$\mathbb{1}^{\lhd}_{\mathsf{Sets}_*} \stackrel{\scriptscriptstyle \mathrm{def}}{=} S^0.$$

00E0 4.3.4 The Left Skew Associator

OOE1 Definition 4.3.4.1.1. The skew associator of the left tensor product of pointed sets is the natural transformation

$$\alpha^{\mathsf{Sets}_*,\lhd} \colon \lhd \circ (\lhd \times \mathrm{id}_{\mathsf{Sets}_*}) \Longrightarrow \lhd \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \lhd) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Sets}_*,\mathsf{Sets}_*,\mathsf{Sets}_*}$$

as in the diagram

whose component

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\lhd} \colon (X \lhd Y) \lhd Z \to X \lhd (Y \lhd Z)$$
at $(X,x_0), (Y,y_0), (Z,z_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$ is given by
$$(X \lhd Y) \lhd Z \stackrel{\mathrm{def}}{=} |Z| \odot (X \lhd Y)$$

$$\stackrel{\mathrm{def}}{=} |Z| \odot (|Y| \odot X)$$

$$\cong \bigvee_{z \in Z} |Y| \odot X$$

$$\cong \bigvee_{z \in Z} (\bigvee_{y \in Y} X)$$

$$\to \bigvee_{[(z,y)] \in \bigvee_{z \in Z} Y} X$$

$$\cong \bigvee_{z \in Z} X$$

$$= \bigvee_{[(z,y)] \in |Z| \odot Y} X$$

$$\cong ||Z| \odot Y| \odot X$$

$$\stackrel{\text{def}}{=} |Y \lhd Z| \odot X$$

$$\stackrel{\text{def}}{=} X \lhd (Y \lhd Z),$$

where the map

$$\bigvee_{z \in Z} \left(\bigvee_{y \in Y} X \right) \to \bigvee_{(z,y) \in \bigvee_{z \in Z} Y} X$$

is given by $[(z, [(y, x)])] \mapsto [([(z, y)], x)].$

Proof. (Proven below in a bit.)

00E2 Remark 4.3.4.1.2. Unwinding the notation for elements, we have

$$[(z,[(y,x)])] \stackrel{\text{def}}{=} [(z,x \lhd y)]$$
$$\stackrel{\text{def}}{=} (x \lhd y) \lhd z$$

and

$$[([(z,y)],x)] \stackrel{\text{def}}{=} [(y \lhd z,x)]$$

$$\stackrel{\text{def}}{=} x \lhd (y \lhd z).$$

So, in other words, $\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\lhd}$ acts on elements via

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\lhd}((x\lhd y)\lhd z)\stackrel{\scriptscriptstyle{\mathrm{def}}}{=} x\lhd(y\lhd z)$$

for each $(x \triangleleft y) \triangleleft z \in (X \triangleleft Y) \triangleleft Z$.

QUE3 Remark 4.3.4.1.3. Taking $y = y_0$, we see that the morphism $\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\triangleleft}$ acts on elements as

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\lhd}((x \lhd y_0) \lhd z) \stackrel{\text{def}}{=} x \lhd (y_0 \lhd z).$$

However, by the definition of \triangleleft , we have $y_0 \triangleleft z = y_0 \triangleleft z'$ for all $z, z' \in Z$, preventing $\alpha_{X,Y,Z}^{\mathsf{Sets}_*, \triangleleft}$ from being non-invertible.

Proof. Firstly, note that, given $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$, the map

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\lhd} \colon (X \lhd Y) \lhd Z \to X \lhd (Y \lhd Z)$$

is indeed a morphism of pointed sets, as we have

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\lhd}((x_0\lhd y_0)\lhd z_0)=x_0\lhd (y_0\lhd z_0).$$

Next, we claim that $\alpha^{\mathsf{Sets}_*, \lhd}$ is a natural transformation. We need to show that, given morphisms of pointed sets

$$f: (X, x_0) \to (X', x'_0),$$

 $g: (Y, y_0) \to (Y', y'_0),$
 $h: (Z, z_0) \to (Z', z'_0)$

the diagram

$$\begin{array}{c|c} (X \lhd Y) \lhd Z \xrightarrow{(f \lhd g) \lhd h} (X' \lhd Y') \lhd Z' \\ \\ \alpha_{X,Y,Z}^{\mathsf{Sets}_*, \lhd} & & & & \\ \alpha_{X',Y',Z'}^{\mathsf{Sets}_*, \lhd} \\ X \lhd (Y \lhd Z) \xrightarrow{f \lhd (g \lhd h)} X' \lhd (Y' \lhd Z') \end{array}$$

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\alpha^{\mathsf{Sets}_*, \lhd}$ to be a natural transformation. This finishes the proof.

00E4 4.3.5 The Left Skew Left Unitor

OOE5 Definition 4.3.5.1.1. The skew left unitor of the left tensor product of pointed sets is the natural transformation

whose component

$$\lambda_X^{\mathsf{Sets}_*,\lhd} \colon S^0 \lhd X \to X$$

at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by the composition

$$S^{0} \triangleleft X \cong |X| \odot S^{0}$$
$$\cong \bigvee_{x \in X} S^{0}$$
$$\rightarrow X,$$

where $\bigvee_{x \in X} S^0 \to X$ is the map given by

$$[(x,0)] \mapsto x_0,$$
$$[(x,1)] \mapsto x.$$

Proof. (Proven below in a bit.)

00E6 Remark 4.3.5.1.2. In other words, $\lambda_X^{\mathsf{Sets}_*,\lhd}$ acts on elements as

$$\begin{split} \lambda_X^{\mathsf{Sets}_*,\lhd}(0\lhd x) &\stackrel{\scriptscriptstyle\rm def}{=} x_0,\\ \lambda_X^{\mathsf{Sets}_*,\lhd}(1\lhd x) &\stackrel{\scriptscriptstyle\rm def}{=} x \end{split}$$

for each $1 \triangleleft x \in S^0 \triangleleft X$.

00E7 Remark 4.3.5.1.3. The morphism $\lambda_X^{\mathsf{Sets}_*, \lhd}$ is almost invertible, with its would-be-inverse

$$\phi_X \colon X \to S^0 \lhd X$$

given by

$$\phi_X(x) \stackrel{\text{def}}{=} 1 \lhd x$$

for each $x \in X$. Indeed, we have

$$\begin{split} \left[\lambda_X^{\mathsf{Sets}_*,\lhd} \circ \phi\right] (x) &= \lambda_X^{\mathsf{Sets}_*,\lhd} (\phi(x)) \\ &= \lambda_X^{\mathsf{Sets}_*,\lhd} (1 \lhd x) \\ &= x \\ &= [\mathrm{id}_X] (x) \end{split}$$

so that

$$\lambda_X^{\mathsf{Sets}_*,\lhd} \circ \phi = \mathrm{id}_X$$

and

$$\begin{split} \left[\phi \circ \lambda_X^{\mathsf{Sets}_*, \lhd}\right] &(1 \lhd x) = \phi \Big(\lambda_X^{\mathsf{Sets}_*, \lhd} (1 \lhd x)\Big) \\ &= \phi(x) \\ &= 1 \lhd x \\ &= [\mathrm{id}_{S^0 \lhd X}] &(1 \lhd x), \end{split}$$

but

$$\begin{split} \Big[\phi \circ \lambda_X^{\mathsf{Sets}_*, \lhd}\Big](0 \lhd x) &= \phi\Big(\lambda_X^{\mathsf{Sets}_*, \lhd}(0 \lhd x)\Big) \\ &= \phi(x_0) \\ &= 1 \lhd x_0, \end{split}$$

where $0 \triangleleft x \neq 1 \triangleleft x_0$. Thus

$$\phi \circ \lambda_X^{\mathsf{Sets}_*, \lhd} \stackrel{?}{=} \mathrm{id}_{S^0 \lhd X}$$

holds for all elements in $S^0 \triangleleft X$ except one.

Proof. Firstly, note that, given $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$, the map

$$\lambda_X^{\mathsf{Sets}_*,\lhd} \colon S^0 \lhd X \to X$$

is indeed a morphism of pointed sets, as we have

$$\lambda_X^{\mathsf{Sets}_*, \lhd}(0 \lhd x_0) = x_0.$$

Next, we claim that $\lambda^{\mathsf{Sets}_*, \lhd}$ is a natural transformation. We need to show that, given a morphism of pointed sets

$$f: (X, x_0) \to (Y, y_0),$$

the diagram

$$S^0 \lhd X \xrightarrow{\operatorname{id}_{S^0} \lhd f} S^0 \lhd Y$$

$$\lambda_X^{\operatorname{Sets}_*, \lhd} \qquad \qquad \downarrow \lambda_Y^{\operatorname{Sets}_*, \lhd}$$

$$X \xrightarrow{\qquad \qquad f} Y$$

commutes. Indeed, this diagram acts on elements as

and

$$\begin{array}{ccc}
1 \lhd x & \longmapsto & 1 \lhd f(x) \\
\downarrow & & \downarrow \\
x & \longmapsto & f(x)
\end{array}$$

and hence indeed commutes, showing $\lambda^{\mathsf{Sets}_*, \triangleleft}$ to be a natural transformation. This finishes the proof.

00E8 4.3.6 The Left Skew Right Unitor

00E9 Definition 4.3.6.1.1. The skew right unitor of the left tensor product of pointed sets is the natural transformation

whose component

$$\rho_X^{\mathsf{Sets}_*,\lhd} \colon X \to X \lhd S^0$$

at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by the composition

$$X \to X \lor X$$
$$\cong |S^0| \odot X$$
$$\cong X \lhd S^0.$$

where $X \to X \vee X$ is the map sending X to the second factor of X in $X \vee X$.

Proof. (Proven below in a bit.) \Box

00EA Remark 4.3.6.1.2. In other words, $\rho_X^{\mathsf{Sets}_*, \triangleleft}$ acts on elements as

$$\rho_X^{\mathsf{Sets}_*, \lhd}(x) \stackrel{\text{def}}{=} [(1, x)]$$

i.e. by

$$\rho_X^{\mathsf{Sets}_*,\lhd}(x) \stackrel{\scriptscriptstyle \mathrm{def}}{=} x \lhd 1$$

for each $x \in X$.

QOEB Remark 4.3.6.1.3. The morphism $\rho_X^{\mathsf{Sets}_*, \lhd}$ is non-invertible, as it is non-surjective when viewed as a map of sets, since the elements $x \lhd 0$ of $X \lhd S^0$ with $x \neq x_0$ are outside the image of $\rho_X^{\mathsf{Sets}_*, \lhd}$, which sends x to $x \lhd 1$.

Proof. Firstly, note that, given $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$, the map

$$\rho_X^{\mathsf{Sets}_*,\lhd} \colon X \to X \lhd S^0$$

is indeed a morphism of pointed sets as we have

$$\begin{array}{l} \rho_X^{\mathsf{Sets}_*,\lhd}(x_0) = x_0 \lhd 1 \\ = x_0 \lhd 0 \end{array}$$

Next, we claim that $\rho^{\mathsf{Sets}_*, \lhd}$ is a natural transformation. We need to show that, given a morphism of pointed sets

$$f: (X, x_0) \to (Y, y_0),$$

the diagram

$$X \xrightarrow{f} Y$$

$$\rho_X^{\mathsf{Sets}_*, \lhd} \downarrow \qquad \qquad \downarrow^{\rho_Y^{\mathsf{Sets}_*, \lhd}}$$

$$X \lhd S^0 \xrightarrow{f \lhd \mathrm{id}_{S^0}} Y \lhd S^0$$

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
x & \longmapsto & f(x) \\
\downarrow & & \downarrow \\
x < 0 & \longmapsto & f(x) < 0
\end{array}$$

and hence indeed commutes, showing $\rho^{\mathsf{Sets}_*,\lhd}$ to be a natural transformation. This finishes the proof.

00EC 4.3.7 The Diagonal

00ED Definition 4.3.7.1.1. The diagonal of the left tensor product of pointed sets is the natural transformation

whose component

$$\Delta_X^{\triangleleft} \colon (X, x_0) \to (X \triangleleft X, x_0 \triangleleft x_0)$$

at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by

$$\Delta_X^{\triangleleft}(x) \stackrel{\text{def}}{=} x \triangleleft x$$

for each $x \in X$.

Proof. Being a Morphism of Pointed Sets: We have

$$\Delta_X^{\triangleleft}(x_0) \stackrel{\text{def}}{=} x_0 \triangleleft x_0,$$

and thus Δ_X^{\lhd} is a morphism of pointed sets.

Naturality: We need to show that, given a morphism of pointed sets

$$f: (X, x_0) \to (Y, y_0),$$

the diagram

$$X \xrightarrow{f} Y$$

$$\Delta_X^{\triangleleft} \downarrow \qquad \qquad \downarrow \Delta_Y^{\triangleleft}$$

$$X \triangleleft X \xrightarrow{f \triangleleft f} Y \triangleleft Y$$

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
x & \longrightarrow & f(x) \\
\downarrow & & \downarrow \\
x \vartriangleleft x & \longmapsto & f(x) \vartriangleleft f(x)
\end{array}$$

and hence indeed commutes, showing Δ^{\triangleleft} to be natural.

4.3.8 The Left Skew Monoidal Structure on Pointed Sets Associated to \lhd

- **OOEF Proposition 4.3.8.1.1.** The category Sets* admits a left-closed left skew monoidal category structure consisting of
 - The Underlying Category. The category Sets* of pointed sets;
 - The Left Skew Monoidal Product. The left tensor product functor

$$\lhd : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

of Definition 4.3.1.1.1;

• The Left Internal Skew Hom. The left internal Hom functor

$$[-,-]_{\mathsf{Sets}_*}^{\lhd} : \mathsf{Sets}_*^{\mathsf{op}} \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

of Definition 4.3.2.1.1;

• The Left Skew Monoidal Unit. The functor

$$\mathbb{1}^{\mathsf{Sets}_*,\lhd} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

of Definition 4.3.3.1.1;

• The Left Skew Associators. The natural transformation

$$\alpha^{\mathsf{Sets}_*, \lhd} \colon \lhd \circ (\lhd \times \mathrm{id}_{\mathsf{Sets}_*}) \Longrightarrow \lhd \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \lhd) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Sets}_*, \mathsf{Sets}_*, \mathsf{Sets}_*}$$
 of Definition 4.3.4.1.1;

$$\lambda^{\mathsf{Sets}_*, \lhd} \colon \lhd \circ \left(\mathbb{1}^{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*} \right) \stackrel{\sim}{\Longrightarrow} \pmb{\lambda}^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}$$

of Definition 4.3.5.1.1;

• The Left Skew Right Unitors. The natural transformation

$$\rho^{\mathsf{Sets}_*, \lhd} \colon \rho^{\mathsf{Cats}_2}_{\mathsf{Sets}_*} \stackrel{\sim}{\Longrightarrow} \lhd \circ \left(\mathsf{id} \times \mathbb{1}^{\mathsf{Sets}_*}\right)$$

of Definition 4.3.6.1.1.

Proof. The Pentagon Identity: Let (W, w_0) , (X, x_0) , (Y, y_0) and (Z, z_0)

be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the pentagon identity is satisfied. The Left Skew Left Triangle Identity: Let (X, x_0) and (Y, y_0) be pointed sets. We have to show that the diagram

$$(S^0 \lhd X) \lhd Y \xrightarrow{\alpha_{S^0,X,Y}^{\mathsf{Sets}_*,\lhd}} S^0 \lhd (X \lhd Y)$$

$$\lambda_X^{\mathsf{Sets}_*,\lhd}_{X} \lhd \mathrm{id}_Y \qquad \qquad \lambda_{X \lhd Y}^{\mathsf{Sets}_*,\lhd}$$

$$X \lhd Y$$

commutes. Indeed, this diagram acts on elements as

and

and hence indeed commutes. Thus the left skew triangle identity is satisfied.

The Left Skew Right Triangle Identity: Let (X, x_0) and (Y, y_0) be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes. Thus the right skew triangle identity is satisfied.

The Left Skew Middle Triangle Identity: Let (X, x_0) and (Y, y_0) be pointed sets. We have to show that the diagram

$$X \lhd Y = X \lhd Y$$

$$\rho_X^{\mathsf{Sets}_*, \lhd} \lhd \mathrm{id}_Y \downarrow \qquad \qquad \uparrow_{\mathrm{id}_A \lhd \lambda_Y^{\mathsf{Sets}_*, \lhd}} \\ (X \lhd S^0) \lhd Y \xrightarrow[X, S^0, Y]{} X \lhd (S^0 \lhd Y)$$

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes. Thus the right skew triangle identity is satisfied.

The Zig-Zag Identity: We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and

$$1 \longmapsto 1 \triangleleft 1$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

and hence indeed commutes. Thus the zig-zag identity is satisfied. Left Skew Monoidal Left-Closedness: This follows from Item 2 of Proposition 4.3.1.1.7.

4.3.9 Monoids With Respect to the Left Tensor Product of Pointed Sets

Proposition 4.3.9.1.1. The category of monoids on $(\mathsf{Sets}_*, \lhd, S^0)$ is isomorphic to the category of "monoids with left zero"¹⁴ and morphisms between them.

$$0_A a = 0_A$$

 $^{^{14}}$ A monoid with left zero is defined similarly as the monoids with zero of ??. Succinctly, they are monoids (A, μ_A, η_A) with a special element 0_A satisfying

Proof. Monoids on (Sets*, \triangleleft , S^0): A monoid on (Sets*, \triangleleft , S^0) consists of:

- The Underlying Object. A pointed set $(A, 0_A)$.
- The Multiplication Morphism. A morphism of pointed sets

$$\mu_A \colon A \lhd A \to A$$

determining a left bilinear morphism of pointed sets

$$A \times A \longrightarrow A$$
$$(a,b) \longmapsto ab.$$

• The Unit Morphism. A morphism of pointed sets

$$\eta_A \colon S^0 \to A$$

picking an element 1_A of A.

satisfying the following conditions:

1. Associativity. The diagram

2. Left Unitality. The diagram

$$S^0 \lhd A \xrightarrow{\eta_A \times \mathrm{id}_A} A \lhd A$$

$$\downarrow^{\mu_A}$$

$$\downarrow^{\lambda_A^{\mathsf{Sets}_*, \lhd}}$$

commutes.

3. Right Unitality. The diagram

$$A \xrightarrow{\rho_A^{\mathsf{Sets}_*, \lhd}} A \lhd S^0$$

$$\parallel \qquad \qquad \downarrow^{\mathrm{id}_A \times \eta_A}$$

$$A \leftarrow_{H_A} A \lhd A$$

commutes.

Being a left-bilinear morphism of pointed sets, the multiplication map satisfies

$$0_A a = 0_A$$

for each $a \in A$. Now, the associativity, left unitality, and right unitality conditions act on elements as follows:

1. Associativity. The associativity condition acts as

This gives

$$(ab)c = a(bc)$$

for each $a, b, c \in A$.

- 2. Left Unitality. The left unitality condition acts:
 - (a) On $0 \triangleleft a$ as

(b) On $1 \triangleleft a$ as

This gives

$$1_A a = a,$$
$$0_A a = 0_A$$

for each $a \in A$.

3. Right Unitality. The right unitality condition acts as

This gives

$$a1_A = a$$

for each $a \in A$.

Thus we see that monoids with respect to \lhd are exactly monoids with left zero.

Morphisms of Monoids on (Sets_{*}, \triangleleft , S^0): A morphism of monoids on (Sets_{*}, \triangleleft , S^0) from $(A, \mu_A, \eta_A, 0_A)$ to $(B, \mu_B, \eta_B, 0_B)$ is a morphism of pointed sets

$$f: (A, 0_A) \rightarrow (B, 0_B)$$

satisfying the following conditions:

1. Compatibility With the Multiplication Morphisms. The diagram

$$\begin{array}{ccc}
A \lhd A & \xrightarrow{f \lhd f} & B \lhd B \\
\downarrow^{\mu_A} & & \downarrow^{\mu_B} \\
A & \xrightarrow{f} & B
\end{array}$$

commutes.

2. Compatibility With the Unit Morphisms. The diagram

commutes.

These act on elements as

giving

$$f(ab) = f(a)f(b),$$

$$f(0_A) = 0_B,$$

$$f(1_A) = 1_B,$$

for each $a, b \in A$, which is exactly a morphism of monoids with left zero. *Identities and Composition*: Similarly, the identities and composition of $\mathsf{Mon}(\mathsf{Sets}_*, \lhd, S^0)$ can be easily seen to agree with those of monoids with left zero, which finishes the proof.

00EJ 4.4 The Right Tensor Product of Pointed Sets

00EK 4.4.1 Foundations

Let (X, x_0) and (Y, y_0) be pointed sets.

00EL Definition 4.4.1.1.1. The right tensor product of pointed sets is the functor 15

$$\rhd \colon \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

defined as the composition

$$\mathsf{Sets}_* \times \mathsf{Sets}_* \xrightarrow{\overline{\Leftrightarrow} \times \mathsf{id}} \mathsf{Sets} \times \mathsf{Sets}_* \xrightarrow{\odot} \mathsf{Sets}_*,$$

where:

¹⁵ Further Notation: Also written ⊳_{Sets*}.

- \overline{a} : Sets* \rightarrow Sets is the forgetful functor from pointed sets to sets.
- \odot : Sets \times Sets $_* \to$ Sets $_*$ is the tensor functor of Item 1 of Proposition 4.2.1.1.6.
- **OOEM Remark 4.4.1.1.2.** The right tensor product of pointed sets satisfies the following natural bijection:

$$\mathsf{Sets}_*(X \rhd Y, Z) \cong \mathsf{Hom}_{\mathsf{Sets}_*}^{\otimes, \mathsf{R}}(X \times Y, Z).$$

That is to say, the following data are in natural bijection:

- 1. Pointed maps $f \colon X \rhd Y \to Z$.
- 2. Maps of sets $f: X \times Y \to Z$ satisfying $f(x, y_0) = z_0$ for each $x \in X$.
- **OOEN** Remark 4.4.1.1.3. The right tensor product of pointed sets may be described as follows:
 - The right tensor product of (X, x_0) and (Y, y_0) is the pair $((X \triangleright Y, x_0 \triangleright y_0), \iota)$ consisting of
 - A pointed set $(X \triangleright Y, x_0 \triangleright y_0)$;
 - A right bilinear morphism of pointed sets $\iota: (X \times Y, (x_0, y_0)) \to X \rhd Y;$

satisfying the following universal property:

- (UP) Given another such pair $((Z, z_0), f)$ consisting of
 - * A pointed set (Z, z_0) ;
 - * A right bilinear morphism of pointed sets $f: (X \times Y, (x_0, y_0)) \to X \triangleright Y$:

there exists a unique morphism of pointed sets $X \triangleright Y \xrightarrow{\exists !} Z$ making the diagram

commute.

Construction 4.4.1.1.4. In detail, the **right tensor product of** (X, x_0) **and** (Y, y_0) is the pointed set $(X \triangleright Y, [y_0])$ consisting of:

• The Underlying Set. The set $X \triangleright Y$ defined by

$$\begin{split} X\rhd Y &\stackrel{\text{\tiny def}}{=} |X|\odot Y\\ &\cong \bigvee_{x\in X} (Y,y_0), \end{split}$$

where |X| denotes the underlying set of (X, x_0) .

- The Underlying Basepoint. The point $[(x_0, y_0)]$ of $\bigvee_{x \in X} (Y, y_0)$, which is equal to $[(x, y_0)]$ for any $x \in X$.
- **OOEQ** Notation 4.4.1.1.5. We write 16 x > y for the element [(x,y)] of

$$X \rhd Y \cong |X| \odot Y$$
.

OOER Remark 4.4.1.1.6. Employing the notation introduced in Notation 4.4.1.1.5, we have

$$x_0 \triangleright y_0 = x \triangleright y_0$$

for each $x \in X$, and

$$x \triangleright y_0 = x' \triangleright y_0$$

for each $x, x' \in X$.

- **QUES** Proposition 4.4.1.1.7. Let (X, x_0) and (Y, y_0) be pointed sets.
- 00ET 1. Functoriality. The assignments $X,Y,(X,Y)\mapsto X\rhd Y$ define functors

$$\begin{split} X \rhd -\colon \mathsf{Sets}_* \to \mathsf{Sets}_*, \\ - \rhd Y \colon \mathsf{Sets}_* \to \mathsf{Sets}_*, \\ -_1 \rhd -_2 \colon \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*. \end{split}$$

In particular, given pointed maps

$$f: (X, x_0) \to (A, a_0),$$

 $g: (Y, y_0) \to (B, b_0),$

the induced map

$$f \rhd q \colon X \rhd Y \to A \rhd B$$

is given by

$$[f\rhd g](x\rhd y)\stackrel{\mathrm{def}}{=} f(x)\rhd g(y)$$

for each $x \triangleright y \in X \triangleright Y$.

¹⁶ Further Notation: Also written $x \rhd_{\mathsf{Sets}_*} y$.

00EU 2. Adjointness I. We have an adjunction

$$\Big(X \rhd - \dashv [X,-]^{\rhd}_{\mathsf{Sets}_*}\Big) \colon \quad \mathsf{Sets}_* \underbrace{\bot}_{[X,-]^{\rhd}_{\mathsf{Sets}_*}} \mathsf{Sets}_*,$$

witnessed by a bijection of sets

$$\mathrm{Hom}_{\mathsf{Sets}_*}(X\rhd Y,Z)\cong \mathrm{Hom}_{\mathsf{Sets}_*}\Big(Y,[X,Z]^{\rhd}_{\mathsf{Sets}_*}\Big)$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$, where $[X, Y]^{\triangleright}_{\mathsf{Sets}_*}$ is the pointed set of Definition 4.4.2.1.1.

00EV 3. Adjointness II. The functor

$$- \triangleright Y : \mathsf{Sets}_* \to \mathsf{Sets}_*$$

does not admit a right adjoint.

00EW 4. Adjointness III. We have a bijection of sets

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \rhd Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}}(|X|, \mathsf{Sets}_*(Y, Z))$$

natural in
$$(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*).$$

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness I: This follows from Item 3 of Proposition 4.2.1.1.6. Item 3, Adjointness II: For $- \triangleright Y$ to admit a right adjoint would require it to preserve colimits by ?? of ??. However, we have

$$\begin{split} \operatorname{pt}\rhd X &\stackrel{\text{def}}{=} |\operatorname{pt}|\odot X \\ &\cong X \\ &\ncong \operatorname{pt}, \end{split}$$

and thus we see that $- \triangleright Y$ does not have a right adjoint. *Item 4*, *Adjointness III*: This follows from Item 2 of Proposition 4.2.1.1.6.

00EX Remark 4.4.1.1.8. Here is some intuition on why $- \triangleright Y$ fails to be a left adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural bijection

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \rhd Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}}(|X|, \mathsf{Sets}_*(Y, Z)),$$

so it would be reasonable to wonder whether a natural bijection of the form

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \rhd Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, \mathsf{Sets}_*(Y, Z)),$$

also holds, which would give $- \triangleright Y \dashv \mathbf{Sets}_*(Y, -)$. However, such a bijection would require every map

$$f: X \rhd Y \to Z$$

to satisfy

$$f(x_0 \rhd y) = z_0$$

for each $x \in X$, whereas we are imposing such a basepoint preservation condition only for elements of the form $x \triangleright y_0$. Thus $\mathbf{Sets}_*(Y, -)$ can't be a right adjoint for $-\triangleright Y$, and as shown by Item 3 of Proposition 4.4.1.1.7, no functor can.¹⁷

00EY 4.4.2 The Right Internal Hom of Pointed Sets

Let (X, x_0) and (Y, y_0) be pointed sets.

OOEZ Definition 4.4.2.1.1. The right internal Hom of pointed sets is the functor

$$[-,-]^{\triangleright}_{\mathsf{Sets}_*} : \mathsf{Sets}^{\mathsf{op}}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

defined as the composition

$$\mathsf{Sets}^{\mathsf{op}}_* \times \mathsf{Sets}_* \xrightarrow{\overline{k} \times \mathsf{id}} \mathsf{Sets}^{\mathsf{op}} \times \mathsf{Sets}_* \xrightarrow{\mathsf{h}} \mathsf{Sets}_*,$$

where:

- $\overline{\Sigma}$: Sets_{*} \rightarrow Sets is the forgetful functor from pointed sets to sets.
- \pitchfork : Sets^{op} \times Sets_{*} \to Sets_{*} is the cotensor functor of Item 1 of Proposition 4.2.2.1.4.

Proof. For a proof that $[-,-]_{\mathsf{Sets}_*}^{\triangleright}$ is indeed the right internal Hom of Sets_* with respect to the right tensor product of pointed sets, see Item 2 of Proposition 4.4.1.1.7.

00F0 Remark **4.4.2.1.2.** We have

$$[-,-]_{\mathsf{Sets}_*}^{\lhd} = [-,-]_{\mathsf{Sets}_*}^{\rhd}.$$

00F1 Remark 4.4.2.1.3. The right internal Hom of pointed sets satisfies the following universal property:

$$\mathsf{Sets}_*(X\rhd Y,Z)\cong\mathsf{Sets}_*\Big(Y,[X,Z]^{\rhd}_{\mathsf{Sets}_*}\Big)$$

That is to say, the following data are in bijection:

¹⁷The functor **Sets**_{*}(Y, -) is instead right adjoint to $- \wedge Y$, the smash product of

- 1. Pointed maps $f: X \triangleright Y \rightarrow Z$.
- 2. Pointed maps $f: Y \to [X, Z]^{\triangleright}_{\mathsf{Sets}_*}$.
- 00F2 Remark 4.4.2.1.4. In detail, the right internal Hom of (X, x_0) and (Y, y_0) is the pointed set $([X, Y]_{\mathsf{Sets}_*}^{\triangleright}, [(y_0)_{x \in X}])$ consisting of
 - The Underlying Set. The set $[X,Y]^{\triangleright}_{\mathsf{Sets}_*}$ defined by

$$\begin{split} [X,Y]^{\rhd}_{\mathsf{Sets}_*} &\stackrel{\text{\tiny def}}{=} |X| \pitchfork Y \\ &\cong \bigwedge_{x \in X} (Y,y_0), \end{split}$$

where |X| denotes the underlying set of (X, x_0) ;

- The Underlying Basepoint. The point $[(y_0)_{x\in X}]$ of $\bigwedge_{x\in X}(Y,y_0)$.
- **OOF3** Proposition 4.4.2.1.5. Let (X, x_0) and (Y, y_0) be pointed sets.
- 00F4 1. Functoriality. The assignments $X, Y, (X, Y) \mapsto [X, Y]^{\triangleright}_{\mathsf{Sets}_*}$ define functors

$$\begin{split} [X,-]^{\rhd}_{\mathsf{Sets}_*} \colon \mathsf{Sets}_* \to \mathsf{Sets}_*, \\ [-,Y]^{\rhd}_{\mathsf{Sets}_*} \colon \mathsf{Sets}^{\mathsf{op}}_* \to \mathsf{Sets}_*, \\ [-_1,-_2]^{\rhd}_{\mathsf{Sets}_*} \colon \mathsf{Sets}^{\mathsf{pp}}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*. \end{split}$$

In particular, given pointed maps

$$f: (X, x_0) \to (A, a_0),$$

 $g: (Y, y_0) \to (B, b_0),$

the induced map

$$[f,g]^{\rhd}_{\mathsf{Sets}_*} \colon [A,Y]^{\rhd}_{\mathsf{Sets}_*} \to [X,B]^{\rhd}_{\mathsf{Sets}_*}$$

is given by

$$[f,g]_{\mathsf{Sets}_*}^{\triangleright}([(y_a)_{a\in A}]) \stackrel{\mathrm{def}}{=} [(g(y_{f(x)}))_{x\in X}]$$

for each $[(y_a)_{a\in A}] \in [A,Y]^{\triangleright}_{\mathsf{Sets}_*}$.

00F5 2. Adjointness I. We have an adjunction

$$\Big(X \rhd - \dashv [X, -]_{\mathsf{Sets}_*}^{\rhd}\Big) \colon \quad \mathsf{Sets}_* \underbrace{\bot}_{[X, -]_{\mathsf{Sets}_*}^{\rhd}} \mathsf{Sets}_*,$$

witnessed by a bijection of sets

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \rhd Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*} \Big(Y, [X, Z]^{\rhd}_{\mathsf{Sets}_*}\Big)$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$, where $[X, Y]^{\triangleright}_{\mathsf{Sets}_*}$ is the pointed set of Definition 4.4.2.1.1.

00F6 3. Adjointness II. The functor

$$- \rhd Y \colon \mathsf{Sets}_* \to \mathsf{Sets}_*$$

does not admit a right adjoint.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness I: This is a repetition of *Item 2* of *Proposition 4.4.1.1.7*, and is proved there.

Item 3, Adjointness II: This is a repetition of Item 3 of Proposition 4.4.1.1.7, and is proved there.

00F7 4.4.3 The Right Skew Unit

00F8 Definition 4.4.3.1.1. The right skew unit of the right tensor product of pointed sets is the functor

$$\mathbb{1}^{\mathsf{Sets}_*, \triangleright} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

defined by

$$\mathbb{1}^{\triangleright}_{\mathsf{Sets}_*} \stackrel{\mathrm{def}}{=} S^0.$$

00F9 4.4.4 The Right Skew Associator

00FA Definition 4.4.4.1.1. The skew associator of the right tensor product of pointed sets is the natural transformation

$$\alpha^{\mathsf{Sets}_*, \rhd} \colon \rhd \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \rhd) \Longrightarrow \rhd \circ (\rhd \times \mathrm{id}_{\mathsf{Sets}_*}) \circ \alpha^{\mathsf{Cats}, -1}_{\mathsf{Sets}_*, \mathsf{Sets}_*, \mathsf{Sets}_*}$$

as in the diagram

whose component

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\triangleright} \colon X \rhd (Y \rhd Z) \to (X \rhd Y) \rhd Z$$
at $(X,x_0), (Y,y_0), (Z,z_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$ is given by
$$X \rhd (Y \rhd Z) \stackrel{\text{def}}{=} |X| \odot (Y \rhd Z)$$

$$\stackrel{\text{def}}{=} |X| \odot (|Y| \odot Z)$$

$$\cong \bigvee_{x \in X} (|Y| \odot Z)$$

$$\cong \bigvee_{x \in X} (\bigvee_{y \in Y} Z)$$

$$\to \bigvee_{([x,y)] \in \bigvee_{x \in X} Y} Z$$

$$\stackrel{[(x,y)] \in \bigvee_{x \in X} Y}{\cong} Z$$

$$\stackrel{[(x,y)] \in |X| \odot Y}{\cong} |X| \odot Y | \odot Z$$

$$\stackrel{\text{def}}{=} |X \rhd Y| \odot Z$$

where the map

$$\bigvee_{x \in X} \left(\bigvee_{y \in Y} Z \right) \to \bigvee_{[(x,y)] \in \bigvee_{x \in X} Y} Z$$

 $\stackrel{\text{def}}{=} (X \rhd Y) \rhd Z$,

is given by $[(x, [(y, z)])] \mapsto [([(x, y)], z)].$

Proof. (Proven below in a bit.)

00FB Remark 4.4.4.1.2. Unwinding the notation for elements, we have

$$[(x,[(y,z)])] \stackrel{\text{def}}{=} [(x,y\rhd z)]$$
$$\stackrel{\text{def}}{=} x\rhd (y\rhd z)$$

and

$$[([(x,y)],z)] \stackrel{\text{def}}{=} [(x \rhd y,z)]$$
$$\stackrel{\text{def}}{=} (x \rhd y) \rhd z.$$

So, in other words, $\alpha_{X,Y,Z}^{\mathsf{Sets}_*, \triangleright}$ acts on elements via

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\rhd}(x\rhd(y\rhd z))\stackrel{\scriptscriptstyle\rm def}{=}(x\rhd y)\rhd z$$

for each $x \rhd (y \rhd z) \in X \rhd (Y \rhd Z)$.

QOFC Remark 4.4.4.1.3. Taking $y = y_0$, we see that the morphism $\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\triangleright}$ acts on elements as

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\triangleright}(x \rhd (y_0 \rhd z)) \stackrel{\text{def}}{=} (x \rhd y_0) \rhd z.$$

However, by the definition of \triangleright , we have $x \triangleright y_0 = x' \triangleright y_0$ for all $x, x' \in X$, preventing $\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\triangleright}$ from being non-invertible.

Proof. Firstly, note that, given $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$, the map

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\rhd} \colon X \rhd (Y \rhd Z) \to (X \rhd Y) \rhd Z$$

is indeed a morphism of pointed sets, as we have

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,\triangleright}(x_0 \rhd (y_0 \rhd z_0)) = (x_0 \rhd y_0) \rhd z_0.$$

Next, we claim that $\alpha^{\mathsf{Sets}_*, \triangleright}$ is a natural transformation. We need to show that, given morphisms of pointed sets

$$f: (X, x_0) \to (X', x'_0),$$

 $g: (Y, y_0) \to (Y', y'_0),$
 $h: (Z, z_0) \to (Z', z'_0)$

the diagram

commutes. Indeed, this diagram acts on elements as

$$x \rhd (y \rhd z) \longmapsto f(x) \rhd (g(y) \rhd h(z))$$

$$\downarrow \qquad \qquad \downarrow$$

$$(x \rhd y) \rhd z \longmapsto (f(x) \rhd g(y)) \rhd h(z)$$

and hence indeed commutes, showing $\alpha^{\mathsf{Sets}_*,\triangleright}$ to be a natural transformation. This finishes the proof.

00FD 4.4.5 The Right Skew Left Unitor

00FE Definition 4.4.5.1.1. The skew left unitor of the right tensor product of pointed sets is the natural transformation

whose component

$$\lambda_X^{\mathsf{Sets}_*,\rhd} \colon X \to S^0 \rhd X$$

at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by the composition

$$X \to X \lor X$$
$$\cong |S^0| \odot X$$
$$\cong S^0 \rhd X,$$

where $X \to X \vee X$ is the map sending X to the second factor of X in $X \vee X$.

Proof. (Proven below in a bit.)

00FF Remark 4.4.5.1.2. In other words, $\lambda_X^{\mathsf{Sets}_*, \triangleright}$ acts on elements as

$$\lambda_X^{\mathsf{Sets}_*, \rhd}(x) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} [(1, x)]$$

i.e. by

$$\lambda_X^{\mathsf{Sets}_*, \triangleright}(x) \stackrel{\text{def}}{=} 1 \rhd x$$

for each $x \in X$.

QOFG Remark 4.4.5.1.3. The morphism $\lambda_X^{\mathsf{Sets}_*, \triangleright}$ is non-invertible, as it is non-surjective when viewed as a map of sets, since the elements $0 \triangleright x$ of $S^0 \triangleright X$ with $x \neq x_0$ are outside the image of $\lambda_X^{\mathsf{Sets}_*, \triangleright}$, which sends x to $1 \triangleright x$.

Proof. Firstly, note that, given $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$, the map

$$\lambda_X^{\mathsf{Sets}_*, \rhd} \colon X \to S^0 \rhd X$$

is indeed a morphism of pointed sets, as we have

$$\begin{split} \lambda_X^{\mathsf{Sets}_*, \rhd}(x_0) &= 1 \rhd x_0 \\ &= 0 \rhd x_0. \end{split}$$

Next, we claim that $\lambda^{\mathsf{Sets}_*, \triangleright}$ is a natural transformation. We need to show that, given a morphism of pointed sets

$$f: (X, x_0) \to (Y, y_0),$$

the diagram

$$X \xrightarrow{f} Y \\ \lambda_X^{\mathsf{Sets}_*, \rhd} \downarrow \lambda_Y^{\mathsf{Sets}_*, \rhd} \\ S^0 \rhd X \xrightarrow{\mathrm{id}_{S^0} \rhd f} S^0 \rhd Y$$

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
x & \longrightarrow & f(x) \\
\downarrow & & \downarrow \\
1 \rhd x & \longmapsto & 1 \rhd f(x)
\end{array}$$

and hence indeed commutes, showing $\lambda^{\mathsf{Sets}_*,\triangleright}$ to be a natural transformation. This finishes the proof.

00FH 4.4.6 The Right Skew Right Unitor

00FJ Definition 4.4.6.1.1. The skew right unitor of the right tensor product of pointed sets is the natural transformation

whose component

$$\rho_X^{\mathsf{Sets}_*,\rhd} \colon X \rhd S^0 \to X$$

at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by the composition

$$X \rhd S^0 \cong |X| \odot S^0$$
$$\cong \bigvee_{x \in X} S^0$$
$$\to X,$$

where $\bigvee_{x \in X} S^0 \to X$ is the map given by

$$[(x,0)] \mapsto x_0,$$
$$[(x,1)] \mapsto x.$$

Proof. (Proven below in a bit.)

00FK Remark 4.4.6.1.2. In other words, $\rho_X^{\mathsf{Sets}_*, \triangleright}$ acts on elements as

$$\rho_X^{\mathsf{Sets}_*,\triangleright}(x \rhd 0) \stackrel{\text{def}}{=} x_0,$$
$$\rho_X^{\mathsf{Sets}_*,\triangleright}(x \rhd 1) \stackrel{\text{def}}{=} x$$

for each $x \triangleright 1 \in X \triangleright S^0$.

00FL Remark 4.4.6.1.3. The morphism $\rho_X^{\mathsf{Sets}_*, \triangleright}$ is almost invertible, with its would-be-inverse

$$\phi_X \colon X \to X \rhd S^0$$

given by

$$\phi_X(x) \stackrel{\text{\tiny def}}{=} x \rhd 1$$

for each $x \in X$. Indeed, we have

$$\begin{split} \left[\rho_X^{\mathsf{Sets}_*, \rhd} \circ \phi \right] &(x) = \rho_X^{\mathsf{Sets}_*, \rhd} (\phi(x)) \\ &= \rho_X^{\mathsf{Sets}_*, \rhd} (x \rhd 1) \\ &= x \\ &= [\mathrm{id}_X] (x) \end{split}$$

so that

$$\rho_X^{\mathsf{Sets}_*, \rhd} \circ \phi = \mathrm{id}_X$$

and

$$\begin{split} \Big[\phi \circ \rho_X^{\mathsf{Sets}_*, \rhd} \Big](x \rhd 1) &= \phi \Big(\rho_X^{\mathsf{Sets}_*, \rhd}(x \rhd 1) \Big) \\ &= \phi(x) \\ &= x \rhd 1 \\ &= [\mathrm{id}_{X \rhd S^0}](x \rhd 1), \end{split}$$

but

$$\begin{split} \Big[\phi \circ \rho_X^{\mathsf{Sets}_*, \triangleright}\Big](x \rhd 0) &= \phi\Big(\rho_X^{\mathsf{Sets}_*, \triangleright}(x \rhd 0)\Big) \\ &= \phi(x_0) \\ &= 1 \rhd x_0, \end{split}$$

where $x > 0 \neq 1 > x_0$. Thus

$$\phi \circ \rho_X^{\mathsf{Sets}_*, \triangleright} \stackrel{?}{=} \mathrm{id}_{X \triangleright S^0}$$

holds for all elements in $X \triangleright S^0$ except one.

Proof. Firstly, note that, given $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$, the map

$$\rho_X^{\mathsf{Sets}_*, \triangleright} \colon X \rhd S^0 \to X$$

is indeed a morphism of pointed sets as we have

$$\rho_X^{\mathsf{Sets}_*,\rhd}(x_0\rhd 0)=x_0.$$

Next, we claim that $\rho^{\mathsf{Sets}_*, \triangleright}$ is a natural transformation. We need to show that, given a morphism of pointed sets

$$f: (X, x_0) \to (Y, y_0),$$

the diagram

$$\begin{array}{c|c} X \rhd S^0 & \xrightarrow{f \rhd \operatorname{id}_{S^0}} Y \rhd S^0 \\ \\ \rho_X^{\operatorname{Sets}_*, \rhd} & & & \downarrow \rho_Y^{\operatorname{Sets}_*, \rhd} \\ X & \xrightarrow{f} & Y \end{array}$$

commutes. Indeed, this diagram acts on elements as

and

$$x \rhd 1 \longmapsto f(x) \rhd 1$$

$$\downarrow \qquad \qquad \downarrow$$

$$x \longmapsto f(x)$$

and hence indeed commutes, showing $\rho^{\mathsf{Sets}_*, \triangleright}$ to be a natural transformation. This finishes the proof.

00FM 4.4.7 The Diagonal

00FN Definition 4.4.7.1.1. The diagonal of the right tensor product of pointed sets is the natural transformation

whose component

$$\Delta_X^{\triangleright} : (X, x_0) \to (X \triangleright X, x_0 \triangleright x_0)$$

at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by

$$\Delta_X^{\triangleright}(x) \stackrel{\text{def}}{=} x \triangleright x$$

for each $x \in X$.

Proof. Being a Morphism of Pointed Sets: We have

$$\Delta_X^{\triangleright}(x_0) \stackrel{\text{def}}{=} x_0 \rhd x_0,$$

and thus $\Delta_X^{\triangleright}$ is a morphism of pointed sets.

Naturality: We need to show that, given a morphism of pointed sets

$$f: (X, x_0) \to (Y, y_0),$$

the diagram

$$X \xrightarrow{f} Y$$

$$\Delta_X^{\triangleright} \downarrow \qquad \qquad \downarrow \Delta_Y^{\triangleright}$$

$$X \triangleright X \xrightarrow{f \triangleright f} Y \triangleright Y$$

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
x & \longrightarrow & f(x) \\
\downarrow & & \downarrow \\
x & \triangleright x & \longmapsto & f(x) & \triangleright & f(x)
\end{array}$$

and hence indeed commutes, showing Δ^{\triangleright} to be natural.

4.4.8 The Right Skew Monoidal Structure on Pointed Sets Associated to \vartriangleright

- **OOFQ Proposition 4.4.8.1.1.** The category Sets* admits a right-closed right skew monoidal category structure consisting of
 - The Underlying Category. The category Sets* of pointed sets;
 - The Right Skew Monoidal Product. The right tensor product functor

$$\triangleright : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

of Definition 4.4.1.1.1;

• The Right Internal Skew Hom. The right internal Hom functor

$$[-,-]^{\triangleright}_{\mathsf{Sets}_*} \colon \mathsf{Sets}^{\mathsf{op}}_* \times \mathsf{Sets}_* o \mathsf{Sets}_*$$

of Definition 4.4.2.1.1;

• The Right Skew Monoidal Unit. The functor

$$\mathbb{1}^{\mathsf{Sets}_*, \rhd} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

of Definition 4.4.3.1.1;

• The Right Skew Associators. The natural transformation

$$\alpha^{\mathsf{Sets}_*, \triangleright} : \triangleright \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \triangleright) \Longrightarrow \triangleright \circ (\triangleright \times \mathrm{id}_{\mathsf{Sets}_*}) \circ \alpha^{\mathsf{Cats}, -1}_{\mathsf{Sets}_*, \mathsf{Sets}_*, \mathsf{Sets}_*}$$
 of Definition 4.4.4.1.1;

• The Right Skew Left Unitors. The natural transformation

$$\lambda^{\mathsf{Sets}_*, \triangleright} \colon \boldsymbol{\lambda}^{\mathsf{Cats}_2}_{\mathsf{Sets}_*} \stackrel{\sim}{\Longrightarrow} \rhd \circ \left(\mathbb{1}^{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*}\right)$$

of Definition 4.4.5.1.1;

• The Right Skew Right Unitors. The natural transformation

$$\rho^{\mathsf{Sets}_*, \rhd} \colon \rhd \circ \left(\mathsf{id} \times \mathbb{1}^{\mathsf{Sets}_*}\right) \stackrel{\sim}{\Longrightarrow} \rho^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}$$

of Definition 4.4.6.1.1.

Proof. The Pentagon Identity: Let (W, w_0) , (X, x_0) , (Y, y_0) and (Z, z_0)

be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the pentagon identity is satisfied. The Right Skew Left Triangle Identity: Let (X, x_0) and (Y, y_0) be pointed

sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes. Thus the left skew triangle identity is satisfied.

The Right Skew Right Triangle Identity: Let (X, x_0) and (Y, y_0) be pointed sets. We have to show that the diagram

$$X \rhd (Y \rhd S^0) \xrightarrow{\operatorname{id}_X \rhd \rho_Y^{\mathsf{Sets}_*, \rhd}} (X \rhd Y) \rhd S^0$$

$$\downarrow^{\rho_{X \rhd Y}^{\mathsf{Sets}_*, \rhd}}$$

$$X \rhd Y$$

commutes. Indeed, this diagram acts on elements as

$$x \rhd (y \rhd 0) \longmapsto (x \rhd y) \rhd 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$x \rhd y_0 = x_0 \rhd y_0$$

and

$$x \rhd (y \rhd 1) \longmapsto (x \rhd y) \rhd 1$$

$$x \rhd y$$

and hence indeed commutes. Thus the right skew triangle identity is satisfied.

The Right Skew Middle Triangle Identity: Let (X, x_0) and (Y, y_0) be

pointed sets. We have to show that the diagram

$$X \rhd Y = X \rhd Y$$

$$\downarrow id_X \rhd \lambda_Y^{\mathsf{Sets}_*, \rhd} \qquad \qquad \uparrow \rho_X^{\mathsf{Sets}_*, \rhd} \rhd id_Y$$

$$X \rhd (S^0 \rhd Y)_{\alpha \xrightarrow{\mathsf{Sets}_*, \rhd} (X \rhd S^0) \rhd Y}$$

commutes. Indeed, this diagram acts on elements as

$$x \rhd y \longmapsto x \rhd y$$

$$\downarrow \qquad \qquad \uparrow$$

$$x \rhd (1 \rhd y) \longmapsto (x \rhd 1) \rhd y$$

and hence indeed commutes. Thus the right skew triangle identity is satisfied.

The Zig-Zag Identity: We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and

and hence indeed commutes. Thus the zig-zag identity is satisfied. Right Skew Monoidal Right-Closedness: This follows from Item 2 of Proposition 4.4.1.1.7. \Box

4.4.9 Monoids With Respect to the Right Tensor Product of Pointed Sets

Proposition 4.4.9.1.1. The category of monoids on $(\mathsf{Sets}_*, \triangleright, S^0)$ is isomorphic to the category of "monoids with right zero" and morphisms between them.

Proof. Monoids on (Sets*, \triangleright , S^0): A monoid on (Sets*, \triangleright , S^0) consists of:

- The Underlying Object. A pointed set $(A, 0_A)$.
- The Multiplication Morphism. A morphism of pointed sets

$$\mu_A : A \rhd A \to A$$
,

determining a right bilinear morphism of pointed sets

$$\begin{array}{ccc} A \times A & \longrightarrow & A \\ (a,b) & \longmapsto & ab. \end{array}$$

• The Unit Morphism. A morphism of pointed sets

$$\eta_A \colon S^0 \to A$$

picking an element 1_A of A.

satisfying the following conditions:

1. Associativity. The diagram

$$0_A a = 0_A$$

for each $a \in A$.

 $^{^{18}}$ A monoid with right zero is defined similarly as the monoids with zero of ??. Succinctly, they are monoids (A, μ_A, η_A) with a special element 0_A satisfying

2. Left Unitality. The diagram

commutes.

3. Right Unitality. The diagram

commutes.

Being a right-bilinear morphism of pointed sets, the multiplication map satisfies

$$0_A a = 0_A$$

for each $a \in A$. Now, the associativity, left unitality, and right unitality conditions act on elements as follows:

1. Associativity. The associativity condition acts as

This gives

$$(ab)c = a(bc)$$

for each $a, b, c \in A$.

2. Left Unitality. The left unitality condition acts as

This gives

$$1_A a = a$$

for each $a \in A$.

- 3. Right Unitality. The right unitality condition acts:
 - (a) On 1 > 0 as

(b) On a > 1 as

This gives

$$a1_A = a,$$

$$a0_A = 0_A$$

for each $a \in A$.

Thus we see that monoids with respect to \triangleright are exactly monoids with right zero.

Morphisms of Monoids on (Sets_{*}, \triangleright , S^0): A morphism of monoids on (Sets_{*}, \triangleright , S^0) from $(A, \mu_A, \eta_A, 0_A)$ to $(B, \mu_B, \eta_B, 0_B)$ is a morphism of pointed sets

$$f: (A, 0_A) \to (B, 0_B)$$

satisfying the following conditions:

1. Compatibility With the Multiplication Morphisms. The diagram

$$\begin{array}{c|c} A \rhd A \xrightarrow{f\rhd f} B \rhd B \\ \downarrow^{\mu_A} & \downarrow^{\mu_B} \\ A \xrightarrow{f} B \end{array}$$

commutes.

2. Compatibility With the Unit Morphisms. The diagram

commutes.

These act on elements as

giving

$$f(ab) = f(a)f(b),$$

$$f(0_A) = 0_B,$$

$$f(1_A) = 1_B,$$

for each $a,b\in A,$ which is exactly a morphism of monoids with right zero.

Identities and Composition: Similarly, the identities and composition of $\mathsf{Mon}(\mathsf{Sets}_*, \triangleright, S^0)$ can be easily seen to agree with those of monoids with right zero, which finishes the proof.

OOFT 4.5 The Smash Product of Pointed Sets

00FU 4.5.1 Foundations

Let (X, x_0) and (Y, y_0) be pointed sets.

Definition 4.5.1.1.1. The smash product of (X, x_0) and $(Y, y_0)^{19}$ is the pointed set $X \wedge Y^{20}$ satisfying the bijection

$$\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z),$$

naturally in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$.

- **QOFW** Remark 4.5.1.1.2. That is to say, the smash product of pointed sets is defined so as to induce a bijection between the following data:
 - Pointed maps $f: X \wedge Y \to Z$.
 - Maps of sets $f: X \times Y \to Z$ satisfying

$$f(x_0, y) = z_0,$$

$$f(x, y_0) = z_0$$

for each $x \in X$ and each $y \in Y$.

- **00FX** Remark 4.5.1.1.3. The smash product of pointed sets may be described as follows:
 - The smash product of (X, x_0) and (Y, y_0) is the pair $((X \land Y, x_0 \land y_0), \iota)$ consisting of
 - A pointed set $(X \wedge Y, x_0 \wedge y_0)$;
 - A bilinear morphism of pointed sets $\iota: (X \times Y, (x_0, y_0)) \to X \wedge Y$:

satisfying the following universal property:

- (UP) Given another such pair $((Z, z_0), f)$ consisting of
 - * A pointed set (Z, z_0) ;
 - * A bilinear morphism of pointed sets $f: (X \times Y, (x_0, y_0)) \to X \wedge Y;$

there exists a unique morphism of pointed sets $X \wedge Y \xrightarrow{\exists !} Z$ making the diagram

commute.

¹⁹ Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 algebras, the smash product $X \wedge Y$ is also called the **tensor product of** \mathbb{F}_1 -**modules**of (X, x_0) and (Y, y_0) or the **tensor product of** (X, x_0) and (Y, y_0) over \mathbb{F}_1 .

²⁰ Further Notation: In the context of monoids with zero as models for \mathbb{F}_1 -algebras,

- **Construction 4.5.1.1.4.** Concretely, the **smash product of** (X, x_0) **and** (Y, y_0) is the pointed set $(X \wedge Y, x_0 \wedge y_0)$ consisting of
 - The Underlying Set. The set $X \wedge Y$ defined by

$$X \wedge Y \cong (X \times Y)/\sim_R$$

where \sim_R is the equivalence relation on $X \times Y$ obtained by declaring

$$(x_0, y) \sim_R (x_0, y'),$$

 $(x, y_0) \sim_R (x', y_0)$

for each $x, x' \in X$ and each $y, y' \in Y$;

• The Basepoint. The element $[(x_0, y_0)]$ of $X \wedge Y$ given by the equivalence class of (x_0, y_0) under the equivalence relation \sim on $X \times Y$.

Proof. By Item 6 of Proposition 7.5.2.1.3, we have a natural bijection

$$\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Hom}^R_{\mathsf{Sets}}(X \times Y, Z).$$

Now, by definition, $\operatorname{Hom}_{\mathsf{Sets}}^R(X\times Y,Z)$ is the set

$$\operatorname{Hom}_{\mathsf{Sets}}^R(X \times Y, Z) \stackrel{\text{\tiny def}}{=} \left\{ f \in \operatorname{Hom}_{\mathsf{Sets}}(X \times Y, Z) \middle| \begin{array}{l} \text{for each } x, y \in X, \text{ if} \\ (x, y) \sim_R (x', y'), \text{ then} \\ f(x, y) = f(x', y') \end{array} \right\}.$$

However, the condition $(x,y) \sim_R (x',y')$ only holds when:

- 1. We have x = x' and y = y'.
- 2. The following conditions are satisfied:
 - (a) We have $x = x_0$ or $y = y_0$.
 - (b) We have $x' = x_0$ or $y' = y_0$.

So, given $f \in \operatorname{Hom}_{\mathsf{Sets}}(X \times Y, Z)$ with a corresponding $\overline{f} \colon X \wedge Y \to Z$, the latter case above implies

$$f(x_0, y) = f(x, y_0)$$

= $f(x_0, y_0)$,

and since $\overline{f}: X \wedge Y \to Z$ is a pointed map, we have

$$f(x_0, y_0) = \overline{f}(x_0, y_0)$$
$$= z_0.$$

Thus the elements f in $\operatorname{Hom}_{\mathsf{Sets}}(X \times Y, Z)$ are precisely those functions $f \colon X \times Y \to Z$ satisfying the equalities

$$f(x_0, y) = z_0,$$

$$f(x, y_0) = z_0$$

for each $x \in X$ and each $y \in Y$, giving an equality

$$\operatorname{Hom}_{\mathsf{Sets}}^R(X\times Y,Z) = \operatorname{Hom}_{\mathsf{Sets}_*}^\otimes(X\times Y,Z)$$

of sets, which when composed with our earlier isomorphism

$$\mathsf{Sets}_*(X \wedge Y, Z) \cong \mathsf{Hom}^R_{\mathsf{Sets}}(X \times Y, Z)$$

gives our desired natural bijection, finishing the proof.

00FZ Remark 4.5.1.1.5. It is also somewhat common to write

$$X \wedge Y \stackrel{\text{def}}{=} \frac{X \times Y}{X \vee Y},$$

identifying $X \vee Y$ with the subspace $(\{x_0\} \times Y) \cup (X \times \{y_0\})$ of $X \times Y$, and having the quotient be defined by declaring $(x, y) \sim (x', y')$ iff we have $(x, y), (x', y') \in X \vee Y$.

00G0 Notation 4.5.1.1.6. We write $x \wedge y$ for the element [(x,y)] of

$$X \wedge Y \cong X \times Y/\sim$$
.

Remark 4.5.1.1.7. Employing the notation introduced in Notation 4.5.1.1.6, we have

$$x_0 \wedge y_0 = x \wedge y_0,$$
$$= x_0 \wedge y$$

for each $x \in X$ and each $y \in Y$, and

$$x \wedge y_0 = x' \wedge y_0,$$

$$x_0 \wedge y = x_0 \wedge y'$$

for each $x, x' \in X$ and each $y, y' \in Y$.

OUG2 Example 4.5.1.1.8. Here are some examples of smash products of pointed sets.

the smash product $X \wedge Y$ is also denoted $X \otimes_{\mathbb{F}_1} Y$.

00G3 1. Smashing With pt. For any pointed set X, we have isomorphisms of pointed sets

$$\operatorname{pt} \wedge X \cong \operatorname{pt},$$

 $X \wedge \operatorname{pt} \cong \operatorname{pt}.$

00G4 2. Smashing With S^0 . For any pointed set X, we have isomorphisms of pointed sets

$$S^0 \wedge X \cong X,$$
$$X \wedge S^0 \cong X.$$

- **00G5** Proposition 4.5.1.1.9. Let (X, x_0) and (Y, y_0) be pointed sets.
- 00G6 1. Functoriality. The assignments $X,Y,(X,Y)\mapsto X\wedge Y$ define functors

$$\begin{split} X \wedge -\colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ - \wedge Y \colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ -_1 \wedge -_2 \colon \mathsf{Sets}_* &\times \mathsf{Sets}_* &\to \mathsf{Sets}_*. \end{split}$$

In particular, given pointed maps

$$f: (X, x_0) \to (A, a_0),$$

 $g: (Y, y_0) \to (B, b_0),$

the induced map

$$f \wedge g \colon X \wedge Y \to A \wedge B$$

is given by

$$[f \wedge g](x \wedge y) \stackrel{\text{def}}{=} f(x) \wedge g(y)$$

for each $x \wedge y \in X \wedge Y$.

00G7 2. Adjointness. We have adjunctions

$$(X \land - \dashv \mathbf{Sets}_*(X, -)) \colon \ \ \mathsf{Sets}_* \underbrace{\bot}_{X \land -} \mathsf{Sets}_*,$$

$$(- \land Y \dashv \mathbf{Sets}_*(Y, -)) \colon \ \ \mathsf{Sets}_* \underbrace{\bot}_{- \land Y} \mathsf{Sets}_*,$$

$$\mathsf{Sets}_*(Y, -)$$

witnessed by bijections

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \wedge Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, \mathsf{Sets}_*(Y, Z)),$$

 $\operatorname{Hom}_{\mathsf{Sets}_*}(X \wedge Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, \mathsf{Sets}_*(A, Z)),$
natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \operatorname{Obj}(\mathsf{Sets}_*).$

00G8 3. Enriched Adjointness. We have Sets*-enriched adjunctions

$$(X \wedge - \dashv \mathbf{Sets}_*(X, -)) \colon \mathbf{Sets}_* \underbrace{\bot}_{X \wedge -} \mathbf{Sets}_*,$$

$$(- \wedge Y \dashv \mathbf{Sets}_*(Y, -)) \colon \mathbf{Sets}_* \underbrace{\bot}_{Sets_*(Y, -)} \mathbf{Sets}_*,$$

witnessed by isomorphisms of pointed sets

$$\mathbf{Sets}_*(X \wedge Y, Z) \cong \mathbf{Sets}_*(X, \mathbf{Sets}_*(Y, Z)),$$

$$\mathbf{Sets}_*(X \wedge Y, Z) \cong \mathbf{Sets}_*(X, \mathbf{Sets}_*(A, Z)),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathbf{Sets}_*).$

00G9 4. As a Pushout. We have an isomorphism

natural in $X, Y \in \text{Obj}(\mathsf{Sets}_*)$, where the pushout is taken in Sets , and the embedding $\iota \colon X \vee Y \hookrightarrow X \times Y$ is defined following Remark 4.5.1.1.5.

00GA 5. Distributivity Over Wedge Sums. We have isomorphisms of pointed sets

$$X \wedge (Y \vee Z) \cong (X \wedge Y) \vee (X \wedge Z),$$

$$(X \vee Y) \wedge Z \cong (X \wedge Z) \vee (Y \wedge Z),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$.

Proof. Item 1, Functoriality: The map $f \wedge g$ comes from Item 4 of Proposition 7.5.2.1.3 via the map

$$f \wedge q \colon X \times Y \to A \wedge B$$

sending (x,y) to $f(x) \wedge g(y)$, which we need to show satisfies

$$[f \wedge g](x,y) = [f \wedge g](x',y')$$

for each $(x,y),(x',y') \in X \times Y$ with $(x,y) \sim_R (x',y')$, where \sim_R is the relation constructing $X \wedge Y$ as

$$X \wedge Y \cong (X \times Y)/\sim_R$$

in Construction 4.5.1.1.4. The condition defining \sim is that at least one of the following conditions is satisfied:

- 1. We have x = x' and y = y';
- 2. Both of the following conditions are satisfied:
 - (a) We have $x = x_0$ or $y = y_0$.
 - (b) We have $x' = x_0$ or $y' = y_0$.

We have five cases:

1. In the first case, we clearly have

$$[f \wedge g](x,y) = [f \wedge g](x',y')$$

since x = x' and y = y'.

2. If $x = x_0$ and $x' = x_0$, we have

$$[f \wedge g](x_0, y) \stackrel{\text{def}}{=} f(x_0) \wedge g(y)$$

$$= a_0 \wedge g(y)$$

$$= a_0 \wedge g(y')$$

$$= f(x_0) \wedge g(y')$$

$$\stackrel{\text{def}}{=} [f \wedge g](x_0, y').$$

3. If $x = x_0$ and $y' = y_0$, we have

$$[f \wedge g](x_0, y) \stackrel{\text{def}}{=} f(x_0) \wedge g(y)$$

$$= a_0 \wedge g(y)$$

$$= a_0 \wedge b_0$$

$$= f(x') \wedge b_0$$

$$= f(x') \wedge g(y_0)$$

$$\stackrel{\text{def}}{=} [f \wedge g](x', y_0).$$

4. If $y = y_0$ and $x' = x_0$, we have

$$[f \wedge g](x, y_0) \stackrel{\text{def}}{=} f(x) \wedge g(y_0)$$

$$= f(x) \wedge b_0$$

$$= a_0 \wedge b_0$$

$$= a_0 \wedge g(y')$$

$$= f(x_0) \wedge g(y')$$

$$\stackrel{\text{def}}{=} [f \wedge g](x_0, y').$$

5. If $y = y_0$ and $y' = y_0$, we have

$$[f \wedge g](x, y_0) \stackrel{\text{def}}{=} f(x) \wedge g(y_0)$$

$$= f(x) \wedge b_0$$

$$= f(x') \wedge b_0$$

$$= f(x) \wedge g(y_0)$$

$$\stackrel{\text{def}}{=} [f \wedge g](x', y_0).$$

Thus $f \wedge g$ is well-defined. Next, we claim that \wedge preserves identities and composition:

• Preservation of Identities. We have

$$[\mathrm{id}_X \wedge \mathrm{id}_Y](x \wedge y) \stackrel{\mathrm{def}}{=} \mathrm{id}_X(x) \wedge \mathrm{id}_Y(y)$$
$$= x \wedge y$$
$$= [\mathrm{id}_{X \wedge Y}](x \wedge y)$$

for each $x \wedge y \in X \wedge Y$, and thus

$$id_X \wedge id_Y = id_{X \wedge Y}$$
.

• Preservation of Composition. Given pointed maps

$$f: (X, x_0) \to (X', x'_0),$$

$$h: (X', x'_0) \to (X'', x''_0),$$

$$g: (Y, y_0) \to (Y', y'_0),$$

$$k: (Y', y'_0) \to (Y'', y''_0),$$

we have

$$[(h \circ f) \land (k \circ g)](x \land y) \stackrel{\text{def}}{=} h(f(x)) \land k(g(y))$$

$$\stackrel{\text{def}}{=} [h \land k](f(x) \land g(y))$$

$$\stackrel{\text{def}}{=} [h \land k]([f \land g](x \land y))$$

$$\stackrel{\text{def}}{=} [(h \land k) \circ (f \land g)](x \land y)$$

for each $x \wedge y \in X \wedge Y$, and thus

$$(h \circ f) \wedge (k \circ g) = (h \wedge k) \circ (f \wedge g).$$

This finishes the proof.

Item 2, Adjointness: We prove only the adjunction $- \wedge Y \dashv \mathbf{Sets}_*(Y, -)$, witnessed by a natural bijection

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \wedge Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, \mathsf{Sets}_*(Y, Z)),$$

as the proof of the adjunction $X \wedge - \exists \mathbf{Sets}_*(X, -)$ is similar. We claim we have a bijection

$$\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, \mathsf{Sets}_*(Y, Z))$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$, impliying the desired adjunction. Indeed, this bijection is a restriction of the bijection

$$\mathsf{Sets}(X \times Y, Z) \cong \mathsf{Sets}(X, \mathsf{Sets}(Y, Z))$$

of Item 2 of Proposition 2.1.3.1.2:

• A map

$$\xi \colon X \times Y \to Z$$

in $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z)$ gets sent to the pointed map

$$\xi^{\dagger} \colon (X, x_0) \to (\mathbf{Sets}_*(Y, Z), \Delta_{z_0}),$$

$$x \longmapsto \Big(\xi_x^{\dagger} \colon Y \to Z\Big),$$

where $\xi_x^{\dagger} \colon Y \to Z$ is the map defined by

$$\xi_x^{\dagger}(y) \stackrel{\text{def}}{=} \xi(x,y)$$

for each $y \in Y$, where:

- The map ξ^{\dagger} is indeed pointed, as we have

$$\xi_{x_0}^{\dagger}(y) \stackrel{\text{def}}{=} \xi(x_0, y)$$

$$\stackrel{\text{def}}{=} z_0$$

for each $y \in Y$. Thus $\xi_{x_0}^{\dagger} = \Delta_{z_0}$ and ξ^{\dagger} is pointed.

– The map ξ_x^{\dagger} indeed lies in $\mathbf{Sets}_*(Y, Z)$, as we have

$$\xi_x^{\dagger}(y_0) \stackrel{\text{def}}{=} \xi(x, y_0)$$
 $\stackrel{\text{def}}{=} z_0.$

• Conversely, a map

$$\xi \colon (X, x_0) \to (\mathbf{Sets}_*(Y, Z), \Delta_{z_0}),$$

$$x \longmapsto (\xi_x \colon Y \to Z),$$

in $\operatorname{Hom}_{\mathsf{Sets}_*}(X,\mathsf{Sets}_*(Y,Z))$ gets sent to the map

$$\xi^{\dagger} \colon X \times Y \to Z$$

defined by

$$\xi^{\dagger}(x,y) \stackrel{\text{def}}{=} \xi_x(y)$$

for each $(x,y) \in X \times Y$, which indeed lies in $\mathrm{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y,Z)$, as:

- Left Bilinearity. We have

$$\xi^{\dagger}(x_0, y) \stackrel{\text{def}}{=} \xi_{x_0}(y)$$
$$\stackrel{\text{def}}{=} \Delta_{z_0}(y)$$
$$\stackrel{\text{def}}{=} z_0$$

for each $y \in Y$, since $\xi_{x_0} = \Delta_{z_0}$ as ξ is assumed to be a pointed map.

- Right Bilinearity. We have

$$\xi^{\dagger}(x, y_0) \stackrel{\text{def}}{=} \xi_x(y_0)$$
 $\stackrel{\text{def}}{=} z_0$

for each $x \in X$, since $\xi_x \in \mathbf{Sets}_*(Y, Z)$ is a morphism of pointed sets.

This finishes the proof.

Item 3, Enriched Adjointness: This follows from *Item 2* and ?? of ??. *Item 4, As a Pushout*: Following the description of Remark 2.2.4.1.2, we have

pt
$$\prod_{X \vee Y} (X \times Y) \cong (\text{pt} \times (X \times Y)) / \sim$$
,

where \sim identifies the elemenet \star in pt with all elements of the form (x_0, y) and (x, y_0) in $X \times Y$. Thus Item 4 of Proposition 7.5.2.1.3 coupled with Remark 4.5.1.1.7 then gives us a well-defined map

pt
$$\prod_{X \vee Y} (X \times Y) \to X \wedge Y$$

via $[(\star, (x, y))] \mapsto x \wedge y$, with inverse

$$X \wedge Y \to \operatorname{pt} \prod_{X \vee Y} (X \times Y)$$

given by $x \wedge y \mapsto [(\star, (x, y))].$

Item 5, Distributivity Over Wedge Sums: This follows from Proposition 4.5.9.1.1, ?? of ??, and the fact that \vee is the coproduct in Sets_{*} (Definition 3.3.3.1.1).

00GB 4.5.2 The Internal Hom of Pointed Sets

Let (X, x_0) and (Y, y_0) be pointed sets.

00GC Definition 4.5.2.1.1. The internal Hom^{21} of pointed sets from (X, x_0) to (Y, y_0) is the pointed set $\operatorname{Sets}_*((X, x_0), (Y, y_0))^{22}$ consisting of:

²¹The pointed set $\mathsf{Sets}_*(X,Y)$ is the internal Hom of Sets_* with respect to the smash product of Definition 4.5.1.1.1; see $\mathsf{Item}\ 2$ of Proposition 4.5.1.1.9.

²² Further Notation: Also written $\mathbf{Hom}_{\mathsf{Sets}_*}(X,Y)$.

- The Underlying Set. The set $Sets_*((X, x_0), (Y, y_0))$ of morphisms of pointed sets from (X, x_0) to (Y, y_0) .
- The Basepoint. The element

$$\Delta_{y_0} \colon (X, x_0) \to (Y, y_0)$$

of $\mathsf{Sets}_*((X,x_0),(Y,y_0))$ given by

$$\Delta_{y_0}(x) \stackrel{\text{def}}{=} y_0$$

for each $x \in X$.

Proof. For a proof that Sets_* is indeed the internal Hom of Sets_* with respect to the smash product of pointed sets, see $\mathsf{Item}\ 2$ of $\mathsf{Proposition}\ 4.5.1.1.9$.

- **OOGD** Proposition 4.5.2.1.2. Let (X, x_0) and (Y, y_0) be pointed sets.
- 00GE 1. Functoriality. The assignments $X, Y, (X, Y) \mapsto \mathbf{Sets}_*(X, Y)$ define functors

$$\begin{aligned} \mathbf{Sets}_*(X,-) \colon \mathsf{Sets}_* &\to \mathsf{Sets}_*, \\ \mathbf{Sets}_*(-,Y) \colon \mathsf{Sets}_*^\mathsf{op} &\to \mathsf{Sets}_*, \\ \mathbf{Sets}_*(-_1,-_2) \colon \mathsf{Sets}_*^\mathsf{op} &\times \mathsf{Sets}_* &\to \mathsf{Sets}_*. \end{aligned}$$

In particular, given pointed maps

$$f: (X, x_0) \to (A, a_0),$$

 $g: (Y, y_0) \to (B, b_0),$

the induced map

$$\mathsf{Sets}_*(f,g) \colon \mathsf{Sets}_*(A,Y) \to \mathsf{Sets}_*(X,B)$$

is given by

$$[\mathsf{Sets}_*(f,g)](\phi) \stackrel{\mathrm{def}}{=} g \circ \phi \circ f$$

for each $\phi \in \mathbf{Sets}_*(A, Y)$.

00GF 2. Adjointness. We have adjunctions

$$(X \land - \dashv \mathbf{Sets}_*(X, -)) \colon \ \ \mathbf{Sets}_* \underbrace{\bot}_{X \land -} \mathbf{Sets}_*,$$

$$(- \land Y \dashv \mathbf{Sets}_*(Y, -)) \colon \ \ \mathbf{Sets}_* \underbrace{\bot}_{X \land -} \mathbf{Sets}_*,$$

$$\mathbf{Sets}_*(Y, -)$$

witnessed by bijections

$$\operatorname{Hom}_{\mathsf{Sets}_*}(X \wedge Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, \mathsf{Sets}_*(Y, Z)),$$

 $\operatorname{Hom}_{\mathsf{Sets}_*}(X \wedge Y, Z) \cong \operatorname{Hom}_{\mathsf{Sets}_*}(X, \mathsf{Sets}_*(A, Z)),$

natural in
$$(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$$
.

00GG 3. Enriched Adjointness. We have Sets*-enriched adjunctions

$$(X \wedge - \dashv \mathbf{Sets}_*(X, -)) \colon \quad \mathbf{Sets}_* \underbrace{\bot}_{X \wedge -} \mathbf{Sets}_*,$$

$$(- \wedge Y \dashv \mathbf{Sets}_*(Y, -)) \colon \quad \mathbf{Sets}_* \underbrace{\bot}_{Sets_*(Y, -)} \mathbf{Sets}_*,$$

witnessed by isomorphisms of pointed sets

$$\mathbf{Sets}_*(X \wedge Y, Z) \cong \mathbf{Sets}_*(X, \mathbf{Sets}_*(Y, Z)),$$

$$\mathbf{Sets}_*(X \wedge Y, Z) \cong \mathbf{Sets}_*(X, \mathbf{Sets}_*(A, Z)),$$

natural in
$$(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathbf{Sets}_*).$$

Proof. Item 1, Functoriality: This follows from Item 1 of Proposition 2.3.5.1.2 and from the equalities

$$g \circ \Delta_{y_0} = \Delta_{z_0},$$

$$\Delta_{y_0} \circ f = \Delta_{y_0}$$

for morphisms $f:(K,k_0)\to (X,x_0)$ and $g:(Y,y_0)\to (Z,z_0)$, which guarantee pre- and postcomposition by morphisms of pointed sets to also be morphisms of pointed sets.

Item 2, *Adjointness*: This is a repetition of *Item 2* of *Proposition 4.5.1.1.9*, and is proved there.

Item 3, Enriched Adjointness: This is a repetition of Item 3 of Proposition 4.5.1.1.9, and is proved there.

00GH 4.5.3 The Monoidal Unit

00GJ Definition 4.5.3.1.1. The monoidal unit of the smash product of pointed sets is the functor

$$\mathbb{1}^{\mathsf{Sets}_*} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

defined by

$$\mathbb{1}_{\mathsf{Sets}_*} \stackrel{\scriptscriptstyle \mathsf{def}}{=} S^0.$$

00GK 4.5.4 The Associator

OOGL Definition 4.5.4.1.1. The associator of the smash product of pointed sets is the natural isomorphism

$$\alpha^{\mathsf{Sets}_*} \colon \wedge \circ (\wedge \times \mathrm{id}_{\mathsf{Sets}_*}) \stackrel{\sim}{\Longrightarrow} \wedge \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \wedge) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Sets}_*,\mathsf{Sets}_*,\mathsf{Sets}_*},$$

as in the diagram

whose component

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*} \colon (X \wedge Y) \wedge Z \xrightarrow{\cong} X \wedge (Y \wedge Z)$$

at $(X, x_0), (Y, y_0), (Z, z_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*}((x \wedge y) \wedge z) \stackrel{\text{def}}{=} x \wedge (y \wedge z)$$

for each $(x \wedge y) \wedge z \in (X \wedge Y) \wedge Z$.

Proof. Well-Definedness: Let [((x,y),z)] = [((x',y'),z')] be an element in $(X \wedge Y) \wedge Z$. Then either:

- 1. We have x = x', y = y', and z = z'.
- 2. Both of the following conditions are satisfied:
 - (a) We have $x = x_0$ or $y = y_0$ or $z = z_0$.
 - (b) We have $x' = x_0$ or $y' = y_0$ or $z' = z_0$.

In the first case, $\alpha_{X,Y,Z}^{\mathsf{Sets}_*}$ clearly sends both elements to the same element in $X \wedge (Y \wedge Z)$. Meanwhile, in the latter case both elements are equal to the basepoint $(x_0 \wedge y_0) \wedge z_0$ of $(X \wedge Y) \wedge Z$, which gets sent to the basepoint $x_0 \wedge (y_0 \wedge z_0)$ of $X \wedge (Y \wedge Z)$.

Being a Morphism of Pointed Sets: As just mentioned, we have

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*}((x_0 \wedge y_0) \wedge z_0) \stackrel{\scriptscriptstyle \mathrm{def}}{=} x_0 \wedge (y_0 \wedge z_0),$$

and thus $\alpha_{X,Y,Z}^{\mathsf{Sets}_*}$ is a morphism of pointed sets.

Invertibility: Clearly, the inverse of $\alpha_{X,Y,Z}^{\mathsf{Sets}_*}$ is given by the morphism

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,-1} \colon X \wedge (Y \wedge Z) \xrightarrow{\cong} (X \wedge Y) \wedge Z$$

defined by

$$\alpha_{X,Y,Z}^{\mathsf{Sets}_*,-1}(x \wedge (y \wedge z)) \stackrel{\text{def}}{=} (x \wedge y) \wedge z$$

for each $x \wedge (y \wedge z) \in X \wedge (Y \wedge Z)$.

Naturality: We need to show that, given morphisms of pointed sets

$$f: (X, x_0) \to (X', x'_0),$$

 $g: (Y, y_0) \to (Y', y'_0),$
 $h: (Z, z_0) \to (Z', z'_0)$

the diagram

$$\begin{array}{c} (X \wedge Y) \wedge Z \xrightarrow{(f \wedge g) \wedge h} (X' \wedge Y') \wedge Z' \\ \\ \alpha_{X,Y,Z}^{\mathsf{Sets}_*} & \qquad \qquad \Big| \alpha_{X',Y',Z'}^{\mathsf{Sets}_*} \\ X \wedge (Y \wedge Z) \xrightarrow{f \wedge (g \wedge h)} X' \wedge (Y' \wedge Z') \end{array}$$

commutes. Indeed, this diagram acts on elements as

$$(x \wedge y) \wedge z \longmapsto (f(x) \wedge g(y)) \wedge h(z)$$

$$\downarrow \qquad \qquad \downarrow$$

$$x \wedge (y \wedge z) \longmapsto f(x) \wedge (g(y) \wedge h(z))$$

and hence indeed commutes, showing α^{Sets_*} to be a natural transformation.

Being a Natural Isomorphism: Since α^{Sets_*} is natural and $\alpha^{\mathsf{Sets}_*,-1}$ is a componentwise inverse to α^{Sets_*} , it follows from Item 2 of Proposition 8.8.6.1.2 that $\alpha^{\mathsf{Sets}_*,-1}$ is also natural. Thus α^{Sets_*} is a natural isomorphism.

00GM 4.5.5 The Left Unitor

00GN Definition 4.5.5.1.1. The left unitor of the smash product of pointed sets is the natural isomorphism

$$\mathsf{pt} \times \mathsf{Sets}_* \xrightarrow{\mathbb{1}^{\mathsf{Sets}_*} \times \mathsf{id}} \mathsf{Sets}_* \times \mathsf{Sets}_*$$

$$\lambda^{\mathsf{Sets}_*} : \wedge \circ \left(\mathbb{1}^{\mathsf{Sets}_*} \times \mathsf{id}_{\mathsf{Sets}_*} \right) \xrightarrow{\sim} \lambda^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}$$

$$\lambda^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}$$

$$\lambda^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}$$

whose component

$$\lambda_X^{\mathsf{Sets}_*} \colon S^0 \wedge X \xrightarrow{\cong} X$$

at $X \in \text{Obj}(\mathsf{Sets}_*)$ is given by

$$0 \land x \mapsto x_0,$$
$$1 \land x \mapsto x.$$

Proof. Well-Definedness: Let [(x,y)] = [(x',y')] be an element in $S^0 \wedge X$. Then either:

- 1. We have x = x' and y = y'.
- 2. Both of the following conditions are satisfied:
 - (a) We have x = 0 or $y = x_0$.
 - (b) We have x' = 0 or $y' = x_0$.

In the first case, $\lambda_X^{\mathsf{Sets}_*}$ clearly sends both elements to the same element in X. Meanwhile, in the latter case both elements are equal to the basepoint $0 \wedge x_0$ of $S^0 \wedge X$, which gets sent to the basepoint x_0 of X. Being a Morphism of Pointed Sets: As just mentioned, we have

$$\lambda_X^{\mathsf{Sets}_*}(0 \wedge x_0) \stackrel{\text{def}}{=} x_0,$$

and thus $\lambda_X^{\mathsf{Sets}_*}$ is a morphism of pointed sets. Invertibility: The inverse of $\lambda_X^{\mathsf{Sets}_*}$ is the morphism

$$\lambda_X^{\mathsf{Sets}_*,-1} \colon X \xrightarrow{\cong} S^0 \wedge X$$

defined by

$$\lambda_X^{\mathsf{Sets}_*,-1}(x) \stackrel{\scriptscriptstyle\rm def}{=} 1 \wedge x$$

for each $x \in X$. Indeed:

• Invertibility I. We have

$$\begin{split} \left[\lambda_X^{\mathsf{Sets}_*,-1} \circ \lambda_X^{\mathsf{Sets}_*}\right] (0 \wedge x) &= \lambda_X^{\mathsf{Sets}_*,-1} \Big(\lambda_X^{\mathsf{Sets}_*} (0 \wedge x)\Big) \\ &= \lambda_X^{\mathsf{Sets}_*,-1} (x_0) \\ &= 1 \wedge x_0 \\ &= 0 \wedge x. \end{split}$$

and

$$\begin{split} \left[\lambda_X^{\mathsf{Sets}_*,-1} \circ \lambda_X^{\mathsf{Sets}_*}\right] (1 \wedge x) &= \lambda_X^{\mathsf{Sets}_*,-1} \Big(\lambda_X^{\mathsf{Sets}_*} (1 \wedge x)\Big) \\ &= \lambda_X^{\mathsf{Sets}_*,-1} (x) \\ &= 1 \wedge x \end{split}$$

for each $x \in X$, and thus we have

$$\lambda_X^{\mathsf{Sets}_*,-1} \circ \lambda_X^{\mathsf{Sets}_*} = \mathrm{id}_{S^0 \wedge X}.$$

• Invertibility II. We have

$$\begin{split} \left[\lambda_X^{\mathsf{Sets}_*} \circ \lambda_X^{\mathsf{Sets}_*,-1}\right] (x) &= \lambda_X^{\mathsf{Sets}_*} \Big(\lambda_X^{\mathsf{Sets}_*,-1}(x)\Big) \\ &= \lambda_X^{\mathsf{Sets}_*,-1} (1 \wedge x) \\ &= x \end{split}$$

for each $x \in X$, and thus we have

$$\lambda_X^{\mathsf{Sets}_*} \circ \lambda_X^{\mathsf{Sets}_*,-1} = \mathrm{id}_X.$$

This shows $\lambda_X^{\mathsf{Sets}_*}$ to be invertible.

Naturality: We need to show that, given a morphism of pointed sets

$$f\colon (X,x_0)\to (Y,y_0),$$

the diagram

$$S^0 \wedge X \xrightarrow{\operatorname{id}_{S^0} \wedge f} S^0 \wedge Y$$

$$\lambda_X^{\operatorname{Sets}_*} \downarrow \qquad \qquad \downarrow \lambda_Y^{\operatorname{Sets}_*}$$

$$X \xrightarrow{\qquad \qquad f} Y$$

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
0 \land x & 0 \land x \longmapsto 0 \land f(x) \\
\downarrow & & \downarrow \\
x_0 \longmapsto f(x_0) & y_0
\end{array}$$

and

$$\begin{array}{ccc}
1 \land x &\longmapsto 1 \land f(x) \\
\downarrow & & \downarrow \\
x &\longmapsto f(x)
\end{array}$$

and hence indeed commutes, showing $\lambda^{\mathsf{Sets}_*}$ to be a natural transformation.

Being a Natural Isomorphism: Since $\lambda^{\mathsf{Sets}_*}$ is natural and $\lambda^{\mathsf{Sets}_*,-1}$ is a componentwise inverse to $\lambda^{\mathsf{Sets}_*}$, it follows from Item 2 of Proposition 8.8.6.1.2 that $\lambda^{\mathsf{Sets}_*,-1}$ is also natural. Thus $\lambda^{\mathsf{Sets}_*}$ is a natural isomorphism.

00GP 4.5.6 The Right Unitor

OOGQ Definition 4.5.6.1.1. The right unitor of the smash product of pointed sets is the natural isomorphism

whose component

$$\rho_X^{\mathsf{Sets}_*} \colon X \wedge S^0 \xrightarrow{\cong} X$$

at $X \in \text{Obj}(\mathsf{Sets}_*)$ is given by

$$x \wedge 0 \mapsto x_0,$$

 $x \wedge 1 \mapsto x.$

Proof. Well-Definedness: Let [(x,y)] = [(x',y')] be an element in $X \wedge S^0$. Then either:

- 1. We have x = x' and y = y'.
- 2. Both of the following conditions are satisfied:
 - (a) We have $x = x_0$ or y = 0.
 - (b) We have $x' = x_0$ or y' = 0.

In the first case, $\rho_X^{\mathsf{Sets}_*}$ clearly sends both elements to the same element in X. Meanwhile, in the latter case both elements are equal to the basepoint $x_0 \wedge 0$ of $X \wedge S^0$, which gets sent to the basepoint x_0 of X. Being a Morphism of Pointed Sets: As just mentioned, we have

$$\rho_X^{\mathsf{Sets}_*}(x_0 \wedge 0) \stackrel{\text{def}}{=} x_0,$$

and thus $ho_X^{\mathsf{Sets}_*}$ is a morphism of pointed sets. Invertibility: The inverse of $ho_X^{\mathsf{Sets}_*}$ is the morphism

$$\rho_X^{\mathsf{Sets}_*,-1} \colon X \xrightarrow{\cong} X \wedge S^0$$

defined by

$$\rho_X^{\mathsf{Sets}_*,-1}(x) \stackrel{\scriptscriptstyle \mathrm{def}}{=} x \wedge 1$$

for each $x \in X$. Indeed:

• Invertibility I. We have

$$\begin{split} \left[\rho_X^{\mathsf{Sets}_*,-1} \circ \rho_X^{\mathsf{Sets}_*} \right] &(x \wedge 0) = \rho_X^{\mathsf{Sets}_*,-1} \Big(\rho_X^{\mathsf{Sets}_*} (x \wedge 0) \Big) \\ &= \rho_X^{\mathsf{Sets}_*,-1} (x_0) \\ &= x_0 \wedge 1 \\ &= x \wedge 0, \end{split}$$

and

$$\begin{split} \left[\rho_X^{\mathsf{Sets}_*,-1} \circ \rho_X^{\mathsf{Sets}_*}\right] (x \wedge 1) &= \rho_X^{\mathsf{Sets}_*,-1} \Big(\rho_X^{\mathsf{Sets}_*} (x \wedge 1)\Big) \\ &= \rho_X^{\mathsf{Sets}_*,-1} (x) \\ &= x \wedge 1 \end{split}$$

for each $x \in X$, and thus we have

$$ho_X^{\mathsf{Sets}_*,-1} \circ
ho_X^{\mathsf{Sets}_*} = \mathrm{id}_{X \wedge S^0}.$$

• Invertibility II. We have

$$\begin{split} \left[\rho_X^{\mathsf{Sets}_*} \circ \rho_X^{\mathsf{Sets}_*,-1} \right] (x) &= \rho_X^{\mathsf{Sets}_*} \Big(\rho_X^{\mathsf{Sets}_*,-1} (x) \Big) \\ &= \rho_X^{\mathsf{Sets}_*,-1} (x \wedge 1) \\ &= x \end{split}$$

for each $x \in X$, and thus we have

$$\rho_X^{\mathsf{Sets}_*} \circ \rho_X^{\mathsf{Sets}_*,-1} = \mathrm{id}_X.$$

This shows $\rho_X^{\mathsf{Sets}_*}$ to be invertible.

Naturality: We need to show that, given a morphism of pointed sets

$$f: (X, x_0) \to (Y, y_0),$$

the diagram

$$\begin{array}{c|c} X \wedge S^0 \xrightarrow{f \wedge \operatorname{id}_{S^0}} Y \wedge S^0 \\ \rho_X^{\operatorname{Sets}_*} & & \downarrow \rho_Y^{\operatorname{Sets}_*} \\ X & \xrightarrow{f} & Y \end{array}$$

commutes. Indeed, this diagram acts on elements as

and

$$\begin{array}{ccc}
x \wedge 1 & \longmapsto f(x) \wedge 1 \\
\downarrow & & \downarrow \\
x & \longmapsto f(x)
\end{array}$$

and hence indeed commutes, showing ρ^{Sets_*} to be a natural transformation.

Being a Natural Isomorphism: Since ρ^{Sets_*} is natural and $\rho^{\mathsf{Sets}_*,-1}$ is a componentwise inverse to ρ^{Sets_*} , it follows from Item 2 of Proposition 8.8.6.1.2 that $\rho^{\mathsf{Sets}_*,-1}$ is also natural. Thus ρ^{Sets_*} is a natural isomorphism.

00GR 4.5.7 The Symmetry

006S Definition 4.5.7.1.1. The symmetry of the smash product of pointed sets is the natural isomorphism

$$\sigma^{\mathsf{Sets}_*} : \wedge \stackrel{\sim}{\Longrightarrow} \wedge \circ \sigma^{\mathsf{Cats}_2}_{\mathsf{Sets}_*,\mathsf{Sets}_*}, \qquad \sigma^{\mathsf{Cats}_2}_{\mathsf{Sets}_*,\mathsf{Sets}_*} \xrightarrow{\sigma^{\mathsf{Sets}_*}} \wedge Sets_*, \\ \sigma^{\mathsf{Cats}_2}_{\mathsf{Sets}_*,\mathsf{Sets}_*} \times Sets_* \xrightarrow{\sigma^{\mathsf{Sets}_*}} \wedge Sets_*, \\ Sets_* \times Sets_* \times Sets_* \times Sets_* \times Sets_*, \\ Sets_* \times Sets_* \times Sets_* \times Sets_* \times Sets_*, \\ Sets_* \times Sets_*$$

whose component

$$\sigma_{X|Y}^{\mathsf{Sets}_*} \colon X \wedge Y \xrightarrow{\cong} Y \wedge X$$

at $X, Y \in \text{Obj}(\mathsf{Sets}_*)$ is defined by

$$\sigma_{X,Y}^{\mathsf{Sets}_*}(x \wedge y) \stackrel{\mathrm{def}}{=} y \wedge x$$

for each $x \wedge y \in X \wedge Y$.

Proof. Well-Definedness: Let [(x,y)] = [(x',y')] be an element in $X \wedge Y$. Then either:

- 1. We have x = x' and y = y'.
- 2. Both of the following conditions are satisfied:
 - (a) We have $x = x_0$ or $y = y_0$.
 - (b) We have $x' = x_0$ or $y' = y_0$.

In the first case, $\sigma_X^{\mathsf{Sets}_*}$ clearly sends both elements to the same element in X. Meanwhile, in the latter case both elements are equal to the basepoint $x_0 \wedge y_0$ of $X \wedge Y$, which gets sent to the basepoint $y_0 \wedge x_0$ of $Y \wedge X$.

Being a Morphism of Pointed Sets: As just mentioned, we have

$$\sigma_X^{\mathsf{Sets}_*}(x_0 \wedge y_0) \stackrel{\text{def}}{=} y_0 \wedge x_0,$$

and thus $\sigma_X^{\mathsf{Sets}_*}$ is a morphism of pointed sets. $\mathit{Invertibility}$: Clearly, the inverse of $\sigma_{X,Y}^{\mathsf{Sets}_*}$ is given by the morphism

$$\sigma_{X,Y}^{\mathsf{Sets}_*,-1} \colon Y \wedge X \xrightarrow{\cong} X \wedge Y$$

defined by

$$\sigma_{X,Y}^{\mathsf{Sets}_*,-1}(y\wedge x)\stackrel{\scriptscriptstyle\rm def}{=} x\wedge y$$

for each $y \wedge x \in Y \wedge X$.

Naturality: We need to show that, given morphisms of pointed sets

$$f: (X, x_0) \to (A, a_0),$$

 $g: (Y, y_0) \to (B, b_0)$

the diagram

$$\begin{array}{c|c} X \wedge Y & \xrightarrow{f \wedge g} & A \wedge B \\ \sigma_{X,Y}^{\mathsf{Sets}_*} & & & & \int \sigma_{A,B}^{\mathsf{Sets}_*} \\ Y \wedge X & \xrightarrow{g \wedge f} & B \wedge A \end{array}$$

commutes. Indeed, this diagram acts on elements as

$$x \wedge y \longmapsto f(x) \wedge g(y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$y \wedge x \longmapsto g(y) \wedge f(x)$$

and hence indeed commutes, showing σ^{Sets_*} to be a natural transformation.

Being a Natural Isomorphism: Since σ^{Sets_*} is natural and $\sigma^{\mathsf{Sets}_*,-1}$ is a componentwise inverse to σ^{Sets_*} , it follows from Item 2 of Proposition 8.8.6.1.2 that $\sigma^{\mathsf{Sets}_*,-1}$ is also natural. Thus σ^{Sets_*} is a natural isomorphism.

00GT 4.5.8 The Diagonal

OOGU Definition 4.5.8.1.1. The diagonal of the smash product of pointed sets is the natural transformation

whose component

$$\Delta_X^{\wedge} : (X, x_0) \to (X \wedge X, x_0 \wedge x_0)$$

at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by the composition

$$(X, x_0) \xrightarrow{\Delta_X^{\wedge}} (X \times X, (x_0, x_0))$$

$$\longrightarrow ((X \times X) / \sim, [(x_0, x_0)])$$

$$\stackrel{\text{def}}{=} (X \wedge X, x_0 \wedge x_0)$$

in Sets_{*}, and thus by

$$\Delta_X^{\wedge}(x) \stackrel{\text{def}}{=} x \wedge x$$

for each $x \in X$.

Proof. Being a Morphism of Pointed Sets: We have

$$\Delta_X^{\wedge}(x_0) \stackrel{\text{def}}{=} x_0 \wedge x_0,$$

and thus Δ_X^{\wedge} is a morphism of pointed sets.

Naturality: We need to show that, given a morphism of pointed sets

$$f: (X, x_0) \to (Y, y_0),$$

the diagram

$$X \xrightarrow{f} Y$$

$$\Delta_X^{\wedge} \downarrow \qquad \qquad \downarrow \Delta_Y^{\wedge}$$

$$X \wedge X \xrightarrow{f \wedge f} Y \wedge Y$$

commutes. Indeed, this diagram acts on elements as

$$\begin{array}{ccc}
x & \longrightarrow & f(x) \\
\downarrow & & \downarrow \\
x \land x & \longmapsto & f(x) \land f(x)
\end{array}$$

and hence indeed commutes, showing Δ^{\wedge} to be natural.

00GV Proposition 4.5.8.1.2. Let $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$.

00GW 1. Monoidality. The diagonal

$$\Delta^{\wedge} : \mathrm{id}_{\mathsf{Sets}_*} \Longrightarrow \wedge \circ \Delta^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}$$

of the smash product of pointed sets is a monoidal natural transformation:

00GX (a) Compatibility With Strong Monoidality Constraints. For each $(X, x_0), (Y, y_0) \in \text{Obj}(\mathsf{Sets}_*)$, the diagram

$$X \wedge Y \xrightarrow{\Delta_X^{\wedge} \wedge \Delta_Y^{\wedge}} (X \wedge X) \wedge (Y \wedge Y)$$

$$\downarrow^{\lambda_{X \wedge Y}} \qquad \downarrow^{\lambda_{X \wedge Y}} \qquad (X \wedge Y) \wedge (X \wedge Y)$$

commutes.

(b) Compatibility With Strong Unitality Constraints. The diagrams

commute, i.e. we have

$$\begin{split} \Delta_{S^0}^{\wedge} &= \lambda_{S^0}^{\mathsf{Sets}_*,-1} \\ &= \rho_{S^0}^{\mathsf{Sets}_*,-1}, \end{split}$$

where we recall that the equalities

$$\begin{split} \lambda_{S^0}^{\mathsf{Sets}_*} &= \rho_{S^0}^{\mathsf{Sets}_*}, \\ \lambda_{S^0}^{\mathsf{Sets}_*, -1} &= \rho_{S^0}^{\mathsf{Sets}_*, -1} \end{split}$$

are always true in any monoidal category by ?? of ??.

00GZ 2. The Diagonal of the Unit. The component

$$\Delta_{S^0}^{\wedge} \colon S^0 \xrightarrow{\cong} S^0 \wedge S^0$$

of Δ^{\wedge} at S^0 is an isomorphism.

Proof. Item 1, Monoidality: We claim that Δ^{\wedge} is indeed monoidal:

1. Item 1a: Compatibility With Strong Monoidality Constraints: We need to show that the diagram

commutes. Indeed, this diagram acts on elements as

$$x \wedge y \longmapsto (x \wedge x) \wedge (y \wedge y)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

and hence indeed commutes.

2. Item 1b: Compatibility With Strong Unitality Constraints: As shown in the proof of Definition 4.5.5.1.1, the inverse of the left unitor of Sets_{*} with respect to to the smash product of pointed sets at $(X, x_0) \in \text{Obj}(\mathsf{Sets}_*)$ is given by

$$\lambda_X^{\mathsf{Sets}_*,-1}(x) \stackrel{\scriptscriptstyle\rm def}{=} 1 \wedge x$$

for each $x \in X$, so when $X = S^0$, we have

$$\begin{split} &\lambda_{S^0}^{\mathsf{Sets}_*,-1}(0) \stackrel{\scriptscriptstyle \mathrm{def}}{=} 1 \wedge 0, \\ &\lambda_{S^0}^{\mathsf{Sets}_*,-1}(1) \stackrel{\scriptscriptstyle \mathrm{def}}{=} 1 \wedge 1. \end{split}$$

But since $1 \wedge 0 = 0 \wedge 0$ and

$$\Delta_{S^0}^{\wedge}(0) \stackrel{\text{def}}{=} 0 \wedge 0,$$

$$\Delta_{S^0}^{\wedge}(1) \stackrel{\text{def}}{=} 1 \wedge 1,$$

it follows that we indeed have $\Delta_{S^0}^\wedge = \lambda_{S^0}^{\mathsf{Sets}_*,-1}.$

This finishes the proof.

Item 2, The Diagonal of the Unit: This follows from Item 1 and the invertibility of the left/right unitor of Sets_* with respect to \land , proved in the proof of Definition 4.5.5.1.1 for the left unitor or the proof of Definition 4.5.6.1.1 for the right unitor.

4.5.9 The Monoidal Structure on Pointed Sets Associated to \wedge

OOH1 Proposition 4.5.9.1.1. The category Sets* admits a closed monoidal category with diagonals structure consisting of

- The Underlying Category. The category Sets* of pointed sets;
- The Monoidal Product. The smash product functor

$$\wedge \colon \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

of Item 1 of Proposition 4.5.1.1.9;

• The Internal Hom. The internal Hom functor

$$\mathbf{Sets}_* : \mathsf{Sets}^{\mathsf{op}}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

of Item 1 of Proposition 4.5.2.1.2;

• The Monoidal Unit. The functor

$$\mathbb{1}^{\mathsf{Sets}_*} \colon \mathsf{pt} \to \mathsf{Sets}_*$$

of Definition 4.5.3.1.1;

• The Associators. The natural isomorphism

$$\alpha^{\mathsf{Sets}_*} : \wedge \circ (\wedge \times \mathrm{id}_{\mathsf{Sets}_*}) \xrightarrow{\sim} \wedge \circ (\mathrm{id}_{\mathsf{Sets}_*} \times \wedge) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Sets}_*,\mathsf{Sets}_*,\mathsf{Sets}_*}$$
of Definition 4.5.4.1.1;

• The Left Unitors. The natural isomorphism

$$\lambda^{\mathsf{Sets}_*} \colon \wedge \circ \left(\mathbb{1}^{\mathsf{Sets}_*} \times \mathrm{id}_{\mathsf{Sets}_*} \right) \stackrel{\sim}{\Longrightarrow} \lambda^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}$$

of Definition 4.5.5.1.1;

• The Right Unitors. The natural isomorphism

$$\rho^{\mathsf{Sets}_*} \colon \wedge \circ \left(\mathsf{id} \times \mathbb{1}^{\mathsf{Sets}_*}\right) \stackrel{\sim}{\Longrightarrow} \rho^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}$$

of Definition 4.5.6.1.1;

• The Symmetry. The natural isomorphism

$$\sigma^{\mathsf{Sets}_*} : \wedge \stackrel{\sim}{\Longrightarrow} \wedge \circ \sigma^{\mathsf{Cats}_2}_{\mathsf{Sets}_*,\mathsf{Sets}_*}$$

of Definition 4.5.7.1.1;

• The Diagonals. The monoidal natural transformation

$$\Delta^{\wedge} \colon \mathrm{id}_{\mathsf{Sets}_*} \Longrightarrow \wedge \circ \Delta^{\mathsf{Cats}_2}_{\mathsf{Sets}_*}$$

of Definition 4.5.8.1.1.

Proof. The Pentagon Identity: Let (W, w_0) , (X, x_0) , (Y, y_0) and (Z, z_0) be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the pentagon identity is satisfied. The Triangle Identity: Let (X, x_0) and (Y, y_0) be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and

and thus we see that the triangle identity is satisfied. The Left Hexagon Identity: Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed

sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the left hexagon identity is satisfied. The Right Hexagon Identity: Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus we see that the right hexagon identity is satisfied. *Monoidal Closedness*: This follows from Item 2 of Proposition 4.5.1.1.9. *Existence of Monoidal Diagonals*: This follows from Items 1 and 2 of Proposition 4.5.8.1.2.

4.5.10 Universal Properties of the Smash Product of Pointed Sets I

Theorem 4.5.10.1.1. The symmetric monoidal structure on the category Sets** is uniquely determined by the following requirements:

1. Two-Sided Preservation of Colimits. The smash product

$$\wedge : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*$$

of Sets, preserves colimits separately in each variable.

2. The Unit Object Is S^0 . We have $\mathbb{1}_{\mathsf{Sets}_*} = S^0$.

Proof. Omitted. \Box

4.5.11 Universal Properties of the Smash Product of Pointed Sets II

OOH5 Theorem 4.5.11.1.1. The symmetric monoidal structure on the category Sets* is the unique symmetric monoidal structure on Sets* such that the free pointed set functor

$$(-)^+ \colon \mathsf{Sets} \to \mathsf{Sets}_*$$

admits a symmetric monoidal structure.

Proof. See [GGN15, Theorem 5.1]. \Box

4.5.12 Monoids With Respect to the Smash Product of Pointed Sets

OOH7 Proposition 4.5.12.1.1. The category of monoids on $(\mathsf{Sets}_*, \wedge, S^0)$ is isomorphic to the category of monoids with zero and morphisms between them.

Proof. See ??, in particular ??, ??, and ??.

4.5.13 Comonoids With Respect to the Smash Product of Pointed Sets

OOH9 Proposition 4.5.13.1.1. The symmetric monoidal functor

$$\Big((-)^+,(-)^{+,\times},(-)^{+,\times}_{\mathbb{1}}\Big)\colon (\mathsf{Sets},\times,\mathsf{pt})\to \Big(\mathsf{Sets}_*,\wedge,S^0\Big),$$

of Item 4 of Proposition 3.4.1.1.2 lifts to an equivalence of categories

$$\begin{aligned} \mathsf{CoMon}\Big(\mathsf{Sets}_*, \wedge, S^0\Big) &\stackrel{^{\mathrm{eq.}}}{\cong} \mathsf{CoMon}(\mathsf{Sets}, \times, \mathrm{pt}) \\ &\cong \mathsf{Sets}. \end{aligned}$$

Proof. See [PS19, Lemma 2.4].

00HA 4.6 Miscellany

00HB 4.6.1 The Smash Product of a Family of Pointed Sets Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.

00HC Definition 4.6.1.1.1. The smash product of the family $\{(X_i, x_0^i)\}_{i \in I}$ is the pointed set $\bigwedge_{i \in I} X_i$ consisting of:

• The Underlying Set. The set $\bigwedge_{i\in I} X_i$ defined by

$$\bigwedge_{i \in I} X_i \stackrel{\text{def}}{=} \left(\prod_{i \in I} X_i\right) / \sim,$$

where \sim is the equivalence relation on $\prod_{i \in I} X_i$ obtained by declaring

$$(x_i)_{i\in I} \sim (y_i)_{i\in I}$$

if there exist $i_0 \in I$ such that $x_{i_0} = x_0$ and $y_{i_0} = y_0$, for each $(x_i)_{i \in I}, (y_i)_{i \in I} \in \prod_{i \in I} X_i$.

• The Basepoint. The element $[(x_0)_{i\in I}]$ of $\bigwedge_{i\in I} X_i$.

Appendices

4.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Part II Relations

Chapter 5

Relations

- **00HD** This chapter contains some material about relations. Notably, we discuss and explore:
 - 1. The definition of relations (Section 5.1.1).
 - 2. How relations may be viewed as decategorification of profunctors (Section 5.1.2).
 - 3. The various kind of categories that relations form, namely:
 - (a) A category (Section 5.2.1).
 - (b) A monoidal category (Section 5.2.2).
 - (c) A 2-category (Section 5.2.3).
 - (d) A double category (Section 5.2.4).
 - 4. The various categorical properties of the 2-category of relations, including:
 - (a) The self-duality of Rel and Rel (Proposition 5.3.1.1.1).
 - (b) Identifications of equivalences and isomorphisms in **Rel** with bijections (Proposition 5.3.2.1.1).
 - (c) Identifications of adjunctions in **Rel** with functions (Proposition 5.3.3.1.1).
 - (d) Identifications of monads in **Rel** with preorders (Proposition 5.3.4.1.1).
 - (e) Identifications of comonads in **Rel** with subsets (Proposition 5.3.5.1.1).
 - (f) A description of the monoids and comonoids in **Rel** with respect to the Cartesian product (Remark 5.3.6.1.1).
 - (g) Characterisations of monomorphisms in Rel (Proposition 5.3.7.1.1).

- (h) Characterisations of 2-categorical notions of monomorphisms in **Rel** (Proposition 5.3.8.1.1).
- (i) Characterisations of epimorphisms in Rel (Proposition 5.3.9.1.1).
- (j) Characterisations of 2-categorical notions of epimorphisms in **Rel** (Proposition 5.3.10.1.1).
- (k) The partial co/completeness of Rel (Proposition 5.3.11.1.1).
- (l) The existence or non-existence of Kan extensions and Kan lifts in Rel (Remark 5.3.12.1.1).
- (m) The closedness of **Rel** (Proposition 5.3.13.1.1).
- (n) The identification of **Rel** with the category of free algebras of the powerset monad on **Sets** (Proposition 5.3.14.1.1).
- 5. A description of two notions of "skew composition" on $\mathbf{Rel}(A, B)$, giving rise to left and right skew monoidal structures analogous to the left skew monoidal structure on $\mathsf{Fun}(C, \mathcal{D})$ appearing in the definition of a relative monad (Sections 5.4 and 5.5).

Contents

5.1	Relations			
	5.1.1	Foundations		
	5.1.2	Relations as Decategorifications of Profunc-		
tors				
	5.1.3	Examples of Relations		
	5.1.4	Functional Relations		
	5.1.5	Total Relations		
5.2	5.2 Categories of Relations2			
	5.2.1	The Category of Relations		
	5.2.2	The Closed Symmetric Monoidal Category		
of Relations				
	5.2.3	The 2-Category of Relations		
	5.2.4	The Double Category of Relations 242		
5.3	Properties of the 2-Category of Relations249			
	5.3.1	Self-Duality		
	5.3.2	Isomorphisms and Equivalences in Rel 250		
	5.3.3	Adjunctions in Rel		
	5.3.4	Monads in Rel		
	5.3.5	Comonads in Rel		
	5.3.6	Co/Monoids in Rel		
	5.3.7	Monomorphisms in Rel		
	5.3.8	2-Categorical Monomorphisms in Rel		

	5.3.9	Epimorphisms in Rel
	5.3.10	2-Categorical Epimorphisms in Rel 264
	5.3.11	Co/Limits in Rel
	5.3.12	Kan Extensions and Kan Lifts in Rel 268
	5.3.13	Closedness of Rel
	5.3.14	Rel as a Category of Free Algebras
5.4	The Le	eft Skew Monoidal Structure on $Rel(A, B)$
269		
	5.4.1	The Left Skew Monoidal Product
	5.4.2	The Left Skew Monoidal Unit
	5.4.3	The Left Skew Associators
	5.4.4	The Left Skew Left Unitors
	5.4.5	The Left Skew Right Unitors
	5.4.6	The Left Skew Monoidal Structure on $\mathbf{Rel}(A,B)$
273		
5.5	The R	ight Skew Monoidal Structure on $\operatorname{Rel}(A,B)$
274		
	5.5.1	The Right Skew Monoidal Product
	5.5.2	The Right Skew Monoidal Unit
	5.5.3	The Right Skew Associators
	5.5.4	The Right Skew Left Unitors
	5.5.5	The Right Skew Right Unitors
	5.5.6	The Right Skew Monoidal Structure on $\mathbf{Rel}(A, B)$
277		
5.A	Other	Chapters278

OOHE 5.1 Relations

00HF 5.1.1 Foundations

Let A and B be sets.

00HG Definition 5.1.1.1.1. A relation $R: A \to B$ from A to $B^{1,2}$ is a subset R of $A \times B$.

00HH Notation 5.1.1.1.2. Let $R: A \rightarrow B$ be a relation.

1. Given elements $a \in A$ and $b \in B$ and a relation $R: A \to B$, we write $a \sim_R b$ to mean $(a,b) \in R$.

¹Further Terminology: Also called a multivalued function from A to B, a relation over A and B, relation on A and B, a binary relation over A and B, or a binary relation on A and B.

² Further Terminology: When A = B, we also call $R \subset A \times A$ a **relation on** A.

00HK 2. Viewing R as a function

$$R: A \times B \to \{\mathsf{t},\mathsf{f}\}$$

via Remark 5.1.1.1.4, we write R_a^b for the value of R at (a,b).

00HL Definition 5.1.1.1.3. Let A and B be sets.

1. The set of relations from A to B is the set $\mathrm{Rel}(A,B)$ defined by

 $Rel(A, B) \stackrel{\text{def}}{=} \{ Relations \text{ from } A \text{ to } B \}.$

00HN 2. The poset of relations from A to B is the poset

$$\mathbf{Rel}(A, B) \stackrel{\text{def}}{=} (\mathrm{Rel}(A, B), \subset)$$

consisting of:

- The Underlying Set. The set Rel(A, B) of Item 1.
- The Partial Order. The partial order

$$\subset$$
: Rel $(A, B) \times \text{Rel}(A, B) \to \{\text{true}, \text{false}\}$

on Rel(A, B) given by inclusion of relations.

3. The category of relations from A to B is the posetal category $\mathbf{Rel}(A,B)$ ⁴ associated to the poset $\mathbf{Rel}(A,B)$ of Item 2 via Definition 8.1.3.1.1.

OOHQ Remark 5.1.1.1.4. A relation from A to B is equivalently:⁵

- 00HR 1. A subset of $A \times B$.
- 00HS 2. A function from $A \times B$ to {true, false}.
- **00HT** 3. A function from A to $\mathcal{P}(B)$.
- **00HU** 4. A function from B to $\mathcal{P}(A)$.
 - 5. A cocontinuous morphism of posets from $(\mathcal{P}(A), \subset)$ to $(\mathcal{P}(B), \subset)$.

00HV

³The choice R_a^b in place of R_b^a is to keep the notation consistent with the notation we will later employ for profunctors.

⁴Here we choose to slightly abuse notation by writing $\mathbf{Rel}(A, B)$ (instead of e.g. $\mathbf{Rel}(A, B)_{\mathsf{pos}}$) for the posetal category of relations from A to B, even though the same notation is used for the poset of relations from A to B.

⁵ Intuition: In particular, we may think of a relation $R: A \to \mathcal{P}(B)$ from A to B as a multivalued function from A to B (including the possibility of a given $a \in A$ having

That is: we have bijections of sets

$$\begin{split} \operatorname{Rel}(A,B) &\stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathcal{P}(A \times B), \\ &\cong \operatorname{Hom}_{\mathsf{Sets}}(A \times B, \{\mathsf{true}, \mathsf{false}\}), \\ &\cong \operatorname{Hom}_{\mathsf{Sets}}(A, \mathcal{P}(B)), \\ &\cong \operatorname{Hom}_{\mathsf{Sets}}(B, \mathcal{P}(A)), \\ &\cong \operatorname{Hom}_{\mathsf{Pos}}^{\mathsf{cocont}}(\mathcal{P}(A), \mathcal{P}(B)), \end{split}$$

natural in $A, B \in \text{Obj}(\mathsf{Sets})$.

Proof. We claim that Items 1 to 5 are indeed equivalent:

- Item $1 \iff Item \ 2$: This is a special case of Items 1 and 2 of Proposition 2.4.3.1.6.
- Item $2 \iff$ Item 3: This follows from the bijections

$$\operatorname{Hom}_{\mathsf{Sets}}(A \times B, \{\mathsf{true}, \mathsf{false}\}) \cong \operatorname{Hom}_{\mathsf{Sets}}(A, \operatorname{Hom}_{\mathsf{Sets}}(B, \{\mathsf{true}, \mathsf{false}\}))$$

$$\cong \operatorname{Hom}_{\mathsf{Sets}}(A, \mathcal{P}(B)),$$

where the last bijection is from Items 1 and 2 of Proposition 2.4.3.1.6.

• Item $2 \iff$ Item 4: This follows from the bijections

$$\begin{aligned} \operatorname{Hom}_{\mathsf{Sets}}(A \times B, \{\mathsf{true}, \mathsf{false}\}) &\cong \operatorname{Hom}_{\mathsf{Sets}}(B, \mathsf{Hom}_{\mathsf{Sets}}(B, \{\mathsf{true}, \mathsf{false}\})) \\ &\cong \operatorname{Hom}_{\mathsf{Sets}}(B, \mathcal{P}(A)), \end{aligned}$$

where again the last bijection is from Items 1 and 2 of Proposition 2.4.3.1.6.

• Item $2 \iff Item 5$: This follows from the universal property of the powerset $\mathcal{P}(X)$ of a set X as the free cocompletion of X via the characteristic embedding

$$\chi_X \colon X \hookrightarrow \mathcal{P}(X)$$

of X into $\mathcal{P}(X)$, Item 2 of Proposition 2.4.3.1.8.

In particular, the bijection

$$\operatorname{Rel}(A, B) \cong \operatorname{Hom}_{\mathsf{Pos}}^{\mathsf{cocont}}(\mathcal{P}(A), \mathcal{P}(B))$$

is given by taking a relation $R: A \to B$, passing to its associated function $f: A \to \mathcal{P}(B)$ from A to B and then extending f from A to all of $\mathcal{P}(A)$ by taking its left Kan extension along χ_X .

This coincides with the direct image function $f_*: \mathcal{P}(A) \to \mathcal{P}(B)$ of Definition 2.4.4.1.1.

This finishes the proof.

OOHW Proposition 5.1.1.1.5. Let A and B be sets and let $R, S: A \rightarrow B$ be relations.

00HX 1. End Formula for the Set of Inclusions of Relations. We have

$$\operatorname{Hom}_{\mathbf{Rel}(A,B)}(R,S) \cong \int_{a \in A} \int_{b \in B} \operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(R_a^b, S_a^b \right).$$

Proof. Item 1, End Formula for the Set of Inclusions of Relations: Unwinding the expression inside the end on the right hand side, we have

$$\int_{a\in A}\int_{b\in B}\operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}\Big(R_a^b,S_a^b\Big)\cong\begin{cases} \operatorname{pt} & \text{if, for each }a\in A\text{ and each }b\in B,\\ & \text{we have }\operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}\Big(R_a^b,S_a^b\Big)\cong\operatorname{pt}\\ \emptyset & \text{otherwise.} \end{cases}$$

Since we have $\operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}\Big(R_a^b,S_a^b\Big)=\{\mathsf{true}\}\cong \mathsf{pt} \text{ exactly when } R_a^b=\mathsf{false}$ or $R_a^b=S_a^b=\mathsf{true},$ we get

$$\int_{a\in A}\int_{b\in B}\operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}\Big(R_a^b,S_a^b\Big)\cong \begin{cases} \operatorname{pt} & \text{if, for each }a\in A \text{ and each }b\in B,\\ & \text{if }a\sim_R b, \text{ then }a\sim_S b,\\ \emptyset & \text{otherwise.} \end{cases}$$

On the left hand-side, we have

$$\operatorname{Hom}_{\mathbf{Rel}(A,B)}(R,S) \cong \begin{cases} \operatorname{pt} & \text{if } R \subset S, \\ \emptyset & \text{otherwise.} \end{cases}$$

It is then clear that the conditions for each set to evaluate to pt (up to isomorphism) are equivalent, implying that those two sets are isomorphic.

OOHY 5.1.2 Relations as Decategorifications of Profunctors

- **QOHZ** Remark 5.1.2.1.1. The notion of a relation is a decategorification of that of a profunctor:
 - 1. A profunctor from a category \mathcal{C} to a category \mathcal{D} is a functor

$$\mathfrak{p} \colon \mathcal{D}^{\mathsf{op}} \times C \to \mathsf{Sets}.$$

2. A relation on sets A and B is a function

$$R \colon A \times B \to \{\mathsf{true}, \mathsf{false}\}.$$

Here we notice that:

• The opposite X^{op} of a set X is itself, as $(-)^{op}$: Cats \to Cats restricts to the identity endofunctor on Sets.

- The values that profunctors and relations take are analogous:
 - A category is enriched over the category

$$\mathsf{Sets} \stackrel{\mathrm{def}}{=} \mathsf{Cats}_0$$

of sets, with profunctors taking values on it.

- A set is enriched over the set

$$\{\mathsf{true},\mathsf{false}\} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \mathsf{Cats}_{-1}$$

of classical truth values, with relations taking values on it.

- **Remark 5.1.2.1.2.** Extending Remark 5.1.2.1.1, the equivalent definitions of relations in Remark 5.1.1.1.4 are also related to the corresponding ones for profunctors (??), which state that a profunctor $\mathfrak{p}: \mathcal{C} \to \mathcal{D}$ is equivalently:
- 00J1 1. A functor $\mathfrak{p} \colon \mathcal{D}^{\mathsf{op}} \times \mathcal{C} \to \mathsf{Sets}$.
- 00J2 2. A functor $\mathfrak{p} \colon \mathcal{C} \to \mathsf{PSh}(\mathcal{D})$.
- 00J3 3. A functor $\mathfrak{p} \colon \mathcal{D}^{\mathsf{op}} \to \mathsf{Fun}(C,\mathsf{Sets})$.
- 00J4 4. A colimit-preserving functor $\mathfrak{p} \colon \mathsf{PSh}(C) \to \mathsf{PSh}(\mathcal{D})$.

Indeed:

• The equivalence between Items 1 and 2 (and also that between Items 1 and 3, which is proved analogously) is an instance of currying, both for profunctors as well as for relations, using the isomorphisms

$$\begin{split} \mathsf{Sets}(A \times B, \{\mathsf{true}, \mathsf{false}\}) &\cong \mathsf{Sets}(A, \mathsf{Sets}(B, \{\mathsf{true}, \mathsf{false}\})) \\ &\cong \mathsf{Sets}(A, \mathcal{P}(B)), \\ \mathsf{Fun}(\mathcal{D}^\mathsf{op} \times \mathcal{D}, \mathsf{Sets}) &\cong \mathsf{Fun}(C, \mathsf{Fun}(\mathcal{D}^\mathsf{op}, \mathsf{Sets})) \\ &\cong \mathsf{Fun}(C, \mathsf{PSh}(\mathcal{D})). \end{split}$$

• The equivalence between Items 1 and 3 follows from the universal properties of:

no value at all).

- The powerset $\mathcal{P}(X)$ of a set X as the free cocompletion of X via the characteristic embedding

$$\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$$

of X into $\mathcal{P}(X)$, as stated and proved in Item 2 of Proposition 2.4.3.1.8.

– The category $\mathsf{PSh}(C)$ of presheaves on a category C as the free cocompletion of C via the Yoneda embedding

$$\sharp : C \hookrightarrow \mathsf{PSh}(C)$$

of C into PSh(C), as stated and proved in ?? of ??.

00J5 5.1.3 Examples of Relations

- 00J6 Example 5.1.3.1.1. The trivial relation on A and B is the relation \sim_{triv} defined equivalently as follows:
 - 1. As a subset of $A \times B$, we have

$$\sim_{\mathrm{triv}} \stackrel{\text{def}}{=} A \times B.$$

2. As a function from $A \times B$ to {true, false}, the relation \sim_{triv} is the constant function

$$\Delta_{\mathsf{true}} \colon A \times B \to \{\mathsf{true}, \mathsf{false}\}$$

from $A \times B$ to $\{\text{true}, \text{false}\}\$ taking the value true.

3. As a function from A to $\mathcal{P}(B)$, the relation \sim_{triv} is the function

$$\Delta_{\mathsf{true}} \colon A \to \mathcal{P}(B)$$

defined by

$$\Delta_{\mathsf{true}}(a) \stackrel{\scriptscriptstyle \mathrm{def}}{=} B$$

for each $a \in A$.

- 4. Lastly, it is the unique relation R on A and B such that we have $a \sim_R b$ for each $a \in A$ and each $b \in B$.
- **Example 5.1.3.1.2.** The **cotrivial relation on** A **and** B is the relation \sim_{cotriv} defined equivalently as follows:
 - 1. As a subset of $A \times B$, we have

$$\sim_{\mathrm{cotriv}} \stackrel{\mathrm{def}}{=} \emptyset.$$

2. As a function from $A \times B$ to {true, false}, the relation \sim_{cotriv} is the constant function

$$\Delta_{\mathsf{false}} \colon A \times B \to \{\mathsf{true}, \mathsf{false}\}$$

from $A \times B$ to {true, false} taking the value false.

3. As a function from A to $\mathcal{P}(B)$, the relation \sim_{cotriv} is the function

$$\Delta_{\mathsf{false}} \colon A \to \mathcal{P}(B)$$

defined by

$$\Delta_{\mathsf{false}}(a) \stackrel{\scriptscriptstyle \mathrm{def}}{=} \emptyset$$

for each $a \in A$.

- 4. Lastly, it is the unique relation R on A and B such that we have $a \nsim_R b$ for each $a \in A$ and each $b \in B$.
- 00J8 Example 5.1.3.1.3. The characteristic relation

$$\chi_X(-1,-2): X \times X \to \{\mathsf{t},\mathsf{f}\}$$

on X of Item 3 of Definition 2.4.1.1.1, defined by

$$\chi_X(x,y) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x = y, \\ \text{false} & \text{if } x \neq y \end{cases}$$

for each $x, y \in X$, is another example of a relation.

- **00J9 Example 5.1.3.1.4.** Square roots are examples of relations:
 - 1. Square Roots in \mathbb{R} . The assignment $x \mapsto \sqrt{x}$ defines a relation

$$\sqrt{-}\colon \mathbb{R} \to \mathcal{P}(\mathbb{R})$$

from \mathbb{R} to itself, being explicitly given by

$$\sqrt{x} \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } x = 0, \\ \left\{ -\sqrt{|x|}, \sqrt{|x|} \right\} & \text{if } x \neq 0. \end{cases}$$

2. Square Roots in \mathbb{Q} . Square roots in \mathbb{Q} are similar to square roots in \mathbb{R} , though now additionally it may also occur that $\sqrt{-}: \mathbb{Q} \to \mathcal{P}(\mathbb{Q})$ sends a rational number x (e.g. 2) to the empty set (since $\sqrt{2} \notin \mathbb{Q}$).

00JA Example 5.1.3.1.5. The complex logarithm defines a relation

$$\log \colon \mathbb{C} \to \mathcal{P}(\mathbb{C})$$

from \mathbb{C} to itself, where we have

$$\log(a+bi) \stackrel{\text{def}}{=} \left\{ \log\left(\sqrt{a^2+b^2}\right) + i\arg(a+bi) + (2\pi i)k \mid k \in \mathbb{Z} \right\}$$

for each $a + bi \in \mathbb{C}$.

Example 5.1.3.1.6. See [Wik24] for more examples of relations, such as antiderivation, inverse trigonometric functions, and inverse hyperbolic functions.

00JC 5.1.4 Functional Relations

Let A and B be sets.

- **Definition 5.1.4.1.1.** A relation $R: A \rightarrow B$ is **functional** if, for each $a \in A$, the set R(a) is either empty or a singleton.
- **OUTE** Proposition 5.1.4.1.2. Let $R: A \to B$ be a relation.
- **00JF** 1. Characterisations. The following conditions are equivalent:
- **00JG** (a) The relation R is functional.
- 00JH (b) We have $R \diamond R^{\dagger} \subset \chi_B$.

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed equivalent:

• Item 1a \Longrightarrow Item 1b: Let $(b,b') \in B \times B$. We need to show that

$$[R \diamond R^{\dagger}](b,b') \preceq_{\{\mathsf{t},\mathsf{f}\}} \chi_B(b,b'),$$

i.e. that if there exists some $a \in A$ such that $b \sim_{R^{\dagger}} a$ and $a \sim_R b'$, then b = b'. But since $b \sim_{R^{\dagger}} a$ is the same as $a \sim_R b$, we have both $a \sim_R b$ and $a \sim_R b'$ at the same time, which implies b = b' since R is functional.

- Item $1b \Longrightarrow Item \ 1a$: Suppose that we have $a \sim_R b$ and $a \sim_R b'$ for $b, b' \in B$. We claim that b = b':
 - 1. Since $a \sim_R b$, we have $b \sim_{R^{\dagger}} a$.
 - 2. Since $R \diamond R^{\dagger} \subset \chi_B$, we have

$$\left[R \diamond R^{\dagger}\right](b,b') \preceq_{\{\mathsf{t},\mathsf{f}\}} \chi_B(b,b'),$$

and since $b \sim_{R^{\dagger}} a$ and $a \sim_{R} b'$, it follows that $\left[R \diamond R^{\dagger}\right](b,b') =$ true, and thus $\chi_{B}(b,b') =$ true as well, i.e. b = b'.

This finishes the proof.

00JJ 5.1.5 Total Relations

Let A and B be sets.

Definition 5.1.5.1.1. A relation $R: A \to B$ is **total** if, for each $a \in A$, we have $R(a) \neq \emptyset$.

QUIL Proposition 5.1.5.1.2. Let $R: A \to B$ be a relation.

00JM 1. Characterisations. The following conditions are equivalent:

00JN (a) The relation R is total.

00JP (b) We have $\chi_A \subset R^{\dagger} \diamond R$.

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed equivalent:

• Item 1a \Longrightarrow Item 1b: We have to show that, for each $(a, a') \in A$, we have

$$\chi_A(a,a') \preceq_{\{\mathsf{t},\mathsf{f}\}} \left[R^{\dagger} \diamond R \right] (a,a'),$$

i.e. that if a=a', then there exists some $b \in B$ such that $a \sim_R b$ and $b \sim_{R^{\dagger}} a'$ (i.e. $a \sim_R b$ again), which follows from the totality of R.

• Item 1b \Longrightarrow Item 1a: Given $a \in A$, since $\chi_A \subset R^{\dagger} \diamond R$, we must have

$$\{a\} \subset \left[R^{\dagger} \diamond R\right](a),$$

implying that there must exist some $b \in B$ such that $a \sim_R b$ and $b \sim_{R^{\dagger}} a$ (i.e. $a \sim_R b$) and thus $R(a) \neq \emptyset$, as $b \in R(a)$.

This finishes the proof.

00J0 5.2 Categories of Relations

00JR 5.2.1 The Category of Relations

OOJS Definition 5.2.1.1.1. The category of relations is the category Rel where

- Objects. The objects of Rel are sets.
- Morphisms. For each $A, B \in \text{Obj}(\mathsf{Sets})$, we have

$$Rel(A, B) \stackrel{\text{def}}{=} Rel(A, B).$$

• Identities. For each $A \in \text{Obj}(Rel)$, the unit map

$$\mathbb{1}_A^{\mathsf{Rel}} \colon \mathsf{pt} \to \mathsf{Rel}(A,A)$$

of Rel at A is defined by

$$\operatorname{id}_A^{\mathsf{Rel}} \stackrel{\text{def}}{=} \chi_A(-1, -2),$$

where $\chi_A(-1, -2)$ is the characteristic relation of A of Item 3 of Definition 2.4.1.1.1.

• Composition. For each $A, B, C \in \text{Obj}(\mathsf{Rel})$, the composition map

$$\circ_{A,B,C}^{\mathsf{Rel}} \colon \mathrm{Rel}(B,C) \times \mathrm{Rel}(A,B) \to \mathrm{Rel}(A,C)$$

of Rel at (A, B, C) is defined by

$$S \circ_{A,B,C}^{\mathsf{Rel}} R \stackrel{\scriptscriptstyle \mathsf{def}}{=} S \diamond R$$

for each $(S, R) \in \text{Rel}(B, C) \times \text{Rel}(A, B)$, where $S \diamond R$ is the composition of S and R of Definition 6.3.12.1.1.

- 5.2.2 The Closed Symmetric Monoidal Category of Rela-
- 00JU 5.2.2.1 The Monoidal Product
- **OOJV** Definition 5.2.2.1.1. The monoidal product of Rel is the functor

$$\times \colon \mathsf{Rel} \times \mathsf{Rel} \to \mathsf{Rel}$$

where

• Action on Objects. For each $A, B \in \text{Obj}(Rel)$, we have

$$\times (A, B) \stackrel{\text{def}}{=} A \times B,$$

where $A \times B$ is the Cartesian product of sets of Definition 2.1.3.1.1.

• Action on Morphisms. For each $(A, C), (B, D) \in \text{Obj}(\mathsf{Rel} \times \mathsf{Rel}),$ the action on morphisms

$$\times_{(A,C),(B,D)} \colon \operatorname{Rel}(A,B) \times \operatorname{Rel}(C,D) \to \operatorname{Rel}(A \times C, B \times D)$$

of \times is given by sending a pair of morphisms (R, S) of the form

$$R: A \to B$$

$$S \colon C \to D$$

to the relation

$$R \times S \colon A \times C \to B \times D$$

of Definition 6.3.9.1.1.

00JW 5.2.2.2 The Monoidal Unit

OOJX Definition 5.2.2.2.1. The monoidal unit of Rel is the functor

$$\mathbb{1}^{\mathsf{Rel}} \colon \mathrm{pt} \to \mathsf{Rel}$$

picking the set

$$\mathbb{1}_{\mathsf{Rel}} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \mathrm{pt}$$

of Rel.

00JY 5.2.2.3 The Associator

OOJZ Definition 5.2.2.3.1. The **associator of** Rel is the natural isomorphism

$$\alpha^{\mathsf{Rel}} : \times \circ ((\times) \times \mathsf{id}) \stackrel{\sim}{\Longrightarrow} \times \circ (\mathsf{id} \times (\times)) \circ \alpha^{\mathsf{Cats}}_{\mathsf{Rel},\mathsf{Rel},\mathsf{Rel}}$$

as in the diagram

whose component

$$\alpha_{A,B,C}^{\mathsf{Rel}} \colon (A \times B) \times C \twoheadrightarrow A \times (B \times C)$$

at $A, B, C \in \text{Obj}(\mathsf{Rel})$ is the relation defined by declaring

$$((a,b),c) \sim_{\alpha_{A,B,C}^{\mathsf{Rel}}} \left(a', \left(b',c'\right)\right)$$

iff a = a', b = b', and c = c'.

00K0 5.2.2.4 The Left Unitor

OOK1 Definition 5.2.2.4.1. The left unitor of Rel is the natural isomorphism

$$\lambda^{\mathsf{Rel}} : \times \circ \left(\mathbb{1}^{\mathsf{Rel}} \times \mathsf{id} \right) \overset{\sim}{\Longrightarrow} \lambda^{\mathsf{Cats}_2}_{\mathsf{Rel}},$$

$$\lambda^{\mathsf{Rel}} : \times \circ \left(\mathbb{1}^{\mathsf{Rel}} \times \mathsf{id} \right) \overset{\sim}{\Longrightarrow} \lambda^{\mathsf{Cats}_2}_{\mathsf{Rel}},$$

whose component

$$\lambda_A^{\mathsf{Rel}} \colon \mathbb{1}_{\mathsf{Rel}} \times A \xrightarrow{} A$$

at A is defined by declaring

$$(\star,a)\sim_{\lambda_A^{\mathsf{Rel}}} b$$

iff a = b.

00K2 5.2.2.5 The Right Unitor

OOK3 Definition 5.2.2.5.1. The **right unitor of** Rel is the natural isomorphism

whose component

$$\rho_A^{\mathsf{Rel}} \colon A \times \mathbb{1}_{\mathsf{Rel}} \to A$$

at A is defined by declaring

$$(a,\star)\sim_{\rho_{A}^{\mathsf{Rel}}} b$$

iff a = b.

00K4 5.2.2.6 The Symmetry

OOK5 Definition 5.2.2.6.1. The symmetry of Rel is the natural isomorphism

whose component

$$\sigma_{A,B}^{\mathsf{Rel}} \colon A \times B \to B \times A$$

at (A, B) is defined by declaring

$$(a,b) \sim_{\sigma_{A,B}^{\mathsf{Rel}}} (b',a')$$

iff a = a' and b = b'.

00K6 5.2.2.7 The Internal Hom

00K7 Definition 5.2.2.7.1. The internal Hom of Rel is the functor

$$Rel \colon Rel^{op} \times Rel \to Rel$$

defined

- On objects by sending $A, B \in \text{Obj}(\mathsf{Rel})$ to the set Rel(A, B) of Item 1 of Definition 5.1.1.1.3.
- On morphisms by pre/post-composition defined as in Definition 6.3.12.1.1.
- **OOK8** Proposition 5.2.2.7.2. Let $A, B, C \in \text{Obj}(\mathsf{Rel})$.
- 00K9 1. Adjointness. We have adjunctions

$$(A \times - \dashv \operatorname{Rel}(A, -)) \colon \operatorname{Rel} \underbrace{\bot}_{\operatorname{Rel}(A, -)}^{A \times -} \operatorname{Rel},$$

$$(- \times B \dashv \operatorname{Rel}(B, -)) \colon \operatorname{Rel} \underbrace{\bot}_{\operatorname{Rel}(B, -)}^{- \times B} \operatorname{Rel},$$

witnessed by bijections

$$\operatorname{Rel}(A \times B, C) \cong \operatorname{Rel}(A, \operatorname{Rel}(B, C)),$$

 $\operatorname{Rel}(A \times B, C) \cong \operatorname{Rel}(B, \operatorname{Rel}(A, C)),$

natural in $A, B, C \in \text{Obj}(Rel)$.

Proof. Item 1, Adjointness: Indeed, we have

$$\begin{split} \operatorname{Rel}(A \times B, C) &\stackrel{\text{\tiny def}}{=} \operatorname{Sets}(A \times B \times C, \{\operatorname{true}, \operatorname{false}\}) \\ &\stackrel{\text{\tiny def}}{=} \operatorname{Rel}(A, B \times C) \\ &\stackrel{\text{\tiny def}}{=} \operatorname{Rel}(A, \operatorname{Rel}(B, C)), \end{split}$$

and similarly for the bijection $\operatorname{Rel}(A \times B, C) \cong \operatorname{Rel}(B, \operatorname{Rel}(A, C))$. \square

- 00KA 5.2.2.8 The Closed Symmetric Monoidal Category of Relations
- 00KB Proposition 5.2.2.8.1. The category Rel admits a closed symmetric monoidal category structure consisting of⁶

 $^{^6}$ Warning: This is not a Cartesian monoidal structure, as the product on Rel is in fact given by the disjoint union of sets; see ??.

- The Underlying Category. The category Rel of sets and relations of Definition 5.2.1.1.1.
- The Monoidal Product. The functor

$$\times \colon \mathrm{Rel} \times \mathrm{Rel} \to \mathrm{Rel}$$

of Definition 5.2.2.1.1.

• The Internal Hom. The internal Hom functor

$$\mathbf{Rel} \colon \mathrm{Rel}^\mathsf{op} \times \mathrm{Rel} \to \mathrm{Rel}$$

of Definition 5.2.2.7.1.

• The Monoidal Unit. The functor

$$\mathbb{1}^{\mathrm{Rel}} \colon \mathsf{pt} \to \mathrm{Rel}$$

of Definition 5.2.2.2.1.

• The Associators. The natural isomorphism

$$\alpha^{\mathrm{Rel}} \colon \times \circ (\times \times \mathrm{id}_{\mathrm{Rel}}) \stackrel{\sim}{\Longrightarrow} \times \circ (\mathrm{id}_{\mathrm{Rel}} \times \times) \circ \pmb{\alpha}^{\mathsf{Cats}}_{\mathrm{Rel},\mathrm{Rel},\mathrm{Rel}}$$

of Definition 5.2.2.3.1.

• The Left Unitors. The natural isomorphism

$$\lambda^{\mathrm{Rel}} \colon \times \circ \left(\mathbb{1}^{\mathrm{Rel}} \times \mathrm{id}_{\mathrm{Rel}} \right) \stackrel{\sim}{\Longrightarrow} \boldsymbol{\lambda}_{\mathrm{Rel}}^{\mathsf{Cats_2}}$$

of Definition 5.2.2.4.1.

• The Right Unitors. The natural isomorphism

$$ho^{\mathrm{Rel}} \colon imes \circ \left(\mathsf{id} imes \mathbb{1}^{\mathrm{Rel}}
ight) \stackrel{\sim}{\Longrightarrow} oldsymbol{
ho}_{\mathrm{Rel}}^{\mathsf{Cats}_2}$$

of Definition 5.2.2.5.1.

• The Symmetry. The natural isomorphism

$$\sigma^{\mathrm{Rel}} \colon \times \stackrel{\sim}{\Longrightarrow} \times \circ \sigma^{\mathsf{Cats}_2}_{\mathrm{Rel},\mathrm{Rel}}$$

of Definition 5.2.2.6.1.

Proof. Omitted.

END TEXTDBEND

00KC 5.2.3 The 2-Category of Relations

- **Definition 5.2.3.1.1.** The 2-category of relations is the locally posetal 2-category **Rel** where
 - Objects. The objects of **Rel** are sets.
 - **Hom**-Objects. For each $A, B \in \text{Obj}(\mathsf{Sets})$, we have

$$\operatorname{Hom}_{\mathbf{Rel}}(A,B) \stackrel{\text{def}}{=} \mathbf{Rel}(A,B) \stackrel{\text{def}}{=} (\operatorname{Rel}(A,B),\subset).$$

• *Identities*. For each $A \in \text{Obj}(\mathbf{Rel})$, the unit map

$$\mathbb{1}_A^{\mathsf{Rel}} \colon \mathrm{pt} \to \mathbf{Rel}(A,A)$$

of **Rel** at A is defined by

$$\mathrm{id}_A^{\mathsf{Rel}} \stackrel{\mathrm{def}}{=} \chi_A(-_1, -_2),$$

where $\chi_A(-1, -2)$ is the characteristic relation of A of Item 3 of Definition 2.4.1.1.1.

• Composition. For each $A, B, C \in \text{Obj}(\mathbf{Rel})$, the composition map⁷

$$\circ^{\mathsf{Rel}}_{ABC} \colon \mathbf{Rel}(B,C) \times \mathbf{Rel}(A,B) \to \mathbf{Rel}(A,C)$$

of **Rel** at (A, B, C) is defined by

$$S \circ_{A.B.C}^{\mathbf{Rel}} R \stackrel{\mathrm{def}}{=} S \diamond R$$

for each $(S, R) \in \mathbf{Rel}(B, C) \times \mathbf{Rel}(A, B)$, where $S \diamond R$ is the composition of S and R of Definition 6.3.12.1.1.

- 00KE 5.2.4 The Double Category of Relations
- **00KF** 5.2.4.1 The Double Category of Relations
- **OOKG** Definition 5.2.4.1.1. The double category of relations is the locally posetal double category Rel^{dbl} where
 - Objects. The objects of Rel^{dbl} are sets.

$$R_1 \subset R_2$$
,

$$S_1 \subset S_2$$
,

⁷Note that this is indeed a morphism of posets: given relations $R_1, R_2 \in \mathbf{Rel}(A, B)$ and $S_1, S_2 \in \mathbf{Rel}(B, C)$ such that

- Vertical Morphisms. The vertical morphisms of $\mathsf{Rel}^\mathsf{dbl}$ are maps of sets $f \colon A \to B$.
- Horizontal Morphisms. The horizontal morphisms of Rel^{dbl} are relations $R\colon A\to X$.
- 2-Morphisms. A 2-cell

$$\begin{array}{ccc}
A & \xrightarrow{R} & B \\
\downarrow & & \downarrow & \downarrow g \\
\downarrow & & \downarrow & \downarrow g \\
X & \xrightarrow{G} & Y
\end{array}$$

of $\mathsf{Rel}^\mathsf{dbl}$ is either non-existent or an inclusion of relations of the form

$$\begin{array}{cccc} & A\times B \stackrel{R}{\longrightarrow} \{\mathsf{true},\mathsf{false}\} \\ R\subset S\circ (f\times g), & f\times g & & & & \downarrow \mathsf{id}_{\{\mathsf{true},\mathsf{false}\}} \\ & & X\times Y \stackrel{}{\longrightarrow} \{\mathsf{true},\mathsf{false}\}. \end{array}$$

- *Horizontal Identities*. The horizontal unit functor of Rel^{dbl} is the functor of Definition 5.2.4.2.1.
- Vertical Identities. For each $A \in \text{Obj}(\mathsf{Rel}^\mathsf{dbl})$, we have

$$\mathrm{id}_A^{\mathsf{Rel}^{\mathsf{dbl}}} \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathrm{id}_A.$$

• Identity 2-Morphisms. For each horizontal morphism $R\colon A\to B$ of $\mathsf{Rel}^\mathsf{dbl}$, the identity 2-morphism

$$\begin{array}{ccc}
A & \xrightarrow{R} & B \\
\downarrow^{\operatorname{id}_{A}} & \parallel^{\operatorname{id}_{R}} & \downarrow^{\operatorname{id}_{B}} \\
A & \xrightarrow{R} & B
\end{array}$$

of R is the identity inclusion

- Horizontal Composition. The horizontal composition functor of Rel^{dbl} is the functor of Definition 5.2.4.3.1.
- Vertical Composition of 1-Morphisms. For each composable pair $A \xrightarrow{F} B \xrightarrow{G} C$ of vertical morphisms of $\mathsf{Rel}^\mathsf{dbl}$, i.e. maps of sets, we have

$$g \circ^{\mathsf{Rel}^{\mathsf{dbl}}} f \stackrel{\mathrm{def}}{=} g \circ f.$$

- Vertical Composition of 2-Morphisms. The vertical composition of 2-morphisms in Rel^{dbl} is defined as in Definition 5.2.4.4.1.
- Associators. The associators of $\mathsf{Rel}^\mathsf{dbl}$ is defined as in Definition 5.2.4.5.1.
- Left Unitors. The left unitors of Rel^{dbl} is defined as in Definition 5.2.4.6.1.
- Right Unitors. The right unitors of Rel^{dbl} is defined as in Definition 5.2.4.7.1.

00KH 5.2.4.2 Horizontal Identities

OOKJ Definition 5.2.4.2.1. The **horizontal unit functor** of Rel^{dbl} is the functor

$$\mathbb{1}^{\mathsf{Rel}^\mathsf{dbl}} \colon \mathsf{Rel}_0^\mathsf{dbl} o \mathsf{Rel}_1^\mathsf{dbl}$$

of Rel^{dbl} is the functor where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Rel}_0^{\mathsf{dbl}})$, we have

$$\mathbb{1}_A \stackrel{\text{def}}{=} \chi_A(-_1, -_2).$$

• Action on Morphisms. For each vertical morphism $f: A \to B$ of $\mathsf{Rel}^\mathsf{dbl}$, i.e. each map of sets f from A to B, the identity 2-morphism

$$\begin{array}{c|c} A & \stackrel{\mathbb{1}_A}{\longrightarrow} & A \\ \downarrow & & \parallel & \downarrow \\ f \downarrow & & \mathbb{1}_f & \downarrow f \\ & \downarrow & & \downarrow & \downarrow \\ B & \stackrel{\mathbb{1}_B}{\longrightarrow} & B \end{array}$$

of f is the inclusion

$$A\times A \xrightarrow{\chi_A(-_1,-_2)} \{\mathsf{true},\mathsf{false}\}$$

$$\chi_B\circ (f\times f)\subset \chi_A, \quad f\times f \qquad \qquad \qquad \bigcup_{\mathrm{id}_{\{\mathsf{true},\mathsf{false}\}}} \\ B\times B \xrightarrow{\chi_B(-_1,-_2)} \{\mathsf{true},\mathsf{false}\}$$

of Item 1 of Proposition 2.4.1.1.3.

00KK 5.2.4.3 Horizontal Composition

Definition 5.2.4.3.1. The **horizontal composition functor** of Rel^{dbl} is the functor

$$\odot^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathsf{Rel}_1^{\mathsf{dbl}} \underset{\mathsf{Rel}_0^{\mathsf{dbl}}}{\times} \mathsf{Rel}_1^{\mathsf{dbl}} \to \mathsf{Rel}_1^{\mathsf{dbl}}$$

of Rel^{dbl} is the functor where

• Action on Objects. For each composable pair $A \overset{R}{\to} B \overset{S}{\to} C$ of horizontal morphisms of $\mathsf{Rel}^\mathsf{dbl}$, we have

$$S \odot R \stackrel{\text{def}}{=} S \diamond R$$
,

where $S \diamond R$ is the composition of R and S of Definition 6.3.12.1.1.

• Action on Morphisms. For each horizontally composable pair

of 2-morphisms of $\mathsf{Rel}^\mathsf{dbl}$, i.e. for each pair

of inclusions of relations, the horizontal composition

$$\begin{array}{ccc}
A & \xrightarrow{S \odot R} & C \\
\downarrow & & \parallel & \downarrow \\
f \downarrow & \beta \odot \alpha & \downarrow h \\
X & \xrightarrow{V \odot T} & Z
\end{array}$$

of α and β is the inclusion of relations⁸

$$\begin{array}{c|c} A\times C & \xrightarrow{S\diamond R} & \{\mathsf{true},\mathsf{false}\} \\ (U\diamond T)\circ (f\times h)\subset (S\diamond R) & & f\times h \downarrow & & & \downarrow \mathrm{id}_{\{\mathsf{true},\mathsf{false}\}} \\ & & X\times Z & \xrightarrow{U\diamond T} & \{\mathsf{true},\mathsf{false}\}. \end{array}$$

00KM 5.2.4.4 Vertical Composition of 2-Morphisms

OOKN Definition 5.2.4.4.1. The **vertical composition** in Rel^{dbl} is defined as follows: for each vertically composable pair

of 2-morphisms of Rel^{dbl}, i.e. for each each pair

of inclusions of relations, we define the vertical composition

$$\begin{array}{c|c}
A & \xrightarrow{R} & X \\
\downarrow h \circ f & & \downarrow k \circ g \\
\downarrow & & \downarrow \downarrow \\
C & \xrightarrow{T} & Z
\end{array}$$

- We have $a \sim_{(U \diamond T) \circ (f \times h)} c$, i.e. $f(a) \sim_{U \diamond T} h(c)$, i.e. there exists some $y \in Y$ such that:
 - 1. We have $f(a) \sim_T y$;
 - 2. We have $y \sim_U h(c)$;

is implied by the statement

- We have $a \sim_{S \diamond R} c$, i.e. there exists some $b \in B$ such that:
 - 1. We have $a \sim_R b$;

⁸This is justified by noting that, given $(a,c) \in A \times C$, the statement

of α and β as the inclusion of relations

$$A\times X \xrightarrow{R} \{\mathsf{true}, \mathsf{false}\}$$

$$T\circ [(h\circ f)\times (k\circ g)]\subset R, \quad \ \ (h\circ f)\times (k\circ g) \bigg| \qquad \qquad \bigg| \mathrm{id}_{\{\mathsf{true},\mathsf{false}\}}$$

$$C\times Z \xrightarrow{T} \{\mathsf{true}, \mathsf{false}\}$$

given by the pasting of inclusions⁹

$$\begin{array}{cccc} A \times X & \xrightarrow{R} & \{\mathsf{true}, \mathsf{false}\} \\ f \times g & & & & | \mathrm{id}_{\{\mathsf{true}, \mathsf{false}\}} \\ B \times Y & -S \to \{\mathsf{true}, \mathsf{false}\} \\ h \times k & & & & | \mathrm{id}_{\{\mathsf{true}, \mathsf{false}\}} \\ C \times Z & \xrightarrow{T} & \{\mathsf{true}, \mathsf{false}\}. \end{array}$$

00KP 5.2.4.5 The Associators

00KQ Definition 5.2.4.5.1. For each composable triple

$$A \overset{R}{\to} B \overset{S}{\to} C \overset{T}{\to} D$$

of horizontal morphisms of Rel^{dbl}, the component

$$\alpha_{T,S,R}^{\mathsf{Rel}^{\mathsf{dbl}}} \colon (T \odot S) \odot R \overset{\sim}{\Longrightarrow} T \odot (S \odot R), \quad \mathrm{id}_{A} \downarrow \qquad \alpha_{T,S,R}^{\mathsf{Rel}^{\mathsf{dbl}}} \downarrow \qquad \downarrow \mathrm{id}_{D}$$

$$A \overset{R}{\longrightarrow} B \overset{S}{\longrightarrow} C \overset{T}{\longrightarrow} D$$

since:

- If $a \sim_R b$, then $f(a) \sim_T g(b)$, as $T \circ (f \times g) \subset R$;
- If $b \sim_S c$, then $g(b) \sim_U h(c)$, as $U \circ (g \times h) \subset S$.

⁹This is justified by noting that, given $(a, x) \in A \times X$, the statement

• We have $h(f(a)) \sim_T k(g(x))$;

is implied by the statement

• We have $a \sim_R x$;

since

^{2.} We have $b \sim_S c$;

of the associator of Rel^{dbl} at (R, S, T) is the identity inclusion¹⁰

$$(T \diamond S) \diamond R = T \diamond (S \diamond R) \qquad A \times B \xrightarrow{(T \diamond S) \diamond R} \{\mathsf{true}, \mathsf{false}\}$$

$$(A \times B \xrightarrow[T \diamond (S \diamond R)]{} \{\mathsf{true}, \mathsf{false}\}.$$

00KR 5.2.4.6 The Left Unitors

Definition 5.2.4.6.1. For each horizontal morphism $R: A \to B$ of Rel^{dbl} , the component

$$\lambda_R^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathbb{1}_B \odot R \overset{\sim}{\Longrightarrow} R, \qquad \underset{\mathsf{id}_A}{\overset{R}{\longrightarrow}} B \overset{\mathbb{1}_B}{\overset{\wedge}{\longrightarrow}} B$$

$$\lambda_R^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathbb{1}_B \odot R \overset{\sim}{\Longrightarrow} R, \qquad \underset{\mathsf{id}_A}{\overset{\mathsf{id}_A}{\longrightarrow}} A \overset{\mathbb{1}_B}{\overset{\wedge}{\longrightarrow}} B$$

of the left unitor of Rel^{dbl} at R is the identity inclusion¹¹

$$A\times B \xrightarrow{\chi_B \diamond R} \{\mathsf{true}, \mathsf{false}\}$$

$$R = \chi_B \diamond R, \qquad \qquad \qquad \downarrow_{\mathsf{id}_{\{\mathsf{true}, \mathsf{false}\}}}$$

$$A\times B \xrightarrow{\ \ \ \ \ } \{\mathsf{true}, \mathsf{false}\}.$$

00KT 5.2.4.7 The Right Unitors

OOKU Definition 5.2.4.7.1. For each horizontal morphism $R: A \to B$ of Rel^{dbl} , the component

$$\rho_R^{\mathsf{Rel}^{\mathsf{dbl}}} \colon R \odot \mathbb{1}_A \overset{\sim}{\Longrightarrow} R, \qquad \underset{R}{\overset{\mathbb{1}_A}{\longrightarrow}} A \overset{R}{\overset{R}{\longrightarrow}} B$$

- If
$$f(a) \sim_S g(x)$$
, then $h(f(a)) \sim_T k(g(x))$.

[•] If $a \sim_R x$, then $f(a) \sim_S g(x)$, as $S \circ (f \times g) \subset R$;

[•] If $b \sim_S y$, then $h(b) \sim_T k(y)$, as $T \circ (h \times k) \subset S$, and thus, in particular:

 $^{^{10}}$ This is justified by Item 2 of Proposition 6.3.12.1.3.

¹¹This is justified by Item 3 of Proposition 6.3.12.1.3.

of the right unitor of Rel^{dbl} at R is the identity inclusion¹²

$$R = R \diamond \chi_A, \qquad A \times B \xrightarrow{R \diamond \chi_A} \{\mathsf{true}, \mathsf{false}\}$$

$$A \times B \xrightarrow{R} \{\mathsf{true}, \mathsf{false}\}.$$

OOKV 5.3 Properties of the 2-Category of Relations

00KW 5.3.1 Self-Duality

OOKX Proposition 5.3.1.1.1. The (2-)category of relations is self-dual:

00KY 1. Self-Duality I. We have an isomorphism

$$\operatorname{Rel}^{\mathsf{op}} \stackrel{\text{\tiny eq.}}{\cong} \operatorname{Rel}$$

of categories.

00KZ 2. Self-Duality II. We have a 2-isomorphism

$$\mathsf{Rel}^\mathsf{op} \stackrel{\mathrm{eq.}}{\cong} \mathsf{Rel}$$

of 2-categories.

Proof. Item 1, Self-Duality I: We claim that the functor

$$F \colon \mathsf{Rel}^\mathsf{op} \to \mathsf{Rel}$$

given by the identity on objects and by $R\mapsto R^\dagger$ on morphisms is an isomorphism of categories.

By Item 1 of Proposition 8.5.8.1.3, it suffices to show that F is bijective on objects (which is clear) and fully faithful. Indeed, the map

$$(-)^{\dagger} \colon \operatorname{Rel}(A, B) \to \operatorname{Rel}(B, A)$$

defined by the assignment $R \mapsto R^{\dagger}$ is a bijection by Item 5 of Proposition 6.3.11.1.3, showing F to be fully faithful.

Item 2, Self-Duality II: We claim that the 2-functor

$$F \colon \mathsf{Rel}^\mathsf{op} \to \mathsf{Rel}$$

given by the identity on objects, by $R\mapsto R^\dagger$ on morphisms, and by preserving inclusions on 2-morphisms via Item 1 of Proposition 6.3.11.1.3, is an isomorphism of categories.

By ?? of ??, it suffices to show that F is:

¹²This is justified by Item 3 of Proposition 6.3.12.1.3.

- Bijective on objects, which is clear.
- Bijective on 1-morphisms, which was shown in Item 1.
- Bijective on 2-morphisms, which follows from Item 1 of Proposition 6.3.11.1.3.

Thus F is indeed a 2-isomorphism of categories.

00L0 5.3.2 Isomorphisms and Equivalences in Rel

Let $R: A \to B$ be a relation from A to B.

- **OOL1** Proposition 5.3.2.1.1. The following conditions are equivalent:
- 00L2 1. The relation $R: A \to B$ is an equivalence in **Rel**, i.e.:
 - (*) There exists a relation $R^{-1} : B \to A$ from B to A together with isomorphisms

$$R^{-1} \diamond R \cong \chi_A,$$

 $R \diamond R^{-1} \cong \chi_B.$

- 00L3 2. The relation $R: A \to B$ is an isomorphism in Rel, i.e.:
 - (*) There exists a relation $R^{-1} \colon B \to A$ from B to A such that we have

$$R^{-1} \diamond R = \chi_A,$$

$$R \diamond R^{-1} = \chi_B.$$

00L4 3. There exists a bijection $f: A \xrightarrow{\cong} B$ with R = Gr(f).

Proof. We claim that Items 1 to 3 are indeed equivalent:

- *Item 1* \iff *Item 2:* This follows from the fact that **Rel** is locally posetal, so that natural isomorphisms and equalities of 1-morphisms in **Rel** coincide.
- Item 2 \Longrightarrow Item 3: The equalities in Item 2 imply $R \dashv R^{-1}$, and thus by Proposition 5.3.3.1.1, there exists a function $f_R \colon A \to B$ associated to R, where, for each $a \in A$, the image $f_R(a)$ of a by f_R is the unique element of R(a), which implies $R = \operatorname{Gr}(f_R)$ in particular. Furthermore, we have $R^{-1} = f_R^{-1}$ (as in Definition 6.3.2.1.1). The conditions from Item 2 then become the following:

$$f_R^{-1} \diamond f_R = \chi_A,$$

$$f_R \diamond f_R^{-1} = \chi_B.$$

All that is left is to show then is that f_R is a bijection:

- The Function f_R Is Injective. Let $a, b \in A$ and suppose that $f_R(a) = f_R(b)$. Since $a \sim_R f_R(a)$ and $f_R(a) = f_R(b) \sim_{R^{-1}} b$, the condition $f_R^{-1} \diamond f_R = \chi_A$ implies that a = b, showing f_R to be injective.
- The Function f_R Is Surjective. Let $b \in B$. Applying the condition $f_R \diamond f_R^{-1} = \chi_B$ to (b,b), it follows that there exists some $a \in A$ such that $f_R^{-1}(b) = a$ and $f_R(a) = b$. This shows f_R to be surjective.
- Item 3 \Longrightarrow Item 2: By Item 2 of Proposition 6.3.1.1.2, we have an adjunction $Gr(f) \dashv f^{-1}$, giving inclusions

$$\chi_A \subset f^{-1} \diamond \operatorname{Gr}(f),$$

 $\operatorname{Gr}(f) \diamond f^{-1} \subset \chi_B.$

We claim the reverse inclusions are also true:

- $-f^{-1} \diamond Gr(f) \subset \chi_A$: This is equivalent to the statement that if f(a) = b and $f^{-1}(b) = a'$, then a = a', which follows from the injectivity of f.
- $-\chi_B \subset Gr(f) \diamond f^{-1}$: This is equivalent to the statement that given $b \in B$ there exists some $a \in A$ such that $f^{-1}(b) = a$ and f(a) = b, which follows from the surjectivity of f.

This finishes the proof.

00L5 5.3.3 Adjunctions in Rel

Let A and B be sets.

00L6 Proposition 5.3.3.1.1. We have a natural bijection

$${ \text{Adjunctions in } \textbf{Rel} \atop \text{from } A \text{ to } B } \cong { \text{Functions} \atop \text{from } A \text{ to } B },$$

with every adjunction in **Rel** being of the form $Gr(f) \dashv f^{-1}$ for some function f.

Proof. We proceed step by step:

1. From Adjunctions in **Rel** to Functions. An adjunction in **Rel** from A to B consists of a pair of relations

$$R: A \to B,$$

 $S: B \to A,$

together with inclusions

$$\chi_A \subset S \diamond R,$$
 $R \diamond S \subset \chi_B.$

We claim that these conditions imply that R is total and functional, i.e. that R(a) is a singleton for each $a \in A$:

- (a) R(a) Has an Element. Given $a \in A$, since $\chi_A \subset S \diamond R$, we must have $\{a\} \subset S(R(a))$, implying that there exists some $b \in B$ such that $a \sim_R b$ and $b \sim_S a$, and thus $R(a) \neq \emptyset$, as $b \in R(a)$.
- (b) R(a) Has No More Than One Element. Suppose that we have $a \sim_R b$ and $a \sim_R b'$ for $b, b' \in B$. We claim that b = b':
 - i. Since $\chi_A \subset S \diamond R$, there exists some $k \in B$ such that $a \sim_R k$ and $k \sim_S a$.
 - ii. Since $R \diamond S \subset \chi_B$, if $b'' \sim_S a'$ and $a' \sim_R b'''$, then b'' = b'''.
 - iii. Applying the above to b'' = k, b''' = b, and a' = a, since $k \sim_S a$ and $a \sim_R b'$, we have k = b.
 - iv. Similarly k = b'.
 - v. Thus b = b'.

Together, the above two items show R(a) to be a singleton, being thus given by Gr(f) for some function $f: A \to B$, which gives a map

$$\left\{ \begin{array}{c} \text{Adjunctions in } \textbf{Rel} \\ \text{from } A \text{ to } B \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{Functions} \\ \text{from } A \text{ to } B \end{array} \right\}.$$

Moreover, by uniqueness of adjoints (?? of ??), this implies also that $S = f^{-1}$.

2. From Functions to Adjunctions in Rel. By Item 2 of Proposition 6.3.1.1.2, every function $f: A \to B$ gives rise to an adjunction $Gr(f) \dashv f^{-1}$ in Rel, giving a map

$$\begin{cases} \text{Functions} \\ \text{from } A \text{ to } B \end{cases} \rightarrow \begin{cases} \text{Adjunctions in } \textbf{Rel} \\ \text{from } A \text{ to } B \end{cases} .$$

3. Invertibility: From Functions to Adjunctions Back to Functions. We need to show that starting with a function $f: A \to B$, passing to $Gr(f) \dashv f^{-1}$, and then passing again to a function gives f again. This is clear however, since we have $a \sim_{Gr(f)} b$ iff f(a) = b.

4. Invertibility: From Adjunctions to Functions Back to Adjunctions. We need to show that, given an adjunction $R \dashv S$ in **Rel** giving rise to a function $f_{R,S} : A \to B$, we have

$$Gr(f_{R,S}) = R,$$

$$f_{R,S}^{-1} = S.$$

We check these explicitly:

• $Gr(f_{R,S}) = R$. We have

$$Gr(f_{R,S}) \stackrel{\text{def}}{=} \{(a, f_{R,S}(a)) \in A \times B \mid a \in A\}$$

$$\stackrel{\text{def}}{=} \{(a, R(a)) \in A \times B \mid a \in A\}$$

$$= R.$$

- $f_{R,S}^{-1} = S$. We first claim that, given $a \in A$ and $b \in B$, the following conditions are equivalent:
 - We have $a \sim_R b$.
 - We have $b \sim_S a$.

Indeed:

- If $a \sim_R b$, then $b \sim_S a$: Since $\chi_A \subset S \diamond R$, there exists $k \in B$ such that $a \sim_R k$ and $k \sim_S a$, but since $a \sim_R b$ and R is functional, we have k = b and thus $b \sim_S a$.
- If $b \sim_S a$, then $a \sim_R b$: First note that since R is total we have $a \sim_R b'$ for some $b' \in B$. Now, since $R \diamond S \subset \chi_B$, $b \sim_S a$, and $a \sim_R b'$, we have b = b', and thus $a \sim_R b$.

Having show this, we now have

$$f_{R,S}^{-1}(b) \stackrel{\text{def}}{=} \{ a \in A \mid f_{R,S}(a) = b \}$$

$$\stackrel{\text{def}}{=} \{ a \in A \mid a \sim_R b \}$$

$$= \{ a \in A \mid b \sim_S a \}$$

$$\stackrel{\text{def}}{=} S(b).$$

for each $b \in B$, showing $f_{R,S}^{-1} = S$.

This finishes the proof.

00L7 5.3.4 Monads in Rel

Let A be a set.

OOL8 Proposition 5.3.4.1.1. We have a natural identification ¹³

$$\left\{ \begin{array}{l} \text{Monads in} \\ \textbf{Rel on } A \end{array} \right\} \cong \left\{ \text{Preorders on } A \right\}.$$

Proof. A monad in **Rel** on A consists of a relation $R: A \to A$ together with maps

$$\mu_R \colon R \diamond R \subset R,$$

 $\eta_R \colon \chi_A \subset R$

making the diagrams

commute. However, since all morphisms involved are inclusions, the commutativity of the above diagrams is automatic, and hence all that is left is the data of the two maps μ_R and η_R , which correspond respectively to the following conditions:

- 1. For each $a, b, c \in A$, if $a \sim_R b$ and $b \sim_R c$, then $a \sim_R c$.
- 2. For each $a \in A$, we have $a \sim_R a$.

These are exactly the requirements for R to be a preorder (??). Conversely any preorder \leq gives rise to a pair of maps μ_{\leq} and η_{\leq} , forming a monad on A.

00L9 5.3.5 Comonads in Rel

Let A be a set.

00LA Proposition 5.3.5.1.1. We have a natural identification

Proof. A comonad in **Rel** on A consists of a relation $R: A \to A$ together with maps

$$\Delta_R \colon R \subset R \diamond R,$$

 $\epsilon_R \colon R \subset \chi_A$

making the diagrams

commute. However, since all morphisms involved are inclusions, the commutativity of the above diagrams is automatic, and hence all that is left is the data of the two maps Δ_R and ϵ_R , which correspond respectively to the following conditions:

- 1. For each $a, b \in A$, if $a \sim_R b$, then there exists some $k \in A$ such that $a \sim_R k$ and $k \sim_R b$.
- 2. For each $a, b \in A$, if $a \sim_R b$, then a = b.

Taking k = b in the first condition above shows it to be trivially satisfied, while the second condition implies $R \subset \Delta_A$, i.e. R must be a subset of A. Conversely, any subset U of A satisfies $U \subset \Delta_A$, defining a comonad as above.

00LB 5.3.6 Co/Monoids in Rel

©OLC Remark 5.3.6.1.1. The monoids in **Rel** with respect to the Cartesian monoidal structure of Proposition 5.2.2.8.1 are called *hypermonoids*, and their theory is explored in ??. Similarly, the comonoids in **Rel** are called *hypercomonoids*, and they are defined and studied in ??.

00LD 5.3.7 Monomorphisms in Rel

In this section we characterise the epimorphisms in the category Rel, following ??.

OOLE Proposition 5.3.7.1.1. Let $R: A \to B$ be a relation. The following conditions are equivalent:

OOLF 1. The relation R is a monomorphism in Rel.

00LG 2. The direct image function

$$R_* \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

associated to R is injective.

00LH 3. The direct image with compact support function

$$R_! \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

associated to R is injective.

Moreover, if R is a monomorphism, then it satisfies the following condition, and the converse holds if R is total:

 (\star) For each $a, a' \in A$, if there exists some $b \in B$ such that

$$a \sim_R b$$
, $a' \sim_R b$,

then a = a'.

Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Proposition 6.4.1.1.3. We then claim that Items 1 and 2 are also equivalent:

• Item 1 \Longrightarrow Item 2: Let $U, V \in \mathcal{P}(A)$ and consider the diagram

$$\operatorname{pt} \xrightarrow{U} A \xrightarrow{R} B.$$

By Remark 6.4.1.1.2, we have

$$R_*(U) = R \diamond U,$$

$$R_*(V) = R \diamond V.$$

Now, if $R \diamond U = R \diamond V$, i.e. $R_*(U) = R_*(V)$, then U = V since R is assumed to be a monomorphism, showing R_* to be injective.

• Item 2 \Longrightarrow Item 1: Conversely, suppose that R_* is injective, consider the diagram

$$X \xrightarrow{S} A \xrightarrow{R} B,$$

and suppose that $R \diamond S = R \diamond T$. Note that, since R_* is injective,

given a diagram of the form

$$\operatorname{pt} \stackrel{U}{\Longrightarrow} A \stackrel{R}{\longrightarrow} B,$$

if $R_*(U) = R \diamond U = R \diamond V = R_*(V)$, then U = V. In particular, for each $x \in X$, we may consider the diagram

$$\operatorname{pt} \stackrel{[x]}{\longrightarrow} X \stackrel{S}{\Longrightarrow} A \stackrel{R}{\longrightarrow} B,$$

for which we have $R \diamond S \diamond [x] = R \diamond T \diamond [x]$, implying that we have

$$S(x) = S \diamond [x] = T \diamond [x] = T(x)$$

for each $x \in X$, implying S = T, and thus R is a monomorphism. We can also prove this in a more abstract way, following [MSE 350788]:

- Item $1 \Longrightarrow Item 2$: Assume that R is a monomorphism.
 - We first notice that the functor Rel(pt, -): $Rel \to Sets$ maps R to R_* by Remark 6.4.1.1.2.
 - Since Rel(pt, -) preserves all limits by ?? of ??, it follows by
 ?? of ?? that Rel(pt, -) also preserves monomorphisms.
 - Since R is a monomorphism and Rel(pt, -) maps R to R_* , it follows that R_* is also a monomorphism.
 - Since the monomorphisms in Sets are precisely the injections (?? of ??), it follows that R_* is injective.
- Item $2 \Longrightarrow Item 1$: Assume that R_* is injective.
 - We first notice that the functor Rel(pt, -): $Rel \to Sets$ maps R to R_* by Remark 6.4.1.1.2.
 - Since the monomorphisms in Sets are precisely the injections (?? of ??), it follows that R_* is a monomorphism.
 - Since Rel(pt, -) is faithful, it follows by ?? of ?? that Rel(pt, -) reflects monomorphisms.
 - Since R_* is a monomorphism and Rel(pt, -) maps R to R_* , it follows that R is also a monomorphism.

Finally, we prove the second part of the statement. Assume that R is a monomorphism, let $a, a' \in A$ such that $a \sim_R b$ and $a' \sim_R b$ for some $b \in B$, and consider the diagram

$$\operatorname{pt} \stackrel{[a]}{\Longrightarrow} A \stackrel{R}{\longrightarrow} B.$$

Since $\star \sim_{[a]} a$ and $a \sim_R b$, we have $\star \sim_{R \diamond [a]} b$. Similarly, $\star \sim_{R \diamond [a']} b$. Thus $R \diamond [a] = R \diamond [a']$, and since R is a monomorphism, we have [a] = [a'], i.e. a = a'.

Conversely, assume the condition

 (\star) For each $a, a' \in A$, if there exists some $b \in B$ such that

$$a \sim_R b$$
, $a' \sim_R b$,

then a = a'.

consider the diagram

$$X \stackrel{S}{\Longrightarrow} A \stackrel{R}{\longrightarrow} B,$$

and let $(x, a) \in S$. Since R is total and $a \in A$, there exists some $b \in B$ such that $a \sim_R b$. In this case, we have $x \sim_{R \diamond S} b$, and since $R \diamond S = R \diamond T$, we have also $x \sim_{R \diamond T} b$. Thus there must exist some $a' \in A$ such that $x \sim_T a'$ and $a' \sim_R b$. However, since $a, a' \sim_R b$, we must have a = a', and thus $(x, a) \in T$ as well.

A similar argument shows that if $(x, a) \in T$, then $(x, a) \in S$, and thus S = T and it follows that R is a monomorphism. \square

OOLJ 5.3.8 2-Categorical Monomorphisms in Rel

In this section we characterise (for now, some of) the 2-categorical monomorphisms in **Rel**, following Section 9.1.

00LK Proposition 5.3.8.1.1. Let $R: A \to B$ be a relation.

00LL 1. Representably Faithful Morphisms in Rel. Every morphism of Rel is a representably faithful morphism.

2. Representably Full Morphisms in Rel. The following conditions are equivalent:

00LN (a) The morphism $R: A \to B$ is a representably full morphism.

(b) For each pair of relations $S, T: X \rightrightarrows A$, the following condition is satisfied:

 (\star) If $R \diamond S \subset R \diamond T$, then $S \subset T$.

00LQ (c) The functor

00LP

$$R_*: (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

is full.

00LR (d) For each $U, V \in \mathcal{P}(A)$, if $R_*(U) \subset R_*(V)$, then $U \subset V$.

00LS (e) The functor

$$R_! : (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

is full.

OOLT (f) For each $U, V \in \mathcal{P}(A)$, if $R_!(U) \subset R_!(V)$, then $U \subset V$.

3. Representably Fully Faithful Morphisms in Rel. Every representaly full morphism in Rel is a representably fully faithful morphism.

Proof. Item 1, Representably Faithful Morphisms in Rel: The relation R is a representably faithful morphism in Rel iff, for each $X \in \text{Obj}(\text{Rel})$, the functor

$$R_* \colon \mathbf{Rel}(X, A) \to \mathbf{Rel}(X, B)$$

is faithful, i.e. iff the morphism

$$R_{*|S,T} \colon \operatorname{Hom}_{\mathbf{Rel}(X,A)}(S,T) \to \operatorname{Hom}_{\mathbf{Rel}(X,B)}(R \diamond S, R \diamond T)$$

is injective for each $S, T \in \text{Obj}(\mathbf{Rel}(X, A))$. However, $\text{Hom}_{\mathbf{Rel}(X, A)}(S, T)$ is either empty or a singleton, in either case of which the map $R_{*|S,T}$ is necessarily injective.

Item 2, Representably Full Morphisms in **Rel**: We claim **Items 2a** to **2f** are indeed equivalent:

• Item $2a \iff Item \ 2b$: This is simply a matter of unwinding definitions: The relation R is a representably full morphism in **Rel** iff, for each $X \in \text{Obj}(\mathbf{Rel})$, the functor

$$R_* \colon \mathbf{Rel}(X, A) \to \mathbf{Rel}(X, B)$$

is full, i.e. iff the morphism

$$R_{*|S,T} \colon \operatorname{Hom}_{\mathbf{Rel}(X,A)}(S,T) \to \operatorname{Hom}_{\mathbf{Rel}(X,B)}(R \diamond S, R \diamond T)$$

is surjective for each $S, T \in \text{Obj}(\mathbf{Rel}(X, A))$, i.e. iff, whenever $R \diamond S \subset R \diamond T$, we also have $S \subset T$.

• Item $2c \iff$ Item 2d: This is also simply a matter of unwinding definitions: The functor

$$R_* : (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

is full iff, for each $U, V \in \mathcal{P}(A)$, the morphism

$$R_{*|U,V} \colon \operatorname{Hom}_{\mathcal{P}(A)}(U,V) \to \operatorname{Hom}_{\mathcal{P}(B)}(R_{*}(U),R_{*}(V))$$

is surjective, i.e. iff whenever $R_*(U) \subset R_*(V)$, we also necessarily have $U \subset V$.

- *Item 2e \iff Item 2f:* This is once again simply a matter of unwinding definitions, and proceeds exactly in the same way as in the proof of the equivalence between Items 2c and 2d given above.
- Item $2d \Longrightarrow Item \ 2f$: Suppose that the following condition is true:
 - (*) For each $U, V \in \mathcal{P}(A)$, if $R_*(U) \subset R_*(V)$, then $U \subset V$.

We need to show that the condition

(*) For each $U, V \in \mathcal{P}(A)$, if $R_!(U) \subset R_!(V)$, then $U \subset V$.

is also true. We proceed step by step:

- 1. Suppose we have $U, V \in \mathcal{P}(A)$ with $R_!(U) \subset R_!(V)$.
- 2. By Item 7 of Proposition 6.4.4.1.3, we have

$$R_!(U) = B \setminus R_*(A \setminus U),$$

$$R_!(V) = B \setminus R_*(A \setminus V).$$

- 3. By Item 1 of Proposition 2.3.10.1.2 we have $R_*(A \setminus V) \subset R_*(A \setminus U)$.
- 4. By assumption, we then have $A \setminus V \subset A \setminus U$.
- 5. By Item 1 of Proposition 2.3.10.1.2 again, we have $U \subset V$.
- Item $2f \Longrightarrow Item \ 2d$: Suppose that the following condition is true:
 - (*) For each $U, V \in \mathcal{P}(A)$, if $R_!(U) \subset R_!(V)$, then $U \subset V$.

We need to show that the condition

(*) For each $U, V \in \mathcal{P}(A)$, if $R_*(U) \subset R_*(V)$, then $U \subset V$.

is also true. We proceed step by step:

- 1. Suppose we have $U, V \in \mathcal{P}(A)$ with $R_*(U) \subset R_*(V)$.
- 2. By Item 7 of Proposition 6.4.1.1.3, we have

$$R_*(U) = B \setminus R_!(A \setminus U),$$

$$R_*(V) = B \setminus R_!(A \setminus V).$$

- 3. By Item 1 of Proposition 2.3.10.1.2 we have $R_!(A \setminus V) \subset R_!(A \setminus U)$.
- 4. By assumption, we then have $A \setminus V \subset A \setminus U$.
- 5. By Item 1 of Proposition 2.3.10.1.2 again, we have $U \subset V$.

• Item $2b \Longrightarrow Item \ 2d$: Consider the diagram

$$X \xrightarrow{S} A \xrightarrow{R} B,$$

and suppose that $R \diamond S \subset R \diamond T$. Note that, by assumption, given a diagram of the form

$$\operatorname{pt} \xrightarrow{U}_{V} A \xrightarrow{R} B,$$

if $R_*(U) = R \diamond U \subset R \diamond V = R_*(V)$, then $U \subset V$. In particular, for each $x \in X$, we may consider the diagram

$$\operatorname{pt} \stackrel{[x]}{\longrightarrow} X \stackrel{S}{\longrightarrow} A \stackrel{R}{\longrightarrow} B,$$

for which we have $R \diamond S \diamond [x] \subset R \diamond T \diamond [x]$, implying that we have

$$S(x) = S \diamond [x] \subset T \diamond [x] = T(x)$$

for each $x \in X$, implying $S \subset T$.

• Item $2d \Longrightarrow Item \ 2b$: Let $U, V \in \mathcal{P}(A)$ and consider the diagram

$$\operatorname{pt} \xrightarrow{U} A \xrightarrow{R} B.$$

By Remark 6.4.1.1.2, we have

$$R_*(U) = R \diamond U,$$

$$R_*(V) = R \diamond V.$$

Now, if $R_*(U) \subset R_*(V)$, i.e. $R \diamond U \subset R \diamond V$, then $U \subset V$ by assumption.

??, Fully Faithful Monomorphisms in Rel: This follows from Items 1 and 2. \Box

Question 5.3.8.1.2. Item 2 of Proposition 5.3.8.1.1 gives a characterisation of the representably full morphisms in **Rel**.

Are there other nice characterisations of these?

This question also appears as [MO 467527].

00LW 5.3.9 Epimorphisms in Rel

In this section we characterise the epimorphisms in the category Rel, following ??.

- **OOLX Proposition 5.3.9.1.1.** Let $R: A \to B$ be a relation. The following conditions are equivalent:
- **00LY** 1. The relation R is an epimorphism in Rel.
- **00LZ** 2. The weak inverse image function

$$R^{-1} \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

associated to R is injective.

00M0 3. The strong inverse image function

$$R_{-1} \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

associated to R is injective.

- **00M1** 4. The function $R: A \to \mathcal{P}(B)$ is "surjective on singletons":
 - (\star) For each $b \in B$, there exists some $a \in A$ such that $R(a) = \{b\}$.

Moreover, if R is total and an epimorphism, then it satisfies the following equivalent conditions:

- 1. For each $b \in B$, there exists some $a \in A$ such that $a \sim_R b$.
- 2. We have Im(R) = B.

Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Proposition 6.4.2.1.3. We then claim that Items 1 and 2 are also equivalent:

• Item 1 \Longrightarrow Item 2: Let $U, V \in \mathcal{P}(A)$ and consider the diagram

$$A \stackrel{R}{\longrightarrow} B \stackrel{U}{\Longrightarrow} \text{pt.}$$

By Remark 6.4.1.1.2, we have

$$R^{-1}(U) = U \diamond R,$$

$$R^{-1}(V) = V \diamond R.$$

Now, if $U \diamond R = V \diamond R$, i.e. $R^{-1}(U) = R^{-1}(V)$, then U = V since R is assumed to be an epimorphism, showing R^{-1} to be injective.

• Item 2 \Longrightarrow Item 1: Conversely, suppose that R^{-1} is injective, consider the diagram

$$A \xrightarrow{R} B \xrightarrow{S} X,$$

and suppose that $S \diamond R = T \diamond R$. Note that, since R^{-1} is injective, given a diagram of the form

$$A \stackrel{R}{\longrightarrow} B \stackrel{U}{\Longrightarrow} pt,$$

if $R^{-1}(U)=U\diamond R=V\diamond R=R^{-1}(V)$, then U=V. In particular, for each $x\in X,$ we may consider the diagram

$$A \stackrel{R}{\longrightarrow} B \stackrel{S}{\Longrightarrow} X \stackrel{[x]}{\longrightarrow} \mathrm{pt},$$

for which we have $[x] \diamond S \diamond R = [x] \diamond T \diamond R$, implying that we have

$$S^{-1}(x) = [x] \diamond S = [x] \diamond T = T^{-1}(x)$$

for each $x \in X$, implying S = T, and thus R is an epimorphism.

We can also prove this in a more abstract way, following [MSE 350788]:

- Item $1 \Longrightarrow Item 2$: Assume that R is an epimorphism.
 - We first notice that the functor $Rel(-, pt) \colon Rel^{op} \to \mathsf{Sets}$ maps R to R^{-1} by Remark 6.4.3.1.2.
 - Since Rel(-, pt) preserves limits by ?? of ??, it follows by ?? of ?? that Rel(-, pt) also preserves monomorphisms.
 - That is: Rel(-, pt) sends monomorphisms in Rel^{op} to monomorphisms in Sets.
 - The monomorphisms Rel^{op} are precisely the epimorphisms in Rel by ?? of ??.
 - Since R is an epimorphism and Rel(-, pt) maps R to R^{-1} , it follows that R^{-1} is a monomorphism.
 - Since the monomorphisms in Sets are precisely the injections (?? of ??), it follows that R^{-1} is injective.
- Item $2 \Longrightarrow Item 1$: Assume that R^{-1} is injective.
 - We first notice that the functor $Rel(-, pt) : Rel^{op} \to \mathsf{Sets}$ maps R to R^{-1} by Remark 6.4.3.1.2.

- Since the monomorphisms in Sets are precisely the injections (?? of ??), it follows that R^{-1} is a monomorphism.
- Since Rel(-, pt) is faithful, it follows by ?? of ?? that Rel(, pt) reflects monomorphisms.
- That is: Rel(-, pt) reflects monomorphisms in Sets to monomorphisms in Rel^{op} .
- The monomorphisms Rel^{op} are precisely the epimorphisms in Rel by ?? of ??.
- Since R^{-1} is a monomorphism and Rel(-, pt) maps R to R^{-1} , it follows that R is an epimorphism.

We also claim that Items 2 and 4 are equivalent, following [MO 350788]:

- Item 2 \Longrightarrow Item 4: Since $B \setminus \{b\} \subset B$ and R^{-1} is injective, we have $R^{-1}(B \setminus \{b\}) \subsetneq R^{-1}(B)$. So taking some $a \in R^{-1}(B) \setminus R^{-1}(B \setminus \{b\})$ we get an element of A such that $R(a) = \{b\}$.
- Item $4 \Longrightarrow Item\ 2$: Let $U, V \subset B$ with $U \neq V$. Without loss of generality, we can assume $U \setminus V \neq \emptyset$; otherwise just swap U and V. Let then $b \in U \setminus V$. By assumption, there exists an $a \in A$ with $R(a) = \{b\}$. Then $a \in R^{-1}(U)$ but $a \notin R^{-1}(V)$, and thus $R^{-1}(U) \neq R^{-1}(V)$, showing R^{-1} to be injective.

Finally, we prove the second part of the statement. So assume R is a total epimorphism in Rel and consider the diagram

$$A \stackrel{R}{\longrightarrow} B \stackrel{S}{\Longrightarrow} \{0,1\},$$

where $b \sim_S 0$ for each $b \in B$ and where we have

$$b \sim_T \begin{cases} 0 & \text{if } b \in \text{Im}(R), \\ 1 & \text{otherwise} \end{cases}$$

for each $b \in B$. Since R is total, we have $a \sim_{S \diamond R} 0$ and $a \sim_{T \diamond R} 0$ for all $a \in A$, and no element of A is related to 1 by $S \diamond R$ or $T \diamond R$. Thus $S \diamond R = T \diamond R$, and since R is an epimorphism, we have S = T. But by the definition of T, this implies Im(R) = B.

00M2 5.3.10 2-Categorical Epimorphisms in Rel

In this section we characterise (for now, some of) the 2-categorical epimorphisms in **Rel**, following Section 9.2.

QUANTIFY Proposition 5.3.10.1.1. Let $R: A \rightarrow B$ be a relation.

00M4 1. Corepresentably Faithful Morphisms in Rel. Every morphism of Rel is a corepresentably faithful morphism.

2. Corepresentably Full Morphisms in Rel. The following conditions are equivalent:

(a) The morphism $R: A \to B$ is a corepresentably full morphism.

00M6

00M7

(b) For each pair of relations $S, T \colon X \rightrightarrows A$, the following condition is satisfied:

 (\star) If $S \diamond R \subset T \diamond R$, then $S \subset T$.

00M8 (c) The functor

$$R^{-1} \colon (\mathcal{P}(B), \subset) \to (\mathcal{P}(A), \subset)$$

is full.

00M9 (d) For each $U, V \in \mathcal{P}(B)$, if $R^{-1}(U) \subset R^{-1}(V)$, then $U \subset V$.

00MA (e) The functor

$$R_{-1}\colon (\mathcal{P}(B),\subset)\to (\mathcal{P}(A),\subset)$$

is full.

60MB (f) For each $U, V \in \mathcal{P}(B)$, if $R_{-1}(U) \subset R_{-1}(V)$, then $U \subset V$.

OOMC 3. Corepresentably Fully Faithful Morphisms in Rel. Every corepresentably full morphism of Rel is a corepresentably fully faithful morphism.

Proof. Item 1, Corepresentably Faithful Morphisms in Rel: The relation R is a corepresentably faithful morphism in Rel iff, for each $X \in \text{Obj}(\text{Rel})$, the functor

$$R^* : \mathbf{Rel}(B, X) \to \mathbf{Rel}(A, X)$$

is faithful, i.e. iff the morphism

$$R_{S,T}^* \colon \operatorname{Hom}_{\mathbf{Rel}(B,X)}(S,T) \to \operatorname{Hom}_{\mathbf{Rel}(A,X)}(S \diamond R, T \diamond R)$$

is injective for each $S, T \in \text{Obj}(\mathbf{Rel}(B, X))$. However, $\text{Hom}_{\mathbf{Rel}(B, X)}(S, T)$ is either empty or a singleton, in either case of which the map $R_{S,T}^*$ is necessarily injective.

Item 2, Corepresentably Full Morphisms in **Rel**: We claim **Items 2a** to **2f** are indeed equivalent:

• Item $2a \iff Item \ 2b$: This is simply a matter of unwinding definitions: The relation R is a corepresentably full morphism in

Rel iff, for each $X \in \text{Obj}(\mathbf{Rel})$, the functor

$$R^* \colon \mathbf{Rel}(B, X) \to \mathbf{Rel}(A, X)$$

is full, i.e. iff the morphism

$$R_{S,T}^* \colon \operatorname{Hom}_{\mathbf{Rel}(B,X)}(S,T) \to \operatorname{Hom}_{\mathbf{Rel}(A,X)}(S \diamond R, T \diamond R)$$

is surjective for each $S,T\in \mathrm{Obj}(\mathbf{Rel}(B,X))$, i.e. iff, whenever $S\diamond R\subset T\diamond R$, we also have $S\subset T$.

• Item $2c \iff$ Item 2d: This is also simply a matter of unwinding definitions: The functor

$$R^{-1} \colon (\mathcal{P}(B), \subset) \to (\mathcal{P}(A), \subset)$$

is full iff, for each $U, V \in \mathcal{P}(A)$, the morphism

$$R_{U,V}^{-1} \colon \operatorname{Hom}_{\mathcal{P}(B)}(U,V) \to \operatorname{Hom}_{\mathcal{P}(A)}(R^{-1}(U),R^{-1}(V))$$

is surjective, i.e. iff whenever $R^{-1}(U) \subset R^{-1}(V)$, we also necessarily have $U \subset V$.

- *Item 2e \iff Item 2f:* This is once again simply a matter of unwinding definitions, and proceeds exactly in the same way as in the proof of the equivalence between Items 2c and 2d given above.
- Item $2d \Longrightarrow Item \ 2f$: Suppose that the following condition is true:
 - (\star) For each $U, V \in \mathcal{P}(B)$, if $R^{-1}(U) \subset R^{-1}(V)$, then $U \subset V$.

We need to show that the condition

(*) For each $U, V \in \mathcal{P}(B)$, if $R_{-1}(U) \subset R_{-1}(V)$, then $U \subset V$.

is also true. We proceed step by step:

- 1. Suppose we have $U, V \in \mathcal{P}(B)$ with $R_{-1}(U) \subset R_{-1}(V)$.
- 2. By Item 7 of Proposition 6.4.2.1.3, we have

$$R_{-1}(U) = B \setminus R^{-1}(A \setminus U),$$

$$R_{-1}(V) = B \setminus R^{-1}(A \setminus V).$$

- 3. By Item 1 of Proposition 2.3.10.1.2 we have $R^{-1}(A \setminus V) \subset R^{-1}(A \setminus U)$.
- 4. By assumption, we then have $A \setminus V \subset A \setminus U$.
- 5. By Item 1 of Proposition 2.3.10.1.2 again, we have $U \subset V$.

- Item $2f \Longrightarrow Item \ 2d$: Suppose that the following condition is true:
 - (\star) For each $U, V \in \mathcal{P}(B)$, if $R_{-1}(U) \subset R_{-1}(V)$, then $U \subset V$.

We need to show that the condition

(*) For each $U, V \in \mathcal{P}(B)$, if $R^{-1}(U) \subset R^{-1}(V)$, then $U \subset V$.

is also true. We proceed step by step:

- 1. Suppose we have $U, V \in \mathcal{P}(B)$ with $R^{-1}(U) \subset R^{-1}(V)$.
- 2. By Item 7 of Proposition 6.4.3.1.3, we have

$$R^{-1}(U) = B \setminus R_{-1}(A \setminus U),$$

$$R^{-1}(V) = B \setminus R_{-1}(A \setminus V).$$

- 3. By Item 1 of Proposition 2.3.10.1.2 we have $R_{-1}(A \setminus V) \subset R_{-1}(A \setminus U)$.
- 4. By assumption, we then have $A \setminus V \subset A \setminus U$.
- 5. By Item 1 of Proposition 2.3.10.1.2 again, we have $U \subset V$.
- Item $2b \Longrightarrow Item \ 2d$: Consider the diagram

$$A \xrightarrow{R} B \xrightarrow{S} X,$$

and suppose that $S \diamond R \subset T \diamond R$. Note that, by assumption, given a diagram of the form

$$A \stackrel{R}{\longrightarrow} B \stackrel{U}{\Longrightarrow} pt,$$

if $R^{-1}(U)=R\diamond U\subset R\diamond V=R^{-1}(V)$, then $U\subset V.$ In particular, for each $x\in X,$ we may consider the diagram

$$A \stackrel{R}{\longrightarrow} B \stackrel{S}{\Longrightarrow} X \stackrel{[x]}{\longrightarrow} \mathrm{pt},$$

for which we have $[x] \diamond S \diamond R \subset [x] \diamond T \diamond R$, implying that we have

$$S^{-1}(x) = [x] \diamond S \subset [x] \diamond T = T^{-1}(x)$$

for each $x \in X$, implying $S \subset T$.

• Item $2d \Longrightarrow Item \ 2b$: Let $U, V \in \mathcal{P}(B)$ and consider the diagram

$$A \stackrel{R}{\longrightarrow} B \stackrel{U}{\Longrightarrow} \text{pt.}$$

By Remark 6.4.1.1.2, we have

$$R^{-1}(U) = U \diamond R,$$

$$R^{-1}(V) = V \diamond R.$$

Now, if $R^{-1}(U) \subset R^{-1}(V)$, i.e. $U \diamond R \subset V \diamond R$, then $U \subset V$ by assumption.

Item 3, Corepresentably Fully Faithful Morphisms in Rel: This follows from Items 1 and 2. \Box

- Question 5.3.10.1.2. Item 2 of Proposition 5.3.10.1.1 gives a characterisation of the corepresentably full morphisms in Rel.
 Are there other nice characterisations of these?
 This question also appears as [MO 467527].
- 00ME 5.3.11 Co/Limits in Rel
- ${\tt 00MF}$ **Proposition 5.3.11.1.1.** This will be properly written later on.

Proof. Omitted.

- 00MG 5.3.12 Kan Extensions and Kan Lifts in Rel
- **QOMH** Remark 5.3.12.1.1. The 2-category Rel admits all right Kan extensions and right Kan lifts, though not all left Kan extensions and neither does it admit all left Kan lifts. See Section 6.2 for a detailed discussion of this.
- 00MJ 5.3.13 Closedness of Rel
- **Proposition 5.3.13.1.1.** The 2-category **Rel** is a closed bicategory, there being, for each $R: A \to B$ and set X, a pair of adjunctions

$$(R^* \dashv \operatorname{Ran}_R)$$
: $\operatorname{Rel}(B, X) \xrightarrow{\stackrel{R^*}{\underset{\operatorname{Ran}_R}{\longleftarrow}}} \operatorname{Rel}(A, X),$

$$(R_* \dashv \operatorname{Rift}_R)$$
: $\operatorname{Rel}(X, A) \xrightarrow[\operatorname{Rift}_R]{R_*} \operatorname{Rel}(X, B)$,

witnessed by bijections

$$\mathbf{Rel}(S \diamond R, T) \cong \mathbf{Rel}(S, \mathrm{Ran}_R(T)),$$

 $\mathbf{Rel}(R \diamond U, V) \cong \mathbf{Rel}(U, \mathrm{Rift}_R(V)),$

natural in $S \in \text{Rel}(B, X)$, $T \in \text{Rel}(A, X)$, $U \in \text{Rel}(X, A)$, and $V \in \text{Rel}(X, B)$.

Proof. This follows from Propositions 6.2.3.1.1 and 6.2.4.1.1.

00ML 5.3.14 Rel as a Category of Free Algebras

OOMM Proposition 5.3.14.1.1. We have an isomorphism of categories

$$Rel \cong FreeAlg_{\mathcal{P}_*}(Sets),$$

where \mathcal{P}_* is the powerset monad of ??.

Proof. Omitted.

60MN 5.4 The Left Skew Monoidal Structure on Rel(A, B)

00MP 5.4.1 The Left Skew Monoidal Product

Let A and B be sets and let $J: A \rightarrow B$ be a relation.

OOMQ Definition 5.4.1.1.1. The left J-skew monoidal product of Rel(A,B) is the functor

$$\triangleleft_J \colon \mathbf{Rel}(A,B) \times \mathbf{Rel}(A,B) \to \mathbf{Rel}(A,B)$$

where

• Action on Objects. For each $R, S \in \text{Obj}(\mathbf{Rel}(A, B))$, we have

• Action on Morphisms. For each $R, S, R', S' \in \text{Obj}(\mathbf{Rel}(A, B))$, the action on Hom-sets

$$(\triangleleft_J)_{(G,F),(G',F')} : \operatorname{Hom}_{\mathbf{Rel}(A,B)}(S,S') \times \operatorname{Hom}_{\mathbf{Rel}(A,B)}(R,R') \to \operatorname{Hom}_{\mathbf{Rel}(A,B)}(S \triangleleft_J R,S' \triangleleft_J R')$$

of \triangleleft_J at ((R,S),(R',S')) is defined by 14

for each $\beta \in \operatorname{Hom}_{\mathbf{Rel}(A,B)}(S,S')$ and each $\alpha \in \operatorname{Hom}_{\mathbf{Rel}(A,B)}(R,R')$.

00MR 5.4.2 The Left Skew Monoidal Unit

Let A and B be sets and let $J: A \rightarrow B$ be a relation.

00MS Definition 5.4.2.1.1. The left J-skew monoidal unit of $\mathbf{Rel}(A,B)$ is the functor

functor
$$\mathbb{1}_{\lhd_J}^{\mathbf{Rel}(A,B)}\colon\mathsf{pt} o\mathbf{Rel}(A,B)$$

picking the object

$$\mathbb{1}_{\mathbf{Rel}(A,B)}^{\lhd_J} \stackrel{\mathrm{def}}{=} J$$

of $\mathbf{Rel}(A, B)$.

00MT 5.4.3 The Left Skew Associators

Let A and B be sets and let $J: A \rightarrow B$ be a relation.

OOMU Definition 5.4.3.1.1. The **left** J-skew associator of Rel(A, B) is the natural transformation

$$\alpha^{\mathbf{Rel}(A,B),\lhd_J}\colon \lhd_J\circ (\lhd_J\times\mathsf{id})\Longrightarrow \lhd_J\circ (\mathsf{id}\times\lhd_J)\circ \alpha^{\mathsf{Cats}}_{\mathbf{Rel}(A,B),\mathbf{Rel}(A,B),\mathbf{Rel}(A,B)},$$

¹⁴Since $\mathbf{Rel}(A, B)$ is posetal, this is to say that if $S \subset S'$ and $R \subset R'$, then $S \triangleleft_J R \subset S' \triangleleft_J R'$.

as in the diagram

whose component

$$\alpha_{T,S,R}^{\mathbf{Rel}(A,B),\lhd_J} : \underbrace{(T \lhd_J S) \lhd_J R}_{\stackrel{\mathrm{def}}{=} T \diamond \mathrm{Rift}_J(S) \diamond \mathrm{Rift}_J(R)} \hookrightarrow \underbrace{T \lhd_J (S \lhd_J R)}_{\stackrel{\mathrm{def}}{=} T \diamond \mathrm{Rift}_J(S \diamond \mathrm{Rift}_J(R))}$$

at (T, S, R) is given by

$$\alpha_{T,S,R}^{\mathbf{Rel}(A,B),\lhd_J} \stackrel{\mathrm{def}}{=} \mathrm{id}_T \diamond \gamma,$$

where

$$\gamma \colon \mathrm{Rift}_J(S) \diamond \mathrm{Rift}_J(R) \hookrightarrow \mathrm{Rift}_J(S \diamond \mathrm{Rift}_J(R))$$

is the inclusion adjunct to the inclusion

$$\epsilon_S \star \mathrm{id}_{\mathrm{Rift}_J(R)} \colon \underbrace{J \diamond \mathrm{Rift}_J(S) \diamond \mathrm{Rift}_J(R)}_{\stackrel{\mathrm{def}}{=} J_*(\mathrm{Rift}_J(S) \diamond \mathrm{Rift}_J(R))} \hookrightarrow S \diamond \mathrm{Rift}_J(R)$$

under the adjunction $J_* \dashv \operatorname{Rift}_J$, where $\epsilon \colon J \diamond \operatorname{Rift}_J \Longrightarrow \operatorname{id}_{\mathbf{Rel}(A,B)}$ is the counit of the adjunction $J_* \dashv \operatorname{Rift}_J$.

00MV 5.4.4 The Left Skew Left Unitors

Let A and B be sets and let $J: A \rightarrow B$ be a relation.

00MW Definition 5.4.4.1.1. The left J-skew left unitor of Rel(A, B) is the natural transformation

$$\lambda^{\mathbf{Rel}(A,B),\lhd_J}\colon \lhd_J\circ \left(\mathbb{1}_{\lhd_J}^{\mathbf{Rel}(A,B)}\times \mathsf{id}\right) \Longrightarrow \boldsymbol{\lambda}^{\mathsf{Cats}_2}_{\mathbf{Rel}(A,B)}$$

as in the diagram

whose component

$$\lambda_R^{\mathbf{Rel}(A,B),\lhd_J} \colon \underbrace{J \lhd_J R}_{\stackrel{\mathrm{def}}{=} J \diamond \mathrm{Rift}_I(R)} \hookrightarrow R$$

at R is given by

$$\lambda_R^{\mathbf{Rel}(A,B),\lhd_J} \stackrel{\mathrm{def}}{=} \epsilon_R,$$

where $\epsilon: J_* \diamond \operatorname{Rift}_J \Longrightarrow \operatorname{id}_{\mathbf{Rel}(A,B)}$ is the counit of the adjunction $J_* \dashv \operatorname{Rift}_J$.

00MX 5.4.5 The Left Skew Right Unitors

Let A and B be sets and let $J: A \rightarrow B$ be a relation.

OOMY Definition 5.4.5.1.1. The left *J*-skew right unitor of Rel(A, B) is the natural transformation

$$\rho^{\mathbf{Rel}(A,B),\lhd_J}\colon \boldsymbol{\rho}^{\mathsf{Cats}_2}_{\mathbf{Rel}(A,B)} \Longrightarrow \lhd_J \circ \left(\mathsf{id} \times \mathbb{1}^{\mathbf{Rel}(A,B)}_{\lhd_J}\right)$$

as in the diagram

whose component

$$\rho_R^{\mathbf{Rel}(A,B),\lhd_J} \colon R \hookrightarrow \underbrace{R \lhd_J J}_{\stackrel{\mathrm{def}}{=} R \diamond \mathrm{Rift}_J(J)}$$

at R is given by the composition

$$\begin{array}{ccc} R & \stackrel{\sim}{\Longrightarrow} & R \diamond \chi_A \\ & \stackrel{\operatorname{id}_R \diamond \eta_{\chi_A}}{\Longrightarrow} R \diamond \operatorname{Rift}_J(J_*(\chi_A)) \\ \stackrel{\operatorname{def}}{=} & R \diamond \operatorname{Rift}_J(J \diamond \chi_A) \\ & \stackrel{\sim}{\Longrightarrow} & R \diamond \operatorname{Rift}_J(J) \\ \stackrel{\operatorname{def}}{=} & R \lhd_J J, \end{array}$$

where $\eta: \mathrm{id}_{\mathbf{Rel}(A,A)} \Longrightarrow \mathrm{Rift}_J \circ J_*$ is the unit of the adjunction $J_* \dashv \mathrm{Rift}_J$.

- 00MZ 5.4.6 The Left Skew Monoidal Structure on Rel(A, B)
- **OONO** Proposition 5.4.6.1.1. The category Rel(A, B) admits a left skew monoidal category structure consisting of
 - The Underlying Category. The posetal category associated to the poset $\mathbf{Rel}(A, B)$ of relations from A to B of Item 2 of Definition 5.1.1.1.3.
 - The Left Skew Monoidal Product. The left J-skew monoidal product

$$\triangleleft_J \colon \mathbf{Rel}(A,B) \times \mathbf{Rel}(A,B) \to \mathbf{Rel}(A,B)$$

of Definition 5.4.1.1.1.

• The Left Skew Monoidal Unit. The functor

$$\mathbb{1}^{\mathbf{Rel}(A,B),\lhd_J} \colon \mathsf{pt} \to \mathbf{Rel}(A,B)$$

of Definition 5.4.2.1.1.

• The Left Skew Associators. The natural transformation

$$\alpha^{\mathbf{Rel}(A,B),\lhd_J} \colon \lhd_J \circ (\lhd_J \times \mathsf{id}) \Longrightarrow \lhd_J \circ (\mathsf{id} \times \lhd_J) \circ \alpha^{\mathsf{Cats}}_{\mathbf{Rel}(A,B),\mathbf{Rel}(A,B),\mathbf{Rel}(A,B)}$$
 of Definition 5.4.3.1.1.

• The Left Skew Left Unitors. The natural transformation

$$\lambda^{\mathbf{Rel}(A,B),\lhd_J}\colon \lhd_J\circ \left(\mathbb{1}_{\lhd_J}^{\mathbf{Rel}(A,B)}\times \mathsf{id}\right) \Longrightarrow \boldsymbol{\lambda}^{\mathsf{Cats}_2}_{\mathbf{Rel}(A,B)}$$

of Definition 5.4.4.1.1.

• The Left Skew Right Unitors. The natural transformation

$$\rho^{\mathbf{Rel}(A,B),\lhd_J}\colon \boldsymbol{\rho}^{\mathsf{Cats}_2}_{\mathbf{Rel}(A,B)} \Longrightarrow \lhd_J \circ \left(\mathsf{id} \times \mathbb{1}_{\lhd_J}^{\mathbf{Rel}(A,B)}\right)$$

of Definition 5.4.5.1.1.

Proof. Since $\mathbf{Rel}(A, B)$ is posetal, the commutativity of the pentagon identity, the left skew left triangle identity, the left skew right triangle identity, the left skew middle triangle identity, and the zigzag identity is automatic, and thus $\mathbf{Rel}(A, B)$ together with the data in the statement forms a left skew monoidal category.

60N1 5.5 The Right Skew Monoidal Structure on Rel(A, B)

Let A and B be sets and let $J: A \to B$ be a relation.

00N2 5.5.1 The Right Skew Monoidal Product

00N3 Definition 5.5.1.1.1. The right J-skew monoidal product of Rel(A, B) is the functor

$$\triangleright_J : \mathbf{Rel}(A, B) \times \mathbf{Rel}(A, B) \to \mathbf{Rel}(A, B)$$

where

• Action on Objects. For each $R, S \in \text{Obj}(\mathbf{Rel}(A, B))$, we have

$$A \xrightarrow{R} B \xrightarrow{\operatorname{Ran}_{J}(S)} B.$$

$$S \triangleright_{J} R \stackrel{\operatorname{def}}{=} \operatorname{Ran}_{J}(S) \diamond R,$$

$$A \xrightarrow{R} B \xrightarrow{\operatorname{Ran}_{J}(S)} B.$$

$$A \xrightarrow{R} B \xrightarrow{\operatorname{Ran}_{J}(S)} A$$

• Action on Morphisms. For each $R, S, R', S' \in \text{Obj}(\mathbf{Rel}(A, B))$, the action on Hom-sets

$$(\triangleright_{J})_{(S,R),(S',R')} \colon \operatorname{Hom}_{\mathbf{Rel}(A,B)} \left(S, S' \right) \times \operatorname{Hom}_{\mathbf{Rel}(A,B)} \left(R, R' \right) \to \operatorname{Hom}_{\mathbf{Rel}(A,B)} \left(S \triangleright_{J} R, S' \triangleright_{J} R' \right)$$
of \triangleright_{J} at $((S,R),(S',R'))$ is defined by $^{\mathbf{15}}$

for each $\beta \in \operatorname{Hom}_{\mathbf{Rel}(A,B)}(S,S')$ and each $\alpha \in \operatorname{Hom}_{\mathbf{Rel}(A,B)}(R,R')$.

¹⁵Since Rel(A, B) is posetal, this is to say that if $S \subset S'$ and $R \subset R'$, then

00N4 5.5.2 The Right Skew Monoidal Unit

00N5 Definition 5.5.2.1.1. The right J-skew monoidal unit of $\mathbf{Rel}(A,B)$

is the functor

$$\mathbb{1}^{\mathbf{Rel}(A,B)}_{\rhd_J} \colon \mathsf{pt} \to \mathbf{Rel}(A,B)$$

picking the object

$$\mathbb{1}_{\mathbf{Rel}(A,B)}^{\rhd_J} \stackrel{\mathrm{def}}{=} J$$

of $\mathbf{Rel}(A, B)$.

00N6 5.5.3 The Right Skew Associators

OON7 Definition 5.5.3.1.1. The right J-skew associator of Rel(A, B) is the natural transformation

$$\alpha^{\mathbf{Rel}(A,B),\triangleright_J} : \triangleright_J \circ (\mathsf{id} \times \triangleright_J) \Longrightarrow \triangleright_J \circ (\triangleright_J \times \mathsf{id}) \circ \alpha^{\mathsf{Cats},-1}_{\mathbf{Rel}(A,B),\mathbf{Rel}(A,B),\mathbf{Rel}(A,B)},$$
 as in the diagram

$$(\mathbf{Rel}(A,B) \times \mathbf{Rel}(A,B)) \times \mathbf{Rel}(A,B)$$

$$\alpha^{\mathsf{Cats},-1}_{\mathbf{Rel}(A,B),\mathbf{Rel}(A,B),\mathbf{Rel}(A,B)}$$

$$\mathbf{Rel}(A,B) \times (\mathbf{Rel}(A,B) \times \mathbf{Rel}(A,B) \times \mathbf{Rel}(A,B) \times \mathbf{Rel}(A,B)$$

$$\alpha^{\mathsf{Rel}(A,B),\triangleright_J}$$

$$\mathrm{id} \times \triangleright_J$$

$$\mathbf{Rel}(A,B) \times \mathbf{Rel}(A,B) \stackrel{\triangleright_J}{\leftarrow} \mathbf{Rel}(A,B),$$

whose component

$$\alpha_{T,S,R}^{\mathbf{Rel}(A,B),\rhd_J} \colon \underbrace{T \rhd_J \left(S \rhd_J R\right)}_{\overset{\mathrm{def}}{=} \mathrm{Ran}_J(T) \diamond \mathrm{Ran}_J(S) \diamond R} \hookrightarrow \underbrace{\left(T \rhd_J S\right) \rhd_J R}_{\overset{\mathrm{def}}{=} \mathrm{Ran}_J(\mathrm{Ran}_J(T) \diamond S) \diamond R}$$

at (T, S, R) is given by

$$\alpha_{T,S,R}^{\mathbf{Rel}(A,B),\triangleright}\stackrel{\mathrm{def}}{=} \gamma \diamond \mathrm{id}_R,$$

where

$$\gamma \colon \operatorname{Ran}_J(T) \diamond \operatorname{Ran}_J(S) \hookrightarrow \operatorname{Ran}_J(\operatorname{Ran}_J(T) \diamond S)$$

is the inclusion adjunct to the inclusion

$$\operatorname{id}_{\operatorname{Ran}_{J}(T)} \diamond \epsilon_{S} \colon \underbrace{\operatorname{Ran}_{J}(T) \diamond \operatorname{Ran}_{J}(S) \diamond J}_{\stackrel{\operatorname{def}}{=} J^{*}(\operatorname{Ran}_{J}(T) \diamond \operatorname{Ran}_{J}(S))} \hookrightarrow \operatorname{Ran}_{J}(T) \diamond S$$

under the adjunction $J^* \dashv \operatorname{Ran}_J$, where $\epsilon \colon \operatorname{Ran}_J \diamond J \Longrightarrow \operatorname{id}_{\mathbf{Rel}(A,B)}$ is the counit of the adjunction $J^* \dashv \operatorname{Ran}_J$.

00N8 5.5.4 The Right Skew Left Unitors

00N9 Definition 5.5.4.1.1. The right J-skew left unitor of Rel(A, B) is the natural transformation

$$\lambda^{\mathbf{Rel}(A,B),\rhd_J}\colon \boldsymbol{\lambda}^{\mathsf{Cats}_2}_{\mathbf{Rel}(A,B)}\Longrightarrow \rhd_J\circ \Big(\mathbb{1}^{\mathbf{Rel}(A,B)}_{\rhd}\times \mathsf{id}\Big),$$

as in the diagram

whose component

$$\lambda_R^{\mathbf{Rel}(A,B),\rhd_J}\colon R\hookrightarrow \underbrace{J\rhd_J R}_{\stackrel{\mathrm{def}}{=}\mathrm{Ran}_J(J)\diamond R}$$

at R is given by the composition

$$\begin{array}{ll} R & \stackrel{\sim}{\Longrightarrow} & \chi_B \diamond R \\ & \stackrel{\eta_{\chi_B}}{\Longrightarrow} \diamond \mathrm{i} \mathrm{Ran}_J(J^*(\chi_A)) \diamond R \\ & \stackrel{\mathrm{def}}{=} & \mathrm{Ran}_J(J^* \diamond \chi_A) \diamond R \\ & \stackrel{\sim}{\Longrightarrow} & \mathrm{Ran}_J(J) \diamond R \\ & \stackrel{\mathrm{def}}{=} & R \rhd_J J, \end{array}$$

where $\eta \colon \mathrm{id}_{\mathbf{Rel}(B,B)} \Longrightarrow \mathrm{Ran}_J \circ J^*$ is the unit of the adjunction $J^* \dashv \mathrm{Ran}_J$.

00NA 5.5.5 The Right Skew Right Unitors

00NB Definition 5.5.5.1.1. The right J-skew right unitor of Rel(A,B) is the natural transformation

$$\frac{\rho^{\mathbf{Rel}(A,B),\rhd_J}\colon \rhd_J\circ \left(\mathsf{id}\times \mathbb{1}_{\rhd}^{\mathbf{Rel}(A,B)}\right)\Longrightarrow \boldsymbol{\rho}^{\mathsf{Cats}_2}_{\mathbf{Rel}(A,B)},}{S\rhd_J R\subset S'\rhd_J R'.}$$

as in the diagram

whose component

$$\rho_S^{\mathbf{Rel}(A,B),\triangleright_J} \colon \underbrace{S \triangleright_J J}_{\stackrel{\mathrm{def}}{=} \mathrm{Ran}_I(S) \diamond J} \hookrightarrow S$$

at S is given by

$$\rho_S^{\mathbf{Rel}(A,B),\rhd_J} \stackrel{\mathrm{def}}{=} \epsilon_R,$$

where $\epsilon \colon J^* \circ \operatorname{Ran}_J \Longrightarrow \operatorname{id}_{\mathbf{Rel}(A,B)}$ is the counit of the adjunction $J^* \dashv \operatorname{Ran}_J$.

OONC 5.5.6 The Right Skew Monoidal Structure on Rel(A, B)

- **OOND** Proposition 5.5.6.1.1. The category Rel(A, B) admits a right skew monoidal category structure consisting of
 - The Underlying Category. The posetal category associated to the poset $\mathbf{Rel}(A, B)$ of relations from A to B of Item 2 of Definition 5.1.1.1.3.
 - The Right Skew Monoidal Product. The right J-skew monoidal product

$$\triangleleft_J \colon \mathbf{Rel}(A,B) \times \mathbf{Rel}(A,B) \to \mathbf{Rel}(A,B)$$

of Definition 5.5.1.1.1.

• The Right Skew Monoidal Unit. The functor

$$\mathbb{1}^{\mathbf{Rel}(A,B),\lhd_J} \colon \mathsf{pt} \to \mathbf{Rel}(A,B)$$

of Definition 5.5.2.1.1.

• The Right Skew Associators. The natural transformation

$$\alpha^{\mathbf{Rel}(A,B),\rhd_J}\colon \rhd_J\circ (\mathsf{id}\times \rhd_J)\Longrightarrow \rhd_J\circ (\rhd_J\times \mathsf{id})\circ \alpha^{\mathsf{Cats},-1}_{\mathbf{Rel}(A,B),\mathbf{Rel}(A,B)}$$
 of Definition 5.5.3.1.1.

• The Right Skew Left Unitors. The natural transformation

$$\lambda^{\mathbf{Rel}(A,B),\rhd_J}\colon \boldsymbol{\lambda}^{\mathsf{Cats}_2}_{\mathbf{Rel}(A,B)}\Longrightarrow \rhd_J\circ \left(\mathbb{1}_{\rhd}^{\mathbf{Rel}(A,B)}\times\mathsf{id}\right)$$

of Definition 5.5.4.1.1.

• The Right Skew Right Unitors. The natural transformation

$$\rho^{\mathbf{Rel}(A,B),\rhd_J}\colon \rhd_J\circ \left(\mathrm{id}\times \mathbb{1}_{\rhd}^{\mathbf{Rel}(A,B)}\right)\Longrightarrow \rho^{\mathsf{Cats}_2}_{\mathbf{Rel}(A,B)}$$

of Definition 5.5.5.1.1.

Proof. Since $\mathbf{Rel}(A, B)$ is posetal, the commutativity of the pentagon identity, the right skew left triangle identity, the right skew right triangle identity, the right skew middle triangle identity, and the zigzag identity is automatic, and thus $\mathbf{Rel}(A, B)$ together with the data in the statement forms a right skew monoidal category.

Appendices

5.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 6

Constructions With Relations

OONE This chapter contains some material about constructions with relations. Notably, we discuss and explore:

- 1. The existence or non-existence of Kan extensions and Kan lifts in the 2-category **Rel** (Section 6.2).
- 2. The various kinds of constructions involving relations, such as graphs, domains, ranges, unions, intersections, products, inverse relations, composition of relations, and collages (Section 6.3).
- 3. The adjoint pairs

$$R_* \dashv R_{-1} \colon \mathcal{P}(A) \rightleftarrows \mathcal{P}(B),$$

 $R^{-1} \dashv R_! \colon \mathcal{P}(B) \rightleftarrows \mathcal{P}(A)$

of functors (morphisms of posets) between $\mathcal{P}(A)$ and $\mathcal{P}(B)$ induced by a relation $R: A \to B$, as well as the properties of R_* , R_{-1} , R^{-1} , and $R_!$ (Section 6.4).

Of particular note are the following points:

- (a) These two pairs of adjoint functors are the counterpart for relations of the adjoint triple $f_* \dashv f^{-1} \dashv f_!$ induced by a function $f: A \to B$ studied in Section 2.4.
- (b) We have $R_{-1} = R^{-1}$ iff R is total and functional (Item 8 of Proposition 6.4.2.1.3).
- (c) As a consequence of the previous item, when R comes from a function f, the pair of adjunctions

$$R_* \dashv R_{-1} = R^{-1} \dashv R_!$$

reduces to the triple adjunction

$f_*\dashv f^{-1}\dashv f_!$

from Section 2.4.

(d) The pairs $R_* \dashv R_{-1}$ and $R^{-1} \dashv R_!$ turn out to be rather important later on, as they appear in the definition and study of continuous, open, and closed relations between topological spaces (??).

Contents

3011001108		
6.1	Co/Limits in the Category of Relations281	
6.2	Kan Extensions and Kan Lifts in the 2-Category	
of Relations281		
	6.2.1	Left Kan Extensions in Rel
	6.2.2	Left Kan Lifts in Rel
	6.2.3	Right Kan Extensions in Rel
	6.2.4	Right Kan Lifts in Rel
6.3	$ \mathbf{More} $	Constructions With Relations285
	6.3.1	The Graph of a Function
	6.3.2	The Inverse of a Function
	6.3.3	Representable Relations
	6.3.4	The Domain and Range of a Relation 291
	6.3.5	Binary Unions of Relations
	6.3.6	Unions of Families of Relations
	6.3.7	Binary Intersections of Relations
	6.3.8	Intersections of Families of Relations
	6.3.9	Binary Products of Relations
	6.3.10	Products of Families of Relations
	6.3.11	The Inverse of a Relation
	6.3.12	Composition of Relations
	6.3.13	The Collage of a Relation
6.4	Functoriality of Powersets305	
	6.4.1	Direct Images
	6.4.2	Strong Inverse Images
	6.4.3	Weak Inverse Images
	6.4.4	Direct Images With Compact Support 320
	6.4.5	Functoriality of Powersets
	6.4.6	Functoriality of Powersets: Relations on
Powersets		
6.A	Other	Chapters327

00NF 6.1Co/Limits in the Category of Relations

This section is currently just a stub, and will be properly developed later

6.2Kan Extensions and Kan Lifts in the 2-Category of Relations 00NG

Left Kan Extensions in Rel 00NH 6.2.1

- **QUALITY Proposition 6.2.1.1.1.** Let $R: A \rightarrow B$ be a relation.
- 1. Non-Existence of All Left Kan Extensions in Rel. Not all relations 00NK in **Rel** admit left Kan extensions.
- 2. Characterisation of Relations Admitting Left Kan Extensions Along Them. The following conditions are equivalent: 00NL
 - (a) The left Kan extension

$$\operatorname{Lan}_R \colon \mathbf{Rel}(A, X) \to \mathbf{Rel}(B, X)$$

along R exists.

- (b) The relation R admits a left adjoint in **Rel**.
- (c) The relation R is of the form f^{-1} (as in Definition 6.3.2.1.1) for some function f.

Proof. Item 1, Non-Existence of All Left Kan Extensions in Rel: Omitted, but will eventually follow Fosco Loregian's comment on [MO 460656]. Item 2, Characterisation of Relations Admitting Left Kan Extensions Along Them: Omitted, but will eventually follow Tim Campion's answer to to [MO 460656].

Question 6.2.1.1.2. Given relations $S: A \to X$ and $R: A \to B$, is there a characterisation of when the left Kan extension

$$\operatorname{Lan}_S(R) \colon B \to X$$

exists in terms of properties of R and S?

This question also appears as [MO 461592].

OONN Question 6.2.1.1.3. As shown in Item 2 of Proposition 6.2.1.1.1, the left Kan extension

$$\operatorname{Lan}_{R} \colon \mathbf{Rel}(A, X) \to \mathbf{Rel}(B, X)$$

along a relation of the form $R = f^{-1}$ exists. Is there a explicit description of it, similarly to the explicit description of right Kan extensions given in Proposition 6.2.3.1.1?

This question also appears as [MO 461592].

00NP 6.2.2 Left Kan Lifts in Rel

- **OONQ** Proposition 6.2.2.1.1. Let $R: A \to B$ be a relation.
- 00NR 1. Non-Existence of All Left Kan Lifts in Rel. Not all relations in Rel admit left Kan lifts.
- 2. Characterisation of Relations Admitting Left Kan Lifts Along Them.

 Oons The following conditions are equivalent:
 - (a) The left Kan lift

$$Lift_R : \mathbf{Rel}(X, B) \to \mathbf{Rel}(X, A)$$

along R exists.

- (b) The relation R admits a right adjoint in **Rel**.
- (c) The relation R is of the form Gr(f) (as in Definition 6.3.1.1.1) for some function f.

Proof. Item 1, Non-Existence of All Left Kan Lifts in Rel: Omitted, but will eventually follow (the dual of) Fosco Loregian's comment on [MO 460656].

Item 2, Characterisation of Relations Admitting Left Kan Lifts Along Them: Omitted, but will eventually follow Tim Campion's answer to to [MO 460656]. □

Question 6.2.2.1.2. Given relations $S: A \to X$ and $R: A \to B$, is there a characterisation of when the left Kan lift

$$Lift_S(R): X \to A$$

exists in terms of properties of R and S? This question also appears as [MO 461592].

Question 6.2.2.1.3. As shown in Item 2 of Proposition 6.2.2.1.1, the left Kan lift

$$Lift_R : \mathbf{Rel}(X, B) \to \mathbf{Rel}(X, A)$$

along a relation of the form R = Gr(f) exists. Is there a explicit description of it, similarly to the explicit description of right Kan lifts given in Proposition 6.2.4.1.1?

This question also appears as [MO 461592].

00NV 6.2.3 Right Kan Extensions in **Rel**

Let $R: A \to B$ be a relation.

OONW Proposition 6.2.3.1.1. The right Kan extension

$$\operatorname{Ran}_R : \operatorname{Rel}(A, X) \to \operatorname{Rel}(B, X)$$

along R in **Rel** exists and is given by

$$\operatorname{Ran}_{R}(S) \stackrel{\text{def}}{=} \int_{a \in A} \operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}} (R_{a}^{-2}, S_{a}^{-1})$$

for each $S \in \text{Rel}(A, X)$, so that the following conditions are equivalent:

- 1. We have $b \sim_{\operatorname{Ran}_R(S)} x$.
- 2. For each $a \in A$, if $a \sim_R b$, then $a \sim_S x$.

Proof. We have

$$\begin{split} \operatorname{Hom}_{\mathbf{Rel}(A,X)}(S \diamond R,T) &\cong \int_{a \in A} \int_{x \in X} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \big(\big(S \diamond R \big)_a^x, T_a^x \big) \\ &\cong \int_{a \in A} \int_{x \in X} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(\left(\int^{b \in B} S_b^x \times R_a^b \right), T_a^x \right) \\ &\cong \int_{a \in A} \int_{x \in X} \int_{b \in B} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \big(S_b^x \times R_a^b, T_a^x \big) \\ &\cong \int_{a \in A} \int_{x \in X} \int_{b \in B} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \big(S_b^x, \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \big(R_a^b, T_a^x \big) \big) \\ &\cong \int_{b \in B} \int_{x \in X} \int_{a \in A} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \big(S_b^x, \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \big(R_a^b, T_a^x \big) \big) \\ &\cong \int_{b \in B} \int_{x \in X} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \bigg(S_b^x, \int_{a \in A} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \big(R_a^b, T_a^x \big) \bigg) \\ &\cong \operatorname{Hom}_{\mathbf{Rel}(B,X)} \bigg(S, \int_{a \in A} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \big(R_a^{-2}, T_a^{-1} \big) \bigg) \end{split}$$

naturally in each $S \in \mathbf{Rel}(B, X)$ and each $T \in \mathbf{Rel}(A, X)$, showing that

$$\int_{a\in A} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} (R_a^{-2}, T_a^{-1})$$

is right adjoint to the precomposition functor $- \diamond R$, being thus the right Kan extension along R. Here we have used the following results, respectively (i.e. for each \cong sign):

- 1. Item 1 of Proposition 5.1.1.1.5.
- 2. Definition 6.3.12.1.1.
- 3. ?? of ??.

- 4. Proposition 1.2.2.1.5.
- 5. ?? of ??.
- 6. ?? of ??.
- 7. Item 1 of Proposition 5.1.1.1.5.

This finishes the proof.

00NX 6.2.4 Right Kan Lifts in Rel

Let $R: A \to B$ be a relation.

00NY Proposition 6.2.4.1.1. The right Kan lift

$$Rift_R : Rel(X, B) \to Rel(X, A)$$

along R in **Rel** exists and is given by

$$\operatorname{Rift}_{R}(S) \stackrel{\text{def}}{=} \int_{b \in B} \operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(R_{-1}^{b}, S_{-2}^{b} \right)$$

for each $S \in \text{Rel}(X, B)$, so that the following conditions are equivalent:

- 1. We have $x \sim_{\text{Rift}_R(S)} a$.
- 2. For each $b \in B$, if $a \sim_R b$, then $x \sim_S b$.

Proof. We have

$$\begin{split} \operatorname{Hom}_{\mathbf{Rel}(X,B)}(R \diamond S, T) &\cong \int_{x \in X} \int_{b \in B} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left((R \diamond S)_x^b, T_x^b \right) \\ &\cong \int_{x \in X} \int_{b \in B} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(\left(\int^{a \in A} R_a^b \times S_x^a \right), T_x^b \right) \\ &\cong \int_{x \in X} \int_{b \in B} \int_{a \in A} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(R_a^b \times S_x^a, T_x^b \right) \\ &\cong \int_{x \in X} \int_{b \in B} \int_{a \in A} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(S_x^a, \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(R_a^b, T_x^b \right) \right) \\ &\cong \int_{x \in X} \int_{a \in A} \int_{b \in B} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(S_x^a, \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(R_a^b, T_x^b \right) \right) \\ &\cong \int_{x \in X} \int_{a \in A} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(S_x^a, \int_{b \in B} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(R_a^b, T_x^b \right) \right) \\ &\cong \operatorname{Hom}_{\mathbf{Rel}(X,A)} \left(S, \int_{\mathsf{b} \in B} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \left(R_{-1}^b, T_{-2}^b \right) \right) \end{split}$$

naturally in each $S \in \mathbf{Rel}(X, A)$ and each $T \in \mathbf{Rel}(X, B)$, showing that

$$\int_{b \in B} \mathbf{Hom}_{\{\mathsf{t},\mathsf{f}\}} \Big(R^b_{-1}, S^b_{-2} \Big)$$

is right adjoint to the postcomposition functor $R \diamond -$, being thus the right Kan lift along R. Here we have used the following results, respectively (i.e. for each \cong sign):

- 1. Item 1 of Proposition 5.1.1.1.5.
- 2. Definition 6.3.12.1.1.
- 3. ?? of ??.
- 4. Proposition 1.2.2.1.5.
- 5. ?? of ??.
- 6. ?? of ??.
- 7. Item 1 of Proposition 5.1.1.1.5.

This finishes the proof.

6.3 More Constructions With Relations

00P0 6.3.1 The Graph of a Function

Let $f: A \to B$ be a function.

- **Definition 6.3.1.1.1.** The **graph of** f is the relation $Gr(f): A \to B$ defined as follows:¹
 - Viewing relations from A to B as subsets of $A \times B$, we define

$$Gr(f) \stackrel{\text{def}}{=} \{(a, f(a)) \in A \times B \mid a \in A\}.$$

• Viewing relations from A to B as functions $A \times B \to \{\text{true}, \text{false}\},$ we define

$$[\operatorname{Gr}(f)](a,b) \stackrel{\text{def}}{=} \begin{cases} \operatorname{true} & \text{if } b = f(a), \\ \operatorname{false} & \text{otherwise} \end{cases}$$

for each $(a, b) \in A \times B$.

• Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$[\operatorname{Gr}(f)](a) \stackrel{\text{def}}{=} \{f(a)\}$$

for each $a \in A$, i.e. we define Gr(f) as the composition

$$A \xrightarrow{f} B \xrightarrow{\chi_B} \mathcal{P}(B).$$

¹ Further Notation: We write Gr(A) for $Gr(id_A)$, and call it the **graph** of A.

OOP2 Proposition 6.3.1.1.2. Let $f: A \to B$ be a function.

00P3 1. Functoriality. The assignment $A \mapsto Gr(A)$ defines a functor

$$Gr : \mathsf{Sets} \to \mathrm{Rel}$$

where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$Gr(A) \stackrel{\text{def}}{=} A.$$

• Action on Morphisms. For each $A, B \in \text{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$\operatorname{Gr}_{A,B} \colon \mathsf{Sets}(A,B) \to \underbrace{\operatorname{Rel}(\operatorname{Gr}(A),\operatorname{Gr}(B))}_{\stackrel{\operatorname{def}}{=} \operatorname{Rel}(A,B)}$$

of Gr at (A, B) is defined by

$$\operatorname{Gr}_{A,B}(f) \stackrel{\text{def}}{=} \operatorname{Gr}(f),$$

where Gr(f) is the graph of f as in Definition 6.3.1.1.1.

In particular:

• Preservation of Identities. We have

$$Gr(id_A) = \chi_A$$

for each $A \in \text{Obj}(\mathsf{Sets})$.

• Preservation of Composition. We have

$$Gr(g \circ f) = Gr(g) \diamond Gr(f)$$

for each pair of functions $f: A \to B$ and $g: B \to C$.

00P4 2. Adjointness Inside Rel. We have an adjunction

$$\left(\operatorname{Gr}(f)\dashv f^{-1}\right): A \bigoplus_{f^{-1}}^{\operatorname{Gr}(f)} B$$

in **Rel**, where f^{-1} is the inverse of f of Definition 6.3.2.1.1.

00P5 3. Adjointness. We have an adjunction

$$(\operatorname{Gr} \dashv \mathcal{P}_*)$$
: Sets $\underbrace{\overset{\operatorname{Gr}}{\downarrow}}_{\mathcal{P}_*} \operatorname{Rel},$

witnessed by a bijection of sets

$$Rel(Gr(A), B) \cong Sets(A, \mathcal{P}(B))$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $B \in \text{Obj}(\mathsf{Rel})$.

00P6 4. Interaction With Inverses. We have

$$\operatorname{Gr}(f)^{\dagger} = f^{-1},$$

 $\left(f^{-1}\right)^{\dagger} = \operatorname{Gr}(f).$

- 00P7 5. Cocontinuity. The functor Gr: Sets \rightarrow Rel of Item 1 preserves colimits.
- 6. Characterisations. Let $R: A \to B$ be a relation. The following conditions are equivalent:
- 00P9 (a) There exists a function $f: A \to B$ such that R = Gr(f).
- **OOPA** (b) The relation R is total and functional.
 - (c) The weak and strong inverse images of R agree, i.e. we have $R^{-1} = R_{-1}$.
- **OOPC** (d) The relation R has a right adjoint R^{\dagger} in Rel.

Proof. Item 1, Functoriality: Clear.

00PB

Item 2, Adjointness Inside Rel: We need to check that there are inclusions

$$\chi_A \subset f^{-1} \diamond \operatorname{Gr}(f),$$

 $\operatorname{Gr}(f) \diamond f^{-1} \subset \chi_B.$

These correspond respectively to the following conditions:

- 1. For each $a \in A$, there exists some $b \in B$ such that $a \sim_{\operatorname{Gr}(f)} b$ and $b \sim_{f^{-1}} a$.
- 2. For each $a, b \in A$, if $a \sim_{Gr(f)} b$ and $b \sim_{f^{-1}} a$, then a = b.

In other words, the first condition states that the image of any $a \in A$ by f is nonempty, whereas the second condition states that f is not multivalued. As f is a function, both of these statements are true, and we are done.

Item 3, Adjointness: The stated bijection follows from Remark 5.1.1.1.4, with naturality being clear.

Item 4, Interaction With Inverses: Clear.

Item 5, Cocontinuity: Omitted.

Item 6, *Characterisations*: We claim that *Items 6*a to 6d are indeed equivalent:

- Item $6a \iff Item 6b$. This is shown in the proof of ?? of ??.
- Item $6b \Longrightarrow Item 6c$. If R is total and functional, then, for each $a \in A$, the set R(a) is a singleton, implying that

$$R^{-1}(V) \stackrel{\text{def}}{=} \{ a \in A \mid R(a) \cap V \neq \emptyset \},$$

$$R_{-1}(V) \stackrel{\text{def}}{=} \{ a \in A \mid R(a) \subset V \}$$

are equal for all $V \in \mathcal{P}(B)$, as the conditions $R(a) \cap V \neq \emptyset$ and $R(a) \subset V$ are equivalent when R(a) is a singleton.

- Item $6c \Longrightarrow Item 6b$. We claim that R is indeed total and functional:
 - Totality. If we had $R(a) = \emptyset$ for some $a \in A$, then we would have $a \in R_{-1}(\emptyset)$, so that $R_{-1}(\emptyset) \neq \emptyset$. But since $R^{-1}(\emptyset) = \emptyset$, this would imply $R_{-1}(\emptyset) \neq R^{-1}(\emptyset)$, a contradiction. Thus $R(a) \neq \emptyset$ for all $a \in A$ and R is total.
 - Functionality. If $R^{-1} = R_{-1}$, then we have

$${a} = R^{-1}({b})$$

= $R_{-1}({b})$

for each $b \in R(a)$ and each $a \in A$, and thus $R(a) \subset \{b\}$. But since R is total, we must have $R(a) = \{b\}$, and thus we see that R is functional.

• Item $6a \iff Item 6d$. This follows from Proposition 5.3.3.1.1.

This finishes the proof.

00PD 6.3.2 The Inverse of a Function

Let $f: A \to B$ be a function.

OOPE Definition 6.3.2.1.1. The **inverse of** f is the relation $f^{-1}: B \to A$ defined as follows:

• Viewing relations from B to A as subsets of $B \times A$, we define

$$f^{-1} \stackrel{\text{def}}{=} \left\{ \left(b, f^{-1}(b) \right) \in B \times A \mid a \in A \right\},$$

where

$$f^{-1}(b) \stackrel{\text{def}}{=} \{ a \in A \mid f(a) = b \}$$

for each $b \in B$.

• Viewing relations from B to A as functions $B \times A \to \{\text{true}, \text{false}\},$ we define

$$f^{-1}(b,a) \stackrel{\text{\tiny def}}{=} \begin{cases} \mathsf{true} & \text{if there exists } a \in A \text{ with } f(a) = b, \\ \mathsf{false} & \text{otherwise} \end{cases}$$

for each $(b, a) \in B \times A$.

• Viewing relations from B to A as functions $B \to \mathcal{P}(A)$, we define

$$f^{-1}(b) \stackrel{\text{def}}{=} \{ a \in A \mid f(a) = b \}$$

for each $b \in B$.

OOPF Proposition 6.3.2.1.2. Let $f: A \to B$ be a function.

00PG 1. Functoriality. The assignment $A \mapsto A, f \mapsto f^{-1}$ defines a functor

$$(-)^{-1} \colon \mathsf{Sets} \to \mathrm{Rel}$$

where

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$\left[(-)^{-1} \right] (A) \stackrel{\text{def}}{=} A.$$

• Action on Morphisms. For each $A, B \in \text{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$(-)_{A,B}^{-1} \colon \mathsf{Sets}(A,B) \to \mathrm{Rel}(A,B)$$

of $(-)^{-1}$ at (A, B) is defined by

$$(-)_{A,B}^{-1}(f) \stackrel{\text{def}}{=} [(-)^{-1}](f),$$

where f^{-1} is the inverse of f as in Definition 6.3.2.1.1.

In particular:

• Preservation of Identities. We have

$$id_A^{-1} = \chi_A$$

for each $A \in \text{Obj}(\mathsf{Sets})$.

• Preservation of Composition. We have

$$(g \circ f)^{-1} = g^{-1} \diamond f^{-1}$$

for pair of functions $f: A \to B$ and $g: B \to C$.

00PH 2. Adjointness Inside Rel. We have an adjunction

$$\left(\operatorname{Gr}(f) \dashv f^{-1}\right): A \xrightarrow{\operatorname{Gr}(f)} B$$

in Rel.

00PJ 3. Interaction With Inverses of Relations. We have

$$(f^{-1})^{\dagger} = \operatorname{Gr}(f),$$
$$\operatorname{Gr}(f)^{\dagger} = f^{-1}.$$

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness Inside **Rel**: This is proved in **Item 2** of **Proposition 6.3.1.1.2**.

Item 3, Interaction With Inverses of Relations: Clear. \Box

00PK 6.3.3 Representable Relations

Let A and B be sets.

OOPL Definition 6.3.3.1.1. Let $f: A \to B$ and $g: B \to A$ be functions.²

1. The representable relation associated to f is the relation

$$f: A \to C,$$

 $g: B \to D$

and a relation $B \to D$, we may consider the composite relation

$$A \times B \xrightarrow{f \times g} C \times D \xrightarrow{R} \{ \text{true}, \text{false} \},$$

for which we have $a \sim_{R \circ (f \times g)} b$ iff $f(a) \sim_R g(b)$.

²More generally, given functions

 $\chi_f \colon A \to B$ defined as the composition

$$A\times B\xrightarrow{f\times \mathrm{id}_B} B\times B\xrightarrow{\chi_B} \{\mathsf{true},\mathsf{false}\},$$

i.e. given by declaring $a \sim_{\chi_f} b$ iff f(a) = b.

2. The **corepresentable relation associated to** g is the relation $\chi^g \colon B \to A$ defined as the composition

$$B \times A \xrightarrow{g \times \mathrm{id}_A} A \times A \xrightarrow{\chi_A} \{\mathsf{true}, \mathsf{false}\},\$$

i.e. given by declaring $b \sim_{\chi^g} a$ iff g(b) = a.

00PM 6.3.4 The Domain and Range of a Relation

Let A and B be sets.

- **OOPN Definition 6.3.4.1.1.** Let $R \subset A \times B$ be a relation.^{3,4}
 - 1. The **domain of** R is the subset dom(R) of A defined by

$$\operatorname{dom}(R) \stackrel{\text{def}}{=} \left\{ a \in A \middle| \begin{array}{c} \text{there exists some } b \in B \\ \text{such that } a \sim_R b \end{array} \right\}.$$

2. The range of R is the subset range (R) of B defined by

$$\operatorname{range}(R) \stackrel{\text{def}}{=} \left\{ b \in B \;\middle|\; \text{there exists some } a \in A \right\}.$$

³Following ??, we may compute the (characteristic functions associated to the) domain and range of a relation using the following colimit formulas:

$$\chi_{\operatorname{dom}(R)}(a) \cong \underset{b \in B}{\operatorname{colim}} \left(R_a^b \right) \qquad (a \in A)$$

$$\cong \bigvee_{b \in B} R_a^b,$$

$$\chi_{\operatorname{range}(R)}(b) \cong \underset{a \in A}{\operatorname{colim}} \left(R_a^b \right) \qquad (b \in B)$$

$$\cong \bigvee_{a \in A} R_a^b,$$

where the join \bigvee is taken in the poset ($\{\text{true}, \text{false}\}, \leq$) of Definition 1.2.2.1.3. ⁴Viewing R as a function $R: A \to \mathcal{P}(B)$, we have

$$\begin{split} \operatorname{dom}(R) &\cong \operatorname*{colim}_{y \in Y}(R(y)) \\ &\cong \bigcup_{y \in Y} R(y), \\ \operatorname{range}(R) &\cong \operatorname*{colim}_{x \in X}(R(x)) \\ &\cong \bigcup_{x \in X} R(x), \end{split}$$

00PP 6.3.5 Binary Unions of Relations

Let A and B be sets and let R and S be relations from A to B.

- **OOPQ** Definition 6.3.5.1.1. The union of R and S^5 is the relation $R \cup S$ from A to B defined as follows:
 - Viewing relations from A to B as subsets of $A \times B$, we define⁶ $R \cup S \stackrel{\text{def}}{=} \{(a,b) \in B \times A \mid \text{we have } a \sim_R b \text{ or } a \sim_S b\}.$
 - Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define $[R \cup S](a) \stackrel{\text{def}}{=} R(a) \cup S(a)$

for each $a \in A$.

- **OOPR** Proposition 6.3.5.1.2. Let R, S, R_1 , and R_2 be relations from A to B, and let S_1 and S_2 be relations from B to C.
- **00PS** 1. Interaction With Inverses. We have

$$(R \cup S)^{\dagger} = R^{\dagger} \cup S^{\dagger}.$$

00PT 2. Interaction With Composition. We have $(S_1 \diamond R_1) \cup (S_2 \diamond R_2) \stackrel{\text{poss.}}{\neq} (S_1 \cup S_2) \diamond (R_1 \cup R_2).$

Proof. Item 1, Interaction With Inverses: Clear. Item 2, Interaction With Composition: Unwinding the definitions, we see that:

- 1. The condition for $(S_1 \diamond R_1) \cup (S_2 \diamond R_2)$ is:
 - (a) There exists some $b \in B$ such that:

i.
$$a \sim_{R_1} b$$
 and $b \sim_{S_1} c$;

i.
$$a \sim_{R_2} b$$
 and $b \sim_{S_2} c$;

- 3. The condition for $(S_1 \cup S_2) \diamond (R_1 \cup R_2)$ is:
 - (a) There exists some $b \in B$ such that:

i.
$$a \sim_{R_1} b$$
 or $a \sim_{R_2} b$; and

i.
$$b \sim_{S_1} c$$
 or $b \sim_{S_2} c$.

These two conditions may fail to agree (counterexample omitted), and thus the two resulting relations on $A \times C$ may differ.

⁵ Further Terminology: Also called the **binary union of** R **and** S, for emphasis.

⁶This is the same as the union of R and S as subsets of $A \times B$.

00PU 6.3.6 Unions of Families of Relations

Let A and B be sets and let $\{R_i\}_{i\in I}$ be a family of relations from A to B.

- **Definition 6.3.6.1.1.** The union of the family $\{R_i\}_{i\in I}$ is the relation $\bigcup_{i\in I} R_i$ from A to B defined as follows:
 - Viewing relations from A to B as subsets of $A \times B$, we define⁷

$$\bigcup_{i \in I} R_i \stackrel{\text{def}}{=} \left\{ (a, b) \in (A \times B)^{\times I} \middle| \begin{array}{l} \text{there exists some } i \in I \\ \text{such that } a \sim_{R_i} b \end{array} \right\}.$$

• Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$\left[\bigcup_{i\in I} R_i\right](a) \stackrel{\text{def}}{=} \bigcup_{i\in I} R_i(a)$$

for each $a \in A$.

- **OOPW** Proposition 6.3.6.1.2. Let A and B be sets and let $\{R_i\}_{i\in I}$ be a family of relations from A to B.
- **00PX** 1. Interaction With Inverses. We have

$$\left(\bigcup_{i\in I} R_i\right)^{\dagger} = \bigcup_{i\in I} R_i^{\dagger}.$$

Proof. Item 1, Interaction With Inverses: Clear.

00PY 6.3.7 Binary Intersections of Relations

Let A and B be sets and let R and S be relations from A to B.

- **OOPZ** Definition 6.3.7.1.1. The intersection of R and S^8 is the relation $R \cap S$ from A to B defined as follows:
 - Viewing relations from A to B as subsets of $A \times B$, we define

$$R \cap S \stackrel{\text{def}}{=} \{(a, b) \in B \times A \mid \text{ we have } a \sim_R b \text{ and } a \sim_S b\}.$$

⁷This is the same as the union of $\{R_i\}_{i\in I}$ as a collection of subsets of $A\times B$.

⁸ Further Terminology: Also called the **binary intersection of** R **and** S, for emphasis.

⁹This is the same as the intersection of R and S as subsets of $A \times B$.

• Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$[R \cap S](a) \stackrel{\text{def}}{=} R(a) \cap S(a)$$

for each $a \in A$.

- **Proposition 6.3.7.1.2.** Let R, S, R_1 , and R_2 be relations from A to B, and let S_1 and S_2 be relations from B to C.
- 00Q1 1. Interaction With Inverses. We have

$$(R \cap S)^{\dagger} = R^{\dagger} \cap S^{\dagger}.$$

00Q2 2. Interaction With Composition. We have

$$(S_1 \diamond R_1) \cap (S_2 \diamond R_2) = (S_1 \cap S_2) \diamond (R_1 \cap R_2).$$

Proof. Item 1, Interaction With Inverses: Clear.

Item 2, Interaction With Composition: Unwinding the definitions, we see that:

- 1. The condition for $(S_1 \diamond R_1) \cap (S_2 \diamond R_2)$ is:
 - (a) There exists some $b \in B$ such that:

i.
$$a \sim_{R_1} b$$
 and $b \sim_{S_1} c$;

and

i.
$$a \sim_{R_2} b$$
 and $b \sim_{S_2} c$;

- 3. The condition for $(S_1 \cap S_2) \diamond (R_1 \cap R_2)$ is:
 - (a) There exists some $b \in B$ such that:

i.
$$a \sim_{R_1} b$$
 and $a \sim_{R_2} b$;

and

i.
$$b \sim_{S_1} c$$
 and $b \sim_{S_2} c$.

These two conditions agree, and thus so do the two resulting relations on $A \times C$.

0003 6.3.8 Intersections of Families of Relations

Let A and B be sets and let $\{R_i\}_{i\in I}$ be a family of relations from A to B.

Definition 6.3.8.1.1. The intersection of the family $\{R_i\}_{i\in I}$ is the relation $\bigcup_{i\in I} R_i$ defined as follows:

• Viewing relations from A to B as subsets of $A \times B$, we define 10

$$\bigcup_{i \in I} R_i \stackrel{\text{def}}{=} \left\{ (a, b) \in (A \times B)^{\times I} \mid \text{for each } i \in I, \\ \text{we have } a \sim_{R_i} b \right\}.$$

• Viewing relations from A to B as functions $A \to \mathcal{P}(B)$, we define

$$\left[\bigcap_{i\in I} R_i\right](a) \stackrel{\text{def}}{=} \bigcap_{i\in I} R_i(a)$$

for each $a \in A$.

- **Proposition 6.3.8.1.2.** Let A and B be sets and let $\{R_i\}_{i\in I}$ be a family of relations from A to B.
- 0006 1. Interaction With Inverses. We have

$$\left(\bigcap_{i\in I} R_i\right)^{\dagger} = \bigcap_{i\in I} R_i^{\dagger}.$$

Proof. Item 1, Interaction With Inverses: Clear.

0007 6.3.9 Binary Products of Relations

Let A, B, X, and Y be sets, let $R: A \rightarrow B$ be a relation from A to B, and let $S: X \rightarrow Y$ be a relation from X to Y.

- **Definition 6.3.9.1.1.** The **product of** R **and** S^{11} is the relation $R \times S$ from $A \times X$ to $B \times Y$ defined as follows:
 - Viewing relations from $A \times X$ to $B \times Y$ as subsets of $(A \times X) \times (B \times Y)$, we define $R \times S$ as the Cartesian product of R and S as subsets of $A \times X$ and $B \times Y$.¹²
 - Viewing relations from $A \times X$ to $B \times Y$ as functions $A \times X \to \mathcal{P}(B \times Y)$, we define $R \times S$ as the composition

$$A \times X \xrightarrow{R \times S} \mathcal{P}(B) \times \mathcal{P}(Y) \xrightarrow{\mathcal{P}_{B,Y}^{\otimes}} \mathcal{P}(B \times Y)$$

in Sets, i.e. by

$$[R \times S](a, x) \stackrel{\text{def}}{=} R(a) \times S(x)$$

for each $(a, x) \in A \times X$.

¹⁰This is the same as the intersection of $\{R_i\}_{i\in I}$ as a collection of subsets of $A\times B$.

¹¹ Further Terminology: Also called the **binary product of** R **and** S, for emphasis.

¹²That is, $R \times S$ is the relation given by declaring $(a,x) \sim_{R \times S} (b,y)$ iff $a \sim_R b$ and

0009 Proposition 6.3.9.1.2. Let A, B, X, and Y be sets.

000A 1. Interaction With Inverses. Let

$$R: A \to A,$$

 $S: X \to X$

We have

$$(R \times S)^{\dagger} = R^{\dagger} \times S^{\dagger}.$$

00QB 2. Interaction With Composition. Let

$$R_1: A \to B$$
,

$$S_1 \colon B \to C$$

$$R_2: X \to Y$$

$$S_2 \colon Y \to Z$$

be relations. We have

$$(S_1 \diamond R_1) \times (S_2 \diamond R_2) = (S_1 \times S_2) \diamond (R_1 \times R_2).$$

Proof. Item 1, Interaction With Inverses: Unwinding the definitions, we see that:

- 1. We have $(a, x) \sim_{(R \times S)^{\dagger}} (b, y)$ iff:
 - We have $(b, y) \sim_{R \times S} (a, x)$, i.e. iff:
 - We have $b \sim_R a$;
 - We have $y \sim_S x$;
- 2. We have $(a, x) \sim_{R^{\dagger} \times S^{\dagger}} (b, y)$ iff:
 - We have $a \sim_{R^{\dagger}} b$ and $x \sim_{S^{\dagger}} y$, i.e. iff:
 - We have $b \sim_R a$;
 - We have $y \sim_S x$.

These two conditions agree, and thus the two resulting relations on $A \times X$ are equal.

Item 2, Interaction With Composition: Unwinding the definitions, we see that:

- 1. We have $(a, x) \sim_{(S_1 \diamond R_1) \times (S_2 \diamond R_2)} (c, z)$ iff:
 - (a) We have $a \sim_{S_1 \diamond R_1} c$ and $x \sim_{S_2 \diamond R_2} z$, i.e. iff:

- i. There exists some $b \in B$ such that $a \sim_{R_1} b$ and $b \sim_{S_1} c$;
- ii. There exists some $y \in Y$ such that $x \sim_{R_2} y$ and $y \sim_{S_2} z$;
- 2. We have $(a,x) \sim_{(S_1 \times S_2) \diamond (R_1 \times R_2)} (c,z)$ iff:
 - (a) There exists some $(b, y) \in B \times Y$ such that $(a, x) \sim_{R_1 \times R_2} (b, y)$ and $(b, y) \sim_{S_1 \times S_2} (c, z)$, i.e. such that:
 - i. We have $a \sim_{R_1} b$ and $x \sim_{R_2} y$;
 - ii. We have $b \sim_{S_1} c$ and $y \sim_{S_2} z$.

These two conditions agree, and thus the two resulting relations from $A \times X$ to $C \times Z$ are equal.

6.3.10 Products of Families of Relations

Let $\{A_i\}_{i\in I}$ and $\{B_i\}_{i\in I}$ be families of sets, and let $\{R_i\colon A_i\to B_i\}_{i\in I}$ be a family of relations.

- **Definition 6.3.10.1.1.** The **product of the family** $\{R_i\}_{i\in I}$ is the relation $\prod_{i\in I} R_i$ from $\prod_{i\in I} A_i$ to $\prod_{i\in I} B_i$ defined as follows:
 - Viewing relations as subsets, we define $\prod_{i \in I} R_i$ as its product as a family of sets, i.e. we have

$$\prod_{i \in I} R_i \stackrel{\text{def}}{=} \left\{ (a_i, b_i)_{i \in I} \in \prod_{i \in I} (A_i \times B_i) \middle| \begin{array}{l} \text{for each } i \in I, \\ \text{we have } a_i \sim_{R_i} b_i \end{array} \right\}.$$

• Viewing relations as functions to powersets, we define

$$\left[\prod_{i\in I} R_i\right] ((a_i)_{i\in I}) \stackrel{\text{def}}{=} \prod_{i\in I} R_i(a_i)$$

for each $(a_i)_{i \in I} \in \prod_{i \in I} R_i$.

00QE 6.3.11 The Inverse of a Relation

Let A, B, and C be sets and let $R \subset A \times B$ be a relation.

- **OOQF** Definition 6.3.11.1.1. The inverse of R^{13} is the relation R^{\dagger} defined as follows:
 - Viewing relations as subsets, we define

$$R^{\dagger} \stackrel{\text{def}}{=} \{(b, a) \in B \times A \mid \text{we have } b \sim_R a\}.$$

 $x \sim_S y$

 $^{^{13}}$ Further Terminology: Also called the **opposite of** R, the **transpose of** R, or

• Viewing relations as functions $A \times B \to \{\text{true}, \text{false}\}\$, we define

$$\left[R^{\dagger}\right]_{b}^{a} \stackrel{\text{def}}{=} R_{a}^{b}$$

for each $(b, a) \in B \times A$.

• Viewing relations as functions $A \to \mathcal{P}(B)$, we define

$$\begin{bmatrix} R^{\dagger} \end{bmatrix} (b) \stackrel{\text{def}}{=} R^{\dagger} (\{b\})$$
$$\stackrel{\text{def}}{=} \{ a \in A \mid b \in R(a) \}$$

for each $b \in B$, where $R^{\dagger}(\{b\})$ is the fibre of R over $\{b\}$.

00QG Example 6.3.11.1.2. Here are some examples of inverses of relations.

- **00QH** 1. Less Than Equal Signs. We have $(\leq)^{\dagger} = \geq$.
- **00QJ** 2. Greater Than Equal Signs. Dually to Item 1, we have $(\geq)^{\dagger} = \leq$.
- **00QK** 3. Functions. Let $f: A \to B$ be a function. We have

$$\operatorname{Gr}(f)^{\dagger} = f^{-1},$$

 $\left(f^{-1}\right)^{\dagger} = \operatorname{Gr}(f).$

- **OUQL** Proposition 6.3.11.1.3. Let $R: A \to B$ and $S: B \to C$ be relations.
- 00QM 1. Functoriality. The assignment $R \mapsto R^{\dagger}$ defines a functor (i.e. morphism of posets)

$$(-)^{\dagger} \colon \mathbf{Rel}(A, B) \to \mathbf{Rel}(B, A).$$

In particular, given relations $R, S: A \not \rightrightarrows B$, we have:

$$(\star) \ \text{ If } R \subset S \text{, then } R^\dagger \subset S^\dagger.$$

00QN 2. Interaction With Ranges and Domains. We have

$$\operatorname{dom}(R^{\dagger}) = \operatorname{range}(R),$$

$$\operatorname{range}(R^{\dagger}) = \operatorname{dom}(R).$$

00QP 3. Interaction With Composition I. We have

$$(S \diamond R)^{\dagger} = R^{\dagger} \diamond S^{\dagger}.$$

00QQ 4. Interaction With Composition II. We have

$$\chi_B \subset R \diamond R^{\dagger},$$

$$\chi_A \subset R^{\dagger} \diamond R.$$

00QR 5. Invertibility. We have

$$\left(R^{\dagger}\right)^{\dagger} = R.$$

00QS 6. *Identity*. We have

$$\chi_A^{\dagger} = \chi_A.$$

Proof. Item 1, Functoriality: Clear.

Item 2, Interaction With Ranges and Domains: Clear.

Item 3, Interaction With Composition I: Clear.

Item 4, Interaction With Composition II: Clear.

Item 5, Invertibility: Clear.

Item 6, Identity: Clear.

00QT 6.3.12 Composition of Relations

Let A, B, and C be sets and let $R: A \to B$ and $S: B \to C$ be relations.

- **OOQU** Definition 6.3.12.1.1. The composition of R and S is the relation $S \diamond R$ defined as follows:
 - Viewing relations from A to C as subsets of $A \times C$, we define

$$S \diamond R \stackrel{\text{\tiny def}}{=} \bigg\{ (a,c) \in A \times C \ \bigg| \ \text{there exists some } b \in B \text{ such} \bigg\}.$$

• Viewing relations as functions $A \times B \to \{\text{true}, \text{false}\}\$, we define

$$(S \diamond R)_{-2}^{-1} \stackrel{\text{def}}{=} \int^{b \in B} S_b^{-1} \times R_{-2}^b$$
$$= \bigvee_{b \in B} S_b^{-1} \times R_{-2}^b,$$

where the join \bigvee is taken in the poset ($\{\text{true}, \text{false}\}, \preceq$) of Definition 1.2.2.1.3.

the **converse of** R.

• Viewing relations as functions $A \to \mathcal{P}(B)$, we define

$$S \diamond R \stackrel{\mathrm{def}}{=} \mathrm{Lan}_{\chi_B}(S) \circ R, \qquad \chi_B \boxed{ \swarrow \qquad } Lan_{\chi_B}(S)$$

$$A \xrightarrow{R} \mathcal{P}(B)$$

where $\operatorname{Lan}_{\chi_B}(S)$ is computed by the formula

$$[\operatorname{Lan}_{\chi_B}(S)](V) \cong \int_{y \in B}^{y \in B} \chi_{\mathcal{P}(B)}(\chi_y, V) \odot S_y$$
$$\cong \int_{y \in B}^{y \in B} \chi_V(y) \odot S_y$$
$$\cong \bigcup_{y \in B} \chi_V(y) \odot S_y$$
$$\cong \bigcup_{y \in V} S_y$$

for each $V \in \mathcal{P}(B)$. In other words, $S \diamond R$ is defined by ¹⁴

$$[S \diamond R](a) \stackrel{\text{def}}{=} S(R(a))$$

$$\stackrel{\text{def}}{=} \bigcup_{x \in R(a)} S(x).$$

for each $a \in A$.

- **600V** Example 6.3.12.1.2. Here are some examples of composition of relations
 - 1. Composing Less/Greater Than Equal With Greater/Less Than Equal Signs. We have

$$\leq \diamond \geq = \sim_{\mathrm{triv}},$$

 $\geq \diamond \leq = \sim_{\mathrm{triv}}.$

2. Composing Less/Greater Than Equal Signs With Less/Greater Than Equal Signs. We have

$$\leq \diamond \leq = \leq$$
,
 $\geq \diamond \geq = \geq$.

That is: the relation R may send $a \in A$ to a number of elements $\{b_i\}_{i \in I}$ in B, and then the relation S may send the image of each of the b_i 's to a number of elements $\{S(b_i)\}_{i \in I} = \{\{c_{j_i}\}_{j_i \in J_i}\}_{i \in I}$ in C.

- **Proposition 6.3.12.1.3.** Let $R: A \to B$, $S: B \to C$, and $T: C \to D$ be relations.
- **00QX** 1. Interaction With Ranges and Domains. We have

$$dom(S \diamond R) \subset dom(R),$$

range $(S \diamond R) \subset range(S).$

00QY 2. Associativity. We have

$$(T \diamond S) \diamond R = T \diamond (S \diamond R).$$

00QZ 3. Unitality. We have

$$\chi_B \diamond R = R,$$
 $R \diamond \chi_A = R.$

00R0 4. Interaction With Inverses. We have

$$(S \diamond R)^{\dagger} = R^{\dagger} \diamond S^{\dagger}.$$

00R1 5. Interaction With Composition. We have

$$\chi_B \subset R \diamond R^{\dagger},$$

 $\chi_A \subset R^{\dagger} \diamond R.$

Proof. Item 1, Interaction With Ranges and Domains: Clear. Item 2, Associativity: Indeed, we have

$$\begin{split} (T \diamond S) \diamond R &\stackrel{\text{def}}{=} \left(\int^{c \in C} T_c^{-1} \times S_{-2}^c \right) \diamond R \\ &\stackrel{\text{def}}{=} \int^{b \in B} \left(\int^{c \in C} T_c^{-1} \times S_b^c \right) \diamond R_{-2}^b \\ &= \int^{b \in B} \int^{c \in C} \left(T_c^{-1} \times S_b^c \right) \diamond R_{-2}^b \\ &= \int^{c \in C} \int^{b \in B} \left(T_c^{-1} \times S_b^c \right) \diamond R_{-2}^b \\ &= \int^{c \in C} \int^{b \in B} T_c^{-1} \times \left(S_b^c \diamond R_{-2}^b \right) \\ &= \int^{c \in C} T_c^{-1} \times \left(\int^{b \in B} S_b^c \diamond R_{-2}^b \right) \\ &\stackrel{\text{def}}{=} \int^{c \in C} T_c^{-1} \times (S \diamond R)_{-2}^c \\ &\stackrel{\text{def}}{=} T \diamond (S \diamond R). \end{split}$$

In the language of relations, given $a \in A$ and $d \in D$, the stated equality witnesses the equivalence of the following two statements:

- 1. We have $a \sim_{(T \diamond S) \diamond R} d$, i.e. there exists some $b \in B$ such that:
 - (a) We have $a \sim_R b$;
 - (b) We have $b \sim_{T \diamond S} d$, i.e. there exists some $c \in C$ such that:
 - i. We have $b \sim_S c$;
 - ii. We have $c \sim_T d$;
- 2. We have $a \sim_{T \diamond (S \diamond R)} d$, i.e. there exists some $c \in C$ such that:
 - (a) We have $a \sim_{S \diamond R} c$, i.e. there exists some $b \in B$ such that:
 - i. We have $a \sim_R b$;
 - ii. We have $b \sim_S c$;
 - (b) We have $c \sim_T d$;

both of which are equivalent to the statement

• There exist $b \in B$ and $c \in C$ such that $a \sim_R b \sim_S c \sim_T d$.

Item 3, Unitality: Indeed, we have

$$\chi_{B} \diamond R \stackrel{\text{def}}{=} \int_{x \in B}^{x \in B} (\chi_{B})_{x}^{-1} \times R_{-2}^{x}$$

$$= \bigvee_{x \in B} (\chi_{B})_{x}^{-1} \times R_{-2}^{x}$$

$$= \bigvee_{\substack{x \in B \\ x = -1}} R_{-2}^{x}$$

$$= R_{-2}^{-1},$$

and

$$R \diamond \chi_A \stackrel{\text{def}}{=} \int_{x \in A}^{x \in A} R_x^{-1} \times (\chi_A)_{-2}^x$$
$$= \bigvee_{x \in B} R_x^{-1} \times (\chi_A)_{-2}^x$$
$$= \bigvee_{\substack{x \in B \\ x = -2}} R_x^{-1}$$
$$= R_{-2}^{-1}.$$

In the language of relations, given $a \in A$ and $b \in B$:

• The equality

$$\chi_B \diamond R = R$$

witnesses the equivalence of the following two statements:

- 1. We have $a \sim_b B$.
- 2. There exists some $b' \in B$ such that:
 - (a) We have $a \sim_R b'$
 - (b) We have $b' \sim_{\chi_B} b$, i.e. b' = b.
- The equality

$$R \diamond \chi_A = R$$

witnesses the equivalence of the following two statements:

- 1. There exists some $a' \in A$ such that:
 - (a) We have $a \sim_{\chi_B} a'$, i.e. a = a'.
 - (b) We have $a' \sim_R b$
- 2. We have $a \sim_b B$.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: Clear.

00R2 6.3.13 The Collage of a Relation

Let A and B be sets and let $R: A \to B$ be a relation from A to B.

- **OOR3** Definition 6.3.13.1.1. The collage of R^{15} is the poset $Coll(R) \stackrel{\text{def}}{=} \left(Coll(R), \preceq_{Coll(R)}\right)$ consisting of:
 - The Underlying Set. The set Coll(R) defined by

$$\operatorname{Coll}(R) \stackrel{\text{def}}{=} A \coprod B.$$

• The Partial Order. The partial order

$$\preceq_{\mathbf{Coll}(R)} : \mathrm{Coll}(R) \times \mathrm{Coll}(R) \to \{\mathsf{true}, \mathsf{false}\}$$

on Coll(R) defined by

$$\preceq(a,b) \stackrel{\text{def}}{=} \begin{cases} \mathsf{true} & \text{if } a = b \text{ or } a \sim_R b, \\ \mathsf{false} & \text{otherwise.} \end{cases}$$

00R4 Proposition 6.3.13.1.2. Let A and B be sets and let $R: A \to B$ be a relation from A to B.

¹⁵ Further Terminology: Also called the **cograph of** R.

00R5 1. Functoriality I. The assignment $R \mapsto \operatorname{Coll}(R)$ defines a functor¹⁶

Coll:
$$\mathbf{Rel}(A, B) \to \mathsf{Pos}_{/\Delta^1}(A, B)$$
,

where

• Action on Objects. For each $R \in \text{Obj}(\mathbf{Rel}(A, B))$, we have

$$[\mathbf{Coll}](R) \stackrel{\text{def}}{=} (\mathbf{Coll}(R), \phi_R)$$

for each $R \in \mathbf{Rel}(A, B)$, where

- The poset Coll(R) is the collage of R of Definition 6.3.13.1.1.
- The morphism $\phi_R : \mathbf{Coll}(R) \to \Delta^1$ is given by

$$\phi_R(x) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } x \in A, \\ 1 & \text{if } x \in B \end{cases}$$

for each $x \in \mathbf{Coll}(R)$.

• Action on Morphisms. For each $R, S \in \text{Obj}(\mathbf{Rel}(A, B))$, the action on Hom-sets

$$\mathbf{Coll}_{R,S} \colon \mathrm{Hom}_{\mathbf{Rel}(A,B)}(R,S) \to \mathsf{Pos}(\mathbf{Coll}(R),\mathbf{Coll}(S))$$

of **Coll** at (R, S) is given by sending an inclusion

$$\iota \colon R \subset S$$

$$\mathsf{Pos}_{/\Delta^1}(A,B) \stackrel{\mathrm{def}}{=} \mathsf{pt} \underset{[A],\mathsf{Pos},\mathsf{fib}_0}{\times} \mathsf{Pos}_{/\Delta^1} \underset{\mathsf{fib}_1,\mathsf{Pos},[B]}{\times} \mathsf{pt},$$

as in the diagram

Explicitly, an object of $\mathsf{Pos}_{/\Delta^1}(A,B)$ is a pair (X,ϕ_X) consisting of

- A poset X;
- A morphism $\phi_X : X \to \Delta^1$;

¹⁶Here $\mathsf{Pos}_{/\Delta^1}(A,B)$ is the category defined as the pullback

to the morphism

$$\mathbf{Coll}(\iota) \colon \mathbf{Coll}(R) \to \mathbf{Coll}(S)$$

of posets over Δ^1 defined by

$$[\mathbf{Coll}(\iota)](x) \stackrel{\mathrm{def}}{=} x$$

for each $x \in \mathbf{Coll}(R)$. 17

2. Equivalence. The functor of Item 1 is an equivalence of categories.

Proof. Item 1, Functoriality: Clear.

Item 2, Equivalence: Omitted.

6.4 Functoriality of Powersets

00R8 6.4.1 Direct Images

Let A and B be sets and let $R: A \to B$ be a relation.

OOR9 Definition 6.4.1.1.1. The direct image function associated to R is the function

$$R_* \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by 18,19

$$R_*(U) \stackrel{\text{def}}{=} R(U)$$

$$\stackrel{\text{def}}{=} \bigcup_{a \in U} R(a)$$

$$= \left\{ b \in B \mid \text{there exists some } a \in U \right\}$$
such that $b \in R(a)$

for each $U \in \mathcal{P}(A)$.

OORA Remark 6.4.1.1.2. Identifying subsets of A with relations from pt to A via Item 3 of Proposition 2.4.3.1.6, we see that the direct image function associated to R is equivalently the function

$$R_* : \underbrace{\mathcal{P}(A)}_{\cong \operatorname{Rel}(\operatorname{pt},A)} \to \underbrace{\mathcal{P}(B)}_{\cong \operatorname{Rel}(\operatorname{pt},B)}$$

$$R_*(U) = B \setminus R_!(A \setminus U);$$

such that $\phi_X^{-1}(0) = A$ and $\phi_X^{-1}(0) = B$, with morphisms between such objects being morphisms of posets over Δ^1 .

¹⁷Note that this is indeed a morphism of posets: if $x \preceq_{\mathbf{Coll}(R)} y$, then x = y or $x \sim_R y$, so we have either x = y or $x \sim_S y$ (as $R \subset S$), and thus $x \preceq_{\mathbf{Coll}(S)} y$.

¹⁸ Further Terminology: The set R(U) is called the **direct image of** U **by** R.

 $^{^{19}\}mathrm{We}$ also have

defined by

$$R_*(U) \stackrel{\text{def}}{=} R \diamond U$$

for each $U \in \mathcal{P}(A)$, where $R \diamond U$ is the composition

$$\operatorname{pt} \stackrel{U}{\to} A \stackrel{R}{\to} B.$$

OORB Proposition 6.4.1.1.3. Let $R: A \to B$ be a relation.

OORC 1. Functoriality. The assignment $U \mapsto R_*(U)$ defines a functor

$$R_*: (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

where

• Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$[R_*](U) \stackrel{\text{def}}{=} R_*(U).$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:
 - If $U \subset V$, then $R_*(U) \subset R_*(V)$.

00RD 2. Adjointness. We have an adjunction

$$(R_* \dashv R_{-1}): \quad \mathcal{P}(A) \underbrace{\downarrow}_{R_{-1}} \mathcal{P}(B),$$

witnessed by a bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(A)}(R_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, R_{-1}(V)),$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$, i.e. such that:

- (\star) The following conditions are equivalent:
 - We have $R_*(U) \subset V$.
 - We have $U \subset R_{-1}(V)$.

OORE 3. Preservation of Colimits. We have an equality of sets

$$R_*\left(\bigcup_{i\in I}U_i\right)=\bigcup_{i\in I}R_*(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$R_*(U) \cup R_*(V) = R_*(U \cup V),$$

 $R_*(\emptyset) = \emptyset,$

natural in $U, V \in \mathcal{P}(A)$.

00RF 4. Oplax Preservation of Limits. We have an inclusion of sets

$$R_*\left(\bigcap_{i\in I}U_i\right)\subset\bigcap_{i\in I}R_*(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$R_*(U \cap V) \subset R_*(U) \cap R_*(V),$$

 $R_*(A) \subset B,$

natural in $U, V \in \mathcal{P}(A)$.

00RG 5. Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure

$$(R_*, R_*^{\otimes}, R_{*|\mathbb{1}}^{\otimes}) \colon (\mathcal{P}(A), \cup, \emptyset) \to (\mathcal{P}(B), \cup, \emptyset),$$

being equipped with equalities

$$R_{*|U,V}^{\otimes} \colon R_{*}(U) \cup R_{*}(V) \stackrel{\equiv}{\to} R_{*}(U \cup V),$$
$$R_{*|\mathfrak{I}}^{\otimes} \colon \emptyset \stackrel{\equiv}{\to} \emptyset,$$

natural in $U, V \in \mathcal{P}(A)$.

6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure

$$\left(R_*, R_*^{\otimes}, R_{*|\mathbb{1}}^{\otimes}\right) \colon (\mathcal{P}(A), \cap, A) \to (\mathcal{P}(B), \cap, B),$$

being equipped with inclusions

$$R_{*|U,V}^{\otimes} : R_*(U \cap V) \subset R_*(U) \cap R_*(V),$$

 $R_{*|1}^{\otimes} : R_*(A) \subset B,$

natural in $U, V \in \mathcal{P}(A)$.

OORJ 7. Relation to Direct Images With Compact Support. We have

$$R_*(U) = B \setminus R_!(A \setminus U)$$

for each $U \in \mathcal{P}(A)$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This follows from ?? of ??.

Item 3, Preservation of Colimits: This follows from Item 2 and ?? of ??.

Item 4, Oplax Preservation of Limits: Omitted.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows from Item 4.

Item 7, Relation to Direct Images With Compact Support: The proof proceeds in the same way as in the case of functions (?? of Proposition 2.4.4.1.4): applying Item 7 of Proposition 6.4.4.1.3 to $A \setminus U$, we have

$$R_!(A \setminus U) = B \setminus R_*(A \setminus (A \setminus U))$$
$$= B \setminus R_*(U).$$

Taking complements, we then obtain

$$R_*(U) = B \setminus (B \setminus R_*(U)),$$

= $B \setminus R_!(A \setminus U),$

which finishes the proof.

OORK Proposition 6.4.1.1.4. Let $R: A \to B$ be a relation.

00RL 1. Functionality I. The assignment $R \mapsto R_*$ defines a function

$$(-)_* \colon \operatorname{Rel}(A, B) \to \operatorname{\mathsf{Sets}}(\mathcal{P}(A), \mathcal{P}(B)).$$

00RM 2. Functionality II. The assignment $R \mapsto R_*$ defines a function

$$(-)_* : \operatorname{Rel}(A, B) \to \operatorname{\mathsf{Pos}}((\mathcal{P}(A), \subset), (\mathcal{P}(B), \subset)).$$

OORN 3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have 20

$$(\chi_A)_* = \mathrm{id}_{\mathcal{P}(A)}.$$

OORP 4. Interaction With Composition. For each pair of composable

see Item 7 of Proposition 6.4.1.1.3.

$$(\chi_A)_* \colon \operatorname{Rel}(\operatorname{pt}, A) \to \operatorname{Rel}(\operatorname{pt}, A)$$

is equal to $id_{Rel(pt,A)}$.

 $^{^{20}\}mathrm{That}$ is, the postcomposition function

relations $R: A \to B$ and $S: B \to C$, we have²¹

$$(S \diamond R)_* = S_* \circ R_*, \qquad \mathcal{P}(A) \xrightarrow{R_*} \mathcal{P}(B)$$

$$(S \diamond R)_* = S_* \circ R_*, \qquad \downarrow_{(S \diamond R)_*} \qquad \downarrow_{S_*}$$

$$\mathcal{P}(C).$$

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: Indeed, we have

$$(\chi_A)_*(U) \stackrel{\text{def}}{=} \bigcup_{a \in U} \chi_A(a)$$

$$\stackrel{\text{def}}{=} \bigcup_{a \in U} \{a\}$$

$$= U$$

$$\stackrel{\text{def}}{=} \operatorname{id}_{\mathcal{P}(A)}(U)$$

for each $U \in \mathcal{P}(A)$. Thus $(\chi_A)_* = \mathrm{id}_{\mathcal{P}(A)}$. Item 4, Interaction With Composition: Indeed, we have

$$(S \diamond R)_*(U) \stackrel{\text{def}}{=} \bigcup_{a \in U} [S \diamond R](a)$$

$$\stackrel{\text{def}}{=} \bigcup_{a \in U} S(R(a))$$

$$\stackrel{\text{def}}{=} \bigcup_{a \in U} S_*(R(a))$$

$$= S_* \left(\bigcup_{a \in U} R(a)\right)$$

$$\stackrel{\text{def}}{=} S_*(R_*(U))$$

$$\stackrel{\text{def}}{=} [S_* \circ R_*](U)$$

for each $U \in \mathcal{P}(A)$, where we used Item 3 of Proposition 6.4.1.1.3. Thus $(S \diamond R)_* = S_* \circ R_*$.

$$(S \diamond R)_* = S_* \circ R_*,$$

$$Rel(\mathrm{pt}, A) \xrightarrow{R_*} Rel(\mathrm{pt}, B)$$

$$(S \diamond R)_* = S_* \circ R_*,$$

$$Rel(\mathrm{pt}, C).$$

²¹That is, we have

00RQ 6.4.2 Strong Inverse Images

Let A and B be sets and let $R: A \to B$ be a relation.

OORR Definition 6.4.2.1.1. The strong inverse image function associated to R is the function

$$R_{-1} \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by 22

$$R_{-1}(V) \stackrel{\text{def}}{=} \{ a \in A \mid R(a) \subset V \}$$

for each $V \in \mathcal{P}(B)$.

00RS Remark 6.4.2.1.2. Identifying subsets of B with relations from pt to B via Item 3 of Proposition 2.4.3.1.6, we see that the inverse image function associated to R is equivalently the function

$$R_{-1} \colon \underbrace{\mathcal{P}(B)}_{\cong \operatorname{Rel}(\operatorname{pt}, A)} \to \underbrace{\mathcal{P}(A)}_{\cong \operatorname{Rel}(\operatorname{pt}, A)}$$

defined by

$$R_{-1}(V) \stackrel{\text{def}}{=} \operatorname{Rift}_R(V), \qquad \stackrel{\operatorname{Rift}_R(V)}{\nearrow} \stackrel{A}{\nearrow}_R$$

$$\operatorname{pt} \xrightarrow{V} B,$$

and being explicitly computed by

$$\begin{split} R_{-1}(V) &\stackrel{\text{\tiny def}}{=} \mathrm{Rift}_R(V) \\ &\cong \int_{b \in B} \mathrm{Hom}_{\{\mathsf{t},\mathsf{f}\}} \Big(R^b_{-1}, V^b_{-2} \Big), \end{split}$$

where we have used Proposition 6.2.4.1.1.

²² Further Terminology: The set $R_{-1}(V)$ is called the **strong inverse image of** V by R.

Proof. We have

$$\begin{split} \operatorname{Rift}_R(V) &\cong \int_{b \in B} \operatorname{Hom}_{\{\mathfrak{t},f\}} \left(R_{-_1}^b, V_{-_2}^b\right) \\ &= \left\{a \in A \;\middle|\; \int_{b \in B} \operatorname{Hom}_{\{\mathfrak{t},f\}} \left(R_a^b, V_\star^b\right) = \operatorname{true} \right\} \\ &= \left\{ \begin{aligned} &= \left\{ a \in A \;\middle|\; \int_{b \in B} \operatorname{Hom}_{\{\mathfrak{t},f\}} \left(R_a^b, V_\star^b\right) = \operatorname{true} \right\} \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \right. \end{aligned} \right. \\ &= \left\{ \begin{aligned} &= \left\{ a \in A \;\middle|\; \text{The following conditions hold:} \right. \end{aligned} \right. \\ &= \left\{ \begin{aligned} &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \right. \end{aligned} \right. \\ &= \left\{ \begin{aligned} &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \right. \end{aligned} \right. \\ &= \left\{ \begin{aligned} &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \right. \end{aligned} \right. \\ &= \left\{ \begin{aligned} &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \right. \end{aligned} \right. \\ &= \left\{ \begin{aligned} &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \right. \end{aligned} \right. \\ &= \left\{ \begin{aligned} &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \right. \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of the following conditions hold:} \end{aligned} \right. \\ &= \left\{ a \in A \;\middle|\; \text{for each } b \in B \text{, at least one of t$$

This finishes the proof.

OURT Proposition 6.4.2.1.3. Let $R: A \rightarrow B$ be a relation.

00RU 1. Functoriality. The assignment $V \mapsto R_{-1}(V)$ defines a functor

$$R_{-1}: (\mathcal{P}(B), \subset) \to (\mathcal{P}(A), \subset)$$

where

• Action on Objects. For each $V \in \mathcal{P}(B)$, we have

$$[R_{-1}](V) \stackrel{\text{def}}{=} R_{-1}(V).$$

• Action on Morphisms. For each $U, V \in \mathcal{P}(B)$:

- If
$$U \subset V$$
, then $R_{-1}(U) \subset R_{-1}(V)$.

00RV 2. Adjointness. We have an adjunction

$$(R_* \dashv R_{-1}): \mathcal{P}(A) \underbrace{\perp}_{R_{-1}} \mathcal{P}(B),$$

witnessed by a bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(A)}(R_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, R_{-1}(V)),$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$, i.e. such that:

- (\star) The following conditions are equivalent:
 - We have $R_*(U) \subset V$.
 - We have $U \subset R_{-1}(V)$.

00RW 3. Lax Preservation of Colimits. We have an inclusion of sets

$$\bigcup_{i \in I} R_{-1}(U_i) \subset R_{-1} \left(\bigcup_{i \in I} U_i \right),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(B)^{\times I}$. In particular, we have inclusions

$$R_{-1}(U) \cup R_{-1}(V) \subset R_{-1}(U \cup V),$$

 $\emptyset \subset R_{-1}(\emptyset),$

natural in $U, V \in \mathcal{P}(B)$.

OORX 4. Preservation of Limits. We have an equality of sets

$$R_{-1}\left(\bigcap_{i\in I}U_i\right)=\bigcap_{i\in I}R_{-1}(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$R_{-1}(U \cap V) = R_{-1}(U) \cap R_{-1}(V),$$

 $R_{-1}(B) = B,$

natural in $U, V \in \mathcal{P}(B)$.

00RY 5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure

$$(R_{-1}, R_{-1}^{\otimes}, R_{-1|\mathbb{1}}^{\otimes}) \colon (\mathcal{P}(A), \cup, \emptyset) \to (\mathcal{P}(B), \cup, \emptyset),$$

being equipped with inclusions

$$R_{-1|U,V}^{\otimes} \colon R_{-1}(U) \cup R_{-1}(V) \subset R_{-1}(U \cup V),$$
$$R_{-1|\mathfrak{n}}^{\otimes} \colon \emptyset \subset R_{-1}(\emptyset),$$

natural in $U, V \in \mathcal{P}(B)$.

6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure

$$\left(R_{-1}, R_{-1}^{\otimes}, R_{-1|\mathbb{1}}^{\otimes}\right) \colon (\mathcal{P}(A), \cap, A) \to (\mathcal{P}(B), \cap, B),$$

being equipped with equalities

$$R^{\otimes}_{-1|U,V} \colon R_{-1}(U \cap V) \stackrel{=}{\to} R_{-1}(U) \cap R_{-1}(V),$$
$$R^{\otimes}_{-1|\mathbb{1}} \colon R_{-1}(A) \stackrel{=}{\to} B,$$

natural in $U, V \in \mathcal{P}(B)$.

00S0 7. Interaction With Weak Inverse Images I. We have

$$R_{-1}(V) = A \setminus R^{-1}(B \setminus V)$$

for each $V \in \mathcal{P}(B)$.

- 00S1 8. Interaction With Weak Inverse Images II. Let $R: A \rightarrow B$ be a relation from A to B.
- 00S2 (a) If R is a total relation, then we have an inclusion of sets

$$R_{-1}(V) \subset R^{-1}(V)$$

natural in $V \in \mathcal{P}(B)$.

- (b) If R is total and functional, then the above inclusion is in fact an equality.
- (c) Conversely, if we have $R_{-1} = R^{-1}$, then R is total and functional.

Proof. Item 1, Functoriality: Clear.

00S3

Item 2, Adjointness: This follows from ?? of ??.

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.

Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows from Item 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4.

Item 7, *Interaction With Weak Inverse Images I*: We claim we have an equality

$$R_{-1}(B \setminus V) = A \setminus R^{-1}(V).$$

Indeed, we have

$$R_{-1}(B \setminus V) = \{ a \in A \mid R(a) \subset B \setminus V \},$$

$$A \setminus R^{-1}(V) = \{ a \in A \mid R(a) \cap V = \emptyset \}.$$

Taking $V = B \setminus V$ then implies the original statement.

Item 8, Interaction With Weak Inverse Images II: Item 8a is clear, while Items 8b and 8c follow from Item 6 of Proposition 6.3.1.1.2.

- **00S5** Proposition 6.4.2.1.4. Let $R: A \rightarrow B$ be a relation.
- 0086 1. Functionality I. The assignment $R \mapsto R_{-1}$ defines a function

$$(-)_{-1}$$
: $\mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B))$.

00S7 2. Functionality II. The assignment $R \mapsto R_{-1}$ defines a function

$$(-)_{-1} \colon \mathsf{Sets}(A,B) \to \mathsf{Pos}((\mathcal{P}(A),\subset),(\mathcal{P}(B),\subset)).$$

00S8 3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$(\mathrm{id}_A)_{-1} = \mathrm{id}_{\mathcal{P}(A)}.$$

00S9 4. Interaction With Composition. For each pair of composable relations $R: A \to B$ and $S: B \to C$, we have

$$(S \diamond R)_{-1} = R_{-1} \circ S_{-1}, \qquad \begin{array}{c} \mathcal{P}(C) \xrightarrow{S_{-1}} \mathcal{P}(B) \\ \\ (S \diamond R)_{-1} \end{array} \downarrow_{R_{-1}} \\ \mathcal{P}(A).$$

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: Indeed, we have

$$(\chi_A)_{-1}(U) \stackrel{\text{def}}{=} \{ a \in A \mid \chi_A(a) \subset U \}$$
$$\stackrel{\text{def}}{=} \{ a \in A \mid \{ a \} \subset U \}$$
$$= U$$

for each $U \in \mathcal{P}(A)$. Thus $(\chi_A)_{-1} = \mathrm{id}_{\mathcal{P}(A)}$. *Item 4, Interaction With Composition*: Indeed, we have

$$(S \diamond R)_{-1}(U) \stackrel{\text{def}}{=} \{ a \in A \mid [S \diamond R](a) \subset U \}$$

$$\stackrel{\text{def}}{=} \{ a \in A \mid S(R(a)) \subset U \}$$

$$\stackrel{\text{def}}{=} \{ a \in A \mid S_*(R(a)) \subset U \}$$

$$= \{ a \in A \mid R(a) \subset S_{-1}(U) \}$$

$$\stackrel{\text{def}}{=} R_{-1}(S_{-1}(U))$$

$$\stackrel{\text{def}}{=} [R_{-1} \circ S_{-1}](U)$$

for each $U \in \mathcal{P}(C)$, where we used Item 2 of Proposition 6.4.2.1.3, which implies that the conditions

- We have $S_*(R(a)) \subset U$.
- We have $R(a) \subset S_{-1}(U)$.

are equivalent. Thus $(S \diamond R)_{-1} = R_{-1} \circ S_{-1}$.

00SA 6.4.3 Weak Inverse Images

Let A and B be sets and let $R: A \rightarrow B$ be a relation.

00SB Definition 6.4.3.1.1. The weak inverse image function associated to \mathbb{R}^{23} is the function

$$R^{-1} \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by 24

$$R^{-1}(V) \stackrel{\text{def}}{=} \{ a \in A \mid R(a) \cap V \neq \emptyset \}$$

for each $V \in \mathcal{P}(B)$.

00SC Remark 6.4.3.1.2. Identifying subsets of B with relations from B to pt via Item 3 of Proposition 2.4.3.1.6, we see that the weak inverse image function associated to B is equivalently the function

$$R^{-1} : \underbrace{\mathcal{P}(B)}_{\cong \operatorname{Rel}(B,\operatorname{pt})} \to \underbrace{\mathcal{P}(A)}_{\cong \operatorname{Rel}(A,\operatorname{pt})}$$

defined by

$$R^{-1}(V) \stackrel{\text{def}}{=} V \diamond R$$

 $^{^{23}}$ Further Terminology: Also called simply the **inverse image function associated** to R.

 $^{^{24}}$ Further Terminology: The set $R^{-1}(V)$ is called the **weak inverse image of** V by R or simply the **inverse image of** V by R.

for each $V \in \mathcal{P}(A)$, where $R \diamond V$ is the composition

$$A \stackrel{R}{\rightarrow} B \stackrel{V}{\rightarrow} \text{pt.}$$

Explicitly, we have

$$\begin{split} R^{-1}(V) &\stackrel{\text{\tiny def}}{=} V \diamond R \\ &\stackrel{\text{\tiny def}}{=} \int^{b \in B} V_b^{-1} \times R_{-2}^b. \end{split}$$

Proof. We have

$$\begin{split} V \diamond R &\stackrel{\mathrm{def}}{=} \int^{b \in B} V_b^{-1} \times R_{-2}^b \\ &= \left\{ a \in A \;\middle|\; \int^{b \in B} V_b^\star \times R_a^b = \mathsf{true} \right\} \\ &= \left\{ a \in A \;\middle|\; \text{there exists } b \in B \text{ such that the following conditions hold:} \\ &= \left\{ a \in A \;\middle|\; \text{there exists } b \in B \text{ such that the following conditions hold:} \\ &= \left\{ a \in A \;\middle|\; \text{there exists } b \in B \text{ such that the following conditions hold:} \\ &= \left\{ a \in A \;\middle|\; \text{there exists } b \in V \text{ such that } b \in R(a) \right\} \\ &= \left\{ a \in A \;\middle|\; \text{there exists } b \in V \text{ such that } b \in R(a) \right\} \\ &= \left\{ a \in A \;\middle|\; \text{there exists } b \in V \text{ such that } b \in R(a) \right\} \\ &= \left\{ a \in A \;\middle|\; \text{there exists } b \in V \text{ such that } b \in R(a) \right\} \\ &= \left\{ a \in A \;\middle|\; R(a) \cap V \neq \emptyset \right\} \\ &\stackrel{\mathrm{def}}{=} R^{-1}(V) \end{split}$$

This finishes the proof.

OOSD Proposition 6.4.3.1.3. Let $R: A \to B$ be a relation.

OOSE 1. Functoriality. The assignment $V \mapsto R^{-1}(V)$ defines a functor

$$R^{-1}: (\mathcal{P}(B), \subset) \to (\mathcal{P}(A), \subset)$$

where

• Action on Objects. For each $V \in \mathcal{P}(B)$, we have

$$\left[R^{-1}\right](V) \stackrel{\text{def}}{=} R^{-1}(V).$$

• Action on Morphisms. For each $U, V \in \mathcal{P}(B)$: $- \text{ If } U \subset V, \text{ then } R^{-1}(U) \subset R^{-1}(V).$

00SF 2. Adjointness. We have an adjunction

$$(R^{-1} \dashv R_!)$$
: $\mathcal{P}(B) \underbrace{\downarrow}_{R_!}^{R^{-1}} \mathcal{P}(A)$,

witnessed by a bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(A)}(R^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, R_!(V)),$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$, i.e. such that:

- (\star) The following conditions are equivalent:
 - We have $R^{-1}(U) \subset V$.
 - We have $U \subset R_!(V)$.
- **00SG** 3. Preservation of Colimits. We have an equality of sets

$$R^{-1}\left(\bigcup_{i\in I}U_i\right)=\bigcup_{i\in I}R^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$R^{-1}(U) \cup R^{-1}(V) = R^{-1}(U \cup V),$$

 $R^{-1}(\emptyset) = \emptyset,$

natural in $U, V \in \mathcal{P}(B)$.

00SH 4. Oplax Preservation of Limits. We have an inclusion of sets

$$R^{-1}\left(\bigcap_{i\in I}U_i\right)\subset\bigcap_{i\in I}R^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(B)^{\times I}$. In particular, we have inclusions

$$R^{-1}(U \cap V) \subset R^{-1}(U) \cap R^{-1}(V),$$
$$R^{-1}(A) \subset B,$$

natural in $U, V \in \mathcal{P}(B)$.

608J 5. Symmetric Strict Monoidality With Respect to Unions. The direct

image function of Item 1 has a symmetric strict monoidal structure

$$\left(R^{-1},R^{-1,\otimes},R_{\mathbb{1}}^{-1,\otimes}\right)\colon (\mathcal{P}(A),\cup,\emptyset)\to (\mathcal{P}(B),\cup,\emptyset),$$

being equipped with equalities

$$R_{U,V}^{-1,\otimes} \colon R^{-1}(U) \cup R^{-1}(V) \stackrel{=}{\to} R^{-1}(U \cup V),$$

 $R_{1}^{-1,\otimes} \colon \emptyset \stackrel{=}{\to} \emptyset,$

natural in $U, V \in \mathcal{P}(B)$.

6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure

$$(R^{-1}, R^{-1, \otimes}, R_{\mathbb{1}}^{-1, \otimes}) : (\mathcal{P}(A), \cap, A) \to (\mathcal{P}(B), \cap, B),$$

being equipped with inclusions

$$R_{U,V}^{-1,\otimes} \colon R^{-1}(U \cap V) \subset R^{-1}(U) \cap R^{-1}(V),$$

 $R_{1}^{-1,\otimes} \colon R^{-1}(A) \subset B,$

natural in $U, V \in \mathcal{P}(B)$.

00SL 7. Interaction With Strong Inverse Images I. We have

$$R^{-1}(V) = A \setminus R_{-1}(B \setminus V)$$

for each $V \in \mathcal{P}(B)$.

- 00SM 8. Interaction With Strong Inverse Images II. Let $R: A \to B$ be a relation from A to B.
- 00SN (a) If R is a total relation, then we have an inclusion of sets

$$R_{-1}(V) \subset R^{-1}(V)$$

natural in $V \in \mathcal{P}(B)$.

- (b) If R is total and functional, then the above inclusion is in fact an equality.
- (c) Conversely, if we have $R_{-1}=R^{-1},$ then R is total and functional.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This follows from ?? of ??.

Item 3, Preservation of Colimits: This follows from Item 2 and ?? of ??.

Item 4, Oplax Preservation of Limits: Omitted.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows from Item 4.

Item 7, Interaction With Strong Inverse Images I: This follows from Item 7 of Proposition 6.4.2.1.3.

Item 8, Interaction With Strong Inverse Images II: This was proved in Item 8 of Proposition 6.4.2.1.3.

OOSR Proposition 6.4.3.1.4. Let $R: A \to B$ be a relation.

00SS 1. Functionality I. The assignment $R \mapsto R^{-1}$ defines a function

$$(-)^{-1}$$
: Rel $(A, B) \to \mathsf{Sets}(\mathcal{P}(A), \mathcal{P}(B))$.

00ST 2. Functionality II. The assignment $R \mapsto R^{-1}$ defines a function

$$(-)^{-1}$$
: Rel $(A, B) \to \mathsf{Pos}((\mathcal{P}(A), \subset), (\mathcal{P}(B), \subset))$.

00SU 3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have 25

$$(\chi_A)^{-1} = \mathrm{id}_{\mathcal{P}(A)}.$$

00SV 4. Interaction With Composition. For each pair of composable relations $R: A \to B$ and $S: B \to C$, we have²⁶

$$(S \diamond R)^{-1} = R^{-1} \circ S^{-1}, \qquad \bigvee_{(S \diamond R)^{-1}}^{S^{-1}} \mathcal{P}(B)$$

$$\mathcal{P}(C) \xrightarrow{S^{-1}} \mathcal{P}(B)$$

$$(S \diamond R)^{-1} \downarrow_{R^{-1}}$$

$$\mathcal{P}(A).$$

$$(\chi_A)^{-1}$$
: Rel(pt, A) \to Rel(pt, A)

is equal to $id_{Rel(pt,A)}$.

That is, we have

$$(S \diamond R)^{-1} = R^{-1} \diamond S^{-1}, \qquad \text{Rel}(\operatorname{pt}, C) \xrightarrow{R^{-1}} \operatorname{Rel}(\operatorname{pt}, B)$$

$$(S \diamond R)^{-1} = R^{-1} \diamond S^{-1}, \qquad \downarrow_{S^{-1}}$$

$$\operatorname{Rel}(\operatorname{pt}, A).$$

²⁵That is, the postcomposition

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Item 5 of Proposition 8.1.6.1.2.

Item 4, Interaction With Composition: This follows from Item 2 of Proposition 8.1.6.1.2. □

00SW 6.4.4 Direct Images With Compact Support

Let A and B be sets and let $R: A \to B$ be a relation.

00SX Definition 6.4.4.1.1. The direct image with compact support function associated to R is the function

$$R_! \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by 27,28

$$R_{!}(U) \stackrel{\text{def}}{=} \left\{ b \in B \mid \text{for each } a \in A, \text{ if we have} \right\}$$
$$= \left\{ b \in B \mid R^{-1}(b) \subset U \right\}$$

for each $U \in \mathcal{P}(A)$.

8088 Remark 6.4.4.1.2. Identifying subsets of B with relations from pt to B via Item 3 of Proposition 2.4.3.1.6, we see that the direct image with compact support function associated to R is equivalently the function

$$R_! : \underbrace{\mathcal{P}(A)}_{\cong \operatorname{Rel}(A, \operatorname{pt})} \to \underbrace{\mathcal{P}(B)}_{\cong \operatorname{Rel}(B, \operatorname{pt})}$$

defined by

$$R_!(U) \stackrel{\text{def}}{=} \operatorname{Ran}_R(U), \qquad A \stackrel{R}{\longrightarrow} \operatorname{pt},$$

$$R_!(U) = B \setminus R_*(A \setminus U);$$

see Item 7 of Proposition 6.4.4.1.3.

²⁷ Further Terminology: The set $R_!(U)$ is called the **direct image with compact support of** U **by** R.

 $^{^{28}\}mathrm{We}$ also have

being explicitly computed by

$$\begin{split} R^*(U) &\stackrel{\text{def}}{=} \mathrm{Ran}_R(U) \\ &\cong \int_{a \in A} \mathrm{Hom}_{\{\mathsf{t},\mathsf{f}\}} \big(R_a^{-_2}, U_a^{-_1}\big), \end{split}$$

where we have used Proposition 6.2.3.1.1.

Proof. We have

$$\begin{aligned} \operatorname{Ran}_R(V) &\cong \int_{a \in A} \operatorname{Hom}_{\{\mathfrak{t}, \mathfrak{f}\}} \left(R_a^{-2}, U_a^{-1} \right) \\ &= \left\{ b \in B \;\middle|\; \int_{a \in A} \operatorname{Hom}_{\{\mathfrak{t}, \mathfrak{f}\}} \left(R_a^b, U_a^\star \right) = \operatorname{true} \right\} \\ &= \left\{ b \in B \;\middle|\; \text{for each } a \in A, \text{ at least one of the following conditions hold:} \\ &= \left\{ b \in B \;\middle|\; 1. \text{ We have } R_a^b = \text{false} \\ 2. \text{ The following conditions hold:} \right. \\ &= \left\{ a \;\middle|\; \text{We have } U_a^\star = \text{true} \\ &= \left\{ b \;\middle|\; \text{We have } U_a^\star = \text{true} \right. \right. \end{aligned} \right. \\ &= \left\{ b \in B \;\middle|\; \text{for each } a \in A, \text{ at least one of the following conditions hold:} \\ &= \left\{ b \in B \;\middle|\; \text{for each } a \in A, \text{ at least one of the following conditions hold:} \\ &= \left\{ b \in B \;\middle|\; \text{for each } a \in A, \text{ if we have } a \in U \right. \right. \\ &= \left\{ b \in B \;\middle|\; \text{for each } a \in A, \text{ if we have } a \in U \right. \\ &= \left\{ b \in B \;\middle|\; R^{-1}(b) \subset U \right\} \\ &\stackrel{\text{def}}{=} R^{-1}(U). \end{aligned}$$

This finishes the proof.

OOSZ Proposition 6.4.4.1.3. Let $R: A \to B$ be a relation.

00T0 1. Functoriality. The assignment $U \mapsto R_!(U)$ defines a functor

$$R_1: (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

where

• Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$[R_!](U) \stackrel{\text{def}}{=} R_!(U).$$

- Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:
 - If $U \subset V$, then $R_!(U) \subset R_!(V)$.
- **00T1** 2. Adjointness. We have an adjunction

$$(R^{-1} \dashv R_!): \mathcal{P}(B) \underbrace{\downarrow}_{R_!} \mathcal{P}(A),$$

witnessed by a bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(A)}(R^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, R_!(V)),$$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$, i.e. such that:

- (\star) The following conditions are equivalent:
 - We have $R^{-1}(U) \subset V$.
 - We have $U \subset R_!(V)$.
- 00T2 3. Lax Preservation of Colimits. We have an inclusion of sets

$$\bigcup_{i\in I} R_!(U_i) \subset R_! \left(\bigcup_{i\in I} U_i\right),\,$$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$R_!(U) \cup R_!(V) \subset R_!(U \cup V),$$

 $\emptyset \subset R_!(\emptyset),$

natural in $U, V \in \mathcal{P}(A)$.

00T3 4. Preservation of Limits. We have an equality of sets

$$R_! \left(\bigcap_{i \in I} U_i \right) = \bigcap_{i \in I} R_! (U_i),$$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$R_!(U \cap V) = R_!(U) \cap R_!(V),$$
$$R_!(A) = B,$$

natural in $U, V \in \mathcal{P}(A)$.

00T4 5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure

$$\left(R_!,R_!^\otimes,R_{!|\mathbb{1}}^\otimes\right)\colon (\mathcal{P}(A),\cup,\emptyset)\to (\mathcal{P}(B),\cup,\emptyset),$$

being equipped with inclusions

$$R_{!|U,V}^{\otimes} \colon R_{!}(U) \cup R_{!}(V) \subset R_{!}(U \cup V),$$
$$R_{!|\mathfrak{A}}^{\otimes} \colon \emptyset \subset R_{!}(\emptyset),$$

natural in $U, V \in \mathcal{P}(A)$.

6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure

$$\left(R_!, R_!^{\otimes}, R_{!|\mathbb{I}}^{\otimes}\right) \colon (\mathcal{P}(A), \cap, A) \to (\mathcal{P}(B), \cap, B),$$

being equipped with equalities

$$R_{!|U,V}^{\otimes} \colon R_{!}(U \cap V) \xrightarrow{\overline{\rightarrow}} R_{!}(U) \cap R_{!}(V),$$
$$R_{!|\mathbb{1}}^{\otimes} \colon R_{!}(A) \xrightarrow{\overline{\rightarrow}} B,$$

natural in $U, V \in \mathcal{P}(A)$.

00T6 7. Relation to Direct Images. We have

$$R_!(U) = B \setminus R_*(A \setminus U)$$

for each $U \in \mathcal{P}(A)$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This follows from ?? of ??.

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.

Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows from Item 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4.

Item 7, Relation to Direct Images: This follows from Item 7 of Proposition 6.4.1.1.3. Alternatively, we may prove it directly as follows, with the proof proceeding in the same way as in the case of functions (Item 9 of Proposition 2.4.6.1.6).

We claim that $R_!(U) = B \setminus R_*(A \setminus U)$:

• The First Implication. We claim that

$$R_!(U) \subset B \setminus R_*(A \setminus U).$$

Let $b \in R_!(U)$. We need to show that $b \notin R_*(A \setminus U)$, i.e. that there is no $a \in A \setminus U$ such that $b \in R(a)$.

This is indeed the case, as otherwise we would have $a \in R^{-1}(b)$ and $a \notin U$, contradicting $R^{-1}(b) \subset U$ (which holds since $b \in R_!(U)$). Thus $b \in B \setminus R_*(A \setminus U)$.

The Second Implication. We claim that

$$B \setminus R_*(A \setminus U) \subset R_!(U)$$
.

Let $b \in B \setminus R_*(A \setminus U)$. We need to show that $b \in R_!(U)$, i.e. that $R^{-1}(b) \subset U$.

Since $b \notin R_*(A \setminus U)$, there exists no $a \in A \setminus U$ such that $b \in R(a)$, and hence $R^{-1}(b) \subset U$.

Thus $b \in R_!(U)$.

This finishes the proof.

OOT7 Proposition 6.4.4.1.4. Let $R: A \to B$ be a relation.

00T8 1. Functionality I. The assignment $R \mapsto R_!$ defines a function

$$(-)_!$$
: $\mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B)).$

00T9 2. Functionality II. The assignment $R \mapsto R_!$ defines a function

$$(-)_1: \mathsf{Sets}(A,B) \to \mathsf{Hom}_{\mathsf{Pos}}((\mathcal{P}(A),\subset),(\mathcal{P}(B),\subset)).$$

OOTA 3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$(\mathrm{id}_A)_! = \mathrm{id}_{\mathcal{P}(A)}.$$

00TB 4. Interaction With Composition. For each pair of composable relations $R: A \to B$ and $S: B \to C$, we have

$$(S \diamond R)_! = S_! \circ R_!, \qquad \mathcal{P}(A) \xrightarrow{R_!} \mathcal{P}(B)$$

$$(S \diamond R)_! = S_! \circ R_!, \qquad \downarrow_{(S \diamond R)_!} \qquad \downarrow_{S_!} \qquad \downarrow_{\mathcal{P}(C)_!} \qquad \downarrow_{\mathcal{P}$$

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: Indeed, we have

$$(\chi_A)_!(U) \stackrel{\text{def}}{=} \left\{ a \in A \mid \chi_A^{-1}(a) \subset U \right\}$$
$$\stackrel{\text{def}}{=} \left\{ a \in A \mid \{a\} \subset U \right\}$$
$$= U$$

for each $U \in \mathcal{P}(A)$. Thus $(\chi_A)_! = \mathrm{id}_{\mathcal{P}(A)}$.

Item 4, Interaction With Composition: Indeed, we have

$$(S \diamond R)_{!}(U) \stackrel{\text{def}}{=} \left\{ c \in C \mid [S \diamond R]^{-1}(c) \subset U \right\}$$

$$\stackrel{\text{def}}{=} \left\{ c \in C \mid S^{-1}(R^{-1}(c)) \subset U \right\}$$

$$= \left\{ c \in C \mid R^{-1}(c) \subset S_{!}(U) \right\}$$

$$\stackrel{\text{def}}{=} R_{!}(S_{!}(U))$$

$$\stackrel{\text{def}}{=} [R_{!} \circ S_{!}](U)$$

for each $U \in \mathcal{P}(C)$, where we used Item 2 of Proposition 6.4.4.1.3, which implies that the conditions

- We have $S^{-1}(R^{-1}(c)) \subset U$.
- We have $R^{-1}(c) \subset S_!(U)$.

are equivalent. Thus $(S \diamond R)_! = S_! \circ R_!$.

00TC 6.4.5 Functoriality of Powersets

OOTD Proposition 6.4.5.1.1. The assignment $X \mapsto \mathcal{P}(X)$ defines functors²⁹

$$\mathcal{P}_* \colon \mathrm{Rel} \to \mathsf{Sets},$$
 $\mathcal{P}_{-1} \colon \mathrm{Rel}^\mathsf{op} \to \mathsf{Sets},$
 $\mathcal{P}^{-1} \colon \mathrm{Rel}^\mathsf{op} \to \mathsf{Sets},$
 $\mathcal{P}_! \colon \mathrm{Rel} \to \mathsf{Sets}$

where

• Action on Objects. For each $A \in Obj(Rel)$, we have

$$\mathcal{P}_*(A) \stackrel{\text{def}}{=} \mathcal{P}(A),$$

$$\mathcal{P}_{-1}(A) \stackrel{\text{def}}{=} \mathcal{P}(A),$$

$$\mathcal{P}^{-1}(A) \stackrel{\text{def}}{=} \mathcal{P}(A),$$

$$\mathcal{P}_!(A) \stackrel{\text{def}}{=} \mathcal{P}(A).$$

²⁹The functor \mathcal{P}_* : Rel \rightarrow Sets admits a left adjoint; see Item 3 of

• Action on Morphisms. For each morphism $R: A \to B$ of Rel, the images

$$\mathcal{P}_*(R) \colon \mathcal{P}(A) \to \mathcal{P}(B),$$

 $\mathcal{P}_{-1}(R) \colon \mathcal{P}(B) \to \mathcal{P}(A),$
 $\mathcal{P}^{-1}(R) \colon \mathcal{P}(B) \to \mathcal{P}(A),$
 $\mathcal{P}_!(R) \colon \mathcal{P}(A) \to \mathcal{P}(B)$

of R by \mathcal{P}_* , \mathcal{P}_{-1} , \mathcal{P}^{-1} , and $\mathcal{P}_!$ are defined by

$$\mathcal{P}_*(R) \stackrel{\text{def}}{=} R_*,$$

$$\mathcal{P}_{-1}(R) \stackrel{\text{def}}{=} R_{-1},$$

$$\mathcal{P}^{-1}(R) \stackrel{\text{def}}{=} R^{-1},$$

$$\mathcal{P}_!(R) \stackrel{\text{def}}{=} R_!,$$

as in Definitions 6.4.1.1.1, 6.4.2.1.1, 6.4.3.1.1 and 6.4.4.1.1.

Proof. This follows from Items 3 and 4 of Proposition 6.4.1.1.4, Items 3 and 4 of Proposition 6.4.2.1.4, Items 3 and 4 of Proposition 6.4.3.1.4, and Items 3 and 4 of Proposition 6.4.4.1.4. \Box

6.4.6 Functoriality of Powersets: Relations on Powersets

- **00TE** Let A and B be sets and let $R: A \to B$ be a relation.
- OOTF Definition 6.4.6.1.1. The relation on powersets associated to R is the relation

$$\mathcal{P}(R): \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by³⁰

$$\mathcal{P}(R)_U^V \stackrel{\text{def}}{=} \mathbf{Rel}(\chi_{\mathrm{pt}}, V \diamond R \diamond U)$$

for each $U \in \mathcal{P}(A)$ and each $V \in \mathcal{P}(B)$.

- **QUITG** Remark 6.4.6.1.2. In detail, we have $U \sim_{\mathcal{P}(R)} V$ iff the following equivalent conditions hold:
 - We have $\chi_{\rm pt} \subset V \diamond R \diamond U$.
 - We have $(V \diamond R \diamond U)^{\star}_{\star} = \text{true}$, i.e. we have

$$\int^{a\in A}\int^{b\in B}V_b^{\star}\times R_a^b\times U_{\star}^a={\rm true}.$$

Proposition 6.3.1.1.2.

³⁰Illustration:

$$\operatorname{pt} \xrightarrow{\underset{U}{\longleftrightarrow} A \xrightarrow{\chi_{\operatorname{pt}}} B \xrightarrow{V}} \operatorname{pt}.$$

- There exists some $a \in A$ and some $b \in B$ such that:
 - We have $U^a_{\star} = \text{true}$.
 - We have $R_a^b = \text{true}$.
 - We have $V_b^{\star} = \text{true}$.
- There exists some $a \in A$ and some $b \in B$ such that:
 - We have $a \in U$.
 - We have $a \sim_R b$.
 - We have $b \in V$.

OOTH Proposition 6.4.6.1.3. The assignment $R \mapsto \mathcal{P}(R)$ defines a functor

$$\mathcal{P} \colon \mathrm{Rel} \to \mathrm{Rel}$$
.

Proof. Omitted.

Appendices

6.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Chapter 7

Equivalence Relations and Apartness Relations

00TJ This chapter contains some material about reflexive, symmetric, transitive, equivalence, and apartness relations.

Contents

7.1	Reflexive Relations328		
	7.1.1	Foundations	3
	7.1.2	The Reflexive Closure of a Relation 329)
7.2	Symmetric Relations331		
	7.2.1	Foundations	1
	7.2.2	The Symmetric Closure of a Relation 331	1
7.3	Trans	itive Relations333	3
	7.3.1	Foundations	3
	7.3.2	The Transitive Closure of a Relation 334	1
7.4	Equiv	ralence Relations336	3
	7.4.1	Foundations	3
	7.4.2	The Equivalence Closure of a Relation 336	3
7.5	Quotients by Equivalence Relations338		3
	7.5.1	Equivalence Classes	3
	7.5.2	Quotients of Sets by Equivalence Relations 338	3
7.A	Other	· Chapters342	2

OOTK 7.1 Reflexive Relations

00TL 7.1.1 Foundations

Let A be a set.

- **OOTM** Definition 7.1.1.1.1. A reflexive relation is equivalently:¹
 - An \mathbb{E}_0 -monoid in $(N_{\bullet}(\mathbf{Rel}(A,A)), \chi_A)$.
 - A pointed object in $(\mathbf{Rel}(A, A), \chi_A)$.
- **OOTN** Remark 7.1.1.1.2. In detail, a relation R on A is reflexive if we have an inclusion

$$\eta_R \colon \chi_A \subset R$$

of relations in $\mathbf{Rel}(A, A)$, i.e. if, for each $a \in A$, we have $a \sim_R a$.

- **00TP** Definition 7.1.1.3. Let A be a set.
- 1. The set of reflexive relations on A is the subset $Rel^{refl}(A, A)$ of Rel(A, A) spanned by the reflexive relations.
- 2. The **poset of relations on** A is is the subposet $\mathbf{Rel}^{\mathsf{refl}}(A, A)$ of $\mathbf{Rel}(A, A)$ spanned by the reflexive relations.
- **OOTS** Proposition 7.1.1.1.4. Let R and S be relations on A.
- 00TT 1. Interaction With Inverses. If R is reflexive, then so is R^{\dagger} .
- 00TU 2. Interaction With Composition. If R and S are reflexive, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear. Item 2, Interaction With Composition: Clear.

00TV 7.1.2 The Reflexive Closure of a Relation

Let R be a relation on A.

- **Definition 7.1.2.1.1.** The **reflexive closure** of \sim_R is the relation \sim_R^{refl2} satisfying the following universal property:³
 - (*) Given another reflexive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{refl}} \subset \sim_S$.
- **Construction 7.1.2.1.2.** Concretely, \sim_R^{refl} is the free pointed object on R in $(\text{Rel}(A, A), \chi_A)^4$, being given by

$$\begin{split} R^{\text{refl}} &\stackrel{\text{def}}{=} R \coprod^{\mathbf{Rel}(A,A)} \Delta_A \\ &= R \cup \Delta_A \\ &= \{(a,b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } a = b\}. \end{split}$$

 $^{^1}$ Note that since $\mathbf{Rel}(A,A)$ is posetal, reflexivity is a property of a relation, rather than extra structure.

 $^{^2}$ Further Notation: Also written R^{refl} .

³ Slogan: The reflexive closure of R is the smallest reflexive relation containing R.

⁴Or, equivalently, the free \mathbb{E}_0 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A,A)), \chi_A)$.

Proof. Clear.
$$\Box$$

OOTY Proposition 7.1.2.1.3. Let R be a relation on A.

00TZ 1. Adjointness. We have an adjunction

$$\Big((-)^{\mathrm{refl}}\dashv \overline{\varpi}\Big)\colon \quad \mathbf{Rel}(A,A) \underbrace{\overset{(-)^{\mathrm{refl}}}{-}}_{\overline{\varpi}} \mathbf{Rel}^{\mathsf{refl}}(A,A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{refl}}(R^{\mathsf{refl}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{refl}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

- 0000 2. The Reflexive Closure of a Reflexive Relation. If R is reflexive, then $R^{\text{refl}} = R$.
- **00U1** 3. *Idempotency*. We have

$$(R^{\text{refl}})^{\text{refl}} = R^{\text{refl}}.$$

00U2 4. Interaction With Inverses. We have

$$(R^{\dagger})^{\text{refl}} = (R^{\text{refl}})^{\dagger}, \qquad \underset{(-)^{\dagger}}{\overset{(-)^{\text{refl}}}{\longrightarrow}} \operatorname{Rel}(A, A)$$

$$Rel(A, A) \xrightarrow{(-)^{\text{refl}}} \operatorname{Rel}(A, A) \xrightarrow{(-)^{\text{refl}}} \operatorname{Rel}(A, A).$$

00U3 5. Interaction With Composition. We have

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \stackrel{\diamondsuit}{\to} \operatorname{Rel}(A,A)$$
$$(S \diamond R)^{\operatorname{refl}} = S^{\operatorname{refl}} \diamond R^{\operatorname{refl}}, \quad \underset{(-)^{\operatorname{refl}} \times (-)^{\operatorname{refl}}}{(-)^{\operatorname{refl}}} \downarrow \qquad \qquad \downarrow_{(-)^{\operatorname{refl}}}$$
$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \stackrel{\r}{\to} \operatorname{Rel}(A,A).$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the reflexive closure of a relation, stated in Definition 7.1.2.1.1.

Item 2, The Reflexive Closure of a Reflexive Relation: Clear.

Item 3, *Idempotency*: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Proposition 7.1.1.1.4. \Box

00U4 7.2 Symmetric Relations

00U5 7.2.1 Foundations

Let A be a set.

- **Definition 7.2.1.1.1.** A relation R on A is **symmetric** if we have $R^{\dagger} = R$
- **Remark 7.2.1.1.2.** In detail, a relation R is symmetric if it satisfies the following condition:
 - (*) For each $a, b \in A$, if $a \sim_R b$, then $b \sim_R a$.
- 0008 **Definition 7.2.1.1.3.** Let A be a set.
- 1. The set of symmetric relations on A is the subset $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.
- 2. The **poset of relations on** A is is the subposet **Rel**^{symm}(A, A) of **Rel**(A, A) spanned by the symmetric relations.
- **00UB** Proposition 7.2.1.1.4. Let R and S be relations on A.
- **00UC** 1. Interaction With Inverses. If R is symmetric, then so is R^{\dagger} .
- 00UD 2. Interaction With Composition. If R and S are symmetric, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear. Item 2, Interaction With Composition: Clear.

00UE 7.2.2 The Symmetric Closure of a Relation

Let R be a relation on A.

- 00UF **Definition 7.2.2.1.1.** The **symmetric closure** of \sim_R is the relation $\sim_R^{\text{symm}_5}$ satisfying the following universal property:⁶
 - (*) Given another symmetric relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{symm}} \subset \sim_S$.
- **Construction 7.2.2.1.2.** Concretely, \sim_R^{symm} is the symmetric relation on A defined by

$$R^{\text{symm}} \stackrel{\text{def}}{=} R \cup R^{\dagger}$$

= $\{(a, b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } b \sim_R a\}.$

⁵ Further Notation: Also written R^{symm} .

 $^{^6}$ Slogan: The symmetric closure of R is the smallest symmetric relation containing

Proof. Clear.
$$\Box$$

QOUH Proposition 7.2.2.1.3. Let R be a relation on A.

00UJ 1. Adjointness. We have an adjunction

$$\big((-)^{\operatorname{symm}}\dashv \overline{\varpi}\big)\colon \quad \mathbf{Rel}(A,A) \underbrace{\overset{(-)^{\operatorname{symm}}}{-}}_{\overline{\varpi}} \mathbf{Rel}^{\operatorname{symm}}(A,A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{symm}}(R^{\mathsf{symm}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel^{symm}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

00UK 2. The Symmetric Closure of a Symmetric Relation. If R is symmetric, then $R^{\text{symm}} = R$.

00UL 3. *Idempotency*. We have

$$(R^{\text{symm}})^{\text{symm}} = R^{\text{symm}}$$

00UM 4. Interaction With Inverses. We have

$$(R^{\dagger})^{\text{symm}} = (R^{\text{symm}})^{\dagger}, \qquad (-)^{\dagger} \downarrow \qquad \qquad \downarrow (-)^{\dagger}$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{symm}}} \text{Rel}(A, A)$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{symm}}} \text{Rel}(A, A).$$

00UN 5. Interaction With Composition. We have

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \stackrel{\diamondsuit}{\to} \operatorname{Rel}(A,A)$$
$$(S \diamondsuit R)^{\operatorname{symm}} = S^{\operatorname{symm}} \diamondsuit R^{\operatorname{symm}}, \quad (-)^{\operatorname{symm}} \times (-)^{\operatorname{symm}} \bigvee \qquad (-)^{\operatorname{symm}} \times (-)^{\operatorname{symm}}$$
$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \stackrel{\diamondsuit}{\to} \operatorname{Rel}(A,A).$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the symmetric closure of a relation, stated in Definition 7.2.2.1.1.

Item 2, The Symmetric Closure of a Symmetric Relation: Clear.

Item 3, *Idempotency*: This follows from *Item 2*.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Proposition 7.2.1.1.4. \Box

60UP 7.3 Transitive Relations

00UQ 7.3.1 Foundations

Let A be a set.

00UR Definition 7.3.1.1.1. A **transitive relation** is equivalently:

- A non-unital \mathbb{E}_1 -monoid in $(N_{\bullet}(\mathbf{Rel}(A,A)),\diamond)$.
- A non-unital monoid in $(\mathbf{Rel}(A, A), \diamond)$.

Remark 7.3.1.1.2. In detail, a relation R on A is **transitive** if we have an inclusion

$$\mu_R \colon R \diamond R \subset R$$

of relations in $\mathbf{Rel}(A, A)$, i.e. if, for each $a, c \in A$, the following condition is satisfied:

(*) If there exists some $b \in A$ such that $a \sim_R b$ and $b \sim_R c$, then $a \sim_R c$.

00UT Definition 7.3.1.1.3. Let A be a set.

- 1. The set of transitive relations from A to B is the subset $\operatorname{Rel}^{\operatorname{trans}}(A)$ of $\operatorname{Rel}(A,A)$ spanned by the transitive relations.
- 2. The **poset of relations from** A **to** B is is the subposet **Rel**^{trans}(A) of **Rel**(A, A) spanned by the transitive relations.

QUALTE Proposition 7.3.1.1.4. Let R and S be relations on A.

00UX 1. Interaction With Inverses. If R is transitive, then so is R^{\dagger} .

2. Interaction With Composition. If R and S are transitive, then $S \diamond R$ may fail to be transitive.

Proof. Item 1, Interaction With Inverses: Clear.

Item 2, Interaction With Composition: See [MSE 2096272]. R.

- 1. If $a \sim_{S \diamond R} c$ and $c \sim_{S \diamond r} e$, then:
 - (a) There is some $b \in A$ such that:
 - i. $a \sim_R b$;
 - ii. $b \sim_S c$;

 $^{^7\}mathrm{Note}$ that since $\mathbf{Rel}(A,A)$ is posetal, transitivity is a property of a relation, rather than extra structure.

⁸*Intuition:* Transitivity for R and S fails to imply that of $S \diamond R$ because the composition operation for relations intertwines R and S in an incompatible way:

00UZ 7.3.2 The Transitive Closure of a Relation

Let R be a relation on A.

- 00V0 **Definition 7.3.2.1.1.** The **transitive closure** of \sim_R is the relation \sim_R^{trans9} satisfying the following universal property:¹⁰
 - (*) Given another transitive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{trans}} \subset \sim_S$.
- **Construction 7.3.2.1.2.** Concretely, \sim_R^{trans} is the free non-unital monoid on R in $(\text{Rel}(A, A), \diamond)^{11}$, being given by

$$R^{\text{trans}} \stackrel{\text{def}}{=} \prod_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \bigcup_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \left\{ (a,b) \in A \times B \mid \text{there exists some } (x_1, \dots, x_n) \in R^{\times n} \\ \text{such that } a \sim_R x_1 \sim_R \dots \sim_R x_n \sim_R b \right\}.$$

Proof. Clear.

- **00V2** Proposition 7.3.2.1.3. Let R be a relation on A.
- 00V3 1. Adjointness. We have an adjunction

$$\Big((-)^{\operatorname{trans}}\dashv \overline{\bowtie}\Big)\colon \quad \mathbf{Rel}(A,A) \underbrace{\overset{(-)^{\operatorname{trans}}}{\overset{\bowtie}{\bowtie}}} \mathbf{Rel}^{\operatorname{trans}}(A,A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{trans}}\Big(R^{\mathsf{trans}},S\Big) \cong \mathbf{Rel}(R,S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{trans}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

- 00V4 2. The Transitive Closure of a Transitive Relation. If R is transitive, then $R^{\text{trans}} = R$.
 - (b) There is some $d \in A$ such that:

i.
$$c \sim_R d$$
;

ii.
$$d \sim_S e$$
.

⁹ Further Notation: Also written R^{trans} .

 $^{^{10}}$ Slogan: The transitive closure of R is the smallest transitive relation containing R.

¹¹Or, equivalently, the free non-unital \mathbb{E}_1 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A,A)), \diamond)$.

00V5 3. *Idempotency*. We have

$$\left(R^{\text{trans}}\right)^{\text{trans}} = R^{\text{trans}}.$$

00V6 4. Interaction With Inverses. We have

$$(R^{\dagger})^{\text{trans}} = (R^{\text{trans}})^{\dagger}, \qquad (-)^{\dagger} \downarrow \qquad \qquad \downarrow_{(-)^{\dagger}}$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{trans}}} \text{Rel}(A, A)$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{trans}}} \text{Rel}(A, A).$$

00V7 5. Interaction With Composition. We have

$$(S \diamond R)^{\operatorname{trans}} \overset{\operatorname{poss.}}{\neq} S^{\operatorname{trans}} \diamond R^{\operatorname{trans}}, \quad (-)^{\operatorname{trans}} \times (-)^{\operatorname{trans}} \bigvee \qquad (-)^{\operatorname{trans}} \bigvee (-)^{\operatorname{trans}} (-)^{\operatorname{trans}} \otimes \operatorname{Rel}(A, A) \overset{\diamond}{\Rightarrow} \operatorname{Rel}(A, A).$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the transitive closure of a relation, stated in Definition 7.3.2.1.1.

Item 2, The Transitive Closure of a Transitive Relation: Clear.

Item 3, *Idempotency*: This follows from Item 2.

Item 4, Interaction With Inverses: We have

$$(R^{\dagger})^{\text{trans}} = \bigcup_{n=1}^{\infty} (R^{\dagger})^{\diamond n}$$

$$= \bigcup_{n=1}^{\infty} (R^{\diamond n})^{\dagger}$$

$$= (\sum_{n=1}^{\infty} R^{\diamond n})^{\dagger}$$

$$= (R^{\text{trans}})^{\dagger},$$

where we have used, respectively:

- 1. Construction 7.3.2.1.2.
- 2. Item 4 of Proposition 6.3.12.1.3.
- 3. Item 1 of Proposition 6.3.6.1.2.
- 4. Construction 7.3.2.1.2.

Item 5, Interaction With Composition: This follows from Item 2 of Proposition 7.3.1.1.4. □

00V8 7.4 Equivalence Relations

00V9 7.4.1 Foundations

Let A be a set.

- **OOVA** Definition 7.4.1.1.1. A relation R is an equivalence relation if it is reflexive, symmetric, and transitive. $\frac{12}{12}$
- 00VB Example 7.4.1.1.2. The kernel of a function $f: A \to B$ is the equivalence relation $\sim_{\text{Ker}(f)}$ on A obtained by declaring $a \sim_{\text{Ker}(f)} b$ iff f(a) = f(b).¹³
- **OOVC** Definition 7.4.1.1.3. Let A and B be sets.
- 1. The set of equivalence relations from A to B is the subset $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.
- 2. The **poset of relations from** A **to** B is is the subposet **Rel**^{eq}(A, B) of **Rel**(A, B) spanned by the equivalence relations.

00VF 7.4.2 The Equivalence Closure of a Relation

Let R be a relation on A.

- 00VG Definition 7.4.2.1.1. The equivalence closure¹⁴ of \sim_R is the relation \sim_R^{eq15} satisfying the following universal property:¹⁶
 - (*) Given another equivalence relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{eq}} \subset \sim_S$.

 $^{^{12}\}mathit{Further\ Terminology}$: If instead R is just symmetric and transitive, then it is called a partial equivalence relation.

¹³The kernel $\operatorname{Ker}(f) \colon A \to A$ of f is the underlying functor of the monad induced by the adjunction $\operatorname{Gr}(f) \dashv f^{-1} \colon A \rightleftarrows B$ in **Rel** of Item 2 of Proposition 6.3.1.1.2.

¹⁴ Further Terminology: Also called the equivalence relation associated to \sim_R .

¹⁵ Further Notation: Also written R^{eq} .

 $^{^{16}\}mathit{Slogan:}$ The equivalence closure of R is the smallest equivalence relation containing R

60VH Construction 7.4.2.1.2. Concretely, \sim_R^{eq} is the equivalence relation on A defined by

$$R^{\text{eq}} \stackrel{\text{def}}{=} \left(\left(R^{\text{refl}} \right)^{\text{symm}} \right)^{\text{trans}}$$

$$= \left((R^{\text{symm}})^{\text{trans}} \right)^{\text{refl}}$$

$$= \begin{cases} (a,b) \in A \times B & \text{there exists } (x_1, \dots, x_n) \in R^{\times n} \text{ satisfying at least one of the following conditions:} \\ 1. \text{ The following conditions are satisfied:} \\ (a) \text{ We have } a \sim_R x_1 \text{ or } x_1 \sim_R a; \\ (b) \text{ We have } x_i \sim_R x_{i+1} \text{ or } x_{i+1} \sim_R x_i \\ \text{ for each } 1 \leq i \leq n-1; \\ (c) \text{ We have } b \sim_R x_n \text{ or } x_n \sim_R b; \\ 2. \text{ We have } a = b. \end{cases}$$

Proof. From the universal properties of the reflexive, symmetric, and transitive closures of a relation (Definitions 7.1.2.1.1, 7.2.2.1.1 and 7.3.2.1.1), we see that it suffices to prove that:

- 00VJ 1. The symmetric closure of a reflexive relation is still reflexive.
- 00VK 2. The transitive closure of a symmetric relation is still symmetric. which are both clear.

OOVL Proposition 7.4.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction 00VM

$$((-)^{\text{eq}} \dashv \overline{\Xi}): \quad \mathbf{Rel}(A, B) \underbrace{\overset{(-)^{\text{eq}}}{\bot}}_{\Xi} \mathbf{Rel}^{\text{eq}}(A, B),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathrm{eq}}(R^{\mathrm{eq}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{eq}(A, B))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

- 00VN 2. The Equivalence Closure of an Equivalence Relation. If R is an equivalence relation, then $R^{eq} = R$.
- 00VP 3. *Idempotency*. We have

$$(R^{\mathrm{eq}})^{\mathrm{eq}} = R^{\mathrm{eq}}.$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the equivalence closure of a relation, stated in Definition 7.4.2.1.1.

Item 2, The Equivalence Closure of an Equivalence Relation: Clear.

Item 3, *Idempotency*: This follows from Item 2.

00VQ 7.5 Quotients by Equivalence Relations

00VR 7.5.1 Equivalence Classes

Let A be a set, let R be a relation on A, and let $a \in A$.

OOVS Definition 7.5.1.1.1. The equivalence class associated to a is the set [a] defined by

$$[a] \stackrel{\text{def}}{=} \{x \in X \mid x \sim_R a\}$$
$$= \{x \in X \mid a \sim_R x\}.$$
 (since R is symmetric)

00VT 7.5.2 Quotients of Sets by Equivalence Relations

Let A be a set and let R be a relation on A.

Definition 7.5.2.1.1. The quotient of X by R is the set X/\sim_R defined by

$$X/\sim_R \stackrel{\text{def}}{=} \{[a] \in \mathcal{P}(X) \mid a \in X\}.$$

- **Remark 7.5.2.1.2.** The reason we define quotient sets for equivalence relations only is that each of the properties of being an equivalence relation—reflexivity, symmetry, and transitivity—ensures that the equivalences classes [a] of X under R are well-behaved:
 - Reflexivity. If R is reflexive, then, for each $a \in X$, we have $a \in [a]$.
 - Symmetry. The equivalence class [a] of an element a of X is defined by

$$[a] \stackrel{\text{def}}{=} \{ x \in X \mid x \sim_R a \},\$$

but we could equally well define

$$[a]' \stackrel{\text{def}}{=} \{x \in X \mid a \sim_R x\}$$

instead. This is not a problem when R is symmetric, as we then have [a] = [a]'.¹⁷

• Transitivity. If R is transitive, then [a] and [b] are disjoint iff $a \sim_R b$, and equal otherwise.

 $[\]overline{\ }^{17}$ When categorifying equivalence relations, one finds that [a] and [a]' correspond to

QOVW Proposition 7.5.2.1.3. Let $f: X \to Y$ be a function and let R be a relation on X.

00VX 1. As a Coequaliser. We have an isomorphism of sets

$$X/{\sim_R^{\mathrm{eq}}} \cong \mathrm{CoEq}\Bigg(R \hookrightarrow X \times X \overset{\mathrm{pr}_1}{\underset{\mathrm{pr}_2}{\to}} X\Bigg),$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

00VY 2. As a Pushout. We have an isomorphism of sets 18

$$X/\sim_R^{\mathrm{eq}} \cong X \coprod_{\mathrm{Eq}(\mathrm{pr}_1,\mathrm{pr}_2)} X, \qquad \bigwedge^{-\mathrm{eq}} \qquad \bigwedge^{-} \qquad \bigwedge$$

$$X \leftarrow \mathrm{Eq}(\mathrm{pr}_1,\mathrm{pr}_2).$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

00VZ 3. The First Isomorphism Theorem for Sets. We have an isomorphism of sets 19,20

$$X/\sim_{\mathrm{Ker}(f)} \cong \mathrm{Im}(f).$$

presheaves and copresheaves; see ??.

¹⁸Dually, we also have an isomorphism of sets

¹⁹ Further Terminology: The set $X/\sim_{\text{Ker}(f)}$ is often called the **coimage of** f, and denoted by Coim(f).

 20 In a sense this is a result relating the monad in **Rel** induced by f with the comonad in **Rel** induced by f, as the kernel and image

$$\operatorname{Ker}(f) \colon X \to X,$$

 $\operatorname{Im}(f) \subset Y$

of f are the underlying functors of (respectively) the induced monad and comonad of the adjunction

$$(\operatorname{Gr}(f) \dashv f^{-1}): A \xrightarrow[f^{-1}]{\operatorname{Gr}(f)} B$$

of Item 2 of Proposition 6.3.1.1.2.

- 4. Descending Functions to Quotient Sets, I. Let R be an equivalence relation on X. The following conditions are equivalent:
 - (a) There exists a map

$$\overline{f}: X/\sim_R \to Y$$

making the diagram

commute.

- (b) We have $R \subset \text{Ker}(f)$.
- (c) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).
- 00W1 5. Descending Functions to Quotient Sets, II. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then \overline{f} is the unique map making the diagram

commute.

00W2 6. Descending Functions to Quotient Sets, III. Let R be an equivalence relation on X. We have a bijection

$$\operatorname{Hom}_{\mathsf{Sets}}(X/\sim_R, Y) \cong \operatorname{Hom}_{\mathsf{Sets}}^R(X, Y),$$

natural in $X,Y\in \mathrm{Obj}(\mathsf{Sets})$, given by the assignment $f\mapsto \overline{f}$ of Items 4 and 5, where $\mathrm{Hom}_{\mathsf{Sets}}^R(X,Y)$ is the set defined by

$$\operatorname{Hom}_{\mathsf{Sets}}^R(X,Y) \stackrel{\text{def}}{=} \left\{ f \in \operatorname{Hom}_{\mathsf{Sets}}(X,Y) \; \middle| \begin{array}{l} \text{for each } x,y \in X, \\ \text{if } x \sim_R y, \text{ then} \\ f(x) = f(y) \end{array} \right\}.$$

7. Descending Functions to Quotient Sets, IV. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:

- (a) The map \overline{f} is an injection.
- (b) We have R = Ker(f).
- (c) For each $x, y \in X$, we have $x \sim_R y$ iff f(x) = f(y).
- 8. Descending Functions to Quotient Sets, V. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:
 - (a) The map $f: X \to Y$ is surjective.
 - (b) The map $\overline{f}: X/\sim_R \to Y$ is surjective.
- 9. Descending Functions to Quotient Sets, VI. Let R be a relation on X and let \sim_R^{eq} be the equivalence relation associated to R. The following conditions are equivalent:
- 00W6 (a) The map f satisfies the equivalent conditions of Item 4:
 - There exists a map

$$\overline{f} \colon X/\sim_R^{\text{eq}} \to Y$$

making the diagram

commute.

- For each $x, y \in X$, if $x \sim_R^{eq} y$, then f(x) = f(y).
- **00W7** (b) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).

Proof. Item 1, As a Coequaliser: Omitted.

Item 2, As a Pushout: Omitted.

Item 3, The First Isomorphism Theorem for Sets: Clear.

Item 4, Descending Functions to Quotient Sets, I: See [Pro24o].

Item 5, Descending Functions to Quotient Sets, II: See [Pro24aa].

Item 6, Descending Functions to Quotient Sets, III: This follows from Items 5 and 6.

Item 7, Descending Functions to Quotient Sets, IV: See [Pro24n].

Item 8, Descending Functions to Quotient Sets, V: See [Pro24m].

Item 9, Descending Functions to Quotient Sets, VI: The implication Item $9a \Longrightarrow \text{Item } 9b$ is clear.

Conversely, suppose that, for each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y). Spelling out the definition of the equivalence closure of R, we see that the condition $x \sim_R^{\text{eq}} y$ unwinds to the following:

- (*) There exist $(x_1, \ldots, x_n) \in R^{\times n}$ satisfying at least one of the following conditions:
 - 1. The following conditions are satisfied:
 - (a) We have $x \sim_R x_1$ or $x_1 \sim_R x$;
 - (b) We have $x_i \sim_R x_{i+1}$ or $x_{i+1} \sim_R x_i$ for each $1 \leq i \leq n-1$;
 - (c) We have $y \sim_R x_n$ or $x_n \sim_R y$;
 - 2. We have x = y.

Now, if x = y, then f(x) = f(y) trivially; otherwise, we have

$$f(x) = f(x_1),$$

$$f(x_1) = f(x_2),$$

$$\vdots$$

$$f(x_{n-1}) = f(x_n),$$

$$f(x_n) = f(y),$$

and f(x) = f(y), as we wanted to show.

Appendices

7.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Part III Category Theory

Chapter 8

Categories

- 00W8 This chapter contains some elementary material about categories, functors, and natural transformations. Notably, we discuss and explore:
 - 1. Categories (Section 8.1).
 - 2. The quadruple adjunction $\pi_0 \dashv (-)_{\text{disc}} \dashv \text{Obj} \dashv (-)_{\text{indisc}}$ between the category of categories and the category of sets (Section 8.2).
 - 3. Groupoids, categories in which all morphisms admit inverses (Section 8.3).
 - 4. Functors (Section 8.4).
 - 5. The conditions one may impose on functors in decreasing order of importance:
 - (a) Section 8.5 introduces the foundationally important conditions one may impose on functors, such as faithfulness, conservativity, essential surjectivity, etc.
 - (b) Section 8.6 introduces more conditions one may impose on functors that are still important but less omni-present than those of Section 8.5, such as being dominant, being a monomorphism, being pseudomonic, etc.
 - (c) Section 8.7 introduces some rather rare or uncommon conditions one may impose on functors that are nevertheless still useful to explicit record in this chapter.
 - 6. Natural transformations (Section 8.8).
 - 7. The various categorical and 2-categorical structures formed by categories, functors, and natural transformations (Section 8.9).

Contents

8.1	Categories34			
	8.1.1	Foundations	346	
	8.1.2	Examples of Categories	348	
	8.1.3	Posetal Categories	351	
	8.1.4	Subcategories	352	
	8.1.5	Skeletons of Categories	353	
	8.1.6	Precomposition and Postcomposition	354	
8.2	The Quadruple Adjunction With Sets 3			
	8.2.1	Statement	356	
	8.2.2	Connected Components and Connected Ca	t-	
egories				
	8.2.3	Discrete Categories		
	8.2.4	Indiscrete Categories		
8.3	-	poids		
	8.3.1	Foundations		
	8.3.2	The Groupoid Completion of a Category.	362	
	8.3.3	The Core of a Category	365	
8.4	Funct	ors	368	
	8.4.1	Foundations		
	8.4.2	Contravariant Functors	372	
	8.4.3	Forgetful Functors		
D /	8.4.4	The Natural Transformation Associated t		
8.5		itions on Functors		
	8.5.1	Faithful Functors		
	8.5.2	Full Functors		
	8.5.3	Fully Faithful Functors		
	8.5.4	Conservative Functors		
	8.5.5	Essentially Injective Functors		
	8.5.6	Essentially Surjective Functors		
	8.5.7	Equivalences of Categories		
	8.5.8	Isomorphisms of Categories		
8.6		Conditions on Functors		
	8.6.1	Dominant Functors		
	8.6.2	Monomorphisms of Categories		
	8.6.3	Epimorphisms of Categories		
	8.6.4	Pseudomonic Functors	394	

	8.6.5	Pseudoepic Functors			
8.7	Even	More Conditions on Functors398			
	8.7.1	Injective on Objects Functors			
	8.7.2	Surjective on Objects Functors			
	8.7.3	Bijective on Objects Functors			
	8.7.4	Functors Representably Faithful on Cores 399			
	8.7.5	Functors Representably Full on Cores 399			
	8.7.6	Functors Representably Fully Faithful on			
Cores					
	8.7.7	Functors Corepresentably Faithful on Cores 401			
	8.7.8	Functors Corepresentably Full on Cores 402			
	8.7.9	Functors Corepresentably Fully Faithful on			
Cores					
8.8	Natu	ral Transformations403			
	8.8.1	Transformations			
	8.8.2	Natural Transformations			
	8.8.3	T			
mations.					
, •		Horizontal Composition of Natural Transfor-			
mations.					
	8.8.5				
	8.8.6	Natural Isomorphisms			
8.9	_	gories of Categories415			
	8.9.1	Functor Categories			
	8.9.2	The Category of Categories and Functors 418			
27	8.9.3	The 2-Category of Categories, Functors, and			
Natural '		rmations			
	8.9.4	The Category of Groupoids			
	8.9.5	The 2-Category of Groupoids			
8.A	Other	Chapters420			

00W9 8.1 Categories

00WA 8.1.1 Foundations

00WB Definition 8.1.1.1.1. A category $(C, \circ^C, \mathbb{1}^C)$ consists of:

- Objects. A class Obj(C) of **objects**.
- Morphisms. For each $A, B \in \text{Obj}(C)$, a class $\text{Hom}_{C}(A, B)$, called the class of morphisms of C from A to B.

• *Identities.* For each $A \in \text{Obj}(C)$, a map of sets

$$\mathbb{1}_A^C \colon \mathrm{pt} \to \mathrm{Hom}_C(A,A),$$

called the **unit map of** C **at** A, determining a morphism

$$id_A : A \to A$$

of C, called the **identity morphism of** A.

• Composition. For each $A, B, C \in \text{Obj}(C)$, a map of sets

$$\circ_{A,B,C}^{\mathcal{C}} \colon \operatorname{Hom}_{\mathcal{C}}(B,C) \times \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{C}}(A,C),$$

called the **composition map of** C **at** (A, B, C).

such that the following conditions are satisfied:

1. Associativity. The diagram

commutes, i.e. for each composable triple (f, g, h) of morphisms of C, we have

$$(f \circ g) \circ h = f \circ (g \circ h).$$

2. Left Unitality. The diagram

$$\begin{array}{c|c} \operatorname{pt} \times \operatorname{Hom}_{\mathcal{C}}(A,B) \\ & \stackrel{1^{\mathcal{C}}_{B} \times \operatorname{id}_{\operatorname{Hom}_{\mathcal{C}}(A,B)}}{\downarrow} & \stackrel{\lambda^{\operatorname{Sets}}_{\operatorname{Hom}_{\mathcal{C}}(A,B)}}{\searrow} \\ \operatorname{Hom}_{\mathcal{C}}(B,B) \times \operatorname{Hom}_{\mathcal{C}}(A,B) & \xrightarrow{\circ^{\mathcal{C}}_{A,B,B}} \operatorname{Hom}_{\mathcal{C}}(A,B) \end{array}$$

commutes, i.e. for each morphism $f \colon A \to B$ of \mathcal{C} , we have

$$id_B \circ f = f$$
.

3. Right Unitality. The diagram

$$\begin{array}{c|c} \operatorname{Hom}_{C}(A,B) \times \operatorname{pt} & \rho^{\mathsf{Sets}}_{\operatorname{Hom}_{C}(A,B)} \\ \operatorname{id}_{\operatorname{Hom}_{C}(A,B)} \times \mathbb{1}^{C}_{A} & & & & \\ \operatorname{Hom}_{C}(A,B) \times \operatorname{Hom}_{C}(A,A) & \xrightarrow{\circ^{C}_{A,A,B}} \operatorname{Hom}_{C}(A,B) \end{array}$$

commutes, i.e. for each morphism $f: A \to B$ of C, we have

$$f \circ \mathrm{id}_A = f.$$

00WC Notation 8.1.1.1.2. Let C be a category.

00WD 1. We also write C(A, B) for $Hom_C(A, B)$.

OOWE 2. We write Mor(C) for the class of all morphisms of C.

00WF Definition 8.1.1.1.3. Let κ be a regular cardinal. A category C is

1. Locally small if, for each $A, B \in \mathrm{Obj}(\mathcal{C})$, the class $\mathrm{Hom}_{\mathcal{C}}(A, B)$ is a set.

QOWH 2. Locally essentially small if, for each $A, B \in \text{Obj}(C)$, the class

$$\operatorname{Hom}_{\mathcal{C}}(A,B)/\{\text{isomorphisms}\}$$

is a set.

00WJ 3. **Small** if C is locally small and Obj(C) is a set.

4. κ -Small if C is locally small, $\mathrm{Obj}(C)$ is a set, and we have $\mathrm{\#Obj}(C) < \mathrm{OOWK}$ κ .

00WL 8.1.2 Examples of Categories

600MM Example 8.1.2.1.1. The punctual category is the category pt where

• *Objects*. We have $Obj(pt) \stackrel{\text{def}}{=} \{ \star \}.$

• Morphisms. The unique Hom-set of pt is defined by

$$\operatorname{Hom}_{\mathsf{pt}}(\star,\star) \stackrel{\scriptscriptstyle\rm def}{=} \{\operatorname{id}_{\star}\}.$$

¹ Further Terminology: Also called the **singleton category**.

• *Identities*. The unit map

$$\mathbb{1}^{\mathsf{pt}}_{\star} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathsf{pt}}(\star, \star)$$

of pt at \star is defined by

$$id^{\mathsf{pt}}_{\star} \stackrel{\mathrm{def}}{=} id_{\star}.$$

• Composition. The composition map

$$\circ_{\star,\star,\star}^{\mathsf{pt}} \colon \mathrm{Hom}_{\mathsf{pt}}(\star,\star) \times \mathrm{Hom}_{\mathsf{pt}}(\star,\star) \to \mathrm{Hom}_{\mathsf{pt}}(\star,\star)$$

of pt at (\star, \star, \star) is given by the bijection pt \times pt \cong pt.

00WN Example 8.1.2.1.2. We have an isomorphism of categories²

$$\mathsf{Mon} \cong \mathsf{pt} \underset{\mathsf{Sets}}{\times} \mathsf{Cats}, \qquad \begin{matrix} \mathsf{Mon} \longrightarrow \mathsf{Cats} \\ & & & \\ & & & \\ & \mathsf{pt} \xrightarrow{[\mathsf{pt}]} \mathsf{Sets} \end{matrix}$$

via the delooping functor $B \colon \mathsf{Mon} \to \mathsf{Cats}$ of $\ref{eq:solution}$, exhibiting monoids as exactly those categories having a single object.

Proof. Omitted.
$$\Box$$

60WP Example 8.1.2.1.3. The empty category is the category \emptyset_{cat} where

• Objects. We have

$$\mathrm{Obj}(\emptyset_{\mathsf{cat}}) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \emptyset.$$

• Morphisms. We have

$$\operatorname{Mor}(\emptyset_{\mathsf{cat}}) \stackrel{\scriptscriptstyle \mathrm{def}}{=} \emptyset.$$

• Identities and Composition. Having no objects, \emptyset_{cat} has no unit nor composition maps.

$$\mathsf{Mon}_{\mathsf{2disc}} \cong \mathsf{pt}_{\mathsf{bi}} \underset{\mathsf{Sets}_{\mathsf{2disc}}}{\times} \mathsf{Cats}_{\mathsf{2},*}, \qquad \begin{matrix} \mathsf{Mon}_{\mathsf{2disc}} & \longrightarrow & \mathsf{Cats}_{\mathsf{2},*} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & \mathsf{pt}_{\mathsf{bi}} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\$$

²This can be enhanced to an isomorphism of 2-categories

- 00WQ Example 8.1.2.1.4. The nth ordinal category is the category m where 3
 - Objects. We have

$$\mathrm{Obj}(\mathbb{n}) \stackrel{\mathrm{def}}{=} \{[0], \dots, [n]\}.$$

• Morphisms. For each $[i], [j] \in \text{Obj}(n)$, we have

$$\operatorname{Hom}_{\scriptscriptstyle{\mathbb{\Pi}}}([i],[j]) \stackrel{\scriptscriptstyle{\operatorname{def}}}{=} \begin{cases} \left\{ \operatorname{id}_{[i]} \right\} & \text{if } [i] = [j], \\ \left\{ [i] \to [j] \right\} & \text{if } [j] < [i], \\ \emptyset & \text{if } [j] > [i]. \end{cases}$$

• *Identities*. For each $[i] \in \text{Obj}(n)$, the unit map

$$\mathbb{1}_{[i]}^{\mathbb{n}} \colon \mathrm{pt} \to \mathrm{Hom}_{\mathbb{n}}([i],[i])$$

of n at [i] is defined by

$$\mathrm{id}_{[i]}^{\cap} \stackrel{\mathrm{def}}{=} \mathrm{id}_{[i]}.$$

• Composition. For each $[i], [j], [k] \in \text{Obj}(\mathbb{n})$, the composition map

$$\circ_{[i],[j],[k]}^{\mathbb{n}} \colon \mathrm{Hom}_{\mathbb{m}}([j],[k]) \times \mathrm{Hom}_{\mathbb{m}}([i],[j]) \to \mathrm{Hom}_{\mathbb{m}}([i],[k])$$

of \mathbb{n} at ([i], [j], [k]) is defined by

$$\begin{split} \mathrm{id}_{[i]} \circ \mathrm{id}_{[i]} &= \mathrm{id}_{[i]}, \\ ([j] \to [k]) \circ ([i] \to [j]) &= ([i] \to [k]). \end{split}$$

between the discrete 2-category Mon_{2disc} on Mon and the 2-category of pointed categories with one object.

³In other words, n is the category associated to the poset

$$[0] \rightarrow [1] \rightarrow \cdots \rightarrow [n-1] \rightarrow [n].$$

The category \mathbb{n} for $n \geq 2$ may also be defined in terms of $\mathbb{0}$ and joins (??): we have

- **Example 8.1.2.1.5.** Here we list some of the other categories appearing throughout this work.
- 00WS 1. The category Sets_{*} of pointed sets of Definition 3.1.3.1.1.
- **2.** The category Rel of sets and relations of Definition 5.2.1.1.1.
- **00WU** 3. The category Span(A, B) of spans from a set A to a set B of ??.
- **60000** 4. The category $\mathsf{ISets}(K)$ of K-indexed sets of $\ref{eq:sets}$.
- **00WW** 5. The category **ISets** of indexed sets of **??**.
- **6.** The category FibSets(K) of K-fibred sets of ??.
- **00WY** 7. The category FibSets of fibred sets of ??.
- **00WZ** 8. Categories of functors $Fun(C, \mathcal{D})$ as in Definition 8.9.1.1.1.
- 9. The category of categories Cats of Definition 8.9.2.1.1.
- 00X1 10. The category of groupoids Grpd of Definition 8.9.4.1.1.
- 00X2 8.1.3 Posetal Categories
- **00X3 Definition 8.1.3.1.1.** Let (X, \leq_X) be a poset.
- 1. The **posetal category associated to** (X, \preceq_X) is the category 00X4 X_{pos} where
 - Objects. We have

$$\operatorname{Obj}(X_{\mathsf{pos}}) \stackrel{\text{def}}{=} X.$$

isomorphisms of categories

$$1 \cong 0 \star 0,$$

$$2 \cong 1 \star 0$$

$$\cong (0 \star 0) \star 0,$$

$$3 \cong 2 \star 0$$

$$\cong (1 \star 0) \star 0$$

$$\cong ((0 \star 0) \star 0) \star 0,$$

$$4 \cong 3 \star 0$$

$$\cong (2 \star 0) \star 0$$

$$\cong ((1 \star 0) \star 0) \star 0$$

$$\cong (((0 \star 0) \star 0) \star 0,$$

and so on.

• Morphisms. For each $a, b \in \text{Obj}(X_{pos})$, we have

$$\operatorname{Hom}_{X_{\mathsf{pos}}}(a,b) \stackrel{\text{def}}{=} \begin{cases} \operatorname{pt} & \text{if } a \preceq_X b, \\ \emptyset & \text{otherwise.} \end{cases}$$

• *Identities*. For each $a \in \text{Obj}(X_{pos})$, the unit map

$$\mathbb{1}_a^{X_{\mathsf{pos}}} \colon \mathsf{pt} \to \mathrm{Hom}_{X_{\mathsf{pos}}}(a,a)$$

of X_{pos} at a is given by the identity map.

• Composition. For each $a, b, c \in \text{Obj}(X_{pos})$, the composition map

$$\circ_{a,b,c}^{X_{\mathsf{pos}}} \colon \mathrm{Hom}_{X_{\mathsf{pos}}}(b,c) \times \mathrm{Hom}_{X_{\mathsf{pos}}}(a,b) \to \mathrm{Hom}_{X_{\mathsf{pos}}}(a,c)$$

of X_{pos} at (a,b,c) is defined as either the inclusion $\emptyset \hookrightarrow \mathsf{pt}$ or the identity map of pt, depending on whether we have $a \preceq_X b$, $b \preceq_X c$, and $a \preceq_X c$.

2. A category C is **posetal** ⁴ if C is equivalent to X_{pos} for some poset (X, \leq_X) .

00X6 Proposition 8.1.3.1.2. Let (X, \leq_X) be a poset and let C be a category.

00X7 1. Functoriality. The assignment $(X, \preceq_X) \mapsto X_{pos}$ defines a functor $(-)_{pos}$: Pos \to Cats.

00X8 2. Fully Faithfulness. The functor $(-)_{pos}$ of Item 1 is fully faithful.

00X9 3. Characterisations. The following conditions are equivalent:

00XA (a) The category C is posetal.

(b) For each $A, B \in \text{Obj}(\mathcal{C})$ and each $f, g \in \text{Hom}_{\mathcal{C}}(A, B)$, we have f = g.

Proof. Item 1, Functoriality: Omitted.

Item 2, Fully Faithfulness: Omitted.

Item 3, Characterisations: Clear.

00XC 8.1.4 Subcategories

00XB

Let C be a category.

⁴Further Terminology: Also called a **thin** category or a (0, 1)-category.

- **OOXD** Definition 8.1.4.1.1. A subcategory of C is a category \mathcal{A} satisfying the following conditions:
 - 1. Objects. We have $\mathrm{Obj}(\mathcal{A}) \subset \mathrm{Obj}(\mathcal{C})$.
 - 2. Morphisms. For each $A, B \in \text{Obj}(\mathcal{A})$, we have

$$\operatorname{Hom}_{\mathcal{A}}(A,B) \subset \operatorname{Hom}_{\mathcal{C}}(A,B).$$

3. *Identities*. For each $A \in \text{Obj}(\mathcal{A})$, we have

$$\mathbb{1}_A^{\mathcal{A}} = \mathbb{1}_A^{\mathcal{C}}.$$

4. Composition. For each $A, B, C \in \text{Obj}(\mathcal{A})$, we have

$$\circ_{A,B,C}^{\mathcal{A}} = \circ_{A,B,C}^{\mathcal{C}}.$$

OOXE Definition 8.1.4.1.2. A subcategory \mathcal{A} of C is full if the canonical inclusion functor $\mathcal{A} \to C$ is full, i.e. if, for each $A, B \in \text{Obj}(\mathcal{A})$, the inclusion

$$\iota_{A,B} \colon \operatorname{Hom}_{\mathcal{A}}(A,B) \hookrightarrow \operatorname{Hom}_{\mathcal{C}}(A,B)$$

is surjective (and thus bijective).

- **OOXF** Definition 8.1.4.1.3. A subcategory \mathcal{A} of a category C is strictly full if it satisfies the following conditions:
 - 1. Fullness. The subcategory \mathcal{A} is full.
 - 2. Closedness Under Isomorphisms. The class $\mathrm{Obj}(\mathcal{A})$ is closed under isomorphisms. 5
- **OOXG** Definition 8.1.4.1.4. A subcategory \mathcal{A} of \mathcal{C} is wide⁶ if $Obj(\mathcal{A}) = Obj(\mathcal{C})$.
- 00XH 8.1.5 Skeletons of Categories
- **Definition 8.1.5.1.1.** A⁷ **skeleton** of a category C is a full subcategory Sk(C) with one object from each isomorphism class of objects of C.
- **00XK** Definition 8.1.5.1.2. A category C is skeletal if $C \cong Sk(C)$.
- **OOXL** Proposition 8.1.5.1.3. Let C be a category.

⁵That is, given $A \in \text{Obj}(\mathcal{A})$ and $C \in \text{Obj}(\mathcal{C})$, if $C \cong A$, then $C \in \text{Obj}(\mathcal{A})$.

⁶ Further Terminology: Also called **lluf**.

⁷Due to Item 3 of Proposition 8.1.5.1.3, we often refer to any such full subcategory Sk(C) of C as the skeleton of C.

⁸That is, C is **skeletal** if isomorphic objects of C are equal.

00XM 1. Existence. Assuming the axiom of choice, Sk(C) always exists.

00XN 2. Pseudofunctoriality. The assignment $C \mapsto \mathsf{Sk}(C)$ defines a pseudofunctor

Sk:
$$Cats_2 \rightarrow Cats_2$$
.

00XP 3. Uniqueness Up to Equivalence. Any two skeletons of C are equivalent.

00XQ 4. Inclusions of Skeletons Are Equivalences. The inclusion

$$\iota_C \colon \mathsf{Sk}(C) \hookrightarrow C$$

of a skeleton of C into C is an equivalence of categories.

Proof. Item 1, Existence: See [nLab23, Section "Existence of Skeletons of Categories"].

Item 2, Pseudofunctoriality: See [nLab23, Section "Skeletons as an Endo-Pseudofunctor on Cat"].

Item 3, Uniqueness Up to Equivalence: Clear.

Item 4, Inclusions of Skeletons Are Equivalences: Clear.

00XR 8.1.6 Precomposition and Postcomposition

Let C be a category and let $A, B, C \in Obi(C)$.

OOXS Definition 8.1.6.1.1. Let $f: A \to B$ and $g: B \to C$ be morphisms of C.

00XT 1. The precomposition function associated to f is the function

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, C) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$$

defined by

$$f^*(\phi) \stackrel{\text{def}}{=} \phi \circ f$$

for each $\phi \in \text{Hom}_{\mathcal{C}}(B, \mathcal{C})$.

00XU 2. The postcomposition function associated to g is the function

$$g_* : \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$$

defined by

$$g_*(\phi) \stackrel{\text{def}}{=} g \circ \phi$$

for each $\phi \in \operatorname{Hom}_{\mathcal{C}}(A, B)$.

QUANCE Proposition 8.1.6.1.2. Let $A, B, C, D \in \text{Obj}(C)$ and let $f: A \to B$ and $g: B \to C$ be morphisms of C.

1. Interaction Between Precomposition and Postcomposition. We have

$$g_* \circ f^* = f^* \circ g_*, \qquad f^* \downarrow \qquad \downarrow_{f^*} \downarrow_{f^*}$$

$$\operatorname{Hom}_{\mathcal{C}}(A, C) \xrightarrow{g_*} \operatorname{Hom}_{\mathcal{C}}(A, D).$$

00XX 2. Interaction With Composition I. We have

$$(g \circ f)^* = f^* \circ g^*, \qquad \underset{(g \circ f)_*}{\text{Hom}_C(X, A)} \xrightarrow{f_*} \text{Hom}_C(X, B)$$

$$(g \circ f)^* = f^* \circ g^*, \qquad \underset{(g \circ f)_*}{\text{Hom}_C(X, C)}, \qquad \underset{(g \circ f)^*}{\text{Hom}_C(X, C)}, \qquad \underset{(g \circ f)^*}{\text{Hom}_C$$

00XY 3. Interaction With Composition II. We have

$$\operatorname{pt} \xrightarrow{[g]} \operatorname{Hom}_{\mathcal{C}}(A,B) \qquad \operatorname{pt} \xrightarrow{[g]} \operatorname{Hom}_{\mathcal{C}}(B,C)$$

$$\downarrow^{g_{*}} \qquad [g \circ f] = g_{*} \circ [f], \qquad \downarrow^{f^{*}}$$

$$\downarrow^{g_{*}} \qquad [g \circ f] = f^{*} \circ [g], \qquad \operatorname{Hom}_{\mathcal{C}}(A,C).$$

00XZ 4. Interaction With Composition III. We have

$$f^* \circ \circ_{A,B,C}^{\mathcal{C}} = \circ_{X,B,C}^{\mathcal{C}} \circ (f^* \times \operatorname{id}), \qquad \lim_{\operatorname{id} \times f^*} \downarrow \qquad \qquad \downarrow_{f^*} \downarrow \qquad \qquad \downarrow_{g^*,B,C} \mapsto \operatorname{Hom}_{\mathcal{C}}(B,C) \times \operatorname{Hom}_{\mathcal{C}}(A,B) \xrightarrow{\circ_{A,B,C}^{\mathcal{C}}} \operatorname{Hom}_{\mathcal{C}}(A,C), \qquad \qquad \downarrow_{g^*} \downarrow \qquad \downarrow_{g^*} \downarrow \qquad \downarrow_{g^*} \downarrow \qquad \qquad$$

00Y0 5. Interaction With Identities. We have

$$(\mathrm{id}_A)^* = \mathrm{id}_{\mathrm{Hom}_{\mathcal{C}}(A,B)},$$

$$(\mathrm{id}_B)_* = \mathrm{id}_{\mathrm{Hom}_{\mathcal{C}}(A,B)}.$$

Proof. Item 1, Interaction Between Precomposition and Postcomposition: Clear.

Item 2, Interaction With Composition I: Clear.

Item 3, Interaction With Composition II: Clear.

Item 4, Interaction With Composition III: Clear.

Item 5, Interaction With Identities: Clear.

8.2 The Quadruple Adjunction With Sets

00Y2 8.2.1 Statement

Let C be a category.

00Y3 Proposition 8.2.1.1.1. We have a quadruple adjunction

$$(\pi_0\dashv(-)_{\mathsf{disc}}\dashv\mathrm{Obj}\dashv(-)_{\mathsf{indisc}})$$
: Sets $(-)_{\mathsf{disc}}$ Cats, $(-)_{\mathsf{indisc}}$

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathsf{Sets}}(\pi_0(\mathcal{C}), X) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C}, X_{\mathsf{disc}}),$$

 $\operatorname{Hom}_{\mathsf{Cats}}(X_{\mathsf{disc}}, \mathcal{C}) \cong \operatorname{Hom}_{\mathsf{Sets}}(X, \operatorname{Obj}(\mathcal{C})),$
 $\operatorname{Hom}_{\mathsf{Sets}}(\operatorname{Obj}(\mathcal{C}), X) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C}, X_{\mathsf{indisc}}),$

natural in $C \in \text{Obj}(\mathsf{Cats})$ and $X \in \text{Obj}(\mathsf{Sets})$, where

• The functor

$$\pi_0 \colon \mathsf{Cats} \to \mathsf{Sets},$$

the **connected components functor**, is the functor sending a category to its set of connected components of Definition 8.2.2.2.1.

• The functor

$$(-)_{\sf disc} \colon \mathsf{Sets} \to \mathsf{Cats},$$

the **discrete category functor**, is the functor sending a set to its associated discrete category of <u>Item 1</u>.

• The functor

Obj: Cats
$$\rightarrow$$
 Sets,

the **object functor**, is the functor sending a category to its set of objects.

• The functor

$$(-)_{\mathsf{indisc}} \colon \mathsf{Sets} \to \mathsf{Cats},$$

the **indiscrete category functor**, is the functor sending a set to its associated indiscrete category of Item 1.

Proof. Omitted.

00Y4 8.2.2 Connected Components and Connected Categories

00Y5 8.2.2.1 Connected Components of Categories

Let C be a category.

- **OOY6 Definition 8.2.2.1.1.** A **connected component** of C is a full subcategory I of C satisfying the following conditions:⁹
 - 1. Non-Emptiness. We have $Obj(I) \neq \emptyset$.
 - 2. Connectedness. There exists a zigzag of arrows between any two objects of I.

00Y7 8.2.2.2 Sets of Connected Components of Categories

Let C be a category.

- **Definition 8.2.2.2.1.** The set of connected components of C is the set $\pi_0(C)$ whose elements are the connected components of C.
- **00Y9** Proposition 8.2.2.2. Let C be a category.
- **00YA** 1. Functoriality. The assignment $C \mapsto \pi_0(C)$ defines a functor

$$\pi_0 \colon \mathsf{Cats} \to \mathsf{Sets}.$$

00YB 2. Adjointness. We have a quadruple adjunction

$$(\pi_0\dashv (-)_{\mathsf{disc}}\dashv \mathrm{Obj}\dashv (-)_{\mathsf{indisc}})$$
: Sets $\overset{\pi_0}{\underset{(-)_{\mathsf{indisc}}}}$ Cats.

⁹In other words, a **connected component** of C is an element of the set $Obj(C)/\sim$

3. Interaction With Groupoids. If C is a groupoid, then we have an isomorphism of categories

$$\pi_0(C) \cong \mathrm{K}(C),$$

where K(C) is the set of isomorphism classes of C of ??.

00YD 4. Preservation of Colimits. The functor π_0 of Item 1 preserves colimits. In particular, we have bijections of sets

$$\pi_0(C \coprod \mathcal{D}) \cong \pi_0(C) \coprod \pi_0(\mathcal{D}),$$

$$\pi_0(C \coprod_{\mathcal{E}} \mathcal{D}) \cong \pi_0(C) \coprod_{\pi_0(\mathcal{E})} \pi_0(\mathcal{D}),$$

$$\pi_0\left(\operatorname{CoEq}\left(C \overset{F}{\underset{G}{\Longrightarrow}} \mathcal{D}\right)\right) \cong \operatorname{CoEq}\left(\pi_0(C) \overset{\pi_0(F)}{\underset{\pi_0(G)}{\Longrightarrow}} \pi_0(\mathcal{D})\right),$$

natural in $C, \mathcal{D}, \mathcal{E} \in \text{Obj}(\mathsf{Cats})$.

00YE 5. Symmetric Strong Monoidality With Respect to Coproducts. The connected components functor of Item 1 has a symmetric strong monoidal structure

$$\left(\pi_0, \pi_0^{\coprod}, \pi_{0|\mathbb{1}}^{\coprod}\right) \colon (\mathsf{Cats}, \coprod, \emptyset_{\mathsf{cat}}) \to (\mathsf{Sets}, \coprod, \emptyset),$$

being equipped with isomorphisms

$$\pi_{0|C,\mathcal{D}}^{\coprod} \colon \pi_0(C) \coprod \pi_0(\mathcal{D}) \xrightarrow{\cong} \pi_0(C \coprod \mathcal{D}),$$
$$\pi_{0|\mathbb{1}}^{\coprod} \colon \emptyset \xrightarrow{\cong} \pi_0(\emptyset_{\mathsf{cat}}),$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

6. Symmetric Strong Monoidality With Respect to Products. The connected components functor of Item 1 has a symmetric strong monoidal structure

$$\left(\pi_0, \pi_0^{\times}, \pi_{0|\mathbb{1}}^{\times}\right) \colon (\mathsf{Cats}, \times, \mathsf{pt}) \to (\mathsf{Sets}, \times, \mathsf{pt}),$$

being equipped with isomorphisms

$$\pi_{0|C,\mathcal{D}}^{\times} \colon \pi_{0}(C) \times \pi_{0}(\mathcal{D}) \xrightarrow{\cong} \pi_{0}(C \times \mathcal{D}),$$
$$\pi_{0|\mathbb{1}}^{\times} \colon \mathrm{pt} \xrightarrow{\cong} \pi_{0}(\mathsf{pt}),$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.

Item 3, Interaction With Groupoids: Clear.

Item 4, Preservation of Colimits: This follows from Item 2 and ?? of ??.

Item 5, Symmetric Strong Monoidality With Respect to Coproducts: Clear.

Item 6, Symmetric Strong Monoidality With Respect to Products: Clear.

00YG 8.2.2.3 Connected Categories

00YH Definition 8.2.2.3.1. A category C is connected if $\pi_0(C) \cong \text{pt.}^{10,11}$

00YJ 8.2.3 Discrete Categories

00YK Definition 8.2.3.1.1. Let X be a set.

00YL 1. The discrete category on X is the category X_{disc} where

• Objects. We have

$$Obj(X_{\mathsf{disc}}) \stackrel{\text{def}}{=} X.$$

• Morphisms. For each $A, B \in \text{Obj}(X_{\text{disc}})$, we have

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(A,B) \stackrel{\operatorname{def}}{=} \begin{cases} \operatorname{id}_A & \text{if } A = B, \\ \emptyset & \text{if } A \neq B. \end{cases}$$

• *Identities*. For each $A \in \text{Obj}(X_{\mathsf{disc}})$, the unit map

$$\mathbb{1}_A^{X_{\mathsf{disc}}} \colon \mathsf{pt} \to \mathsf{Hom}_{X_{\mathsf{disc}}}(A,A)$$

of X_{disc} at A is defined by

$$\operatorname{id}_A^{X_{\operatorname{disc}}} \stackrel{\text{def}}{=} \operatorname{id}_A.$$

• Composition. For each $A, B, C \in \text{Obj}(X_{\mathsf{disc}})$, the composition map

$$\circ_{A,B,C}^{X_{\mathsf{disc}}} \colon \mathrm{Hom}_{X_{\mathsf{disc}}}(B,C) \times \mathrm{Hom}_{X_{\mathsf{disc}}}(A,B) \to \mathrm{Hom}_{X_{\mathsf{disc}}}(A,C)$$

of X_{disc} at (A, B, C) is defined by

$$id_A \circ id_A \stackrel{\text{def}}{=} id_A$$
.

with \sim the equivalence relation generated by the relation \sim' obtained by declaring $A \sim' B$ iff there exists a morphism of C from A to B.

¹⁰ Further Terminology: A category is **disconnected** if it is not connected.

¹¹ Example: A groupoid is connected iff any two of its objects are isomorphic.

2. A category C is **discrete** if it is equivalent to X_{disc} for some set X.

00YM

00YN Proposition 8.2.3.1.2. Let X be a set.

00YP 1. Functoriality. The assignment $X \mapsto X_{\mathsf{disc}}$ defines a functor

$$(-)_{\mathsf{disc}} \colon \mathsf{Sets} \to \mathsf{Cats}.$$

00YQ 2. Adjointness. We have a quadruple adjunction

$$(\pi_0 \dashv (-)_{\mathsf{disc}} \dashv \mathsf{Obj} \dashv (-)_{\mathsf{indisc}})$$
: Sets $(-)_{\mathsf{disc}} \hookrightarrow \mathsf{Cats}$.

00YR 3. Symmetric Strong Monoidality With Respect to Coproducts. The functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)_{\mathsf{disc}},(-)^{\coprod}_{\mathsf{disc}},(-)^{\coprod}_{\mathsf{disc}\mid\mathbb{1}}\right)\colon(\mathsf{Sets}, {\coprod},\emptyset)\to(\mathsf{Cats}, {\coprod},\emptyset_{\mathsf{cat}}),$$

being equipped with isomorphisms

$$(-)_{\mathsf{disc}|X,Y}^{\coprod} \colon X_{\mathsf{disc}} \coprod Y_{\mathsf{disc}} \xrightarrow{\cong} (X \coprod Y)_{\mathsf{disc}},$$
$$(-)_{\mathsf{disc}|\mathbb{1}}^{\coprod} \colon \emptyset_{\mathsf{cat}} \xrightarrow{\cong} \emptyset_{\mathsf{disc}},$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

00YS 4. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)_{\mathsf{disc}},(-)_{\mathsf{disc}}^{\times},(-)_{\mathsf{disc}|\mathbb{1}}^{\times}\right) \colon (\mathsf{Sets},\times,\mathrm{pt}) \to (\mathsf{Cats},\times,\mathsf{pt}),$$

being equipped with isomorphisms

$$\begin{split} (-)_{\mathsf{disc}|X,Y}^{\times} \colon X_{\mathsf{disc}} \times Y_{\mathsf{disc}} & \xrightarrow{\cong} (X \times Y)_{\mathsf{disc}}, \\ (-)_{\mathsf{disc}|\mathbb{1}}^{\times} \colon \mathsf{pt} & \xrightarrow{\cong} \mathsf{pt}_{\mathsf{disc}}, \end{split}$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.

Item 3, Symmetric Strong Monoidality With Respect to Coproducts: Clear.

Item 4, Symmetric Strong Monoidality With Respect to Products: Clear.

00YT 8.2.4 Indiscrete Categories

- **00YU** Definition 8.2.4.1.1. Let X be a set.
- 00YV 1. The indiscrete category on X^{12} is the category X_{indisc} where
 - Objects. We have

$$Obj(X_{\mathsf{indisc}}) \stackrel{\text{def}}{=} X.$$

• Morphisms. For each $A, B \in \text{Obj}(X_{\text{indisc}})$, we have

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(A,B) \stackrel{\text{def}}{=} \{[A] \to [B]\}$$

$$\cong \operatorname{pt}.$$

• *Identities*. For each $A \in \text{Obj}(X_{\text{indisc}})$, the unit map

$$\mathbb{1}_A^{X_{\mathsf{indisc}}} \colon \mathsf{pt} \to \mathsf{Hom}_{X_{\mathsf{indisc}}}(A,A)$$

of X_{indisc} at A is defined by

$$\operatorname{id}_A^{X_{\operatorname{indisc}}} \stackrel{\operatorname{def}}{=} \{ [A] \to [A] \}.$$

• Composition. For each $A, B, C \in \text{Obj}(X_{\mathsf{indisc}})$, the composition map

$$\circ_{A,B,C}^{X_{\mathsf{indisc}}} \colon \mathrm{Hom}_{X_{\mathsf{indisc}}}(B,C) \times \mathrm{Hom}_{X_{\mathsf{indisc}}}(A,B) \to \mathrm{Hom}_{X_{\mathsf{indisc}}}(A,C)$$
 of X_{disc} at (A,B,C) is defined by
$$([B] \to [C]) \circ ([A] \to [B]) \stackrel{\mathrm{def}}{=} ([A] \to [C]).$$

- 2. A category C is **indiscrete** if it is equivalent to X_{indisc} for some set X.
- **00YX** Proposition 8.2.4.1.2. Let X be a set.
- **00YY** 1. Functoriality. The assignment $X \mapsto X_{\mathsf{indisc}}$ defines a functor

$$(-)_{\mathsf{indisc}} \colon \mathsf{Sets} \to \mathsf{Cats}.$$

00YZ 2. Adjointness. We have a quadruple adjunction

$$(\pi_0\dashv(-)_{\mathsf{disc}}\dashv\mathrm{Obj}\dashv(-)_{\mathsf{indisc}})$$
: Sets $(-)_{\mathsf{disc}}$ Cats.

 $^{^{12}}$ Further Terminology: Sometimes called the **chaotic category on** X.

3. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)_{\mathsf{indisc}},(-)_{\mathsf{indisc}}^{\times},(-)_{\mathsf{indisc}|\mathbb{1}}^{\times}\right) \colon (\mathsf{Sets},\times,\mathrm{pt}) \to (\mathsf{Cats},\times,\mathsf{pt}),$$

being equipped with isomorphisms

$$(-)_{\mathsf{indisc}|X,Y}^{\times} \colon X_{\mathsf{indisc}} \times Y_{\mathsf{indisc}} \xrightarrow{\cong} (X \times Y)_{\mathsf{indisc}},$$
$$(-)_{\mathsf{indisc}|\mathbb{1}}^{\times} \colon \mathsf{pt} \xrightarrow{\cong} \mathsf{pt}_{\mathsf{indisc}},$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.

Item 3, Symmetric Strong Monoidality With Respect to Products: Clear.

00Z1 8.3 Groupoids

00Z2 8.3.1 Foundations

Let C be a category.

00Z3 Definition 8.3.1.1.1. A morphism $f: A \to B$ of \mathcal{C} is an **isomorphism** if there exists a morphism $f^{-1}: B \to A$ of \mathcal{C} such that

$$f \circ f^{-1} = \mathrm{id}_B,$$

$$f^{-1} \circ f = \mathrm{id}_A.$$

- **Notation 8.3.1.1.2.** We write $Iso_{\mathcal{C}}(A, B)$ for the set of all isomorphisms in \mathcal{C} from A to B.
- **Definition 8.3.1.1.3.** A **groupoid** is a category in which every morphism is an isomorphism.
- 00Z6 8.3.2 The Groupoid Completion of a Category

Let C be a category.

- **OOZ7 Definition 8.3.2.1.1.** The **groupoid completion of** C^{13} is the pair $(K_0(C), \iota_C)$ consisting of
 - A groupoid $K_0(\mathcal{C})$;

 $^{^{13}\}mathit{Further\ Terminology:}$ Also called the **Grothendieck groupoid of** $\mathcal C$ or the **Grothendieck groupoid completion of** $\mathcal C.$

• A functor $\iota_C \colon C \to \mathrm{K}_0(C)$;

satisfying the following universal property:¹⁴

(UP) Given another such pair (\mathcal{G}, i) , there exists a unique functor $K_0(\mathcal{C}) \xrightarrow{\exists !} \mathcal{G}$ making the diagram

commute.

Construction 8.3.2.1.2. Concretely, the groupoid completion of C is the Gabriel–Zisman localisation $Mor(C)^{-1}C$ of C at the set Mor(C) of all morphisms of C; see ??.

(To be expanded upon later on.)

Proof. Omitted.
$$\Box$$

- 00Z9 Proposition 8.3.2.1.3. Let C be a category.
- 00ZA 1. Functoriality. The assignment $C \mapsto K_0(C)$ defines a functor

$$\mathrm{K}_0\colon\mathsf{Cats}\to\mathsf{Grpd}.$$

00ZB 2. 2-Functoriality. The assignment $C \mapsto K_0(C)$ defines a 2-functor

$$K_0\colon \mathsf{Cats}_2\to \mathsf{Grpd}_2.$$

00ZC 3. Adjointness. We have an adjunction

$$(K_0 \dashv \iota) \colon \quad \mathsf{Cats} \xrightarrow{K_0} \mathsf{Grpd},$$

witnessed by a bijection of sets

$$\operatorname{Hom}_{\mathsf{Grpd}}(\mathrm{K}_0(\mathcal{C}),\mathcal{G}) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C},\mathcal{G}),$$

natural in $C \in \text{Obj}(\mathsf{Cats})$ and $\mathcal{G} \in \text{Obj}(\mathsf{Grpd})$, forming, together with the functor Core of Item 1 of Proposition 8.3.3.1.4, a triple adjunction

$$(\mathrm{K}_0\dashv \iota\dashv \mathsf{Core})\text{:}\quad \mathsf{Cats} \underset{\mathsf{Core}}{\underbrace{\overset{\mathrm{K}_0}{\bot}}} \mathsf{Grpd},$$

¹⁴See Item 5 of Proposition 8.3.2.1.3 for an explicit construction.

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathsf{Grpd}}(\mathrm{K}_0(\mathcal{C}),\mathcal{G}) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C},\mathcal{G}),$$

 $\operatorname{Hom}_{\mathsf{Cats}}(\mathcal{G},\mathcal{D}) \cong \operatorname{Hom}_{\mathsf{Grpd}}(\mathcal{G},\mathsf{Core}(\mathcal{D})),$

natural in $C, \mathcal{D} \in \mathrm{Obj}(\mathsf{Cats})$ and $G \in \mathrm{Obj}(\mathsf{Grpd})$.

00ZD 4. 2-Adjointness. We have a 2-adjunction

$$(\mathrm{K}_0\dashv\iota)\text{:}\quad\mathsf{Cats}\underset{\longleftarrow}{\underbrace{\overset{\mathrm{K}_0}{-1}}}\mathsf{Grpd},$$

witnessed by an isomorphism of categories

$$\operatorname{\mathsf{Fun}}(\mathrm{K}_0(\mathcal{C}),\mathcal{G})\cong\operatorname{\mathsf{Fun}}(\mathcal{C},\mathcal{G}),$$

natural in $C \in \text{Obj}(\mathsf{Cats})$ and $\mathcal{G} \in \text{Obj}(\mathsf{Grpd})$, forming, together with the 2-functor Core of Item 2 of Proposition 8.3.3.1.4, a triple 2-adjunction

$$(K_0\dashv \iota\dashv \mathsf{Core})\text{:}\quad \mathsf{Cats}\underset{\mathsf{Core}}{\underbrace{\overset{K_0}{\bot_2}}}\mathsf{Grpd},$$

witnessed by isomorphisms of categories

$$\begin{aligned} \mathsf{Fun}(\mathrm{K}_0(\mathcal{C}),\mathcal{G}) &\cong \mathsf{Fun}(\mathcal{C},\mathcal{G}), \\ \mathsf{Fun}(\mathcal{G},\mathcal{D}) &\cong \mathsf{Fun}(\mathcal{G},\mathsf{Core}(\mathcal{D})), \end{aligned}$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$ and $G \in \text{Obj}(\mathsf{Grpd})$.

OOZE 5. Interaction With Classifying Spaces. We have an isomorphism of groupoids

$$K_0(C) \cong \Pi_{\leq 1}(|N_{\bullet}(C)|),$$

natural in $C \in \text{Obj}(\mathsf{Cats})$; i.e. the diagram

$$\begin{array}{c|c} \mathsf{Cats} & \xrightarrow{K_0} & \mathsf{Grp} \\ N_{\bullet} & & \stackrel{\stackrel{\wedge}{\downarrow}}{\bigvee} & & & \\ \downarrow^{\stackrel{\circ}{\downarrow}} & & & & \\ \mathsf{sSets} & \xrightarrow{|-|} & \mathsf{Top} \end{array}$$

commutes up to natural isomorphism.

6. Symmetric Strong Monoidality With Respect to Coproducts. The groupoid completion functor of Item 1 has a symmetric strong monoidal structure

$$\left(K_0,K_0^{\coprod},K_{0|\mathbb{1}}^{\coprod}\right)\colon (\mathsf{Cats}, \coprod, \emptyset_{\mathsf{cat}}) \to (\mathsf{Grpd}, \coprod, \emptyset_{\mathsf{cat}})$$

being equipped with isomorphisms

$$K_{0|\mathcal{C},\mathcal{D}}^{\coprod} \colon K_0(\mathcal{C}) \coprod K_0(\mathcal{D}) \xrightarrow{\cong} K_0(\mathcal{C} \coprod \mathcal{D}),$$
$$K_{0|\mathbb{1}}^{\coprod} \colon \emptyset_{\mathsf{cat}} \xrightarrow{\cong} K_0(\emptyset_{\mathsf{cat}}),$$

natural in $\mathcal{C}, \mathcal{D} \in \mathrm{Obj}(\mathsf{Cats})$.

7. Symmetric Strong Monoidality With Respect to Products. The groupoid completion functor of Item 1 has a symmetric strong monoidal structure

$$\left(K_0,K_0^\times,K_{0|\mathbb{1}}^\times\right)\colon (\mathsf{Cats},\times,\mathsf{pt})\to (\mathsf{Grpd},\times,\mathsf{pt})$$

being equipped with isomorphisms

$$\begin{split} \mathrm{K}_{0|\mathcal{C},\mathcal{D}}^{\times} \colon \mathrm{K}_{0}(\mathcal{C}) \times \mathrm{K}_{0}(\mathcal{D}) &\xrightarrow{\cong} \mathrm{K}_{0}(\mathcal{C} \times \mathcal{D}), \\ \mathrm{K}_{0|\mathbb{1}}^{\times} \colon \mathsf{pt} &\xrightarrow{\cong} \mathrm{K}_{0}(\mathsf{pt}), \end{split}$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item 5, Interaction With Classifying Spaces: See Corollary 18.33 of https:

//web.ma.utexas.edu/users/dafr/M392C-2012/Notes/lecture18.pdf.

Item 6, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.

Item 7, Symmetric Strong Monoidality With Respect to Products: Omitted.

00ZH 8.3.3 The Core of a Category

Let C be a category.

- **Definition 8.3.3.1.1.** The **core** of C is the pair $(\mathsf{Core}(C), \iota_C)$ consisting of
 - A groupoid Core(*C*);

• A functor ι_C : Core(C) $\hookrightarrow C$;

satisfying the following universal property:

(UP) Given another such pair (\mathcal{G}, i) , there exists a unique functor $\mathcal{G} \xrightarrow{\exists !}$ Core(C) making the diagram

commute.

- **00ZK** Notation 8.3.3.1.2. We also write C^{\sim} for Core(C).
- **Construction 8.3.3.1.3.** The core of C is the wide subcategory of C spanned by the isomorphisms of C, i.e. the category Core(C) where C
 - 1. Objects. We have

$$Obj(Core(C)) \stackrel{\text{def}}{=} Obj(C).$$

2. Morphisms. The morphisms of Core(C) are the isomorphisms of C.

Proof. This follows from the fact that functors preserve isomorphisms (Item 1 of Proposition 8.4.1.1.6).

- **00ZM** Proposition 8.3.3.1.4. Let C be a category.
- 00ZN 1. Functoriality. The assignment $C \mapsto \mathsf{Core}(C)$ defines a functor

$$\mathsf{Core} \colon \mathsf{Cats} \to \mathsf{Grpd}.$$

00ZP 2. 2-Functoriality. The assignment $C \mapsto \mathsf{Core}(C)$ defines a 2-functor

$$\mathsf{Core} \colon \mathsf{Cats}_2 \to \mathsf{Grpd}_2.$$

00ZQ 3. Adjointness. We have an adjunction

$$(\iota \dashv \mathsf{Core})$$
: Grpd $\overset{\iota}{\underbrace{\qquad}}$ Cats,

¹⁵ Slogan: The groupoid $\mathsf{Core}(C)$ is the maximal subgroupoid of C.

witnessed by a bijection of sets

$$\operatorname{Hom}_{\mathsf{Cats}}(\mathcal{G}, \mathcal{D}) \cong \operatorname{Hom}_{\mathsf{Grpd}}(\mathcal{G}, \mathsf{Core}(\mathcal{D})),$$

natural in $\mathcal{G} \in \mathrm{Obj}(\mathsf{Grpd})$ and $\mathcal{D} \in \mathrm{Obj}(\mathsf{Cats})$, forming, together with the functor K_0 of Item 1 of Proposition 8.3.2.1.3, a triple adjunction

$$(\mathrm{K}_0\dashv \iota\dashv\mathsf{Core})\text{:}\quad \mathsf{Cats}\underset{\mathsf{Core}}{\underbrace{\overset{\mathrm{K}_0}{\bot}}}\mathsf{Grpd},$$

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathsf{Grpd}}(\mathrm{K}_0(\mathcal{C}), \mathcal{G}) \cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C}, \mathcal{G}),$$

 $\operatorname{Hom}_{\mathsf{Cats}}(\mathcal{G}, \mathcal{D}) \cong \operatorname{Hom}_{\mathsf{Grpd}}(\mathcal{G}, \mathsf{Core}(\mathcal{D})),$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$ and $G \in \text{Obj}(\mathsf{Grpd})$.

00ZR 4. 2-Adjointness. We have an adjunction

$$(\iota \dashv \mathsf{Core})$$
: Grpd $\underbrace{\downarrow_2}_{\mathsf{Core}}$ Cats,

witnessed by an isomorphism of categories

$$\operatorname{\mathsf{Fun}}(\mathcal{G},\mathcal{D})\cong\operatorname{\mathsf{Fun}}(\mathcal{G},\operatorname{\mathsf{Core}}(\mathcal{D})),$$

natural in $\mathcal{G} \in \mathrm{Obj}(\mathsf{Grpd})$ and $\mathcal{D} \in \mathrm{Obj}(\mathsf{Cats})$, forming, together with the 2-functor K_0 of Item 2 of Proposition 8.3.2.1.3, a triple 2-adjunction

$$(K_0\dashv \iota\dashv \mathsf{Core})\text{:}\quad \mathsf{Cats} \underset{\mathsf{Core}}{\underbrace{\overset{K_0}{\bigsqcup_2}}} \mathsf{Grpd},$$

witnessed by isomorphisms of categories

$$\begin{split} \mathsf{Fun}(\mathrm{K}_0(\mathcal{C}),\mathcal{G}) &\cong \mathsf{Fun}(\mathcal{C},\mathcal{G}), \\ \mathsf{Fun}(\mathcal{G},\mathcal{D}) &\cong \mathsf{Fun}(\mathcal{G},\mathsf{Core}(\mathcal{D})), \end{split}$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$ and $G \in \text{Obj}(\mathsf{Grpd})$.

00ZS 5. Symmetric Strong Monoidality With Respect to Products. The core functor of Item 1 has a symmetric strong monoidal structure

$$\left(\mathsf{Core},\mathsf{Core}^{\times},\mathsf{Core}^{\times}_{\mathbb{1}}\right) \colon \left(\mathsf{Cats},\times,\mathsf{pt}\right) \to \left(\mathsf{Grpd},\times,\mathsf{pt}\right)$$

being equipped with isomorphisms

$$\begin{split} \mathsf{Core}_{\mathcal{C},\mathcal{D}}^{\times} \colon \mathsf{Core}(\mathcal{C}) \times \mathsf{Core}(\mathcal{D}) &\xrightarrow{\cong} \mathsf{Core}(\mathcal{C} \times \mathcal{D}), \\ \mathsf{Core}_{\mathbb{1}}^{\times} \colon \mathsf{pt} &\xrightarrow{\cong} \mathsf{Core}(\mathsf{pt}), \end{split}$$

natural in $\mathcal{C}, \mathcal{D} \in \mathrm{Obj}(\mathsf{Cats})$.

6. Symmetric Strong Monoidality With Respect to Coproducts. The core functor of Item 1 has a symmetric strong monoidal structure

$$\left(\mathsf{Core},\mathsf{Core}^{\coprod},\mathsf{Core}^{\coprod}_{\mathbb{1}}\right) \colon (\mathsf{Cats}, \coprod, \emptyset_{\mathsf{cat}}) \to (\mathsf{Grpd}, \coprod, \emptyset_{\mathsf{cat}})$$

being equipped with isomorphisms

$$\begin{split} \mathsf{Core}^{\coprod}_{C,\mathcal{D}} \colon \mathsf{Core}(C) & \coprod \mathsf{Core}(\mathcal{D}) \xrightarrow{\cong} \mathsf{Core}(C \coprod \mathcal{D}), \\ \mathsf{Core}^{\coprod}_{\mathbb{I}} \colon \emptyset_{\mathsf{cat}} \xrightarrow{\cong} \mathsf{Core}(\emptyset_{\mathsf{cat}}), \end{split}$$

natural in $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$.

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item 5, Symmetric Strong Monoidality With Respect to Products: Omitted.

Item 6, Symmetric Strong Monoidality With Respect to Coproducts: Omitted. □

00ZU 8.4 Functors

00ZV 8.4.1 Foundations

Let C and D be categories.

OOZW Definition 8.4.1.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ from \mathcal{C} to \mathcal{D}^{16} consists of:

¹⁶ Further Terminology: Also called a **covariant functor**.

1. Action on Objects. A map of sets

$$F : \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D}),$$

called the **action on objects of** F.

2. Action on Morphisms. For each $A, B \in \text{Obj}(C)$, a map

$$F_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F(A),F(B)),$$

called the **action on morphisms of** F at $(A, B)^{17}$.

satisfying the following conditions:

1. Preservation of Identities. For each $A \in \text{Obj}(\mathcal{C})$, the diagram

commutes, i.e. we have

$$F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$$
.

2. Preservation of Composition. For each $A,B,C\in \mathrm{Obj}(\mathcal{C}),$ the diagram

$$\operatorname{Hom}_{\mathcal{C}}(B,C) \times \operatorname{Hom}_{\mathcal{C}}(A,B) \xrightarrow{\circ^{\mathcal{C}}_{A,B,C}} \operatorname{Hom}_{\mathcal{C}}(A,C)$$

$$F_{B,C} \times F_{A,B} \downarrow \qquad \qquad \downarrow^{F_{A,C}}$$

$$\operatorname{Hom}_{\mathcal{D}}(F(B),F(C)) \times \operatorname{Hom}_{\mathcal{D}}(F(A),F(B)) \xrightarrow{\circ^{\mathcal{C}}_{A,B,C}} \operatorname{Hom}_{\mathcal{D}}(F(A),F(C))$$

commutes, i.e. for each composable pair (g, f) of morphisms of \mathcal{C} , we have

$$F(g \circ f) = F(g) \circ F(f).$$

- **Notation 8.4.1.1.2.** Let C and D be categories, and write C^{op} for the opposite category of C of ??.
- **00ZY** 1. Given a functor

$$F \colon \mathcal{C} \to \mathcal{D}$$
,

we also write F_A for F(A).

¹⁷ Further Terminology: Also called **action on Hom-sets of** F **at** (A, B).

00ZZ 2. Given a functor

$$F \colon \mathcal{C}^{\mathsf{op}} \to \mathcal{D}$$
,

we also write F^A for F(A).

0100 3. Given a functor

$$F: \mathcal{C} \times \mathcal{C} \to \mathcal{D}$$

we also write $F_{A,B}$ for F(A,B).

0101 4. Given a functor

$$F: C^{\mathsf{op}} \times C \to \mathcal{D}.$$

we also write F_B^A for F(A, B).

We employ a similar notation for morphisms, writing e.g. F_f for F(f) given a functor $F: \mathcal{C} \to \mathcal{D}$.

0102 Notation 8.4.1.1.3. Following the notation $[x \mapsto f(x)]$ for a function $f: X \to Y$ introduced in Notation 1.1.1.1.2, we will sometimes denote a functor $F: \mathcal{C} \to \mathcal{D}$ by

$$F \stackrel{\text{def}}{=} [\![A \mapsto F(A)]\!],$$

specially when the action on morphisms of F is clear from its action on objects.

- 0103 Example 8.4.1.1.4. The identity functor of a category C is the functor $id_C \colon C \to C$ where
 - 1. Action on Objects. For each $A \in \text{Obj}(\mathcal{C})$, we have

$$id_{\mathcal{C}}(A) \stackrel{\text{def}}{=} A.$$

2. Action on Morphisms. For each $A, B \in \mathrm{Obj}(\mathcal{C})$, the action on morphisms

$$(\mathrm{id}_{\mathcal{C}})_{A,B} \colon \mathrm{Hom}_{\mathcal{C}}(A,B) \to \underbrace{\mathrm{Hom}_{\mathcal{C}}(\mathrm{id}_{\mathcal{C}}(A),\mathrm{id}_{\mathcal{C}}(B))}_{\overset{\mathrm{def}}{=} \mathrm{Hom}_{\mathcal{C}}(A,B)}$$

of $id_{\mathcal{C}}$ at (A, B) is defined by

$$(\mathrm{id}_{\mathcal{C}})_{A,B} \stackrel{\mathrm{def}}{=} \mathrm{id}_{\mathrm{Hom}_{\mathcal{C}}(A,B)}.$$

Proof. Preservation of Identities: We have $id_{\mathcal{C}}(id_A) \stackrel{\text{def}}{=} id_A$ for each $A \in Obj(\mathcal{C})$ by definition.

Preservation of Compositions: For each composable pair $A \xrightarrow{f} B \xrightarrow{g} B$ of morphisms of C, we have

$$\operatorname{id}_{\mathcal{C}}(g \circ f) \stackrel{\text{def}}{=} g \circ f$$
$$\stackrel{\text{def}}{=} \operatorname{id}_{\mathcal{C}}(g) \circ \operatorname{id}_{\mathcal{C}}(f).$$

This finishes the proof.

0104 Definition 8.4.1.1.5. The **composition** of two functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$ is the functor $G \circ F$ where

• Action on Objects. For each $A \in \text{Obj}(\mathcal{C})$, we have

$$[G \circ F](A) \stackrel{\text{def}}{=} G(F(A)).$$

• Action on Morphisms. For each $A, B \in \mathrm{Obj}(\mathcal{C})$, the action on morphisms

$$(G \circ F)_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{E}}(G_{F_A},G_{F_B})$$

of $G \circ F$ at (A, B) is defined by

$$[G \circ F](f) \stackrel{\text{def}}{=} G(F(f)).$$

Proof. Preservation of Identities: For each $A \in \text{Obj}(\mathcal{C})$, we have

$$G_{F_{\mathrm{id}_A}} = G_{\mathrm{id}_{F_A}}$$
 (functoriality of F)
= $\mathrm{id}_{G_{F_A}}$. (functoriality of G)

Preservation of Composition: For each composable pair (g, f) of morphisms of C, we have

$$G_{F_g \circ f} = G_{F_g \circ F_f}$$
 (functoriality of F)
= $G_{F_g} \circ G_{F_f}$. (functoriality of G)

This finishes the proof.

0105 Proposition 8.4.1.1.6. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

0106 1. Preservation of Isomorphisms. If f is an isomorphism in C, then F(f) is an isomorphism in \mathcal{D} .

Proof. Item 1, Preservation of Isomorphisms: Indeed, we have

$$F(f)^{-1} \circ F(f) = F(f^{-1} \circ f)$$
$$= F(\mathrm{id}_A)$$
$$= \mathrm{id}_{F(A)}$$

and

$$F(f) \circ F(f)^{-1} = F(f \circ f^{-1})$$
$$= F(id_B)$$
$$= id_{F(B)},$$

showing F(f) to be an isomorphism.

¹⁸When the converse holds, we call F conservative, see Definition 8.5.4.1.1.

0107 8.4.2 Contravariant Functors

Let C and D be categories, and let C^{op} denote the opposite category of C of ??.

- 0108 Definition 8.4.2.1.1. A contravariant functor from C to D is a functor from C^{op} to D.
- 0109 Remark 8.4.2.1.2. In detail, a contravariant functor from $\mathcal C$ to $\mathcal D$ consists of:
 - 1. Action on Objects. A map of sets

$$F \colon \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D}),$$

called the **action on objects of** F.

2. Action on Morphisms. For each $A, B \in \text{Obj}(\mathcal{C})$, a map

$$F_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F(B),F(A)),$$

called the **action on morphisms of** F **at** (A, B).

satisfying the following conditions:

1. Preservation of Identities. For each $A \in \text{Obj}(\mathcal{C})$, the diagram

commutes, i.e. we have

$$F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$$
.

2. Preservation of Composition. For each $A,B,C\in \mathrm{Obj}(\mathcal{C}),$ the diagram

commutes, i.e. for each composable pair (g, f) of morphisms of C, we have

$$F(q \circ f) = F(f) \circ F(q).$$

010A Remark 8.4.2.1.3. Throughout this work we will not use the term "contravariant" functor, speaking instead simply of functors $F: C^{op} \to \mathcal{D}$. We will usually, however, write

$$F_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F(B),F(A))$$

for the action on morphisms

$$F_{A,B} \colon \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F(A),F(B))$$

of F, as well as write $F(g \circ f) = F(f) \circ F(g)$.

- 010B 8.4.3 Forgetful Functors
- **Oloc Definition 8.4.3.1.1.** There isn't a precise definition of a **forgetful** functor.
- 010D Remark 8.4.3.1.2. Despite there not being a formal or precise definition of a forgetful functor, the term is often very useful in practice, similarly to the word "canonical". The idea is that a "forgetful functor" is a functor that forgets structure or properties, and is best explained through examples, such as the ones below (see Examples 8.4.3.1.3 and 8.4.3.1.4).
- **Oloe Example 8.4.3.1.3.** Examples of forgetful functors that forget structure include:
- 010F 1. Forgetting Group Structures. The functor $\mathsf{Grp} \to \mathsf{Sets}$ sending a group (G, μ_G, η_G) to its underlying set G, forgetting the multiplication and unit maps μ_G and η_G of G.
- 010G 2. Forgetting Topologies. The functor $\mathsf{Top} \to \mathsf{Sets}$ sending a topological space (X, \mathcal{T}_X) to its underlying set X, forgetting the topology \mathcal{T}_X .
- 010H 3. Forgetting Fibrations. The functor $\mathsf{FibSets}(K) \to \mathsf{Sets}$ sending a K-fibred set $\phi_X \colon X \to K$ to the set X, forgetting the map ϕ_X and the base set K.
- **O10J Example 8.4.3.1.4.** Examples of forgetful functors that forget properties include:
- 010K 1. Forgetting Commutativity. The inclusion functor ι : CMon \hookrightarrow Mon which forgets the property of being commutative.

- 010L 2. Forgetting Inverses. The inclusion functor ι : $\mathsf{Grp} \hookrightarrow \mathsf{Mon}$ which forgets the property of having inverses.
- 010M Notation 8.4.3.1.5. Throughout this work, we will denote forgetful functors that forget structure by $\overline{\Sigma}$, e.g. as in

忘:
$$\mathsf{Grp} \to \mathsf{Sets}$$
.

The symbol 志, pronounced wasureru (see Item 1 of Remark 8.4.3.1.6 below), means to forget, and is a kanji found in the following words in Japanese and Chinese:

- 010N 1. 忘れる, transcribed as wasureru, meaning to forget.
- 2. 忘却関手, transcribed as boukyaku kanshu, meaning forgetful func-010P tor.
- 010Q 3. 忘记 or 忘記, transcribed as wàngjì, meaning to forget.
- 4. 遗忘函子 or 遺忘函子, transcribed as yíwàng hánzǐ, meaning for-010R getful functor.
- **Remark 8.4.3.1.6.** Here we collect the pronunciation of the words in Notation 8.4.3.1.5 for accuracy and completeness.
- 010T 1. Pronunciation of 忘れる:
 - Audio: see https://topological-modular-forms.github.io /the-clowder-project/static/sounds/wasureru-01.mp3
 - IPA broad transcription: [wäsureru].
 - IPA narrow transcription: [ψβäsiβτe̞τψ̞β].
- 010U 2. Pronunciation of 忘却関手: Pronunciation:
 - Audio: see https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-02.mp3
 - IPA broad transcription: [boːkjäku kä̃űjcu].
 - IPA narrow transcription: [boːkʲäkw̞β kẫũçcwβ].
- 010V 3. Pronunciation of 忘记:
 - Audio: see https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-03.ogg
 - Broad IPA transcription: [wantei].
 - Sinological IPA transcription: [wan⁵¹⁻⁵³fci⁵¹].
- 010W 4. Pronunciation of 遗忘函子:

- Audio: see https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-04.mp3
- Broad IPA transcription: [iwan xäntszi].
- Sinological IPA transcription: $[i^{35}wa\eta^{51}x\ddot{a}n^{35}t\ddot{s}z^{214-21(4)}]$.

010X 8.4.4 The Natural Transformation Associated to a Functor

Definition 8.4.4.1.1. Every functor $F: \mathcal{C} \to \mathcal{D}$ defines a natural transformation 19

$$F^{\dagger} \colon \mathrm{Hom}_{\mathcal{C}} \Longrightarrow \mathrm{Hom}_{\mathcal{D}} \circ (F^{\mathsf{op}} \times F), \qquad \underbrace{F^{\mathsf{op}} \times F}_{\text{Hom}_{\mathcal{C}}} \underbrace{\mathcal{D}^{\mathsf{op}} \times \mathcal{D}}_{\text{Hom}_{\mathcal{D}}}$$
Sets,

called the **natural transformation associated to** F, consisting of the collection

$$\left\{F_{A,B}^{\dagger} \colon \mathrm{Hom}_{\mathcal{C}}(A,B) \to \mathrm{Hom}_{\mathcal{D}}(F_A,F_B)\right\}_{(A,B) \in \mathrm{Obj}(\mathcal{C}^{\mathsf{op}} \times \mathcal{C})}$$

with

$$F_{A,B}^{\dagger} \stackrel{\text{def}}{=} F_{A,B}$$
.

Proof. The naturality condition for F^{\dagger} is the requirement that for each morphism

$$(\phi, \psi) \colon (X, Y) \to (A, B)$$

of $C^{op} \times C$, the diagram

acting on elements as

П

commutes, which follows from the functoriality of F.

¹⁹This is the 1-categorical version of Item 1 of Proposition 2.4.1.1.3.

- **010Z Proposition 8.4.4.1.2.** Let $F: C \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors.
- 0110 1. Interaction With Natural Isomorphisms. The following conditions are equivalent:
 - (a) The natural transformation $F^{\dagger} \colon \operatorname{Hom}_{\mathcal{C}} \Longrightarrow \operatorname{Hom}_{\mathcal{D}} \circ (F^{\mathsf{op}} \times F)$ associated to F is a natural isomorphism.
- 0112 (b) The functor F is fully faithful.

0111

0113 2. Interaction With Composition. We have an equality of pasting diagrams

in Cats_2 , i.e. we have

$$(G \circ F)^{\dagger} = \left(G^{\dagger} \star \mathrm{id}_{F^{\mathrm{op}} \times F}\right) \circ F^{\dagger}.$$

0114 3. Interaction With Identities. We have

$$\mathrm{id}_{\mathcal{C}}^{\dagger} = \mathrm{id}_{\mathrm{Hom}_{\mathcal{C}}(-1,-2)},$$

i.e. the natural transformation associated to id_C is the identity natural transformation of the functor $\mathrm{Hom}_C(-1,-2)$.

Proof. Item 1, Interaction With Natural Isomorphisms: Clear.

Item 2, Interaction With Composition: Clear.

Item 3, Interaction With Identities: Clear.

0115 8.5 Conditions on Functors

0116 8.5.1 Faithful Functors

Let \mathcal{C} and \mathcal{D} be categories.

Olimition 8.5.1.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is **faithful** if, for each $A, B \in \text{Obj}(\mathcal{C})$, the action on morphisms

$$F_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F_A,F_B)$$

of F at (A, B) is injective.

0118 Proposition 8.5.1.1.2. Let $F: C \to \mathcal{D}$ be a functor.

- 0119 1. Interaction With Postcomposition. The following conditions are equivalent:
- **011A** (a) The functor $F: \mathcal{C} \to \mathcal{D}$ is faithful.
- 011B (b) For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is faithful.

011C

- (c) The functor $F: \mathcal{C} \to \mathcal{D}$ is a representably faithful morphism in Cats_2 in the sense of Definition 9.1.1.1.1.
- **011D** 2. Interaction With Precomposition I. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 011E (a) If F is faithful, then the precomposition functor

$$F^* : \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{X})$$

can fail to be faithful.

011F (b) Conversely, if the precomposition functor

$$F^* \colon \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(C, \mathcal{X})$$

is faithful, then F can fail to be faithful.

011G 3. Interaction With Precomposition II. If F is essentially surjective, then the precomposition functor

$$F^* \colon \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{X})$$

is faithful.

- **011H** 4. Interaction With Precomposition III. The following conditions are equivalent:
- 011J (a) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(C, \mathcal{X})$$

is faithful.

011K (b) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{X})$$

is conservative.

011L (c) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is monadic.

(d) The functor $F \colon \mathcal{C} \to \mathcal{D}$ is a corepresentably faithful morphism in Cats_2 in the sense of Definition 9.2.1.1.1.

011N (e) The components

$$\eta_G \colon G \Longrightarrow \operatorname{Ran}_F(G \circ F)$$

of the unit

$$\eta : \mathrm{id}_{\mathsf{Fun}(\mathcal{D}, X)} \Longrightarrow \mathrm{Ran}_F \circ F^*$$

of the adjunction $F^* \dashv \operatorname{Ran}_F$ are all monomorphisms.

011P (f) The components

$$\epsilon_G \colon \mathrm{Lan}_F(G \circ F) \Longrightarrow G$$

of the counit

$$\epsilon : \operatorname{Lan}_F \circ F^* \Longrightarrow \operatorname{id}_{\operatorname{Fun}(\mathcal{D},\mathcal{X})}$$

of the adjunction $\operatorname{Lan}_F \dashv F^*$ are all epimorphisms.

- (g) The functor F is dominant (Definition 8.6.1.1.1), i.e. every object of \mathcal{D} is a retract of some object in Im(F):
 - (\star) For each $B \in \text{Obj}(\mathcal{D})$, there exist:
 - An object A of C;
 - A morphism $s: B \to F(A)$ of \mathcal{D} ;
 - A morphism $r: F(A) \to B$ of \mathcal{D} ;

such that $r \circ s = id_B$.

Proof. Item 1, Interaction With Postcomposition: Omitted.

Item 2, Interaction With Precomposition I: See [MSE 733163] for Item 2a. Item 2b follows from Item 3 and the fact that there are essentially surjective functors that are not faithful.

Item 3, Interaction With Precomposition II: Omitted, but see https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html for a formalised proof.

Item 4, Interaction With Precomposition III: We claim Items 4a to 4g are equivalent:

• *Items 4a* and 4d Are Equivalent: This is true by the definition of corepresentably faithful morphism; see Definition 9.2.1.1.1.

011Q

011M

- Items 4a to 4c and 4g Are Equivalent: See [Adá+01, Proposition 4.1] or alternatively [Fre09, Lemmas 3.1 and 3.2] for the equivalence between Items 4a and 4g.
- Items 4a, 4e and 4f Are Equivalent: See ?? of ??.

This finishes the proof.

011R 8.5.2 Full Functors

Let \mathcal{C} and \mathcal{D} be categories.

Definition 8.5.2.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is **full** if, for each $A, B \in \text{Obj}(\mathcal{C})$, the action on morphisms

$$F_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F_A,F_B)$$

of F at (A, B) is surjective.

- **011T Proposition 8.5.2.1.2.** Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 011U 1. Interaction With Postcomposition. The following conditions are equivalent:
- **011V** (a) The functor $F: C \to \mathcal{D}$ is full.
- 011W (b) For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is full.

011X

- (c) The functor $F: \mathcal{C} \to \mathcal{D}$ is a representably full morphism in Cats_2 in the sense of Definition 9.1.2.1.1.
- 011Y 2. Interaction With Precomposition I. If F is full, then the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

can fail to be full.

011Z 3. Interaction With Precomposition II. If the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is full, then F can fail to be full.

0120 4. Interaction With Precomposition III. If F is essentially surjective

and full, then the precomposition functor

$$F^* \colon \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{X})$$

is full (and also faithful by Item 3 of Proposition 8.5.1.1.2).

- **0121** 5. Interaction With Precomposition IV. The following conditions are equivalent:
- 0122 (a) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is full.

- (b) The functor $F: \mathcal{C} \to \mathcal{D}$ is a corepresentably full morphism in Cats_2 in the sense of Definition 9.2.1.1.1.
- 0124 (c) The components

0123

$$\eta_G \colon G \Longrightarrow \operatorname{Ran}_F(G \circ F)$$

of the unit

$$\eta \colon \mathrm{id}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})} \Longrightarrow \mathrm{Ran}_F \circ F^*$$

of the adjunction $F^* \dashv \operatorname{Ran}_F$ are all retractions/split epimorphisms.

0125 (d) The components

$$\epsilon_G \colon \mathrm{Lan}_F(G \circ F) \Longrightarrow G$$

of the counit

$$\epsilon : \operatorname{Lan}_F \circ F^* \Longrightarrow \operatorname{id}_{\operatorname{Fun}(\mathcal{D},\mathcal{X})}$$

of the adjunction $\operatorname{Lan}_F \dashv F^*$ are all sections/split monomorphisms.

- 0126 (e) For each $B \in \text{Obj}(\mathcal{D})$, there exist:
 - An object A_B of C;
 - A morphism $s_B : B \to F(A_B)$ of \mathcal{D} ;
 - A morphism $r_B : F(A_B) \to B$ of \mathcal{D} ;

satisfying the following condition:

 (\star) For each $A \in \mathrm{Obj}(\mathcal{C})$ and each pair of morphisms

$$r \colon F(A) \to B$$

$$s \colon B \to F(A)$$

of \mathcal{D} , we have

$$[(A_B, s_B, r_B)] = [(A, s, r \circ s_B \circ r_B)]$$

in
$$\int_{-\infty}^{A \in C} h_{F_A}^{B'} \times h_B^{F_A}$$
.

Proof. Item 1, Interaction With Postcomposition: Omitted.

Item 2, Interaction With Precomposition I: Omitted.

Item 3, Interaction With Precomposition II: See [BS10, p. 47].

Item 4, Interaction With Precomposition III: Omitted, but see https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html for a formalised proof.

Item 5, Interaction With Precomposition IV: We claim *Items 5a* to 5e are equivalent:

- *Items 5a* and *5b* Are Equivalent: This is true by the definition of corepresentably full morphism; see Definition 9.2.2.1.1.
- Items 5a, 5c and 5d Are Equivalent: See ?? of ??.
- *Items 5a and 5e Are Equivalent:* See [Adá+01, Item (b) of Remark 4.3].

This finishes the proof.

Question 8.5.2.1.3. Item 5 of Proposition 8.5.2.1.2 gives a characterisation of the functors F for which F^* is full, but the characterisations given there are really messy. Are there better ones? This question also appears as [MO 468121b].

0128 8.5.3 Fully Faithful Functors

Let \mathcal{C} and \mathcal{D} be categories.

0129 Definition 8.5.3.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is **fully faithful** if F is full and faithful, i.e. if, for each $A, B \in \text{Obj}(\mathcal{C})$, the action on morphisms

$$F_{A,B} : \operatorname{Hom}_{\mathcal{O}}(A,B) \to \operatorname{Hom}_{\mathcal{O}}(F_A,F_B)$$

of F at (A, B) is bijective.

- **012A** Proposition 8.5.3.1.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 012B 1. Characterisations. The following conditions are equivalent:
- 012C (a) The functor F is fully faithful.
- 012D (b) We have a pullback square

$$\mathsf{Arr}(\mathcal{C}) \xrightarrow{\mathsf{Arr}(\mathcal{F})} \mathsf{Arr}(\mathcal{D})$$

$$\mathsf{Arr}(\mathcal{C}) \cong (\mathcal{C} \times \mathcal{C}) \times_{\mathcal{D} \times \mathcal{D}} \mathsf{Arr}(\mathcal{D}), \quad \underset{\mathsf{src} \times \mathsf{tgt}}{\underset{\mathsf{rc} \times \mathsf{tgt}}{\mathsf{drr}}} \bigvee_{\mathsf{src} \times \mathsf{tgt}} \mathsf{D} \times \mathcal{D}$$

in Cats.

- **012E** 2. Conservativity. If F is fully faithful, then F is conservative.
- 012F 3. Essential Injectivity. If F is fully faithful, then F is essentially injective.
- 012G 4. Interaction With Co/Limits. If F is fully faithful, then F reflects co/limits.
- **012H** 5. Interaction With Postcomposition. The following conditions are equivalent:
- **012J** (a) The functor $F: \mathcal{C} \to \mathcal{D}$ is fully faithful.
- 012K (b) For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is fully faithful.

012L

- (c) The functor $F: \mathcal{C} \to \mathcal{D}$ is a representably fully faithful morphism in Cats_2 in the sense of Definition 9.1.3.1.1.
- 012M 6. Interaction With Precomposition I. If F is fully faithful, then the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

can fail to be fully faithful.

012N 7. Interaction With Precomposition II. If the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is fully faithful, then F can fail to be fully faithful (and in fact it can also fail to be either full or faithful).

012P 8. Interaction With Precomposition III. If F is essentially surjective and full, then the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is fully faithful.

- 9. Interaction With Precomposition IV. The following conditions are equivalent:
- 012R (a) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is fully faithful.

012S (b) The precomposition functor

$$F^* : \operatorname{\mathsf{Fun}}(\mathcal{D}, \operatorname{\mathsf{Sets}}) \to \operatorname{\mathsf{Fun}}(\mathcal{C}, \operatorname{\mathsf{Sets}})$$

is fully faithful.

012T (c) The functor

012U

$$\operatorname{Lan}_F \colon \operatorname{\mathsf{Fun}}(\mathcal{C},\operatorname{\mathsf{Sets}}) \to \operatorname{\mathsf{Fun}}(\mathcal{D},\operatorname{\mathsf{Sets}})$$

is fully faithful.

- (d) The functor F is a corepresentably fully faithful morphism in Cats₂ in the sense of Definition 9.2.3.1.1.
- 012V (e) The functor F is absolutely dense.
- 012W (f) The components

$$\eta_G \colon G \Longrightarrow \operatorname{Ran}_F(G \circ F)$$

of the unit

$$\eta \colon \mathrm{id}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})} \Longrightarrow \mathrm{Ran}_F \circ F^*$$

of the adjunction $F^* \dashv \operatorname{Ran}_F$ are all isomorphisms.

012X (g) The components

$$\epsilon_G \colon \mathrm{Lan}_F(G \circ F) \Longrightarrow G$$

of the counit

$$\epsilon : \operatorname{Lan}_F \circ F^* \Longrightarrow \operatorname{id}_{\operatorname{Fun}(\mathcal{D},X)}$$

of the adjunction $\operatorname{Lan}_F \dashv F^*$ are all isomorphisms.

012Y (h) The natural transformation

$$\alpha \colon \mathrm{Lan}_{h_F} \left(h^F \right) \Longrightarrow h$$

with components

$$\alpha_{B',B} \colon \int^{A \in \mathcal{C}} h_{F_A}^{B'} \times h_B^{F_A} \to h_B^{B'}$$

given by

$$\alpha_{B',B}([(\phi,\psi)]) = \psi \circ \phi$$

is a natural isomorphism.

- 012Z (i) For each $B \in \text{Obj}(\mathcal{D})$, there exist:
 - An object A_B of C;

- A morphism $s_B : B \to F(A_B)$ of \mathcal{D} ;
- A morphism $r_B : F(A_B) \to B$ of \mathcal{D} ;

satisfying the following conditions:

- i. The triple $(F(A_B), r_B, s_B)$ is a retract of B, i.e. we have $r_B \circ s_B = \mathrm{id}_B$.
- ii. For each morphism $f: B' \to B$ of \mathcal{D} , we have

$$[(A_B,s_{B'},f\circ r_{B'})]=[(A_B,s_B\circ f,r_B)]$$
 in $\int^{A\in\mathcal{C}}h_{F_A}^{B'}\times h_B^{F_A}.$

Proof. Item 1, Characterisations: Omitted.

Item 2, Conservativity: This is a repetition of Item 2 of Proposition 8.5.4.1.2, and is proved there.

Item 3, Essential Injectivity: Omitted.

Item 4, Interaction With Co/Limits: Omitted.

Item 5, Interaction With Postcomposition: This follows from Item 1 of Proposition 8.5.1.1.2 and Item 1 of Proposition 8.5.2.1.2.

Item 6, Interaction With Precomposition I: See [MSE 733161] for an example of a fully faithful functor whose precomposition with which fails to be full.

Item 7, Interaction With Precomposition II: See [MSE 749304, Item 3].

Item 8, Interaction With Precomposition III: Omitted, but see https: //unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor y.precomp_fully_faithful.html for a formalised proof.

Item 9, Interaction With Precomposition IV: We claim Items 9a to 9i are equivalent:

- Items 9a and 9d Are Equivalent: This is true by the definition of corepresentably fully faithful morphism; see Definition 9.2.3.1.1.
- Items 9a, 9f and 9g Are Equivalent: See ?? of ??.
- Items 9a to 9c Are Equivalent: This follows from [Low15, Proposition A.1.5].
- Items 9a, 9e, 9h and 9i Are Equivalent: See [Fre09, Theorem 4.1] and $[Ad\acute{a}+01, Theorem 1.1].$

This finishes the proof.

0132 8.5.4 Conservative Functors

Let \mathcal{C} and \mathcal{D} be categories.

0130

0131

- 0133 **Definition 8.5.4.1.1.** A functor $F: \mathcal{C} \to \mathcal{D}$ is **conservative** if it satisfies the following condition:²⁰
 - (*) For each $f \in \text{Mor}(\mathcal{C})$, if F(f) is an isomorphism in \mathcal{D} , then f is an isomorphism in \mathcal{C} .
- **0134 Proposition 8.5.4.1.2.** Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 0135 1. Characterisations. The following conditions are equivalent:
- 0136 (a) The functor F is conservative.
- (b) For each $f \in \operatorname{Mor}(C)$, the morphism F(f) is an isomorphism in \mathcal{D} iff f is an isomorphism in C.
- **0138** 2. Interaction With Fully Faithfulness. Every fully faithful functor is conservative.
- 0139 3. Interaction With Precomposition. The following conditions are equivalent:
- 013A (a) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is conservative.

013B

(b) The equivalent conditions of Item 4 of Proposition 8.5.1.1.2 are satisfied.

Proof. Item 1, Characterisations: This follows from Item 1 of Proposition 8.4.1.1.6.

Item 2, Interaction With Fully Faithfulness: Let $F: C \to \mathcal{D}$ be a fully faithful functor, let $f: A \to B$ be a morphism of C, and suppose that F_f is an isomorphism. We have

$$F(\mathrm{id}_B) = \mathrm{id}_{F(B)}$$
$$= F(f) \circ F(f)^{-1}$$
$$= F(f \circ f^{-1}).$$

Similarly, $F(id_A) = F(f^{-1} \circ f)$. But since F is fully faithful, we must have

$$f \circ f^{-1} = \mathrm{id}_B,$$

$$f^{-1} \circ f = \mathrm{id}_A,$$

showing f to be an isomorphism. Thus F is conservative.

²⁰ Slogan: A functor F is **conservative** if it reflects isomorphisms.

- **Question 8.5.4.1.3.** Is there a characterisation of functors $F: \mathcal{C} \to \mathcal{D}$ satisfying the following condition:
 - (\star) For each $\mathcal{X} \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is conservative?

This question also appears as [MO 468121a].

013D 8.5.5 Essentially Injective Functors

Let \mathcal{C} and \mathcal{D} be categories.

- 013E Definition 8.5.5.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is essentially injective if it satisfies the following condition:
 - (\star) For each $A, B \in \text{Obj}(C)$, if $F(A) \cong F(B)$, then $A \cong B$.
- **Question 8.5.5.1.2.** Is there a characterisation of functors $F: \mathcal{C} \to \mathcal{D}$ such that:
- 013G 1. For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(C, \mathcal{X})$$

is essentially injective, i.e. if $\phi \circ F \cong \psi \circ F$, then $\phi \cong \psi$ for all functors ϕ and ψ ?

013H 2. For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is essentially injective, i.e. if $F \circ \phi \cong F \circ \psi$, then $\phi \cong \psi$?

This question also appears as [MO 468121a].

013J 8.5.6 Essentially Surjective Functors

Let \mathcal{C} and \mathcal{D} be categories.

- 013K Definition 8.5.6.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is essentially surjective ²¹ if it satisfies the following condition:
 - (*) For each $D \in \text{Obj}(\mathcal{D})$, there exists some object A of C such that $F(A) \cong D$.

 $^{^{21}\}mathit{Further\ Terminology:}$ Also called an \mathbf{eso} functor, where the name "eso" comes

Question 8.5.6.1.2. Is there a characterisation of functors $F: \mathcal{C} \to \mathcal{D}$ such that:

013M 1. For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is essentially surjective?

013N 2. For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is essentially surjective?

This question also appears as [MO 468121a].

013P 8.5.7 Equivalences of Categories

0130 **Definition 8.5.7.1.1.** Let C and D be categories.

1. An **equivalence of categories** between C and $\mathcal D$ consists of a pair of functors

$$F: \mathcal{C} \to \mathcal{D},$$

 $G: \mathcal{D} \to \mathcal{C}$

together with natural isomorphisms

$$\eta \colon \mathrm{id}_C \stackrel{\sim}{\Longrightarrow} G \circ F,$$
 $\epsilon \colon F \circ G \stackrel{\sim}{\Longrightarrow} \mathrm{id}_{\mathcal{D}}.$

- 2. An adjoint equivalence of categories between C and D is an equivalence (F, G, η, ϵ) between C and D which is also an adjunction.
- **013T Proposition 8.5.7.1.2.** Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 013U 1. Characterisations. If C and D are small²², then the following conditions are equivalent:²³

013S

from essentially surjective on objects.

²²Otherwise there will be size issues. One can also work with large categories and universes, or require F to be *constructively* essentially surjective; see [MSE 1465107].

universes, or require F to be *constructively* essentially surjective; see [MSE 1465107]. ²³In ZFC, the equivalence between Item 1a and Item 1b is equivalent to the axiom of choice; see [MO 119454].

In Univalent Foundations, this is true without requiring neither the axiom of choice nor the law of excluded middle.

- \emptyset 13V (a) The functor F is an equivalence of categories.
- 013W (b) The functor F is fully faithful and essentially surjective.
- 013X (c) The induced functor

$$F|_{\mathsf{Sk}(\mathcal{C})} \colon \mathsf{Sk}(\mathcal{C}) \to \mathsf{Sk}(\mathcal{D})$$

is an *isomorphism* of categories.

013Y (d) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is an equivalence of categories.

013Z (e) For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is an equivalence of categories.

0140 2. Two-Out-of-Three. Let

$$C \xrightarrow{G \circ F} \mathcal{E}$$

$$f \xrightarrow{f}_{G}$$

be a diagram in Cats. If two out of the three functors among F, G, and $G \circ F$ are equivalences of categories, then so is the third.

0141 3. Stability Under Composition. Let

$$C \stackrel{F}{\underset{G}{\longleftrightarrow}} \mathcal{D} \stackrel{F'}{\underset{G'}{\longleftrightarrow}} \mathcal{E}$$

be a diagram in Cats. If (F,G) and (F',G') are equivalences of categories, then so is their composite $(F' \circ F, G' \circ G)$.

- 4. Equivalences vs. Adjoint Equivalences. Every equivalence of categories can be promoted to an adjoint equivalence. 24
- 0143 5. Interaction With Groupoids. If C and D are groupoids, then the following conditions are equivalent:
- 0144 (a) The functor F is an equivalence of groupoids.
- 0145 (b) The following conditions are satisfied:

²⁴More precisely, we can promote an equivalence of categories (F, G, η, ϵ) to adjoint

i. The functor F induces a bijection

$$\pi_0(F) \colon \pi_0(\mathcal{C}) \to \pi_0(\mathcal{D})$$

of sets.

0147

ii. For each $A \in \mathrm{Obj}(\mathcal{C})$, the induced map

$$F_{x,x} : \operatorname{Aut}_{\mathcal{O}}(A) \to \operatorname{Aut}_{\mathcal{D}}(F_A)$$

is an isomorphism of groups.

Proof. Item 1, Characterisations: We claim that Items 1a to 1e are indeed equivalent:

- 1. Item $1a \Longrightarrow Item \ 1b$: Clear.
- 2. Item 1b \Longrightarrow Item 1a: Since F is essentially surjective and C and \mathcal{D} are small, we can choose, using the axiom of choice, for each $B \in \mathrm{Obj}(\mathcal{D})$, an object j_B of C and an isomorphism $i_B \colon B \to F_{j_B}$ of \mathcal{D} .

Since F is fully faithful, we can extend the assignment $B \mapsto j_B$ to a unique functor $j \colon \mathcal{D} \to \mathcal{C}$ such that the isomorphisms $i_B \colon B \to F_{j_B}$ assemble into a natural isomorphism $\eta \colon \mathrm{id}_{\mathcal{D}} \xrightarrow{\sim} F \circ j$, with a similar natural isomorphism $\epsilon \colon \mathrm{id}_{\mathcal{C}} \xrightarrow{\sim} j \circ F$. Hence F is an equivalence.

- 3. Item $1a \implies Item \ 1c$: This follows from Item 4 of Proposition 8.1.5.1.3.
- 4. Item $1c \Longrightarrow Item 1a$: Omitted.
- 5. Items 1a, 1d and 1e Are Equivalent: This follows from ??.

This finishes the proof of Item 1.

Item 2, Two-Out-of-Three: Omitted.

Item 3, Stability Under Composition: Clear.

Item 4, Equivalences vs. Adjoint Equivalences: See [Rie17, Proposition 4.4.5].

Item 5, Interaction With Groupoids: See [nLa24, Proposition 4.4].

0148 8.5.8 Isomorphisms of Categories

Ol49 Definition 8.5.8.1.1. An **isomorphism of categories** is a pair of functors

$$F: \mathcal{C} \to \mathcal{D},$$

 $G: \mathcal{D} \to \mathcal{C}$

such that we have

$$G \circ F = \mathrm{id}_C$$

$$F \circ G = \mathrm{id}_{\mathcal{D}}.$$

- **O14A Example 8.5.8.1.2.** Categories can be equivalent but non-isomorphic. For example, the category consisting of two isomorphic objects is equivalent to pt, but not isomorphic to it.
- **014B** Proposition 8.5.8.1.3. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 014C 1. Characterisations. If C and \mathcal{D} are small, then the following conditions are equivalent:
- 014D (a) The functor F is an isomorphism of categories.
- 014E (b) The functor F is fully faithful and bijective on objects.
- 014F (c) For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is an isomorphism of categories.

014G (d) For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is an isomorphism of categories.

Proof. Item 1, Characterisations: We claim that Items 1a to 1d are indeed equivalent:

- 1. *Items 1a and 1b Are Equivalent:* Omitted, but similar to Item 1 of Proposition 8.5.7.1.2.
- 2. Items 1a, 1c and 1d Are Equivalent: This follows from ??.

This finishes the proof.

O14H 8.6 More Conditions on Functors

014J 8.6.1 Dominant Functors

Let $\mathcal C$ and $\mathcal D$ be categories.

Olivition 8.6.1.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is **dominant** if every object of \mathcal{D} is a retract of some object in Im(F), i.e.:

- (\star) For each $B \in \text{Obj}(\mathcal{D})$, there exist:
 - An object A of C;
 - A morphism $r: F(A) \to B$ of \mathcal{D} ;
 - A morphism $s: B \to F(A)$ of \mathcal{D} ;

such that we have

$$r \circ s = \mathrm{id}_B,$$

$$B \xrightarrow{s} F(A)$$

$$\downarrow r$$

$$B$$

- **014L** Proposition 8.6.1.1.2. Let $F,G: C \Rightarrow \mathcal{D}$ be functors and let $I: X \to C$ be a functor.
- 014M 1. Interaction With Right Whiskering. If I is full and dominant, then the map

$$-\star \operatorname{id}_I \colon \operatorname{Nat}(F,G) \to \operatorname{Nat}(F \circ I, G \circ I)$$

is a bijection.

- 014N 2. Interaction With Adjunctions. Let $(F,G)\colon \mathcal{C}\rightleftarrows\mathcal{D}$ be an adjunction.
- 014P (a) If F is dominant, then G is faithful.
- 014Q (b) The following conditions are equivalent:
- 014R i. The functor G is full.
- 014S ii. The restriction

$$G|_{\mathrm{Im}_F}\colon \mathrm{Im}(F)\to \mathcal{C}$$

of G to Im(F) is full.

Proof. Item 1, Interaction With Right Whiskering: See [DFH75, Proposition 1.4].

Item 2, Interaction With Adjunctions: See [DFH75, Proposition 1.7].

Question 8.6.1.1.3. Is there a characterisation of functors $F: \mathcal{C} \to \mathcal{D}$ such that:

equivalences (F, G, η', ϵ) and (F, G, η, ϵ') .

014U 1. For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is dominant?

014V 2. For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is dominant?

This question also appears as [MO 468121a].

014W 8.6.2 Monomorphisms of Categories

Let $\mathcal C$ and $\mathcal D$ be categories.

- 014X Definition 8.6.2.1.1. A functor $F: C \to \mathcal{D}$ is a monomorphism of categories if it is a monomorphism in Cats (see ??).
- **014Y Proposition 8.6.2.1.2.** Let $F: C \to \mathcal{D}$ be a functor.
- 014Z 1. Characterisations. The following conditions are equivalent:
- 0150 (a) The functor F is a monomorphism of categories.
 - (b) The functor F is injective on objects and morphisms, i.e. F is injective on objects and the map

$$F \colon \operatorname{Mor}(\mathcal{C}) \to \operatorname{Mor}(\mathcal{D})$$

is injective.

0151

Proof. Item 1, Characterisations: Omitted.

- **Question 8.6.2.1.3.** Is there a characterisation of functors $F: \mathcal{C} \to \mathcal{D}$ such that:
- 0153 1. For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{X})$$

is a monomorphism of categories?

0154 2. For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) o \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is a monomorphism of categories?

This question also appears as [MO 468121a].

0155 8.6.3 Epimorphisms of Categories

Let \mathcal{C} and \mathcal{D} be categories.

- 0156 **Definition 8.6.3.1.1.** A functor $F: \mathcal{C} \to \mathcal{D}$ is a **epimorphism of categories** if it is a epimorphism in Cats (see ??).
- **0157 Proposition 8.6.3.1.2.** Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 0158 1. Characterisations. The following conditions are equivalent: 25
- 0159 (a) The functor F is a epimorphism of categories.
- 015A (b) For each morphism $f: A \to B$ of \mathcal{D} , we have a diagram

in \mathcal{D} satisfying the following conditions:

- 015B i. We have $f = \alpha_0 \circ \phi_1$.
- 015C ii. We have $f = \psi_m \circ \alpha_{2m}$.
- 015D iii. For each $0 \le i \le 2m$, we have $\alpha_i \in \operatorname{Mor}(\operatorname{Im}(F))$.
- 015E 2. Surjectivity on Objects. If F is an epimorphism of categories, then F is surjective on objects.

Proof. Item 1, Characterisations: See [Isb68].

Item 2, Surjectivity on Objects: Omitted.

- **Question 8.6.3.1.3.** Is there a characterisation of functors $F: \mathcal{C} \to \mathcal{D}$ such that:
- 015G 1. For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is an epimorphism of categories?

 $^{^{25}\}textit{Further Terminology:}$ This statement is known as Isbell's zigzag theorem.

015H 2. For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is an epimorphism of categories?

This question also appears as [MO 468121a].

015J 8.6.4 Pseudomonic Functors

Let \mathcal{C} and \mathcal{D} be categories.

- 015K **Definition 8.6.4.1.1.** A functor $F: \mathcal{C} \to \mathcal{D}$ is **pseudomonic** if it satisfies the following conditions:
- **015L** 1. For all diagrams of the form

$$X \xrightarrow{\phi} C \xrightarrow{F} \mathcal{D},$$

if we have

$$id_F \star \alpha = id_F \star \beta,$$

then $\alpha = \beta$.

015M 2. For each $X \in \text{Obj}(\mathsf{Cats})$ and each natural isomorphism

$$\beta \colon F \circ \phi \xrightarrow{\sim} F \circ \psi, \quad X \xrightarrow[F \circ \psi]{F \circ \psi} \mathcal{D},$$

there exists a natural isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\qquad \qquad }} C$$

such that we have an equality

$$X \xrightarrow{\phi}_{\psi} C \xrightarrow{F} \mathcal{D} = X \xrightarrow{F \circ \phi}_{F \circ \psi} \mathcal{D}$$

of pasting diagrams, i.e. such that we have

$$\beta = \mathrm{id}_F \star \alpha.$$

- **015N Proposition 8.6.4.1.2.** Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 015P 1. Characterisations. The following conditions are equivalent:
- 015Q (a) The functor F is pseudomonic.
- 015R (b) The functor F satisfies the following conditions:
- i. The functor F is faithful, i.e. for each $A,B\in \mathrm{Obj}(\mathcal{C}),$ the action on morphisms

$$F_{A,B} \colon \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F_A,F_B)$$

of F at (A, B) is injective.

015T ii. For each $A, B \in \mathrm{Obj}(\mathcal{C})$, the restriction

$$F_{A,B}^{\mathrm{iso}} \colon \mathrm{Iso}_{\mathcal{C}}(A,B) \to \mathrm{Iso}_{\mathcal{D}}(F_A,F_B)$$

of the action on morphisms of F at (A,B) to isomorphisms is surjective.

015U (c) We have an isocomma square of the form

$$C \stackrel{\operatorname{id}_{C}}{\cong} C \stackrel{\leftrightarrow}{\times}_{\mathcal{D}} C, \quad \operatorname{id}_{C} \downarrow \qquad \downarrow^{F} \downarrow^{F}$$
 $C \stackrel{\operatorname{eq.}}{\longrightarrow} \mathcal{D}$

in $Cats_2$ up to equivalence.

015V (d) We have an isocomma square of the form

$$C \overset{\operatorname{eq.}}{\hookrightarrow} \operatorname{Arr}(C)$$

$$C \overset{\operatorname{eq.}}{\cong} C \overset{\leftrightarrow}{\times}_{\operatorname{Arr}(\mathcal{D})} \mathcal{D}, \quad F \downarrow \qquad \downarrow^{\operatorname{Arr}(F)}$$

$$\mathcal{D} \overset{\operatorname{cq.}}{\hookrightarrow} \operatorname{Arr}(\mathcal{D})$$

in $Cats_2$ up to equivalence.

015W (e) For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition ²⁶ functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is pseudomonic.

$$F^*\colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X})$$

 $^{^{26}\}mathrm{Asking}$ the precomposition functors

- 015X 2. Conservativity. If F is pseudomonic, then F is conservative.
- 015Y 3. Essential Injectivity. If F is pseudomonic, then F is essentially injective.

Proof. Item 1, Characterisations: Omitted.

Item 2, Conservativity: Omitted.

Item 3, Essential Injectivity: Omitted.

015Z 8.6.5 Pseudoepic Functors

Let \mathcal{C} and \mathcal{D} be categories.

- **Definition 8.6.5.1.1.** A functor $F: C \to \mathcal{D}$ is **pseudoepic** if it satisfies the following conditions:
- 0161 1. For all diagrams of the form

$$C \stackrel{F}{\longrightarrow} \mathcal{D} \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_F = \beta \star \mathrm{id}_F$$

then $\alpha = \beta$.

0162 2. For each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon \phi \circ F \stackrel{\sim}{\Longrightarrow} \psi \circ F, \quad C \stackrel{\phi \circ F}{\biguplus_{\psi \circ F}} X$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad \mathcal{D} \stackrel{\phi}{\underbrace{\qquad \qquad }} X$$

of ${\cal C}$ such that we have an equality

$$C \xrightarrow{F} \mathcal{D} \underbrace{\overset{\phi}{\underset{\psi}{\longrightarrow}}}_{V} X = C \underbrace{\overset{\phi \circ F}{\underset{\psi \circ F}{\longrightarrow}}}_{V} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_F.$$

- **0163 Proposition 8.6.5.1.2.** Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 0164 1. Characterisations. The following conditions are equivalent:
- 0165 (a) The functor F is pseudoepic.
- 0166 (b) For each $X \in \text{Obj}(\mathsf{Cats})$, the functor

$$F^* \colon \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{X})$$

given by precomposition by F is pseudomonic.

(c) We have an isococomma square of the form

in Cats₂ up to equivalence.

0168 2. Dominance. If F is pseudoepic, then F is dominant (Definition 8.6.1.1.1).

Proof. Item 1, Characterisations: Omitted. Item 2, Dominance: If F is pseudoepic, then

$$F^* \colon \operatorname{Fun}(\mathcal{D}, \mathcal{X}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{X})$$

is pseudomonic for all $X \in \text{Obj}(\mathsf{Cats})$, and thus in particular faithful. By Item 4g of Item 4 of Proposition 8.5.1.1.2, this is equivalent to requiring F to be dominant.

- Question 8.6.5.1.3. Is there a nice characterisation of the pseudoepic functors, similarly to the characterisation of pseudomonic functors given in Item 1b of Item 1 of Proposition 8.6.4.1.2?
 This question also appears as [MO 321971].
- Question 8.6.5.1.4. A pseudomonic and pseudoepic functor is dominant, faithful, essentially injective, and full on isomorphisms. Is it necessarily an equivalence of categories? If not, how bad can this fail, i.e. how far can a pseudomonic and pseudoepic functor be from an equivalence of categories?

This question also appears as [MO 468334].

to be pseudomonic leads to pseudoepic functors; see Item 1b of Item 1 of Proposition 8.6.5.1.2.

Question 8.6.5.1.5. Is there a characterisation of functors $F: \mathcal{C} \to \mathcal{D}$ such that:

016C 1. For each $X \in \text{Obj}(\mathsf{Cats})$, the precomposition functor

$$F^* \colon \mathsf{Fun}(\mathcal{D}, \mathcal{X}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{X})$$

is pseudoepic?

016D 2. For each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition functor

$$F_* \colon \mathsf{Fun}(\mathcal{X}, \mathcal{C}) \to \mathsf{Fun}(\mathcal{X}, \mathcal{D})$$

is pseudoepic?

This question also appears as [MO 468121a].

O16E 8.7 Even More Conditions on Functors

016F 8.7.1 Injective on Objects Functors

Let \mathcal{C} and \mathcal{D} be categories.

016G Definition 8.7.1.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is injective on objects if the action on objects

$$F \colon \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$$

of F is injective.

- **016H** Proposition 8.7.1.1.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- **016J** 1. Characterisations. The following conditions are equivalent:
- 016K (a) The functor F is injective on objects.
- 016L (b) The functor F is an isocofibration in Cats₂.

Proof. Item 1, Characterisations: Omitted.

016M 8.7.2 Surjective on Objects Functors

Let \mathcal{C} and \mathcal{D} be categories.

016N Definition 8.7.2.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is surjective on objects if the action on objects

$$F : \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$$

of F is surjective.

016P 8.7.3 Bijective on Objects Functors

Let \mathcal{C} and \mathcal{D} be categories.

016Q Definition 8.7.3.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is bijective on objects²⁷ if the action on objects

$$F : \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$$

of F is a bijection.

016R 8.7.4 Functors Representably Faithful on Cores

Let \mathcal{C} and \mathcal{D} be categories.

016S Definition 8.7.4.1.1. A functor $F: C \to \mathcal{D}$ is representably faithful on cores if, for each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition by F functor

$$F_* : \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{C})) \to \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{D}))$$

is faithful.

016T Remark 8.7.4.1.2. In detail, a functor $F: \mathcal{C} \to \mathcal{D}$ is representably faithful on cores if, given a diagram of the form

$$X \xrightarrow{\phi} C \xrightarrow{F} \mathcal{D},$$

if α and β are natural isomorphisms and we have

$$id_F \star \alpha = id_F \star \beta,$$

then $\alpha = \beta$.

- **Question 8.7.4.1.3.** Is there a characterisation of functors representably faithful on cores?
- 016V 8.7.5 Functors Representably Full on Cores

Let \mathcal{C} and \mathcal{D} be categories.

016W Definition 8.7.5.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is representably full on cores if, for each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition by F functor

$$F_* \colon \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{C})) \to \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{D}))$$

is full.

²⁷ Further Terminology: Also called a **bo** functor.

016X Remark 8.7.5.1.2. In detail, a functor $F: \mathcal{C} \to \mathcal{D}$ is representably full on cores if, for each $\mathcal{X} \in \text{Obj}(\mathsf{Cats})$ and each natural isomorphism

$$\beta \colon F \circ \phi \xrightarrow{\sim} F \circ \psi, \quad X \xrightarrow[F \circ \psi]{F \circ \psi} \mathcal{D},$$

there exists a natural isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underset{h}{\Longrightarrow}} C$$

such that we have an equality

$$X \xrightarrow{\phi} C \xrightarrow{F} \mathcal{D} = X \xrightarrow{F \circ \phi} \mathcal{D}$$

of pasting diagrams in Cats₂, i.e. such that we have

$$\beta = \mathrm{id}_F \star \alpha.$$

Question 8.7.5.1.3. Is there a characterisation of functors representably full on cores?

This question also appears as [MO 468121a].

- 016Z 8.7.6 Functors Representably Fully Faithful on Cores Let C and \mathcal{D} be categories.
- 0170 **Definition 8.7.6.1.1.** A functor $F: \mathcal{C} \to \mathcal{D}$ is **representably fully faithful on cores** if, for each $X \in \mathrm{Obj}(\mathsf{Cats})$, the postcomposition by F functor

$$F_* : \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{C})) \to \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{D}))$$

is fully faithful.

- 0171 Remark 8.7.6.1.2. In detail, a functor $F: \mathcal{C} \to \mathcal{D}$ is representably fully faithful on cores if it satisfies the conditions in Remarks 8.7.4.1.2 and 8.7.5.1.2, i.e.:
- 0172 1. For all diagrams of the form

$$X \xrightarrow{\phi} C \xrightarrow{F} \mathcal{D},$$

with α and β natural isomorphisms, if we have $\mathrm{id}_F \star \alpha = \mathrm{id}_F \star \beta$, then $\alpha = \beta$.

0173 2. For each $X \in \text{Obj}(\mathsf{Cats})$ and each natural isomorphism

$$\beta \colon F \circ \phi \xrightarrow{\sim} F \circ \psi, \quad X \xrightarrow[F \circ \psi]{F \circ \psi} \mathcal{D}$$

of C, there exists a natural isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\qquad \qquad }} C$$

of C such that we have an equality

$$X \xrightarrow{\phi} C \xrightarrow{F} \mathcal{D} = X \xrightarrow{F \circ \phi} \mathcal{D}$$

of pasting diagrams in Cats2, i.e. such that we have

$$\beta = \mathrm{id}_F \star \alpha.$$

- **Question 8.7.6.1.3.** Is there a characterisation of functors representably fully faithful on cores?
- 0175 8.7.7 Functors Corepresentably Faithful on Cores

Let \mathcal{C} and \mathcal{D} be categories.

0176 Definition 8.7.7.1.1. A functor $F: C \to \mathcal{D}$ is corepresentably faithful on cores if, for each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition by F functor

$$F_* : \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{C})) \to \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{D}))$$

is faithful.

0177 Remark 8.7.7.1.2. In detail, a functor $F: \mathcal{C} \to \mathcal{D}$ is corepresentably faithful on cores if, given a diagram of the form

$$C \stackrel{F}{\longrightarrow} \mathcal{D} \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if α and β are natural isomorphisms and we have

$$\alpha \star \mathrm{id}_F = \beta \star \mathrm{id}_F$$

then $\alpha = \beta$.

Question 8.7.7.1.3. Is there a characterisation of functors corepresentably faithful on cores?

0179 8.7.8 Functors Corepresentably Full on Cores

Let \mathcal{C} and \mathcal{D} be categories.

O17A Definition 8.7.8.1.1. A functor $F: C \to \mathcal{D}$ is corepresentably full on cores if, for each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition by F functor

$$F_* : \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{C})) \to \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{D}))$$

is full.

017B Remark 8.7.8.1.2. In detail, a functor $F: \mathcal{C} \to \mathcal{D}$ is corepresentably full on cores if, for each $\mathcal{X} \in \text{Obj}(\mathsf{Cats})$ and each natural isomorphism

$$\beta: \phi \circ F \stackrel{\sim}{\Longrightarrow} \psi \circ F, \quad C \stackrel{\phi \circ F}{\varinjlim} X,$$

there exists a natural isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad \mathcal{D} \underbrace{\stackrel{\phi}{\circ}}_{\psi} X$$

such that we have an equality

$$X \xrightarrow{\phi} C \xrightarrow{F} \mathcal{D} = X \xrightarrow{F \circ \phi} \mathcal{D}$$

of pasting diagrams in Cats₂, i.e. such that we have

$$\beta = \alpha \star id_F$$
.

 $\tt 017C$ Question 8.7.8.1.3. Is there a characterisation of functors corepresentably full on cores?

This question also appears as [MO 468121a].

017D 8.7.9 Functors Corepresentably Fully Faithful on Cores Let C and $\mathcal D$ be categories.

017E Definition 8.7.9.1.1. A functor $F: \mathcal{C} \to \mathcal{D}$ is corepresentably fully faithful on cores if, for each $X \in \text{Obj}(\mathsf{Cats})$, the postcomposition by F functor

$$F_* \colon \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{C})) \to \mathsf{Core}(\mathsf{Fun}(\mathcal{X}, \mathcal{D}))$$

is fully faithful.

017F Remark 8.7.9.1.2. In detail, a functor $F: C \to \mathcal{D}$ is corepresentably fully faithful on cores if it satisfies the conditions in Remarks 8.7.7.1.2 and 8.7.8.1.2, i.e.:

017G 1. For all diagrams of the form

$$C \xrightarrow{F} \mathcal{D} \underbrace{\alpha \parallel \beta}_{\psi} X,$$

if α and β are natural isomorphisms and we have

$$\alpha \star \mathrm{id}_F = \beta \star \mathrm{id}_F,$$

then $\alpha = \beta$.

017H 2. For each $X \in \text{Obj}(\mathsf{Cats})$ and each natural isomorphism

$$\beta : \phi \circ F \xrightarrow{\sim} \psi \circ F, \quad C \xrightarrow{\phi \circ F} X,$$

there exists a natural isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad \mathcal{D} \stackrel{\phi}{\underbrace{\circ \psi}} \mathcal{X}$$

such that we have an equality

$$X \xrightarrow{\phi} C \xrightarrow{F} \mathcal{D} = X \xrightarrow{F \circ \phi} \mathcal{D}$$

of pasting diagrams in Cats2, i.e. such that we have

$$\beta = \alpha \star id_F$$
.

Question 8.7.9.1.3. Is there a characterisation of functors corepresentably fully faithful on cores?

017K 8.8 Natural Transformations

017L 8.8.1 Transformations

Let \mathcal{C} and \mathcal{D} be categories and $F,G:\mathcal{C} \rightrightarrows \mathcal{D}$ be functors.

017M Definition 8.8.1.1.1. A transformation²⁸ $\alpha: F \Rightarrow G$ from F to G is a collection

$$\{\alpha_A \colon F(A) \to G(A)\}_{A \in \mathrm{Obi}(C)}$$

of morphisms of \mathcal{D} .

- **017N** Notation 8.8.1.1.2. We write Trans(F, G) for the set of transformations from F to G.
- **017P** 8.8.2 Natural Transformations

Let \mathcal{C} and \mathcal{D} be categories and $F,G\colon\mathcal{C}\rightrightarrows\mathcal{D}$ be functors.

0170 Definition 8.8.2.1.1. A natural transformation $\alpha \colon F \Longrightarrow G$ from F to G is a transformation

$$\{\alpha_A \colon F(A) \to G(A)\}_{A \in \text{Obj}(\mathcal{C})}$$

from F to G such that, for each morphism $f: A \to B$ of C, the diagram

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\alpha_A \downarrow \qquad \qquad \downarrow \alpha_B$$

$$G(A) \xrightarrow{G(f)} G(B)$$

commutes.²⁹

017R Remark 8.8.2.1.2. We denote natural transformations in diagrams as

$$C \overset{F}{\underbrace{\overset{G}{\bigcirc}}} \mathcal{D}.$$

- **017S** Notation 8.8.2.1.3. We write Nat(F, G) for the set of natural transformations from F to G.
- 017T Example 8.8.2.1.4. The identity natural transformation $id_F : F \Longrightarrow F$ of F is the natural transformation consisting of the collection

$$\left\{ \mathrm{id}_{F(A)} \colon F(A) \to F(A) \right\}_{A \in \mathrm{Obj}(\mathcal{C})}$$

Proof. The naturality condition for id_F is the requirement that, for each

 $^{^{28}\}mathit{Further\ Terminology:}$ Also called an $\mathbf{unnatural\ transformation}$ for emphasis.

²⁹ Further Terminology: The morphism $\alpha_A \colon F_A \to G_A$ is called the **component of** α at A.

morphism $f: A \to B$ of C, the diagram

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\operatorname{id}_{F(A)} \downarrow \qquad \qquad \operatorname{id}_{F(B)}$$

$$F(A) \xrightarrow{F(f)} F(B)$$

commutes, which follows from unitality of the composition of C.

017U **Definition 8.8.2.1.5.** Two natural transformations $\alpha, \beta \colon F \Longrightarrow G$ are equal if we have

$$\alpha_A = \beta_A$$

for each $A \in \text{Obj}(\mathcal{C})$.

017V 8.8.3 Vertical Composition of Natural Transformations

O17W Definition 8.8.3.1.1. The vertical composition of two natural transformations $\alpha \colon F \Longrightarrow G$ and $\beta \colon G \Longrightarrow H$ as in the diagram

is the natural transformation $\beta \circ \alpha \colon F \Longrightarrow H$ consisting of the collection

$$\{(\beta \circ \alpha)_A \colon F(A) \to H(A)\}_{A \in \mathrm{Obj}(\mathcal{C})}$$

with

$$(\beta \circ \alpha)_A \stackrel{\text{def}}{=} \beta_A \circ \alpha_A$$

for each $A \in \text{Obj}(\mathcal{C})$.

Proof. The naturality condition for $\beta \circ \alpha$ is the requirement that the boundary of the diagram

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\alpha_A \downarrow \qquad (1) \qquad \downarrow \alpha_B$$

$$G(A) - G(f) \to G(B)$$

$$\beta_A \downarrow \qquad (2) \qquad \downarrow \beta_B$$

$$H(A) \xrightarrow{H(f)} H(B)$$

commutes. Since

- 1. Subdiagram (1) commutes by the naturality of α .
- 2. Subdiagram (2) commutes by the naturality of β .

so does the boundary diagram. Hence $\beta \circ \alpha$ is a natural transformation.

- **017X** Proposition 8.8.3.1.2. Let C, D, and E be categories.
- 017Y 1. Functionality. The assignment $(\beta, \alpha) \mapsto \beta \circ \alpha$ defines a function $\circ_{F,G,H} \colon \operatorname{Nat}(G,H) \times \operatorname{Nat}(F,G) \to \operatorname{Nat}(F,H)$.
- 017Z 2. Associativity. Let $F, G, H, K : C \stackrel{\Rightarrow}{\Rightarrow} \mathcal{D}$ be functors. The diagram

commutes, i.e. given natural transformations

$$F \stackrel{\alpha}{\Longrightarrow} G \stackrel{\beta}{\Longrightarrow} H \stackrel{\gamma}{\Longrightarrow} K,$$

we have

$$(\gamma \circ \beta) \circ \alpha = \gamma \circ (\beta \circ \alpha).$$

- **0180** 3. Unitality. Let $F, G: \mathcal{C} \rightrightarrows \mathcal{D}$ be functors.
 - (a) Left Unitality. The diagram

commutes, i.e. given a natural transformation $\alpha \colon F \Longrightarrow G$, we have

$$id_G \circ \alpha = \alpha.$$

(b) Right Unitality. The diagram

$$\begin{split} \operatorname{Nat}(F,G) \times \operatorname{pt} \\ \operatorname{id}_{\operatorname{Nat}(F,G)} \times [\operatorname{id}_F] \bigg| & \overset{\rho_{\operatorname{Nat}(F,G)}^{\operatorname{Sets}}}{\sim} \\ \operatorname{Nat}(F,G) \times \operatorname{Nat}(F,F) & \underset{\circ_{F,F,G}^{C}}{\longrightarrow} \operatorname{Nat}(F,G) \end{split}$$

commutes, i.e. given a natural transformation $\alpha \colon F \Longrightarrow G$, we have

$$\alpha \circ \mathrm{id}_F = \alpha.$$

0181 4. Middle Four Exchange. Let $F_1, F_2, F_3 : \mathcal{C} \to \mathcal{D}$ and $G_1, G_2, G_3 : \mathcal{D} \to \mathcal{E}$ be functors. The diagram

commutes, i.e. given a diagram

in $Cats_2$, we have

$$(\beta' \star \alpha') \circ (\beta \star \alpha) = (\beta' \circ \beta) \star (\alpha' \circ \alpha).$$

Proof. Item 1, Functionality: Clear. Item 2, Associativity: Indeed, we have

$$((\gamma \circ \beta) \circ \alpha)_A \stackrel{\text{def}}{=} (\gamma \circ \beta)_A \circ \alpha_A$$

$$\stackrel{\text{def}}{=} (\gamma_A \circ \beta_A) \circ \alpha_A$$

$$= \gamma_A \circ (\beta_A \circ \alpha_A)$$

$$\stackrel{\text{def}}{=} \gamma_A \circ (\beta \circ \alpha)_A$$

$$\stackrel{\text{def}}{=} (\gamma \circ (\beta \circ \alpha))_A$$

for each $A \in \text{Obj}(C)$, showing the desired equality. *Item 3*, *Unitality*: We have

$$(\mathrm{id}_G \circ \alpha)_A = \mathrm{id}_G \circ \alpha_A$$
$$= \alpha_A,$$
$$(\alpha \circ \mathrm{id}_F)_A = \alpha_A \circ \mathrm{id}_F$$
$$= \alpha_A$$

for each $A \in \text{Obj}(C)$, showing the desired equality. *Item 4, Middle Four Exchange*: This is proved in Item 4 of Proposition 8.8.4.1.3.

0182 8.8.4 Horizontal Composition of Natural Transformations

0183 Definition 8.8.4.1.1. The horizontal composition 30,31 of two natural transformations $\alpha \colon F \Longrightarrow G$ and $\beta \colon H \Longrightarrow K$ as in the diagram

$$C \stackrel{F}{\underbrace{\bigcirc}_{G}} \mathcal{D} \stackrel{H}{\underbrace{\bigcirc}_{K}} \mathcal{E}$$

of α and β is the natural transformation

$$\beta \star \alpha \colon (H \circ F) \Longrightarrow (K \circ G),$$

as in the diagram

$$C \stackrel{H \circ F}{\underset{K \circ G}{||}} \mathcal{E},$$

consisting of the collection

$$\left\{ (\beta \star \alpha)_A \colon H(F(A)) \to K(G(A)) \right\}_{A \in \mathrm{Obj}(\mathcal{C})},$$

of morphisms of $\mathcal E$ with

$$(\beta \star \alpha)_{A} \stackrel{\text{def}}{=} \beta_{G(A)} \circ H(\alpha_{A})$$

$$= K(\alpha_{A}) \circ \beta_{F(A)},$$

$$H(F(A)) \xrightarrow{H(\alpha_{A})} H(G(A))$$

$$\beta_{F(A)} \downarrow \qquad \qquad \downarrow^{\beta_{G(A)}}$$

$$K(F(A)) \xrightarrow{K(\alpha_{A})} K(G(A)).$$

$$\star_{(F,H),(G,K)} : \operatorname{Nat}(H,K) \times \operatorname{Nat}(F,G) \to \operatorname{Nat}(H \circ F, K \circ G).$$

³⁰ Further Terminology: Also called the **Godement product** of α and β .

 $^{^{31}\}mathrm{Horizontal}$ composition forms a map

Proof. First, we claim that we indeed have

$$\beta_{G(A)} \circ H(\alpha_A) = K(\alpha_A) \circ \beta_{F(A)}, \quad \beta_{F(A)} \downarrow \qquad \qquad \downarrow \beta_{G(A)}$$

$$K(F(A)) \xrightarrow{K(\alpha_A)} K(G(A)).$$

This is, however, simply the naturality square for β applied to the morphism $\alpha_A \colon F(A) \to G(A)$. Next, we check the naturality condition for $\beta \star \alpha$, which is the requirement that the boundary of the diagram

$$H(F(A)) \xrightarrow{H(F(f))} H(F(B))$$

$$H(\alpha_A) \qquad (1) \qquad \qquad \downarrow H(\alpha_B)$$

$$H(G(A)) - H(G(f)) \to H(G(B))$$

$$\beta_{G(A)} \qquad (2) \qquad \qquad \downarrow \beta_{G(B)}$$

$$K(G(A)) \xrightarrow{K(G(f))} K(G(B))$$

commutes. Since

- 1. Subdiagram (1) commutes by the naturality of α .
- 2. Subdiagram (2) commutes by the naturality of β .

so does the boundary diagram. Hence $\beta \circ \alpha$ is a natural transformation.³²

0184 Definition 8.8.4.1.2. Let

$$\mathcal{X} \stackrel{F}{\to} C \stackrel{\phi}{\underset{\psi}{\longrightarrow}} \mathcal{D} \stackrel{G}{\to} \mathcal{Y}$$

be a diagram in $Cats_2$.

³²Reference: [Bor94, Proposition 1.3.4].

0185 1. The **left whiskering of** α **with** G is the natural transformation ³³

$$id_G \star \alpha \colon G \circ \phi \Longrightarrow G \circ \psi.$$

2. The **right whiskering of** α **with** F is the natural transformation 34

$$\alpha \star \mathrm{id}_F \colon \phi \circ F \Longrightarrow \psi \circ F.$$

- **0187 Proposition 8.8.4.1.3.** Let C, \mathcal{D} , and \mathcal{E} be categories.
- 0188 1. Functionality. The assignment $(\beta, \alpha) \mapsto \beta \star \alpha$ defines a function $\star_{(F,G),(H,K)} \colon \operatorname{Nat}(H,K) \times \operatorname{Nat}(F,G) \to \operatorname{Nat}(H \circ F, K \circ G).$
- **0189** 2. Associativity. Let

0186

$$C \stackrel{F_1}{\underset{G_1}{\Longrightarrow}} \mathcal{D} \stackrel{F_2}{\underset{G_2}{\Longrightarrow}} \mathcal{E} \stackrel{F_3}{\underset{G_3}{\Longrightarrow}} \mathcal{F}$$

be a diagram in Cats₂. The diagram

$$\begin{split} \operatorname{Nat}(F_3,G_3) \times \operatorname{Nat}(F_2,G_2) \times \operatorname{Nat}(F_1,G_1) & \xrightarrow{\star} \operatorname{Nat}(F_3\circ F_2,G_3\circ G_2) \times \operatorname{Nat}(F_1,G_1) \\ & \overset{\operatorname{id} \times \star_{(F_1,G_1),(F_2,G_2)}}{\bigvee} & \xrightarrow{\star} \operatorname{Nat}(F_3\circ F_2,G_3\circ G_2) \times \operatorname{Nat}(F_1,G_1) \\ & \xrightarrow{\operatorname{Nat}(F_3,G_3) \times \operatorname{Nat}(F_2\circ F_1,G_2\circ G_1)_{\star}} \operatorname{Nat}(F_3\circ F_2,G_3\circ G_2) \times \operatorname{Nat}(F_3\circ F_2,G_3\circ G_2,F_1,G_1) \\ & \xrightarrow{\star} \operatorname{Nat}(F_3,G_3) \times \operatorname{Nat}(F_2\circ F_1,G_2\circ G_1)_{\star} \xrightarrow{\operatorname{Nat}(F_2\circ F_1),(G_2\circ G_1,F_3,G_3)} \operatorname{Nat}(F_3\circ F_2\circ F_1,G_3\circ G_2\circ G_1) \end{split}$$

commutes, i.e. given natural transformations

$$\mathcal{C} \stackrel{F_1}{ \overbrace{ \mathscr{O}_{1} }} \mathcal{D} \stackrel{F_2}{ \overbrace{ \mathscr{O}_{2} }} \mathcal{E} \stackrel{F_3}{ \overbrace{ \mathscr{O}_{3} }} \mathcal{F},$$

we have

$$(\gamma \star \beta) \star \alpha = \gamma \star (\beta \star \alpha).$$

018A 3. Interaction With Identities. Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors. The diagram

$$\begin{array}{ccc} \operatorname{pt} \times \operatorname{pt} & \xrightarrow{[\operatorname{id}_G] \times [\operatorname{id}_F]} & \operatorname{Nat}(G,G) \times \operatorname{Nat}(F,F) \\ & & & \downarrow^{\star_{(F,F),(G,G)}} \\ & & \operatorname{pt} & \xrightarrow{[\operatorname{id}_{G \circ F}]} & \operatorname{Nat}(G \circ F, G \circ F) \end{array}$$

 $^{^{33}}Further\ Notation:$ Also written $G\alpha$ or $G\star\alpha,$ although we won't use either of these notations in this work.

³⁴ Further Notation: Also written αF or $\alpha \star F$, although we won't use either of these

commutes, i.e. we have

$$id_G \star id_F = id_{G \circ F}.$$

018B 4. Middle Four Exchange. Let $F_1, F_2, F_3 : \mathcal{C} \to \mathcal{D}$ and $G_1, G_2, G_3 : \mathcal{D} \to \mathcal{E}$ be functors. The diagram

 $(\operatorname{Nat}(G_{2},G_{3})\times\operatorname{Nat}(G_{1},G_{2}))\times(\operatorname{Nat}(F_{2},F_{3})\times\operatorname{Nat}(F_{1},F_{2}))\overset{\mu_{4}}{\overset{\bullet}{\times}}(\operatorname{Nat}(G_{2},G_{3})\times\operatorname{Nat}(F_{2},F_{3}))\times(\operatorname{Nat}(G_{1},G_{2})\times\operatorname{Nat}(F_{1},F_{2}))$ $\circ_{G_{1},G_{2},G_{3}}\times\circ_{F_{1},F_{2},F_{3}}$ $\operatorname{Nat}(G_{1},G_{3})\times\operatorname{Nat}(F_{1},F_{3})$ $\operatorname{Nat}(G_{2}\circ F_{2},G_{3}\circ F_{3})\times\operatorname{Nat}(G_{1}\circ F_{1},G_{2}\circ F_{2})$ $\circ_{G_{1}\circ F_{1},G_{2}\circ F_{2},G_{3}\circ F_{3}}$ $\operatorname{Nat}(G_{1}\circ F_{1},G_{2}\circ F_{2},G_{3}\circ F_{3})$

commutes, i.e. given a diagram

in $Cats_2$, we have

$$(\beta' \star \alpha') \circ (\beta \star \alpha) = (\beta' \circ \beta) \star (\alpha' \circ \alpha).$$

Proof. Item 1, Functionality: Clear.

Item 2, Associativity: Omitted.

Item 3, Interaction With Identities: We have

$$(\mathrm{id}_G \star \mathrm{id}_F)_A \stackrel{\mathrm{def}}{=} (\mathrm{id}_G)_{F_A} \circ G_{(\mathrm{id}_F)_A}$$

$$\stackrel{\mathrm{def}}{=} \mathrm{id}_{G_{F_A}} \circ G_{\mathrm{id}_{F_A}}$$

$$= \mathrm{id}_{G_{F_A}} \circ \mathrm{id}_{G_{F_A}}$$

$$= \mathrm{id}_{G_{F_A}}$$

$$\stackrel{\mathrm{def}}{=} (\mathrm{id}_{G \circ F})_A$$

for each $A \in \text{Obj}(\mathcal{C})$, showing the desired equality.

notations in this work.

Item 4, Middle Four Exchange: Let $A \in \text{Obj}(C)$ and consider the diagram

The top composition

is given by $((\beta'\circ\beta)\star(\alpha'\circ\alpha))_A,$ while the bottom composition

$$G_1(F_3(A))$$

$$G_1(G_{A})$$

$$G_1(F_1(A)) \xrightarrow{\beta_{F_3(A)}} G_1(F_2(A))$$

$$G_2(F_3(A)) \xrightarrow{\beta'_{F_3(A)}} G_3(F_3(A)).$$

$$G_2(F_2(A))$$

is given by $((\beta' \star \alpha') \circ (\beta \star \alpha))_A$. Now, Subdiagram (1) corresponds to the naturality condition

$$G_1(F_2(A)) \xrightarrow{G_1(\alpha'_A)} G_1(F_3(A))$$

$$G_2(\alpha'_A) \circ \beta_{F_2(A)} = \beta_{F_3}(A) \circ G_1(\alpha'_A), \quad \beta_{F_2(A)} \downarrow \qquad \qquad \downarrow^{\beta_{F_3(A)}}$$

$$G_2(F_2(A)) \xrightarrow{G_2(\alpha'_A)} G_2(F_3(A))$$

for $\beta \colon G_1 \Longrightarrow G_2$ at $\alpha'_A \colon F_2(A) \to F_3(A)$, and thus commutes. Thus we have

$$\left(\left(\beta'\circ\beta\right)\star\left(\alpha'\circ\alpha\right)\right)_{A}=\left(\left(\beta'\star\alpha'\right)\circ\left(\beta\star\alpha\right)\right)_{A}$$

for each $A \in \text{Obj}(\mathcal{C})$ and therefore

$$(\beta' \star \alpha') \circ (\beta \star \alpha) = (\beta' \circ \beta) \star (\alpha' \circ \alpha).$$

This finishes the proof.

018C 8.8.5 Properties of Natural Transformations

- **Q18D Proposition 8.8.5.1.1.** Let $F,G:\mathcal{C}\rightrightarrows\mathcal{D}$ be functors. The following data are equivalent:³⁵
- **018E** 1. A natural transformation $\alpha \colon F \Longrightarrow G$.
- 018F 2. A functor $[\alpha]: C \to \mathcal{D}^{\mathbb{1}}$ filling the diagram

018G 3. A functor $[\alpha]: \mathcal{C} \times \mathbb{1} \to \mathcal{D}$ filling the diagram

Proof. From Item 1 to Item 2 and Back: We may identify $\mathcal{D}^{\mathbb{1}}$ with

³⁵Taken from [MO 64365].

 $Arr(\mathcal{D})$. Given a natural transformation $\alpha \colon F \Longrightarrow G$, we have a functor

$$[\alpha]: C \longrightarrow \mathcal{D}^{\perp}$$

$$A \longmapsto \alpha_{A}$$

$$(f: A \to B) \longmapsto \begin{pmatrix} F_{A} \xrightarrow{F_{f}} F_{B} \\ \downarrow \\ G_{A} \xrightarrow{G_{f}} G_{B} \end{pmatrix}$$

making the diagram in Item 2 commute. Conversely, every such functor gives rise to a natural transformation from F to G, and these constructions are inverse to each other.

From Item 2 to Item 3 and Back: This follows from Item 3 of Proposition 8.9.1.1.2.

018H 8.8.6 Natural Isomorphisms

018N

Let C and \mathcal{D} be categories and let $F,G:C \Rightarrow \mathcal{D}$ be functors.

018J Definition 8.8.6.1.1. A natural transformation $\alpha \colon F \Longrightarrow G$ is a natural isomorphism if there exists a natural transformation $\alpha^{-1} \colon G \Longrightarrow F$ such that

$$\alpha^{-1} \circ \alpha = \mathrm{id}_F,$$

 $\alpha \circ \alpha^{-1} = \mathrm{id}_G.$

- **018K** Proposition 8.8.6.1.2. Let $\alpha \colon F \Longrightarrow G$ be a natural transformation.
- **018L** 1. Characterisations. The following conditions are equivalent:
- 018M (a) The natural transformation α is a natural isomorphism.
 - (b) For each $A \in \text{Obj}(\mathcal{C})$, the morphism $\alpha_A \colon F_A \to G_A$ is an isomorphism.
- 2. Componentwise Inverses of Natural Transformations Assemble Into Natural Transformations. Let $\alpha^{-1} : G \Longrightarrow F$ be a transformation such that, for each $A \in \mathrm{Obj}(C)$, we have

$$\alpha_A^{-1} \circ \alpha_A = \mathrm{id}_{F(A)},$$

 $\alpha_A \circ \alpha_A^{-1} = \mathrm{id}_{G(A)}.$

Then α^{-1} is a natural transformation.

Proof. Item 1, Characterisations: The implication Item 1a \Longrightarrow Item 1b is clear, whereas the implication Item 1b \Longrightarrow Item 1a follows from Item 2. Item 2, Componentwise Inverses of Natural Transformations Assemble Into Natural Transformations: The naturality condition for α^{-1} corresponds to the commutativity of the diagram

$$G(A) \xrightarrow{G(f)} G(B)$$

$$\alpha_A^{-1} \downarrow \qquad \qquad \downarrow \alpha_B^{-1}$$

$$F(A) \xrightarrow{F(f)} F(B)$$

for each $A, B \in \mathrm{Obj}(\mathcal{C})$ and each $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$. Considering the diagram

$$G(A) \xrightarrow{G(f)} G(B)$$

$$\alpha_A^{-1} \downarrow \qquad (1) \qquad \qquad \downarrow \alpha_B^{-1}$$

$$F(A) - F(f) \to F(B)$$

$$\alpha_A \downarrow \qquad (2) \qquad \qquad \downarrow \alpha_B$$

$$G(A) \xrightarrow{G(f)} G(B),$$

where the boundary diagram as well as Subdiagram (2) commute, we have

$$G(f) = G(f) \circ id_{G(A)}$$

$$= G(f) \circ \alpha_A \circ \alpha_A^{-1}$$

$$= \alpha_B \circ F(f) \circ \alpha_A^{-1}.$$

Postcomposing both sides with α_B^{-1} , we get

$$\begin{split} \alpha_B^{-1} \circ G(f) &= \alpha_B^{-1} \circ \alpha_B \circ F(f) \circ \alpha_A^{-1} \\ &= \operatorname{id}_{F(B)} \circ F(f) \circ \alpha_A^{-1} \\ &= F(f) \circ \alpha_A^{-1}, \end{split}$$

which is the naturality condition we wanted to show. Thus α^{-1} is a natural transformation.

0180 8.9 Categories of Categories

018R 8.9.1 Functor Categories

Let \mathcal{C} be a category and \mathcal{D} be a small category.

- 018S Definition 8.9.1.1.1. The category of functors from C to \mathcal{D}^{36} is the category $\operatorname{Fun}(C,\mathcal{D})^{37}$ where
 - Objects. The objects of $Fun(C, \mathcal{D})$ are functors from C to \mathcal{D} .
 - Morphisms. For each $F,G\in \mathrm{Obj}(\mathsf{Fun}(\mathcal{C},\mathcal{D})),$ we have

$$\operatorname{Hom}_{\operatorname{\mathsf{Fun}}(C,\mathcal{D})}(F,G) \stackrel{\operatorname{def}}{=} \operatorname{Nat}(F,G).$$

• *Identities.* For each $F \in \text{Obj}(\mathsf{Fun}(\mathcal{C}, \mathcal{D}))$, the unit map

$$\mathbb{1}_F^{\mathsf{Fun}(\mathcal{C},\mathcal{D})} \colon \mathsf{pt} \to \mathsf{Nat}(F,F)$$

of $\operatorname{\mathsf{Fun}}(\mathcal{C},\mathcal{D})$ at F is given by

$$\operatorname{id}_F^{\operatorname{\mathsf{Fun}}(\mathcal{C},\mathcal{D})} \stackrel{\text{def}}{=} \operatorname{id}_F,$$

where $id_F: F \Longrightarrow F$ is the identity natural transformation of F of Example 8.8.2.1.4.

• Composition. For each $F,G,H\in \mathrm{Obj}(\mathsf{Fun}(\mathcal{C},\mathcal{D})),$ the composition map

$$\circ^{\mathsf{Fun}(\mathcal{C},\mathcal{D})}_{F,G,H}\colon \mathrm{Nat}(G,H)\times \mathrm{Nat}(F,G)\to \mathrm{Nat}(F,H)$$

of $\operatorname{\mathsf{Fun}}(C,\mathcal{D})$ at (F,G,H) is given by

$$\beta \circ^{\operatorname{Fun}(\mathcal{C},\mathcal{D})}_{F,G,H} \alpha \stackrel{\scriptscriptstyle \mathrm{def}}{=} \beta \circ \alpha,$$

where $\beta \circ \alpha$ is the vertical composition of α and β of Item 1 of Proposition 8.8.3.1.2.

- **018T Proposition 8.9.1.1.2.** Let \mathcal{C} and \mathcal{D} be categories and let $F: \mathcal{C} \to \mathcal{D}$ be a functor.
- 018U 1. Functoriality. The assignments $C, \mathcal{D}, (C, \mathcal{D}) \mapsto \mathsf{Fun}(C, \mathcal{D})$ define functors

$$\begin{split} \operatorname{\mathsf{Fun}}(\mathcal{C},-_2)\colon \operatorname{\mathsf{Cats}} &\to \operatorname{\mathsf{Cats}}, \\ \operatorname{\mathsf{Fun}}(-_1,\mathcal{D})\colon \operatorname{\mathsf{Cats}}^{\operatorname{\mathsf{op}}} &\to \operatorname{\mathsf{Cats}}, \\ \operatorname{\mathsf{Fun}}(-_1,-_2)\colon \operatorname{\mathsf{Cats}}^{\operatorname{\mathsf{op}}} &\times \operatorname{\mathsf{Cats}} &\to \operatorname{\mathsf{Cats}}. \end{split}$$

018V 2. 2-Functoriality. The assignments $C, \mathcal{D}, (C, \mathcal{D}) \mapsto \mathsf{Fun}(C, \mathcal{D})$ define 2-functors

$$\begin{split} \mathsf{Fun}(\mathcal{C},-_2)\colon \mathsf{Cats}_2 &\to \mathsf{Cats}_2, \\ \mathsf{Fun}(-_1,\mathcal{D})\colon \mathsf{Cats}_2^\mathsf{op} &\to \mathsf{Cats}_2, \\ \mathsf{Fun}(-_1,-_2)\colon \mathsf{Cats}_2^\mathsf{op} &\times \mathsf{Cats}_2 \to \mathsf{Cats}_2. \end{split}$$

³⁶ Further Terminology: Also called the **functor category** $Fun(C, \mathcal{D})$.

³⁷ Further Notation: Also written $\mathcal{D}^{\mathcal{C}}$ and $[\mathcal{C}, \mathcal{D}]$.

018W 3. Adjointness. We have adjunctions

$$(C \times - \dashv \operatorname{\mathsf{Fun}}(C, -))$$
: $\operatorname{\mathsf{Cats}} \underbrace{\bot}_{\operatorname{\mathsf{Fun}}(C, -)} \operatorname{\mathsf{Cats}},$
 $(- \times \mathcal{D} \dashv \operatorname{\mathsf{Fun}}(\mathcal{D}, -))$: $\operatorname{\mathsf{Cats}} \underbrace{\bot}_{\operatorname{\mathsf{Fun}}(\mathcal{D}, -)} \operatorname{\mathsf{Cats}},$

witnessed by bijections of sets

$$\begin{split} \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C} \times \mathcal{D}, \mathcal{E}) &\cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{D}, \mathsf{Fun}(\mathcal{C}, \mathcal{E})), \\ \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C} \times \mathcal{D}, \mathcal{E}) &\cong \operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C}, \mathsf{Fun}(\mathcal{D}, \mathcal{E})), \end{split}$$

natural in $C, \mathcal{D}, \mathcal{E} \in \text{Obj}(\mathsf{Cats})$.

018X 4. 2-Adjointness. We have 2-adjunctions

$$(C \times - \dashv \operatorname{\mathsf{Fun}}(C,-)) \colon \operatorname{\mathsf{Cats}}_{2} \underbrace{\overset{C \times -}{\downarrow_{2}}}_{\operatorname{\mathsf{Fun}}(C,-)} \operatorname{\mathsf{Cats}}_{2},$$

$$(- \times \mathcal{D} \dashv \operatorname{\mathsf{Fun}}(\mathcal{D},-)) \colon \operatorname{\mathsf{Cats}}_{2} \underbrace{\overset{C \times -}{\downarrow_{2}}}_{\operatorname{\mathsf{Fun}}(\mathcal{D},-)} \operatorname{\mathsf{Cats}}_{2},$$

witnessed by isomorphisms of categories

$$\begin{aligned} \mathsf{Fun}(\mathcal{C} \times \mathcal{D}, \mathcal{E}) &\cong \mathsf{Fun}(\mathcal{D}, \mathsf{Fun}(\mathcal{C}, \mathcal{E})), \\ \mathsf{Fun}(\mathcal{C} \times \mathcal{D}, \mathcal{E}) &\cong \mathsf{Fun}(\mathcal{C}, \mathsf{Fun}(\mathcal{D}, \mathcal{E})), \end{aligned}$$

natural in $C, \mathcal{D}, \mathcal{E} \in \text{Obj}(\mathsf{Cats}_2)$.

018Y 5. Interaction With Punctual Categories. We have a canonical isomorphism of categories

$$\operatorname{\mathsf{Fun}}(\operatorname{\mathsf{pt}},\mathcal{C})\cong\mathcal{C},$$

natural in $C \in \text{Obj}(\mathsf{Cats})$.

018Z 6. Objectwise Computation of Co/Limits. Let

$$D \colon \mathcal{I} \to \mathsf{Fun}(\mathcal{C}, \mathcal{D})$$

be a diagram in $Fun(C, \mathcal{D})$. We have isomorphisms

$$\lim(D)_A \cong \lim_{i \in I} (D_i(A)),$$
$$\operatorname{colim}(D)_A \cong \operatorname{colim}_{i \in I} (D_i(A)),$$

naturally in $A \in \text{Obj}(\mathcal{C})$.

- 0190 7. Interaction With Co/Completeness. If $\mathcal E$ is co/complete, then so is $\operatorname{Fun}(\mathcal C,\mathcal E)$.
- 0191 8. Monomorphisms and Epimorphisms. Let $\alpha \colon F \Longrightarrow G$ be a morphism of $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$. The following conditions are equivalent:
- 0192 (a) The natural transformation

$$\alpha \colon F \Longrightarrow G$$

is a monomorphism (resp. epimorphism) in $Fun(C, \mathcal{D})$.

0193 (b) For each $A \in \text{Obj}(C)$, the morphism

$$\alpha_A \colon F_A \to G_A$$

is a monomorphism (resp. epimorphism) in \mathcal{D} .

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item 5, Interaction With Punctual Categories: Omitted.

Item 6, Objectwise Computation of Co/Limits: Omitted.

Item 7, Interaction With Co/Completeness: This follows from ??.

Item 8, Monomorphisms and Epimorphisms: Omitted.

0194 8.9.2 The Category of Categories and Functors

- 0195 Definition 8.9.2.1.1. The category of (small) categories and functors is the category Cats where
 - Objects. The objects of Cats are small categories.
 - Morphisms. For each $C, \mathcal{D} \in \text{Obj}(\mathsf{Cats})$, we have

$$\operatorname{Hom}_{\mathsf{Cats}}(\mathcal{C}, \mathcal{D}) \stackrel{\text{def}}{=} \operatorname{Obj}(\mathsf{Fun}(\mathcal{C}, \mathcal{D})).$$

• *Identities*. For each $C \in \text{Obj}(\mathsf{Cats})$, the unit map

$$\mathbb{1}_{\mathcal{C}}^{\mathsf{Cats}} \colon \mathrm{pt} \to \mathrm{Hom}_{\mathsf{Cats}}(\mathcal{C}, \mathcal{C})$$

of Cats at C is defined by

$$\operatorname{id}_{\mathcal{C}}^{\mathsf{Cats}} \stackrel{\mathrm{def}}{=} \operatorname{id}_{\mathcal{C}},$$

where $id_C: C \to C$ is the identity functor of C of Example 8.4.1.1.4.

• Composition. For each $C, \mathcal{D}, \mathcal{E} \in \mathrm{Obj}(\mathsf{Cats})$, the composition map

$$\circ^{\mathsf{Cats}}_{\mathcal{C}.\mathcal{D}.\mathcal{E}} \colon \mathrm{Hom}_{\mathsf{Cats}}(\mathcal{D},\mathcal{E}) \times \mathrm{Hom}_{\mathsf{Cats}}(\mathcal{C},\mathcal{D}) \to \mathrm{Hom}_{\mathsf{Cats}}(\mathcal{C},\mathcal{E})$$

of Cats at $(C, \mathcal{D}, \mathcal{E})$ is given by

$$G \circ_{C,\mathcal{D},\mathcal{E}}^{\mathsf{Cats}} F \stackrel{\text{def}}{=} G \circ F,$$

where $G \circ F \colon \mathcal{C} \to \mathcal{E}$ is the composition of F and G of Definition 8.4.1.1.5.

- 0196 Proposition 8.9.2.1.2. Let C be a category.
- 0197 1. Co/Completeness. The category Cats is complete and cocomplete.
- 2. Cartesian Monoidal Structure. The quadruple (Cats, ×, pt, Fun) is a Cartesian closed monoidal category.

Proof. Item 1, Co/Completeness: Omitted.

Item 2, Cartesian Monoidal Structure: Omitted.

- 8.9.3 The 2-Category of Categories, Functors, and Natural
 Transformations
- 019A Definition 8.9.3.1.1. The 2-category of (small) categories, functors, and natural transformations is the 2-category Cats₂ where
 - Objects. The objects of Cats₂ are small categories.
 - Hom-Categories. For each $\mathcal{C}, \mathcal{D} \in \text{Obj}(\mathsf{Cats}_2)$, we have

$$\mathsf{Hom}_{\mathsf{Cats}_2}(C,\mathcal{D}) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathsf{Fun}(C,\mathcal{D}).$$

• *Identities*. For each $C \in \text{Obj}(\mathsf{Cats}_2)$, the unit functor

$$\mathbb{1}_{\mathcal{C}}^{\mathsf{Cats}_2} \colon \mathsf{pt} \to \mathsf{Fun}(\mathcal{C},\mathcal{C})$$

of Cats_2 at \mathcal{C} is the functor picking the identity functor $\mathrm{id}_{\mathcal{C}}\colon \mathcal{C}\to \mathcal{C}$ of \mathcal{C} .

• Composition. For each $C, \mathcal{D}, \mathcal{E} \in \mathrm{Obj}(\mathsf{Cats}_2)$, the composition bifunctor

$$\circ_{\mathcal{C},\mathcal{D},\mathcal{E}}^{\mathsf{Cats}_2} \colon \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{D},\mathcal{E}) \times \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{C},\mathcal{D}) \to \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{C},\mathcal{E})$$

of $Cats_2$ at $(C, \mathcal{D}, \mathcal{E})$ is the functor where

- Action on Objects. For each object $(G, F) \in \text{Obj}(\mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{D}, \mathcal{E}) \times \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{C}, \mathcal{D}))$, we have

$$\circ_{C,\mathcal{D},\mathcal{E}}^{\mathsf{Cats}_2}(G,F) \stackrel{\mathrm{def}}{=} G \circ F.$$

- Action on Morphisms. For each morphism (β, α) : $(K, H) \Longrightarrow (G, F)$ of $\mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{O}, \mathcal{E}) \times \mathsf{Hom}_{\mathsf{Cats}_2}(\mathcal{O}, \mathcal{D})$, we have

$$\circ_{C,\mathcal{D},\mathcal{E}}^{\mathsf{Cats}_2}(\beta,\alpha) \stackrel{\mathrm{def}}{=} \beta \star \alpha,$$

where $\beta \star \alpha$ is the horizontal composition of α and β of Definition 8.8.4.1.1.

- **019B** Proposition 8.9.3.1.2. Let C be a category.
- 019C 1. 2-Categorical Co/Completeness. The 2-category Cats₂ is complete and cocomplete as a 2-category, having all 2-categorical and bicategorical co/limits.

Proof. Item 1, Co/Completeness: Omitted.

- 019D 8.9.4 The Category of Groupoids
- **O19E** Definition 8.9.4.1.1. The category of (small) groupoids is the full subcategory Grpd of Cats spanned by the groupoids.
- 019F 8.9.5 The 2-Category of Groupoids
- 019G Definition 8.9.5.1.1. The 2-category of (small) groupoids is the full sub-2-category Grpd_2 of Cats_2 spanned by the groupoids.

Appendices

8.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Part IV Bicategories

Chapter 9

Types of Morphisms in Bicategories

019H In this chapter, we study special kinds of morphisms in bicategories:

1. Monomorphisms and Epimorphisms in Bicategories (Sections 9.1 and 9.2). There is a large number of different notions capturing the idea of a "monomorphism" or of an "epimorphism" in a bicategory. Arguably, the notion that best captures these concepts is that of a pseudomonic morphism (Definition 9.1.10.1.1) and of a pseudoepic morphism (Definition 9.2.10.1.1), although the other notions introduced in Sections 9.1 and 9.2 are also interesting on their own.

Contents

9.1	Mono	morphisms in Bicategories423	
	9.1.1	Representably Faithful Morphisms 423	
	9.1.2	Representably Full Morphisms	
	9.1.3	Representably Fully Faithful Morphisms 425	
	9.1.4	Morphisms Representably Faithful on Cores 426	
	9.1.5	Morphisms Representably Full on Cores 426	
	9.1.6	Morphisms Representably Fully Faithful on	
Cores			
	9.1.7	Representably Essentially Injective Morphisms	
428			
	9.1.8	Representably Conservative Morphisms 429	
	9.1.9	Strict Monomorphisms	
	9.1.10	Pseudomonic Morphisms	
9.2	Epimorphisms in Bicategories432		
	9.2.1	Corepresentably Faithful Morphisms	

	9.2.3	Corepresentably Fully Faithful Morphisms 433
	9.2.4	Morphisms Corepresentably Faithful on Cores
435		
	9.2.5	Morphisms Corepresentably Full on Cores 435
	9.2.6	Morphisms Corepresentably Fully Faithful
on Cores.		
		Corepresentably Essentially Injective Mor-
phisms		
	9.2.8	Corepresentably Conservative Morphisms 437
	9.2.9	Strict Epimorphisms
	9.2.10	Pseudoepic Morphisms
9.A	Other	Chapters440

919J 9.1 Monomorphisms in Bicategories

019K 9.1.1 Representably Faithful Morphisms

Let C be a bicategory.

Definition 9.1.1.1.1. A 1-morphism $f: A \to B$ of C is **representably** faithful¹ if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is faithful.

019M Remark 9.1.1.1.2. In detail, f is representably faithful if, for all diagrams in C of the form

$$X \xrightarrow{\phi \atop \psi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

 ${\tt 019N}$ **Example 9.1.1.1.3.** Here are some examples of representably faithful morphisms.

¹Further Terminology: Also called simply a **faithful morphism**, based on Item 1 of Example 9.1.1.1.3.

019P 1. Representably Faithful Morphisms in Cats₂. The representably faithful morphisms in Cats₂ are precisely the faithful functors; see Item 1 of Proposition 8.5.1.1.2.

2. Representably Faithful Morphisms in Rel. Every morphism of Rel is representably faithful; see Item 1 of Proposition 5.3.8.1.1.

019R 9.1.2 Representably Full Morphisms

Let C be a bicategory.

0198 **Definition 9.1.2.1.1.** A 1-morphism $f: A \to B$ of C is **representably** full² if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is full.

Q19T Remark 9.1.2.1.2. In detail, f is representably full if, for each $X \in \text{Obj}(C)$ and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \underbrace{\alpha \Downarrow}_{\psi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

- **©19U Example 9.1.2.1.3.** Here are some examples of representably full morphisms.
- 019V 1. Representably Full Morphisms in Cats₂. The representably full morphisms in Cats₂ are precisely the full functors; see Item 1 of Proposition 8.5.2.1.2.
- 2. Representably Full Morphisms in Rel. The representably full morphisms in Rel are characterised in Item 2 of Proposition 5.3.8.1.1.

²Further Terminology: Also called simply a full morphism, based on Item 1 of

019X 9.1.3 Representably Fully Faithful Morphisms

Let C be a bicategory.

019Z

- **Definition 9.1.3.1.1.** A 1-morphism $f: A \to B$ of C is **representably fully faithful**³ if the following equivalent conditions are satisfied:
 - 1. The 1-morphism f is representably faithful (Definition 9.1.1.1.1) and representably full (Definition 9.1.2.1.1).
- 01A0 2. For each $X \in \text{Obj}(\mathcal{C})$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is fully faithful.

- **Q1A1** Remark 9.1.3.1.2. In detail, f is representably fully faithful if the conditions in Remark 9.1.1.1.2 and Remark 9.1.2.1.2 hold:
 - 1. For all diagrams in \mathcal{C} of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\beta \downarrow \qquad \qquad}_{f \circ \psi} B$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \xrightarrow{\psi} A$$

of ${\mathcal C}$ such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

Example 9.1.2.1.3.

³Further Terminology: Also called simply a fully faithful morphism, based on

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

- **O1A2 Example 9.1.3.1.3.** Here are some examples of representably fully faithful morphisms.
- 01A3 1. Representably Fully Faithful Morphisms in Cats₂. The representably fully faithful morphisms in Cats₂ are precisely the fully faithful functors; see Item 5 of Proposition 8.5.3.1.2.
- 2. Representably Fully Faithful Morphisms in Rel. The representably fully faithful morphisms of Rel coincide (Item 3 of Proposition 5.3.8.1.1) with the representably full morphisms in Rel, which are characterised in Item 2 of Proposition 5.3.8.1.1.
- 01A5 9.1.4 Morphisms Representably Faithful on Cores Let C be a bicategory.
- 01A6 **Definition 9.1.4.1.1.** A 1-morphism $f: A \to B$ of C is **representably** faithful on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Core}(\mathsf{Hom}_C(X,A)) \to \mathsf{Core}(\mathsf{Hom}_C(X,B))$$

given by postcomposition by f is faithful.

01A7 Remark 9.1.4.1.2. In detail, f is representably faithful on cores if, for all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

01A8 9.1.5 Morphisms Representably Full on Cores

Let C be a bicategory.

01A9 Definition 9.1.5.1.1. A 1-morphism $f: A \to B$ of C is representably full on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \mathsf{Core}(\mathsf{Hom}_C(X,A)) \to \mathsf{Core}(\mathsf{Hom}_C(X,B))$$

given by postcomposition by f is full.

01AA Remark 9.1.5.1.2. In detail, f is representably full on cores if, for each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon f \circ \phi \xrightarrow{\sim} f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\circ}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

- 01AB 9.1.6 Morphisms Representably Fully Faithful on Cores Let C be a bicategory.
- 01AC Definition 9.1.6.1.1. A 1-morphism $f: A \to B$ of C is representably fully faithful on cores if the following equivalent conditions are satisfied:
- 1. The 1-morphism f is representably faithful on cores (Definition 9.1.5.1.1) and representably full on cores (Definition 9.1.4.1.1).
- **Olak** 2. For each $X \in \text{Obj}(\mathcal{C})$, the functor

$$f_* \colon \mathsf{Core}(\mathsf{Hom}_C(X,A)) \to \mathsf{Core}(\mathsf{Hom}_C(X,B))$$

given by postcomposition by f is fully faithful.

- **Q1AF** Remark 9.1.6.1.2. In detail, f is representably fully faithful on cores if the conditions in Remark 9.1.4.1.2 and Remark 9.1.5.1.2 hold:
 - 1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon f \circ \phi \xrightarrow{\sim} f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\circ}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

01AG 9.1.7 Representably Essentially Injective Morphisms

Let C be a bicategory.

O1AH Definition 9.1.7.1.1. A 1-morphism $f: A \to B$ of C is representably essentially injective if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_C(X,A) \to \mathsf{Hom}_C(X,B)$$

given by postcomposition by f is essentially injective.

O1AJ Remark 9.1.7.1.2. In detail, f is representably essentially injective if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ of C, the following condition is satisfied:

$$(\star)$$
 If $f \circ \phi \cong f \circ \psi$, then $\phi \cong \psi$.

01AK 9.1.8 Representably Conservative Morphisms

Let C be a bicategory.

O1AL Definition 9.1.8.1.1. A 1-morphism $f: A \to B$ of C is representably conservative if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_C(X,A) \to \mathsf{Hom}_C(X,B)$$

given by postcomposition by f is conservative.

Q1AM Remark 9.1.8.1.2. In detail, f is representably conservative if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ and each 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \underbrace{\alpha \downarrow}_{\psi}^{\phi} A$$

of C, if the 2-morphism

$$\mathrm{id}_f \star \alpha \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\stackrel{f \circ \phi}{\underset{\mathrm{id}_f \star \alpha}{\parallel}}}_{f \circ \psi} B$$

is a 2-isomorphism, then so is α .

01AN 9.1.9 Strict Monomorphisms

Let C be a bicategory.

O1AP Definition 9.1.9.1.1. A 1-morphism $f: A \to B$ of C is a **strict monomorphism** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is injective on objects, i.e. its action on objects

$$f_* : \mathrm{Obj}(\mathsf{Hom}_C(X,A)) \to \mathrm{Obj}(\mathsf{Hom}_C(X,B))$$

is injective.

©1AQ Remark 9.1.9.1.2. In detail, f is a strict monomorphism in C if, for each diagram in C of the form

$$X \stackrel{\phi}{\Longrightarrow} A \stackrel{f}{\longrightarrow} B,$$

if $f \circ \phi = f \circ \psi$, then $\phi = \psi$.

O1AR Example 9.1.9.1.3. Here are some examples of strict monomorphisms.

01AS 1. Strict Monomorphisms in Cats₂. The strict monomorphisms in Cats₂ are precisely the functors which are injective on objects and injective on morphisms; see Item 1 of Proposition 8.6.2.1.2.

01AT 2. Strict Monomorphisms in **Rel**. The strict monomorphisms in **Rel** are characterised in Proposition 5.3.7.1.1.

01AU 9.1.10 Pseudomonic Morphisms

Let C be a bicategory.

Olav Definition 9.1.10.1.1. A 1-morphism $f: A \to B$ of C is **pseudomonic** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is pseudomonic.

- **Q1AW** Remark 9.1.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudomonic if it satisfies the following conditions:
- **Olax** 1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

Olay 2. For each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon f \circ \phi \xrightarrow{\sim} f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\circ}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

- **Olaz Proposition 9.1.10.1.3.** Let $f: A \to B$ be a 1-morphism of C.
- 01B0 1. Characterisations. The following conditions are equivalent:
- 01B1 (a) The morphism f is pseudomonic.
- (b) The morphism f is representably full on cores and representably faithful.
- 01B3 (c) We have an isocomma square of the form

in C up to equivalence.

- 01B4 2. Interaction With Cotensors. If C has cotensors with 1, then the following conditions are equivalent:
 - (a) The morphism f is pseudomonic.
 - (b) We have an isocomma square of the form

$$A \stackrel{\text{eq.}}{\cong} A \stackrel{\leftrightarrow}{\times}_{\mathbb{1} \pitchfork F} B, \qquad A \stackrel{\text{for } A}{\downarrow} \qquad A \stackrel$$

in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.

Item 2, Interaction With Cotensors: Omitted.

01B5 9.2 Epimorphisms in Bicategories

01B6 9.2.1 Corepresentably Faithful Morphisms

Let C be a bicategory.

O1B7 Definition 9.2.1.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably faithful** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$$

given by precomposition by f is faithful.

©1B8 Remark 9.2.1.1.2. In detail, f is corepresentably faithful if, for all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

- **O1B9** Example 9.2.1.1.3. Here are some examples of corepresentably faithful morphisms.
- 01BA 1. Corepresentably Faithful Morphisms in Cats₂. The corepresentably faithful morphisms in Cats₂ are characterised in Item 4 of Proposition 8.5.1.1.2.
- 01BB 2. Corepresentably Faithful Morphisms in Rel. Every morphism of Rel is corepresentably faithful; see Item 1 of Proposition 5.3.10.1.1.

01BC 9.2.2 Corepresentably Full Morphisms

Let C be a bicategory.

01BD Definition 9.2.2.1.1. A 1-morphism $f: A \to B$ of C is corepresentably full if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is full.

Q1BE Remark 9.2.2.1.2. In detail, f is corepresentably full if, for each $X \in \text{Obj}(C)$ and each 2-morphism

$$\beta : \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad B \underbrace{\alpha \downarrow \qquad }_{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow}_{\psi}^{\phi} X = A \underbrace{\beta \downarrow}_{\psi \circ f}^{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

- **O1BF** Example 9.2.2.1.3. Here are some examples of corepresentably full morphisms.
- 01BG 1. Corepresentably Full Morphisms in Cats₂. The corepresentably full morphisms in Cats₂ are characterised in Item 5 of Proposition 8.5.2.1.2.
- 01BH 2. Corepresentably Full Morphisms in Rel. The corepresentably full morphisms in Rel are characterised in ?? of Proposition 5.3.8.1.1.
- 01BJ 9.2.3 Corepresentably Fully Faithful Morphisms

Let C be a bicategory.

- 01BK Definition 9.2.3.1.1. A 1-morphism $f: A \to B$ of C is corepresentably fully faithful⁴ if the following equivalent conditions are satisfied:
- 1. The 1-morphism f is corepresentably full (Definition 9.2.2.1.1) and corepresentably faithful (Definition 9.2.1.1.1).

⁴Further Terminology: Corepresentably fully faithful morphisms have also been called **lax epimorphisms** in the literature (e.g. in [Adá+01]), though we will always use the name "corepresentably fully faithful morphism" instead in this work.

01BM 2. For each $X \in \text{Obj}(\mathcal{C})$, the functor

$$f^* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(B,X) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(A,X)$$

given by precomposition by f is fully faithful.

- **01BN Remark 9.2.3.1.2.** In detail, f is corepresentably fully faithful if the conditions in Remark 9.2.1.1.2 and Remark 9.2.2.1.2 hold:
 - 1. For all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \Downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

$$\beta \colon \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow[\psi \circ f]{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad B \underbrace{\alpha \downarrow}_{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\varphi \circ f}_{\psi} X = A \underbrace{\beta \downarrow}_{\psi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

- **©1BP** Example 9.2.3.1.3. Here are some examples of corepresentably fully faithful morphisms.
- 01BQ 1. Corepresentably Fully Faithful Morphisms in Cats₂. The fully faithful epimorphisms in Cats₂ are characterised in Item 9 of Proposition 8.5.3.1.2.
- 01BR 2. Corepresentably Fully Faithful Morphisms in Rel. The corepresentably fully faithful morphisms of Rel coincide (Item 3 of Proposition 5.3.10.1.1) with the corepresentably full morphisms in Rel, which are characterised in Item 2 of Proposition 5.3.10.1.1.

01BS 9.2.4 Morphisms Corepresentably Faithful on Cores Let C be a bicategory.

O1BT Definition 9.2.4.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably faithful on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is faithful.

O1BU Remark 9.2.4.1.2. In detail, f is corepresentably faithful on cores if, for all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \Downarrow \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

01BV 9.2.5 Morphisms Corepresentably Full on Cores Let C be a bicategory.

O1BW Definition 9.2.5.1.1. A 1-morphism $f: A \to B$ of C is corepresentably full on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is full.

©1BX Remark 9.2.5.1.2. In detail, f is corepresentably full on cores if, for each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \underbrace{\beta \downarrow \atop \psi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \underbrace{\alpha \downarrow}_{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow}_{\psi}^{\phi} X = A \underbrace{\beta \downarrow}_{\psi \circ f}^{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

- 01BY 9.2.6 Morphisms Corepresentably Fully Faithful on Cores Let $\mathcal C$ be a bicategory.
- 01BZ Definition 9.2.6.1.1. A 1-morphism $f: A \to B$ of C is corepresentably fully faithful on cores if the following equivalent conditions are satisfied:
- 1. The 1-morphism f is corepresentably full on cores (Definition 9.2.5.1.1) and corepresentably faithful on cores (Definition 9.2.1.1.1).
- 01C1 2. For each $X \in \text{Obj}(\mathcal{C})$, the functor

$$f^*: \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is fully faithful.

- **©1C2** Remark 9.2.6.1.2. In detail, f is corepresentably fully faithful on cores if the conditions in Remark 9.2.4.1.2 and Remark 9.2.5.1.2 hold:
 - 1. For all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \Downarrow \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \xrightarrow{\psi \circ f} X$$

of \mathcal{C} , there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \underbrace{\alpha \downarrow \qquad}_{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\phi \circ f}_{\psi} X = A \underbrace{\beta \downarrow }_{\psi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

- 01C3 9.2.7 Corepresentably Essentially Injective Morphisms Let C be a bicategory.
- 01C4 Definition 9.2.7.1.1. A 1-morphism $f: A \to B$ of C is corepresentably essentially injective if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_C(B,X) \to \mathsf{Hom}_C(A,X)$$

given by precomposition by f is essentially injective.

©1C5 Remark 9.2.7.1.2. In detail, f is corepresentably essentially injective if, for each pair of morphisms $\phi, \psi \colon B \rightrightarrows X$ of C, the following condition is satisfied:

$$(\star)$$
 If $\phi \circ f \cong \psi \circ f$, then $\phi \cong \psi$.

- 01C6 9.2.8 Corepresentably Conservative Morphisms Let C be a bicategory.
- **Olday Definition 9.2.8.1.1.** A 1-morphism $f: A \to B$ of C is corepresentably conservative if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is conservative.

©1C8 Remark 9.2.8.1.2. In detail, f is corepresentably conservative if, for each pair of morphisms $\phi, \psi \colon B \rightrightarrows X$ and each 2-morphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \underbrace{\stackrel{\phi}{\Longrightarrow}}_{\psi} X$$

of C, if the 2-morphism

$$\alpha \star \mathrm{id}_f \colon \phi \circ f \Longrightarrow \psi \circ f, \qquad A \underbrace{ \alpha \star \mathrm{id}_f \atop \alpha \star \mathrm{id}_f }_{\psi \circ f} X$$

is a 2-isomorphism, then so is α .

01C9 9.2.9 Strict Epimorphisms

Let C be a bicategory.

O1CA Definition 9.2.9.1.1. A 1-morphism $f: A \to B$ is a strict epimorphism in C if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is injective on objects, i.e. its action on objects

$$f_* \colon \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

is injective.

Q1CB Remark 9.2.9.1.2. In detail, f is a strict epimorphism if, for each diagram in C of the form

$$A \stackrel{f}{\longrightarrow} B \stackrel{\phi}{\Longrightarrow} X,$$

if $\phi \circ f = \psi \circ f$, then $\phi = \psi$.

- **©1CC** Example 9.2.9.1.3. Here are some examples of strict epimorphisms.
- 01CD 1. Strict Epimorphisms in Cats₂. The strict epimorphisms in Cats₂ are characterised in Item 1 of Proposition 8.6.3.1.2.
- 01CE 2. Strict Epimorphisms in **Rel**. The strict epimorphisms in **Rel** are characterised in Proposition 5.3.9.1.1.

01CF 9.2.10 Pseudoepic Morphisms

Let C be a bicategory.

Olco Definition 9.2.10.1.1. A 1-morphism $f: A \to B$ of C is **pseudoepic** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is pseudomonic.

©1CH Remark 9.2.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudoepic if it satisfies the following conditions:

01CJ 1. For all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

O1CK 2. For each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \xrightarrow[\psi \circ f]{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \stackrel{\phi}{\underbrace{\circ \psi}} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\phi \circ f}_{\psi} X = A \underbrace{\beta \downarrow }_{\psi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

©1CL Proposition 9.2.10.1.3. Let $f: A \to B$ be a 1-morphism of C.

01CM 1. Characterisations. The following conditions are equivalent:

O1CN (a) The morphism f is pseudoepic.

01CP

(b) The morphism f is corepresentably full on cores and corepresentably faithful.

01CQ (c) We have an isococomma square of the form

$$B \stackrel{\text{eq.}}{\cong} B \stackrel{\text{id}_B}{\coprod} B, \quad \text{id}_B \qquad \qquad \downarrow f \qquad \qquad \downarrow f$$

$$B \stackrel{\text{eq.}}{\rightleftharpoons} A$$

in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.

Appendices

9.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Part V Extra Part

Chapter 10

Miscellaneous Notes

\sim 1	Ι.	\sim	$\overline{}$
			u

Contents

10.1 To Do	List442	
10.1.1	Omitted Proofs To Add	
10.1.2	Things To Explore/Add	
10.A Other	Chapters448	

01CS 10.1 To Do List

01CT 10.1.1 Omitted Proofs To Add

He так благотворна истина, как зловредна ее видимость.

Truth does not do as much good in the world as the appearance of truth does evil.

Даниил Данковский

Daniil Dankovsky

There's a very large number of omitted proofs throughout these notes. Here I list them in decreasing order of how nice it would be to add them.

©1CU Remark 10.1.1.1.1. Proofs that *need* to be added at some point:

- 1. ??.
- 2. ??.
- 3. Horizontal composition of natural transformations is associative: ?? of ??.
- 4. Fully faithful functors are essentially injective: ?? of ??.

Proofs that would be very nice to be added at some point:

- 1. Properties of pseudomonic functors: ??.
- 2. Characterisation of fully faithful functors: ?? of ??.

Proofs that would be nice to be added at some point:

- 1. Properties of posetal categories: ??.
- 2. The quadruple adjunction between categories and sets: ??.
- 3. Properties of groupoid completions: ??.
- 4. Properties of cores: ??.
- 5. F_* faithful iff F faithful: ?? of ??.
- 6. F_* full iff F full: ?? of ??.
- 7. Injective on objects functors are precisely the isocofibrations in Cats₂: ?? of ??.
- 8. Characterisations of monomorphisms of categories: ?? of ??.
- 9. Epimorphisms of categories are surjective on objects: ?? of ??.
- 10. Properties of pseudoepic functors: ??.

01CV 10.1.2 Things To Explore/Add

Here we list things to be explored/added to this work in the future.

- **O1CW** Remark 10.1.2.1.1. Set theory through a category theory lens:
 - 1. Isbell duality for sets.
 - 2. Density comonads and codensity monads for sets.

Relations:

- 1. 2-Categorical monomorphisms and epimorphisms in **Rel**.
- 2. Co/limits in **Rel**.
- 3. Apartness composition, categorical properties of **Rel** with apartness, and apartness relations.
- 4. Apartness defines a composition for relations, but its analogue

$$\mathfrak{q} \square \mathfrak{p} \stackrel{\mathrm{def}}{=} \int_{A \in \mathcal{C}} \mathfrak{p}_A^{-1} \coprod \mathfrak{q}_{-2}^A$$

fails to be unital for profunctors. Is there a less obvious analogue of apartness composition for profunctors?

- 5. Codensity monad $\operatorname{Ran}_{J}(J)$ of a relation (What about $\operatorname{Rift}_{J}(J)$?)
- 6. Relative comonads in the 2-category of relations
- 7. Discrete fibrations and Street fibrations in **Rel**.
- 8. Consider adding the sections
 - The Monoidal Bicategory of Relations
 - The Monoidal Double Category of Relations

to Relations.

Spans:

- 1. Universal property of the bicategory of spans, https://ncatlab.org/nlab/show/span
- 2. Write about cospans.

Un/Straightening:

1. Write proper sections on straightening for lax functors from sets to Rel or Span (displayed sets)

Categories:

- 1. Expand ?? and add a proof to it.
- Sections and retractions; retracts, https://ncatlab.org/nlab/s how/retract.
- 3. Regular categories: https://arxiv.org/pdf/2004.08964.pdf.
- 4. Are pseudoepic functors those functors whose restricted Yoneda embedding is pseudomonic and Yoneda preserves absolute colimits?
- 5. Absolutely dense functors enriched over \mathbb{R}^+ apparently reduce to topological density

Types of Morphisms in Categories:

- 1. Behaviour in $\mathsf{Fun}(\mathcal{C},\mathcal{D}),$ e.g. pointwise sections vs. sections in $\mathsf{Fun}(\mathcal{C},\mathcal{D}).$
- 2. A faithful functor from balanced category is conservative

Yoneda stuff:

1. Properties of restricted Yoneda embedding, e.g. if the restricted Yoneda embedding is full, then what can we conclude? Related: https://qchu.wordpress.com/2015/05/17/generators/

Adjunctions:

 Adjunctions, units, counits, and fully faithfulness as in https: //mathoverflow.net/questions/100808/properties-of-functor s-and-their-adjoints.

- 2. Morphisms between adjunctions and bicategory Adj(C).
- 3. https://ncatlab.org/nlab/show/transformation+of+adjoints

Constructions With Categories:

1. Comparison between pseudopullbacks and isocomma categories: the "evident" functor $C \times_{\mathcal{E}}^{\mathsf{ps}} \mathcal{D} \to C \times_{\mathcal{E}}^{\mathsf{ps}} \mathcal{D}$ is essentially surjective and full, but not faithful in general.

Co/limits:

- 1. Add the characterisations of absolutely dense functors given in ?? to ??.
- Absolutely dense functors, https://ncatlab.org/nlab/show/abso lutely+dense+functor. Also theorem 1.1 here: http://www.tac. mta.ca/tac/volumes/8/n20/n20.pdf.
- 3. Dense functors, codense functors, and absolutely codense functors.

Co/ends:

- 1. Examples of co/ends: https://mathoverflow.net/a/461814
- 2. Cofinality for co/ends, https://mathoverflow.net/questions/3 53876

Fibred category theory:

- 1. Internal **Hom** in categories of co/Cartesian fibrations.
- 2. Tensor structures on fibered categories by Luca Terenzi: https://arxiv.org/abs/2401.13491. Check also the other papers by Luca Terenzi.
- 3. https://ncatlab.org/nlab/show/cartesian+natural+transformation (this is a cartesian morphism in $Fun(\mathcal{C},\mathcal{D})$ apparently)
- 4. CoCartesian fibration classifying Fun(F,G), https://mathoverflow.net/questions/457533/cocartesian-fibration-classifying-mathrmfunf-g

Monoidal categories:

1. Free braided monoidal category with a braided monoid: https://ncatlab.org/nlab/show/vine

Skew monoidal categories:

- 1. Does the \mathbb{E}_1 tensor product of monoids admit a skew monoidal category structure?
- 2. Is there a (right?) skew monoidal category structure on $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ using right Kan extensions instead of left Kan extensions?
- 3. Similarly, are there skew monoidal category structures on the subcategory of $\mathbf{Rel}(A, B)$ spanned by the functions using left Kan extensions and left Kan lifts?

Higher categories:

- 1. Internal adjunctions in Mod as in [JY21, Section 6.3]; see [JY21, Example 6.2.6].
- 2. Comonads in the bicategory of profunctors.

Monoids:

- 1. Isbell's zigzag theorem for semigroups: the following conditions are equivalent:
 - (a) A morphism $f: A \to B$ of semigroups is an epimorphism.
 - (b) For each $b \in B$, one of the following conditions is satisfied:
 - We have f(a) = b.
 - There exist some $m \in \mathbb{N}_{\geq 1}$ and two factorisations

$$b = a_0 y_1,$$

$$b = x_m a_{2m}$$

connected by relations

$$a_0 = x_1 a_1,$$

$$a_1 y_1 = a_2 y_2,$$

$$x_1 a_2 = x_2 a_3,$$

$$a_{2m-1} y_m = a_{2m}$$

such that, for each $1 \le i \le m$, we have $a_i \in \text{Im}(f)$.

Wikipedia says in https://en.wikipedia.org/wiki/Isbell%27s _zigzag_theorem:

For monoids, this theorem can be written more concisely:

Types of morphisms in bicategories:

- 1. Behaviour in 2-categories of pseudofunctors (or lax functors, etc.), e.g. pointwise pseudoepic morphisms in vs. pseudoepic morphisms in 2-categories of pseudofunctors.
- 2. Statements like "coequifiers are lax epimorphisms", Item 2 of Examples 2.4 of https://arxiv.org/abs/2109.09836, along with most of the other statements/examples there.
- 3. Dense, absolutely dense, etc. morphisms in bicategories

Other:

- 1. https://qchu.wordpress.com/
- 2. https://aroundtoposes.com/
- 3. https://ncatlab.org/nlab/show/essentially+surjective+and
 +full+functor
- 4. https://mathoverflow.net/questions/415363/objects-whose-representable-presheaf-is-a-fibration
- 5. https://mathoverflow.net/questions/460146/universal-prope rty-of-isbell-duality
- 6. http://www.tac.mta.ca/tac/volumes/36/12/36-12abs.html (Isbell conjugacy and the reflexive completion)
- 7. https://ncatlab.org/nlab/show/enrichment+versus+internal isation
- 8. The works of Philip Saville, https://philipsaville.co.uk/
- 9. https://golem.ph.utexas.edu/category/2024/02/from_cartes ian_to_symmetric_mo.html
- 10. https://mathoverflow.net/q/463855 (One-object lax transformations)
- 11. https://ncatlab.org/nlab/show/analytic+completion+of+a+r
 ing
- 12. https://en.wikipedia.org/wiki/Quaternionic_analysis
- 13. https://arxiv.org/abs/2401.15051 (The Norm Functor over Schemes)

- 14. https://mathoverflow.net/questions/407291/ (Adjunctions with respect to profunctors)
- 15. https://mathoverflow.net/a/462726 (Prof is free completion of Cats under right extensions)
- 16. there's some cool stuff in https://arxiv.org/abs/2312.00990 (Polynomial Functors: A Mathematical Theory of Interaction), e.g. on cofunctors.
- 17. https://ncatlab.org/nlab/show/adjoint+lifting+theorem
- 18. https://ncatlab.org/nlab/show/Gabriel%E2%80%93Ulmer+dual
 ity

Appendices

10.A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

- [MO 119454] user30818. Category and the axiom of choice. MathOverflow. URL: https://mathoverflow.net/q/119454 (cit. on p. 387).
- [MO 321971] Ivan Di Liberti. Characterization of pseudo monomorphisms and pseudo epimorphisms in Cat. MathOverflow. URL: https://mathoverflow.net/q/321971 (cit. on p. 397).
- [MO 350788] Peter LeFanu Lumsdaine. Epimorphisms of relations. MathOverflow. URL: https://mathoverflow.net/q/455260 (cit. on p. 264).
- [MO 382264] Neil Strickland. Proof that a cartesian category is monoidal. MathOverflow. URL: https://mathoverflow.net/q/382264 (cit. on p. 22).
- [MO 460656] Emily de Oliveira Santos. Existence and characterisations of left Kan extensions and liftings in the bicategory of relations I. MathOverflow. url: https://mathoverflow.net/q/460656 (cit. on pp. 281, 282).
- [MO 461592] Emily de Oliveira Santos. Existence and characterisations of left Kan extensions and liftings in the bicategory of relations II. MathOverflow. URL: https://mathoverflow.net/q/461592 (cit. on pp. 281, 282).
- [MO 467527] Emily de Oliveira Santos. What are the 2-categorical mono/epimorphisms in the 2-category of relations? Math-Overflow. URL: https://mathoverflow.net/q/467527 (cit. on pp. 261, 268).
- [MO 468121a] Emily de Oliveira Santos. Characterisations of functors F such that F^* or F_* is [property], e.g. faithful, conservative, etc. MathOverflow. URL: https://mathoverflow.net/q/468125 (cit. on pp. 386, 387, 392, 394, 398, 400, 402).

[MO 468121b] Emily de Oliveira Santos. Looking for a nice characterisation of functors F whose precomposition functor F^* is full. MathOverflow. URL: https://mathoverflow.net/q/468121 (cit. on p. 381).

- [MO 468334] Emily de Oliveira Santos. Is a pseudomonic and pseudoepic functor necessarily an equivalence of categories?

 MathOverflow. URL: https://mathoverflow.net/q/468334 (cit. on p. 397).
- [MO 64365] Giorgio Mossa. Natural transformations as categorical homotopies. MathOverflow. URL: https://mathoverflow.net/q/64365 (cit. on p. 413).
- [MSE 1465107] kilian. Equivalence of categories and axiom of choice. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/1465107 (cit. on p. 387).
- [MSE 2096272] Akiva Weinberger. Is composition of two transitive relations transitive? If not, can you give me a counterexample? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2096272 (cit. on p. 333).
- [MSE 267469] Zhen Lin. Show that the powerset partial order is a cartesian closed category. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/267469 (cit. on p. 53).
- [MSE 2855868] Qiaochu Yuan. Is the category of pointed sets Cartesian closed? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2855868 (cit. on p. 105).
- [MSE 350788] Qiaochu Yuan. Mono's and epi's in the category Rel?

 Mathematics Stack Exchange. URL: https://math.

 stackexchange.com/q/350788 (cit. on pp. 257, 263).
- [MSE 733161] Stefan Hamcke. Precomposition with a faithful functor. Mathematics Stack Exchange. URL: https://math. stackexchange.com/q/733161 (cit. on p. 384).
- [MSE 733163] Zhen Lin. Precomposition with a faithful functor. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/733163 (cit. on p. 378).
- [MSE 749304] Zhen Lin. If the functor on presheaf categories given by precomposition by F is ff, is F full? faithful? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/749304 (cit. on p. 384).

[MSE 884460] Martin Brandenburg. Why are the category of pointed sets and the category of sets and partial functions "essentially the same"? Mathematics Stack Exchange. URL: https: //math.stackexchange.com/q/884460 (cit. on p. 105). Jiří Adámek, Robert El Bashir, Manuela Sobral, and Jiří [Adá+01]Velebil. "On Functors Which Are Lax Epimorphisms". In: Theory Appl. Categ. 8 (2001), pp. 509–521. ISSN: 1201-561X (cit. on pp. 379, 381, 384, 433). [Bor94] Francis Borceux. Handbook of Categorical Algebra I. Vol. 50. Encyclopedia of Mathematics and its Applications. Basic Category Theory. Cambridge University Press, Cambridge, 1994, pp. xvi+345. ISBN: 0-521-44178-1 (cit. on p. 409). [BS10] John C. Baez and Michael Shulman. "Lectures on n-Categories and Cohomology". In: Towards higher categories. Vol. 152. IMA Vol. Math. Appl. Springer, New York, 2010, pp. 1–68. doi: 10.1007/978-1-4419-1524-5_1. URL: https://doi.org/10.1007/978-1-4419-1524-5_1 (cit. on pp. 4, 381). [Cie97] Krzysztof Ciesielski. Set Theory for the Working Mathematician. Vol. 39. London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997, pp. xii+236. ISBN: 0-521-59441-3; 0-521-59465-0. DOI: 10.1017/CB09781139173131. URL: https://doi.org/10. 1017/CB09781139173131 (cit. on p. 47). [DFH75] Aristide Deleanu, Armin Frei, and Peter Hilton. "Idempotent Triples and Completion". In: Math. Z. 143 (1975), pp. 91–104. ISSN: 0025-5874,1432-1823. DOI: 10.1007/ BF01173053. URL: https://doi.org/10.1007/BF01173053 (cit. on p. 391). [Fre09] Jonas Frey. On the 2-Categorical Duals of (Full and) Faithful Functors. https://citeseerx.ist.psu.edu/ document?repid=rep1&type=pdf&doi=4c289321d622f8fcf947e7a7cfd1bdf75c95ca3 Archived at https://web.archive.org/web/20240331195546/ https://citeseerx.ist.psu.edu/document?repid= rep1&type=pdf&doi=4c289321d622f8fcf947e7a7cfd1bdf75c95ca33. July 2009. URL: https://citeseerx.ist.psu.edu/ document?repid=rep1%5C&type=pdf%5C&doi=4c289321d622f8fcf947e7a7cfd1bdf75 (cit. on pp. 379, 384). [GGN15] David Gepner, Moritz Groth, and Thomas Nikolaus. "Universality of Multiplicative Infinite Loop Space Ma-

chines". In: *Algebr. Geom. Topol.* 15.6 (2015), pp. 3107–3153. ISSN: 1472-2747. DOI: 10.2140/agt.2015.15.3107. URL: https://doi.org/10.2140/agt.2015.15.3107 (cit. on p. 222).

- [Isb68] John R. Isbell. "Epimorphisms and Dominions. III". In: *Amer. J. Math.* 90 (1968), pp. 1025–1030. ISSN: 0002-9327,1080-6377. DOI: 10.2307/2373286. URL: https://doi.org/10.2307/2373286 (cit. on p. 393).
- [JY21] Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, Oxford, 2021, pp. xix+615. ISBN: 978-0-19-887138-5; 978-0-19-887137-8. DOI: 10. 1093/oso/9780198871378.001.0001. URL: https://doi.org/10.1093/oso/9780198871378.001.0001 (cit. on p. 446).
- [Low15] Zhen Lin Low. Notes on Homotopical Algebra. Nov. 2015. URL: https://zll22.user.srcf.net/writing/homotopical-algebra/2015-11-10-Main.pdf (cit. on p. 384).
- [nLa24] nLab Authors. *Groupoid*. https://ncatlab.org/nlab/show/groupoid. Oct. 2024 (cit. on p. 389).
- [nLab23] nLab Authors. Skeleton. 2024. URL: https://ncatlab.org/nlab/show/skeleton (cit. on p. 354).
- [Pro24a] Proof Wiki Contributors. Bijection Between $R \times (S \times T)$ and $(R \times S) \times T$ Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Bijection_between_R_x_(S_x_T)_and_(R_x_S)_x_T (cit. on p. 22).
- [Pro24b] Proof Wiki Contributors. Bijection Between $S \times T$ and $T \times S$ Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Bijection_between_S_x_T_and_T_x_S (cit. on p. 22).
- [Pro24c] Proof Wiki Contributors. Cartesian Product Distributes

 Over Set Difference Proof Wiki. 2024. URL: https://

 proofwiki.org/wiki/Cartesian_Product_Distributes_

 over_Set_Difference (cit. on p. 22).
- [Pro24d] Proof Wiki Contributors. Cartesian Product Distributes
 Over Symmetric Difference Proof Wiki. 2024. URL:
 https://proofwiki.org/wiki/Cartesian_Product_
 Distributes_over_Symmetric_Difference (cit. on p. 22).
- [Pro24e] Proof Wiki Contributors. Cartesian Product Distributes Over Union — Proof Wiki. 2024. URL: https://proofwiki.

org/wiki/Cartesian_Product_Distributes_over_ Union (cit. on p. 22).

- [Pro24f] Proof Wiki Contributors. Cartesian Product Is Empty

 Iff Factor Is Empty Proof Wiki. 2024. URL: https:
 //proofwiki.org/wiki/Cartesian_Product_is_Empty_
 iff_Factor_is_Empty (cit. on p. 22).
- [Pro24g] Proof Wiki Contributors. Cartesian Product of Intersections — Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Cartesian_Product_of_Intersections (cit. on p. 22).
- [Pro24h] Proof Wiki Contributors. Characteristic Function of Intersection Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Characteristic_Function_of_Intersection (cit. on p. 53).
- [Pro24i] Proof Wiki Contributors. Characteristic Function of Set Difference Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Characteristic_Function_of_Set_Difference (cit. on p. 57).
- [Pro24j] Proof Wiki Contributors. Characteristic Function of Symmetric Difference Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Characteristic_Function_of_Symmetric_Difference (cit. on p. 62).
- [Pro24k] Proof Wiki Contributors. Characteristic Function of Union Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Characteristic_Function_of_Union (cit. on p. 50).
- [Pro24l] Proof Wiki Contributors. Complement of Complement Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Complement_of_Complement (cit. on p. 58).
- [Pro24m] Proof Wiki Contributors. Condition For Mapping from Quotient Set To Be A Surjection Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Surjection (cit. on p. 341).
- [Pro24n] Proof Wiki Contributors. Condition For Mapping From Quotient Set To Be An Injection— Proof Wiki. 2024.

 URL: https://proofwiki.org/wiki/Condition_for_
 Mapping_from_Quotient_Set_to_be_Injection (cit. on p. 341).

[Pro24o] Proof Wiki Contributors. Condition For Mapping From Quotient Set To Be Well-Defined — Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Well-Defined (cit. on p. 341).

- [Pro24p] Proof Wiki Contributors. De Morgan's Laws (Set Theory)
 Proof Wiki. 2024. URL: https://proofwiki.org/wiki/
 De_Morgan%5C%27s_Laws_(Set_Theory) (cit. on pp. 56, 58).
- [Pro24q] Proof Wiki Contributors. De Morgan's Laws (Set Theory)/Set Difference/Difference with Union Proof Wiki. 2024. URL: https://proofwiki.org/wiki/De_Morgan%5C%27s_Laws_(Set_Theory)/Set_Difference/Difference_with_Union (cit. on p. 56).
- [Pro24r] Proof Wiki Contributors. Equivalence of Definitions of Symmetric Difference Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Equivalence_of_Definitions_of_Symmetric_Difference (cit. on p. 62).
- [Pro24s] Proof Wiki Contributors. Image of Intersection Under Mapping Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Image_of_Intersection_under_Mapping (cit. on p. 87).
- [Pro24t] Proof Wiki Contributors. Image of Union Under Mapping Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Image_of_Union_under_Mapping (cit. on p. 87).
- [Pro24u] Proof Wiki Contributors. Intersection Distributes Over Symmetric Difference Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Intersection_Distributes_over_Symmetric_Difference (cit. on p. 62).
- [Pro24v] Proof Wiki Contributors. Intersection Is Associative Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Intersection_is_Associative (cit. on p. 53).
- [Pro24w] Proof Wiki Contributors. Intersection Is Commutative
 Proof Wiki. 2024. URL: https://proofwiki.org/wiki/
 Intersection_is_Commutative (cit. on p. 53).
- [Pro24x] Proof Wiki Contributors. Intersection With Empty Set

 Proof Wiki. 2024. URL: https://proofwiki.org/wiki/
 Intersection_with_Empty_Set (cit. on p. 53).
- [Pro24y] Proof Wiki Contributors. Intersection With Set Difference Is Set Difference With Intersection Proof Wiki.

2024. URL: https://proofwiki.org/wiki/Intersection_with_Set_Difference_is_Set_Difference_with_Intersection (cit. on p. 56).

- [Pro24z] Proof Wiki Contributors. Intersection With Subset Is Subset Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Intersection_with_Subset_is_Subset (cit. on p. 53).
- [Pro24aa] Proof Wiki Contributors. Mapping From Quotient Set When Defined Is Unique Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Mapping_from_Quotient_Set_when_Defined_is_Unique (cit. on p. 341).
- [Pro24ab] Proof Wiki Contributors. Preimage of Intersection Under Mapping Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Preimage_of_Intersection_under_Mapping (cit. on p. 91).
- [Pro24ac] Proof Wiki Contributors. Preimage of Union Under Mapping Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Preimage_of_Union_under_Mapping (cit. on p. 91).
- [Pro24ad] Proof Wiki Contributors. Quotient Mapping Is Coequalizer Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Quotient_Mapping_is_Coequalizer (cit. on p. 45).
- [Pro24ae] Proof Wiki Contributors. Set Difference as Intersection With Complement Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Difference_as_Intersection_with_Complement (cit. on p. 57).
- [Pro24af] Proof Wiki Contributors. Set Difference as Symmetric Difference With Intersection Proof Wiki. 2024.

 URL: https://proofwiki.org/wiki/Set_Difference_as_Symmetric_Difference_with_Intersection (cit. on p. 57).
- [Pro24ag] Proof Wiki Contributors. Set Difference Is Right Distributive Over Union Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Difference_is_Right_Distributive_over_Union (cit. on p. 56).
- [Pro24ah] Proof Wiki Contributors. Set Difference Over Subset Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Difference_over_Subset (cit. on p. 56).

[Pro24ai] Proof Wiki Contributors. Set Difference With Empty Set Is Self — Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Difference_with_Empty_Set_is_Self (cit. on p. 57).

- [Pro24aj] Proof Wiki Contributors. Set Difference With Self Is Empty Set — Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Difference_with_Self_is_Empty_Set (cit. on p. 57).
- [Pro24ak] Proof Wiki Contributors. Set Difference With Set Difference Is Union of Set Difference With Intersection Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Difference_with_Set_Difference_is_Union_of_Set_Difference_with_Intersection (cit. on p. 57).
- [Pro24al] Proof Wiki Contributors. Set Difference With Subset Is Superset of Set Difference Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Difference_with_Subset_is_Superset_of_Set_Difference (cit. on p. 56).
- [Pro24am] Proof Wiki Contributors. Set Difference With Union— Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Set_Difference_with_Union (cit. on p. 56).
- [Pro24an] Proof Wiki Contributors. Set Intersection Distributes Over Union Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Intersection_Distributes_over_Union (cit. on p. 53).
- [Pro24ao] Proof Wiki Contributors. Set Intersection Is Idempotent
 Proof Wiki. 2024. URL: https://proofwiki.org/wiki/
 Set_Intersection_is_Idempotent (cit. on p. 53).
- [Pro24ap] Proof Wiki Contributors. Set Intersection Preserves Subsets Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Intersection_Preserves_Subsets (cit. on p. 53).
- [Pro24aq] Proof Wiki Contributors. Set Union Is Idempotent Proof Wiki. 2024. URL: https://proofwiki.org/wiki/ Set_Union_is_Idempotent (cit. on p. 50).
- [Pro24ar] Proof Wiki Contributors. Set Union Preserves Subsets Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Set_Union_Preserves_Subsets (cit. on p. 50).
- [Pro24as] Proof Wiki Contributors. Symmetric Difference Is Associative Proof Wiki. 2024. URL: https://proofwiki.

Bibliography 457

org/wiki/Symmetric_Difference_is_Associative (cit. on p. 62).

- [Pro24at] Proof Wiki Contributors. Symmetric Difference Is Commutative Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Symmetric_Difference_is_Commutative (cit. on p. 62).
- [Pro24au] Proof Wiki Contributors. Symmetric Difference of Complements Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Symmetric_Difference_of_Complements (cit. on p. 62).
- [Pro24av] Proof Wiki Contributors. Symmetric Difference on Power Set Forms Abelian Group Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Symmetric_Difference_on_Power_Set_forms_Abelian_Group (cit. on p. 62).
- [Pro24aw] Proof Wiki Contributors. Symmetric Difference With Complement Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Complement (cit. on p. 62).
- [Pro24ax] Proof Wiki Contributors. Symmetric Difference With Empty Set Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Empty_Set (cit. on p. 62).
- [Pro24ay] Proof Wiki Contributors. Symmetric Difference With Intersection Forms Ring Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Intersection_forms_Ring (cit. on p. 62).
- [Pro24az] Proof Wiki Contributors. Symmetric Difference With Self Is Empty Set Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Self_is_Empty_Set (cit. on p. 62).
- [Pro24ba] Proof Wiki Contributors. Symmetric Difference With Union Does Not Form Ring Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Union_does_not_form_Ring (cit. on p. 61).
- [Pro24bb] Proof Wiki Contributors. Symmetric Difference With Universe Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Universe (cit. on p. 62).
- [Pro24bc] Proof Wiki Contributors. Union as Symmetric Difference With Intersection Proof Wiki. 2024. URL: https://

- proofwiki.org/wiki/Union_as_Symmetric_Difference_with_Intersection (cit. on p. 50).
- [Pro24bd] Proof Wiki Contributors. *Union Distributes Over Inter*section — Proof Wiki. 2024. URL: https://proofwiki. org/wiki/Union_Distributes_over_Intersection (cit. on p. 50).
- [Pro24be] Proof Wiki Contributors. Union Is Associative Proof Wiki. 2024. URL: https://proofwiki.org/wiki/Union_is_Associative (cit. on p. 50).
- [Pro24bf] Proof Wiki Contributors. *Union Is Commutative Proof Wiki*. 2024. URL: https://proofwiki.org/wiki/
 Union_is_Commutative (cit. on p. 50).
- [Pro24bg] Proof Wiki Contributors. *Union of Symmetric Differences Proof Wiki*. 2024. URL: https://proofwiki.org/wiki/Union_of_Symmetric_Differences (cit. on p. 62).
- [Pro24bh] Proof Wiki Contributors. *Union With Empty Set Proof Wiki*. 2024. URL: https://proofwiki.org/wiki/Union_with_Empty_Set (cit. on p. 50).
- [PS19] Maximilien Péroux and Brooke Shipley. "Coalgebras in Symmetric Monoidal Categories of Spectra". In: Homology Homotopy Appl. 21.1 (2019), pp. 1–18. ISSN: 1532-0073. DOI: 10.4310/HHA.2019.v21.n1.a1. URL: https://doi.org/10.4310/HHA.2019.v21.n1.a1 (cit. on p. 223).
- [Rie17] Emily Riehl. Category Theory in Context. Vol. 10. Aurora: Dover Modern Math Originals. Courier Dover Publications, 2017, pp. xviii+240. ISBN: 978-0486809038. URL: http://www.math.jhu.edu/~eriehl/context.pdf (cit. on p. 389).
- [Wik24] Wikipedia Contributors. Multivalued Function Wikipedia, The Free Encyclopedia. 2024. URL: https://en.wikipedia.org/wiki/Multivalued_function (cit. on p. 235).

Index of Notation

χ_x , 63 $\chi_X(-1,-2), 63$ $\chi_X(-,U), 62$ [a], 338(A, B), 47 $\chi_X(-,x), 63$ $A \coprod B$, 34 $\chi_X(U,-), 62$ $A \coprod_C B$, 37 $\chi_X(x,-), 63$ $\alpha F,\,410$ CoEq(f,g), 43 $\alpha \star F$, 410 Coim(f), 339 $A \odot X$, 140 Coll(R), 303 $a\odot x$, 142 Coll(R), 303 $A \odot (X, x_0), 140$ $\coprod_{i\in I} A_i$, 33 $A \pitchfork X$, 147 Core(C), 365 C^{\sim} , 366 $A \pitchfork (X, x_0), 147$ $A \triangle B$, 58 $A \times B$, 15 $A \times_C B$, 23 $\mathcal{D}^{\mathcal{C}}$, 416 $A \times_{f,C,g} B$, 23 dom(R), 291 $A \cup B$, 48 $\beta \circ \alpha$, 405 $\emptyset_{\mathsf{cat}}, 349$ $\beta \star \alpha$, 408 \emptyset , 32, 46 $\mathrm{Eq}(f,g),\ 28$ eq(f, g), 28C(A, B), 348F Cats, 418Cats₂, 419 $F\alpha$, 410 $[\mathcal{C},\mathcal{D}], 416$ f^{-1} , 88 $f^{-1}(V)$, 88 $\chi_{(-)}, 63$ χ_{-2}^{-1} , 63 \mathbb{F}_1 , 101 χ_U , 62 $f_1, 92$

 χ^x , 63

 $f_{!,cp}(U), 94$

 $\begin{array}{l} f_{!,\mathrm{im}}(U),\,94\\ f_!(U),\,92\\ f^*,\,83,\,354\\ F\star\alpha,\,410\\ \alpha\star F,\,410\\ f(U),\,83\\ \mathrm{Fun}(\mathcal{C},\mathcal{D}),\,416 \end{array}$

G

Gr(A), 285 Grpd, 420 Grpd₂, 420

Н

 $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, L}(X \times Y, Z), 137$ $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes, R}(X \times Y, Z), 138$ $\operatorname{Hom}_{\mathsf{Sets}_*}^{\otimes}(X \times Y, Z), 139$ $\operatorname{Hom}_{\mathsf{Sets}_*}(A, B), 47$ $\operatorname{Hom}_{\mathsf{Sets}_*}(X, Y), 204$

T

 $\begin{array}{l}
-id_{C}, 370 \\
id_{F}, 404 \\
id_{F} \star \alpha, 410 \\
\bigcup_{i \in I} R_{i}, 294 \\
\bigcap_{X \in \mathcal{F}} X, 50 \\
Iso_{C}(A, B), 362
\end{array}$

K $K_0(C), 362$

 \triangleleft , 154 $[-,-]_{\mathsf{Sets}_*}^{\triangleleft}$, 157 $\triangleleft_{\mathsf{Sets}_*}$, 154

Nn, 350 Nat(F, G), 404

P

 $\pi_0(C)$, 357 \mathcal{P}^{-1} , 70, 325 \star_X , 128 $\prod_{i \in I} A_i$, 13, 106 $\mathcal{P}_!$, 70, 325 \mathcal{P}_* , 69, 325 pt, 12, 101, 106, 116 pt, 348 $\mathcal{P}(X)$, 68

R

range(R), 291 $R^{\dagger}, 297$ Rel, 236 **Rel**, 242 Rel(A, B), 229Rel(A, B), 229Rel^{dbl}, 242 $Rel^{eq}(A, B)$, 336 $\mathbf{Rel}^{\mathrm{eq}}(A,B), 336$ $Rel^{refl}(A, A), 329$ $\mathbf{Rel}^{\mathsf{refl}}(A, A), 329$ $Rel^{symm}(A, A), 331$ $\mathbf{Rel}^{\mathsf{symm}}(A, A), 331$ $Rel^{trans}(A)$, 333 $\mathbf{Rel}^{\mathsf{trans}}(A)$, 333 $R^{\rm eq}, 336$ \triangleright , 174 $[-,-]^{\rhd}_{\mathsf{Sets}_*},\,178$ $\triangleright_{\mathsf{Sets}_*}, 174$ $R \cap S$, 293 R^{-1} , 315 $R_{-1}, 310$ $R^{-1}(V)$, 315 $R_{-1}(V)$, 310 R^{refl} , 329

 $R_!, 320$ $R_!(U), 320$ $R^*, 305$ $R^{\text{symm}}, 331$ $R \times S, 295$ $R^{\text{trans}}, 334$ R(U), 305 $R \cup S, 292$

S

 $S \diamond R$, 299 Sets(A, B), 47 Sets_{*}, 102 **Sets**_{*} $((X, x_0), (Y, y_0))$, 204 \sim_{cotriv} , 233 \sim_{id} , 63 \sim_{R}^{reff} , 329 \sim_{R}^{symm} , 331 \sim_{R}^{eq} , 336 \sim_{R}^{trans} , 334 \sim_{triv} , 233 S^0 , 101

\[\{\text{t,f}\}, 5\\ \proot{\prooton_{i \in I} R_i, 297} \] \[\text{Trans}(F, G), 404\\ \{\text{true, false}\}, 4\]

 $\bigcup_{U^{\mathsf{c}}, 57} U_{i \in I} A_i, 48$ $\bigcup_{i \in I} R_i, 293$

\bigvee 忘, 374 $\bigwedge_{i \in I} X_i$, 223

 $\begin{array}{l} X \\ \{X\}, \, 46 \\ X_{\rm disc}, \, 359 \\ X_{\rm indisc}, \, 361 \\ X \cap Y, \, 50 \\ x \lhd_{\rm Sets_*} \, y, \, 155 \\ x \lhd y, \, 155 \\ X \setminus Y, \, 54 \\ X/\sim_R, \, 338 \\ X \otimes_{\mathbb{F}_1} Y, \, 198 \\ X^+, \, 128 \\ X_{\rm pos}, \, 351 \\ x \rhd y, \, 176 \\ x \rhd_{\rm Sets_*} \, y, \, 176 \\ x \wedge y, \, 198 \\ X \wedge Y, \, 196 \\ \end{array}$

 $\{X,Y\}, 47$

Index of Set Theory

В	difference of sets, 54
bilinear morphism	disjoint union, 34
of pointed sets, 138	of a family of sets, 33
bilinear morphism of pointed	
sets	F
left, 137	
right, 138	empty set, 46
binary intersection, 50	equaliser of sets, 28
	equivalence class, 338
	equivalence relation
$igcup_{\mathcal{C}}$	kernel, 336
Cartesian product, 13, 15	
category of relations, 236	F
associator of, 238	1
internal Hom of, 240	fibre coproduct of sets, 37
left unitor of, 238	fibre product of sets, 23
monoidal product of, 237	field with one element
monoidal unit of, 238	module over, 101
right unitor of, 239	module over, morphism of,
symmetry of, 239	102
characteristic embedding, 63	function, 2
characteristic function	associated direct image
of a set, 62	function, 83
of an element, 63	associated direct image with
characteristic relation, 63	compact support
coequaliser of sets, 43	function, 92
coimage, 339	associated direct image with
complement of a set, 57	compact support
coproduct	function, complement
of a family of pointed sets,	part, 94
117	associated direct image with
	compact support
D	function, image part, 93
1 <i>J</i>	

associated inverse image	coequaliser of, 126
function, 88	copower by a set, see
coimage of, 339	pointed set, tensor by a
graph of, 285	set
inverse of, 288	coproduct of, 118
kernel of, 336	cotensor by a set, 147
	equaliser of, 114
T	\mathbb{F}_1 , 101
1	free, 128
indicator function, see	internal Hom of, 204
characteristic function	left internal Hom of, 157
initial pointed set, 116	left tensor product, 154
initial set, 32	morphism of, 102
intersection of a family of sets,	of morphisms of pointed
50	sets, 204
_	power by a set, see pointed
	set, cotensor by a set
left tenger product of pointed	product of, 108
left tensor product of pointed	pullback of, 110
sets	pushout of, 122
diagonal, 166	right internal Hom of, 178
left skew unit of, 159	right tensor product, 174
skew associator, 160	tensor by a set, 140
skew left unitor, 162	trivial, 101
skew right unitor, 164	underlying a module, 101
N 1	underlying a module, 101 underlying a semimodule,
\mathbf{M}	101
(-1)-category, 4	wedge sum, 118
(-2)-category, 4	wedge sum of a family of
module	pointed sets, 117
underlying pointed set of,	0-sphere, 101
101	poset
-	of (-1) -categories, 4
	of truth values, 4
O	powerset, 68
ordered pairing, 47	product of a family of pointed
	
P	sets, 106
nairing of two gots 47	product of a family of sets, 13
pairing of two sets, 47	product of sets, 15
pointed function, see pointed	pullback of sets, 23
set, morphism of	pushout of sets, 37
pointed set, 101	
category of, 102	

	reflexive, 329
quotient	reflexive closure of, 329
by an equivalence relation,	reflexive, poset of, 329
338	reflexive, set of, 329
	representable, 290
D	set of, 229
K	symmetric, 331
relation, 228	symmetric closure of, 331
associated direct image	symmetric, set of, 331
function, 305	total, 236
associated direct image with	transitive, 333
compact support	transitive closure of, 334
function, 320	transitive, set of, 333
associated strong inverse	trivial, 233
image function, 310	2-category of, 242
associated weak inverse	union of, 292
image function, 315	union of a family of, 293
category of, 229	right tensor product of pointed
category of, 236	sets
closed symmetric monoidal	diagonal, 187
category of, 240	right skew unit of, 180
collage of, 303	skew associator, 180
composition of, 299	skew left unitor, 183
corepresentable, 291	skew right unitor, 184
cotrivial, 233	,
domain of, 291	\mathbf{C}
double category of, 242	\mathcal{S}
equivalence closure of, 336	semimodule
equivalence relation, 336	underlying pointed set of,
equivalence, set of, 336	101
functional, 235	set
intersection of, 293	Hom, 47
intersection of a family of,	of maps, 47
294	set of bilinear morphisms of
inverse of, 297	pointed sets, 139
on powersets associated to a	left, 137
relation, 326	right, 138
partial equivalence relation,	singleton set, 46
336	smash product
poset of, 229, 331, 333, 336	of a family of pointed sets,
product of, 295	223
product of a family of, 297	of pointed sets, 196
range of, 291	smash product of pointed sets

associator, 207 diagonal, 215 left unitor, 209 monoidal unit of, 206 right unitor, 211 symmetry, 213 symmetric difference of sets, 58

T terminal pointed set, 106

terminal set, 12

U union, 48 of a family of sets, 48

0-category, 8 0-groupoid, 8

Index of Category Theory

A	discrete category
adjoint equivalence of categories,	on a set, 359
387	E
\mathbf{C}	equivalence of categories, 387
category, 346 adjoint equivalence of, 387 connected, 359 connected component, 357 connected component, set of, 357 core of, 365 disconnected, 359 discrete, 360 empty, 349 equivalence of, 387 groupoid completion of, 362 indiscrete, 361 isomorphism of, 389 κ-small, 348 locally essentially small, 348 locally small, 348 of small groupoids, 420 skeletal, 353 skeleton of, 353 small, 348 thin, 352	forgetful functor, 373 functor, 368 bijective on objects, 399 bo, 399 composition of, 371 conservative, 385 contravariant, 372 corepresentably faithful on cores, 401 corepresentably full on cores, 402 corepresentably fully faithful on cores, 402 dominant, 390 epimorphism, 393 eso, 386 essentially injective, 386 essentially surjective, 386 faithful, 376 forgetful, 373 full, 379
category of categories, 418 contravariant functor, 372	fully faithful, 381
D	identity, 370 injective on objects, 398 monomorphism, 392

pseudoepic, 396	identity natural
pseudomonic, 394	transformation, 404
representably faithful on	vertical composition, 405
cores, 399	vorticum composition, 100
representably full on cores, 399	
representably fully faithful	ordinal category, 350
on cores, 400	
surjective on objects, 398	Р
transformation of, 404	1
functor category, 416	posetal category, 352
14110001 04008013, 110	associated to a poset, 351
	postcomposition, 354
G	precomposition, 354
Godement product, see natural	punctual category, 348
transformation,	
horizontal composition	C
Grothendieck groupoid	\mathcal{O}
	singleton category, see punctual
of a category, 362	category
groupoid, 362	subcategory, 353
groupoid completion, 362	full, 353
	lluf, 353
	strictly full, 353
1	wide, 353
indiscrete category	,
on a set, 361	\mathbf{T}
Isbell's zigzag theorem, 393	1
isomorphism, 362	transformation between
isomorphism of categories, 389	functors, 404
	2-category
\mathcal{M}	of small categories, 419
IVI	of small groupoids, 420
middle four exchange	3 1
in Cats, 407, 411	\mathbf{W}
NT	whiskering
IN	_
natural isomorphism, 414	left, 410
natural transformation, 404	right, 410
associated to a functor, 375	
associated to a functor, 575	

(0,1)-category, 352

equality of, 405

horizontal composition, 408

Index of Higher Category Theory

D double category of relations, 242

E epimorphism strict, 438

monomorphism strict, 429

1-morphism
corepresentably
conservative, 437
corepresentably essentially
injective, 437
corepresentably faithful, 432
corepresentably faithful on
cores, 435

corepresentably full, 432 corepresentably full on cores, 435 corepresentably fully faithful, 433 corepresentably fully faithful on cores, 436 pseudoepic, 438 pseudomonic, 430 representably conservative, representably essentially injective, 428 representably faithful, 423 representably faithful on cores, 426 representably full, 424 representably full on cores, representably fully faithful, representably fully faithful on cores, 427