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Part 1

Sets



Chapter 1

Sets

0000 This chapter (will eventually) contain material on axiomatic set theory,
as well as a couple other things.

Contents

1.1 Sets and Functions......cccoeeveiiiiiininiieiininennnn.. 2
1.1.1 FunctionS......oooveiiiiii e 2

1.2 The Enrichment of Sets in Classical Truth
ValUes coneiiiiiiiiiiiiiiiiiiiiiiiiiiieiiietiieeiteiasenasenesanssnnsons 4
1.2.1 (—2)-Categories. .. ..coeuiuiiiiiiiiieieien, 4
1.2.2 (—1)-Categories ... ..ooouviviiiiiiiiiiiiiiei 4
1.2.3  0-Categories. .. ..ovueiiiiiiiiiiiieie 8

1.2.4  Tables of Analogies Between Set Theory and
Category Theory ... ..o 8
1.A Other Chapters....ccccceevuiieiiiiiiiiiiiiiiiiiiininennenne. 10

0001 1.1 Sets and Functions
0002 1.1.1 Functions
0003 Definition 1.1.1.1.1. A function is a functional and total relation.

0004 Notation 1.1.1.1.2. Throughout this work, we will sometimes denote
a function f: X — Y by

fE [z~ f@)].
1. For example, given a function

®: Homgers(X,Y) = K


https://topological-modular-forms.github.io/the-clowder-project/tag/0000
https://topological-modular-forms.github.io/the-clowder-project/tag/0001
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taking values on a set of functions such as Homges(X,Y), we will
sometimes also write

O(f) = o[z~ f(2)]).
2. This notational choice is based on the lambda notation

FE O f(2)),

but uses a “—” symbol for better spacing and double brackets
instead of either:

(a) Square brackets [z — f(x)];
(b) Parentheses (z — f(z));
hoping to improve readability when dealing with e.g.:

(a) Equivalence classes, cf.:

i [[z] = f([z])]
ii. [[z] — f([z])]
iii. (A[z]. f([z]))

(b) Function evaluations, cf.:

i. ®([z — f(x)])
ii. ®((z— f(2)))
iii. ®((A\z. f(x)))

3. We will also sometimes write —;, —2, etc. for the arguments of a
function. Some examples include:

(a) Writing f(—1) for a function f: A — B.
(b) Writing f(—1,—2) for a function f: Ax B — C.
(¢) Given a function f: A x B — C, writing

fla,—=): B—=C
for the function [b — f(a,b)].
(d) Denoting a composition of the form
AxB2¥, pxpLic
by f(¢(=1), —2).
4. Finally, given a function f: A — B, we write

eva(f) < f(a)

for the value of f at some a € A.
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For an example of the above notations being used in practice, see the
proof of the adjunction

AX—

(A x — 4 Homsges(A, —)):  Sets L Sets,

—_—
Homgets (Av_)

stated in Item 2 of Proposition 2.1.3.1.2.

1.2 The Enrichment of Sets in Classical Truth
0005 Values
0006 1.2.1 (—2)-Categories

0007 Definition 1.2.1.1.1. A (—2)-category is the “necessarily true” truth

value. 123

0008 1.2.2 (—1)-Categories
0009 Definition 1.2.2.1.1. A (—1)-category is a classical truth value.

000A Remark 1.2.2.1.2. *(—1)-categories should be thought of as being
“categories enriched in (—2)-categories”, having a collection of objects
and, for each pair of objects, a Hom-object Hom(z,y) that is a (—2)-
category (i.e. trivial).
Therefore, a (—1)-category C is either ([BS10, pp. 33-34)):

1. Empty, having no objects;

2. Contractible, having a collection of objects {a,b, ¢, ...}, but with
Homg¢ (a,b) being a (—2)-category (i.e. trivial) for all a,b € Obj(C),
forcing all objects of C to be uniquely isomorphic to each other.

As such, there are only two (—1)-categories, up to equivalence:
o The (—1)-category false (the empty one);
o The (—1)-category true (the contractible one).

0008 Definition 1.2.2.1.3. The poset of truth values® is the poset ({true, false}, <)
consisting of

'Thus, there is only one (—2)-category.

2A (—n)-category for n = 3,4, ... is also the “necessarily true” truth value, coin-
ciding with a (—2)-category.

3For motivation, see [BS10, p. 13].

*For more motivation, see [BS10, p. 13].

® Further Terminology: Also called the poset of (—1)-categories.
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o The Underlying Set. The set {true, false} whose elements are the
truth values true and false.

e The Partial Order. The partial order
=<: {true, false} x {true,false} — {true,false}
on {true, false} defined by®

def

false < false = true,
def

true < false = false,
def

false < true = true,

def
true < true = true.

000C Notation 1.2.2.1.4. We also write {t,f} for the poset {true, false}.

000D Proposition 1.2.2.1.5. The poset of truth values {t,f} is Cartesian
closed with product given by’

txt=t,
tx f=f,
fxt=Hf,
fxf=H,

and internal Hom Homy ¢ given by the partial order of {t,f}, i.e. by

Proof. Existence of Products: We claim that the products t x t, t x f,
f x t, and f x f satisfy the universal property of the product in {t,f}.
Indeed, consider the diagrams

N N N i

b tXt 5t t«—txfﬂf f«—fxtﬁ»t f«—fxfﬁ»f
Pry ~~ P N~ ~—~—~

=t :f =f =f

Here:

5This partial order coincides with logical implication.
"Note that x coincides with the “and” operator, while Homy, sy coincides with
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1. If P| =t, then p} = p = id;, and there’s indeed a unique morphism
from P; to t making the diagram commute, namely idy;

2. If P| = f, then p} = p} are given by the unique morphism from f
to t, and there’s indeed a unique morphism from P; to t making
the diagram commute, namely the unique morphism from f to t;

3. If P, = t, then there is no morphism p3.

4. If Py = f, then p? is the unique morphism from f to t while p3 = id,
and there’s indeed a unique morphism from P, to f making the
diagram commute, namely ids;

5. The proof for Pj is similar to the one for Py;
6. If Py =t, then there is no morphism p} or pj.

7. If Py = f, then p{ = pj = ids, and there’s indeed a unique morphism
from Py to f making the diagram commute, namely ids.

Cartesian Closedness: We claim there’s a bijection
Homy £y (A x B, C) = Homy, (A, Homy, (B, C))
natural in A, B,C € {t,f}. Indeed:
o For (A,B,C) = (t,t,t), we have
Homy, 7 (t X t,t) = Homy 1 (t, 1)

- {idtrue}
= Hom{t,f} (t7 t)

= Hom{t’f} (t, Hom{t’f} (t, t)) .

o For (A, B,C) = (t,t,f), we have
Homyy 7y (t x t,f) = Homy, ¢ (t, f)
=0
= Homy gy (t, f)
= Homy, y (t, Homy, g (t, f)) .

o For (A,B,C) = (t,f,t), we have
Hom{t,f}(t x f,t) = Homy, gy (f,t)
=~ pt
= Homy g (f, 1)
= Homy ) (f, Homy, f(f, t)) .
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o For (A,B,C) = (t,f,f), we have

Hom{tﬂ (t x f, f) = Hom{t’f} (f, f)

= {idfalse}
= Hom{t,f} (f7 f)

= Homy y (t, Homy, g (f, f)) .

o For (A, B,C) = (f,t,t), we have

Hom{tf} (f X t,t) = Hom{t’f} (f, t)
= pt
= Hom{t,f} (f7 t)

= Hom{nf} (f, Hom{nf} (t, t)) .

o For (A,B,C) = (f,t,f), we have

Hom{t,f} (f X t, f) = Hom{tﬂ (f, f)

= {idfalse}
= Hom{t,f} (fa f)

= Hom{t’f} (f, Hom{nf} (t, f)> .

o For (A, B,C) = (f,f,t), we have

Homy, ¢ (f x f,t) = Homy, ¢ (f, t)
= pt
= Homy gy (f, )
= Homy fy (f, Homy 1 (f, t)) .

o For (A,B,C) = (f,f,f), we have

Hom{t’f} (f X f, f) = Hom{nf} (f, f)

= {idfalse}
= Homy g,y (f, f)

= Hom{t’f} (f, Hom{nf} (f, f)) .

The proof of naturality is omitted.

the logical implication operator.
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000E 1.2.3 0-Categories
000F Definition 1.2.3.1.1. A 0-category is a poset.®

000G Definition 1.2.3.1.2. A 0-groupoid is a 0-category in which every
morphism is invertible.”

1.2.4 Tables of Analogies Between Set Theory and Cate-
Q00H gory Theory

Here we record some analogies between notions in set theory and category
theory. Note that the analogies relating to presheaves relate equally well
to copresheaves, as the opposite X°P of a set X is just X again.
Basics:

Set Theory ‘ CATECORY THEORY

Enrichment in {true,false} | Enrichment in Sets

Set X Category C
Element z € X Object X € Obj(C)
Function Functor

Function X — {true, false} | Functor C — Sets
Function X — {true, false} | Presheaf C°? — Sets

Powersets and categories of presheaves:

8 Motivation: A O-category is precisely a category enriched in the poset of (—1)-
categories.
9That is, a set.
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Set Theory Category Theory

Powerset P(X)

Characteristic function x4}

Characteristic embedding

The Yoneda lemma for sets
Homp(xy(Xz, XU) = XU ()

The characteristic
embedding is fully faithful,

HOHI’])(X)(X:CJ Xy) = xx(z,y)

U= {=}
zeU

colim
Xz E€Sets(U,{t,f})

(Xe)

Characteristic relation xx(—1,—2)

Subsets are unions of their elements

Presheaf category PSh(C)
Representable presheaf hx

Yoneda embedding
& C° — PSh(C)

Hom profunctor Home(—1, —2)

The Yoneda lemma for categories
Nat(hx,F) = F(X)

~

The Yoneda
embedding is fully faithful,
Nat(hx,hy) = Home(X,Y)

Presheaves are
colimits of representables,

F = colim (hx)
hxe[,F

Categories of elements:
Set Theory ‘

Assignment U — xy

Assignment U —
giving an isomorphism
P(X) = Sets(X, {t,f})

Category Theory

Assignment F — [, F
(the category of elements)

Assignment F — [, F
giving aneqe'quivalence
PSh(C) = DFib(C)

Functions between powersets and functors between presheaf categories:

Set Theory

Direct image function

f«: P(X) = PY)

Inverse image function

fTHPY) = P(X)

Direct image with
compact support function
fi: P(X) = P(Y)

‘ Category Theory

Inverse image functor

f~1: PSh(C) — PSh(D)

Direct image functor
fx: PSh(D) — PSh(C)

Direct image with
compact support functor
fi: PSh(C) — PSh(D)

Relations and profunctors:
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Set Theory ‘ Category Theory ‘
Relation R: X x Y — {t,f} Profunctor p: D x C — Sets
Relation R: X — P(Y) Profunctor p: C — PSh(D)
Relation as a Profunctor as a
cocontinuous morphism of posets colimit-preserving functor
R: (P(X),C) = (P(Y),Q) p: PSh(C) — PSh(D)

Appendices

1.A Other Chapters
Sets 6. Constructions With Relations

1. Sets 7. Equivalence Relations and

Apartness Relations
2. Constructions With Sets Parthess helations

3. Pointed Sets Category Theory
4. Tensor Products of Pointed 8. Categories

Sets
Bicategories

Relations
9. Types of Morphisms in Bicat-

5. Relations egories



Chapter 2

Constructions With Sets

000J This chapter develops some material relating to constructions with sets
with an eye towards its categorical and higher-categorical counterparts
to be introduced later in this work. In particular, it contains:

1. Explicit descriptions of the major types of co/limits in Sets, includ-
ing in particular explicit descriptions of pushouts and coequalis-
ers (see Definitions 2.2.4.1.1 and 2.2.5.1.1 and Remarks 2.2.4.1.2
and 2.2.5.1.2).

2. A discussion of powersets as decategorifications of categories of
presheaves (Remarks 2.4.1.1.2 and 2.4.3.1.2), including a (—1)-
categorical analogue of un/straightening, described in Items 1 and 2
of Proposition 2.4.3.1.6 and Remark 2.4.3.1.7.

3. A lengthy discussion of the adjoint triple
foA £ A A P(A) S P(B)

of functors (morphisms of posets) between P(A) and P(B) induced
by a map of sets f: A — B, along with a discussion of the properties

of fr, f~1, and f.

In line with the categorical viewpoint developed here, this adjoint
triple may be described in terms of Kan extensions, and, as it turns
out, it also shows up in some definitions and results in point-set
topology, such as in e.g. notions of continuity for functions (77?).

Contents
2.1 Limits of Sets.cciiciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiaiens 12
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2.1.2  Products of Families of Sets....................... 13

11
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ook 2.1 Limits of Sets
00oL 2.1.1 The Terminal Set
000M Definition 2.1.1.1.1. The terminal set is the pair (pt, {!A}AGObj(Sets))

consisting of:

e The Limit. The punctual set pt & {x}.
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e The Cone. The collection of maps

{larA— pt}AeObj(Sets)

defined by

La(a) = *
for each a € A and each A € Obj(Sets).

Proof. We claim that pt is the terminal object of Sets. Indeed, suppose
we have a diagram of the form

A pt
in Sets. Then there exists a unique map ¢: A — pt making the diagram
¢
A5t
commute, namely ! 4. O

2.1.2 Products of Families of Sets
Let {A;},c; be a family of sets.

Definition 2.1.2.1.1. The product' of {A4;},; is the pair ([T;c; As, {pri}ics)
consisting of:

o The Limit. The set [];c; A; defined by?

we have f(i) €
Ai

for each 7 € I,}

HAl-d:Qf{fe Sets(I,UAi>

el 1€l

e The Cone. The collection
{pri: HA, — Al}
i€l iel
of maps given by
def .
pr;(f) = f(i)
for each f € [[;c; A; and each i € 1.

! Purther Terminology: Also called the Cartesian product of {Ai}ier
*Less formally, [, ¢ Ai is the set whose elements are I-indexed collections (a;),¢;
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Proof. We claim that [[;c; A; is the categorical product of {A;},.; in
Sets. Indeed, suppose we have, for each i € I, a diagram of the form

P

X

[[4 5 A

i€l

in Sets. Then there exists a unique map ¢: P — [];c; A; making the

diagram
P
¢§3! pi
v
[[4 5 A
iel

commute, being uniquely determined by the condition pr; o ¢ = p; for
each ¢ € I via

¢(x) = (Pi(2))icr

for each z € P. O
000Q Proposition 2.1.2.1.2. Let {A;},.; be a family of sets.
Q00R 1. Functoriality. The assignment {A;},.; — [[;c; A:i defines a
functor
H: Fun(Zgisc, Sets) — Sets
i€l
where

» Action on Objects. For each (A;);c; € Obj(Fun(gisc, Sets)),

we have
T (4000 =TT 2

i€l el

« Action on Morphisms. For each (A;),cr, (Bi);c; € Obj(Fun(lyisc, Sets)),

with a; € A; for each i € I. The projection maps

{pri: HAi —>Al}
iel iel

def
prz‘((aj)jel) = Qi
for each (a;);c; € [[,o; Ai and each i € I.

are then given by
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the action on Hom-sets

1)

of [Tier at ((Ai);er» (Bi);er) is defined by sending a map

t Nat ((Ai)sep: (Bi)iep) — Sets (H Ag, HB¢>
ier(Bi)ier icl el

{fit Ai = Bi}ier
in Nat((Ai);cr, (Bi);er) to the map of sets
iel el iel
defined by
[H fz] ((ai)iel) = (fi(ai))iel
il
for each (a;);c; € [lics Ai-

Proof. Item 1, Functoriality: This follows from 77 of 77. O

000S 2.1.3 Binary Products of Sets
Let A and B be sets.

000T Definition 2.1.3.1.1. The product® of A and B is the pair (A x B, {pry, pry})
consisting of:

e The Limit. The set A x B defined by*

Ax BE H z
2€{A,B}
L {f € Sets({0,1}, AU B) | we have f(0) € A and f(1) € B}
= {{{a},{a,b}} € P(P(AUB)) | we have a € A and b € B}.

e The Cone. The maps

pri: Ax B — A,
pro: Ax B — B

3 Purther Terminology: Also called the Cartesian product of A and B or the
binary Cartesian product of A and B, for emphasis.

This can also be thought of as the (E_1,E_;)-tensor product of A and B.

“In other words, A x B is the set whose elements are ordered pairs (a,b) with a € A
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defined by

for each (a,b) € A x B.

Proof. We claim that A x B is the categorical product of A and B in
Sets. Indeed, suppose we have a diagram of the form

P
R

in Sets. Then there exists a unique map ¢: P — A x B making the
diagram
P

p1 ! p2
@13

commute, being uniquely determined by the conditions

pry o (b = P1,
pry 0 ¢ = p2
via
o(r) = (p1(w), p2(x))
for each x € P. ]
000U Proposition 2.1.3.1.2. Let A, B, C, and X be sets.

000V 1. Functoriality. — The assignments A, B, (A, B) — A x B define
functors

A x —: Sets — Sets,
— X B': Sets — Sets,

—1 X —9: Sets x Sets — Sets,

where —; X —9 is the functor where

o Action on Objects. For each (A, B) € Obj(Sets x Sets), we
have
[—1 x —2)(4,B) = A x B.
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o Action on Morphisms. For each (A, B), (X,Y) € Obj(Sets),
the action on Hom-sets

X(4,B),(X,y) " Sets(A, X) x Sets(B,Y) — Sets(A x B, X xY)

of x at ((A,B),(X,Y)) is defined by sending (f,g) to the

function

fxgiAXxB—XXxY
defined by
[f x gl(a,b) = (f(a), g(b))
for each (a,b) € A x B.

and where A x — and — x B are the partial functors of —; x —9
at A, B € Obj(Sets).

000W 2. Adjointness. We have adjunctions

AX—
(A x — 4 Homgets(A, —)):  Sets g Sets,

~—

Homsgets (A)_)

—XxB
— x B 4 Homgets(B, —)): Sets L Sets,
(

~—

Homgets (vi)

witnessed by bijections

Homsgets(A x B, C') = Homgets(A, Homsers(B, C)),
Homges(A x B, C') = Homges (B, Homsers (A, C)),

natural in A, B, C € Obj(Sets).
000X 3. Associativity. We have an isomorphism of sets
(AxB)xC=Ax(BxCC),
natural in A, B, C' € Obj(Sets).
000Y 4. Unitality. We have isomorphisms of sets

ptx A=A,
AXxpt A,

natural in A € Obj(Sets).
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10.

11.

12.

. Commutativity. We have an isomorphism of sets

Ax B=Bx A,

natural in A, B € Obj(Sets).

. Annihilation With the Empty Set. We have isomorphisms of sets

Ax (=0,
D x A0,

natural in A € Obj(Sets).

. Distributivity Over Unions. We have isomorphisms of sets

Ax (BUC)=(Ax B)U(AxC(O),
(AUB)xC=(AxC)U(Bx ().

. Distributivity Over Intersections. We have isomorphisms of sets

Ax (BNC)=(AxB)N(AxC),
(ANB)xC=(AxC)Nn(Bx ().

. Middle-Four Fxchange with Respect to Intersections. We have an

isomorphism of sets

(Ax B)n(C x D)= (ANB) x (CND,).

Distributivity Over Differences. We have isomorphisms of sets

Ax(B\C)=(AxB)\(AxCQO),
(A\B)xC=(AxC)\(BxC),

natural in A, B, C' € Obj(Sets).

Distributivity Over Symmetric Differences. We have isomorphisms
of sets

AX(BAC)=(AxB)A(Ax(C),
(AAB)xC=(AxC)A(Bx(),

natural in A, B,C' € Obj(Sets).

Symmetric Monoidality. The triple (Sets, X, pt) is a symmetric
monoidal category.
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13. Symmetric Bimonoidality. The quintuple (Sets, ], 0, x,pt) is a
symmetric bimonoidal category.

Proof. Item 1, Functoriality: This follows from 77 of 77.
Item 2, Adjointness: We prove only that there’s an adjunction — x B -
Homses(B, —), witnessed by a bijection

Homges(A x B, C') = Homges (A, Homses(B, C)),

natural in B;C' € Obj(Sets), as the proof of the existence of the ad-
junction A x — - Homges(A, —) follows almost exactly in the same
way.

e Map I. We define a map
®p ¢ Homsers(A x B, C) — Homsets (A, Homses (B, C)),
by sending a function
E:AxB—-C
to the function
¢ A — Homses(B, O),
a +— (f:;: B — C’),
where we define

EL(b) = €(a,0)

for each b € B. In terms of the Ja — f(a)] notation of Nota-
tion 1.1.1.1.2, we have

"= a s [ €(a,0)]]-
e Map II. We define a map
Vp o Homsgets(A, Homsets(B, C')), — Homses(A x B, C)
given by sending a function

&: A — Homges(B,C),
a+— (&: B —C),

to the function
& AxB—>C
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defined by

=)
for each (a,b) € A x B.
o Invertibility 1. We claim that
V4B o Pa B = 1dHome,(AxB,0)-
Indeed, given a function £: A x B — C, we have

(W4, 0PaBl(€) =Van(PanB))
= W4,5(Pa,5([(a,b) = &(a,b)]))
= W4 p(la [b—&(a,b)]])
= Uy p([d = [V = &(d,0)]])
= [(a,b) = evi(eva([a" — [b' = &(a’,0)]]))]

= [(a,0) = evy ([t = &(a. )])]
= [(a,b) = &(a, )]
=¢.

o Invertibility II. We claim that
q)A:B 0 \IIA)B = idHomSets(AvHomSets(Brc))'
Indeed, given a function

&: A — Homses(B,C),
a+— (&: B —C),

we have

[@a50 VB = Pap(Pan©))
=4 5([(a,b) = & D))
o4 p([(d, V) = & (V)])
Ela s [b eviay ([, V) = & (KD
Ela s [b &®)]]
def [[a — éa]]

def 5
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e Naturality for ®, Part I. We need to show that, given a function
g: B — B’, the diagram

Homges(A x B, C)CI)B—/;CHomSetS(A, Homses(B', C)),
idaxg* (94
Homges(A x B, C) Py Homgets (A, Homses (B, C))
commutes. Indeed, given a function
§:Ax B — C,
we have

[®p,co(ida x g9)|(§) = ®p,c([ida x g°](£))
2)

=@p0c(8(—1,9(—2)))
= [5(*1,9(*2))]T
= ¢! (9(—2)

= (9").(¢")

= (97).(®p,c(€))

= [(g7). 0 @B ,c](&).

Alternatively, using the Ja — f(a)] notation of Notation 1.1.1.1.2,
we have

[®p,co(ida x g9)|(§) = Pp,c([ida x g7](£))
= ¢pc(lida x g"]([(a,V) = &(a,0)]))
= ®p c([(a,b) = &(a, g(b))])
= [a = [b &(a, g(b)]]
= [[a =g ([V = €(a,V)])]
). ([a = [V = &(a,0")]])
( )« (@5 ( (a,b') = &(a,0)]))
= (97).(®p,c(§))
= [(g" *O(I)B’, 1().

e Naturality for ®, Part II. We need to show that, given a function

and b € B as in Definition 2.3.4.1.1
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h: C — ', the diagram

[0
Homsets(A x B, C) —5 Homsgess (A, Homses(B, C)),
ha (hs),

Homges(A x B, C") Py Homgers(A, Homges (B, C'))

commutes. Indeed, given a function
E:AxB—C,

we have

[®p.coh(§) = Pp.c(h(§))

= @p,c(h([(a,b) = &(a,b)]))

= @p,c([(a,b) = h(&(a,b))])

= [a = [b— h(&(a,b))]]

= [a = h([b— &(a,b)]])

= (hi).([a = [b— &(a,0)]])
)«(@B,c([(a,b) = &(a,D)]))
)«(®B,c(§))

h*
h*
(hs), 0 @p,c](§)-

= (
~(
= |

e Naturality for U. Since ® is natural in each argument and & is a
componentwise inverse to ¥ in each argument, it follows from Item 2
of Proposition 8.8.6.1.2 that W is also natural in each argument.

Item 3, Associativity: See [Pro24a).

Item 4, Unitality: Clear.

Item 5, Commutativity: See [Pro24b].

Item 6, Annihilation With the Empty Set: See [Pro24f].

Item 7, Distributivity Over Unions: See [Pro24e].

Item 8, Distributivity Over Intersections: See [Pro24g, Corollary 1].
Item 9, Middle-Four Exchange With Respect to Intersections: See [Pro24g,
Corollary 1].

Item 10, Distributivity Over Differences: See [Pro24c].

Item 11, Distributivity Over Symmetric Differences: See [Pro24d].
Item 12, Symmetric Monoidality: See [MO 382264].

Item 13, Symmetric Bimonoidality: Omitted. O
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0018 2.1.4 Pullbacks
Let A, B, and C be sets and let f: A — C and g: B — C be functions.

0019 Definition 2.1.4.1.1. The pullback of A and B over C along f
and g¢° is the pair® (A x¢ B, {pry,pry}) consisting of:

e The Limit. The set A x¢ B defined by

AxcB={(a,b) € Ax B| f(a) = g(b)}.

e The Cone. The maps
pri: Axg B — A,
pry: Axe B — B
defined by
prl(aa b) =a,
pI‘Q((l, b) =b
for each (a,b) € A x¢ B.

Proof. We claim that A x¢ B is the categorical pullback of A and B
over C' with respect to (f,g) in Sets. First we need to check that the
relevant pullback diagram commutes, i.e. that we have

pro

AXCBHB

g

fOprlngpl"Q, Pr1|
A

— C.

f

Indeed, given (a,b) € A x¢ B, we have

where f(a) = g(b) since (a,b) € A x¢ B. Next, we prove that A x¢ B

5 Further Terminology: Also called the fibre product of A and B over C along
f and g.
8 Further Notation: Also written A X ;¢ 4 B.


https://topological-modular-forms.github.io/the-clowder-project/tag/0018
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satisfies the universal property of the pullback. Suppose we have a
diagram of the form

P

pry g
l
A 7 C

in Sets. Then there exists a unique map ¢: P —+ A X B making the
diagram

commute, being uniquely determined by the conditions
pry o ¢ = P1,
pry © ¢ = p2

¢(z) = (p1(2), p2(2))

for each x € P, where we note that (p1(x),p2(x)) € A x B indeed lies in
A X¢ B by the condition

fopr=gopa,

which gives
f(pi(2)) = g(p2())
for each x € P, so that (p1(x),p2(z)) € A x¢ B. O

001A Example 2.1.4.1.2. Here are some examples of pullbacks of sets.

001B 1. Unions via Intersections. Let A, B C X. We have a bijection of


https://topological-modular-forms.github.io/the-clowder-project/tag/001A
https://topological-modular-forms.github.io/the-clowder-project/tag/001B
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sets
ANB — B

AmBgAXAuBB,

LB

Proof. Item 1, Unions via Intersections: Indeed, we have

AxaupB={(z,y) e AxB|z=y}
= ANB.

This finishes the proof. O
001C Proposition 2.1.4.1.3. Let A, B, C', and X be sets.

001D 1. Functoriality. The assignment (A, B,C, f,g) — A X c 4B defines
a functor

—1 X_4 —1: Fun(P, Sets) — Sets,

where P is the category that looks like this:

In particular, the action on morphisms of —; x_, —; is given by
sending a morphism

A XcB B
J ‘ W
g
A X B’ | B’
i
AL | ¢ %
\ \X
¢ N
A c’

in Fun(#, Sets) to the map &: A x¢ B =Ny X cr B’ given by

£(a,0) = (¢(a), (b))


https://topological-modular-forms.github.io/the-clowder-project/tag/001C
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for each (a,b) € A x¢ B, which is the unique map making the

diagram
A X B B
N ‘ W
\\ 9
A X B’ | B’
*
AL C g
\ \X
¢ N
Al c’
f/
commute.

001E 2. Associativity. Given a diagram
A B
NN A
X Y

in Sets, we have isomorphisms of sets

C

(AXXB) xyC%(AxXB) XB(BXyC)gAXX(B XyC),
where these pullbacks are built as in the diagrams
(AXXB)XyC (AXXB)XB(BXyC> AXX(BXyC)

z N .
Axx B Axx B B xy C C
VRN SN N VAN
A B c, A B c, A B
NN A NN A NoA N A
X Y X Y

001F 3. Unitality. We have isomorphisms of sets

A—— 4 A1 . x
- Xxx A=A, -

f I Axx X =4,

X —— X X — - X.


https://topological-modular-forms.github.io/the-clowder-project/tag/001E
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001G 4. Commutativity. We have an isomorphism of sets

|
| g AXXBgBXXA [J f
A—— X B — X.

f ’ g
001H 5. Annihilation With the Empty Set. We have isomorphisms of sets

0

0 ) —
- AXX@gﬁ, -
@XXAQQ, f
A#}Xa @*)

0017 6. Interaction With Products. We have an isomorphism of sets

AxB — B

'B

J
Axp B=AXB, ‘

001K 7. Symmetric Monoidality. The triple (Sets, X x, X) is a symmetric
monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of
co/limits, 7?7 of 7?7, with the explicit expression for £ following from the

commutativity of the cube pullback diagram.
Item 2, Associativity: Indeed, we have

(A xx B) xy C = {((a,b),c) € (A xx B) x C | h(b) = k(c)}
= {((a,b),c) € (Ax B) x C'| f(a) = g(b) and h(b) = k(c)}
= {(a,(b,c)) € Ax (BxC) | f(a) = g(b) and h(b) = k(c)}
g{( (b,c)) € Ax (B xy C)| f(a)=g(b)}

D>

(B Xy C)


https://topological-modular-forms.github.io/the-clowder-project/tag/001G
https://topological-modular-forms.github.io/the-clowder-project/tag/001H
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and

fla) =g(b), b= b',}

where we have used Item 3 for the isomorphism B xp B = B.
Item 3, Unitality: Indeed, we have

X xx A={(z,a) e X x A| f(a) =z},
Axx X ={(a,z) e X x A| f(a) =z},

which are isomorphic to A via the maps (z,a) — a and (a,z) — a.
Item 4, Commutativity: Clear.

Item 5, Annihilation With the Empty Set: Clear.

Item 6, Interaction With Products: Clear.

Item 7, Symmetric Monoidality: Omitted. O

001L 2.1.5 Equalisers

Let A and B be sets and let f,g: A = B be functions.

001M Definition 2.1.5.1.1. The equaliser of f and g is the pair (Eq(f, 9),eq(f, g9))
consisting of:

o The Limit. The set Eq(f,g) defined by
Eq(f,9) E{a€ A f(a) = g(a)},
e The Cone. The inclusion map

eq(f,9): Eq(f,g) — A.

Proof. We claim that Eq(f,g) is the categorical equaliser of f and g
in Sets. First we need to check that the relevant equaliser diagram
commutes, i.e. that we have

foea(f,g9) =goeq(f,g),


https://topological-modular-forms.github.io/the-clowder-project/tag/001L
https://topological-modular-forms.github.io/the-clowder-project/tag/001M
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which indeed holds by the definition of the set Eq(f, g). Next, we prove
that Eq(f, g) satisfies the universal property of the equaliser. Suppose
we have a diagram of the form

eq(f,g) f
>

A——B

Eq(f,9)

E
in Sets. Then there exists a unique map ¢: E — Eq(f, g) making the
diagram

eq(f,9) f
Ea(f.g) =" A== B
4\

¢>§3! i
E

commute, being uniquely determined by the condition

eq(f,g)op=ce
¢(x) = e(z)

for each = € E, where we note that e(x) € A indeed lies in Eq(f, g) by
the condition

foe=goc,

which gives
fle(@)) = g(e())
for each x € E, so that e(z) € Eq(f, g). O

Proposition 2.1.5.1.2. Let A, B, and C be sets.

1. Associativity. We have isomorphisms of sets”

Eq(f oeq(g, h),goeq(g,h)) = Eq(f,g,h) = Eq(f oeq(f,g),hoeq(f,g)),

=Eq(foeq(g,h),hoeq(g,h)) =Eq(goeq(f,g),hoeq(f,9))

"That is, the following three ways of forming “the” equaliser of (f, g, h) agree:
1. Take the equaliser of (f, g, h), i.e. the limit of the diagram

in Sets.


https://topological-modular-forms.github.io/the-clowder-project/tag/001N
https://topological-modular-forms.github.io/the-clowder-project/tag/001P
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where Eq(f, g, h) is the limit of the diagram

in Sets, being explicitly given by

Eq(f,9,h) ={a € A| f(a) = g(a) = h(a)}.

. Unitality. We have an isomorphism of sets

Eq(f, f) = A.

. Commutativity. We have an isomorphism of sets

Eq(f,9) = Eq(g, ).

. Interaction With Composition. Let

f h
A=B=C
g k

. First take the equaliser of f and g, forming a diagram

e ) f
Eq(f,9) 5" A= B

g

and then take the equaliser of the composition

ea(?, f
Eq(f, 9) RS B,
h

obtaining a subset

Eq(foeq(f,9),hoeq(f,g)) =Eq(goeq(f,g),hoeq(f,g))
of Eq(f, g)-

. First take the equaliser of g and h, forming a diagram

eq(g,h) 9

Eq(g,h) — A=B
h

and then take the equaliser of the composition

obtaining a subset

Eq(f oeq(g,h),goeq(g,h)) = Eq(f oeq(g,h), hoeq(g,h))
of Eq(g, h).


https://topological-modular-forms.github.io/the-clowder-project/tag/001Q
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be functions. We have an inclusion of sets

Eq(ho foeq(f,g),kogoeq(f,g)) CEq(hof kog),

where Eq(ho foeq(f,g),kogoeq(f,g)) is the equaliser of the
composition

ate) 1k
(fg) YWasBoc
g k

Proof. Item 1, Associativity: We first prove that Eq(f, g, h) is indeed
given by
Eq(f,g9,h) ={a € A f(a) = g(a) = h(a)}.

Indeed, suppose we have a diagram of the form

f
Eq(f,g,h) <Y 4 == p
h

E

in Sets. Then there exists a unique map ¢: E — Eq(f, g, h), uniquely
determined by the condition

eq(f,g)op=

being necessarily given by

¢(x) = e(x)

for each x € E, where we note that e(z) € A indeed lies in Eq(f, g, h) by
the condition
foe=goe=hoe,

which gives

fle(z)) = g(e(x)) = h(e(x))
for each x € E, so that e(x) € Eq(f, g, h).
We now check the equalities

Eq(f oeq(g,h),goeq(g,h)) = Eq(f,g,h) = Eq(foeq(f,g),hoeq(f,g)).

Indeed, we have

Eq(foeq(g,h),goeq(g,h)) = {x € Eq(g,

h) ['If
h) |

= {z € Eq(g, h) | f(a) = (a)}
={ze Al f(a) = g(a) and g(a) = h(a)}
={ze Al f(a) =g(a) = h(a)}

= Eq(f,9,h).
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Similarly, we have

Eq(f oeq(f,9),hoeq(f,g)) = {z € Eq(f,9) | [f ceq(f,9)l(a) = [hoeq(f,g)l(a)}
= {z € Eq(f,9) | f(a) = h(a)}
={z € Al f(a) = h(a) and f(a) = g(a)}
={ze Al f(a) = g(a) = h(a)}
= Eq(f, g, h).

Item /4, Unitality: Clear.

Item 5, Commutativity: Clear.
Item 6, Interaction With Composition: Indeed, we have

Eq(ho foeq(f,g),kogoeq(f,g) = {a € Eq(f,g) | h(f(a)) = k(g(a))}
={a€ Al f(a) = g(a) and h(f(a)) = k(g(a))}.

and
Eq(ho f,kog)={ac A|h(f(a))=k(g(a))},
and thus there’s an inclusion from Eq(h o foeq(f,g),kogoeq(f,g)) to

Eq(ho f,kog). O
2.2 Colimits of Sets

2.2.1 The Initial Set

Definition 2.2.1.1.1. The initial set is the pair ((Z), {LA}AGObj(Sets))
consisting of:

o The Limit. The empty set () of Definition 2.3.1.1.1.
e The Cone. The collection of maps
{ea: 0= A} sconj(sets)
given by the inclusion maps from ) to A.

Proof. We claim that () is the initial object of Sets. Indeed, suppose we
have a diagram of the form

0 A

in Sets. Then there exists a unique map ¢: ) — A making the diagram

commute, namely the inclusion map ¢ 4. O


https://topological-modular-forms.github.io/the-clowder-project/tag/001T
https://topological-modular-forms.github.io/the-clowder-project/tag/001U
https://topological-modular-forms.github.io/the-clowder-project/tag/001V

001W

001X

001Y

2.2. Colimits of Sets 33

2.2.2 Coproducts of Families of Sets
Let {A;},c; be a family of sets.

Definition 2.2.2.1.1. The disjoint union of the family {4;}, ; is
the pair ([T;e; Ai, {inj;};c;) consisting of:
WS Al}

e The Colimit. The set [[;c; A; defined by

HAz-d:ef{(i,:E) elx (Uz‘h)

il el

e The Cocone. The collection

i€l iel
of maps given by
.. def /.
inj;(z) = (i, )

for each x € A; and each 7 € I.

Proof. We claim that [];c; A; is the categorical coproduct of {A;},.; in
Sets. Indeed, suppose we have, for each ¢ € I, a diagram of the form

C

1€l
in Sets. Then there exists a unique map ¢: [[;c; 4; — C making the
diagram

C

i
/¢3!

nj;
el

commute, being uniquely determined by the condition ¢ o inj;, = ¢; for
each ¢ € I via

¢((i,2)) = vilx)
for each (i,x) € [1;er Ai- O

Proposition 2.2.2.1.2. Let {4;},.; be a family of sets.


https://topological-modular-forms.github.io/the-clowder-project/tag/001W
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001Z 1. Functoriality. =~ The assignment {A;};c; — [l;c; Ai defines a
functor

H: Fun(Zgisc, Sets) — Sets
i€l

where

o Action on Objects. For each (A;),.; € Obj(Fun(lgis, Sets)),
we have
[H] ((Ai)ier) = H A;
iel el

o Action on Morphisms. For each (A;);cr, (Bi);cr € Obj(Fun(Igisc, Sets)),
the action on Hom-sets

(H) : Nat«Ai)ieI’ (Bi)iel) — Sets (H A;, H BZ>
el (A)ier(Bi)ser iel icl
of [T;er at ((Ai);er» (Bi);er) is defined by sending a map
{fir Ai = Bi}ier
in Nat((Ai);cr, (Bi);er) to the map of sets
iel el iel

defined by

[H f@-] (i,a) & fi(a)

el
for each (i,a) € [;c; A

Proof. Item 1, Functoriality: This follows from 77 of 77. O

0020 2.2.3 Binary Coproducts
Let A and B be sets.

0021 Definition 2.2.3.1.1. The coproduct® of A and B is the pair (A[[ B, {inj,,inj,})
consisting of:

e The Colimit. The set A]] B defined by
A[IBE H z
z€{A,B}
={(0,a) [a € A}U{(1,b) | b € B}.

8 Further Terminology: Also called the disjoint union of A and B, or the binary
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e The Cocone. The maps

injj: A= AIl B,
inj,: B— Al B,
given by
injl(a) = (O,CL),
inj(b) = (1,b),
for each a € A and each b € B.

Proof. We claim that A ][] B is the categorical coproduct of A and B in
Sets. Indeed, suppose we have a diagram of the form

C
N
Ay AUB 5 B
in Sets. Then there exists a unique map ¢: A[[ B — C making the
diagram
C

LA 8 LB
¢13!

inj 4 injg
commute, being uniquely determined by the conditions
¢oinjy = ta,

¢poinjp =1p

via
= {0 e
for each z € A B. O
0022 Proposition 2.2.3.1.2. Let A, B, C, and X be sets.

0023 1. Functoriality.  The assignment A, B, (A, B) +— A ][ B defines
functors

ATJ —: Sets — Sets,
— [I B: Sets — Sets,
—1 ][] —2: Sets x Sets — Sets,

where —1 [ —2 is the functor where
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o Action on Objects. For each (A, B) € Obj(Sets x Sets), we
have

[—1 11 —2](A, B) £ A]] B.

o Action on Morphisms. For each (A, B), (X,Y) € Obj(Sets),
the action on Hom-sets

I(a,8),x,v): Sets(A, X) x Sets(B,Y) — Sets(A[[ B, X [[Y)
of [T at ((A4,B),(X,Y)) is defined by sending (f,g) to the

function
fIlg: AlIB— X]IY
defined by
def (Oaf(a)) if T = (Oaa)a
STl = {u,g(b)) it = (1,0)

for each z € A[[ B.

and where A [[ — and — [ B are the partial functors of —; [[ —2
at A, B € Obj(Sets).

2. Associativity. We have an isomorphism of sets
(AIIB)IIC=AI(BIIC),
natural in A, B,C' € Obj(Sets).
3. Unitality. We have isomorphisms of sets
AJID = A,
DITA=A,
natural in A € Obj(Sets).
4. Commutativity. We have an isomorphism of sets
AJIB= B]J A,
natural in A, B € Obj(Sets).

5. Symmetric Monoidality. The triple (Sets,[[, () is a symmetric
monoidal category.

Proof. Item 1, Functoriality: This follows from 77 of 77.

Item 2, Associativity: Clear.

Item 3, Unitality: Clear.

Item 4, Commutativity: Clear.

Item 5, Symmetric Monoidality: Omitted. O
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0028 2.2.4 Pushouts
Let A, B, and C be sets and let f: C — A and g: C — B be functions.

0029 Definition 2.2.4.1.1. The pushout of A and B over C along f and
g is the pair'’ (A ][, B, {inj;,inj,}) consisting of:

o The Colimit. The set A ][, B defined by
Alle B= AL B/~c.
where ~¢ is the equivalence relation on A [[ B generated by
(va(c)) ~C (179(0))
e The Cocone. The maps
inj: A—>Allo B
inj,: B— Al B
given by
inj; (a) = [(0, a)]
injy(b) = [(L,0)]
for each a € A and each b € B.

Proof. We claim that A[[~ B is the categorical pushout of A and B over
C' with respect to (f,g) in Sets. First we need to check that the relevant
pushout diagram commutes, i.e. that we have

Alle B &2 B
inj; o f =injy 0 g, injﬂ g

Indeed, given c € C, we have

[inj; o f](c) = inj; (f(c))
= [(0, f(c))]

= [(L,9(c))]

= injy(g(c))

]

= [injy 0 g](c),

disjoint union of A and B, for emphasis.

9 Further Terminology: Also called the fibre coproduct of A and B over C
along f and g.

9 Purther Notation: Also written A ] f.c,qB-
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where [(0, f(¢))] = [(1, g(c))] by the definition of the relation ~ on A][ B.
Next, we prove that A [[ ¢B satisfies the universal property of the
pushout. Suppose we have a diagram of the form

C

in Sets. Then there exists a unique map ¢: A [[» B — P making the
diagram

commute, being uniquely determined by the conditions
¢ oinjy =1,
¢ oinjy = 12

via

o(z) = {Ll(a) if x =[(0,a)],

1a(b) if x =[(1,b)]

for each x € A[[- B, where the well-definedness of ¢ is guaranteed by
the equality ¢1 o f = 12 0 g and the definition of the relation ~ on A[] B
as follows:

1. Case 1: Suppose we have x = [(0,a)] = [(0,a’)] for some a,a’ € A.
Then, by Remark 2.2.4.1.2, we have a sequence

(0,a) ~ z1 ~ -~y ~(0,d).

2. Case 2: Suppose we have x = [(1,b)] = [(1,V)] for some b, € B.
Then, by Remark 2.2.4.1.2, we have a sequence

(1,0) ~ zy ~ o oy, (1Y),
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3. Case 3: Suppose we have x = [(0,a)] = [(1, )] for some a € A and
b € B. Then, by Remark 2.2.4.1.2, we have a sequence

(07 a) ~ I s In ~ (Lb)

In all these cases, we declare x ~' y iff there exists some ¢ € C such that

T = (07f<c)) and y = (179(0)) orr = (179(6)) and y = (Oaf(c)) Then,
the equality ¢1 o f = 19 0 g gives

with the case where z = (1,¢(c)) and y = (0, f(c)) similarly giving
o([z]) = ¢([y]). Thus, if 2 ~ y, then ¢([z]) = ¢([y]). Applying this
equality pairwise to the sequences

(0,a) ~ z1 ~ -~y ~(0,d),

(1,0) ~ zy ~ o o, (LY,

0,a) ~ 2y ~ oo Ny A (1,0)

gives

¢([(0,a)]) = ¢([(0,a)]),

¢([(1,0)]) = o([(1,)]),

o([(0,a)]) = &([(1,0)]),
showing ¢ to be well-defined. O
Remark 2.2.4.1.2. In detail, by Construction 7.4.2.1.2, the relation ~

of Definition 2.2.4.1.1 is given by declaring a ~ b iff one of the following
conditions is satisfied:

e We have a,b € A and a = b;
e We have a,b € B and a = b;

e There exist x1,...,7, € A[[B such that a ~ x1 ~' --- ~ z, ~' b,
where we declare x ~' y if one of the following conditions is satisfied:

1. There exists ¢ € C such that = = (0, f(c)) and y = (1, g(c)).

2. There exists ¢ € C such that x = (1,g(c)) and y = (0, f(c)).
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That is: we require the following condition to be satisfied:

(x) There exist x1,...,x, € A]] B satisfying the following condi-
tions:

1. There exists ¢y € C satisfying one of the following condi-
tions:
(a) We have a = f(cp) and 1 = g(cp).-
(b) We have a = g(cp) and z1 = f(co).

2. For each 1 <14 < mn — 1, there exists ¢; € C satisfying one
of the following conditions:
(a) We have z; = f(¢;) and xiy1 = g(c;).
(b) We have x; = ¢g(¢;) and x;4+1 = f(¢).

3. There exists ¢, € C satisfying one of the following condi-
tions:
(a) We have z,, = f(¢,,) and b = g(cy,).
(b) We have x,, = g(c,) and b = f(cp)-

002B Example 2.2.4.1.3. Here are some examples of pushouts of sets.

002C 1. Wedge Sums of Pointed Sets. The wedge sum of two pointed sets
of Definition 3.3.3.1.1 is an example of a pushout of sets.

002D 2. Intersections via Unions. Let A, B C X. We have a bijection of

sets
AUB «—— B

iy

A— ANB.

AUB 2 Al B,

Proof. Item 1, Wedge Sums of Pointed Sets: Follows by definition.

Item 2, Intersections via Unions: Indeed, A [[4~p B is the quotient of
ATl B by the equivalence relation obtained by declaring (0,a) ~ (1,b)
iff a = b € AN B, which is in bijection with A U B via the map with
[(0,a)] = a and [(1,b)] — 0. O

002E Proposition 2.2.4.1.4. Let A, B, C, and X be sets.

002F 1. Punctoriality. The assignment (A, B,C, f,g) = All; ¢, B defines
a functor

—1 ]I, —1: Fun(®, Sets) — Sets,
where P is the category that looks like this:
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002G

In particular, the action on morphisms of — []_,

sending a morphism

Alle B B
r [Y
A'lle B’ ‘ B’
r
|
A |1 ¢ J
\\ N
¢ N
Al !
s ¢

—1 is given by

in Fun(#, Sets) to the map &: A[[~ B =Ny [Ior B’ given by

a [0l) iz =[(0.0)]
@) {wb) if 2 = [(1,b)]

for each © € A]]. B, which is the unique map making the diagram

AHC B
AHOH [
T
A— |1 ¢ g
\ \X
4 N
/ !
A 5 C

commute.

2. Associativity. Given a diagram

NoAN A

in Sets, we have isomorphisms of sets

(Allx B) Iy C=(Allx B) I (Blly C) = Allx (B1ly 0),
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where these pullbacks are built as in the diagrams

(Allx B) Iy € (Allx B) s (B1ly ©) Allx (BIly ©)
/A\\\ N AN
Allx B Allx B Blly C Blly C
/N SON N /0N
A B c, A B c, A B C.
NN A NN A NN A
X Y X Y X Y
002H 3. Unitality. We have isomorphisms of sets
f
A A A——X
r X1y A=A, r

0027 4. Commutativity. We have an isomorphism of sets

Allx B <— B BllxA— A
r

] s Allx BEBI[yA [ ;

A B —— X.

~

g

002K 5. Interaction With Coproducts. We have

Al[B — B
AllyB=AllB, 1r ]@
0.

Ae——m
LA

002L 6. Symmetric Monoidality. The triple (Sets, ][]y, X) is a symmetric
monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of
co/limits, ?? of 7?7, with the explicit expression for £ following from the
commutativity of the cube pushout diagram.

Item 2, Associativity: Omitted.

Item 3, Unitality: Omitted.

Item 4, Commutativity: Clear.

Item 5, Interaction With Coproducts: Clear.

Item 6, Symmetric Monoidality: Omitted. O
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oo2M 2.2.5 Coequalisers
Let A and B be sets and let f,g: A = B be functions.

002N Definition 2.2.5.1.1. The coequaliser of f and g is the pair (CoEq(f, g), coeq(f,g))
consisting of:

o The Colimit. The set CoEq(f, g) defined by

def

CoEaq(f,9) = B/~

where ~ is the equivalence relation on B generated by f(a) ~ g(a).

e The Cocone. The map

coeq(f,g): B — CoEq(f,g)

given by the quotient map 7: B — B/~ with respect to the
equivalence relation generated by f(a) ~ g(a).

Proof. We claim that CoEq(f, g) is the categorical coequaliser of f and
g in Sets. First we need to check that the relevant coequaliser diagram
commutes, i.e. that we have

coeq(f,g) o f = coeq(f,g)og.

Indeed, we have

[coea(f, g) o f](a) = [coeq(f, 9)](f(a))

for each a € A. Next, we prove that CoEq(f, g) satisfies the universal
property of the coequaliser. Suppose we have a diagram of the form

f coeq(f,g)
— -5

A——B

CoEq(f, g)

C

in Sets. Then, since ¢(f(a)) = ¢(g(a)) for each a € A, it follows from
Items 4 and 5 of Proposition 7.5.2.1.3 that there exists a unique map
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CoEq(f, 9) ENYG! making the diagram

f
A== B =2 Coq(f.9)
v
C
commute. O

002P Remark 2.2.5.1.2. In detail, by Construction 7.4.2.1.2, the relation ~
of Definition 2.2.5.1.1 is given by declaring a ~ b iff one of the following
conditions is satisfied:

e We have a = b;

o There exist z1,...,2, € B such that a ~ z1 ~ --- ~ z, ~' b,

where we declare x ~' y if one of the following conditions is satisfied:

1. There exists z € A such that z = f(z) and y = g(2).
2. There exists z € A such that z = g(z) and y = f(2).

That is: we require the following condition to be satisfied:

(x) There exist x1,...,xz, € B satisfying the following conditions:

1. There exists zg € A satisfying one of the following condi-
tions:
(a) We have a = f(2¢) and z1 = g(20).
(b) We have a = g(29) and z1 = f(20).

2. For each 1 < i <mn — 1, there exists z; € A satisfying one
of the following conditions:
(a) We have z; = f(z;) and x;11 = g(z).
(b) We have x; = ¢g(z;) and z;+1 = f(2)-

3. There exists z, € A satisfying one of the following condi-
tions:
(a) We have z,, = f(z,) and b = g(zy,).
(b) We have x,, = g(zp) and b = f(zy).

002Q Example 2.2.5.1.3. Here are some examples of coequalisers of sets.
002R 1. Quotients by Equivalence Relations. Let R be an equivalence

relation on a set X. We have a bijection of sets

pr
X/~p & CoEq(R(—> X x X = X).

pro
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Proof. Item 1, Quotients by Equivalence Relations: See [Pro24ad]. [
002S Proposition 2.2.5.1.4. Let A, B, and C be sets.
002T 1. Associativity. We have isomorphisms of sets''

CoEq(coeq(f, g) o f,coeq(f, g) o h) = CoEq(f, g, h) = CoEq(coeq(g, h) o f, coeq(g, k) o g),

=CoEq(coeq(f,g)og,coeq(f,g)oh) =CoEq(coeq(g,h)of,coeq(g,h)oh)

where CoEq(f, g, h) is the colimit of the diagram

A -9 B

h

in Sets.

"That is, the following three ways of forming “the” coequaliser of (f, g, h) agree:

1. Take the coequaliser of (f, g, h), i.e. the colimit of the diagram

in Sets.

2. First take the coequaliser of f and g, forming a diagram

f coeq(f,g)
A= B (14(» ! CoEq(f, g)
g

and then take the coequaliser of the composition

f coeq(f,
4= 8% Cor(£.9).
h

obtaining a quotient

CoEq(coeq(f, g) o f, coeq(f, g) o h) = CoEq(coeq(f, g) 0 g, coeq(f,g) o h)
of CoEq(f,g)
3. First take the coequaliser of g and h, forming a diagram

g coeq(g,h)
A= BN CoEq(g, h)
h

and then take the coequaliser of the composition
f coeq(g,h)
A= B CoEq(g, h),

g

obtaining a quotient

CoEq(coeq(g, h) o f,coeq(g, h) o g) = CoEq(coeq(g, h) o f,coeq(g, h) o h)
of CoEq(g, h).
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002U 4. Unitality. We have an isomorphism of sets

CoEq(f, f) = B.

002V 5. Commutativity. We have an isomorphism of sets
CoEq(f, g) = CoEq(g, f).

002W 6. Interaction With Composition. Let

f h
A=B=C
g k

be functions. We have a surjection

CoEq(ho f, ko g) - CoEq(coeq(h,k) o ho f,coeq(h,k)okog)

exhibiting CoEq(coeq(h, k) o h o f,coeq(h,k) o k o g) as a quotient
of CoEq(h o f,k o g) by the relation generated by declaring h(y) ~

k(y) for each y € B.

Proof. Item 1, Associativity: Omitted.

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.

Item 6, Interaction With Composition: Omitted.

002x 2.3 Operations With Sets

002Y 2.3.1 The Empty Set
0027 Definition 2.3.1.1.1. The empty set is the set () defined by

P {reX |+l

where A is the set in the set existence axiom, 77 of 77.

0030 2.3.2 Singleton Sets
Let X be a set.

0031 Definition 2.3.2.1.1. The singleton set containing X is the set { X'}

defined by
def
{X}={X, X},

where {X, X'} is the pairing of X with itself (Definition 2.3.3.1.1).
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0032 2.3.3 Pairings of Sets
Let X and Y be sets.

0033 Definition 2.3.3.1.1. The pairing of X and Y is the set {X,Y}
defined by
(X,V}¥{zcA|z=Xorz=Y},

where A is the set in the axiom of pairing, 7?7 of 77.

0034 2.3.4 Ordered Pairs
Let A and B be sets.

0035 Definition 2.3.4.1.1. The ordered pair associated to A and B is
the set (A, B) defined by

(A, B) = {{A},{A, B}}.
0036 Proposition 2.3.4.1.2. Let A and B be sets.

0037 1. Uniqueness. Let A, B, C, and D be sets. The following conditions
are equivalent:

0038 (a) We have (A,B) = (C, D).
0039 (b) We have A =C and B = D.
Proof. Item 1, Uniqueness: See [Cie97, Theorem 1.2.3]. O

003A 2.3.5 Sets of Maps
Let A and B be sets.

0038 Definition 2.3.5.1.1. The set of maps from A to B'? is the set
Homsets(A, B)'® whose elements are the functions from A to B.

003C Proposition 2.3.5.1.2. Let A and B be sets.

003D 1. Functoriality. The assignments X,Y, (X,Y) — Homges(X,Y)
define functors

Homsges (X, —): Sets — Sets,
Homgets(—, Y): Sets®® — Sets,

Homsgets(—1, —2): Sets®® x Sets — Sets.

Proof. Item 1, Functoriality: This follows from Items 2 and 5 of Propo-
sition 8.1.6.1.2. O

12 Purther Terminology: Also called the Hom set from A to B.
13 Fyrther Notation: Also written Sets(A, B).
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2.3.6 Unions of Families
Let {A;},c; be a family of sets.

Definition 2.3.6.1.1. The union of the family {A;},.; is the set
UiEI Al deﬁned by

U A; € {x € F | there exists some i € I such that z € 4;},
el

where F' is the set in the axiom of union, 77 of 77.

2.3.7 Binary Unions
Let A and B be sets.

Definition 2.3.7.1.1. The union'* of A and B is the set AU B defined
by
AUuB%¥ U z.

z€{A,B}
Proposition 2.3.7.1.2. Let X be a set.
1. Functoriality. The assignments U, V, (U,V) — U UV define
functors
UuUu—: (P(X),C)— (P(X),Q),
-uV: (P(X),C) = (P(X),Q),
—1U—2: (P(X)xP(X),C x C) = (P(X),Q),

where —; U —9 is the functor where
o Action on Objects. For each (U,V) € P(X) x P(X), we have
[—1U—=](UV)EUUV.

o Action on Morphisms. For each pair of morphisms

w:U = U,
Ly - VsV

of P(X) x P(X), the image
wUw:UUV U uv’
of (ty7,ty) by U is the inclusion
vuvcu uv

i.e. where we have

Y Purther Terminology: Also called the binary union of A and B, for emphasis.
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(x) HUCU and VC V' thenUUV CcU UV".

and where U U — and — UV are the partial functors of — U —9 at
UV eP(X).

. Via Intersections and Symmetric Differences. We have an equality

of sets
UuvV=UAV)AUNYV)

for each X € Obj(Sets) and each U,V € P(X).

. Associativity. We have an equality of sets

UUV)UW =U U (VUW)

for each X € Obj(Sets) and each U, V,W € P(X).

. Unitality. We have equalities of sets
UUup="U,
VU =U

for each X € Obj(Sets) and each U € P(X).

. Commutativity. We have an equality of sets

vuV=Vuu

for each X € Obj(Sets) and each U,V € P(X).

. Idempotency. We have an equality of sets

vuU=U

for each X € Obj(Sets) and each U € P(X).

. Distributivity Over Intersections. We have equalities of sets

Uu(VnW)=UuV)nUUuw),
UNV)UW =UUW)n(VUW)

for each X € Obj(Sets) and each U, V,W € P(X).

. Interaction With Characteristic Functions I. We have

xvuv = max(xu, Xv)

for each X € Obj(Sets) and each U,V € P(X).
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9. Interaction With Characteristic Functions II. We have

XUUV = XU + XV — XUnV
for each X € Obj(Sets) and each U,V € P(X).

10. Interaction With Powersets and Semirings. The quintuple
(P(X),uU,n, 0, X) is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Pro24ar].

Item 2, Via Intersections and Symmetric Differences: See [Pro24bc].
Item 3, Associativity: See [Pro24be].

Item 4, Unitality: This follows from [Pro24bh] and Item 5.

Item 5, Commutativity: See [Pro24bf].

Item 6, Idempotency: See [Pro24aq].

Item 7, Distributivity Over Intersections: See [Pro24bd].

Item 8, Interaction With Characteristic Functions I: See [Pro24k].
Item 9, Interaction With Characteristic Functions II: See [Pro24k].
Item 10, Interaction With Powersets and Semirings: This follows from
Items 3 to 6 and Items 3 to 5, 7 and 8 of Proposition 2.3.9.1.2. O

2.3.8 Intersections of Families

Let F be a family of sets.

Definition 2.3.8.1.1. The intersection of a family F of sets is the
set (xer X defined by

HAXg{zeLJX

XeF XeF

for each X € F, we have z € X}.

2.3.9 Binary Intersections

Let X and Y be sets.

Definition 2.3.9.1.1. The intersection'® of X and Y is the set XNY
defined by
def

Xny= (O =
ze{X)Y'}

Proposition 2.3.9.1.2. Let X be a set.

1. Functoriality. The assignments U, V, (U,V) — U NV define

15 Purther Terminology: Also called the binary intersection of X and Y, for
emphasis.
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functors
—-nNV: (P(X>7C) — (,P X)7C)7
—1N—2: (P(X)xP(X),C xC)— (PX),Q),
where —; N —9 is the functor where

o Action on Objects. For each (U,V) € P(X) x P(X), we have
[—1N=J(U,V)EUNV.
o Action on Morphisms. For each pair of morphisms

w:U = U,
w: VeV

of P(X) x P(X), the image
wNw:UNV=UnV
of (tr7,ty) by N is the inclusion
uvnvcunv

i.e. where we have

(x) FUCU and V C V', then UNV CU' N V".

and where U N — and — NV are the partial functors of — N —9 at
UV eP(X).

0041 2. Adjointness. We have adjunctions

Un—
(U N = AHomp(x)(U,-)): P(X)_ L P(X),
Hompx)(U,-)
NV
(= NV AHompx)(V,-)): P(X)_ L P(X),
Homp(x)(V,—)

where

Homp(X)(—l, —2)2 P(X)OP X P(X) — P(X)
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is the bifunctor defined by'¢
Hompx)(U,V) = (X \U)UV
witnessed by bijections
Homp(x) (U NV, W) = Homp(x) (U, Homp(x) (V, W),
Homp(x) (U NV, W) 2 Homp( ) (V, Hompx, (U, W),
natural in U, V,W € P(X), i.e. where:

(a) The following conditions are equivalent:
i. Wehave UNV C W.
ii. We have U C Homp(x(V,W).
ifi. We have U C (X \V)UW.
(b) The following conditions are equivalent:
i. Wehave VNU C W.
ii. We have V' C Homp(x(U, W).
iii. We have V.C (X \U)UW.

. Associativity. We have an equality of sets

UNV)NW =Un (VW)

for each X € Obj(Sets) and each U, V,W € P(X).

. Unitality. Let X be a set and let U € P(X). We have equalities

of sets

XNnU=U,
UnNnX=U

for each X € Obj(Sets) and each U € P(X).

. Commutativity. We have an equality of sets

uUnNnv=vnuU

for each X € Obj(Sets) and each U,V € P(X).

. Idempotency. We have an equality of sets

UnU=U

for each X € Obj(Sets) and each U € P(X).

For intuition regarding the expression defining Homypx)(U,V), see
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7. Distributivity Over Unions. We have equalities of sets

UN(VUW) =(UnV)u(UnW),
UUV)NW =UNW)u (VW)

for each X € Obj(Sets) and each U, V,W € P(X).
8. Annihilation With the Empty Set. We have an equality of sets

PNX =0,
XNn0=20

for each X € Obj(Sets) and each U € P(X).

9. Interaction With Characteristic Functions I. We have

Xunv = XUXV
for each X € Obj(Sets) and each U,V € P(X).

10. Interaction With Characteristic Functions II. We have

Xunv = min(xu, xv)
for each X € Obj(Sets) and each U,V € P(X).

11. Interaction With Powersets and Monoids With Zero. The quadru-
ple (P(X),0),Nn, X) is a commutative monoid with zero.

12. Interaction With Powersets and Semirings. The quintuple
(P(X),u,N,0, X) is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Pro24ap].

Item 2, Adjointness: See [MSE 267469].

Item 3, Associativity: See [Pro24v].

Item 4, Unitality: This follows from [Pro24z] and Item 5.

Item 5, Commutativity: See [Pro24w].

Item 6, Idempotency: See [Pro24ao].

Item 7, Distributivity Over Unions: See [Pro24an].

Item 8, Annihilation With the Empty Set: This follows from [Pro24x]
and Item 5.

Item 9, Interaction With Characteristic Functions I: See [Pro24h].
Item 10, Interaction With Characteristic Functions II: See [Pro24h].
Item 11, Interaction With Powersets and Monoids With Zero: This
follows from Items 3 to 5 and 8.

Item 12, Interaction With Powersets and Semirings: This follows from
Items 3 to 6 and Items 3 to 5, 7 and 8 of Proposition 2.3.9.1.2. O
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Remark 2.3.9.1.3. Since intersections are the products in P(X) (Item 1
of Proposition 2.4.3.1.3), the left adjoint Hompx)(U, V') may be thought
of as a function type [U, V].

Then, under the Curry—Howard correspondence, the function type [U, V]
corresponds to implication U = V', which is logically equivalent to
the statement —=U V V. This in turn corresponds to the set UV V =
(X\U)UV.

2.3.10 Differences
Let X and Y be sets.

Definition 2.3.10.1.1. The difference of X and Y is the set X \'Y
defined by

def

X\Y={aeX |agY}.
Proposition 2.3.10.1.2. Let X be a set.

1. Functoriality. The assignments U, V, (U, V) — U NV define
functors

U \ - (P(X)a D) — (P(X)a C)7

—\V: (P(X),C) = (P(X),Q)

—1\ —2: (P(X)xP(X),C xD

1
3
s
n

where —; \ —3 is the functor where

o Action on Objects. For each (U, V) € P(X) x P(X), we have
-1\ =)(U, V) Z U\ V.

e Action on Morphisms. For each pair of morphisms

ta: A— B,
w:U =V

of P(X) x P(X), the image
w\w:A\V < B\U
of (ty7,ty) by \ is the inclusion
A\V c B\U

i.e. where we have

Remark 2.3.9.1.3.
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(x) fACBand U CV, then A\V C B\U.

and where U \ — and — \ V are the partial functors of —; \ —2 at
U,V € P(X).

. De Morgan’s Laws. We have equalities of sets

X\NUUV) = (X\U)N(X\V),
X\(UNV)=(X\U)U(X\V)

for each X € Obj(Sets) and each U,V € P(X).

. Interaction With Unions 1. We have equalities of sets

U\(VUW)=U\V)Nn{U\W)
for each X € Obj(Sets) and each U, V,W € P(X).

. Interaction With Unions II. We have equalities of sets

(U\V)UW =UUW)\ (V\W)
for each X € Obj(Sets) and each U, V,W € P(X).

. Interaction With Unions III. We have equalities of sets

U\N(VUW)=UUW)\ (VUW)
= U\V)\W
= (U\W)\V

for each X € Obj(Sets) and each U, V,W € P(X).

. Interaction With Unions IV. We have equalities of sets

(UUV)\W =U\W)U((V\W)
for each X € Obj(Sets) and each U, V,W € P(X).

. Interaction With Intersections. We have equalities of sets

U\V)NW =UNW)\V
—UN(W\V)

for each X € Obj(Sets) and each U, V,W € P(X).

. Interaction With Complements. We have an equality of sets

U\v=Unve
for each X € Obj(Sets) and each U,V € P(X).
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9. Interaction With Symmetric Differences. We have an equality of

sets

U\V=UAUNYV)

for each X € Obj(Sets) and each U,V € P(X).

10. Triple Differences. We have

U\N(V\W)=UnW)Uu(U\V)

for each X € Obj(Sets) and each U, V,W € P(X).

11. Left Annihilation. We have

O\NU=10

for each X € Obj(Sets) and each U € P(X).

12. Right Unitality. We have

U\)=U

for each X € Obj(Sets) and each U € P(X).

13. Invertibility.

We have

U\NU =10

for each X € Obj(Sets) and each U € P(X).

14. Interaction With Containment.  The following conditions are

equivalent:

(a) We have V\U C W.
(b) We have V\W C U.

15. Interaction With Characteristic Functions. We have

XU\V = XU — XUnV

for each X € Obj(Sets) and each U,V € P(X).

Proof. Item 1, Functoriality: See [Pro24ah] and [Pro24al].
Item 2, De Morgan’s Laws: See [Pro24p].

Item 3, Interaction
Item 4, Interaction
Item 5, Interaction
Item 6, Interaction
Item 7, Interaction

With Unions I: See [Pro24q].
With Unions II: Omitted.

With Unions III: See [Pro24am).
With Unions IV: See [Pro24ag].
With Intersections: See [Pro24y].
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Item 8, Interaction With Complements: See [Pro24ae].

Item 9, Interaction With Symmetric Differences: See [Pro24af].

Item 10, Triple Differences: See [Pro24ak].

Item 11, Left Annihilation: Clear.

Item 12, Right Unitality: See [Pro24ail.

Item 13, Invertibility: See [Pro24aj].

Item 14, Interaction With Containment: Omitted.

Item 15, Interaction With Characteristic Functions: See [Pro24i]. Ul
0047 2.3.11 Complements

Let X be a set and let U € P(X).

0050 Definition 2.3.11.1.1. The complement of U is the set U¢ defined by

USEX\U
def

={aeX|agU}
0051 Proposition 2.3.11.1.2. Let X be a set.
0052 1. Functoriality. The assignment U — U® defines a functor
(=) P(X)® = P(X),
where
o Action on Objects. For each U € P(X), we have
()W) = U,

e Action on Morphisms. For each morphism vy: U < V of
P(X), the image

iy Ve = US
of 1y by (—)€ is the inclusion
VecuU*
i.e. where we have
(x) If U C V, then V¢ C U°.
0053 2. De Morgan’s Laws. We have equalities of sets

(UuUV) =U°NVe,
UnNnV)=U°uve

for each X € Obj(Sets) and each U,V € P(X).
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0054 3. Involutority. We have
U9 =U
for each X € Obj(Sets) and each U € P(X).
0055 4. Interaction With Characteristic Functions. We have
xve =1—xu
for each X € Obj(Sets) and each U € P(X).

Proof. Item 1, Functoriality: This follows from Item 1 of Proposi-
tion 2.3.10.1.2.

Item 2, De Morgan’s Laws: See [Pro24p].

Item 3, Involutority: See [Pro24l].

Item 4, Interaction With Characteristic Functions: Clear. O

0056 2.3.12 Symmetric Differences
Let A and B be sets.

0057 Definition 2.3.12.1.1. The symmetric difference of A and B is the
set A A B defined by

ANBE (A\ B)U(B\ A).
0058 Proposition 2.3.12.1.2. Let X be a set.

0059 1. Lack of Functoriality. The assignment (U, V) — U AV need not
define functors

—-AV: (P(X)u C) — (P(X 7C)7
—1 A —9: (P(X) xP(X),C x C) = (P(X), Q).
005A 2. Via Unions and Intersections. We havel”
UAV =0UV)\(UnNV)
for each X € Obj(Sets) and each U,V € P(X).

O-@" (0

UAV vuv unv

Y Mustration:
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. Associativity. We have'

8

UAV)AW =UA(VAW)

for each X € Obj(Sets) and each U, V,W € P(X).

. Commutativity. We have

UAV =V AU

for each X € Obj(Sets) and each U,V € P(X).

. Unitality. We have

Un)=T,
VAU =U

for each X € Obj(Sets) and each U € P(X).

. Invertibility. We have

UANU =0

for each X € Obj(Sets) and each U € P(X).

. Interaction With Unions. We have

UAVIUWVAT)=UUVUW\ (UNVAW)

for each X € Obj(Sets) and each U, V,W € P(X).

. Interaction With Complements I. We have

UANU =X

for each X € Obj(Sets) and each U € P(X).

. Interaction With Complements II. We have

UAX =U*,
XAU=U"

for each X € Obj(Sets) and each U € P(X).

18 Nlustration:

0.9-Q -¢:0

UAV w UAV AW U VAW
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10. Interaction With Complements III. We have
UANVE=UAV
for each X € Obj(Sets) and each U,V € P(X).
11. “Transitivity”. We have
ULAVAVAW)=UAW
for each X € Obj(Sets) and each U, V,W € P(X).
12. The Triangle Inequality for Symmetric Differences. We have
UAWCUAVUVAW
for each X € Obj(Sets) and each U, V,W € P(X).
13. Distributivity Over Intersections. We have

UNn(VAW)=(UNV)A (UMW),
UAV)AW =UNW)A((VAW)

for each X € Obj(Sets) and each U, V,W € P(X).
14. Interaction With Characteristic Functions. We have
Xvav = XU +Xv = 2xunv
and thus, in particular, we have
xuav = xu +xy  mod 2
for each X € Obj(Sets) and each U,V € P(X).
15. Bijectivity. Given A, B C P(X), the maps

AN —:P(X) = P(X),
~AB:P(X) = P(X)

are bijections with inverses given by

(AN—)'=—uAn-),
(-AB'=—uU(BN-).

Moreover, the map
C—CA(AAB)

is a bijection of P(X) onto itself sending A to B and B to A.
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005Q  16.
005R
005S
005T 4.
005U 5.
005V 6.

Interaction With Powersets and Groups. Let X be a set.

(a) The quadruple (P(X), A, (Z),idp(X)) is an abelian group. '

(b) Every element of P(X) has order 2 with respect to A, and
thus P(X) is a Boolean group (i.e. an abelian 2-group).

Interaction With Powersets and Vector Spaces I. The pair (P(X), Oé'p(X))
consisting of
o The group P(X) of 77;
¢ The map ap(x): Fa2 x P(X) — P(X) defined by
0-U =0,

def

1-U=U;

is an Fa-vector space.

Interaction With Powersets and Vector Spaces II. 1If X is finite,
then:

(a) The set of singletons sets on the elements of X forms a basis
for the Fo-vector space ('P(X), ap(X)> of Item 4.
(b) We have
dim(P(X)) = #P(X).

Interaction With Powersets and Rings. The quintuple (P(X), A, N, 0, X)
is a commutative ring.?’

Proof. Item 1, Lack of Functoriality: Omitted.

YHere are some examples:

1.

When X = ), we have an isomorphism of groups between P(() and the trivial

group:
(P(@), A, @, ldp(@)) = pt.

When X = pt, we have an isomorphism of groups between P(pt) and Z,:

(P(pt)v A7 @7 id'P(pt)) = Z/Q

When X = {0, 1}, we have an isomorphism of groups between P({0,1}) and
Z/2 X Z/QZ

(P({O, 1}), A, (Z),idp({()J})) = Zy2 X Lya.

QO@ Warning: The analogous statement replacing intersections by unions (i.e. that
the quintuple (P(X), A, U, 0, X) is a ring) is false, however. See [Pro24ba] for a proof.
END TEXTDBEND
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Item 2, Via Unions and Intersections: See [Pro24r].

Item 3, Associativity: See [Pro24as].

Item 4, Commutativity: See [Pro24at].

Item 5, Unitality: This follows from Item 4 and [Pro24ax].
Item 6, Invertibility: See [Pro24az].

Item 7, Interaction With Unions: See [Pro24bg].

Item 8, Interaction With Complements I: See [Pro24aw].
Item 9, Interaction With Complements II: This follows from Item 4 and
[Pro24bb].

Item 10, Interaction With Complements III: See [Pro24aul].
Item 11, “Transitivity”: We have

(UAVYAVAW)=UAV AV AW)) (by Ttem 3)
=UAN(VAV)AW) (by Item 3)
=UADAW) (by Item 6)
=UAW (by Item 5)

Item 12, The Triangle Inequality for Symmetric Differences: This follows
from Items 2 and 11.

Item 13, Distributivity Over Intersections: See [Pro24u].

Item 14, Interaction With Characteristic Functions: See [Pro24j].

Item 15, Bijectivity: Clear.

Item 16, Interaction With Powersets and Groups: Item 16a follows from?
Items 3 to 6, while Item 3b follows from Item 6.

Item /4, Interaction With Powersets and Vector Spaces I: Clear.

Item b5, Interaction With Powersets and Vector Spaces II: Omitted.
Item 6, Interaction With Powersets and Rings: This follows from Items 8
and 11 of Proposition 2.3.9.1.2 and Items 13 and 16.2 O

2.4 Powersets

2.4.1 Characteristic Functions
Let X be a set.
Definition 2.4.1.1.1. Let U C X and let z € X.

1. The characteristic function of U 23 is the function?*

xv: X — {t,f}

*'Reference: [Pro24av].

%2 Reference: [Pro24ay].

23 Further Terminology: Also called the indicator function of U.
24 Purther Notation: Also written xx (U, —) or xx(—,U).
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defined by
( )def true ifxeU,
€Tr) =
xu false ifx ¢ U

for each = € X.

0060 2. The characteristic function of z is the function 2°
Xz X — {t,f}
defined by
def
Xz = X{z}>
i.e. by

( def | true if z =y,
ol false if x #y

for each y € X.
0061 3. The characteristic relation on X 26 is the relation?’
Xx(—l, —2): X xX— {t,f}

on X defined by?®

def | true if x = Yy,
xx(z,y)

- false if x # vy
for each z,y € X.
0062 4. The characteristic embedding ? of X into P(X) is the function
X(—y: X = P(X)

defined by
X(—)(T) = Xa
for each x € X.

2 Purther Notation: Also written x*, xx (z, —), or xx(—,z).

26 Purther Terminology: Also called the identity relation on X.

27 Further Notation: Also written X:;, or ~jq in the context of relations.

28 As a subset of X x X, the relation yx corresponds to the diagonal Ax C X x X

of X.
2The name “characteristic embedding” comes from the fact that there is an analogue
of fully faithfulness for x(_y: given a set X, we have

Homp x) (Xas Xy) = Xx (2, 9),

for each z,y € X.
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0063 Remark 2.4.1.1.2. The definitions in Definition 2.4.1.1.1 are decategori-
fications of co/presheaves, representable co/presheaves, Hom profunctors,
and the Yoneda embedding:*’

0064 1. A function
[+ X —{t,f}

is a decategorification of a presheaf
F: C°P — Sets,

with the characteristic functions yy of the subsets of X being the
primordial examples (and, in fact, all examples) of these.

0065 2. The characteristic function
Xz X — {t,f}

of an element x of X is a decategorification of the representable
presheaf
hx: C% — Sets

of an object x of a category C.

0066 3. The characteristic relation

Xx(—l,—Q)Z X xX — {t,f}

30These statements can be made precise by using the embeddings

(=) g Sets < Cats,

disc *

(—)gise: {t, fldisc = Sets

of sets into categories and of classical truth values into sets.
For instance, in this approach the characteristic function

Xz: X — {t,f}
of an element x of X, defined by

()d_ef true ifﬂ,’:y,
Xell) = false if z #y

for each y € X, is recovered as the representable presheaf
Homxdisc(77 {I’) : Xdisc — Sets

of the corresponding object x of Xgisc, defined on objects by

def pt if r=v,
HOdeisc (y’ l‘) = {@ if 7é Y

for each y € Obj(Xaisc)-
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of X is a decategorification of the Hom profunctor
Home(—1,—2): C° x C — Sets
of a category C.
0067 4. The characteristic embedding
X(-): X = P(X)
of X into P(X) is a decategorification of the Yoneda embedding
& C% — PSh(QC)
of a category C into PSh(C).
0068 5. There is also a direct parallel between unions and colimits:

e An element of P(X) is a union of elements of X, viewed as
one-point subsets {z} € P(A).

o An object of PSh(C) is a colimit of objects of C, viewed as
representable presheaves hx € Obj(PSh(C)).

0069 Proposition 2.4.1.1.3. Let X be a set.

1. The Inclusion of Characteristic Relations Associated to a Function.
Q06A Let f: A — B be a function. We have an inclusion®!

AXAMBXB

xB o (f x f)Cxa, XAO.AB

{t,f}.
0068 2. Interaction With Unions I. We have

Xvuy = max(xv, xv)
for each X € Obj(Sets) and each U,V € P(X).

006C 3. Interaction With Unions II. We have

XUuv = XU + XV — Xunv

for each X € Obj(Sets) and each U,V € P(X).

31This is the O-categorical version of Definition 8.4.4.1.1.
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006D 4. Interaction With Intersections I. We have

Xunv = XUXV
for each X € Obj(Sets) and each U,V € P(X).

Q06E 5. Interaction With Intersections II. We have

Xunv = min(xu, xv)
for each X € Obj(Sets) and each U,V € P(X).
006F 6. Interaction With Differences. We have
XU\V = XU — XUnV
for each X € Obj(Sets) and each U,V € P(X).
006G 7. Interaction With Complements. We have
xve =1—xu
for each X € Obj(Sets) and each U € P(X).

006H 8. Interaction With Symmetric Differences. We have
Xvav = Xxv + Xv — 2Xunv
and thus, in particular, we have

xvav = Xxu +xv  mod 2
for each X € Obj(Sets) and each U,V € P(X).

9. Interaction Between the Characteristic Embedding and Morphisms.

0067 Let f: X — Y be a map of sets. The diagram
X _f b'd
Jeoxx =xxof, XX{ ‘XX’

P(X) <> P(X').

cominutes.

Proof. Item 1, The Inclusion of Characteristic Relations Associated to
a Function: The inclusion xp(f(a), f(b)) C xa(a,b) is equivalent to the
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statement “if a = b, then f(a) = f(b)”, which is true.

Item 2, Interaction With Unions I: This is a repetition of Item 8 of
Proposition 2.3.7.1.2 and is proved there.

Item 3, Interaction With Unions II: This is a repetition of Item 9 of
Proposition 2.3.7.1.2 and is proved there.

Item 4, Interaction With Intersections I: This is a repetition of Item 9
of Proposition 2.3.9.1.2 and is proved there.

Item 5, Interaction With Intersections II: This is a repetition of Item 10
of Proposition 2.3.9.1.2 and is proved there.

Item 6, Interaction With Differences: This is a repetition of Item 15 of
Proposition 2.3.10.1.2 and is proved there.

Item 7, Interaction With Complements: This is a repetition of Item 4 of
Proposition 2.3.11.1.2 and is proved there.

Item 8, Interaction With Symmetric Differences: This is a repetition of
Item 14 of Proposition 2.3.12.1.2 and is proved there.

Item 9, Interaction Between the Characteristic Embedding and Morphisms:
Indeed, we have

[fx o xx](2) = felxx())
= f({=})
= {f(2)}
= xx(f(x)
= Ixxr o f)(=),

for each z € X, showing the desired equality. O

2.4.2 The Yoneda Lemma for Sets
Let X be a set and let U C X be a subset of X.
Proposition 2.4.2.1.1. We have

XP(X) (Xas xU) = xv ()

for each z € X, giving an equality of functions

XP(X) (X(—):XU) = XU-
Proof. Clear. O

Corollary 2.4.2.1.2. The characteristic embedding is fully faithful, i.e.,
we have

xXp(x)(Xas Xy) = Xx(2,9)
for each z,y € X.

Proof. This follows from Proposition 2.4.2.1.1. O
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006N 2.4.3 Powersets
Let X be a set.

006P Definition 2.4.3.1.1. The powerset of X is the set P(X) defined by
PX)E{UeP|UcCX},
where P is the set in the axiom of powerset, 7?7 of 77.

006Q Remark 2.4.3.1.2. The powerset of a set is a decategorification of the
category of presheaves of a category: while??

o The powerset of a set X is equivalently (Items 1 and 2 of Proposi-
tion 2.4.3.1.6) the set

Sets(X, {t,f})
of functions from X to the set {t,f} of classical truth values.

e The category of presheaves on a category C is the category
Fun(C°P, Sets)
of functors from C°P to the category Sets of sets.

006R Proposition 2.4.3.1.3. Let X be a set.

006S 1. Co/Completeness. The (posetal) category (associated to) (P(X), C)
is complete and cocomplete:

(a) Products. The products in P(X) are given by intersection of
subsets.

(b) Coproducts. The coproducts in P(X) are given by union of
subsets.

(¢) Co/Equalisers. Being a posetal category, P(X) only has at

32This parallel is based on the following comparison:

e A category is enriched over the category
Sets def Catsg

of sets (i.e. “O-categories”), with presheaves taking values on it.
e A set is enriched over the set

def

{t,f} = Cats_1

of classical truth values (i.e. “(—1)-categories”), with characteristic functions
taking values on it.
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most one morphisms between any two objects, so co/equalisers
are trivial.

06T 2. Cartesian Closedness. The category P(X) is Cartesian closed
with internal Hom

Hompx)(—1,—2): P(X)® x P(X) — P(X)
given by??
Hompx)(U,V) = (X \U)UV
for each U,V € Obj(P(X)).

Proof. Item 1, Co/Completeness: Clear.
Item 2, Cartesian Closedness: This follows from Item 2 of Proposi-
tion 2.3.9.1.2. O

006U Proposition 2.4.3.1.4. Let X be a set.
006V 1. Functoriality I. The assignment X — P(X) defines a functor
.. Sets — Sets,

where

o Action on Objects. For each A € Obj(Sets), we have

o Action on Morphisms. For each A, B € Obj(Sets), the action
on morphisms

Pya,p: Sets(A, B) — Sets(P(A), P(B))

of P, at (A, B) is the map defined by by sending a map of
sets f: A — B to the map

P.(f): P(A) = P(B)

defined by
def

as in Definition 2.4.4.1.1.

*For intuition regarding the expression defining Homp(x)(U,V), see
Remark 2.3.9.1.3.
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006W 2. Functoriality II. The assignment X +— P(X) defines a functor
P~L: Sets® — Sets,

where

o Action on Objects. For each A € Obj(Sets), we have

o Action on Morphisms. For each A, B € Obj(Sets), the action
on morphisms

Pg,lB: Sets(A, B) — Sets(P(B),P(A))

of P~1 at (A, B) is the map defined by by sending a map of
sets f: A — B to the map

PL(f): P(B) = P(A)

defined by
PHH=I
as in Definition 2.4.5.1.1.

006X 3. Functoriality III. The assignment X +— P(X) defines a functor
Pr: Sets — Sets,

where

o Action on Objects. For each A € Obj(Sets), we have

o Action on Morphisms. For each A, B € Obj(Sets), the action
on morphisms

Pia,p: Sets(A, B) — Sets(P(A), P(B))

of Py at (A, B) is the map defined by by sending a map of sets
f: A— B to the map

Pi(f): P(A) — P(B)

defined by

def

P f) = £,
as in Definition 2.4.6.1.1.
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006Y 4. Adjointness 1. We have an adjunction

7)—1
—
(73_1 —173_1’°p): Sets®®? 1 Sets,
~—__
P—l,op

witnessed by a bijection

Sets®?(P(A), B) = Sets(A, P(B)),

LfSets(B,P(A))

natural in A € Obj(Sets) and B € Obj(Sets®P).

0067 5. Adjointness II. We have an adjunction

Gr
(Gr4Py): Setsg Rel,
P.

witnessed by a bijection of sets
Rel(Gr(A), B) = Sets(A, P(B))

natural in A € Obj(Sets) and B € Obj(Rel), where Gr is the graph
functor of Item 1 of Proposition 6.3.1.1.2 and P, is the functor of
Proposition 6.4.5.1.1.

Proof. Item 1, Functoriality I: This follows from Items 3 and 4 of
Proposition 2.4.4.1.5.

Item 2, Functoriality I1: This follows Items 3 and 4 of Proposition 2.4.5.1.4.
Item 3, Functoriality I11: This follows Items 3 and 4 of Proposition 2.4.6.1.7.
Item 4, Adjointness I: We have

Sets®®(P(A), B) & Sets(B, P(A))

= Sets(B, Sets(A, {t,f}))

(by Item 1 of Proposition 2.4.3.1.6)
= Sets(A x B, {t,f})

(by Item 2 of Proposition 2.1.3.1.2)
= Sets(A, Sets(B, {t,f}))

(by Item 2 of Proposition 2.1.3.1.2)
= Sets(A,P(B)) (by Item 1 of Proposition 2.4.3.1.6)

with all bijections natural in A and B (where we use Item 2 of Proposi-
tion 2.4.3.1.6 here).
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Item 5, Adjointness II: We have

Rel(Gr(A), B) 2 P(A x B)
=~ Sets(A x B, {t,f})
(by Item 1 of Proposition 2.4.3.1.6)
= Sets(A, Sets(B, {t,f}))
(by Item 2 of Proposition 2.1.3.1.2)

= Sets(A,P(B)) (by Item 1 of Proposition 2.4.3.1.6)

with all bijections natural in A (where we use Item 2 of Proposition 2.4.3.1.6
here). Explicitly, this isomorphism is given by sending a relation R: Gr(A4) -
B to the map R': A — P(B) sending a to the subset R(a) of B, as in
Remark 5.1.1.1.4.

Naturality in B is then the statement that given a relation R: B - B’,

the diagram

Rel(Gr(A), B) ™ Rel(Gr(A), B

: :
Sets(A,P(B)) Sets(A,P(B"))

commutes, which follows from Remark 6.4.1.1.2. ]

0070 Proposition 2.4.3.1.5. Let X be a set.

0071

0072

1. Symmetric Strong Monoidality With Respect to Coproducts I. The
powerset functor P, of Item 1 of Proposition 2.4.3.1.4 has a sym-
metric strong monoidal structure

(P*,PJ—I,PH) : (Sets, x,pt) — (Sets, [[,0)
being equipped with isomorphisms
PHX,Y: P(X) x P(Y) = P(XI]Y),
Pl ot 2 p(0),

natural in X,Y € Obj(Sets).

2. Symmetric Strong Monoidality With Respect to Coproducts II. The
powerset functor P~! of Item 2 of Proposition 2.4.3.1.4 has a
symmetric strong monoidal structure

(77_1,73_”]—[,731_1']-[) : (Sets®P) x°P pt) — (Sets, [1,0)
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being equipped with isomorphisms
Pl p(x) x P(Y) 5 P(XTTY),
Py ot 2 Py,
natural in X,Y € Obj(Sets).

3. Symmetric Strong Monoidality With Respect to Coproducts III.
0073 The powerset functor P of Item 3 of Proposition 2.4.3.1.4 has a
symmetric strong monoidal structure

(P;,P!H,P!]ﬁ[) : (Sets, x,pt) — (Sets, [, 0)

being equipped with isomorphisms

P,%Y P(X)x P(Y) = P(X 1Y),

)
,|L11 pt = P(0),
natural in X,Y € Obj(Sets).

0074 4. Symmetric Lax Monoidality With Respect to Products I. The pow-
erset functor P, of Item 1 of Proposition 2.4.3.1.4 has a symmetric
lax monoidal structure

(P*)P:?vp*u) (Sets, x, pt) — (Sets, x, pt)
being equipped with morphisms

xyt P(X) X P(Y) = P(X xY),
P pt = P(pt),

natural in X,Y € Obj(Sets), where
e The map 73*X|X,Y is given by
X def
ey OV EU <V

for each (U,V) € P(X) x P(Y),
e The map P:Il is given by

;<|1(*) = pt.
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5. Symmetric Lax Monoidality With Respect to Products II. The
powerset functor P~! of Item 2 of Proposition 2.4.3.1.4 has a
symmetric lax monoidal structure

(73_1,73_1|®,731_1|®> : (Sets®P, x°P pt) — (Sets, X, pt)
being equipped with morphisms
Py s P(X) x P(Y) = P(X x Y),
P pt — P(0),
natural in X,Y € Obj(Sets), defined as in Item 4.

6. Symmetric Lax Monoidality With Respect to Products III. The pow-
erset functor Py of Item 3 of Proposition 2.4.3.1.4 has a symmetric
lax monoidal structure

(Pg,P@,P{ﬁ): (Sets, x, pt) — (Sets, x, pt)
being equipped with morphisms
P!TX’Y: PX)xPY)—=PXxY),
P!le pt — P(0),
natural in X,Y € Obj(Sets), defined as in Item 4.

Proof. Item 1, Symmetric Strong Monoidality With Respect to Coproducts
I: The isomorphism

Pl Px) x P(Y) - PXITY)

is given by sending (U, V) € P(X) x P(Y) to U [[ V, with inverse given
by sending a subset S of X [TY to the pair (Sx,Sy) € P(X) x P(Y)
with

Sx E{zeX|(0,2) €S}

Sy “{yeY | (L,y) € S}
The isomorphism pt = P(() is given by x — 0 € P(0).
Naturality for the isomorphism P*I Xy is the statement that, given maps
of sets f: X — X' and ¢g: Y — Y”, the diagram

P(X) x P(Y) 2% p(x7) < P(Y7)
2 2

PXTIY) P IIY)

(/Ls).
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commutes, which is clear, as it acts on elements as

(U, V) ———— (f«(U),9+(V))

| |

UV — (f19).ULV) = f(U) T g«(V),

where we are using Item 7 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of P, as a monoidal func-
tor follow by checking the commutativity of the relevant diagrams on
elements.

Item 2, Symmetric Strong Monoidality With Respect to Coproducts I1:
The proof is similar to Item 1, and is hence omitted.

Item 3, Symmetric Strong Monoidality With Respect to Coproducts I1I:
The proof is similar to Item 1, and is hence omitted.

Item 4, Symmetric Lax Monoidality With Respect to Products I: Natu-
rality for the morphism 77*X| Xy is the statement that, given maps of sets

f: X = X" and g: Y — Y/, the diagram
FexXgx / /
P(X)xPY)— P(X") x P(Y')

2 2

: :
v v

P(X X Y) W P(X, X Y/)

commutes, which is clear, as it acts on elements as

(U, V) ——— (f(U),9x(V))

| |

UxV i (fx9),(UxV)=f(U) x g«(V),

where we are using Item 8 of Proposition 2.4.4.1.4.

Finally, monoidality, unity, and symmetry of P, as a monoidal func-
tor follow by checking the commutativity of the relevant diagrams on
elements.

Item 5, Symmetric Lax Monoidality With Respect to Products II: The
proof is similar to Item 4, and is hence omitted.

Item 6, Symmetric Lax Monoidality With Respect to Products I1I: The
proof is similar to Item 4, and is hence omitted. ]

0077 Proposition 2.4.3.1.6. Let X be a set.
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0078 1. Powersets as Sets of Functions I. The assignment U +— xy defines
a bijection

X(oy: P(X) = Sets(X, {t,f}),
for each X € Obj(Sets).
0079 2. Powersets as Sets of Functions II. The bijection
P(X) = Sets(X, {t,f})

of Item 1 is natural in X € Obj(Sets), refining to a natural isomor-
phism of functors

P~ = Sets(—, {t,f}).

Q07A 3. Powersets as Sets of Relations. We have bijections

P(X) = Rel(pt, X),
P(X) = Rel(X, pt),

natural in X € Obj(Sets).

Proof. Item 1, Powersets as Sets of Functions I: Indeed, the inverse of
X(—) is given by sending a function f: X — {t,f} to the subset Uy of
P(X) defined by

Up={z € X | f(zx) = true},

i.e. by Up = f~!(true). That X(—) and f — Uy are inverses is then
straightforward to check.

Item 2, Powersets as Sets of Functions II: We need to check that, given
a function f: X — Y, the diagram

f—l

PY) P(X)
Mﬂk ana
Sets(Yj {t,f}) - Sets(Xv, {t,f})

commutes, i.e. that for each V € P(Y), we have

xvof=Xxs1u)-
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And indeed, we have

[xv o fl(v) = xv (f(v))
{true if f(v) eV,

false otherwise

{true if ve fY(V),

false otherwise
def

= Xs-1(v)(v)
for each v € V.
Item 3, Powersets as Sets of Relations: Indeed, we have

def

Rel(pt, X) = P(pt x X)

= P(X)
and
Rel(X, pt) &€ P(X x pt)
= P(X),
where we have used Item 4 of Proposition 2.1.3.1.2. O

Remark 2.4.3.1.7. The bijection
P(X) = Sets(X, {t,f})
of Item 1 of Proposition 2.4.3.1.6, which

e Takes a subset U — X of X and straightens it to a function
xv: X — {true, false};

o Takes a function f: X — {true,false} and unstraightens it to a
subset f~!(true) — X of X;

may be viewed as the (—1)-categorical version of the un/straightening
isomorphism for indexed and fibred sets

FibSets(X) = ISets(X)
——
d:e%ets/x d:di:un(Xdisc,Sets)
of 77, where we view:
e Subsets U — X as analogous to X-fibred sets ¢x: A — X.

o Functions f: X — {t,f} as analogous to X-indexed sets A: Xgisc —
Sets.
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007C Proposition 2.4.3.1.8. Let X be a set.
007D 1. Unidversal Property. The pair (P(X),X(_)) consisting of

o The powerset P(X) of X;

o The characteristic embedding x(_): X < P(X) of X into
P(X);

satisfies the following universal property:

(%) Given another pair (Y, f) consisting of
— A cocomplete poset (Y, <);
— A function f: X - Y;
there exists a unique cocontinuous morphism of posets

(P(X),C) == (Y,=)

making the diagram

commute.

007E 2. Adjointness. We have an adjunction®

P
~—

(PAX): Sets L Pos<mp:
k-‘:‘__/

witnessed by a bijection
Pos«™P-((P(X), C), (Y, X)) = Sets(X,Y),

natural in X € Obj(Sets) and (Y, <) € Obj(Pos®““°™P"), where the
maps witnessing this bijection are given by

e The map

X : Pos®M((P(X), ), (Y,=)) — Sets(X,Y)

34In this sense, P(A) is the free cocompletion of A. (Note that, despite its name,
however, this is not an idempotent operation, as we have P(P(A)) # P(A).)
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defined by
* def
XX(f) = f O XX,

i.e. by sending a cocontinuous morphism of posets f: P(X) —
Y to the composition

xS px) Ly
e The map
Lan, , : Sets(X,Y) — Pos® ™ ((P(X), C), (Y, =))

is given by sending a function f: X — Y to its left Kan
extension along yx,

Moreover, Lan, , (f) can be explicitly computed by

rzeX
Lang (D) 2 [ xp (6 V) © £ @)
& /IEX xvu(z) ® f(x) (by Proposition 2.4.2.1.1)

V (w(z) © f(z)

zeX

12

for each U € P(X), where:
— V is the join in (Y, =<).
— We have

true © f(x) d:‘?ff(m),
false © f(x) ef Dy,

where @y is the minimal element of (Y, <).

Proof. Item 1, Universal Property: This is a rephrasing of Item 2.
Item 2, Adjointness: We claim we have adjunction P 4 &, witnessed by
a bijection

Pos®™P ((P(X), C), (Y, X)) = Sets(X,Y),

natural in X € Obj(Sets) and (Y, <) € Obj(Pos®«MP-).
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e Map I. We define a map
O x y: Pos“C™ ((P(X),C), (Y, X)) — Sets(X,Y)

as in the statement, by

Dxy(f)= foxx
for each f € Pos®“™P ((P(X), C), (Y, X)).

e Map II. We define a map
Uxy: Sets(X,Y) = Pos™((P(X),C), (Y, =)

as in the statement, by

for each f € Sets(X,Y).

o Invertibility I. We claim that
Vxy o ®xy = idposcocome: (p(x),0),(v,<))-
Indeed, given a cocontinuous morphism of posets
§: (P(X),C) = (V,2),

we have

[Wxy o xy](€) E Uxy(Px,y(€))
E Wy y(€oxx)

= Lan, (o xx)
& \/ X(_)(x)®§(XX($))

rzeX

¢,
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where indeed

\/XU ) © &(xx(x))

zeX

(\/ xu (@) © Eex ( >>>v( V w(m)@&(m(m)))

zeU reX\U

= (\/ €(xx(fv))> v ( V @y)
z€U z€X\U

= \/ E(xx(z))

zeU

0 5(\/ (m)>
zeU
=¢(U)

for each U € P(X), where we have used that & is cocontinuous for
the equality Sy

\/X() ) ©&(xx (z

zeX

o Invertibility II. We claim that

PxyoWxy = idses(x,y)-

Indeed, given a function f: X — Y, we have

def

[PxyoVxy](f) =Pxy(Yxy(f))

= dxy (Lany, (f))

= Lany (f) oxx
C1:mf

where indeed

[Lany (f) o xx)(z) = \/ X (¥ (v)
yeX

— (X{x}(a:) ® f(a:)) Vv ( V x@@o f(y))

yeX\{z}

yeX\{z}

for each x € X.
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e Naturality for ®, Part I. We need to show that, given a function
f: X — X', the diagram

cocomp. / (I)X’,Y /
Pos™P ((P(X"), ©), (Y, X)) —> Sets(X',Y)

PL(f)" I

Pos<e<em>:((P(X), C), (¥, <)) z— Sets(X,Y)

XY
commutes. Indeed, given a cocontinuous morphism of posets
& (P(XY),C) = (V. 2),

we have

[@xy © Pu(£)*](6) < xy (Pu(£)(9))
Edxy(Eofi)
= (€0 fi)oxx
=&o(feoxx)
Leo(xxrof)
= (§oxxr)o

yv)here we have used Item 9 of Proposition 2.4.1.1.3 for the equality
A
= above.

e Naturality for ®, Part II. We need to show that, given a cocontin-
uous morphism of posets

g: (Y7 jy) — (Y/7 jY’)v

the diagram

Pos™P-((P(X), ©), (Y, <)) k Sets(X,Y)
g« g

Poscocomp.((zp()()7 C), (Y/, j)) R SetS(X, Y/)

Xy’
commutes. Indeed, given a cocontinuous morphism of posets

£ (P(X),C) = (v, %),
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we have

[@x,v7 0 4] (&) E Dxyr(9:(6))

EPxyi(gof)

Z(godoxx

=go(§oxx)

Zgo(Dxy(€))

= 0. (Pxy(€)
]

= [g. 0 Dy y](€).

e Naturality for U. Since ® is natural in each argument and & is a
componentwise inverse to ¥ in each argument, it follows from Item 2
of Proposition 8.8.6.1.2 that W is also natural in each argument.

This finishes the proof. O

007F 2.4.4 Direct Images
Let A and B be sets and let f: A — B be a function.

007G Definition 2.4.4.1.1. The direct image function associated to f
is the function

f«: P(A) = P(B)
defined by?7:36

def there exists some a € U
=<beB

such that b = f(a)
={f(a) eBlacU}

for each U € P(A).
007H Notation 2.4.4.1.2. Sometimes one finds the notation
ds: P(A) — P(B)

for fi. This notation comes from the fact that the following statements
are equivalent, where b € B and U € P(A):

o We have b € 3,(U).

35 Purther Terminology: The set f(U) is called the direct image of U by f.
36We also have

f+(U) = B\ fi(A\U);
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o There exists some a € U such that f(a) = b.

007] Remark 2.4.4.1.3. Identifying subsets of A with functions from A to
{true, false} via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the
direct image function associated to f is equivalently the function

f«: P(A) = P(B)
defined by

fo(xv) = Lang (xv)
= colim((f;(—l)) P A XY, {t,f})

= colim (xo(a)
fla)=—1

=V (wl),

acA
fla)=—1

where we have used 7?7 for the second equality. In other words, we have

[ Oxa)l) =\ (xu(a)
o=

true if there exists some a € A such
= that f(a) =band a € U,

false otherwise

true if there exists some a € U
= such that f(a) = b,

false otherwise

for each b € B.
007K Proposition 2.4.4.1.4. Let f: A — B be a function.
007L 1. Functoriality. The assignment U — f,(U) defines a functor
fe: (P(A),C) = (P(B),C)
where

o Action on Objects. For each U € P(A), we have

[£J(U) E £.(U).
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o Action on Morphisms. For each U,V € P(A):
(x) If U C V, then f.(U) C f«(V).

007M 2. Triple Adjointness. We have a triple adjunction

f+
ST LN
(fA s HA): PA)=1—P(B),
L
fi

witnessed by bijections of sets

Homp g (£.(U), V) = Homp( ) (U, f (V)
Homp () (71 (U), V) = Homp() (U, fi(V)),

natural in U € P(A) and V € P(B) and (respectively) V € P(A)
and U € P(B), i.e. where:

(a) The following conditions are equivalent:
i. We have f,(U) C V.
ii. We have U C f~1(V).

(b) The following conditions are equivalent:
i. We have f~1(U) C V.
ii. We have U C fi(V).

007N 3. Preservation of Colimits. We have an equality of sets
ﬂ(U“>:Uﬂw»
icl iel
natural in {Us},.; € P(A)*!. In particular, we have equalities

LU)UL(V) = f(UUV),
f(0) =0,

natural in U,V € P(A).

007P 4. Oplax Preservation of Limits. We have an inclusion of sets

ﬂ(ﬂw>CﬂﬂW&

iel il

see Item 9 of Proposition 2.4.4.1.4.
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natural in {Us},c; € P(A)*!. In particular, we have inclusions

LUNV) C LU)N V),
f(A) C B,

natural in U,V € P(A).

007Q 5. Symmetric Strict Monoidality With Respect to Unions. The direct
image function of Item 1 has a symmetric strict monoidal structure

(for 2. £51): (P(A),U,0) = (P(B),U,0),
being equipped with equalities
oyt U UL(V) S f(UUV),
00,
natural in U,V € P(A).

007R 6. Symmetric Oplax Monoidality With Respect to Intersections. The
direct image function of Item 1 has a symmetric oplax monoidal
structure

(fuor 2, 151)  (P(A),0, 4) = (P(B),N, B),
being equipped with inclusions

fSuvi FUNV) < £U)N V),
f@‘)]_: f*(A) — Bv

*

natural in U,V € P(A).

007S 7. Interaction With Coproducts. Let f: A— A’ and g: B — B’ be
maps of sets. We have

(f9).UIV) = f(U) L g«(V)
for each U € P(A) and each V € P(B).

07T 8. Interaction With Products. Let f: A — A" and g: B — B’ be
maps of sets. We have

(f x9),(UxV)=f(U) x g«(V)

for each U € P(A) and each V € P(B).
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9. Relation to Direct Images With Compact Support. We have
f«(U) =B\ fi(A\U)
for each U € P(A).

Proof. Item 1, Functoriality: Clear.
Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Re-
mark 2.4.5.1.2, Remark 2.4.6.1.3, and 7?7 of 77.

Item 3, Preservation of Colimits: This follows from Item 2 and 77 of
29 37

Item 4, Oplax Preservation of Limits: The inclusion f,.(A) C B is clear.
See [Pro24s| for the other inclusions.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This
follows from Item 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections:
This follows from Item 4.

Item 7, Interaction With Coproducts: Clear.

Item 8, Interaction With Products: Clear.

Item 9, Relation to Direct Images With Compact Support: Applying
Item 9 of Proposition 2.4.6.1.6 to A\ U, we have

HANU) = B\ f(A\ (A\U))
= B\ f.(U).

Taking complements, we then obtain

f(U) =B\ (B\ f(U)),
=B\ fi(A\ D),

which finishes the proof. O
Proposition 2.4.4.1.5. Let f: A — B be a function.

1. Functionality I. The assignment f — f, defines a function

(=)ija,5: Sets(A, B) — Sets(P(A4), P(B)).

2. Functionality II. The assignment f — f, defines a function

(=)ija,51 Sets(A, B) = Pos((P(A), C), (P(B), C)).

3. Interaction With Identities. For each A € Obj(Sets), we have

(ida), = idp(a)-

37See also [Pro24t].
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4. Interaction With Composition. For each pair of composable
functions f: A — B and g: B — C, we have

P(4) L P(B)

(90 1), =g I \\ |
(gof).

P(C).

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Remark 2.4.4.1.3
and 7?7 of 77.

Item 4, Interaction With Composition: This follows from Remark 2.4.4.1.3
and 77 of 77. ]

2.4.5 Inverse Images

Let A and B be sets and let f: A — B be a function.

Definition 2.4.5.1.1. The inverse image function associated to f
is the function?®

f7hP(B) = P(4)
defined by
FHV)E {a e A| we have f(a) € V}
for each V € P(B).

Remark 2.4.5.1.2. Identifying subsets of B with functions from B to
{true, false} via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the
inverse image function associated to f is equivalently the function

f*:P(B)—P(A)

defined by
* def
ffxv)=xvof

for each xy € P(B), where xy o f is the composition

AL, p Xy, {true, false}

in Sets.

38 Purther Notation: Also written f*: P(B) — P(A).
39 Purther Terminology: The set f~'(V) is called the inverse image of V by f.
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0083 Proposition 2.4.5.1.3. Let f: A — B be a function.
0084 1. Functoriality. The assignment V ~ f~1(V) defines a functor

f7H (P(B), C) = (P(4),C)
where
o Action on Objects. For each V € P(B), we have
= w).
o Action on Morphisms. For each U,V € P(B):
(x) fU C V, then f~HU) c f~HV).
0085 2. Triple Adjointness. We have a triple adjunction

I+
LN
(FAf71HR): PA)— s —P(B),
L
i

witnessed by bijections of sets
Hompp) (f«(U),V) = Homp 4 <U7 fﬁl(V))a
Homp4) (f_l(U), V) = Homp(4)(U, fi(V)),

natural in U € P(A) and V € P(B) and (respectively) V € P(A)
and U € P(B), i.e. where:

(a) The following conditions are equivalent:
i. We have f,(U) C V;
ii. We have U C f~1(V);

(b) The following conditions are equivalent:
i. We have f~1(U) C V.
ii. We have U C fi(V).

0086 3. Preservation of Colimits. We have an equality of sets
1 (U Ui) =),
i€l i€l
natural in {Us},.; € P(B)*!. In particular, we have equalities
froyu vy =riwoy),
o) =0,
natural in U,V € P(B).
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4.

5.

6.

7.

Preservation of Limits. We have an equality of sets
1 <ﬂ Ui) =),
iel il
natural in {U;};.; € P(B)*!. In particular, we have equalities
oy i)y = iuny),
fH(B) = A,
natural in U,V € P(B).

Symmetric Strict Monoidality With Respect to Unions.  The
inverse image function of Item 1 has a symmetric strict monoidal
structure

(F7L 2 199): (P(B),U,0) — (P(A),U,0),
being equipped with equalities
oy U V) S oY),
fLE 05 W),
natural in U,V € P(B).

Symmetric Strict Monoidality With Respect to Intersections. The
inverse image function of Item 1 has a symmetric strict monoidal
structure

(F1 28, f59): (P(B).N, B) — (P(A),N, A),
being equipped with equalities
oy )N V) S Ny,
Ji e AS B,
natural in U,V € P(B).

Interaction With Coproducts. Let f: A— A’ and g: B — B’ be
maps of sets. We have

(Fllo~ @' OV) =) g™ (V)
for each U’ € P(A’) and each V' € P(B’).
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8. Interaction With Products. Let f: A — A" and g: B — B’ be
maps of sets. We have

(fxg) (U x V)= f7HU") x g1 (V)
for each U’ € P(A’) and each V' € P(B’).

Proof. Item 1, Functoriality: Clear.
Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Re-
mark 2.4.5.1.2, Remark 2.4.6.1.3, and 77 of 77.

Item 3, Preservation of Colimits: This follows from Item 2 and 77 of
292 40

Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??7.%!
Item 5, Symmetric Strict Monoidality With Respect to Unions: This
follows from Item 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections:
This follows from Item 4.

Item 7, Interaction With Coproducts: Clear.

Item 8, Interaction With Products: Clear. ]

Proposition 2.4.5.1.4. Let f: A — B be a function.

1. Functionality I. The assignment f — f~! defines a function
(—)a'p: Sets(A, B) — Sets(P(B), P(A)).
2. Functionality II. The assignment f — f~! defines a function
(—)alp: Sets(A, B) = Pos((P(B), C), (P(A),C)).
3. Interaction With Identities. For each A € Obj(Sets), we have
id," = idpa).

4. Interaction With Composition. For each pair of composable
functions f: A — B and g: B — C, we have

108ee also [Pro24ac].
41See also [Pro24ab).
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Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Remark 2.4.5.1.2
and Item 5 of Proposition 8.1.6.1.2.

Item 4, Interaction With Composition: This follows from Remark 2.4.5.1.2
and Item 2 of Proposition 8.1.6.1.2. O

2.4.6 Direct Images With Compact Support
Let A and B be sets and let f: A — B be a function.

Definition 2.4.6.1.1. The direct image with compact support
function associated to f is the function

fi: P(A) — P(B)

defined by*%:%3

def for each a € A, if we have
HU)=<beB
f(a) =b, then a € U

= {be B ’ we have f~1(b) C U}

for each U € P(A).

Notation 2.4.6.1.2. Sometimes one finds the notation
Vft P(A) — P(B)

for f,. This notation comes from the fact that the following statements
are equivalent, where b € B and U € P(A):

o We have b € V¢(U).
o Foreachac€ A, if b= f(a), thena € U.

Remark 2.4.6.1.3. Identifying subsets of A with functions from A to
{true, false} via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the
direct image with compact support function associated to f is equivalently
the function

fi: P(A) — P(B)

42 pyrther Terminology: The set fi(U) is called the direct image with compact
support of U by f.
“3We also have

SU) =B\ f.(A\ U);
see Item 9 of Proposition 2.4.6.1.6.
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defined by

filxv) = Rang(xv)
= lim(((—l)i f) %A {true, faIse})

= lim (x(a)
fla)=—1
= /\ (xv(a))-.
a€A
fla)=—

where we have used 77 for the second equality. In other words, we have
FiOan)®) = A (xv(a)
acA
fla)=b
true if, for each a € A such that
= f(a) = b, we have a € U,
false otherwise

{true if f~1(b) CcU

false otherwise
for each b € B.

008M Definition 2.4.6.1.4. Let U be a subset of A.%%%

1. The image part of the direct image with compact support

44Note that we have
HU) = frim(U) U frep(U),

as

AHU) = 1LU)N
= fU)N ( m(f) U (B\Im(f)))
= (1(U) NIm(f)) U ((U) N (B \ Im([)))

def

= fLim(U) U frep(U).

45In terms of the meet computation of fi(U) of Remark 2.4.6.1.3, namely

)= N\ (wla),

acA
fla)=—1

we see that fiim corresponds to meets indexed over nonempty sets, while fi o, corre-
sponds to meets indexed over the empty set.
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008N fi(U) of U is the set fi;m(U) defined by
frim(U) = A(U) N Im(f)
have f~1(b) C}
_ | we .
P ’ U and f1(b) # 0
2. The complement part of the direct image with compact
008P support fi(U) of U is the set fi .,(U) defined by
Frep(U) = AU) N (B \ Im(f))
= B\ Im(f)
B we have f~1(b) C}
_{beB ’ U and f~(b) = 0

={veB|'®) =0}
008Q Example 2.4.6.1.5. Here are some examples of direct images with
compact support.

1. The Multiplication by Two Map on the Natural Numbers. Consider
the function f: N — N given by

f(n) ¥ 2n

for each n € N. Since f is injective, we have

Jrim(U) = fu(U)
Jrep(U) = {odd natural numbers}

for any U C N.

2. Parabolas. Consider the function f: R — R given by

fla) = a?
for each x € R. We have
f!,cp(U) = ]R<0
for any U C R. Moreover, since f~!(x) = {—v/z,/T}, we have
e.g.:
f!,im([()’ 1]) = {0}7
f',im([_lv 1]) = [Oa 1]7
frim([1,2]) =0,
Srim([=2, =1 U[1,2]) = [1,4]
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3. Circles. Consider the function f: R? — R given by
fz,y) = a? +
for each (z,y) € R2. We have
frep(U) =R
for any U C R?, and since

a circle of radius r about the origin if r > 0,

f7(r) =4 {(0,0)} if r =0,
0 if r <0,

we have e.g.:

f!,im([_171] X [_171]) = 07 1]7
frim (=1, 1] x [=1, 1)) \ [=1,1] x {0}) = 0.

008R Proposition 2.4.6.1.6. Let f: A — B be a function.
008S 1. Functoriality. The assignment U — f,(U) defines a functor
fr: (P(A), ©) = (P(B), Q)
where

o Action on Objects. For each U € P(A), we have
LANU) = [(U).
o Action on Morphisms. For each U,V € P(A):
() If U C V, then fi(U) C fi(V).
008T 2. Triple Adjointness. We have a triple adjunction

f
TN
(fAs " H40): PA)s = P(B),
Ll S
fi

witnessed by bijections of sets
Homp ) (f«(U),V) = Homp ) (U7 fﬁl(V))v
Homp() (£(U), V) = Homp() (U, £i(V)),

natural in U € P(A) and V € P(B) and (respectively) V € P(A)
and U € P(B), i.e. where:
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(a) The following conditions are equivalent:
i. We have f,(U) C V.
ii. We have U C f~1(V).

(b) The following conditions are equivalent:
i. We have f~1(U) C V.
ii. We have U C fi(V).

008U 3. Lazx Preservation of Colimits. We have an inclusion of sets

U AW c f (U Ui>7
icl icl

natural in {Us},c; € P(A)*!. In particular, we have inclusions

HU)UAV) = AU UVV),
@‘—>fl(@),

natural in U,V € P(A).
008V 4. Preservation of Limits. We have an equality of sets
fi (ﬂ Ui) =) £,
icl icl
natural in {Us},¢; € P(A)*. In particular, we have equalities

A UnV) = AU)n i),
f'(A) = 37

natural in U,V € P(A).

008W 5. Symmetric Lax Monoidality With Respect to Unions. The direct
image with compact support function of Item 1 has a symmetric
lax monoidal structure

(. £2,£52) : (P(A),0,0) — (P(B),U,0),
being equipped with inclusions

f!(%va: AU AV) = ITUV),
f!ﬁ_: 0 — fi(0),

natural in U,V € P(A).
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6.

10.

11.

Symmetric Strict Monoidality With Respect to Intersections. The
direct image function of Item 1 has a symmetric strict monoidal
structure

(£, £, £51): (P(A),0, 4) = (P(B),N, B),
being equipped with equalities

ﬁﬁLV:‘ﬁ(C7r1VU it (U) N A(V),

jﬁ%: ﬁ(/ﬂ —513,
natural in U,V € P(A).

. Interaction With Coproducts. Let f: A— A’ and g: B — B’ be

maps of sets. We have

(fgh(UTTV) = A(U) 1g(V)
for each U € P(A) and each V € P(B).

. Interaction With Products. Let f: A— A" and g: B — B’ be

maps of sets. We have

(f x gh(U xV) = fi(U) x g1(V')
for each U € P(A) and each V € P(B).

. Relation to Direct Images. We have

HU) = B\ f(A\U)
for each U € P(A).

Interaction With Injections. If f is injective, then we have
f!,im(U) = f*(U)a
Srep(U) = B\ Im(f),
f'(U) = f!,im(U) U f!,cp(U)
= f(U) U (B \Im(f))
for each U € P(A).

Interaction With Surjections. 1If f is surjective, then we have

f!,im(U) C f*(U)a
f!,cp(U) = ®7
HU) C f.(U)

for each U € P(A).


https://topological-modular-forms.github.io/the-clowder-project/tag/008X
https://topological-modular-forms.github.io/the-clowder-project/tag/008Y
https://topological-modular-forms.github.io/the-clowder-project/tag/008Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0090
https://topological-modular-forms.github.io/the-clowder-project/tag/0091
https://topological-modular-forms.github.io/the-clowder-project/tag/0092

2.4. Powersets 98

Proof. Item 1, Functoriality: Clear.

Item

2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Re-

mark 2.4.5.1.2, Remark 2.4.6.1.3, and 77 of 77.

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: This follows from Item 2 and 7?7 of ?7.
Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows
from Item 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections:
This follows from Item 4.

Item

7, Interaction With Coproducts: Clear.

Item 8, Interaction With Products: Clear.
Item 9, Relation to Direct Images: We claim that fi(U) = B\ f.(A\ U).

The First Implication. We claim that

[U) € B\ f.(A\ D).
Let b € fi(U). We need to show that b ¢ f.(A\ U), i.e. that there
is no a € A\ U such that f(a) = 0.

This is indeed the case, as otherwise we would have a € f~1(b) and
a & U, contradicting f~1(b) C U (which holds since b € f,(U)).

Thus b€ B\ f.(A\ V).

The Second Implication. We claim that

B\ f«(A\U) C fi(U).
Let b € B\ f«(A\U). We need to show that b € f,(U), i.e. that
f~tb) cU.

Since b ¢ f.(A\ U), there exists no a € A\ U such that b = f(a),
and hence f~1(b) C U.

Thus b € fi(U).

This finishes the proof of Item 9.
Item 10, Interaction With Injections: Clear.
Item 11, Interaction With Surjections: Clear. O

0093 Proposition 2.4.6.1.7. Let f: A — B be a function.

0094

0095

1.

2.

Functionality 1. The assignment f — fi defines a function

(=)ya,p: Sets(4, B) — Sets(P(A), P(B)).

Functionality II. The assignment f +— fi defines a function

(—)ya,p: Sets(4, B) — Pos((P(A), C), (P(B), ).
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0096 3. Interaction With Identities. For each A € Obj(Sets), we have
(ida), = idp(a).

0097 4. Interaction With Composition. For each pair of composable
functions f: A — B and g: B — C, we have

P(A) L P(B)

(gof)=grof \ [g!
(gOf)!

P(C).

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Remark 2.4.6.1.3
and 77?7 of 77.

Item 4, Interaction With Composition: This follows from Remark 2.4.6.1.3
and 77 of 77. O
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3.1.1 Foundations

Definition 3.1.1.1.1. A pointed set' is equivalently:
o An Ep-monoid in (N4 (Sets), pt).
« A pointed object in (Sets, pt).
Remark 3.1.1.1.2. In detail, a pointed set is a pair (X, () consisting
of:
e The Underlying Set. A set X, called the underlying set of
(X, o).
e The Basepoint. A morphism
[zo]: pt = X
in Sets, determining an element xy € X, called the basepoint of
X.
Example 3.1.1.1.3. The 0-sphere? is the pointed set (S, 0)? consisting
of:
o The Underlying Set. The set S° defined by
S0 0,1},
e The Basepoint. The element 0 of S°.
Example 3.1.1.1.4. The trivial pointed set is the pointed set (pt,*)

consisting of:
o The Underlying Set. The punctual set pt < {x}.
e The Basepoint. The element x of pt.

Example 3.1.1.1.5. The underlying pointed set of a semimodule
(M, aepr) is the pointed set (M,0x7).

Example 3.1.1.1.6. The underlying pointed set of a module (M, a )
is the pointed set (M, 0xr).

! Purther Terminology: In the context of monoids with zero as models for Fy-
algebras, pointed sets are viewed as F1-modules.

2 Purther Terminology: In the context of monoids with zero as models for Fi-
algebras, the 0-sphere is viewed as the underlying pointed set of the field with
one element.

3 Further Notation: In the context of monoids with zero as models for Fy-algebras,
SY is also denoted (F1,0).
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009H 3.1.2 Morphisms of Pointed Sets

009J Definition 3.1.2.1.1. A morphism of pointed sets*® is equivalently:
o A morphism of Eyp-monoids in (N, (Sets), pt).
o A morphism of pointed objects in (Sets, pt).

009K Remark 3.1.2.1.2. In detail, a morphism of pointed sets f: (X, z9) —
(Y, yo) is a morphism of sets f: X — Y such that the diagram

/e

X*>Y

commutes, i.e. such that
f(@o) = yo.
009L 3.1.3 The Category of Pointed Sets

009M Definition 3.1.3.1.1. The category of pointed sets is the category
Sets, defined equivalently as

o The homotopy category of the co-category Mong, (N, (Sets), pt) of
?29.

e The category Sets, of 77.

009N Remark 3.1.3.1.2. In detail, the category of pointed sets is the
category Sets, where

e Objects. The objects of Sets, are pointed sets;

e Morphisms. The morphisms of Sets, are morphisms of pointed
sets;

o Identities. For each (X, z¢) € Obj(Sets,), the unit map

Sets,
LX)

: pt — Sets,. ((X, z0), (X, z0))
of Sets, at (X, ) is defined by’

Sets,  def
d(X z0) 1(?1)(7

4 Further Terminology: Also called a pointed function.

5 Further Terminology: In the context of monoids with zero as models for Fi-
algebras, morphisms of pointed sets are also called morphism of F;-modules.

5Note that idx is indeed a morphism of pointed sets, as we have idx (zo) = xo.
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o Composition. For each (X, xo),(Y,y0),(Z,20) € Obj(Sets,), the
composition map

Sets .
Yooy Zung) S5 (V100), (Z,20)) X Sets. (X, 0), (¥, 0)) = Sets (X, 70), (2, 20))

of Sets, at ((X,z0), (Y,50),(Z, 2)) is defined by’

Sets. def

900X m0)(Yao)(Zozo) 4 = 90T
009P 3.1.4 Elementary Properties of Pointed Sets

009Q Proposition 3.1.4.1.1. Let (X, zp) be a pointed set.

009R 1. Completeness. The category Sets, of pointed sets and morphisms
between them is complete, having in particular:

009S (a) Products, described as in Definition 3.2.3.1.1;
Q09T (b) Pullbacks, described as in Definition 3.2.4.1.1;
009U (c) Equalisers, described as in Definition 3.2.5.1.1.

009V 2. Cocompleteness. The category Sets, of pointed sets and morphisms
between them is cocomplete, having in particular:

009W (a) Coproducts, described as in Definition 3.3.3.1.1;
Q09X (b) Pushouts, described as in Definition 3.3.4.1.1;
009Y (c) Coequalisers, described as in Definition 3.3.5.1.1.

0097 3. Failure To Be Cartesian Closed. The category Sets, is not
Cartesian closed.®

"Note that the composition of two morphisms of pointed sets is indeed a morphism
of pointed sets, as we have

g(f(z0)) = g(yo)

= 20,
or
pt
V [yon
X——Y ——1Z

in terms of diagrams.
8The category Sets. does admit monoidal closed structures however; see Tensor
Products of Pointed Sets.
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00AQ 4. Morphisms From the Monoidal Unit. We have a bijection of sets’
Sets, (SO, X) =X,

natural in (X, z9) € Obj(Sets,), internalising also to an isomor-
phism of pointed sets

Sets, (SO, X) =~ (X, z0),

again natural in (X, zo) € Obj(Sets,).

00AT 5. Relation to Partial Functions. We have an equivalence of cate-

gories!'’

eq.
Sets, =~ SetsPt:

between the category of pointed sets and pointed functions between
them and the category of sets and partial functions between them,
where:

(a) From Pointed Sets to Sets With Partial Functions. The
equivalence

£: Sets, = SetsPart:

sends:
i. A pointed set (X, xg) to X.
ii. A pointed function

[ (X, z0) = (Y, 90)
to the partial function
X =Y

defined on f~!(Y \ yo) and given by

for each x € f~1(Y \ yo).

9In other words, the forgetful functor

7=: Sets. — Sets
defined on objects by sending a pointed set to its underlying set is corepresentable by S°.

10@ Warning: This is not an isomorphism of categories, only an equivalence.
END TEXTDBEND
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(b) From Sets With Partial Functions to Pointed Sets. The
equivalence

£ SetsPart = Sets,

sends:

i. A set X is to the pointed set (X, %) with * an element
that is not in X.

ii. A partial function
f: X—>Y
defined on U C X to the pointed function
&' (X, m0) = (Y, 90)

defined by

§r(x) =

Y0 otherwise.

def{f(l‘) ifzeU,

for each x € X.

Proof. Item 1, Completeness: This follows from (the proofs) of Defini-
tions 3.2.3.1.1, 3.2.4.1.1 and 3.2.5.1.1 and ?77.

Item 2, Cocompleteness: This follows from (the proofs) of Definitions 3.3.3.1.1,
3.3.4.1.1 and 3.3.5.1.1 and ?7.

Item 3, Failure To Be Cartesian Closed: See [MSE 2855868|.

Item 4, Morphisms From the Monoidal Unit: Since a morphism from S°

to a pointed set (X, xq) sends 0 € S° to 2o and then can send 1 € S to
any element of X, we obtain a bijection between pointed maps S — X
and the elements of X.

The isomorphism then

Sets. (S, X) 2 (X, )

follows by noting that A, : S — X, the basepoint of Sets, (5%, X),
corresponds to the pointed map S° — X picking the element xq of X,
and thus we see that the bijection between pointed maps S° — X and
elements of X is compatible with basepoints, lifting to an isomorphism
of pointed sets.

Item 5, Relation to Partial Functions: See [MSE 884460). O
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00A2 3.2 Limits of Pointed Sets

00A3 3.2.1 The Terminal Pointed Set
00A4 Definition 3.2.1.1.1. The terminal pointed set is the pair ((pt, *), {!X}(X,xo)eObj(Sets*))

consisting of:
o The Limit. The pointed set (pt,*).

e The Cone. The collection of morphisms of pointed sets

{!x: (X, 20) = (Pt %) }(x 20)c0bj(Sets)

defined by

'X(.I') dZEf*

for each x € X and each (X, z() € Obj(Sets).

Proof. We claim that (pt,*) is the terminal object of Sets,. Indeed,
suppose we have a diagram of the form

(X, z0) (pt, *)

in Sets,. Then there exists a unique morphism of pointed sets
o: (X, x0) — (pt, *)

making the diagram
(X, 20) -5 (pt, %)

commute, namely !x. O

00A5 3.2.2 Products of Families of Pointed Sets

Let {(X% "L'ZO) }iel

00A6 Definition 3.2.2.1.1. The product of {(Xj, z)},_, is the pair ((Hie] Xi, (xé)id), {pri}iej)
consisting of:

be a family of pointed sets.

e The Limit. The pointed set (Hiel X, (wé)ig).
e The Cone. The collection

s (I ()., ) = (5st)}

el iel

of maps given by
def
prz‘((xj)jel) = T

for each (7;);; € [lic; Xi and each i € I.


https://topological-modular-forms.github.io/the-clowder-project/tag/00A2
https://topological-modular-forms.github.io/the-clowder-project/tag/00A3
https://topological-modular-forms.github.io/the-clowder-project/tag/00A4
https://topological-modular-forms.github.io/the-clowder-project/tag/00A5
https://topological-modular-forms.github.io/the-clowder-project/tag/00A6

00A7

00A8

3.2. Limits of Pointed Sets 107

Proof. We claim that (Hz’e[ X, (a:f))iel) is the categorical product of
{(Xi,24)}, ¢; in Sets,.. Indeed, suppose we have, for each i € I, a diagram
of the form

(P, *)

x

(Mier Xis (28)ie1) g2, (Xirb)

in Sets,. Then there exists a unique morphism of pointed sets
¢: (P,x) — (1;[1 Xi, (mo)ie[>

making the diagram

(P, %)

el bi
‘

(Hie] Xi, ($6)ie1> pr; (X3, 2h)

commute, being uniquely determined by the condition pr; o ¢ = p; for
each i € I via

¢(x) = (pi(@))icr

for each = € P. Note that this is indeed a morphism of pointed sets, as
we have

¢(*) = (pi(*))ser
- (x%))iel’

where we have used that p; is a morphism of pointed sets for each
1el. O

Proposition 3.2.2.1.2. Let {(X;,z})},_; be a family of pointed sets.

el

1. Punctoriality. The assignment {(X;, zf)},c; — (Hiel X, (xf))ie[)
defines a functor

H: Fun(Zgisc, Sets.) — Sets,.
iel

Proof. Item 1, Functoriality: This follows from ?7 of ?7. O
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00A9 3.2.3 Products
Let (X, x0) and (Y, yo) be pointed sets.

00AA Definition 3.2.3.1.1. The product of (X, z() and (Y,yo) is the pair
consisting of:

o The Limit. The pointed set (X x Y, (xg,y0))-

e The Cone. The morphisms of pointed sets
pry: (X x Y, (20,%0)) = (X, 7o),
pry: (X <Y, (20,%0)) = (Y, 0)

defined by

(z,y) = a,

pry
pra(z,y) <
for each (z,y) € X x Y.

Proof. We claim that (X x Y, (zo,y0)) is the categorical product of
(X,z0) and (Y,yp) in Sets,. Indeed, suppose we have a diagram of

the form
y X

(X, m0) 7 (X XY, (20,90)) 52 (Yi0)

(P, %)

in Sets,. Then there exists a unique morphism of pointed sets
¢: (P,*) = (X x Y, (20, y0))
making the diagram

(P, %)

P1 ‘ P2
/ aE! \

(X, 20) o (X XY, (z0,90)) 52> (Y 0)

pry pry
commute, being uniquely determined by the conditions
prp o (b = P1,
pry © ¢ = po

via

¢(z) = (p1(2), p2(2))
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for each x € P. Note that this is indeed a morphism of pointed sets, as
we have

o(*) = (p1(%),p2(%))
= (z0,%0),

where we have used that p; and po are morphisms of pointed sets. [

Proposition 3.2.3.1.2. Let (X, z9), (Y,v0), and (Z, z9) be pointed sets.

1. Functoriality. The assignments

(X, 20), (Y, 90), (X, wo), (Y, 50)) = (X XY, (x0,10))
define functors
X x —: Sets, — Sets,,
— X Y': Sets, — Sets,,

—1 X —9: Sets, x Sets, — Sets,,

defined in the same way as the functors of Item 1 of Proposi-
tion 2.1.3.1.2.

2. Associativity. We have an isomorphism of pointed sets

(X xY) x Z, ((x0,90), 20)) = (X X (Y X Z), (20, (40, 20)))
natural in (X, z0), (Y, v0), (Z, 20) € Obj(Sets,).
3. Unitality. We have isomorphisms of pointed sets
(pt, %) x (X, z9) = (X, x0),
(X, z0) x (pt,*) = (X, x0),
natural in (X, zg) € Obj(Sets,).
4. Commutativity. We have an isomorphism of pointed sets

(X x Y, (20,90)) = (Y x X, (yo,20)),
natural in (X, zo), (Y, y0) € Obj(Sets,).

5. Symmetric Monoidality. The triple (Sets,, X, (pt, *)) is a symmet-
ric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of
limits, 7?7 of 77.

Item 2, Associativity: This follows from Item 3 of Proposition 2.1.3.1.2.
Item 3, Unitality: This follows from Item 4 of Proposition 2.1.3.1.2.
Item 4, Commutativity: This follows from Item 5 of Proposition 2.1.3.1.2.
Item 5, Symmetric Monoidality: This follows from Item 12 of Proposi-
tion 2.1.3.1.2. [
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00AH 3.2.4 Pullbacks

Let (X,x0), (Y,y0), and (Z, 29) be pointed sets and let f: (X, z) —
(Z,z0) and g: (Y,y0) — (Z, 20) be morphisms of pointed sets.

00AJ Definition 3.2.4.1.1. The pullback of (X, z() and (Y, ) over (Z, zy)
along (f, g) is the pair consisting of:

o The Limit. The pointed set (X xz Y, (z0,0)).

e The Cone. The morphisms of pointed sets
pry: (X xz Y, (z0,%)) = (X, 7o),
pry: (X xz Y, (z0,%0)) = (Y,%0)

defined by

( def

pry $7y) =,
def

pry(z,y) =y
for each (z,y) € X xz Y.

Proof. We claim that X xz Y is the categorical pullback of (X, z() and
(Y, yo) over (Z, zo) with respect to (f,g) in Sets,. First we need to check
that the relevant pullback diagram commutes, i.e. that we have

(X xz2Y,(z0,50)) =2 (Y,0)

Jopry = gopry, prlt [g

(X,x()) (Z, ZQ).

Indeed, given (z,y) € X xz Y, we have

where f(x) = g(y) since (z,y) € X xz Y. Next, we prove that X x, Y
satisfies the universal property of the pullback. Suppose we have a
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diagram of the form

p2

) /\

(X xzY,(x0,y0)) -Pr2> (Y, y0)

p1 Pl‘Fl - Ig
l
(X7 1‘0)

(Z7 ZO)
in Sets,. Then there exists a unique morphism of pointed sets
¢ (Px) = (X xz Y, (20,90))

making the diagram

p2

PO, T
3

(X xzY,(x0,y0)) -Pr2~> (Y, y0)

P1‘”1 - |9
l

(X, SC(]) 7 (Z, Zo)

commute, being uniquely determined by the conditions
pry © ¢ = pi,
pry © ¢ = p2
via
d(z) = (p1(x),p2(z))

for each x € P, where we note that (pi(x),p2(x)) € X x Y indeed lies in
X Xz Y by the condition

fopr=gopa,

which gives
f(pi(z)) = g(p2(x))

for each x € P, so that (p1(x),p2(z)) € X xz Y. Lastly, we note that ¢
is indeed a morphism of pointed sets, as we have

o(x) = (p1(),p2(*))
= (z0,%0),

where we have used that p; and po are morphisms of pointed sets. [
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00AK Proposition 3.2.4.1.2. Let (X, z0), (Y,v0), (Z,20), and (A,ap) be
pointed sets.

Q0AL 1. Functoriality. The assignment (X,Y,Z, f,g) — X X 74Y defines
a functor

—1 X—4 —1: Fun(P, Sets,) — Sets,,

where P is the category that looks like this:

In particular, the action on morphisms of —; X_, —; is given by
sending a morphism

X x,Y Y
_| ‘ b
g
xeY" Y!
_
x|z J
\ AN N
¢ N
X/ VA

f/
in Fun(%®, Sets,) to the morphism of pointed sets
3!
51 (X Xz Y) (:EanO)) — (X/ Xz Y/a (xé)ay/O))

given by »
(z,y) = (o(2),¥(y))

for each (z,y) € X xz Y, which is the unique morphism of pointed
sets making the diagram

X xyY Y
N ‘ P
. !
XXZY/‘ \
|
xL |z J
\ AN
X
¢ N
X/ VA
fl

commute.
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00AM 2. Associativity. Given a diagram

X Y Z
NN A
w v
in Sets,, we have isomorphisms of pointed sets

(XxwY)xy 22 (X xwY)xy (Y xy Z) =2 X xw (Y xy Z),

where these pullbacks are built as in the diagrams

(X xwY)xy Z (X xwY) xy (Y xy 2) X xw (Y xy Z)
e SN / v\
X xwY X xwY Y xyv Z Y xy Z
N SN SN VAN
b'¢ Y z, X Y z, X Y Z.
NN A NN A NN A
w 1% w v w 1%
Q0AN 3. Unitality. We have isomorphisms of pointed sets
_ f
A A A——— X
- X xx AZA, -
! T Axx XA,

Q0AP 4. Commutativity. We have an isomorphism of pointed sets

AXXBHB BXXAHA
|
[ g AXXBgBXXA |—I f

00AQ 5. Interaction With Products. We have an isomorphism of pointed
sets
XxY —Y

5%

-
X xp Y =X XY, k

00AR 6. Symmetric Monoidality. The triple (Sets, X x, X) is a symmetric
monoidal category.
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Proof. Item 1, Functoriality: This is a special case of functoriality of
co/limits, 7?7 of 7?7, with the explicit expression for £ following from the
commutativity of the cube pullback diagram.

Item 2, Associativity: This follows from Item 2 of Proposition 3.2.4.1.2.
Item 3, Unitality: This follows from Item 3 of Proposition 2.1.4.1.3.
Item 4, Commutativity: This follows from Item 4 of Proposition 2.1.4.1.3.
Item 5, Interaction With Products: This follows from Item 6 of Proposi-
tion 2.1.4.1.3.

Item 6, Symmetric Monoidality: This follows from Item 7 of Proposi-
tion 2.1.4.1.3. [

3.2.5 Equalisers
Let f,g: (X,2z0) = (Y, yo) be morphisms of pointed sets.

Definition 3.2.5.1.1. The equaliser of (f,g) is the pair consisting of:
o The Limit. The pointed set (Eq(f, g), zo).

e The Cone. The morphism of pointed sets

eq(fvg): (EQ(f,g),CCO) — (X’ 1’0)

given by the canonical inclusion eq(f,g) — Eq(f,g) — X.

Proof. We claim that (Eq(f,g),xo) is the categorical equaliser of f and
g in Sets,. First we need to check that the relevant equaliser diagram
commutes, i.e. that we have

foea(f,g) =goeq(f,g),

which indeed holds by the definition of the set Eq(f, g). Next, we prove
that Eq(f, g) satisfies the universal property of the equaliser. Suppose
we have a diagram of the form

eq(f, /
(Ea(f.9),20) <22 (X,20) == (¥,30)

/
(E, *)
in Sets,. Then there exists a unique morphism of pointed sets

¢: (B, %) = (Eq(f,9), 20)
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making the diagram

eq(f, /
(Ea(f.9),20) 82 (X,20) == (¥,10)

commute, being uniquely determined by the condition

eq(f,g)op=ce
¢(x) = e(x)

for each = € E, where we note that e(z) € A indeed lies in Eq(f,g) by
the condition

foe=goe,
which gives
fle(z)) = gle(x))

for each = € E, so that e(z) € Eq(f, g). Lastly, we note that ¢ is indeed
a morphism of pointed sets, as we have

¢(x) = e(*)
= Ty,
where we have used that e is a morphism of pointed sets. O

00AU Proposition 3.2.5.1.2. Let (X, zp) and (Y, yo) be pointed sets and let
frg,h: (X, 20) — (Y,y0) be morphisms of pointed sets.

Q0AV 1. Associativity. We have isomorphisms of pointed sets

Eq(f oeq(g,h),goeq(g,h)) =Eq(f,g,h) = Eq(foeq(f,g),hoeq(f g)),

=Eq(foeq(g,h),hoeq(g,h)) =Eq(goeq(f,g),hoeq(f,g))

where Eq(f, g, h) is the limit of the diagram

f
(Xa :EO) 79? (Ya yO)
h

in Sets,, being explicitly given by

Eq(f,9,h) ={a € A| f(a) = g(a) = h(a)}.
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00AW 2. Unitality. We have an isomorphism of pointed sets
Eq(f, f) = X.
Q0AX 3. Commutativity. We have an isomorphism of pointed sets

Eq(f,9) = Ea(g, f)-

Proof. Item 1, Associativity: This follows from Item 1 of Proposi-
tion 2.1.5.1.2.

Item 2, Unitality: This follows from Item 4 of Proposition 2.1.5.1.2.
Item 3, Commutativity: This follows from Item 5 of Proposition 2.1.5.1.2.

O
00AY 3.3 Colimits of Pointed Sets
00AZ 3.3.1 The Initial Pointed Set
00B0 Definition 3.3.1.1.1. The initial pointed set is the pair ((pt, *), {LX}(X,mO)GObj(SetS*))

consisting of:
o The Limit. The pointed set (pt,*).

e The Cone. The collection of morphisms of pointed sets

{ex: (Pt *) = (X, 20)} (X 20)c0bj(Sets)

defined by

1x (%) £ .

Proof. We claim that (pt, x) is the initial object of Sets,. Indeed, suppose
we have a diagram of the form

(pt, *) (X7 370)
in Sets,. Then there exists a unique morphism of pointed sets
¢: (pt, %) — (X, zo)

making the diagram
(ptv*) 7;1}7) (X7 1.0)

commute, namely ¢y. O
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00B1 3.3.2 Coproducts of Families of Pointed Sets

Let {(X;,20)},c; be a family of pointed sets.

00B2 Definition 3.3.2.1.1. The coproduct of the family {(Xi>$6)}iel7
also called their wedge sum, is the pair consisting of:

o The Colimit. The pointed set (\/;c; Xi,po) consisting of:
— The Underlying Set. The set \/;c; X; defined by

Vo (11~
i€l i€l
where ~ is the equivalence relation on [[;c; X; given by declar-

ing
(i-5) ~ (3.3)
for each i,j € I.
— The Basepoint. The element py of \/,;o; X; defined by

for any 4,7 € I.
e The Cocone. The collection
{inji: (Xz',@’é) — (\/ XuPo)}
el iel
of morphism of pointed sets given by
inj;(z) £ (i, )
for each x € X; and each i € I.

Proof. We claim that (\/;c; Xi, po) is the categorical coproduct of { (Xy, z§) },c;
in Sets,. Indeed, suppose we have, for each i € I, a diagram of the form

()
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in Sets,. Then there exists a unique morphism of pointed sets

¢: (\/ Xupo) — (C,*)

iel
making the diagram

(C,)

/ PAE!

el

commute, being uniquely determined by the condition ¢ o inj;, = ¢; for
each 7 € I via

o([(¢,2)]) = vi(x)
for each [(i,x)] € V;c; Xi, where we note that ¢ is indeed a morphism of
pointed sets, as we have

frd >}<7
as ; is a morphism of pointed sets. O
00B3 Proposition 3.3.2.1.2. Let {(X;, x%)}ie] be a family of pointed sets.

00B4 1. Functoriality. — The assignment {(Xj, z{)},.; — (Vies Xi,po)
defines a functor

\/: Fun(Zgisc, Sets,) — Sets,.
iel

Proof. Item 1, Functoriality: This follows from 77 of 77. O

00B5 3.3.3 Coproducts
Let (X, zp) and (Y, o) be pointed sets.

00B6 Definition 3.3.3.1.1. The coproduct of (X,zy) and (Y,y), also
called their wedge sum, is the pair consisting of:

o The Colimit. The pointed set (X VY, pg) consisting of:
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— The Underlying Set. The set X VY defined by

(X VYipo) = (X,20) [1 (Yiye) X VY ¥
=~ (X Hpt Y,po) ‘
= (XHY/Nap())a

[y0]

—X — pt7
[zo]

where ~ is the equivalence relation on X [[ Y obtained by
declaring (0, zo) ~ (1, o).

— The Basepoint. The element pg of X VY defined by

def

po = [(0,z0)]
= [(17y0)]

The Cocone. The morphisms of pointed sets

inj;: (X,20) = (X VY, po),
injy: (Y,yo) = (X VY, po),
given by
injy (z) = [(0, )],
inj, (y) = [(1, y)],

for each x € X and each y € Y.

Proof. We claim that (X VY, pg) is the categorical coproduct of (X, zg)
and (Y, yp) in Sets,. Indeed, suppose we have a diagram of the form

R

(X, z0) e (X VY, po) ;F(Yyo

in Sets. Then there exists a unique morphism of pointed sets

¢: (X\/Kp(]) — (Cv*)

making the diagram



00B7

00B8

00B9

0Q0BA

00BB
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commute, being uniquely determined by the conditions
¢oinjx = tx,
¢oinjy =1y
via
s tx(z) if z=1[(0,2z)] with z € X,
Z) =
wy(y) ifz=[(1,y)] withyeY

for each z € X VY, where we note that ¢ is indeed a morphism of pointed
sets, as we have

o(po) = tx([(0,0)])

=ty ([(1,90)])

as tx and ¢y are morphisms of pointed sets. O
Proposition 3.3.3.1.2. Let (X, z¢) and (Y, ) be pointed sets.
1. Functoriality. The assignments
(X, 0), (Y, 90), (X, 20), (Y, 10)) = (X VY, po)

define functors

X V —: Sets, — Sets,,
—VY: Sets, — Sets,,
—1V —9: Sets, x Sets,, — Sets,.
2. Associativity. We have an isomorphism of pointed sets
(XvY)vZ=2XVv(YVZ),
natural in (X, z0), (Y, v0), (Z, 20) € Sets,.
3. Unitality. We have isomorphisms of pointed sets

(pt,*) V (X, 2z0) = (X, x0),
(X, z0) V (pt, %) = (X, x0),

natural in (X, zg) € Sets,.
4. Commutativity. We have an isomorphism of pointed sets
XVYZY VX,

natural in (X, zg), (Y, y0) € Sets,.
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00BC 5. Symmetric Monoidality. The triple (Sets,, V,pt) is a symmetric
monoidal category.

00BD 6. The Fold Map. We have a natural transformation

Sets,. X Sets,

V:VoASE — idses., Agitt:/ H \
v

Sets, U Sets,,
~_ '
idSets*
called the fold map, whose component
Vx: XVX—=>X
at X is given by
z if p=10,2)],

Vx(e) = {x it p = [(1,)

for each p € X v X.

Proof. Item 1, Functoriality: This follows from 77 of 77.
Item 2, Associativity: Clear.
Item 3, Unitality: Clear.
Item 4, Commutativity: Clear.
Item 5, Symmetric Monoidality: Omitted.
Item 6, The Fold Map: Naturality for the transformation V is the
statement that, given a morphism of pointed sets f: (X, zo) — (Y, v0),
we have
Xvx Y5 x

Vyo(fVf)=foVx, jut f

YVY < Y.
Indeed, we have

[Vy o (f V NOIG2)]) = Vy ([(@ f(2))])
= f(z)
= F(Vx ([ 2))
= [f o Vx]([(G, 2)])

for each [(,2)] € X V X, and thus V is indeed a natural transformation.
0
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00BE 3.3.4 Pushouts
Let (X, z0), (Y,90), and (Z,29) be pointed sets and let f: (Z,z)) —
(X,z0) and g: (Z,20) — (Y, yp) be morphisms of pointed sets.

00BF Definition 3.3.4.1.1. The pushout of (X, z() and (Y, yo) over (Z, zy)
along (f, g) is the pair consisting of:

e The Colimit. The pointed set (X sz, Y po), where:

— The set X ][, ,Y is the pushout (of unpointed sets) of X
and Y over Z with respect to f and g;

— We have py = [xo] = [yo]-
e The Cocone. The morphisms of pointed sets

inj; : (X, 20) = (X 112 Y, po),
injy: (Y,y0) = (X 112 Y, po)
given by

[N
<)
s,

injy (z) = [(0,2)]
inj, (y) = [(1,y)]
for each x € X and each y € Y.

o
s,

Proof. Firstly, we note that indeed [zg] = [yo], as we have

zo = f(20),
Yo = g(20)

since f and g are morphisms of pointed sets, with the relation ~ on
X 1 zY then identifying z¢o = f(20) ~ g(20) = yo.

We now claim that (X [], Y, po) is the categorical pushout of (X, zg)
and (Y, yo) over (Z, zp) with respect to (f,g) in Sets,. First we need to
check that the relevant pushout diagram commutes, i.e. that we have

(XI5 Y,po) <2 (Y, y0)
inj, o f = inj, 0., injﬂ %
(Xa Z'()) (T (Z7 ZO)'

Indeed, given z € Z, we have

[inj, o f](2) = inj, (f(z
= [(0, f(2)
=[(1,9(»)
= injy(g(z
= [inj, 0 g](2),

z

)
)]
2))]
)
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where [(0, f(2))] = [(1,9(2))] by the definition of the relation ~ on
X [TY (the coproduct of unpointed sets of X and Y'). Next, we prove
that X ][] zY satisfies the universal property of the pushout. Suppose
we have a diagram of the form

(P, *) /L\

(X 11z Y,po) «inia— (Y, y0)

-
L1

injq g

(X, xo)

(Z > ZO)
in Sets,. Then there exists a unique morphism of pointed sets

qb: (X HZ KPO) — (Pa*)

making the diagram

(P, *) 2
AN
¢ >~

(X 1z Y,po) «iniz— (Y,50)
T r
inj, g

(X, xo)

7 (Z, Zo)

commute, being uniquely determined by the conditions

¢ oinj; =11,
¢oinj2:L2
_ Ju(x) ifz=[0,)],
¢@”‘wa if = [(1,0)]

for each p € X [, Y, where the well-definedness of ¢ is proven in the
same way as in the proof of Definition 2.2.4.1.1. Finally, we show that ¢
is indeed a morphism of pointed sets, as we have

d(po) = ¢([(0,z0)])
= Ll(l’o)

:*7
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or alternatively

#(po) = ¢([(1,0)])

= 12(y0)
= *7
where we use that ¢; (resp. ¢2) is a morphism of pointed sets. O
00BG Proposition 3.3.4.1.2. Let (X,xz), (Y,y0), (Z,20), and (A,ay) be

pointed sets.

Q0BH 1. Punctoriality. The assignment (X,Y, Z, f,g) = X[, ,Y defines
a functor

—1 ]I, —1: Fun(®, Sets) — Sets,,
where P is the category that looks like this:

T

o — O,

In particular, the action on morphisms of —; [[_, —1 is given by
sending a morphism

XI,Y Y
r [\wi‘
X', Y Y’
-
|
X |1 7 g
\ AN
X
¢ N
X' A
f/

in Fun(#, Sets,.) to the morphism of pointed sets

g: (X HZ Y7p0) i (X/ HZ’ Y/7p6>

given by
ﬂmg{am itp = [(0,2)]
U(y) it p=[(1,y)]
for each p € X [[, Y, which is the unique morphism of pointed
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sets making the diagram

X[,Y

N
N P
N
N
N
Y
!

commute.

00BJ 2. Associativity. Given a diagram

X Y Z
NN
w 174
in Sets, we have isomorphisms of pointed sets

X w V) y 2= X w Y) y Y1y 2) = X [y (Y v 2),
where these pullbacks are built as in the diagrams

X w YV) v 2 X w Y) Iy Vv 2)

X w YHL
/A\ AN
X Iw XwY Yy 2
/ N / \ s \

}i
TN AN A N AN A N AN A

00BK 3. Unitality. We have isomorphisms of sets

A—

A AL
XHXAgAa
AHXXgAa

1

f f

X:X X(*X.

00BL 4. Commutativity.

X[,Y — VY
W‘ r
X ——

We have an isomorphism of sets

Y X — X
r
g X[zY =YX ]

f
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5. Interaction With Coproducts. We have

XVY «—Y

-
‘[yo]

X «—— pt.
[zo]

XY =X VY,

6. Symmetric Monoidality. The triple (Sets., [[x, (X,z0)) is a
symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of
co/limits, 7?7 of 7?7, with the explicit expression for ¢ following from the
commutativity of the cube pushout diagram.

Item 2, Associativity: This follows from Item 2 of Proposition 2.2.4.1.4.
Item 3, Unitality: This follows from [tem 3 of Proposition 2.2.4.1.4.
Item 4, Commutativity: This follows from Item 4 of Proposition 2.2.4.1.4.
Item b5, Interaction With Coproducts: Clear.

Item 6, Symmetric Monoidality: Omitted. O

3.3.5 Coequalisers
Let f,g: (X,z9) = (Y, yo) be morphisms of pointed sets.

Definition 3.3.5.1.1. The coequaliser of (f,g) is the pointed set
(CoEa(f, 9), [yo)-

Proof. We claim that (CoEq(f, g), [yo]) is the categorical coequaliser of
f and g in Sets,. First we need to check that the relevant coequaliser
diagram commutes, i.e. that we have

coeq(f,g) o f = coeq(f,g) o

Indeed, we have

[coeq(f, g) o fl(z) =

e s =

for each x € X. Next, we prove that CoEq(f,g) satisfies the universal
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property of the coequaliser. Suppose we have a diagram of the form

f coeq( f,
(X,20) =2 (¥,90) 222 (CoBa(£,.9), o))
(C,%)
in Sets. Then, since ¢(f(a)) = c(g(a)) for each a € A, it follows from

Items 4 and 5 of Proposition 7.5.2.1.3 that there exists a unique map
¢: CoEq(f,g) ENVG! making the diagram

(X,20) =5 (V,90) 2 (CoBa( 7, 9), o)

\ ¢i§|l
v

(C,%)
commute, where we note that ¢ is indeed a morphism of pointed sets
since
¢([yo]) = [¢ o coea(f, 9)]([vo])

= ([yo])

= >|<’
where we have used that ¢ is a morphism of pointed sets. ]

00BR Proposition 3.3.5.1.2. Let (X, zp) and (Y, yo) be pointed sets and let

frg,h: (X, 20) = (Y, yo) be morphisms of pointed sets.
00BS 1. Associativity. We have isomorphisms of pointed sets

CoEq(coeq(f, g) o f,coeq(f, g) o h) = CoEq(f, g, h) = CoEq(coeq(g, h) o f,coeq(g, k) o g),

=CoEq(coeq(f,9)0g,coeq(f,g)oh) =CoEq(coeq(g,h)of,coeq(g,h)oh)

where CoEq(f, g, h) is the colimit of the diagram

f
(Xa l’o) -9z (Y> 1/0)
h
in Sets,.

00BT 2. Unitality. We have an isomorphism of pointed sets

CoEq(f, f) = B.
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3. Commutativity. We have an isomorphism of pointed sets
CoEq(f,g) = CoEq(y, f).

Proof. Item 1, Associativity: This follows from Item 1 of Proposi-
tion 2.2.5.1.4.

Item 2, Unitality: This follows from Item 4 of Proposition 2.2.5.1.4.
Item 3, Commutativity: This follows from Item 5 of Proposition 2.2.5.1.4.

O
3.4 Constructions With Pointed Sets
3.4.1 Free Pointed Sets
Let X be a set.
Definition 3.4.1.1.1. The free pointed set on X is the pointed set

X consisting of:
e The Underlying Set. The set X T defined by'!
XtE X Ipt
=X [T {*}.
e The Basepoint. The element x of X .
Proposition 3.4.1.1.2. Let X be a set.

1. Functoriality. The assignment X — X T defines a functor
(—)": Sets — Sets,,
where
o Action on Objects. For each X € Obj(Sets), we have
[(F] 0 = xt,

where X is the pointed set of Definition 3.4.1.1.1;

e Action on Morphisms. For each morphism f: X — Y of Sets,
the image
fr:xt syt

of f by (—)" is the map of pointed sets defined by

f+(:E) def {f(:v) ifxe X,

*y if:B:*X.

1 Purther Notation: We sometimes write xx for the basepoint of X for clarity
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00C0o 2. Adjointness. We have an adjunction

o
((_)+—|E\): Sets 1 Sets,,
~—

witnessed by a bijection of sets
Sets, ((X+, *X), (Y, yo)) = Sets(X,Y),
natural in X € Obj(Sets) and (Y, y0) € Obj(Sets..).

00C1 3. Symmetric Strong Monoidality With Respect to Wedge Sums. The
free pointed set functor of Item 1 has a symmetric strong monoidal
structure

<(_)+7 (_)—’_’H) (_)i—’H) : (Sets, Ha @) - (Sets*a \/7 pt)7
being equipped with isomorphisms of pointed sets
(kH Xt vy S (v
0+

e L

(it
natural in X,Y € Obj(Sets).

4. Symmetric Strong Monoidality With Respect to Smash Products.
00C2 The free pointed set functor of Item 1 has a symmetric strong
monoidal structure

(" (=) ()37 (Sets, x, pt) — (Sets., A, 5°),
being equipped with isomorphisms of pointed sets
(X5 XTAYT S (X x V)T,

()17 80 S et

e

pt,

natural in X,Y € Obj(Sets).

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: We claim there’s an adjunction (—)* 4 &, witnessed
by a bijection of sets

Sets, ((X*,*X), (Y, yo)) >~ Sets(X,Y),

natural in X € Obj(Sets) and (Y, yo) € Obj(Sets.).
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e Map I. We define a map
By : Sets, ((XF,xx ), (V,90)) — Sets(X, )
by sending a pointed function
&: (X+,*X> — (Y, o)

to the function
UD.

given by

for each x € X.

e Map II. We define a map
Uxy: Sets(X,Y) — Sets*<<X+,*X>, (Y, yo))
given by sending a function £: X — Y to the pointed function
eh: (X*5x) = (V,30)

defined by

fT(m) def {f(l‘) ifre X,

0 if v =%y
for each z € XT.

o Invertibility I. We claim that
Uxy o ®xy = idsets, (x+ 5x).(Yiwo))>

which is clear.

o Invertibility II. We claim that
Qxy oWxy = idsets(x,v)s
which is clear.

e Naturality for ®, Part I. We need to show that, given a pointed

when there are multiple free pointed sets involved in the current discussion.
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function g: (Y,y0) — (Y, y;), the diagram

Sets, (X, xx), (Y, v0)) 2xy Sets(X,Y)

Sets. (X, xx), (Y',95)) 5 Sets(X,Y”)

kbx Yy’

commutes. Indeed, given a pointed function

¢t <X+,*X) — (Y, 90)
we have

[@x,yr 09+ () = Pxy(g:(€))
=®xyi(go¢)
=go¢
=go®xy ()
= g«(®x,y/(£))
= [g+ 0 Px y7](&).

Naturality for ®, Part II. We need to show that, given a pointed
function f: (X, z0) — (X', z{), the diagram

e (X 1), (90 0.7

)

Sets, (X1, *xx), (Y, yo)) — Sets(X Y)

commutes. Indeed, given a function
&X' =Y,
we have

[@x,y o (&) = Px,v (f7(€))
=®xy(€of)
=¢{of
=®xry(§)of

[ (@xy ()

[ (®@xy(§))

v](

:[ O(PX/ 5
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e Naturality for U. Since ® is natural in each argument and & is a
componentwise inverse to ¥ in each argument, it follows from Item 2
of Proposition 8.8.6.1.2 that V¥ is also natural in each argument.

Item 3, Symmetric Strong Monoidality With Respect to Wedge Sums:
The isomorphism

o)

o: XTVYT S (XIIY)T

is given by
x if z=[(0,x)] with z € X,
Jw if z=1[(1,y)] withy €Y,
¢(Z) o *XHY if z = [(0,*)()],
X[y if z = [(1,*y)]

for each z € X VYT, with inverse
o (XIIY)T S Xtvyt

given by

[(0,2)] if z = [(0, 2)],

— ef .
¢~ () = 10,9)] if 2= [(L,y)],

Do if z =% x]Tv
for each z € (X [[Y)*.
Meanwhile, the isomorphism pt = ()" is given by sending *x to *g.
That these isomorphisms satisfy the coherence conditions making the
functor (—)* symmetric strong monoidal can be directly checked element
by element.

Item 4, Symmetric Strong Monoidality With Respect to Smash Products:
The isomorphism

o

o: XTAYT = (X xY)7T

is given by

x,y) ifx #*x and y # xy
pxNy) = {( ) .
*xxy Otherwise

for each z Ay € X+ A Y™, with inverse
o (X xYV)T S XTAYT
given by

61 (z) & TAY if z = (z,y) with (z,y) € X x Y,
Z) =
*x Axy if 2 = xxxy,
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for each z € (X [[Y)7.
Meanwhile, the isomorphism S° 2 pt* is given by sending x to 1 € S =
{0,1} and %t to 0 € SO,
That these isomorphisms satisfy the coherence conditions making the
functor (—)* symmetric strong monoidal can be directly checked element
by element. O

Appendices

3.A Other Chapters

Sets 6. Constructions With Relations
1. Sets 7. Equivalence Relations and
2. Constructions With Sets Apartness Relations
3. Pointed Sets Category Theory
4. Tensor Products of Pointed 8. Categories

Sets Bicategories

Relations

9. Types of Morphisms in Bicat-
5. Relations egories
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Chapter 4

Tensor Products of Pointed
Sets

In this chapter we introduce, construct, and study tensor products of
pointed sets. The most well-known among these is the smash product of
pointed sets

A: Sets, X Sets, — Sets,,

introduced in Section 4.5.1, defined via a universal property as inducing
a bijection between the following data:

e Pointed maps f: X ANY — Z.

e Maps of sets f: X x Y — Z satisfying
f(x(b y) = 20,
f(x7 yO) = 20

for each x € X and each y € Y.
As it turns out, however, dropping either of the bilinearity conditions

f($07 y) = 20,
f(.%', yO) = 20

while retaining the other leads to two other tensor products of pointed
sets,

<: Sets, X Sets, — Sets,,
>>: Sets, X Sets, — Sets,,

called the left and right tensor products of pointed sets. In contrast to
A, which turns out to endow Sets, with a monoidal category structure

134
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(Proposition 4.5.9.1.1), these do not admit invertible associators and
unitors, but do endow Sets, with the structure of a skew monoidal
category, however (Propositions 4.3.8.1.1 and 4.4.8.1.1).

Finally, in addition to the tensor products <1, &>, and A, we also have a
“tensor product” of the form

®: Sets x Sets, — Sets,,

called the tensor of sets with pointed sets. All in all, these tensor products
assemble into a family of functors of the form

®k,e: Mong, (Sets) x Mong, (Sets) — Mong, , (Sets),
< k: Mong, (Sets) x Mong, (Sets) — Mong, (Sets),
>; 1+ Mong, (Sets) x Mong, (Sets) — Mong, (Sets),

where k,¢,i € N with ¢ < k — 1. Together with the Cartesian product x
of Sets, the tensor products studied in this chapter form the cases:

e (k,£) =(—1,-1) for the Cartesian product of Sets;

o (k,¢) =(0,—1) and (—1,0) for the tensor of sets with pointed sets
of Definition 4.2.1.1.1;

e (i,k) = (=1,0) for the left and right tensor products of pointed
sets of Sections 4.3 and 4.4;

o (k,0) = (—1,—1) for the smash product of pointed sets of Sec-
tion 4.5.

In this chapter, we will carefully define and study bilinearity for pointed
sets, as well as all the tensor products described above. Then, in 77,
we will extend these to tensor products involving also monoids and
commutative monoids, which will end up covering all cases up to k, ¢ < 2,
and hence all cases since Eg-monoids on Sets are the same as [Eo-monoids
on Sets when k > 2.
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ooc4 4.1 Bilinear Morphisms of Pointed Sets
00C5 4.1.1 Left Bilinear Morphisms of Pointed Sets
Let (X, x0), (Y,y0), and (Z, z9) be pointed sets.

00C6 Definition 4.1.1.1.1. A left bilinear morphism of pointed sets
from (X x Y, (x0,y0)) to (Z,2p) is a map of sets

fiXxY =2
2

satisfying the following condition:'

(%) Left Unital Bilinearity. The diagram

pt X p
idpy ><6V A
pt xY pt
[zo] xidy [20]

XXY — 7
T
commutes, i.e. for each y € Y, we have
f($07 y) = 20-

00C7 Definition 4.1.1.1.2. The set of left bilinear morphisms of pointed

sets from (X x Y, (zg,y0)) to (Z,zy) is the set Hom?e’th* (X xY,2)
defined by

Hom&l, (X x Y, Z) ™ {f € Homsew(X x Y, Z) | [ is left bilinear}.

1 Slogan: The map f is left bilinear if it preserves basepoints in its first argument.
2Succinctly, f is bilinear if we have

f(zo,y) = 20
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4.1.2 Right Bilinear Morphisms of Pointed Sets
Let (X, x0), (Y,y0), and (Z, z9) be pointed sets.

Definition 4.1.2.1.1. A right bilinear morphism of pointed sets
from (X x Y, (x0,y0)) to (Z,2p) is a map of sets

fiXxY =2
3,4

satisfying the following condition:

(%) Right Unital Bilinearity. The diagram

pt X p

€x XidV eV
Y,

X xpt pt

idx x [yo}\ /[Zo]

XXY?Z

commutes, i.e. for each z € X, we have
f((lf, yO) = Z0-

Definition 4.1.2.1.2. The set of right bilinear morphisms of
pointed sets from (X X Y, (zo,y0)) to (Z, zp) is the set Hom?e’g* (X xY,2)
defined by

Hom?e’f; (X xY,2) = {f € Homges(X x Y, Z) | f is right bilinear}.
4.1.3 Bilinear Morphisms of Pointed Sets

Let (X, xzg), (Y,40), and (Z, z9) be pointed sets.

Definition 4.1.3.1.1. A bilinear morphism of pointed sets from
(X XY, (z0,y0)) to (Z,2p) is a map of sets

f: XxY—>Z

that is both left bilinear and right bilinear.

for each y € Y.
3Slogan: The map f is right bilinear if it preserves basepoints in its second argument.
4Succinctly, f is bilinear if we have

f(fIf,yO) = 20
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00CD Remark 4.1.3.1.2. In detail, a bilinear morphism of pointed sets
from (X x Y, (z0,40)) to (Z,20) is a map of sets

[+ (X XY, (z0,%)) = (Z,20)
5,6

satisfying the following conditions:

1. Left Unital Bilinearity. The diagram

pt X p

idpt ><6V A
¥

pt xY pt

[x()] Xidy\ /Zo}

XXY?Z

commutes, i.e. for each y € Y, we have
f($07 y) = 20-
2. Right Unital Bilinearity. The diagram

pt X p

€x XidV ENQY
.

X x pt pt

idx x [yo}\ /[ZO]

XxY — 27
7

commutes, i.e. for each x € X, we have

f(.’L', yO) = 20-
00CE Definition 4.1.3.1.3. The set of bilinear morphisms of pointed
sets from (X x Y, (zo,5)) to (Z,20) is the set Hom&, (X xY,Z)

defined by

def

Homg)ets* (X xY,Z)={f € Homsets(X x Y, Z) | f is bilinear}.

for each z € X.

5Slogan: The map f is bilinear if it preserves basepoints in each argument.
5Succinctly, f is bilinear if we have

f($07y) = 20,
f(z,90) = 20
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4.2 Tensors and Cotensors of Pointed Sets by
Sets

4.2.1 Tensors of Pointed Sets by Sets
Let (X, z0) be a pointed set and let A be a set.

Definition 4.2.1.1.1. The tensor of (X, () by A" is the pointed set®
A ® (X, zg) satisfying the following universal property:

(UP) We have a bijection
Sets,. (A ® X, K) = Sets(A, Sets, (X, K)),
natural in (K, ko) € Obj(Sets,).

Remark 4.2.1.1.2. The universal property in Definition 4.2.1.1.1 is
equivalent to the following one:

(UP) We have a bijection
Sets.(A ® X, K) = Setsi, (A x X, K),

natural in (K, ko) € Obj(Sets,), where Sets%O (A x X, K) is the set
defined by

' f haeA,
Sets%O(AXX,K)dzet{fESets(AxX,K) or e d we}.

have f(a,xq) = ko
Proof. We claim we have a bijection
Sets(A, Sets, (X, K)) = Sets%O(A x X, K)

natural in (K, ko) € Obj(Sets,). Indeed, this bijection is a restriction of
the bijection

Sets(A, Sets(X, K)) = Sets(A x X, K)
of Item 2 of Proposition 2.1.3.1.2:

e« A map
&: A — Sets, (X, K),

at— (§: X — K),

for each z € X and each y € Y.
" Further Terminology: Also called the copower of (X,z0) by A.
8 Further Notation: Often written A ® X for simplicity.
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in Sets(A, Sets, (X, K)) gets sent to the map
§:AXX 5 K

defined by
&l (a,x) = &)

for each (a,z) € A x X, which indeed lies in Sets%O(A x X, K), as
we have

€' (a, 20) = & (o)

= ko

for each a € A, where we have used that £, € Sets,(X,K) is a
morphism of pointed sets.

e Conversely, a map
EAXX o K

in Sets%)O (A x X, K) gets sent to the map

£ A — Sets, (X, K),

o (€ X - K),

where
X 5 K

is the map defined by

&l(x) € &(a,x)
for each x € X, and indeed lies in Sets, (X, K), as we have

&l (o) = €(a, o)

= k.
This finishes the proof. O

00CK Construction 4.2.1.1.3. Concretely, the tensor of (X, z¢) by A is
the pointed set A ® (X, zg) consisting of:

e The Underlying Set. The set A ® X given by

Ao X = \/ (X, ),
a€A

where \/,c 4 (X, zo) is the wedge product of the A-indexed family
((X,20)),4e4 of Definition 3.3.2.1.1.
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o The Basepoint. The point [(a,zo)] = [(¢’, z0)] of V4ea (X, z0).
Proof. (Proven below in a bit.) O

00CL Notation 4.2.1.1.4. We write a ® z for the element [(a,z)] of

Ao X = \/ (X, )
a€A

= (]_[ XZ»> /~.

icl

00CM Remark 4.2.1.1.5. Taking the tensor of any element of A with the
basepoint zg of X leads to the same element in A ® X, i.e. we have

/
a®xy=a © o,

for each a,a’ € A. This is due to the equivalence relation ~ on

\ (X, z0) = [ X/~

a€A a€A

identifying (a,xo) with (a’, x¢), so that the equivalence class a ® xq is
independent from the choice of a € A.

Proof. We claim we have a bijection
Sets, (A ® X, K) = Sets(A, Sets.(X, K))
natural in (K, ko) € Obj(Sets,).
e Map I. We define a map
O Sets, (A © X, K) — Sets(A, Sets, (X, K))
by sending a morphism of pointed sets
£ (A0 X, a0 x0) — (K, ko)
to the map of sets
57: A — Sets, (X, K),
0 (6 X = K),

where

fa: (X,xo) — (K, ]{?0)
is the morphism of pointed sets defined by
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for each x € X. Note that we have
£a(z0) = €(a © mp)
= kO)

so that £, is indeed a morphism of pointed sets, where we have
used that £ is a morphism of pointed sets.

e Map II. We define a map
U Sets(A, Sets, (X, K)) — Sets,.(A© X, K)
given by sending a map
£: A — Sets, (X, K),
a— (S X = K),

to the morphism of pointed sets
€ (A0 X,a 0 20) — (K, ko)

defined by

def

Ha o) = &u(2)
for each a ® z € A ® X. Note that ¢' is indeed a morphism of
pointed sets, as we have
¢ (a ® o) = €al0)

= kOa
where we have used that £(a) € Sets.(X, K) is a morphism of
pointed sets.

o Invertibility I. We claim that

Vg o Pg = idsets, (A0 X,K)-
Indeed, given a morphism of pointed sets
£ (A0 X, a0 ) — (K, ko),
we have
(Wi 0 @k](§) = V(K ()
=Yg ([ar [z Eao)]])
= Vk([d = [2" = &(d' ©2)]])
=[la®z — evy(eve([a' — [z — &(a @ 2)]]))]
=laezevy([2 = Ela®2)])]
— 0oz o)
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o Invertibility II. We claim that

ProlWyg = idSets(A,Sets*(X,K))'

Indeed, given a morphism £: A — Sets, (X, K), we have
[Pk 0 Uk(§) = Pr(Vk(E))
=Pk ([a©x — &(x)])
= la— [z~ &()]]
= a— &(a)]
=¢.

e Naturality of ®. We need to show that, given a morphism of

pointed sets
b: (K, ko) = (K, kj),

the diagram
Sets,(A® X, K) 2x, Sets(A, Sets, (X, K))
d)* (¢*)*

Sets, (A © X, K') —— Sets(4, Sets, (X, K))
K’

commutes. Indeed, given a morphism of pointed sets
& (A0 X,a®xy) — (K, ko),
we have
[ 0 §:](€) = Prr(d+(8))

=Qri(pod)
= (¢o¢)!

= (#4),([a = E(a-]))
= (04).(Px(£))
= [(¢4). 0 k](E)-

e Naturality of ¥. Since ® is natural and ® is a componentwise
inverse to WU, it follows from Item 2 of Proposition 8.8.6.1.2 that ¥
is also natural.
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This finishes the proof. ]
00CN Proposition 4.2.1.1.6. Let (X, ) be a pointed set and let A be a set.

Q0CP 1. Functoriality.  The assignments A, (X, xo), (A, (X,z0)) define
functors

A ® —: Sets, — Sets,,
— ® X : Sets — Sets,,
—1 ® —9: Sets x Sets,, — Sets,.

In particular, given:

e A map of sets f: A — B;
e A pointed map ¢: (X, z0) = (Y, y0);

the induced map
fOp: AOX - BOY

is given by
[f@dlao )= fa) © ¢()
foreacha®@z e A X.

00CQ 2. Adjointness I. We have an adjunction

—0X
(—® X HSets, (X, —)): Sets” 1 Sets,,
~—
Setsy (X,—)

witnessed by a bijection
Sets, (A ® X, K) = Sets(A, Sets.(X, K)),
natural in A € Obj(Sets) and X,Y € Obj(Sets,).
00CR 3. Adjointness II. We have an adjunctions

Ao-
(Ao——Amh-—): Sets, L Sets,,
A

witnessed by a bijection
Homgets, (A © X,Y) = Homges, (X, AMY),

natural in A € Obj(Sets) and X,Y € Obj(Sets,).
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4. As a Weighted Colimit. We have
A® X = colim (X)),
where in the right hand side we write:

o A for the functor A: pt — Sets picking A € Obj(Sets);
o X for the functor X : pt — Sets,. picking (X, zg) € Obj(Sets,).

5. Iterated Tensors. We have an isomorphism of pointed sets
AO(BO®X)= (Ax B)® X,
natural in A, B € Obj(Sets) and (X, zg) € Obj(Sets,).
6. Interaction With Homs. We have a natural isomorphism

Sets, (A ® X, —) = A M Sets.(X, —).

7. The Tensor Evaluation Map. For each X,Y € Obj(Sets,), we
have a map

eviy: Sets (X, Y) 0 X =Y,
natural in X,Y € Obj(Sets,), and given by
vy (f @)= f(z)
for each f ® z € Sets,(X,Y) ® X.

8. The Tensor Coevaluation Map. For each A € Obj(Sets) and each
X € Obj(Sets,), we have a map

coevfiX: A — Sets, (X, A© X),
natural in A € Obj(Sets) and X € Obj(Sets,), and given by
coev%X (a) E [z aox]
for each a € A.

Proof. Item 1, Functoriality: This is the special case of 77 of 77 for
when C = Sets,.

Item 2, Adjointness I: This is simply a rephrasing of Definition 4.2.1.1.1.
Item 3, : Adjointness II: This is the special case of 7?7 of ?? for when
C = Sets,.

Item 4, As a Weighted Colimit: This is the special case of 77 of 77 for
when C = Sets,.
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Item 5, Iterated Tensors: This is the special case of 7?7 of 7?7 for when
C = Sets,.

Item 6, Interaction With Homs: This is the special case of 7?7 of 77 for
when C = Sets,.

Item 7, The Tensor Evaluation Map: This is the special case of 7?7 of 77
for when C = Sets,.

Item 8, The Tensor Coevaluation Map: This is the special case of 77 of
?? for when C = Sets,. O

4.2.2 Cotensors of Pointed Sets by Sets
Let (X, x0) be a pointed set and let A be a set.

Definition 4.2.2.1.1. The cotensor of (X, z) by A” is the pointed
set'Y A (X, z0) satisfying the following universal property:

(UP) We have a bijection
Sets, (K, A h X) = Sets(A, Sets.(K, X)),
natural in (K, ko) € Obj(Sets,).

Remark 4.2.2.1.2. The universal property of Definition 4.2.2.1.1 is
equivalent to the following one:

(UP) We have a bijection
Sets, (K, A X) = Sets%O(A x K, X),

natural in (K, ko) € Obj(Sets,), where Sets%0 (A x K, X) is the set
defined by

f hae€ A,
Sets]%o(AxK,X)d:ef{fESets(AxK,X) or cacha We}.

have f(a, ko) = o

Proof. This follows from the bijection
Sets(A, Sets, (K, X)) = Sets%0 (Ax K, X),

natural in (K, kg) € Obj(Sets,) constructed in the proof of Remark 4.2.1.1.2.
O

Construction 4.2.2.1.3. Concretely, the cotensor of (X, zo) by A is
the pointed set A M (X, xy) consisting of:

9 Further Terminology: Also called the power of (X, xz0) by A.
10 Purther Notation: Often written A M X for simplicity.
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e The Underlying Set. The set A M X given by

AhX = /\ (X,ﬂj’()),
acA

where A,c (X, o) is the smash product of the A-indexed family
((X,20)),ea of Definition 4.6.1.1.1.

e The Basepoint. The point [(x0),c4] = [(z0, Z0, Zo, - - )] of Agea(X, x0).
Proof. We claim we have a bijection
Sets, (K, A h X) = Sets(A, Sets.(K, X)),
natural in (K, kg) € Obj(Sets,).
e Map I. We define a map
Oy Sets, (K, A X) — Sets(A, Sets, (K, X)),
by sending a morphism of pointed sets
£ (K ko) = (At X, [(20) 4eal)
to the map of sets

€ A — Sets, (K, X),
a— (&: K — X),

where

ga: (K7 kO) - (X7 .1‘(])
is the morphism of pointed sets defined by

{x’é if £(k) # [(20)qeal;

Sa(k) = xo if £(k) [(wO)aEA]

for each k € K, where ¥ is the ath component of £(k) = [(mf‘j) 4
Note that:

1. The definition of &,(k) is independent of the choice of equiva-
lence class. Indeed, suppose we have




4.2. Tensors and Cotensors of Pointed Sets by Sets 149

with % # y* for some @ € A. Then there exist a,,a, € A
such that ZL‘Zw = yij = x9. The equivalence relation ~ on
[I,ca X then forces

().,
(),

however, and &,(k) is defined to be xg in this case.

= [(xo)aeA]’
= [($O)aeA]?

2. The map &, is indeed a morphism of pointed sets, as we have

&a(ko) = w0

since (ko) = [(20)4cq) @s € is a morphism of pointed sets
and &, (ko), defined to be the ath component of [(x0),c 4], is
equal to xg.

e Map II. We define a map
U Sets(A, Sets, (K, X)) — Sets, (K, Ah X),
given by sending a map

£: A — Sets, (K, X),
a— (&: K — X),

to the morphism of pointed sets
é'Jf: (K7 k’()) - (A h X7 [(xo)aEA])
defined by

€1(k) = [(€a(k))ped]

for each k € K. Note that ¢ is indeed a morphism of pointed sets,
as we have

€ (ko) = [(€a(ko)) gen]

= X0,

where we have used that £, € Sets, (K, X) is a morphism of pointed
sets for each a € A.

e Naturality of V. We need to show that, given a morphism of
pointed sets
¢: (K, ko) — (K/vké)v
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the diagram
Sets(A, Sets, (K, X)) —5 Sets, (K, A X)
(7). ¢
Sets(A, Sets, (K, X)) 57 Sets, (K, A h X)

commutes. Indeed, given a map of sets

£: A — Sets, (K', X),
ar— (& K'— X),

we have
(U o (¢7). (&) = Vi ((¢7).(E))
= Ui ((¢")(la— &)
= Vi (([a— ¢"(&)]))
= Wr((

= [(La(d(F))) aenll
(1 [ ’f’))aeAH)
(k(€))

= [ o Wgr](€).

v
v
Vi ((Ja — [[k = &a(0(K))]D))
= [k
¢°
"

e Naturality of . Since VU is natural and ¥ is a componentwise
inverse to ®, it follows from Item 2 of Proposition 8.8.6.1.2 that ®
is also natural.

o Invertibility I. We claim that

Vg o Pg = idsess, (1, A0 X)-

Indeed, given a morphism of pointed sets

i (K ko) = (At X, [(20) 4eal)

we have
Uk 0 @r(§) = Y (PK(E))
= Uk ([a &)
= Uk([a' = &)
= [k [(eva(la' = & (k)])) 4eal]
= [k = [(&a(k))geall-

Now, we have two cases:



4.2. Tensors and Cotensors of Pointed Sets by Sets 151

1. If &(k) = [(20),e.4], we have

[Ur o Pr](§) ="+
= [k~ [(&
= [k — [(xo
= [k~ &(k)

k))aeA]ﬂ

aEA]]]

(
)

2. If (k) # [(w0),e4] and (k) = [(mﬁ)aeA] instead, we have

(UK o Pk](§) =
= [k = [(€a(k))aeall

B TR {(m’é)aeA]]]
= [k &(R)]

In both cases, we have [V o ®x(€) = &, and thus we are done.

o Invertibility II. We claim that

ProlWy = idSets(A,Sets*(K,X))'

Indeed, given a morphism £: A — Sets, (K, X ), we have
[Pk 0 Wk](§) = Pr(Vk(E))
= (I)K([[k = [(ga(k))aeA“])
= la— [k~ &(k)]]
=<

This finishes the proof. ]

00D1 Proposition 4.2.2.1.4. Let (X, z() be a pointed set and let A be a set.

00D2 1. Functoriality. ~ The assignments A, (X, xg), (A4, (X,x¢)) define
functors

A h —: Sets, — Sets,,
— h X : Sets°? — Sets,,

—1 M —5: Sets®P x Sets,, — Sets,.

In particular, given:
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e A map of sets f: A — B;
o A pointed map ¢: (X, z9) — (Y, yo);

the induced map

fOdp:AMX - BMY

is given by

[f® ¢]([(xa)ae,4]) = [(d)(xf(a)))aeA

for each [(@q),cq] € A X.

00D3 2. Adjointness I. We have an adjunction

—MmX
(— M X HSets,(—, X)): Sets®®” 1 Sets,,
~_
Setsy (—,X)

witnessed by a bijection
SetsP(A th X, K) = Sets(A, Sets,. (K, X)),
i.e. by a bijection
Sets, (K, A h X) = Sets(A, Sets..(K, X)),
natural in A € Obj(Sets) and X,Y € Obj(Sets,).

00D4 3. Adjointness II. We have an adjunctions

AO—
(Ao ——Ah-): Sets*z Sets,,
Arh—

witnessed by a bijection
Homgets, (A © X,Y) = Homges, (X, AMY),
natural in A € Obj(Sets) and X,Y € Obj(Sets,).
00D5 4. As a Weighted Limit. We have
A X = 1limA(X),
where in the right hand side we write:

o A for the functor A: pt — Sets picking A € Obj(Sets);
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o X for the functor X : pt — Sets,, picking (X, zg) € Obj(Sets,).
5. Iterated Cotensors. We have an isomorphism of pointed sets
AM(BMX)=(Ax B)mhX,
natural in A, B € Obj(Sets) and (X, zo) € Obj(Sets.).
6. Commutativity With Homs. We have natural isomorphisms

A th Sets, (X, —) = Sets. (A © X, —),
A th Sets,(—,Y) = Sets, (—, A Y).

7. The Cotensor Evaluation Map. For each X,Y € Obj(Sets,), we
have a map

evd)}y: X — Sets, (X, Y) MY,
natural in X,Y € Obj(Sets,), and given by

def

vy () 2 [(£(2)) peses. (x|

for each z € X.

8. The Cotensor Coevaluation Map. For each X € Obj(Sets,) and
each A € Obj(Sets), we have a map

coeVTLX: A — Sets, (A X, X),
natural in X € Obj(Sets,) and A € Obj(Sets), and given by

COGV?X,X(C‘) = [[[(xb)beA} > To]
for each a € A.

Proof. Item 1, Functoriality: This is the special case of 77 of 77 for
when C = Sets,.

Item 2, Adjointness I: This is simply a rephrasing of Definition 4.2.2.1.1.
Item 3, : Adjointness II: This is the special case of 7?7 of 7?7 for when
C = Sets,.

Item 4, As a Weighted Limit: This is the special case of 7?7 of 7?7 for
when C = Sets,.

Item 5, Iterated Cotensors: This is the special case of 77 of 7?7 for when
C = Sets,.

Item 6, Commutativity With Homs: This is the special case of 77 of 77
for when C = Sets,.

Item 7, The Cotensor Evaluation Map: This is the special case of 77 of
?7? for when C = Sets,.

Item 8, The Cotensor Coevaluation Map: This is the special case of 77
of 7?7 for when C = Sets,. O
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000A 4.3 The Left Tensor Product of Pointed Sets

00DB 4.3.1 Foundations
Let (X, xz) and (Y, yo) be pointed sets.

00DC Definition 4.3.1.1.1. The left tensor product of pointed sets is
the functor!'!
<: Sets, X Sets, — Sets,

defined as the composition

Catsy
idx ;':,__\ Setsx ,Sets

Sets, x Sets, —= Sets, X Sets ———% Sets x Sets, 9, Sets,,

where:

e ’: Sets, — Sets is the forgetful functor from pointed sets to sets.

. IBg:ttssf,Sets: Sets, x Sets — Sets x Sets, is the braiding of Catsy, i.e.

the functor witnessing the isomorphism

Sets, x Sets = Sets x Sets,.
e (O: Sets x Sets, — Sets, is the tensor functor of Item 1 of Proposi-
tion 4.2.1.1.6.

00DD Remark 4.3.1.1.2. The left tensor product of pointed sets satisfies the
following natural bijection:

Sets, (X <Y, Z) 2 HomS:: (X x Y, Z).

Sets.
That is to say, the following data are in natural bijection:
1. Pointed maps f: X <Y — Z.
2. Maps of sets f: X xY — Z satisfying f(zo,y) = 2o for each y € Y.

00DE Remark 4.3.1.1.3. The left tensor product of pointed sets may be
described as follows:

o The left tensor product of (X, z¢) and (Y, yo) is the pair (X <Y, x0 < yo),¢)
consisting of
— A pointed set (X <Y, 29 < yo);

— A left bilinear morphism of pointed sets ¢: (X x Y, (x0,%0)) —
X QY;

1 Burther Notation: Also written <Sets, -
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satisfying the following universal property:

(UP) Given another such pair ((Z, zp), f) consisting of
* A pointed set (Z, 29);

s A left bilinear morphism of pointed sets f: (X x Y, (x0,%0)) —
X QY;

there exists a unique morphism of pointed sets X <Y 2z
making the diagram

Y

X«
/ ia!
A

XXYT

commute.

00DF Construction 4.3.1.1.4. In detail, the left tensor product of (X, zg)
and (Y, yo) is the pointed set (X <Y, [z¢]) consisting of

e The Underlying Set. The set X <Y defined by

def

Xavy®y|ox
= \/(X,I'()),

yey
where |Y'| denotes the underlying set of (Y, o);

o The Underlying Basepoint. The point [(yo,Zo)] of V, ey (X, 7o),
which is equal to [(y,z¢)] for any y € Y.

00DG Notation 4.3.1.1.5. We write'? 2 <1y for the element [(y, )] of
XY Z|Y|oX.

00DH Remark 4.3.1.1.6. Employing the notation introduced in Notation 4.3.1.1.5,
we have
o 1yo = xo Y

for each y € Y, and
o<y =x0<Y

for each y,y/ € Y.

00DJ Proposition 4.3.1.1.7. Let (X, z0) and (Y, yo) be pointed sets.

2 Purther Notation: Also written z <Sets, Y-
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00DK 1. Functoriality. The assignments X,Y,(X,Y) — X <Y define
functors

X < —: Sets, — Sets,,
— Y Sets, — Sets,,

—1 <0 —9: Sets, x Sets, — Sets,.
In particular, given pointed maps

f: (Xa 33‘0) - (Aa aO)v
g: (Y7 yO) - (B7b0))

the induced map
f<g: X<Y - A<B

is given by
def
[f <gl(z <y) = flz) <g(y)
foreach z <y e X QY.

00DL 2. Adjointness I. We have an adjunction

—qY
(— QY Y, —]g‘ets*) : Sets*z Sets,,

[Y’ 7] Sqets*

witnessed by a bijection of sets

Homsers, (X <1Y, Z) = Homsess, (X, [V, Z5.s, )

Sets.

natural in (X,z0), (Y,40), (Z,20) € Obj(Sets,), where [X,Y]g,.
is the pointed set of Definition 4.3.2.1.1.

00DM 3. Adjointness II. The functor
X < —: Sets, — Sets,

does not admit a right adjoint.

Q@DN 4. Adjointness III. We have a bijection of sets
Homgets, (X <Y, Z) = Homses (Y], Sets« (X, Z))

natural in (X, z0), (Y, v0), (Z, 20) € Obj(Sets,).
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Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness I: This follows from Item 3 of Proposition 4.2.1.1.6.
Item 3, Adjointness II: For X <1 — to admit a right adjoint would require
it to preserve colimits by ?? of 77. However, we have

X <aptpt|lo X
~ X
Z pt,

and thus we see that X <1 — does not have a right adjoint.
Item 4, Adjointness III: This follows from Item 2 of Proposition 4.2.1.1.6.
O

Remark 4.3.1.1.8. Here is some intuition on why X <1 — fails to be a
left adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural
bijection

Homsgets, (X <Y, Z) = Homges (Y], Sets. (X, Z)),
so it would be reasonable to wonder whether a natural bijection of the

form
Homsgets, (X <Y, Z) = Homgeys, (Y, Sets,. (X, 7)),

also holds, which would give X < — - Sets, (X, —). However, such a
bijection would require every map

f: XY > 2Z

to satisfy

flx<yo) = 20
for each z € X, whereas we are imposing such a basepoint preservation
condition only for elements of the form zo<1y. Thus Sets. (X, —) can’t be

a right adjoint for X <1—, and as shown by Item 3 of Proposition 4.3.1.1.7,
no functor can.'?

4.3.2 The Left Internal Hom of Pointed Sets
Let (X, z9) and (Y, y0) be pointed sets.

Definition 4.3.2.1.1. The left internal Hom of pointed sets is the
functor
[_7 _]Sets* : Setsgp x Sets, — Sets,

3The functor Sets. (X, —) is instead right adjoint to X A —, the smash product of
pointed sets of Definition 4.5.1.1.1. See Item 2 of Proposition 4.5.1.1.9.
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defined as the composition

SetsOP =xid op M
ets;P x Sets, —— Sets®P x Sets, — Sets,,
where:
e ’: Sets, — Sets is the forgetful functor from pointed sets to sets.

o M: Sets®P x Sets, — Sets, is the cotensor functor of Item 1 of
Proposition 4.2.2.1.4.

Proof. For a proof that [, —]g.. is indeed the left internal Hom of
Sets, with respect to the left tensor product of pointed sets, see Item 2
of Proposition 4.3.1.1.7. ]

00DS Remark 4.3.2.1.2. The left internal Hom of pointed sets satisfies the
following universal property:

Sets, (X < K Z) = Sets, (X’ [Y7 Z]gets*)

That is to say, the following data are in bijection:
1. Pointed maps f: X <Y — Z.

2. Pointed maps f: X — [Y, Z]q

Sets,
20DT Remark 4.3.2.1.3. In detail, the left internal Hom of (X, z() and
(Y, o) is the pointed set ([X, YSuts. [(yo)xEX]) consisting of

o The Underlying Set. The set [X,Y]s.,. defined by

Sets.
(X, Y])d E|X|MY

Sets.
= /\ (Y7 yO)a
reX

where | X| denotes the underlying set of (X, xo);
o The Underlying Basepoint. The point [(y0),cx] of Azex(Y,%0)
00DU Proposition 4.3.2.1.4. Let (X, z0) and (Y, ) be pointed sets.

00DV 1. Functoriality. The assignments X,Y,(X,Y) — [X, Y], define
functors

[X, —)Sets,  Sets. — Sets,,
<
[— Y]Sets, © Setse? — Sets,,

[—1, —2]§ets* : SetsP x Sets, — Sets,.
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In particular, given pointed maps
f: (X, l’o) — (A,ao),
g: (Y7 yO) — (B7 bO)a
the induced map

£, 9)Sets, * [As Y ISes, = (X, BI5,

Sets. Sets.

is given by

[f7 g]sets* ([(ya)aGA]) = {(g (yf(w)»zex]

for each [(ya),ea] € [A,Y]s,

Setsy

0ODW 2. Adjointness I. We have an adjunction

—<Y
(— 1Y HJY, —]g‘ets*) : Sets*z Sets,,
[YV_]Sqets*

witnessed by a bijection of sets

Homsers, (X <1Y, Z) = Homses, (X, [V, Z5.s, )

Sets.
natural in (X, zo), (Y, 40), (Z, z0) € Obj(Sets,)
0@DX 3. Adjointness II. The functor
X < —: Sets, — Sets,
does not admit a right adjoint.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness I: This is a repetition of Item 2 of Proposition 4.3.1.1.7,
and is proved there.

Item 3, Adjointness II: This is a repetition of Item 3 of Proposi-
tion 4.3.1.1.7, and is proved there. O

o0oDY 4.3.3 The Left Skew Unit

00DZ Definition 4.3.3.1.1. The left skew unit of the left tensor product
of pointed sets is the functor

15¢t9: pt —s Sets,

defined by
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00EQ 4.3.4 The Left Skew Associator

00E1T Definition 4.3.4.1.1. The skew associator of the left tensor prod-
uct of pointed sets is the natural transformation

Sets,,< ., . . Cat:
=S Qo (< X idsets, ) = <o (idsets, X <) © aS:tsS*,Sets*,Sets*

as in the diagram

Sets, x (Sets, x Sets,)

aCats »’1 id
Setsx ,Setsx , Sets* L 1adx<g
(_)
(Sets, x Sets,) x Sets, Sets* X Sets,

Sets* <

<xid

Sets, X Sets* — Sets,,

whose component
Xy (X AY)<Z 5 X (Y 92)
at (X, z0), (Y,v0), (Z,20) € Obj(Sets,) is given by
(X<aY)<aZ¥|Z|o(XaY)
=)zl (Yo X)

=~ \/|Y|[oX
z€Z

~\/ (\/ X)
ze€Z \yeYy

— \/ X
(zy]eV, e, Y

= \/ X
[(zw)]€lZ|oY
2 Z|oY|oX

“ly<zloXx
X (Y <a2),
where the map
\V (\/ X) — V X
2€Z \yey (z)eV, Y

is given by [(z, [(y, 2)])] = [([(z, v)], )].
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Proof. (Proven below in a bit.) O

Remark 4.3.4.1.2. Unwinding the notation for elements, we have

[z, [(y. 2)D)] = (2,2 < p)]

def

=(r<y)<z
and

(= )], 2)] = [y < 2,2)]

Lra(y<az).

. Sets,,< :
So, in other words, o’y y",~ acts on elements via
b b

S (ray) a2 Eraly<z)

foreach (x<y)<ze (X QYY) < Z.

Remark 4.3.4.1.3. Taking y = yo, we see that the morphism Oz?:t;*;

acts on elements as

Sets. .
a5 (x<yo) 92) Za < (yo < 2).

However, by the definition of <1, we have yp <1z = yg <12’ for all 2,2’ € Z,

preventing a?ét;f; from being non-invertible.

Proof. Firstly, note that, given (X, z¢), (Y, y0), (Z, z9) € Obj(Sets,), the
map

Xy (X AY)<Z 5 X (Y 92)
is indeed a morphism of pointed sets, as we have

a5 ((zo <o) < 20) = w0 <1 (yo < 20)-

Next, we claim that a>**+< is a natural transformation. We need to

show that, given morphisms of pointed sets

f: (X,:L'()) — (X/,$6),
g: (Y7 yO) — (Y/7y6)7
h: (Z,z0) — (Z', %))

the diagram

(X<1Y)<ZM(X’<1Y’)<Z’

Setsx ,< aSets* ,<
X,Y,Z X'y, z!

X<(Y<12)mX’<1(Y’<1Z’)
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commutes. Indeed, this diagram acts on elements as

(zqy) <z — (f(z) <9(y)) < h(2)

! !

r<(y<z) —— f(z) < (g(y) < h(z2))

and hence indeed commutes, showing a>¢*+< to be a natural transfor-
mation. This finishes the proof. O

4.3.5 The Left Skew Left Unitor

Definition 4.3.5.1.1. The skew left unitor of the left tensor prod-
uct of pointed sets is the natural transformation

1Setsx wid
pt x Sets, — 5 Sets, x Sets,

S

\ ASets* <l

Sets,,< . Sets : ~. y Cats
XS 0 (1585 idses, ) > AGHE?

whose component
)\Sets*,<1 . SO
X V<X - X

at (X, xo) € Obj(Sets,) is given by the composition
SOax=|X|os°

V s

reX
- X,

12

where \/,cx S° — X is the map given by

[(,0)] = o,
[(z,1)] — =.

Proof. (Proven below in a bit.)

Remark 4.3.5.1.2. In other words, )\E(ets*’q acts on elements as

)\ifts*’q(O Qx) ot 0,
)\iets*’q(l ) Ly

foreach 1<z € SY < X.
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00E7 Remark 4.3.5.1.3. The morphism )\ifts*’q is almost invertible, with its
would-be-inverse
ox: X — SOaXx

given by
ox(z) 1<z

for each x € X. Indeed, we have
X0 0 (2) = A= (0(2)

= A1 <)

=x
= [idx](z)
so that
AT o ¢ = idy
and
(00X (1 a2) = (A (1 aw))
= ¢(x)
=1z
= [idsoqx](1 <),
but

[¢ o Aig-tS*ﬂ 0<z) = ¢(A§§t5*’<‘(o < x))
= ¢(z0)

=1 x,
where 0 <z # 1 < xzg. Thus
bo )\ig_ts*,q X idgox
holds for all elements in S® <1 X except one.
Proof. Firstly, note that, given (X, zg) € Obj(Sets,), the map
AT 809X = X
is indeed a morphism of pointed sets, as we have
)\ifts*’Q(O < xp) = Xo.

Next, we claim that ASe*=< is a natural transformation. We need to
show that, given a morphism of pointed sets

[ (X,z9) = (Y,90),
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the diagram

ideo<af
SO x 525 80 gy
)\iézts* ,< { A%:.ts* ,<
X Y

commutes. Indeed, this diagram acts on elements as

0<x 0<z — 0< f(x)
zo — f(zo) Yo

and
1<z — 1< f(x)

W

x —— f(x)

and hence indeed commutes, showing A\>¢*+< to be a natural transfor-
mation. This finishes the proof. O

00E8 4.3.6 The Left Skew Right Unitor

00E9 Definition 4.3.6.1.1. The skew right unitor of the left tensor
product of pointed sets is the natural transformation

id 1Sets*
Sets, X pt 19X 5 Sets, x Sets,

\ /
\
\
\ pSets* ,<
Catsy

< pSets* :N> <o (Id X 1sets*)7 \\\ / <

\

Sets.,

p

N
Catsy
Setsx AN

whose component
P X X <80
at (X, zg) € Obj(Sets,) is given by the composition
X-XVvX
= 5% o X
~ X a8
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where X — X V X is the map sending X to the second factor of X in
XV X.

Proof. (Proven below in a bit.) O

Remark 4.3.6.1.2. In other words, pi(ets*’q acts on elements as
S *s def
px @) = (1)

i.e. by
pSetS* ,< (QZ) def x 1
X =zd

for each z € X.

Remark 4.3.6.1.3. The morphism ,oi(ets*’q is non-invertible, as it is

non-surjective when viewed as a map of sets, since the elements z <10 of

X <8% with & # g are outside the image of p?fts*’q, which sends x to

<1

Proof. Firstly, note that, given (X, zg) € Obj(Sets,), the map
pi?ts*’qz X5Xas8°

is indeed a morphism of pointed sets as we have

pi(ets*’q(xo) =xp<1

=29 <0.
Next, we claim that p¢< is a natural transformation. We need to

show that, given a morphism of pointed sets

[ (X, z0) = (Y, 90),
the diagram
X Y

Setsx , <] Setsx , <
. | Ip‘“ :

0 0
XS Widso Y<aS

commutes. Indeed, this diagram acts on elements as

|

x<0+— f(z)<0

and hence indeed commutes, showing p°¢*< to be a natural transfor-

mation. This finishes the proof. O
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4.3.7 The Diagonal

Definition 4.3.7.1.1. The diagonal of the left tensor product of
pointed sets is the natural transformation

idSets*
Sets, Sets,

A7 idsers, => <0 AG®, oo A“///
2o\
Sets, x Sets,,
whose component
A% (X, m0) = (X < X, 20 < x0)
at (X, zg) € Obj(Sets,) is given by
Aj(z)Erax
for each z € X.
Proof. Being a Morphism of Pointed Sets: We have
A% (20) = 2 < o,

and thus A% is a morphism of pointed sets.
Naturality: We need to show that, given a morphism of pointed sets

[ (X,z0) = (Y, 90),

the diagram
Y

A<l

<
X AY

XX — Y QY
< 7af <
commutes. Indeed, this diagram acts on elements as

z — [(z)

|

x<dx — f(z) < f(x)

and hence indeed commutes, showing A< to be natural. O
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4.3.8 The Left Skew Monoidal Structure on Pointed Sets
QQEE Associated to <

00EF Proposition 4.3.8.1.1. The category Sets, admits a left-closed left
skew monoidal category structure consisting of

e The Underlying Category. The category Sets, of pointed sets;

e The Left Skew Monoidal Product. The left tensor product functor
<: Sets, x Sets, — Sets,

of Definition 4.3.1.1.1;

o The Left Internal Skew Hom. The left internal Hom functor
[—, —]Sets* : Sets?P x Sets, — Sets,
of Definition 4.3.2.1.1;
o The Left Skew Monoidal Unit. The functor
15¢t5<: pt —» Sets,
of Definition 4.3.3.1.1;
e The Left Skew Associators. The natural transformation
a9 o (< X idsets,) = <V (idsets, X <) © AEZS. sers. Sets.
of Definition 4.3.4.1.1;

o The Left Skew Left Unitors. The natural transformation
ASetse . 6 (1sets* X idSets*> — Ag::ssf

of Definition 4.3.5.1.1;

e The Left Skew Right Unitors. The natural transformation
pSets*,<1: pg:::f = J0 (id > lSets*>
of Definition 4.3.6.1.1.

Proof. The Pentagon Identity: Let (W, wy), (X,x0), (Y,y0) and (Z, zo)


https://topological-modular-forms.github.io/the-clowder-project/tag/00EE
https://topological-modular-forms.github.io/the-clowder-project/tag/00EF

4.3. The Left Tensor Product of Pointed Sets 168

be pointed sets. We have to show that the diagram

Wa(XY))<Z

Setsx ,< <idg Setsx , <

Ay X,y Yy, XY, Z
(WaX)QY)<Z Wa(X<Y)<2)

ai‘e,tz*)fx z idyw Qai(efi}i ,Z<1

WaX)<(Y<Q2) — W (X< (Y<2))

WXy az
commutes. Indeed, this diagram acts on elements as
(w<a(zx<y)) <z

(w<z)<y) <z w<((x<dy) <z)

(w<z)<(y<z) — w<(x<(y<2))

and thus we see that the pentagon identity is satisfied.
The Left Skew Left Triangle Identity: Let (X, zo) and (Y, yo) be pointed
sets. We have to show that the diagram

Setsx , <
SO . xy

(SP<X)ay == S0<(X «Y)

)\Sets* ,<
. Xy
)\i?ts* < <idy

XY
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commutes. Indeed, this diagram acts on elements as

O0<z)<y — 0 (z<y)

N

Zo 1y =20 < Yo

and
(l<z)<yr— 1<(x<ay)

Ny

<1y

and hence indeed commutes. Thus the left skew triangle identity is
satisfied.

The Left Skew Right Triangle Identity: Let (X, z¢) and (Y, yo) be pointed
sets. We have to show that the diagram

XaYy

. Setsy , <1
Setsx , <] ldX <]pY
Pxay

(X <Y)<8" —— X a(Y <5

Setsx,
X,Y,s0

commutes. Indeed, this diagram acts on elements as

r<y

[ ™

(z<y)<lr—a<a(y<l)

and hence indeed commutes. Thus the right skew triangle identity is
satisfied.

The Left Skew Middle Triangle Identity: Let (X,xzo) and (Y,yo) be
pointed sets. We have to show that the diagram

XgqY ——— X «Y
P I aidy idg <3
0 0
(XQS)QYqu(S <]Y)

X,50y
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commutes. Indeed, this diagram acts on elements as
rdy ————— x4y
(<) <y r—— z<a(l<y)

and hence indeed commutes. Thus the right skew triangle identity is
satisfied.
The Zig-Zag Identity: We have to show that the diagram

Sets,.< <

25 80460

\ )\Sets* <

commutes. Indeed, this diagram acts on elements as

0<<11
0

and
1— 1«1

— «— A

and hence indeed commutes. Thus the zig-zag identity is satisfied.
Left Skew Monoidal Left-Closedness: This follows from Item 2 of Propo-
sition 4.3.1.1.7. O

4.3.9 Monoids With Respect to the Left Tensor Product
of Pointed Sets

Proposition 4.3.9.1.1. The category of monoids on (Sets,, <, S%) is
isomorphic to the category of “monoids with left zero”'* and morphisms
between them.

A monoid with left zero is defined similarly as the monoids with zero of ??.
Succinctly, they are monoids (A, pa,na) with a special element 04 satisfying

0aa =04
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Proof. Monoids on (Sets,, <1,S%): A monoid on (Sets., <, S°) consists
of:

o The Underlying Object. A pointed set (A,04).
o The Multiplication Morphism. A morphism of pointed sets
pa: A<A— A,
determining a left bilinear morphism of pointed sets
AxA— A
(a,b) ——— ab.
e The Unit Morphism. A morphism of pointed sets
na:S° — A
picking an element 14 of A.
satisfying the following conditions:

1. Associativity. The diagram

5m<ﬁ<(A<A>
O‘A,A*,ZV \i:iA<WA
(A<A) <A AgA
uA<1idA\ KA
A< A A

HnA

2. Left Unitality. The diagram
S0 g A 4 gy

Setsx ,<
)\IN

HA

A

commutes.

for each a € A.
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3. Right Unitality. The diagram

pSets*,q
A4 A« S
idaxna
A A<A

commutes.

Being a left-bilinear morphism of pointed sets, the multiplication map
satisfies
0aa =04

for each a € A. Now, the associativity, left unitality, and right unitality
conditions act on elements as follows:

1. Associativity. The associativity condition acts as

a<(b<c)
(a<lb)\<lc (a<b)<c a <bc
ab < c—— (ab)c a(be)
This gives

(ab)c = a(bc)

for each a,b,c € A.
2. Left Unitality. The left unitality condition acts:
(a) On 0 < a as

0<dar— 04<a

NN |

(b) On 1 <a as

l<ar—14<a

NN
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This gives

laa =a,

0g4a =04y
for each a € A.

3. Right Unitality. The right unitality condition acts as

a at+—— a<l1
a alg < a<ly
This gives
alg=a

for each a € A.

Thus we see that monoids with respect to <1 are exactly monoids with
left zero.

Morphisms of Monoids on (Sets,, <1, S%): A morphism of monoids on

(Sets., <1,5%) from (A, pa,na,04) to (B, up,np,0p) is a morphism of
pointed sets

f: (A,()A) — (B,OB)

satisfying the following conditions:

1. Compatibility With the Multiplication Morphisms. The diagram
AcAa L paB

©A BB

A B

commutes.

2. Compatibility With the Unit Morphisms. The diagram

SO A

N

B

commutes.
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These act on elements as

a<b a<1br— f(a)< f(b)

| l

ab —— f(ab) f(a)f(b)

and

0B f(04)

and
1 1+— 14

N

1p f(1a)
giving
f(ab) = f(a)f(b),
f(04) =0p,
f(la) = 1B,

for each a,b € A, which is exactly a morphism of monoids with left zero.
Identities and Composition: Similarly, the identities and composition of
Mon (Sets., <, SO) can be easily seen to agree with those of monoids with
left zero, which finishes the proof. O

00 4.4 The Right Tensor Product of Pointed Sets

00EK 4.4.1 Foundations
Let (X, x0) and (Y, yo) be pointed sets.

00EL Definition 4.4.1.1.1. The right tensor product of pointed sets is
the functor'®
>>: Sets, x Sets, — Sets,

defined as the composition

=xid O]
Sets, x Sets, —— Sets x Sets, — Sets,,

where:

15 Further Notation: Also written D> Sets,, -
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e ’: Sets, — Sets is the forgetful functor from pointed sets to sets.

e (©: Sets x Sets, — Sets, is the tensor functor of Item 1 of Proposi-
tion 4.2.1.1.6.

00EM Remark 4.4.1.1.2. The right tensor product of pointed sets satisfies
the following natural bijection:

Sets, (X > Y, Z) =~ Hom& (X x Y, Z).

Sets

That is to say, the following data are in natural bijection:
1. Pointed maps f: X >Y — Z.
2. Maps of sets f: X xY — Z satisfying f(x,yo) = 2o for each z € X.

00EN Remark 4.4.1.1.3. The right tensor product of pointed sets may be
described as follows:

o The right tensor product of (X, z¢) and (Y, yo) is the pair ((X > Y, 2o > 30), ¢)
consisting of
— A pointed set (X > Y,z > y0);
— A right bilinear morphism of pointed sets ¢: (X X Y, (zo,y0)) —
X>Y,;

satisfying the following universal property:

(UP) Given another such pair ((Z, zp), f) consisting of
* A pointed set (Z, 2p);
s A right bilinear morphism of pointed sets f: (X X Y, (x0,%0)) —
X>Y;

there exists a unique morphism of pointed sets X > Y 27z
making the diagram

Y

X >
/ 13!
A

XXY —
!
comimute.
00EP Construction 4.4.1.1.4. In detail, the right tensor product of

(X, z9) and (Y, yo) is the pointed set (X > Y, [yo]) consisting of:
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e The Underlying Set. The set X > Y defined by

def

X>Y¥|X|oy
= \/ (YvyO))

zeX
where | X| denotes the underlying set of (X, xo).

o The Underlying Basepoint. The point [(xo,y0)] of V,ex(Y;%0),
which is equal to [(z,yo)] for any x € X.

00EQ Notation 4.4.1.1.5. We write'® z > y for the element [(z,v)] of
X>Y2[X|oY.

00ER Remark 4.4.1.1.6. Employing the notation introduced in Notation 4.4.1.1.5,
we have
o > Yo = 2 B> Yo

for each z € X, and
x>y =12y

for each z,2’ € X.
00ES Proposition 4.4.1.1.7. Let (X, zp) and (Y, yp) be pointed sets.

QOET 1. Functoriality.  The assignments X,Y,(X,Y) — X > Y define
functors

X > —: Sets, — Sets,,
— > Y': Sets, — Sets,,

—1 > —9: Sets, x Sets, — Sets,.
In particular, given pointed maps

f: (Xa 1‘0) - (Aa aO)v
g: (Y7 yO) - (B7b0))

the induced map
frg: XY > A>B

is given by »
[f>gl(z>y) = flz) > g(y)

foreachz>ye Xp>Y.

16 Purther Notation: Also written @ >sets, ¥.
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2. Adjointness I. We have an adjunction

Xp—
(X > ——[X, ]S ): Sets*z Sets,,

Sets.
[X77]S‘>ets*

witnessed by a bijection of sets

Sets.

Homsers, (X & Y, Z) = Homses, (Y, [X, 25, )

natural in (X,z0), (Y,40),(Z,20) € Obj(Sets,), where [X,Y]c .
is the pointed set of Definition 4.4.2.1.1.

3. Adjointness II. The functor
— > Y: Sets, — Sets,

does not admit a right adjoint.

4. Adjointness 11I. We have a bijection of sets
Homsgets, (X > Y, Z) = Homges (| X |, Sets. (Y, Z))

natural in (X, zo), (Y, v0), (Z, z0) € Obj(Sets).

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness I: This follows from Item 3 of Proposition 4.2.1.1.6.
Item 3, Adjointness II: For —>Y to admit a right adjoint would require
it to preserve colimits by 77 of 7?7. However, we have

pt> X & |pt|o X
~ X
Z pt,
and thus we see that — > Y does not have a right adjoint.

Item 4, Adjointness II1: This follows from Item 2 of Proposition 4.2.1.1.6.
O

Remark 4.4.1.1.8. Here is some intuition on why — > Y fails to be a
left adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural
bijection

Homses, (X > Y, Z) = Homsers(| X |, Sets. (Y, Z)),

so it would be reasonable to wonder whether a natural bijection of the
form
Homgets, (X > Y, Z) = Homsges, (X, Sets. (Y, 7)),
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also holds, which would give — > Y - Sets,(Y,—). However, such a
bijection would require every map

f:Xp>pY —>Z
to satisfy

f(zo>y) = 20

for each z € X, whereas we are imposing such a basepoint preservation
condition only for elements of the form = >yy. Thus Sets, (Y, —) can’t be
a right adjoint for —>Y', and as shown by Item 3 of Proposition 4.4.1.1.7,
no functor can.'”

4.4.2 The Right Internal Hom of Pointed Sets
Let (X, o) and (Y, y0) be pointed sets.

Definition 4.4.2.1.1. The right internal Hom of pointed sets is
the functor
[—, —]Sets, = SetsP x Sets, — Sets,

defined as the composition

op EXId op h
SetsP x Sets, ——— SetsP x Sets, — Sets,,
where:
e ’=: Sets, — Sets is the forgetful functor from pointed sets to sets.

o : Sets®P x Sets, — Sets, is the cotensor functor of Item 1 of
Proposition 4.2.2.1.4.

Proof. For a proof that [—, =], is indeed the right internal Hom of
Sets, with respect to the right tensor product of pointed sets, see Item 2
of Proposition 4.4.1.1.7. ]

Remark 4.4.2.1.2. We have
[_7 _E]ets* - [_7 _]‘S>ets*'

Remark 4.4.2.1.3. The right internal Hom of pointed sets satisfies the
following universal property:

Sets, (X > Y, Z) = Sets. (Y, [X, Z]&,.,.)

Sets.

That is to say, the following data are in bijection:

The functor Sets. (Y, —) is instead right adjoint to — A'Y’, the smash product of
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1. Pointed maps f: X >Y — Z.

2. Pointed maps f: Y — [X, Z]c

Sets.
00F2 Remark 4.4.2.1.4. In detail, the right internal Hom of (X, z() and
(Y, o) is the pointed set ([X, Y Gets. [(yo)xEX]) consisting of

« The Underlying Set. The set [X,Y]q,, defined by

(X, Ve, €|X|hY

Sets
= /\ (Y7 yO)a
zeX

where | X| denotes the underlying set of (X, x¢);
e The Underlying Basepoint. The point [(y0),cx] of Apex(Y,%0).
00F3 Proposition 4.4.2.1.5. Let (X, zo) and (Y, yp) be pointed sets.

00F4 1. Functoriality. The assignments X,Y,(X,Y) — [X,Y]q,, define
functors

[X, —]‘;ets*: Sets, — Sets,,

[—, Y]Gus. : SetseP — Sets,,

[—1, —2]Gess, © SetsPP x Sets, — Sets,.
In particular, given pointed maps
[+ (X,20) = (A, a0),
g9: (Y,y0) = (B, bo),
the induced map

[fvg]gets*: [A’Y]D — [XvB]D

Sets. Sets.

is given by

.9 (0aea) 2 | (9 (v10))) |

for each [(ya),ca] € [A,Y]e,

Sets, *

Q0F5 2. Adjointness I. We have an adjunction

X>—
(X > — [Xv _}Sbets*> : Sets*z Sets*,

[X’_]Sbets*
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witnessed by a bijection of sets
Homses, (X >V, Z) 2 Homses, (Y, [X, Z]5us,)

natural in (X, zo), (Y,v0),(Z, 20) € Obj(Sets,), where [X, Y]
is the pointed set of Definition 4.4.2.1.1.

Sets.

00F6 3. Adjointness II. The functor
— > Y': Sets, — Sets,
does not admit a right adjoint.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness I: This is a repetition of Item 2 of Proposition 4.4.1.1.7,
and is proved there.

Item 3, Adjointness II: This is a repetition of Item 3 of Proposi-
tion 4.4.1.1.7, and is proved there. O

00F7 4.4.3 The Right Skew Unit

00F8 Definition 4.4.3.1.1. The right skew unit of the right tensor
product of pointed sets is the functor

15¢t> . bt —s Sets,

defined by
lgets* d:ef SO'

00F9 4.4.4 The Right Skew Associator

00FA Definition 4.4.4.1.1. The skew associator of the right tensor
product of pointed sets is the natural transformation

Cats,—

Sets, >
> > o (idgets, X I>) = > 0 (B> X idgets, ) © aSets*,Sets*,SetS*

as in the diagram
(Sets, x Sets,) x Sets,
agjttss’islets Sets 7 \Dfid
* 5 * ik’/(_)
Sets,. x (Sets, X Sets,) Sets* x Sets,

Sets* >

idx>

Sets, X Sets* — Sets,,
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whose component
XYy X>(Y>2Z) 5 (XY Z
at (X, zo0), (Y,v0), (Z,20) € Obj(Sets,) is given by
X (Y>2)Y|X|ol>2)
=Xlo(Y|e2)
=~ \/ (Yo 2)

zeX

~ \/ (\/ Z)
zeX \yeY

— \/ Z
[(EleV,cx Y

o~ V/  Z

[(z.9)]€lX oY
~|X|oY|oZ
“IX>Y|0Z
YX>Y)>Z,

y (\/z) SRV
zeX \yeYy [(x,y)]e\/mexy

is given by [(z, [(y, 2)])] = [([(z, y)], 2)].
Proof. (Proven below in a bit.) O

where the map

00FB Remark 4.4.4.1.2. Unwinding the notation for elements, we have

(2, [(y, 2)])] = [(2,y > 2)]
Crs (Y 2)

and

[([(z,9)], 2)] = [(@ >y, 2)]
L2y >z

. Setsy,> .
So, in other words, o’ ", acts on elements via
9 K

a?ﬁt;}j‘;(x >y>2) = (z>y) >z

for each z > (y>2) € X > (Y > 7).
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Remark 4.4.4.1.3. Taking y = yp, we see that the morphism ai(et;*;

acts on elements as

S ) ©
55 (@ (3o > 2) = (2> yo) > 2.

However, by the definition of >, we have x>y = 2’ >yg for all z, 2’ € X,

. Setsy,> . . .
preventing o’y y'y from being non-invertible.

Proof. Firstly, note that, given (X, zo), (Y, v0), (Z, z0) € Obj(Sets,), the
map

XYy X (Y 2) > (XpY)>Z
is indeed a morphism of pointed sets, as we have

S *y
a)étxsf,zb (zo &> (yo > 20)) = (20 > yo) &> 20

Next, we claim that o®®*> is a natural transformation. We need to

show that, given morphisms of pointed sets

f: (X,l‘o) — (X/,$6),
g: (Y7 yO) — (Y,7y6)7
h: (Z,20) = (Z',2)

the diagram

X (Y>2) MX’D(Y’DZ’)

Setsy ,[> Setsy ,[>
Xx v,z Cxr vt g

XoY)>Z X'>Y)>Z

(feg)>h

commutes. Indeed, this diagram acts on elements as

x> (y > 2) —— f(x) > (9(y) > h(2))

! !

(z>y) >z — (f(z) > 9(y)) > h(2)

and hence indeed commutes, showing a>***> to be a natural transfor-

mation. This finishes the proof. O

pointed sets of Definition 4.5.1.1.1. See Item 2 of Proposition 4.5.1.1.9.
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4.4.5 The Right Skew Left Unitor

Definition 4.4.5.1.1. The skew left unitor of the right tensor
product of pointed sets is the natural transformation

15¢tx xid
pt x Sets, ——— Sets, X Sets,

\
\
\

A 5 o)

whose component
)\Sets*,b A 0
X X =85> X

at (X, zg) € Obj(Sets,) is given by the composition
X-XVX
~|8% 60X
~ 950> X,

where X — X V X is the map sending X to the second factor of X in
XV X.

Proof. (Proven below in a bit.) O
Remark 4.4.5.1.2. In other words, )\ifts*’b acts on elements as
AT (@) E (L)
i.e. by
)\E{ets*’b(fv) R
for each z € X.
Remark 4.4.5.1.3. The morphism )\ifts*’b is non-invertible, as it is

non-surjective when viewed as a map of sets, since the elements 0 > x of
SY > X with o # x¢ are outside the image of )\Efts*’b, which sends z to
1>z

Proof. Firstly, note that, given (X, zg) € Obj(Sets,), the map

AXEP X - 0 X
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is indeed a morphism of pointed sets, as we have

Ai(ets*7>(ﬂ§‘0) =1>x

=0 x0.

Next, we claim that A%~ is a natural transformation. We need to
show that, given a morphism of pointed sets

f: (X,xo) — (Y, yo),

the diagram

X Y

Setsy ,[> Setsx ,[>
)\X [ [AY

O X —— SV

ids() >f

commutes. Indeed, this diagram acts on elements as
z ——— f(z)
1>x— 1> f(x)

and hence indeed commutes, showing A%+ to be a natural transfor-
mation. This finishes the proof. O
00FH 4.4.6 The Right Skew Right Unitor

00FJ Definition 4.4.6.1.1. The skew right unitor of the right tensor
product of pointed sets is the natural transformation

id 1Sets*
Sets, X pt 1ax Sets,. X Sets,
\
\
\ Setsx ,[>
\ p i)
Sets,,> . . Sets. ~ Cats \
p i >o (Id x 1 ) = PSete. > 7 .

Catsy
ats

2 N
Setsx N

whose component
P X > 80— X
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at (X, zg) € Obj(Sets,) is given by the composition
X8~ |X|eos°

=~ \/ s°

zeX
- X,

where \/,cx SY% — X is the map given by

[(ﬁ, O)] — Zo,
[(z,1)] — x.

Proof. (Proven below in a bit.) O

00FK Remark 4.4.6.1.2. In other words, pi(ets*’b acts on elements as

P (@ > 0) &,

pi(ets*’b(x > 1) Ly
for each x> 1 € X > SY.

00FL Remark 4.4.6.1.3. The morphism piets*’b is almost invertible, with its
would-be-inverse
bx: X - X1 S°

given by
def

ox(x)=z>1

for each x € X. Indeed, we have

(05557 0 6] (2) = o7 (6(a))
= p?fts*’b(a: > 1)
=z
= [idx](=)
so that
P?{ets*’b o¢=idx

and

B0 pX™ (@ 1) = o (pX " (x> 1))
= 6(x)

=x>1
= [idxpgo](z > 1),
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but

[#0pX (@2 0) = 6 (o3 (21> 0))

= ¢(x0)
=1 xo,
where x > 0 £ 1 > 9. Thus
$opx" = idyego

holds for all elements in X > S% except one.

Proof. Firstly, note that, given (X, zg) € Obj(Sets,), the map
PP XS0 X

is indeed a morphism of pointed sets as we have

Sets.,
S

0 xo > 0) = .

Next, we claim that p¢*" is a natural transformation. We need to

show that, given a morphism of pointed sets

[ (X,z0) = (Y, 90),

the diagram
fDidSO

X80 — 5 vy 80

Setsx ,>
Px k

X

p?/EtS* >

Y

commutes. Indeed, this diagram acts on elements as

x>0 x>0 +— f(z)>0
zo — f(zo) Yo

and
z>1+— f(z)>1

W

z——— f(z)
and hence indeed commutes, showing p°¢*™ to be a natural transfor-

mation. This finishes the proof. O
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4.4.7 The Diagonal

Definition 4.4.7.1.1. The diagonal of the right tensor product of
pointed sets is the natural transformation

idSets*
Sets, Sets,

AP idsers, => > 0 AG, oo AD///
s\ |
Sets, x Sets,,
whose component
A% (X, m9) = (X > X, 20 > 0)
at (X, zg) € Obj(Sets,) is given by
A (z)Er>a
for each z € X.
Proof. Being a Morphism of Pointed Sets: We have
A% (20) = 20 > 0,

and thus A% is a morphism of pointed sets.
Naturality: We need to show that, given a morphism of pointed sets

[ (X,z0) = (Y, 90),

the diagram
Y

AD

>
X AY

XX —YD>Y
> 7of >
commutes. Indeed, this diagram acts on elements as

z — [(z)

| ]

x>z — f(z)> f(x)

and hence indeed commutes, showing A” to be natural. O


https://topological-modular-forms.github.io/the-clowder-project/tag/00FM
https://topological-modular-forms.github.io/the-clowder-project/tag/00FN

4.4. The Right Tensor Product of Pointed Sets 188

4.4.8 The Right Skew Monoidal Structure on Pointed Sets
QOFP Associated to >

00FQ Proposition 4.4.8.1.1. The category Sets, admits a right-closed right
skew monoidal category structure consisting of

e The Underlying Category. The category Sets, of pointed sets;

e The Right Skew Monoidal Product. The right tensor product
functor
>>: Sets, x Sets, — Sets,

of Definition 4.4.1.1.1;

o The Right Internal Skew Hom. The right internal Hom functor

[— —]Sets, : SetsP x Sets, — Sets,
of Definition 4.4.2.1.1;

e The Right Skew Monoidal Unit. The functor

15¢t : bt s Sets,

of Definition 4.4.3.1.1;

e The Right Skew Associators. The natural transformation

Sets, > . . . Cats,—1
> > o (idgets, X ) = > 0 (B> X idgets, ) © Qgets, Sets,,Sets,

of Definition 4.4.4.1.1;

e The Right Skew Left Unitors. The natural transformation

ASetse s 2GH2 Z 1o (155 X idges, )
of Definition 4.4.5.1.1;

e The Right Skew Right Unitors. The natural transformation

POt o (id x 1590 ) 2 pSate:

of Definition 4.4.6.1.1.

Proof. The Pentagon Identity: Let (W, wy), (X,x0), (Y,y0) and (Z, zo)
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be pointed sets. We have to show that the diagram

W (X>Y)> 2)

Setsy ,[>

ayy Xy >idz azvefs)?lfy,z
W (X>(Y>Z2)) W (X>Y)>Z
O‘?/Vet:)ﬁy,z idw Dai(efif,g
WeX)>(Y>2)— (W X)>Y)>2Z
W XYz
commutes. Indeed, this diagram acts on elements as
w ((x>y)>2)
wp> (x> (y> 2)) (w> (z>y)) >z

(w>z)>(y>z) —— (W z)>y)> 2

and thus we see that the pentagon identity is satisfied.
The Right Skew Left Triangle Identity: Let (X, z¢) and (Y, yp) be pointed



4.4. The Right Tensor Product of Pointed Sets 190

sets. We have to show that the diagram

X>Y
Setsx ,> .
/\Sets*,b )‘X Dldy
X>Y

SO (X>Y) — (> X)>Y

Setsx ,[>
SO Xy

commutes. Indeed, this diagram acts on elements as

>y

[

Ip(z>y) — (I>z)>y

and hence indeed commutes. Thus the left skew triangle identity is
satisfied.

The Right Skew Right Triangle Identity: Let (X,xzo) and (Y,yp) be
pointed sets. We have to show that the diagram

idx Dp?,ets* >
s

X (Y589 (X>Y)>S°

commutes. Indeed, this diagram acts on elements as

Setsy ,[>
XpY

X>Y

x> (y>0) — (z>y)>0

N

T D> Yo = To > Yo

and
x> (y>1) — (z>y)>1

Ny

>y

and hence indeed commutes. Thus the right skew triangle identity is
satisfied.
The Right Skew Middle Triangle Identity: Let (X, z0) and (Y,y) be
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pointed sets. We have to show that the diagram

XpY ——= XY

idx BAYS >

%ﬁ;“**%idy

X>(S>Y) o= (XS >Y
X,SUY,Y

commutes. Indeed, this diagram acts on elements as

T>Yyr———— x>y

1 {

x> (1>y) —— (x> 1) >y

and hence indeed commutes. Thus the right skew triangle identity is
satisfied.
The Zig-Zag Identity: We have to show that the diagram

Setss,>

50 5%, g0 g0

Setsy ,[>
sO

SO

commutes. Indeed, this diagram acts on elements as

0<>0
0
and
l—1>1

—<«—V

and hence indeed commutes. Thus the zig-zag identity is satisfied.
Right Skew Monoidal Right-Closedness: This follows from Item 2 of
Proposition 4.4.1.1.7. [
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4.4.9 Monoids With Respect to the Right Tensor Product
QOFR of Pointed Sets

00FS Proposition 4.4.9.1.1. The category of monoids on (Sets,, >, S%) is
isomorphic to the category of “monoids with right zero”'® and morphisms
between them.

Proof. Monoids on (Sets,,>,S%): A monoid on (Sets,,>,SY) consists
of:

o The Underlying Object. A pointed set (A,04).
e The Multiplication Morphism. A morphism of pointed sets
pa: A>A— A,

determining a right bilinear morphism of pointed sets

AxA— A

(a,b) —— ab.

e The Unit Morphism. A morphism of pointed sets
na:S%— A
picking an element 14 of A.
satisfying the following conditions:

1. Associativity. The diagram

A> (A A)

Setsx ,[>

O‘A,A,V \idADHA

(A>A)> A A A

pA l>idA\ Ha

8 A monoid with right zero is defined similarly as the monoids with zero of ?7.
Succinctly, they are monoids (A, ua,n4) with a special element 04 satisfying

0aa =04

for each a € A.
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2. Left Unitality. The diagram

Setsy ,[>

AL S0 A

%A xid o

commutes.

3. Right Unitality. The diagram

A 8098 4y

Setsx ,[>
p\

Being a right-bilinear morphism of pointed sets, the multiplication map
satisfies

HA

A

commutes.

04a =04

for each a € A. Now, the associativity, left unitality, and right unitality
conditions act on elements as follows:

1. Associativity. The associativity condition acts as

ar> (b c)
(aBb)ec (an)D\{ a > be
ab > c—— (ab)c a(be)

This gives
(ab)c = a(bc)
for each a,b,c € A.

2. Left Unitality. The left unitality condition acts as
a a+—— 1>a

| |

a lga <— 14> a
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This gives
lga=a

for each a € A.
3. Right Unitality. The right unitality condition acts:

(a) On 11> 0 as

1>0 al>0+r— ar>0y4

NN

aly.
(b) Onar1 as

al>lr—a>1y

NN

aly.
This gives
aly = a,
a4 =0y
for each a € A.

Thus we see that monoids with respect to > are exactly monoids with
right zero.

Morphisms of Monoids on (Sets,,>,S%): A morphism of monoids on
(Sets., >, 5% from (A, pa,m4,04) to (B, up,mp,0p) is a morphism of
pointed sets

f: (A,OA) — (B7OB)

satisfying the following conditions:
1. Compatibility With the Multiplication Morphisms. The diagram
A A — v, g > B

HA 1B

A B

commutes.
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2. Compatibility With the Unit Morphisms. The diagram

SO NA
N
B
commutes.
These act on elements as
arcb ar>b+— f(a)r> f(b)
ab —— f(ab) f(a)f(b)
and
O\ 00— 0y
0B f(04)
and
1\ 1+— 14
1p f(14)
giving
f(ab) = f(a)f(b),
f(OA) = 0p,
f(1a) =1p,

for each a,b € A, which is exactly a morphism of monoids with right
ZEero.

Identities and Composition: Similarly, the identities and composition of
Mon (Sets,, >, S°) can be easily seen to agree with those of monoids with
right zero, which finishes the proof. O

00FT 4.5 The Smash Product of Pointed Sets

00FU 4.5.1 Foundations

Let (X, xz) and (Y, o) be pointed sets.
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00FV Definition 4.5.1.1.1. The smash product of (X, zo) and (Y, yo)" is
the pointed set X A Y2 satisfying the bijection

Sets, (X NY, Z) = Hom?ets*(X xY,7),
naturally in (X, zg), (Y, v0), (Z, z0) € Obj(Sets,).

00FW Remark 4.5.1.1.2. That is to say, the smash product of pointed sets is
defined so as to induce a bijection between the following data:

e Pointed maps f: X AY — Z.

e Maps of sets f: X XY — Z satisfying
f($07y) = 20,
f(ill', yO) = 20
for each z € X and each y € Y.

00FX Remark 4.5.1.1.3. The smash product of pointed sets may be described
as follows:

o The smash product of (X, xg) and (Y, yp) is the pair (X AY, x9 A yo),¢)
consisting of
— A pointed set (X AY, 20 A yo);
— A bilinear morphism of pointed sets ¢: (X X Y, (zo,40)) —
X AY;

satisfying the following universal property:

(UP) Given another such pair ((Z, zp), f) consisting of
* A pointed set (Z, zp);
s A bilinear morphism of pointed sets f: (X x Y, (zo,y0)) —
XANY;

there exists a unique morphism of pointed sets X AY 2z

making the diagram
X
/

X><Y7>Z

ANY

3!

commute.

19 Purther Terminology: In the context of monoids with zero as models for Fi-
algebras, the smash product X AY is also called the tensor product of F;-modules
of (X,z0) and (Y, yo) or the tensor product of (X,xz0) and (Y,yo) over Fi.

20 Fyrther Notation: In the context of monoids with zero as models for Fi-algebras,
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00FY Construction 4.5.1.1.4. Concretely, the smash product of (X, zg)
and (Y, yo) is the pointed set (X AY,xg A yo) consisting of

e The Underlying Set. The set X A'Y defined by
XANY Z (X xY)/~g,
where ~p is the equivalence relation on X xY obtained by declaring
(z0,y) ~r (20,),
(=,90) ~r (2, 0)
for each z,2’ € X and each v,y € Y;

o The Basepoint. The element [(zo,y0)] of X AY given by the
equivalence class of (xg,yo) under the equivalence relation ~ on
X xY.

Proof. By Item 6 of Proposition 7.5.2.1.3, we have a natural bijection
Sets,(X A Y, Z) = Hom& (X x Y, Z).
Now, by definition, Hom&, (X x Y, Z) is the set

for each z,y € X, if
Homgets(X X Y7 Z) d:ef f S HomSets(X X Y7 Z) (ﬂ?,y) ~R ({L‘/, y/)v then
flz,y) = f@',y)

However, the condition (z,y) ~g (2/,y’) only holds when:
1. We have z = 2/ and y = ¢/.
2. The following conditions are satisfied:
(a) We have z = xg or y = yo.
(b) We have ' = zg or ¥/ = yp.

So, given f € Homses(X x Y, Z) with a corresponding f: X AY — Z,
the latter case above implies

f(xmy) = f(xvyo)
= f(z0,%0),

and since f: X AY — Z is a pointed map, we have

f(zo,v0) = f(z0,%0)

= 2.
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Thus the elements f in Homses(X X Y, Z) are precisely those functions
f: X xY — Z satisfying the equalities

f(z0,y) = 20,

f(@,90) = 20
for each z € X and each y € Y, giving an equality

Hom&, (X x Y, Z) = Hom&,, (X xY,Z)
of sets, which when composed with our earlier isomorphism
Sets.(X A Y, Z) =2 Hom& (X x Y, Z)
gives our desired natural bijection, finishing the proof. O
00FZ Remark 4.5.1.1.5. It is also somewhat common to write

X xY
XAy ¥
xXvy’

identifying X VY with the subspace ({zo} x Y) U (X x {yo}) of X x Y,
and having the quotient be defined by declaring (z,y) ~ (2/,y') iff we
have (z,y), (2',y') e X VY.

00G0 Notation 4.5.1.1.6. We write z A y for the element [(x,y)] of
XAY 2X xY/~.

00G1 Remark 4.5.1.1.7. Employing the notation introduced in Notation 4.5.1.1.6,
we have

xo AN Yo = x A Yo,
=20y

for each z € X and each y € Y, and

zAyo =2 Ayo,
zo Ny =x0 NY

for each x,2’ € X and each y,y' € Y.

00G2 Example 4.5.1.1.8. Here are some examples of smash products of
pointed sets.

the smash product X AY is also denoted X ®r, Y.
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00G3 1. Smashing With pt. For any pointed set X, we have isomorphisms
of pointed sets

pt A X = pt,
X A pt 2 pt.

00G4 2. Smashing With S°. For any pointed set X, we have isomorphisms
of pointed sets

SONX =X,
XASY> X,

00G5 Proposition 4.5.1.1.9. Let (X, z0) and (Y, yo) be pointed sets.

00G6 1. Functoriality. — The assignments X,Y,(X,Y) — X AY define
functors

X A —: Sets, — Sets,,
— AY: Sets, — Sets,,
—1 A —9: Sets,, x Sets, — Sets,.

In particular, given pointed maps

f (X, 20) = (A, ap),

g: (Y,y0) — (B, bo),
the induced map

fANg: XANY - ANANB
is given by

[f A gl(@Ay) = fla) A gly)

foreachz Aye X AY.

00G7 2. Adjointness. We have adjunctions
XA—
~ ™
(X N—-Sets, (X,—)): Sets, L Sets,,
—_
Sets, (X,—)
—AY
>
(=AY +Sets,(Y,—)): Sets, L Sets,,
~—
Sets. (Y,—)

witnessed by bijections

Homsets, (X A Y, Z) = Homges, (X, Sets. (Y, Z)),
Homsets, (X A Y, Z) = Homsets, (X, Sets,. (4, Z)),

natural in (X, z0), (Y, 40), (Z, 20) € Obj(Sets,).
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00G8 3. Enriched Adjointness. We have Sets,-enriched adjunctions

XA~
(X N — -Sets,.(X,—)): Sets*z Sets,,
Sets, (X,—)
—AY
—
(=AY -Sets,(Y,—)): Sets, L Sets,,
~—
Sets, (Y,—)

witnessed by isomorphisms of pointed sets
Sets. (X A Y, Z) = Sets, (X, Sets.(Y, Z)),
Sets. (X A\ Y, Z) = Sets. (X, Sets. (A, 7)),
natural in (X, z0), (Y, 40), (Z, 20) € Obj(Sets,).
00G9 4. As a Pushout. We have an isomorphism

XANY « X XY

-

XAY =pt [ (X xY), ‘ }
XVYy

natural in X, Y € Obj(Sets,), where the pushout is taken in Sets,

and the embedding ¢: X VY < X x Y is defined following Re-
mark 4.5.1.1.5.

Q0GA 5. Distributivity Over Wedge Sums. We have isomorphisms of pointed
sets

XANYVZD)=2(XAY)V(XANZ),
(XVY)NZ=Z(XANZ)V (Y ANZ),
natural in (X, zo), (Y, v0), (Z, z0) € Obj(Sets,).

Proof. Item 1, Functoriality: The map f A g comes from Item 4 of
Proposition 7.5.2.1.3 via the map

fANg: X xY —>ANAB
sending (z,y) to f(z) A g(y), which we need to show satisfies
[f A gl(,y) = [f A gl o)

for each (z,y), (2',y') € X x Y with (z,y) ~r (2/,y'), where ~p is the
relation constructing X AY as

XAY 2 (X XY)/~p

in Construction 4.5.1.1.4. The condition defining ~ is that at least one
of the following conditions is satisfied:
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1. We have z = 2/ and y = ¥/;
2. Both of the following conditions are satisfied:

(a) We have z = xg or y = yo.

(b) We have 2’ =z or y' = yo.
We have five cases:

1. In the first case, we clearly have

[f Nl y) = [f A gl )
since z = 2’ and y = ¢/'.

2. If x = g and 2’ = xg, we have

[f A gl(zo,y) = F(zo) A g(y)
=ao A g(y)
=ao AN g(y')
= f(z0) Ag(y')
= [f Agl(zo,y).

3. If x = zg and ¥ = yp, we have

[f A gl(wo,y) = flao) Agly)
=ao A g(y)
=ag A by
= f(2") Abo
= f(2') A g(yo)
d:ef[f/\g](x/ayo)-

4. If y = yo and 2’ = xg, we have

[f A gl(z,90) = f(2) A g(yo)
= f(z) Abo
=ag A bg
=agAg(y')
= f(z0) Ag(y/)

def

= [f Agl(zo,y).
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5. If y = yo and 3’ = yp, we have

def

[f A g}(xvyO) =

Thus f A g is well-defined. Next, we claim that A preserves identities
and composition:

e Preservation of Identities. We have

def

[idX AN idy](x VAN y) = ldx(x) N idy(y)
=AYy
= [idX/\y](JI N y)
for each z Ay € X A Y, and thus

idxy Aidy = idxay.

e Preservation of Composition. Given pointed maps

we have
[(ho f) A (kog)(zAy) = h(f(z)) Ak(g(y))
= hAK(f(z) A g(y))
= AR AglxAy))
Z[(hAk)o(fAg)lxAy)

for each z Ay € X AY, and thus
(ho f)A(kog)=(hNk)o(fAg).

This finishes the proof.
Item 2, Adjointness: We prove only the adjunction — A'Y - Sets. (Y, —),
witnessed by a natural bijection

Homsges, (X A Y, Z) = Homses, (X, Sets. (Y, 7)),
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as the proof of the adjunction X A — - Sets, (X, —) is similar. We claim
we have a bijection

Homgets* (X XY, Z) = HomSets* (X, Sets, (Y, Z))

natural in (X, z), (Y,v0),(Z,20) € Obj(Sets,), impliying the desired
adjunction. Indeed, this bijection is a restriction of the bijection

Sets(X x Y, Z) = Sets(X, Sets(Y, Z))
of Item 2 of Proposition 2.1.3.1.2:

e A map
& XxY 27

in Hom?ets* (X xY,Z) gets sent to the pointed map

£ (X, z0) — (Sets. (Y, Z),AL,),
T — ({l Y — Z),

where ﬂcz Y — Z is the map defined by
) €&, y)

for each y € Y, where:

— The map &' is indeed pointed, as we have

&l (y) = €(zo,y)

def
= ZO

for each y € Y. Thus ﬂjo =A,, and ¢! is pointed.
— The map &) indeed lies in Sets. (Y, Z), as we have

€L (yo) = &(z, yo)

def
= 20-

o Conversely, a map
£ (X,z0) — (Sets, (Y, Z),A,,),
r—— (&Y — 2),
in Homgets, (X, Sets. (Y, Z)) gets sent to the map
X xY =2

defined by
def
Mz, y) = &(y)
for each (z,y) € X x Y, which indeed lies in Hom?ets* (X xY,2),
as:
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— Left Bilinearity. We have

fT (an y) = §$0 (y>
= Az (y)

def
for each y € Y, since &, = A, as £ is assumed to be a pointed
map.

— Right Bilinearity. We have

Mz, y0) = & (yo)

def

= ZO
for each x € X, since & € Sets,(Y,Z) is a morphism of
pointed sets.

This finishes the proof.
Item 3, Enriched Adjointness: This follows from Item 2 and ?7 of ?77.
Item 4, As a Pushout: Following the description of Remark 2.2.4.1.2, we
have

ptII xvy(X xY) = (pt x (X xY))/~,
where ~ identifies the elemenet x in pt with all elements of the form
(zo,y) and (z,yp) in X x Y. Thus Item 4 of Proposition 7.5.2.1.3 coupled
with Remark 4.5.1.1.7 then gives us a well-defined map

ptIlxwr(X xY) = XAY
via [(%, (z,y))] — = Ay, with inverse
X/\Y—)ptHX\/y(XXY)

given by Ay — [(%, (z,v))].

Item 5, Distributivity Over Wedge Sums: This follows from Proposi-
tion 4.5.9.1.1, ?? of 7?7, and the fact that V is the coproduct in Sets,
(Definition 3.3.3.1.1). O

4.5.2 The Internal Hom of Pointed Sets
Let (X, x0) and (Y, yo) be pointed sets.

Definition 4.5.2.1.1. The internal Hom?' of pointed sets from
(X,0) to (Y,yo) is the pointed set Sets.((X, z¢), (Y,y0))** consisting
of:

21The pointed set Sets.(X,Y) is the internal Hom of Sets. with respect to the

smash product of Definition 4.5.1.1.1; see Item 2 of Proposition 4.5.1.1.9.
22 purther Notation: Also written Homsges, (X,Y).
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o The Underlying Set. The set Sets,((X,zo), (Y,y0)) of morphisms
of pointed sets from (X, zg) to (Y, yo).

e The Basepoint. The element
AyO: (X7 .1‘0) — (Yv yO)

of Sets, ((X, zg), (Y,y0)) given by

def

Ayo (“T) = %Yo
for each =z € X.

Proof. For a proof that Sets, is indeed the internal Hom of Sets, with
respect to the smash product of pointed sets, see Item 2 of Proposi-
tion 4.5.1.1.9. [

00GD Proposition 4.5.2.1.2. Let (X, zg) and (Y, y) be pointed sets.

QOGE 1. Functoriality. The assignments X, Y, (X,Y) — Sets,(X,Y) define
functors

Sets, (X, —): Sets, — Sets,,
Sets,(—,Y): Sets;P — Sets,,
Sets.(—1,—2): SetseP x Sets, — Sets.,.

In particular, given pointed maps

f(X,z0) = (A, ao),
g: (Y,y0) = (B, bo),
the induced map
Sets.(f,g): Sets.(A,Y) — Sets.(X, B)
is given by

[Sets.(f,9)](0) =go oo f
for each ¢ € Sets,(A,Y).

00GF 2. Adjointness. We have adjunctions

XA~
(X A — - Sets.(X,—)): Sets*z Sets,,
Sets., (X,—)
—AY
(=AY HSets,.(Y,—)): Sets,” L Sets,,
~
Sets, (Y,—)
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witnessed by bijections

Homsets, (X A Y, Z) = Homges, (X, Sets. (Y, Z)),
Homsets, (X A Y, Z) = Homses, (X, Sets, (4, Z)),

natural in (X, zo), (Y, y0), (Z, z0) € Obj(Sets.).
3. Enriched Adjointness. We have Sets,-enriched adjunctions

XA—
(X N — - Sets,(X,—)): Sets*z_\/ Sets,,
Sets, (X,—)
—AY
—
(=AY dSets,(Y,—)): Sets, L Sets,,
~—
Sets. (Y,—)

witnessed by isomorphisms of pointed sets

Sets. (X ANY, Z) = Sets, (X, Sets.(Y, Z)),
Sets. (X AY, Z) = Sets, (X, Sets,.(A, 7)),

natural in (X, zo), (Y, %0), (Z, z0) € Obj(Sets..).

Proof. Item 1, Functoriality: This follows from Item 1 of Proposi-
tion 2.3.5.1.2 and from the equalities

go Ayo = Azo,
Ayo of= Ayo

for morphisms f: (K,ky) — (X,z¢) and g: (Y,y0) — (Z,20), which
guarantee pre- and postcomposition by morphisms of pointed sets to also
be morphisms of pointed sets.

Item 2, Adjointness: This is a repetition of Item 2 of Proposition 4.5.1.1.9,
and is proved there.

Item 3, Enriched Adjointness: This is a repetition of Item 3 of Proposi-
tion 4.5.1.1.9, and is proved there. O

4.5.3 The Monoidal Unit

Definition 4.5.3.1.1. The monoidal unit of the smash product of
pointed sets is the functor

q5ets- pt — Sets,

defined by
ef
1Sets* = SO~
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00GK 4.5.4 The Associator

00GL Definition 4.5.4.1.1. The associator of the smash product of
pointed sets is the natural isomorphism

Sets, . . ~ . Cat
a1 Ao (A X idsets, ) = A o (idsets, X A) © aSeatss*,Sets*,Sets*ﬂ

as in the diagram

Sets, x (Sets, x Sets,)

P
Cats L .
QGetsy ,Setsy ,Setss (_) \dj A

(Sets, X Sets,) X Sets, Sets* x Sets,

Setsn;<

AXid

Sets, X Sets* ——> Sets,,
whose component
S8, (XAY)AZ S XA (Y AZ)
at (X, zo0), (Y,v0), (Z, 20) € Obj(Sets,) is given by
oX¥z(@ Ay ) EaA(ynz)
for each (x Ay) Az e (X AY)AZ.

Proof. Well-Definedness: Let [((x,y),2)] = [((«,y), 2')] be an element
n (X AY)AZ. Then either:

1. Wehave z =2/, y = ¢/, and z = 2/.
2. Both of the following conditions are satisfied:

(a) We have z = xg or y = yp or z = zp.
(b) We have o’ = z¢ or ¢/ = yg or 2’ = 2.

In the first case, oz?ft}s,*z clearly sends both elements to the same element

in X A (Y A Z). Meanwhile, in the latter case both elements are equal
to the basepoint (zg A yo) A 20 of (X AY) A Z, which gets sent to the
basepoint zg A (yo A z0) of X A (Y A Z).

Being a Morphism of Pointed Sets: As just mentioned, we have

a%(et}S/*Z((xo A yo) A 20) e xo A (Yo A 20),

and thus agfjtf}j*z is a morphism of pointed sets.
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Invertibility: Clearly, the inverse of ogft}s,*z is given by the morphism

Xy T XAYAZ) S (XAY)ANZ

defined by

Sets,,—1 def

Oy (xAN(YNz)=(@Ay) Nz
foreach z A(yANz) e X AN(Y A Z).
Naturality: We need to show that, given morphisms of pointed sets
fr(X,20) = (X/7x6)7
g: (Y7 Z/O) — (Y/7 y6)7
h: (Z,z0) — (Z', %)

the diagram
h
(X AY)AZ LNy n vy A
0‘??4 [ai;}s},’z,

XNYANZ) m>X’/\(Y’/\Z’)

commutes. Indeed, this diagram acts on elements as

(zAy) Nz —— (f(z) Ng(y)) Ah(2)

! !

A (yAz) —— f(x) Ag(y) Ah(z))

and hence indeed commutes, showing o>+ to be a natural transforma-
tion.

Being a Natural Isomorphism: Since a>*** is natural and o
a componentwise inverse to o€+ it follows from Item 2 of Proposi-
tion 8.8.6.1.2 that a°*+~1 is also natural. Thus a°®* is a natural
isomorphism. O

Sets,,—1 is

00GM 4.5.5 The Left Unitor
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Definition 4.5.5.1.1. The left unitor of the smash product of
pointed sets is the natural isomorphism

15¢tsx xid
pt x Sets, ———— Sets, X Sets,

e

\ >\Sets*
Sets, . Sets . ~ Catsp N\
A Ao (1 * X 1dSets*) = }‘Sets* . / A
N
Catsy \\
Setsx \\\

whose component
A SOAX S X
at X € Obj(Sets,) is given by

0N x+— xq,
1Nz — 2.

Proof. Well-Definedness: Let [(x,y)] = [(2,%')] be an element in S A X.
Then either:

1. We have z = 2/ and y = ¢/.
2. Both of the following conditions are satisfied:

(a) We have x = 0 or y = xo.
(b) We have 2/ =0 or ¢ = xo.

In the first case, )&?ts* clearly sends both elements to the same element

in X. Meanwhile, in the latter case both elements are equal to the
basepoint 0 A zg of S° A X, which gets sent to the basepoint xo of X.
Being a Morphism of Pointed Sets: As just mentioned, we have

def

)\E(ets* (0 A xo) = X,

and thus )\Efts* is a morphism of pointed sets.

Invertibility: The inverse of )\i'—ats* is the morphism

AT X S 500X

defined by
A?fts*’fl(:n) R

for each x € X. Indeed:
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o Invertibility I. We have
[)\i(ets*,—l o )\igts*} (0 /\ m) — A?{ets*7—1()\§(ets* (O /\ .’1:))

— )\i(ets*,—l(xo)
=1Axg
=0Azx,

and
ST o xS | (LA e) = AFS T (A= (1A )

=2 (@)

=1Azx
for each x € X, and thus we have
AR T o AF™ = idgonx-
o Invertibility 1. We have
)\?(ets* o A?gts*,fl} (z) = A?{ets* ()\E(ets*’*l(ﬂs))

= AT (1A )

=z
for each x € X, and thus we have
A 0 AT = dx.
This shows )\E(ets* to be invertible.
Naturality: We need to show that, given a morphism of pointed sets
[+ (X,z0) = (Y, 90),

the diagram

id oA
SO A x 9 g0 py
)\igts* { Aifets*
X Y

commutes. Indeed, this diagram acts on elements as

ONz 0Nz —> OA f(x)

| |

xg —— f(x0) Yo
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and
1INz —> 1A f(x)

| ]

z — f(z)

and hence indeed commutes, showing A>¢* to be a natural transforma-
tion.

Being a Natural Isomorphism: Since A5+ is natural and AS¢ts+~1 s
a componentwise inverse to A3¢'+ it follows from Item 2 of Proposi-
tion 8.8.6.1.2 that AS¢™~~1 is also natural. Thus A%+ is a natural

isomorphism. ]

4.5.6 The Right Unitor

Definition 4.5.6.1.1. The right unitor of the smash product of
pointed sets is the natural isomorphism

id x 15etsx
_—

Sets, X pt Sets, X Sets,
\
\
\
\ /
\ pSets*
Sets, . . Sets, ~ Catsp \
p '/\O(IdXJ' >:>p5ets*’ N / A
Catsp \\
Setsx \\\
RREY
Sets,,

whose component
p§(ets*: XASY = X

at X € Obj(Sets,) is given by

z A O — xg,
A1l x.

Proof. Well-Definedness: Let [(z,y)] = [(2/,v')] be an element in X A SY.
Then either:

1. We have z = 2/ and y = ¢/.
2. Both of the following conditions are satisfied:

(a) We have x =z or y = 0.
(b) We have 2’ = zg or y/ = 0.
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In the first case, piets* clearly sends both elements to the same element in

X. Meanwhile, in the latter case both elements are equal to the basepoint
xo A0 of X A SY which gets sent to the basepoint z¢ of X.
Being a Morphism of Pointed Sets: As just mentioned, we have

p??ts* (g A O) ef x0,

and thus p§(ets* is a morphism of pointed sets.

Invertibility: The inverse of p§fts* is the morphism

p?fts*’flz XS XAS°

defined by

pifts*’_l(x) LN

for each x € X. Indeed:

o Invertibility I. We have

PR o g (w n 0) = g (53 (2 1 0)
Sets,,—1

= Px (20)

=z9 N1

=z ANO,
and

PR o g a1y = o5 (X (e A D))
Sets,,—1
=Px (2)
=xAN1
for each x € X, and thus we have

Sets,,—1 Sets. __
Px opyx ~ =ldxpgo.

o Invertibility II. We have

Sets, Sets,,—1 Sets, [ Sets.,—1

PX O Px }(x) =PX (pX (x))
= p??ts*’il(x A 1)
=z
for each x € X, and thus we have

Sets. Sets,,—1 .
pxX T opx =idx.
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This shows p?fts* to be invertible.
Naturality: We need to show that, given a morphism of pointed sets

[ (X,20) = (Y, 90),
the diagram
id
X A S0 PSS g g0

pSets*

Sets.
X y "

Y

X Y

f

commutes. Indeed, this diagram acts on elements as

xTO x A0 — f(z)AO
xo ——— f(o) Yo

and
z Al f(z)A1

l

x —— f(z)

and hence indeed commutes, showing p°¢* to be a natural transforma-
tion.

Being a Natural Isomorphism: Since p°*+ is natural and p is
a componentwise inverse to p>¢t, it follows from Item 2 of Proposi-
tion 8.8.6.1.2 that p>™~! is also natural. Thus p°¢™* is a natural
isomorphism. O

Sets,,—1

4.5.7 The Symmetry

Definition 4.5.7.1.1. The symmetry of the smash product of
pointed sets is the natural isomorphism

A
Sets, x Sets, ——— Sets,,
I
« ~ Cat
O_Sets . /\ — /\ o US:tssf,Setsw aCats2 O.Sets*
Sets ,Setss U N
Sets, x Sets,

whose component
O XAY Y AKX


https://topological-modular-forms.github.io/the-clowder-project/tag/00GR
https://topological-modular-forms.github.io/the-clowder-project/tag/00GS

4.5. The Smash Product of Pointed Sets 214

at X,Y € Obj(Sets,) is defined by
oy @Ay Eyna
foreachz Aye X AY.

Proof. Well-Definedness: Let [(x,y)] = [(2',y')] be an element in X A Y.
Then either:

1. We have z = 2/ and y = ¢/.
2. Both of the following conditions are satisfied:

(a) We have x = z¢ or y = yp.
(b) We have ' = zg or ¥/ = yp.

In the first case, ai-ets* clearly sends both elements to the same element

in X. Meanwhile, in the latter case both elements are equal to the
basepoint zg A yg of X A'Y, which gets sent to the basepoint yg A g of
Y AX.

Being a Morphism of Pointed Sets: As just mentioned, we have

def
T35 (0 A yo) = yo A o,

and thus a}ets* is a morphism of pointed sets.

Invertibility: Clearly, the inverse of a?été* is given by the morphism

oY AX S XAY

defined b
Y Sets,,—1 def
oxy  (WAz)=z ANy

foreach yAz € Y A X.

Naturality: We need to show that, given morphisms of pointed sets
f (X, 20) = (A4, ap),
g: (Y7 yO) — (B7 bO)

the diagram
XAy % AnB

Setsx Setsx
Ixy k %A,B

YANX — BAA
gnf
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commutes. Indeed, this diagram acts on elements as

r ANy — f(z) Ag(y)

|

y ANz — g(y) A f(z)

and hence indeed commutes, showing o>+ to be a natural transforma-
tion.

Being a Natural Isomorphism: Since o+ is natural and o is
a componentwise inverse to o>+ it follows from Item 2 of Proposi-
tion 8.8.6.1.2 that o>¢'=—1 is also natural. Thus o>+ is a natural
isomorphism. ]

Sets,,—1

4.5.8 The Diagonal

Definition 4.5.8.1.1. The diagonal of the smash product of
pointed sets is the natural transformation

idSets*
Sets, — |, Sets,

AL s Cats AN
A . 1dSets* — A o©o ASetsf’ Agatsz ﬂ /
ets

Sets, A Sets,,

whose component
Aé\(t (X,Jfo) — (X ANX,zg A (E())

at (X, xo) € Obj(Sets,) is given by the composition

(X, x0) A% (X x X, (%0, 70))

— (X x X)/~, [(x0, 0)])

def (X/\X,:L’o/\l’o)

in Sets,, and thus by
Av(@)ExAe

for each z € X.

Proof. Being a Morphism of Pointed Sets: We have
A (w0) = x0 A a0,

and thus A% is a morphism of pointed sets.
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Naturality: We need to show that, given a morphism of pointed sets

[ (X z0) = (Y, 90),
the diagram

Y

XANX — YAY
A\ AT A\

commutes. Indeed, this diagram acts on elements as

z — f(z)

T

z Az — f(z) A f(z)
and hence indeed commutes, showing A" to be natural. O

00GV Proposition 4.5.8.1.2. Let (X, z9) € Obj(Sets,).
00OGW 1. Monoidality. The diagonal

AL Cats
A™: 1dSets* — Ao ASetsf’

of the smash product of pointed sets is a monoidal natural trans-
formation:
00GX (a) Compatibility With Strong Monoidality Constraints. For each
(X, z0), (Y,y0) € Obj(Sets,), the diagram

A A

A
XAY 23 (XAX)A (Y AY)

2
m

(XAY)N (X AY)

comimutes.

00GY (b) Compatibility With Strong Unitality Constraints. The dia-
grams

S5 60 A 80 S5 60 A 80

NF Nk
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commute, i.e. we have

Ago = )\g%ts*’_l
_ Setsy,—1
- pSO 9
where we recall that the equalities

ASets* _ pSets*

SO — Mg0 9
/\Sets*,—l _ Sets,,—1
S0 = Pgo

are always true in any monoidal category by ?7 of 77,

00GZ 2. The Diagonal of the Unit. The component
Alo: S = S9N S0
of A" at S° is an isomorphism.

Proof. Item 1, Monoidality: We claim that A" is indeed monoidal:

1. Item 1a: Compatibility With Strong Monoidality Constraints: We
need to show that the diagram

A A

ANNA
XAY Z S (XAX)A (Y AY)
2
(XAY)AN(XAY)
commutes. Indeed, this diagram acts on elements as

x Ay —— (xAx)A(yAy)

S

(xAy) A (zAy)

and hence indeed commutes.

2. Item 1b: Compatibility With Strong Unitality Constraints: As
shown in the proof of Definition 4.5.5.1.1, the inverse of the left
unitor of Sets, with respect to to the smash product of pointed
sets at (X, xo) € Obj(Sets,) is given by

A?fts*’_l(m) L N
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for each € X, so when X = S, we have
AN 0) = 1 A0,
AT ) AL
But since 1A0=0A0 and
Ao (0) =0 A0,
A1) = 1A,
it follows that we indeed have Ag, = /\zﬁts*’_l.

This finishes the proof.

Item 2, The Diagonal of the Unit: This follows from Item 1 and the
invertibility of the left/right unitor of Sets, with respect to A, proved
in the proof of Definition 4.5.5.1.1 for the left unitor or the proof of
Definition 4.5.6.1.1 for the right unitor. O

4.5.9 The Monoidal Structure on Pointed Sets Associated
Q0HO to A

00H1 Proposition 4.5.9.1.1. The category Sets, admits a closed monoidal
category with diagonals structure consisting of

e The Underlying Category. The category Sets, of pointed sets;
e The Monoidal Product. The smash product functor
A: Sets, x Sets, — Sets,

of Item 1 of Proposition 4.5.1.1.9;

e The Internal Hom. The internal Hom functor
Sets, : SetsoP x Sets, — Sets,

of Item 1 of Proposition 4.5.2.1.2;

e The Monoidal Unit. The functor
15¢t+: pt — Sets,

of Definition 4.5.3.1.1;
e The Associators. The natural isomorphism

a> Ao (A X idsets,) == A o (idsets, X A) © ag:;c:*,Sets*,Sets*

of Definition 4.5.4.1.1;
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o The Left Unitors. The natural isomorphism

Setss . Sets, : ~ Cats
A :No (1 X ldSets*) = ASetsf

of Definition 4.5.5.1.1;
o The Right Unitors. The natural isomorphism
pSets*: Ao (id % 1Sets*) N Pgitt_ff

of Definition 4.5.6.1.1;

o The Symmetry. The natural isomorphism

O_Sets* Catsy

A== Ao O-Sets*,Sets*
of Definition 4.5.7.1.1;

e The Diagonals. The monoidal natural transformation

A Cats
A : 1dSets* — Ao ASetsf

of Definition 4.5.8.1.1.

Proof. The Pentagon Identity: Let (W, wp), (X, z0), (Y,y0) and (Z, 2p)
be pointed sets. We have to show that the diagram

WAXAY)ANZ

Setsx

: Setsy
O‘W,X,Y/\ldz

AW XAY,Z
(WAX)AY)AZ WA(XAY)AZ)
aivetj\*x,y,z idW/\ai(e,t?Z

(WAX)A(Y AZ) —— WA(XA(Y AZ))
Ay X yaz
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commutes. Indeed, this diagram acts on elements as

(wA(xAY)) Az

(wAz)ANy) Az wA ((zAy)Az)

(wAZ)AN(YAz) —— wA(zA(yAz))

and thus we see that the pentagon identity is satisfied.
The Triangle Identity: Let (X, zo) and (Y, yp) be pointed sets. We have
to show that the diagram

Setsy

(X ASOYAY XY XA (SOAY)

Sets* /\ldy\‘ % A)\sets*

XANY

commutes. Indeed, this diagram acts on elements as

(xANO0) Ay (xANO)Ay ——> 2 A(0AY)
oAy x A Yo

and
(A ANy ——> A (1AY)

N

T Ay,

and thus we see that the triangle identity is satisfied.
The Left Hexagon Identity: Let (X, xo), (Y,v0), and (Z, z9) be pointed
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sets. We have to show that the diagram

XANYAZ) (

i
>

Setsy Setsx
X, YAZ Ay x,7

YAZ)AX YA (X AZ)

Sets,,(\A /dY Sets*

1
YPNY ANZ A X)

commutes. Indeed, this diagram acts on elements as

yA(zAx)

and thus we see that the left hexagon identity is satisfied.
The Right Hexagon Identity: Let (X, xo), (Y,yo0), and (Z, z9) be pointed
sets. We have to show that the diagram

XN(YNZ
e 2 ot
(XANY)NZ XN(ZANY)
B,z (oX%y) "
AN(XAY) (XANZ)N

Sets* \ 45* /\ldy

°7x) (ZAX)NY
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commutes. Indeed, this diagram acts on elements as

A (YAz)

PN

(xANy) Az T A (2 NY)

zA(xAy) (xANz)ANy

~

(zAx)Ay

and thus we see that the right hexagon identity is satisfied.

Monoidal Closedness: This follows from Item 2 of Proposition 4.5.1.1.9.
Ezxistence of Monoidal Diagonals: This follows from Items 1 and 2 of
Proposition 4.5.8.1.2. O

4.5.10 Universal Properties of the Smash Product of Pointed
QQH2 Sets 1

00H3 Theorem 4.5.10.1.1. The symmetric monoidal structure on the category
Sets, is uniquely determined by the following requirements:

1. Two-Sided Preservation of Colimits. The smash product
A: Sets, x Sets, — Sets,
of Sets, preserves colimits separately in each variable.
2. The Unit Object Is S°. We have lges, = S°.
Proof. Omitted. O

4.5.11 Universal Properties of the Smash Product of Pointed
Q0H4 Sets I1

00H5 Theorem 4.5.11.1.1. The symmetric monoidal structure on the category
Sets, is the unique symmetric monoidal structure on Sets, such that the
free pointed set functor

(—)T: Sets — Sets,

admits a symmetric monoidal structure.

Proof. See [GGN15, Theorem 5.1]. O
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4.5.12 Monoids With Respect to the Smash Product of
Q0H6 Pointed Sets

00H7 Proposition 4.5.12.1.1. The category of monoids on (Sets,, A, S%) is
isomorphic to the category of monoids with zero and morphisms between
them.

Proof. See 7?7, in particular ??, 7?7, and ?77. O
4.5.13 Comonoids With Respect to the Smash Product of
Q0H8 Pointed Sets

00H9 Proposition 4.5.13.1.1. The symmetric monoidal functor

()7 (=) (2)17) = (Sets, x, pt) — (Sets., A, 5°),

of Item 4 of Proposition 3.4.1.1.2 lifts to an equivalence of categories
0 eq.
CoMon (Sets*7 A, S ) = CoMon(Sets, x, pt)
> Sets.

Proof. See [PS19, Lemma 2.4]. O

ooHA 4.6 Miscellany

00HB 4.6.1 The Smash Product of a Family of Pointed Sets

Let {(X;,2H)},; be a family of pointed sets.

00HC Definition 4.6.1.1.1. The smash product of the family {(X;, z{)}
is the pointed set A;c; X; consisting of:

o The Underlying Set. The set \;c; X; defined by

AXi= (HXz)/N,

icl icl

il

where ~ is the equivalence relation on [ [, ; X; obtained by declaring
(@i)ier ~ Widier

if there exist 7y € I such that z;, = 9 and y;, = o, for each
(@i)ier Wiier € Iier Xi-

 The Basepoint. The element [(x0);c;] of Aiesr Xi-

Appendices
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Chapter 5

Relations

00HD This chapter contains some material about relations. Notably, we discuss
and explore:

1.

2.

The definition of relations (Section 5.1.1).

How relations may be viewed as decategorification of profunctors
(Section 5.1.2).

. The various kind of categories that relations form, namely:

(a) A category (Section 5.2.1).
(b) A monoidal category (Section 5.2.2).
(c) A 2-category (Section 5.2.3).
(d) A double category (Section 5.2.4).
The various categorical properties of the 2-category of relations,
including;:
(a) The self-duality of Rel and Rel (Proposition 5.3.1.1.1).

(b) Identifications of equivalences and isomorphisms in Rel with
bijections (Proposition 5.3.2.1.1).

(c) Identifications of adjunctions in Rel with functions (Proposi-
tion 5.3.3.1.1).

(d) Identifications of monads in Rel with preorders (Proposi-
tion 5.3.4.1.1).

(e) Identifications of comonads in Rel with subsets (Proposi-
tion 5.3.5.1.1).

(f) A description of the monoids and comonoids in Rel with
respect to the Cartesian product (Remark 5.3.6.1.1).

(g) Characterisations of monomorphisms in Rel (Proposition 5.3.7.1.1).

226


https://topological-modular-forms.github.io/the-clowder-project/tag/00HD

227

(h) Characterisations of 2-categorical notions of monomorphisms
in Rel (Proposition 5.3.8.1.1).

(i) Characterisations of epimorphisms in Rel (Proposition 5.3.9.1.1).

(j) Characterisations of 2-categorical notions of epimorphisms in
Rel (Proposition 5.3.10.1.1).

(k) The partial co/completeness of Rel (Proposition 5.3.11.1.1).

(1) The existence or non-existence of Kan extensions and Kan
lifts in Rel (Remark 5.3.12.1.1).

(m) The closedness of Rel (Proposition 5.3.13.1.1).

(n) The identification of Rel with the category of free algebras of
the powerset monad on Sets (Proposition 5.3.14.1.1).

5. A description of two notions of “skew composition” on Rel(4, B),
giving rise to left and right skew monoidal structures analogous
to the left skew monoidal structure on Fun(C, D) appearing in the
definition of a relative monad (Sections 5.4 and 5.5).
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5.1 Relations

5.1.1 Foundations
Let A and B be sets.

Definition 5.1.1.1.1. A relation R: A - B from A to B'? is a
subset R of A x B.

Notation 5.1.1.1.2. Let R: A - B be a relation.

1. Given elements a € A and b € B and a relation R: A 4 B, we
write a ~p b to mean (a,b) € R.

! FPurther Terminology: Also called a multivalued function from A to B, a
relation over A and B, relation on A and B, a binary relation over A and B,
or a binary relation on A and B.

2 Further Terminology: When A = B, we also call R C A x A a relation on A.
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2. Viewing R as a function
R: Ax B — {t,f}
via Remark 5.1.1.1.4, we write R for the value of R at (a,b).?
Definition 5.1.1.1.3. Let A and B be sets.
1. The set of relations from A to B is the set Rel(A, B) defined
by

def

Rel(A, B) = {Relations from A to B}.
2. The poset of relations from A to B is the poset
Rel(4, B) < (Rel(A4, B), ©)
consisting of:

o The Underlying Set. The set Rel(A, B) of Item 1.
o The Partial Order. The partial order

C: Rel(A4, B) x Rel(A, B) — {true, false}
on Rel(A4, B) given by inclusion of relations.

3. The category of relations from A to B is the posetal cate-
gory Rel(A, B) * associated to the poset Rel(A, B) of Item 2 via
Definition 8.1.3.1.1.

Remark 5.1.1.1.4. A relation from A to B is equivalently:®
1. A subset of A x B.
2. A function from A x B to {true,false}.
3. A function from A to P(B).
4. A function from B to P(A).

5. A cocontinuous morphism of posets from (P(A), C) to (P(B), C).

3The choice R’ in place of Ry is to keep the notation consistent with the notation
we will later employ for profunctors.

“Here we choose to slightly abuse notation by writing Rel(A, B) (instead of e.g.
Rel(4, B),,,) for the posetal category of relations from A to B, even though the same
notation is used for the poset of relations from A to B.

5 Intuition: In particular, we may think of a relation R: A — P(B) from A to B as
a multivalued function from A to B (including the possibility of a given a € A having


https://topological-modular-forms.github.io/the-clowder-project/tag/00HK
https://topological-modular-forms.github.io/the-clowder-project/tag/00HL
https://topological-modular-forms.github.io/the-clowder-project/tag/00HM
https://topological-modular-forms.github.io/the-clowder-project/tag/00HN
https://topological-modular-forms.github.io/the-clowder-project/tag/00HP
https://topological-modular-forms.github.io/the-clowder-project/tag/00HQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00HR
https://topological-modular-forms.github.io/the-clowder-project/tag/00HS
https://topological-modular-forms.github.io/the-clowder-project/tag/00HT
https://topological-modular-forms.github.io/the-clowder-project/tag/00HU
https://topological-modular-forms.github.io/the-clowder-project/tag/00HV

5.1. Relations 230

That is: we have bijections of sets

Rel(A, B) & P(A x B),
=~ Homsets(A X B, {true, false}),
=~ Homsets(A4, P(B)),
= Homsets(B, P(A)),
= Homfy™™ (P(A), P(B)),
natural in A, B € Obj(Sets).

Proof. We claim that Items 1 to 5 are indeed equivalent:

o Item 1 <= Item 2: This is a special case of Items 1 and 2 of
Proposition 2.4.3.1.6.

o [Item 2 <= Item 3: This follows from the bijections

Homsges(A x B, {true, false}) = Homges(A, Homsers(B, {true, false}))
= Homsets(4, P(B)),

where the last bijection is from Items 1 and 2 of Proposition 2.4.3.1.6.
o Item 2 <= Item 4: This follows from the bijections

Homsges(A x B, {true, false}) = Homges(B, Homses (B, {true, false}))
= Homsets(B, P(4)),

where again the last bijection is from Items 1 and 2 of Proposi-
tion 2.4.3.1.6.

o [ltem 2 <= Item 5: This follows from the universal property of
the powerset P(X) of a set X as the free cocompletion of X via
the characteristic embedding

XX X%’P(X)

of X into P(X), Item 2 of Proposition 2.4.3.1.8.

In particular, the bijection

Rel(A, B) 2 Hom& ™ (P(A), P(B))

Pos

is given by taking a relation R: A - B, passing to its associated
function f: A — P(B) from A to B and then extending f from A
to all of P(A) by taking its left Kan extension along y x.

This coincides with the direct image function f,: P(A) — P(B) of
Definition 2.4.4.1.1.
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This finishes the proof. ]

Proposition 5.1.1.1.5. Let A and B be sets and let R, S: A 4 B be
relations.

1. End Formula for the Set of Inclusions of Relations. We have

HomRel(AB) (R, S) = / HOHl{tVf} (RZ, Sg) .

a€A JbEB

Proof. Item 1, End Formula for the Set of Inclusions of Relations:
Unwinding the expression inside the end on the right hand side, we have

pt if, for each a € A and each b € B,
b qb) ~ b oob) o
/CLGA beB Hom{t,f} (Ra7 Sa) — we haVe Hom{t,f} (Ra’ S(l) = pt

() otherwise.
Since we have Homy, g, (Rg, SZ) = {true} = pt exactly when R? = false
or R = Sb = true, we get

pt if, for each a € A and each b € B,

/GA he HOm{t,f} (RZ7 SZ) = if a ~R b’ then a ~g b,
’ ®  otherwise.

On the left hand-side, we have

pt if RCS,

HomRel(A’B) (R’ S) = {@ otherwise.

It is then clear that the conditions for each set to evaluate to pt (up to
isomorphism) are equivalent, implying that those two sets are isomorphic.
O

5.1.2 Relations as Decategorifications of Profunctors

Remark 5.1.2.1.1. The notion of a relation is a decategorification of
that of a profunctor:

1. A profunctor from a category C to a category D is a functor

p: D x C — Sets.

2. A relation on sets A and B is a function

R: A x B — {true, false}.
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Here we notice that:

o The opposite X°P of a set X is itself, as (—)°P: Cats — Cats restricts
to the identity endofunctor on Sets.

e The values that profunctors and relations take are analogous:

— A category is enriched over the category
Sets & Catsg

of sets, with profunctors taking values on it.

— A set is enriched over the set
{true, false} = Cats_;

of classical truth values, with relations taking values on it.

00J0 Remark 5.1.2.1.2. Extending Remark 5.1.2.1.1, the equivalent defini-
tions of relations in Remark 5.1.1.1.4 are also related to the corresponding
ones for profunctors (?7), which state that a profunctor p: C - D is
equivalently:

0071 1. A functor p: D°P x C — Sets.

00J2 2. A functor p: C — PSh(D).

0073 3. A functor p: D°P — Fun(C, Sets).

00J4 4. A colimit-preserving functor p: PSh(C) — PSh(D).
Indeed:

e The equivalence between Items 1 and 2 (and also that between
Items 1 and 3, which is proved analogously) is an instance of
currying, both for profunctors as well as for relations, using the
isomorphisms

Sets(A x B, {true, false}) = Sets(A, Sets(B, {true, false}))
= Sets(A4, P(B)),
Fun(D° x D, Sets) = Fun(C, Fun(D°P, Sets))
= Fun(C, PSh(D)).

e The equivalence between Items 1 and 3 follows from the universal
properties of:

no value at all).
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— The powerset P(X) of a set X as the free cocompletion of X
via the characteristic embedding

of X into P(X), as stated and proved in Item 2 of Proposi-
tion 2.4.3.1.8.

— The category PSh(C) of presheaves on a category C as the
free cocompletion of C via the Yoneda embedding

&: C < PSh(C)

of C into PSh(C), as stated and proved in 7?7 of 77?.

00J5 5.1.3 Examples of Relations

00J6 Example 5.1.3.1.1. The trivial relation on A and B is the relation
~iriv defined equivalently as follows:

1. As a subset of A x B, we have

def
NtriV:eAXB.

2. As a function from A x B to {true, false}, the relation ~i, is the
constant function

Atrye: A X B — {true, false}

from A x B to {true, false} taking the value true.

3. As a function from A to P(B), the relation ~i, is the function
Atrye: A — P(B)

defined by
Atrue (a) o B

for each a € A.

4. Lastly, it is the unique relation R on A and B such that we have
a ~gr b for each a € A and each b € B.

00J7 Example 5.1.3.1.2. The cotrivial relation on A and B is the relation
~eotriv defined equivalently as follows:

1. As a subset of A x B, we have

def
~cotriv — @ .


https://topological-modular-forms.github.io/the-clowder-project/tag/00J5
https://topological-modular-forms.github.io/the-clowder-project/tag/00J6
https://topological-modular-forms.github.io/the-clowder-project/tag/00J7

5.1. Relations 234

2. As a function from A x B to {true, false}, the relation ~¢otriy is the
constant function

Afaise: A X B — {true, false}
from A x B to {true,false} taking the value false.
3. As a function from A to P(B), the relation ~ ey is the function
Afalse: A — P(B)

defined by
Afalse(a) e 0

for each a € A.

4. Lastly, it is the unique relation R on A and B such that we have
a ~p b for each a € A and each b € B.

00J8 Example 5.1.3.1.3. The characteristic relation
XX(_L —2): XxX— {t,f}

on X of Item 3 of Definition 2.4.1.1.1, defined by

( ) def | true if r =1,
x\z, =
X Y false if z #£y

for each z,y € X, is another example of a relation.
00J9 Example 5.1.3.1.4. Square roots are examples of relations:
1. Square Roots in R. The assignment z — +/z defines a relation
vV—:R = P(R)

from R to itself, being explicitly given by

\/>d6f O 1fl‘:07
xr =
{~VIel VIal} iz #0.

2. Square Roots in Q. Square roots in QQ are similar to square roots in
R, though now additionally it may also occur that /—: Q — P(Q)
sends a rational number z (e.g. 2) to the empty set (since v2 ¢ Q).


https://topological-modular-forms.github.io/the-clowder-project/tag/00J8
https://topological-modular-forms.github.io/the-clowder-project/tag/00J9

5.1. Relations 235

00JA Example 5.1.3.1.5. The complex logarithm defines a relation
log: C — P(C)
from C to itself, where we have
log(a + bi) = {log(\/m) +iarg(a + bi) + (2mi)k ‘ ke Z}
for each a + bi € C.

00JB Example 5.1.3.1.6. See [Wik24] for more examples of relations, such
as antiderivation, inverse trigonometric functions, and inverse hyperbolic
functions.

00JC 5.1.4 Functional Relations

Let A and B be sets.

00JD Definition 5.1.4.1.1. A relation R: A - B is functional if, for each
a € A, the set R(a) is either empty or a singleton.

00JE Proposition 5.1.4.1.2. Let R: A - B be a relation.
00JF 1. Characterisations. The following conditions are equivalent:

00JG (a) The relation R is functional.
00JH (b) We have Ro R C xp.

Proof. Item 1, Characterisations: We claim that Items la and 1b are
indeed equivalent:

o Item la = Item 1b: Let (b,b') € B x B. We need to show that
[RoRY|(0,V) Zqesy x5(0,1),

i.e. that if there exists some a € A such that b ~pi a and a ~g ¥,
then b = '. But since b ~p+ a is the same as a ~g b, we have both
a~gband a~pb at the same time, which implies b = b’ since R
is functional.

e [tem 1b = Item la: Suppose that we have a ~r b and a ~p b
for b,b’ € B. We claim that b = b':

1. Since a ~g b, we have b ~pt a.

2. Since Ro R' C xp, we have
[Ro R (0,0) Zpery x(b,1),

and since b ~pt a and a ~p b, it follows that [R o Rq (b,b) =
true, and thus xp(b,b') = true as well, i.e. b=10'.

This finishes the proof. O
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0077 5.1.5 Total Relations
Let A and B be sets.

00JK Definition 5.1.5.1.1. A relation R: A - B is total if, for each a € A,
we have R(a) # 0.

00JL Proposition 5.1.5.1.2. Let R: A - B be a relation.

00JIM 1. Characterisations. The following conditions are equivalent:
Q0JIN (a) The relation R is total.

00JP (b) We have x4 C R o R.

Proof. Item 1, Characterisations: We claim that Items la and 1b are
indeed equivalent:

o Item la = Item 1b: We have to show that, for each (a,a’) € A,
we have

xa(a,d') Zph [RT o R} (a,d),

i.e. that if @ = d/, then there exists some b € B such that a ~g b
and b ~p a' (i.e. a ~g b again), which follows from the totality of
R.

e Item 10 = Item la: Given a € A, since x4 C R' o R, we must
have
{a} C [R o R](a),

implying that there must exist some b € B such that a ~p b and
b~pia (ie. a~pb)and thus R(a) # 0, as b € R(a).

This finishes the proof. O

o019 9-2 Categories of Relations

00JR 5.2.1 The Category of Relations

00JS Definition 5.2.1.1.1. The category of relations is the category Rel
where

e Objects. The objects of Rel are sets.

o Morphisms. For each A, B € Obj(Sets), we have

Rel(A, B) £ Rel(A, B).
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o Identities. For each A € Obj(Rel), the unit map
1R pt — Rel(A, A)
of Rel at A is defined by
idf = xa (-1, —2),

where x4(—1, —2) is the characteristic relation of A of Item 3 of
Definition 2.4.1.1.1.

o Composition. For each A, B,C € Obj(Rel), the composition map
ofi%s.ct Rel(B,C) x Rel(4, B) — Rel(4,C)
of Rel at (A4, B, C) is defined by
SR RESoR
for each (S, R) € Rel(B,C) x Rel(A, B), where S ¢ R is the com-
position of S and R of Definition 6.3.12.1.1.
5.2.2 The Closed Symmetric Monoidal Category of Rela-
00JT tions
00JU 5.2.2.1 The Monoidal Product
00JV Definition 5.2.2.1.1. The monoidal product of Rel is the functor
x: Rel x Rel — Rel
where
o Action on Objects. For each A, B € Obj(Rel), we have
x(A,B) < A x B,
where A x B is the Cartesian product of sets of Definition 2.1.3.1.1.

o Action on Morphisms. For each (A,C), (B, D) € Obj(Rel x Rel),

the action on morphisms
X(A,C),(B,D) " Rel(A, B) X Rel(C’,D) — Rel(A X C, B x D)
of x is given by sending a pair of morphisms (R, S) of the form

R: A B,
S:C 4D

to the relation
RxS:AxC -+ BxD
of Definition 6.3.9.1.1.
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5.2.2.2 The Monoidal Unit
Definition 5.2.2.2.1. The monoidal unit of Rel is the functor
1Rel: pt — Rel

picking the set
dcf

1rel = pt
of Rel.

5.2.2.3 The Associator

Definition 5.2.2.3.1. The associator of Rel is the natural isomorphism

ol x o ((x) xid) = x o (id x (x)) o Oégglt,sReI,Reh
as in the diagram

Rel x (Rel x Rel)

aCats
Rel,Rel,Rel ‘/ﬂ \ idx(x)

ReI X Rel >< ReI Rel X Rel
\\ Rel ]/
)xid /
Rel x Rel H—> Rel,

whose component
affﬂgc (AxB)xC—$HAx (BxC)
at A, B,C € Obj(Rel) is the relation defined by declaring
((a,b),c) ~afdl (a, (b, ())
ifa=ad,b=10,and c= .
5.2.2.4 The Left Unitor

Definition 5.2.2.4.1. The left unitor of Rel is the natural isomorphism

1Rel H
pt x Rel —2—"19, Rel x Rel,

AReL o (17 id) = AR, N .
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whose component
)\ﬁeli lReI x A —}-> A

at A is defined by declaring

(*, a) N)\zel b

iff a = 0.
5.2.2.5 The Right Unitor
Definition 5.2.2.5.1. The right unitor of Rel is the natural isomor-
phism
idx 1Rel

Rel x pt ————— Rel x Rel,

pReI: (Id > 1Re|) AN pggltsz7 \\\ /ﬂ y

whose component

pff‘e': A X 1Re| <|-> A
at A is defined by declaring

(a, *) Npiel b

iff a=0a.

5.2.2.6 The Symmetry

Definition 5.2.2.6.1. The symmetry of Rel is the natural isomorphism
Rel x Rel ———
ofel: x = x o ngrslée|, Catsz\ oRel /
Rel Rel
Rel x Rel

whose component
aiej'g AxB—BxA

at (A, B) is defined by declaring
(@5) ~ops, (V)

ifa=ad and b=1"V.
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00K6 5.2.2.7 The Internal Hom
00K7 Definition 5.2.2.7.1. The internal Hom of Rel is the functor

Rel: Rel°P x Rel — Rel

defined

o On objects by sending A, B € Obj(Rel) to the set Rel(A, B) of
Item 1 of Definition 5.1.1.1.3.

o On morphisms by pre/post-composition defined as in Definition 6.3.12.1.1.
00K8 Proposition 5.2.2.7.2. Let A, B,C € Obj(Rel).
00K9 1. Adjointness. We have adjunctions

AX—
(Ax — 4Rel(A,—)): Rel” L Rel,

—_
Rel(A,—)
—xB

(— x B4Rel(B,—)): Rel” L Rel,
~—_
Rel(B,—)

witnessed by bijections

Rel(A x B,C) = Rel(A, Rel(B, C)),
Rel(A x B,C) = Rel(B, Rel(4, C)),

natural in A, B, C' € Obj(Rel).
Proof. Item 1, Adjointness: Indeed, we have

Rel(A x B, C) < Sets(A x B x C, {true, false})
“ Rel(4, B x C)
' Rel(A, Rel(B, C)),

and similarly for the bijection Rel(A x B, C) = Rel(B,Rel(4,C)). O

00KA 5.2.2.8 The Closed Symmetric Monoidal Category of Relations

00KB Proposition 5.2.2.8.1. The category Rel admits a closed symmetric
monoidal category structure consisting of®

6?2 Warning: This is not a Cartesian monoidal structure, as the product on Rel is
in fact given by the disjoint union of sets; see 77.
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o The Underlying Category. The category Rel of sets and relations
of Definition 5.2.1.1.1.

e The Monoidal Product. The functor
x: Rel x Rel — Rel

of Definition 5.2.2.1.1.
e The Internal Hom. The internal Hom functor
Rel: Rel°®? x Rel — Rel
of Definition 5.2.2.7.1.
o The Monoidal Unit. The functor
1% pt — Rel
of Definition 5.2.2.2.1.
e The Associators. The natural isomorphism
ol % o (X X idRe) = X o (idger X X) 0 a%iﬁfRel7R61
of Definition 5.2.2.3.1.
e The Left Unitors. The natural isomorphism
ARl o (1Rl o idpe ) <5 AR
of Definition 5.2.2.4.1.
e The Right Unitors. The natural isomorphism
PR x o (id X 1R‘31) = pfcﬁsz
of Definition 5.2.2.5.1.
e The Symmetry. The natural isomorphism
ol x = %o U%ﬁ?ﬁel
of Definition 5.2.2.6.1.

Proof. Omitted. O

END TEXTDBEND
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00KC 5.2.3 The 2-Category of Relations

00KD Definition 5.2.3.1.1. The 2-category of relations is the locally
posetal 2-category Rel where

e Objects. The objects of Rel are sets.

o Hom-Objects. For each A, B € Obj(Sets), we have

Homgel (4, B) < Rel(A, B)
' (Rel(4, B), ©).

o Identities. For each A € Obj(Rel), the unit map
1Rel: pt — Rel(4, A)

of Rel at A is defined by

def

idEEI = XA(_lu _2)7

where x4(—1, —2) is the characteristic relation of A of Item 3 of
Definition 2.4.1.1.1.

« Composition. For each A, B,C € Obj(Rel), the composition map”
ofi%h.c: Rel(B,C) x Rel(A, B) — Rel(4,C)
of Rel at (A, B, () is defined by
SBLeRESoR

for each (S, R) € Rel(B,(C) x Rel(A, B), where S ¢ R is the com-

position of S and R of Definition 6.3.12.1.1.
00KE 5.2.4 The Double Category of Relations
00KF 5.2.4.1 The Double Category of Relations

00KG Definition 5.2.4.1.1. The double category of relations is the locally
posetal double category Rel®® where

e Objects. The objects of Rel®® are sets.

"Note that this is indeed a morphism of posets: given relations R, Rz € Rel(A, B)
and 51,52 € Rel(B, C) such that

Ry C Ro,
S1 C Sy,
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|db|

o Vertical Morphisms. The vertical morphisms of Rel® are maps of

sets f: A — B.

Idbl

e Horizontal Morphisms. The horizontal morphisms of Rel® are

relations R: A 4 X.
e 2-Morphisms. A 2-cell

R

A—+— B

g1,
I

X —+—Y
s

of Rel®! is either non-existent or an inclusion of relations of the
form

A x B 55 {true, false}
R C S 0 (f X 9)7 fXg‘ C/ [id{true,false}

X XY —> {true, false}.
e Horizontal Identities. The horizontal unit functor of Rel®! is the
functor of Definition 5.2.4.2.1.

o Vertical Identities. For each A € Obj(ReIdb'), we have

. dbl gef .
idRe™ <id .

o Identity 2-Morphisms. For each horizontal morphism R: A - B
of Rel®' the identity 2-morphism

R
A—+- B
I

idg idgp idp

|
A—— B
R
of R is the identity inclusion
B x A - {true, false}
R C R, idB XidAk C [id{true,false}

B x A —> {true, false}.
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o Horizontal Composition. The horizontal composition functor of
Rel®® is the functor of Definition 5.2.4.3.1.

o Vertical Composition of 1-Morphisms. For each composable pair
AL B G0 of vertical morphisms of Rel?, i.e. maps of sets, we
have

dbl . de
goRe” f=gof.

o Vertical Composition of 2-Morphisms. The vertical composition of
2-morphisms in Rel?® is defined as in Definition 5.2.4.4.1.

o Associators. The associators of Reld®® is defined as in Defini-
tion 5.2.4.5.1.

e Left Unitors. The left unitors of Rel®" is defined as in Defini-
tion 5.2.4.6.1.

e Right Unitors. The right unitors of Rel®® is defined as in Defini-
tion 5.2.4.7.1.
00KH 5.2.4.2 Horizontal Identities

00KJ Definition 5.2.4.2.1. The horizontal unit functor of Rel%' is the
functor "
17" Relf® — Rel{”

of Rel® is the functor where

e Action on Objects. For each A € Obj (Relgb'>, we have

def

14=xa(—1,—2)

o Action on Morphisms. For each vertical morphism f: A — B of
Rel®! i.e. each map of sets f from A to B, the identity 2-morphism

1a

A—F— A
|

f 1 f
l

B —+— B
1p

we have also S1 ¢ R1 C Ss ¢ Rs.
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of f is the inclusion

Ax A Xalbrm2)

2) {true, false}
XB© (f X f) C XA, fo‘ C id{true,false}

B x B

o — {true, false}

of Item 1 of Proposition 2.4.1.1.3.

00KK 5.2.4.3 Horizontal Composition

00KL Definition 5.2.4.3.1. The horizontal composition functor of Rel"!
is the functor N
ORI Relf? x Relf® — Rel{®!
Reld"!

of Rel® is the functor where

R S
o Action on Objects. For each composable pair A + B - C' of hori-
zontal morphisms of Rel®® we have

SORE SR,
where S ¢ R is the composition of R and S of Definition 6.3.12.1.1.

o Action on Morphisms. For each horizontally composable pair

AJ;B BHS—>C
P T P I A
I I
X —+—Y Y —+— Z
T U

of 2-morphisms of Rel®!, i.e. for each pair

A x B - {true, false} BxC -2 {true, false}
fxgk (/ [id{true,false} thk C/ [id{true,false}
X xY — {true, false} Y x Z —— {true, false}

of inclusions of relations, the horizontal composition

SOR
A—F—C

BoOa

\

X —4— 7
ueT

f h
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of o and B is the inclusion of relations®

Ax C 28, {true, false}

(UoT)o(fxh)C(SoR) tht c [d{}

X x Z —= {true, false}.

00KM 5.2.4.4 Vertical Composition of 2-Morphisms

00KN Definition 5.2.4.4.1. The vertical composition in Rel®® is defined
as follows: for each vertically composable pair
R S
A—F— X B—4—Y
|
f ﬂ g h B k
I U
B—+—Y C —+— Z
S T
of 2-morphisms of Rel®® i.e. for each each pair
Ax X B {true, false} B xY -2 {true, false}
fXg‘ C/ Iid{true,false} hx k‘ C/ [id{true,false}
B xY —> {true, false} C x Z —> {true, false}

of inclusions of relations, we define the vertical composition

8This is justified by noting that, given (a,c) € A x C, the statement

o We have a ~wor)o(fxh) G i-e. f(a) ~uer h(c), i.e. there exists some y € YV
such that:

1. We have f(a) ~1 y;
2. We have y ~y h(c);
is implied by the statement
e We have a ~sor ¢, i.e. there exists some b € B such that:

1. We have a ~g b;
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of o and [ as the inclusion of relations

Ax X &5 {true, false}
Tol(hof)x(kog)] CR, (hof)x(kog)k C [id{true,false}
C x Z —> {true, false}

given by the pasting of inclusions’

Ax X —B5 {true, false}
Ixg C/ id{true,t’alse}
B xY —s- {true, false}

hxk C/ id{true,false}

C' x Z — {true, false}.

00KP 5.2.4.5 The Associators

00KQ Definition 5.2.4.5.1. For each composable triple
R S T
A$+B-+HC-$HD
of horizontal morphisms of Rel®’', the component

R S T
A—+ B+ C —+

dbl
Rel
O‘T,S,RH

A—+ B+ C —
R S T

dbl R
B (T0S)OR=3TO(SOR), i,

D
D

2. We have b ~5 ¢;

since:
e If a~pgb, then f(a) ~r g(b), as T o (f X g) C R;
e Ifb~gc, then g(b) ~u h(c),as Uo (g x h) C S.

9This is justified by noting that, given (a,z) € A x X, the statement
- We have h(f(a)) ~r k(g(x));
is implied by the statement
e We have a ~r z;

since
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of the associator of Rel®® at (R, S, T) is the identity inclusion'”

A x B To80K {true, false}
(ToS)oR=To(SoR) = Iid{t,ue,false}

Ax B ToGoR {true, false}.

00KR 5.2.4.6 The Left Unitors

00KS Definition 5.2.4.6.1. For each horizontal morphism R: A - B of Rel®!,
the component
R 1p
A—— B —+— B
dbl ~
AR 1 @ R=5 R, ida A?;'d'ﬂ“ idp
A | B
of the left unitor of Rel®® at R is the identity inclusion'’
Ax B X% {true, false}
R = XB <& R7 4 tid{true,false}
AXB —— {true, false}.
00KT 5.2.4.7 The Right Unitors
00KU Definition 5.2.4.7.1. For each horizontal morphism R: A - B of Reld?!
the component
1a R
A—+— A —+— B
dbl ~
PR IROIA=R, i, p.;;ldblﬂ idp
A | B
R

e Ifa~g x, then f(a) ~s g(z), as So (f x g) C R;
e Ifb~gy, then h(b) ~7 k(y), as T o (h x k) C S, and thus, in particular:

— If f(a) ~s g(z), then h(f(a)) ~7 k(g(x)).

10T his is justified by Item 2 of Proposition 6.3.12.1.3.
"This is justified by Item 3 of Proposition 6.3.12.1.3.
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|db| 12

of the right unitor of Rel®” at R is the identity inclusion

Ax B x4 {true, false}

R = Roxa,

4 tid{true,false}

A X B —— {true,false}.

5.3 Properties of the 2-Category of Relations

5.3.1 Self-Duality
Proposition 5.3.1.1.1. The (2-)category of relations is self-dual:
1. Self-Duality I. We have an isomorphism
Rel 2 Rel
of categories.
2. Self-Duality II. We have a 2-isomorphism
Rel*® = Rel
of 2-categories.
Proof. Item 1, Self-Duality I: We claim that the functor
F: Rel°® — Rel

given by the identity on objects and by R — R on morphisms is an
isomorphism of categories.

By Item 1 of Proposition 8.5.8.1.3, it suffices to show that F' is bijective
on objects (which is clear) and fully faithful. Indeed, the map

(=)": Rel(A, B) — Rel(B, A)

defined by the assignment R — R is a bijection by Item 5 of Proposi-
tion 6.3.11.1.3, showing F' to be fully faithful.
Item 2, Self-Duality II: We claim that the 2-functor

F': Rel°® — Rel

given by the identity on objects, by R — R' on morphisms, and by
preserving inclusions on 2-morphisms via [tem 1 of Proposition 6.3.11.1.3,
is an isomorphism of categories.

By 7?7 of 77, it suffices to show that F' is:

12This is justified by Item 3 of Proposition 6.3.12.1.3.
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o Bijective on objects, which is clear.
o Bijective on 1-morphisms, which was shown in Item 1.

¢ Bijective on 2-morphisms, which follows from Item 1 of Proposi-
tion 6.3.11.1.3.

Thus F is indeed a 2-isomorphism of categories. ]

00L0 5.3.2 Isomorphisms and Equivalences in Rel

Let R: A - B be a relation from A to B.
00L1 Proposition 5.3.2.1.1. The following conditions are equivalent:
00L2 1. The relation R: A - B is an equivalence in Rel, i.e.:

(%) There exists a relation R~': B - A from B to A together
with isomorphisms

R o R ya,
ROR_I = XB-

00L3 2. The relation R: A 4 B is an isomorphism in Rel, i.e.:

(%) There exists a relation R~1: B 4 A from B to A such that
we have

ooL4 3. There exists a bijection f: A =, B with R = Gr(f).
Proof. We claim that Items 1 to 3 are indeed equivalent:

e [ltem 1 <= Item 2: This follows from the fact that Rel is locally
posetal, so that natural isomorphisms and equalities of 1-morphisms
in Rel coincide.

o Item 2= Item 3: The equalities in Item 2 imply R 4 R~!, and
thus by Proposition 5.3.3.1.1, there exists a function fr: A — B
associated to R, where, for each a € A, the image fr(a) of a by fr is
the unique element of R(a), which implies R = Gr(fr) in particular.
Furthermore, we have R~! = f;' (as in Definition 6.3.2.1.1). The
conditions from Item 2 then become the following:

f]%l < fR = XA,
fro ' =xB.
All that is left is to show then is that fg is a bijection:
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— The Function fr Is Injective. Let a,b € A and suppose that
fr(a) = fr(b). Since a ~g fr(a) and fr(a) = fr(b) ~p-1 b,
the condition f}gl o frR = x4 implies that a = b, showing fr
to be injective.

— The Function fr Is Surjective. Let b € B. Applying the
condition fgr o fgl = xB to (b,b), it follows that there exists
some a € A such that f5'(b) = a and fg(a) = b. This shows
fr to be surjective.

o Item 3= Item 2: By Item 2 of Proposition 6.3.1.1.2, we have an
adjunction Gr(f) 4 f~1, giving inclusions

xa C fhoGr(f),
Gr(f)o f7' C xB.

We claim the reverse inclusions are also true:

— f7Yo Gr(f) C xa: This is equivalent to the statement that
if f(a) =band f~1(b) = @, then a = a/, which follows from
the injectivity of f.

— xB C Gr(f)o f~!: This is equivalent to the statement that
given b € B there exists some a € A such that f~1(b) = a and
f(a) = b, which follows from the surjectivity of f.

This finishes the proof. O

00L5 5.3.3 Adjunctions in Rel
Let A and B be sets.

00L6 Proposition 5.3.3.1.1. We have a natural bijection

Adjunctions in Rel| [ Functions
from A to B "~ |from A to B’

with every adjunction in Rel being of the form Gr(f) - f~! for some
function f.

Proof. We proceed step by step:

1. From Adjunctions in Rel to Functions. An adjunction in Rel from
A to B consists of a pair of relations

R: A B,
S: B+ A,
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together with inclusions

x4 CS¢oR,
RoS C xB.

We claim that these conditions imply that R is total and functional,
i.e. that R(a) is a singleton for each a € A:

(a) R(a) Has an Element. Given a € A, since x4 C S ¢ R, we
must have {a} C S(R(a)), implying that there exists some
b € B such that a ~p b and b ~g a, and thus R(a) # 0, as
b € R(a).
(b) R(a) Has No More Than One Element. Suppose that we have
a~gband a~pgb for bt/ € B. We claim that b = b’
i. Since x4 C S ¢ R, there exists some k € B such that
a~grkandk~ga.
ii. Since R¢S C xp, if b’ ~ga’ and a’ ~g 0", then b = b".
iii. Applying the above to v = k, v/ = b, and @’ = a, since
k ~gaand a ~g b, we have k = b.
iv. Similarly k =¥'.
v. Thus b =10

Together, the above two items show R(a) to be a singleton, being
thus given by Gr(f) for some function f: A — B, which gives a
map

Adjunctions in Rel Functions
from A to B from A to B

Moreover, by uniqueness of adjoints (7?7 of ?7), this implies also
that S = f~1.

. From Functions to Adjunctions in Rel. By Item 2 of Proposi-

tion 6.3.1.1.2, every function f: A — B gives rise to an adjunction
Gr(f) 4 f~! in Rel, giving a map

Functions Adjunctions in Rel
— .
from A to B from A to B

. Invertibility: From Functions to Adjunctions Back to Functions.

We need to show that starting with a function f: A — B, passing
to Gr(f) - f~!, and then passing again to a function gives f again.
This is clear however, since we have a ~q,(y) b iff f(a) =b.
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4. Invertibility: From Adjunctions to Functions Back to Adjunctions.
We need to show that, given an adjunction R 4 S in Rel giving
rise to a function frg: A — B, we have

Gr(frs) = R,
gg:s

We check these explicitly:
e Gr(frs)=R. We have

Gr(frs) = {(a, frs(a)) € Ax B | a € A}
“{(a,R(a)) € Ax B |acA}
=R,

. fﬁ}s = S. We first claim that, given a € A and b € B, the
following conditions are equivalent:

— We have a ~g b.
— We have b ~g a.
Indeed:

— Ifa~pgrb, then b ~g a: Since x4 C S ¢ R, there exists
k € B such that a ~p k and k ~g a, but since a ~r b
and R is functional, we have k£ = b and thus b ~g a.

— Ifb ~g a, then a ~gr b: First note that since R is total
we have a ~g V' for some b/ € B. Now, since R¢ S C xB,
b~ga,and a ~p b, we have b =1/, and thus a ~p b.

Having show this, we now have

frisb) = {a €Al frs(a) =0}
“{aeAla~gb}
={a€A|b~ga}
ES(b).
for each b € B, showing fﬁ,{g =S5.

This finishes the proof. O

00L7 5.3.4 Monads in Rel
Let A be a set.
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00L8 Proposition 5.3.4.1.1. We have a natural identification'

Monads in
Rel on A

} = {Preorders on A}.

Proof. A monad in Rel on A consists of a relation R: A 4 A together
with maps

ur: Ro R C R,
nr: XA C R

making the diagrams

nroid Rel(A B>R<>(R<>R) idgou idgon
R R « ’ R R RYTR
XAOR —— RoR MPE 7 N Roys —— RoR

\ % (ReR)oR RoR \ %
KR 1R

Rel(A,B) Rel(A,B)

AR /,LROidR\X KR Pr

R R
RoR—— R
HR

commute. However, since all morphisms involved are inclusions, the
commutativity of the above diagrams is automatic, and hence all that is
left is the data of the two maps ugr and ng, which correspond respectively
to the following conditions:

1. For each a,b,c € A, if a ~g b and b ~g ¢, then a ~p c.
2. For each a € A, we have a ~p a.

These are exactly the requirements for R to be a preorder (?7). Con-
versely any preorder < gives rise to a pair of maps < and 7<, forming
a monad on A. O

00L9 5.3.5 Comonads in Rel

Let A be a set.

00LA Proposition 5.3.5.1.1. We have a natural identification

Rel on A

13Gee also ?? for an extension of this correspondence to “relative monads in Rel”.

Comonads in
= {Subsets of A}.
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Proof. A comonad in Rel on A consists of a relation R: A - A together

with maps
Ar: RC Ro R,
er: R C xa
making the diagrams
RoR
An idroAR
AR AR
R ——+—— RoR R ——+—— RoR

R Ro(RoR)
epoidp idroer
A1;e1(A,B),71 pl;el(A,B),—l

Ap JRel(A,B),—1
yaoR R.RR Roxa

RoR —> (RoR)oR
Agoidp
commute. However, since all morphisms involved are inclusions, the
commutativity of the above diagrams is automatic, and hence all that is
left is the data of the two maps Ag and eg, which correspond respectively
to the following conditions:

1. For each a,b € A, if a ~g b, then there exists some k£ € A such
that a ~g k and k ~p b.

2. For each a,b € A, if a ~g b, then a = b.

Taking k = b in the first condition above shows it to be trivially satisfied,
while the second condition implies R C A4, i.e. R must be a subset of
A. Conversely, any subset U of A satisfies U C A4, defining a comonad
as above. O

00LB 5.3.6 Co/Monoids in Rel

00LC Remark 5.3.6.1.1. The monoids in Rel with respect to the Cartesian
monoidal structure of Proposition 5.2.2.8.1 are called hypermonoids, and
their theory is explored in ??. Similarly, the comonoids in Rel are called
hypercomonoids, and they are defined and studied in ?77.

00LD 5.3.7 Monomorphisms in Rel

In this section we characterise the epimorphisms in the category Rel,
following ?77.

00LE Proposition 5.3.7.1.1. Let R: A 4 B be a relation. The following
conditions are equivalent:
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1. The relation R is a monomorphism in Rel.
2. The direct image function
R.: P(A) — P(B)
associated to R is injective.
3. The direct image with compact support function
Ry: P(A) — P(B)
associated to R is injective.

Moreover, if R is a monomorphism, then it satisfies the following condi-
tion, and the converse holds if R is total:

(x) For each a,a’ € A, if there exists some b € B such that

a~gb,
a ~pgb,

then a = d’.

Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Propo-
sition 6.4.1.1.3. We then claim that Items 1 and 2 are also equivalent:

o [tem 1 = Item 2: Let U,V € P(A) and consider the diagram

U R
pt =23 A —— B.
1%

By Remark 6.4.1.1.2, we have

R.(U)=RoU,
R,(V)=RoV.

Now, if RoU = RoV,ie. R.(U) = Ry(V), then U =V since R
is assumed to be a monomorphism, showing R, to be injective.

o [tem 2 = Item 1: Conversely, suppose that R, is injective,
consider the diagram

S R
X 43 A —> B,
T

and suppose that R¢.S = RoT. Note that, since R, is injective,
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given a diagram of the form
U R
pt =2 A —— B,
v

if R\(U)=RoU =RoV = R,(V), then U = V. In particular,
for each z € X, we may consider the diagram

[z] S R
pt — X =2 A - B,
T

for which we have R¢ S ¢ [z] = Ro T ¢ [z], implying that we have
S(x)y=8Solz]=Toz]=T(x)

for each x € X, implying S = T, and thus R is a monomorphism.

We can also prove this in a more abstract way, following [MSE 350788]:

e Item 1 = Item 2: Assume that R is a monomorphism.

— We first notice that the functor Rel(pt, —): Rel — Sets maps
R to R, by Remark 6.4.1.1.2.

— Since Rel(pt, —) preserves all limits by ?? of 7?7, it follows by
77?7 of 7?7 that Rel(pt, —) also preserves monomorphisms.

— Since R is a monomorphism and Rel(pt, —) maps R to R., it
follows that R, is also a monomorphism.

— Since the monomorphisms in Sets are precisely the injections
(??7 of 77), it follows that R, is injective.

o [tem 2= Item 1: Assume that R, is injective.

— We first notice that the functor Rel(pt, —): Rel — Sets maps
R to R, by Remark 6.4.1.1.2.

— Since the monomorphisms in Sets are precisely the injections
(7?7 of 7?), it follows that R, is a monomorphism.

— Since Rel(pt, —) is faithful, it follows by ?7? of ?? that Rel(pt, —)
reflects monomorphisms.

— Since R, is a monomorphism and Rel(pt, —) maps R to R.,
it follows that R is also a monomorphism.

Finally, we prove the second part of the statement. Assume that R is
a monomorphism, let a,a’ € A such that a ~z b and a’ ~g b for some
b € B, and consider the diagram

[a] R
pt =3 A —— B.
[a']
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Since * ~[g a and a ~pg b, we have x ~pe, b. Similarly, x ~pge. b.
Thus R¢[a] = Reold’], and since R is a monomorphism, we have [a] = [d/],
ie.a=d.

Conversely, assume the condition

(x) For each a,a’ € A, if there exists some b € B such that
a~gb,
a ~gb,
then a = d’.

consider the diagram
s R
X 43 A —- B,
T

and let (z,a) € S. Since R is total and a € A, there exists some b € B
such that a ~r b. In this case, we have x ~p.g b, and since RoS = RoT),
we have also £ ~por b. Thus there must exist some a’ € A such that
x ~7 a and a’ ~g b. However, since a,a’ ~r b, we must have a = d’,
and thus (z,a) € T as well.

A similar argument shows that if (z,a) € T, then (z,a) € S, and thus
S =T and it follows that R is a monomorphism. O

5.3.8 2-Categorical Monomorphisms in Rel

In this section we characterise (for now, some of) the 2-categorical
monomorphisms in Rel, following Section 9.1.

Proposition 5.3.8.1.1. Let R: A -+ B be a relation.

1. Representably Fuaithful Morphisms in Rel. Every morphism of Rel
is a representably faithful morphism.

2. Representably Full Morphisms in Rel. The following conditions
are equivalent:
(a) The morphism R: A - B is a representably full morphism.

(b) For each pair of relations S, T": X = A, the following condition
is satisfied:

(x) RoSCRoT, then S CT.
(¢) The functor

R.: (P(A),C) = (P(B),C)
is full.
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(d) For each U,V € P(A), if R.(U) C R.(V), then U C V.
(e) The functor
Ry: (P(A),C) = (P(B), Q)
is full.
(f) For each U,V € P(A), if Ri(U) C R(V), then U C V.

3. Representably Fully Faithful Morphisms in Rel. Every representaly
full morphism in Rel is a representably fully faithful morphism.

Proof. Item 1, Representably Faithful Morphisms in Rel: The relation R
is a representably faithful morphism in Rel iff, for each X € Obj(Rel),

the functor
«: Rel(X, A) — Rel(X, B)

is faithful, i.e. iff the morphism
Rysr: Hompey(x,4) (S, T) — Hompgey(x,p) (R0 S, RoT)

is injective for each S,T" € Obj(Rel(X, A)). However, Homgey(x, 4)(S, T)
is either empty or a singleton, in either case of which the map R, g1 is
necessarily injective.

Item 2, Representably Full Morphisms in Rel: We claim Items 2a to 2f
are indeed equivalent:

o ltem 2a <= Item 2b: This is simply a matter of unwinding
definitions: The relation R is a representably full morphism in Rel
iff, for each X € Obj(Rel), the functor

«: Rel(X, A) — Rel(X, B)
is full, i.e. iff the morphism
Ry 57 Homgey(x,4)(S,T) — Homgey(x,p) (R oS, RoT)

is surjective for each S,T € Obj(Rel(X, A)), i.e. iff, whenever
RoeS CRoT, we also have S C T.

o [Item 2¢ <= Item 2d: This is also simply a matter of unwinding
definitions: The functor

R.: (P(A),C) = (P(B),C)
is full iff, for each U,V € P(A), the morphism
R, yv: Homp(4)(U,V) = Homp ) (R.(U), R«(V))

is surjective, i.e. iff whenever R, (U) C R.(V), we also necessarily
have U C V.
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o Item 2e <= Item 2f: This is once again simply a matter of
unwinding definitions, and proceeds exactly in the same way as in
the proof of the equivalence between Items 2¢ and 2d given above.

o Item 2d = Item 2f: Suppose that the following condition is true:
(%) For each U,V € P(A), if R,(U) C R«(V), then U C V.
We need to show that the condition
(x) For each U,V € P(A), if R(U) C R(V), then U C V.
is also true. We proceed step by step:
1. Suppose we have U,V € P(A) with R(U) C Ri(V).

2. By Item 7 of Proposition 6.4.4.1.3, we have

Ry(U) = B\ R.(A\U),
R(V)=B\ R.(A\V).
3. By Item 1 of Proposition 2.3.10.1.2 we have R.(A\V) C
R.(A\ D).
4. By assumption, we then have A\ V C A\ U.
5. By Item 1 of Proposition 2.3.10.1.2 again, we have U C V.

o Item 2f = Item 2d: Suppose that the following condition is true:
(%) For each U,V € P(A), if Ry(U) C R(V), then U C V.
We need to show that the condition
(x) For each U,V € P(A), if R.(U) C R.(V), then U C V.
is also true. We proceed step by step:

1. Suppose we have U,V € P(A) with R.(U) C R.(V).
2. By Item 7 of Proposition 6.4.1.1.3, we have

R.(U) = B\ Ri(A\ V),
R.(V)=B\ R(A\V).
3. By Item 1 of Proposition 2.3.10.1.2 we have Ri(A\V) C
Ri(A\ D).
4. By assumption, we then have A\ V C A\ U.
5. By Item 1 of Proposition 2.3.10.1.2 again, we have U C V.
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o [Item 2b = Item 2d: Consider the diagram
S R
X —/3 A —+> B,
T

and suppose that R¢ S C RoT. Note that, by assumption, given
a diagram of the form

U R
pt =3 A —— B,
1%

if R.(U)=RoU C RoV = R,(V), then U C V. In particular,
for each x € X, we may consider the diagram

[z] S R
pt — X =3 A —- B,
T

for which we have R¢ S ¢ [x] C Ro T ¢ [z], implying that we have
Sx)=Seo[z] CTolz]=T(x)
for each z € X, implying S C T.

o [ltem 2d = Item 2b: Let U,V € P(A) and consider the diagram
U R
pt =3 A — B.
\%4
By Remark 6.4.1.1.2, we have
R.(U)=RoU,
R.(V)=RoV.

Now, if R.(U) C R«(V), i.e. RoU C RoV, then U C V by

assumption.

??, Fully Faithful Monomorphisms in Rel: This follows from Items 1
and 2. ]

0LV Question 5.3.8.1.2. Item 2 of Proposition 5.3.8.1.1 gives a characteri-
sation of the representably full morphisms in Rel.
Are there other nice characterisations of these?
This question also appears as [MO 467527].
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5.3.9 Epimorphisms in Rel

In this section we characterise the epimorphisms in the category Rel,
following ?77.

Proposition 5.3.9.1.1. Let R: A - B be a relation. The following
conditions are equivalent:

1. The relation R is an epimorphism in Rel.
2. The weak inverse image function
R™': P(B) = P(A)
associated to R is injective.
3. The strong inverse image function
R_: P(B) — P(A)
associated to R is injective.
4. The function R: A — P(B) is “surjective on singletons”:
(x) For each b € B, there exists some a € A such that R(a) = {b}.

Moreover, if R is total and an epimorphism, then it satisfies the following
equivalent conditions:

1. For each b € B, there exists some a € A such that a ~g b.
2. We have Im(R) = B.

Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Propo-
sition 6.4.2.1.3. We then claim that Items 1 and 2 are also equivalent:

o [tem 1 == Item 2: Let U,V € P(A) and consider the diagram
R U
A —— B —3 pt.
v
By Remark 6.4.1.1.2, we have

RN U)=UoR,
R Y V)=VoR.

Now, if U6 R=V o R, i.e. R"}U) = R~Y(V), then U = V since

R is assumed to be an epimorphism, showing R~! to be injective.
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o Item 2 = Item 1: Conversely, suppose that R~! is injective,
consider the diagram

R S
A —+- B /3 X,
T

and suppose that S ¢ R =T ¢ R. Note that, since R~! is injective,
given a diagram of the form

R U
A —— B —3 pt,
|4

if R U)=UoR=VoR=R V), then U= V. In particular,

for each x € X, we may consider the diagram

R S (=]
A —+> B 3 X —t pt,
T

for which we have [z] ¢ S ¢ R = [z] ¢ T ¢ R, implying that we have
S z)=[z]0S =[2z]oT =T ' (x)
for each x € X, implying S = T, and thus R is an epimorphism.
We can also prove this in a more abstract way, following [MSE 350788]:
o Item 1 = Item 2: Assume that R is an epimorphism.
— We first notice that the functor Rel(—, pt): Rel®® — Sets maps
R to R~! by Remark 6.4.3.1.2.

— Since Rel(—, pt) preserves limits by ?7 of 77, it follows by 7?7
of 7?7 that Rel(—, pt) also preserves monomorphisms.

— That is: Rel(—, pt) sends monomorphisms in Rel°” to monomor-
phisms in Sets.

— The monomorphisms Rel°? are precisely the epimorphisms in
Rel by 77 of ?7.

— Since R is an epimorphism and Rel(—, pt) maps R to R™!, it
follows that R~! is a monomorphism.

— Since the monomorphisms in Sets are precisely the injections
(77 of 77?), it follows that R~! is injective.

e Item 2= Item 1: Assume that R~! is injective.

— We first notice that the functor Rel(—, pt): Rel°®® — Sets maps
R to R~ by Remark 6.4.3.1.2.
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— Since the monomorphisms in Sets are precisely the injections
(77 of 77), it follows that R~! is a monomorphism.

— Since Rel(—, pt) is faithful, it follows by ?? of ?? that Rel(, pt)
reflects monomorphisms.

— That is: Rel(—, pt) reflects monomorphisms in Sets to monomor-
phisms in Rel°P.

— The monomorphisms Rel°? are precisely the epimorphisms in
Rel by 77 of 77.

— Since R~ is a monomorphism and Rel(—, pt) maps R to R~
it follows that R is an epimorphism.

We also claim that Items 2 and 4 are equivalent, following [MO 350788|:

o Item 2 = Item j: Since B\ {b} C B and R™! is injective,
we have R~1(B\ {b}) € R~}(B). So taking some a € R~Y(B) \
R™Y(B\ {b}) we get an element of A such that R(a) = {b}.

o ltem 4 = Item 2: Let U,V C B with U # V. Without loss of
generality, we can assume U \ V # (); otherwise just swap U and
V. Let then b € U\ V. By assumption, there exists an a € A
with R(a) = {b}. Then a € R~Y(U) but a ¢ R~*(V), and thus
R YU) # R~Y(V), showing R~ to be injective.

Finally, we prove the second part of the statement. So assume R is a
total epimorphism in Rel and consider the diagram

R S
AH—>B$ {071}7
T

where b ~g 0 for each b € B and where we have

0 if b€ Im(R),
b~
1 otherwise

for each b € B. Since R is total, we have a ~go,r 0 and a ~pgr 0 for
all ¢ € A, and no element of A is related to 1 by S¢ R or T'¢ R. Thus
SoR=T¢R, and since R is an epimorphism, we have S =T. But by
the definition of 7', this implies Im(R) = B. O

5.3.10 2-Categorical Epimorphisms in Rel

In this section we characterise (for now, some of) the 2-categorical
epimorphisms in Rel, following Section 9.2.

Proposition 5.3.10.1.1. Let R: A 4 B be a relation.
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1. Corepresentably Faithful Morphisms in Rel. Every morphism of
Rel is a corepresentably faithful morphism.

2. Corepresentably Full Morphisms in Rel. The following conditions
are equivalent:

(a) The morphism R: A - B is a corepresentably full morphism.

(b) For each pair of relations S, T": X = A, the following condition
is satisfied:

(x) fSoRCToR, then SCT.
(¢) The functor

R™': (P(B),c) = (P(A), Q)

is full.
(d) For each U,V € P(B), if R-\(U) ¢ R-N(V), then U C V.
(e) The functor

R_i: (P(B),C) — (P(A),C)

is full.
(f) For each U,V € P(B),if R_1(U) C R—1(V), then U C V.

3. Corepresentably Fully Faithful Morphisms in Rel. Every corep-
resentably full morphism of Rel is a corepresentably fully faithful
morphism.

Proof. Item 1, Corepresentably Faithful Morphisms in Rel: The relation
R is a corepresentably faithful morphism in Rel iff, for each X € Obj(Rel),

the functor
R*: Rel(B, X) — Rel(A, X)

is faithful, i.e. iff the morphism
Rgp: Homgey(p,x)(S,T) — Homgeya,x)(S ¢ R, T o R)

is injective for each S,T" € Obj(Rel(B, X)). However, Homgei(z,x)(S,T)
is either empty or a singleton, in either case of which the map Ry is
necessarily injective.

Item 2, Corepresentably Full Morphisms in Rel: We claim Items 2a to 2f
are indeed equivalent:

o Item 2a <= Item 2b: This is simply a matter of unwinding
definitions: The relation R is a corepresentably full morphism in
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Rel iff, for each X € Obj(Rel), the functor
R*: Rel(B, X) — Rel(A, X)
is full, i.e. iff the morphism
R p: Hompey(p,x) (S, T) — Hompey(4,x)(S ¢ R, T o R)

is surjective for each S,T € Obj(Rel(B, X)), i.e. iff, whenever
SoRCToR, wealso have S C T.

e [tem 2¢ <= Item 2d: This is also simply a matter of unwinding
definitions: The functor

R™: (P(B),C) = (P(4),Q)
is full iff, for each U,V € P(A), the morphism
Ry}, + Homp() (U, V) — Homp() (R7'(U), R7H(V))

is surjective, i.e. iff whenever R=1(U) C R™1(V), we also necessarily
have U C V.

o Item 2e <= Item 2f: This is once again simply a matter of
unwinding definitions, and proceeds exactly in the same way as in
the proof of the equivalence between Items 2c¢ and 2d given above.

o Item 2d = Item 2f: Suppose that the following condition is true:
(x) For each U,V € P(B), if R-Y(U) c R7Y(V), then U C V..
We need to show that the condition
(%) For each U,V € P(B), if R_1(U) C R—1(V), then U C V.
is also true. We proceed step by step:

1. Suppose we have U,V € P(B) with R_1(U) C R_1(V).
2. By Item 7 of Proposition 6.4.2.1.3, we have

R.1(U)=B\ R '(A\U),
R (V)=B\ R YA\V).
3. By Item 1 of Proposition 2.3.10.1.2 we have R~1(A\ V) C
R71(A\U).
4. By assumption, we then have A\ V C A\ U.
5. By Item 1 of Proposition 2.3.10.1.2 again, we have U C V.



5.3. Properties of the 2-Category of Relations 267

o Item 2f = Item 2d: Suppose that the following condition is true:
(x) For each U,V € P(B),if R-1(U) C R_1(V), then U C V.
We need to show that the condition
(x) For each U,V € P(B), if R-Y(U) c R~Y(V), then U C V..
is also true. We proceed step by step:

1. Suppose we have U,V € P(B) with R~1(U) c R71(V).
2. By Item 7 of Proposition 6.4.3.1.3, we have

RN U) =B\ R_1(A\ ),
RY(V)=B\R_{(A\V).

3. By Item 1 of Proposition 2.3.10.1.2 we have R_1(A\ V) C
R_1(A\D).

4. By assumption, we then have A\ V C A\ U.
5. By Item 1 of Proposition 2.3.10.1.2 again, we have U C V.

o Item 2b = Item 2d: Consider the diagram
R S
A —+> B 3 X,
T

and suppose that S ¢ R C T ¢ R. Note that, by assumption, given
a diagram of the form

R U
A —— B =3 pt,
14
if R-Y(U)=RoUCRoV =R V), then U C V. In particular,

for each x € X, we may consider the diagram

R S (=]
A4 B =5 x —pt,
T

for which we have [z] ¢S ¢ R C [z] ¢ T ¢ R, implying that we have
S7Hz) = [z]oS C[z]oT =T (2

for each x € X, implying S C T.
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o Item 2d = Item 2b: Let U,V € P(B) and consider the diagram
R U
A —— B —3 pt.
14
By Remark 6.4.1.1.2, we have

RN U)=UoR,
R Y V)=VoR.

Now, if R-Y(U) ¢ R7Y(V),ie. U6 R C Vo R, then U C V by

assumption.

Item 3, Corepresentably Fully Faithful Morphisms in Rel: This follows
from Items 1 and 2. O

0oMD Question 5.3.10.1.2. Item 2 of Proposition 5.3.10.1.1 gives a charac-
terisation of the corepresentably full morphisms in Rel.
Are there other nice characterisations of these?
This question also appears as [MO 467527].

0oME 5.3.11 Co/Limits in Rel

00MF Proposition 5.3.11.1.1. This will be properly written later on.

Proof. Omitted. O

ooMG 5.3.12 Kan Extensions and Kan Lifts in Rel

00MH Remark 5.3.12.1.1. The 2-category Rel admits all right Kan extensions
and right Kan lifts, though not all left Kan extensions and neither does
it admit all left Kan lifts. See Section 6.2 for a detailed discussion of
this.

ooMJ 5.3.13 Closedness of Rel

00MK Proposition 5.3.13.1.1. The 2-category Rel is a closed bicategory,
there being, for each R: A - B and set X, a pair of adjunctions

R*
(R* 4Rang): Rel(B,X) L  Rel(4,X),
~—
RanR
Ry
(R, 4 Riftg): Rel(X,A) L Rel(X,B),
Riftg
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witnessed by bijections

Rel(S¢ R,T) = Rel(S,Rang(T)),
Rel(Ro U, V) 2 Rel(U, Riftz(V)),

natural in S € Rel(B, X), T' € Rel(A,X), U € Rel(X,A), and V €
Rel(X, B).

Proof. This follows from Propositions 6.2.3.1.1 and 6.2.4.1.1. O

0oML 5.3.14 Rel as a Category of Free Algebras

0oMM Proposition 5.3.14.1.1. We have an isomorphism of categories
Rel = FreeAlgp (Sets),

where P, is the powerset monad of ?7.

Proof. Omitted. O

ooMN 5.4 The Left Skew Monoidal Structure on Rel(A, B)
ooMP 5.4.1 The Left Skew Monoidal Product
Let A and B be sets and let J: A - B be a relation.

00MQ Definition 5.4.1.1.1. The left J-skew monoidal product of Rel(4, B)
is the functor

<7: Rel(A, B) x Rel(A, B) — Rel(A, B)
where

o Action on Objects. For each R, S € Obj(Rel(A4, B)), we have

Rift;(R) .7
SQJR(i:CfSORiftJ(R), vt )>/%J

o Action on Morphisms. For each R, S, R, S" € Obj(Rel(A, B)), the

action on Hom-sets

(QJ)(G,F),(G’,F’) : HomRel(AB) (S, S/) XHomRel(A,B) (R, R/) — HomRel(A,B) (S <y R, s’ <J R/)
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of <ty at ((R,S),(R',S")) is defined by'*

I6] <1Jad:efﬁ<>RiftJ(a),

for each # € Homgei(a,p)(5,S") and each o € Homgej(4,p) (R, R).

00MR 5.4.2 The Left Skew Monoidal Unit
Let A and B be sets and let J: A - B be a relation.

0oMS Definition 5.4.2.1.1. The left J-skew monoidal unit of Rel(A4, B)
is the functor
18AB). bt Rel(4, B)

picking the object
def

=J

114{21(,4,3)

of Rel(A, B).

0oMT 5.4.3 The Left Skew Associators
Let A and B be sets and let J: A - B be a relation.

oMU Definition 5.4.3.1.1. The left J-skew associator of Rel(A4, B) is
the natural transformation

Rel(A,B),< . , - Cat
« el( )<y <y o (<]J X |d) — <y o0 (|d X QJ) o aR?ef(A,B),Rel(A,B),Rel(A,B)7

'Since Rel(A, B) is posetal, this is to say that if S ¢ S’ and R C R’, then
S<;RC S < R.
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as in the diagram

Rel(A, B) x (Rel(4, B) x Rel(4, B))

7
Cats ’,” .
aRel(A7B),Rel(A,B),Rel(A,B) ,(,_') NQJ

(Rel(A, B) x Rel(A, B x Rel(A x Rel(A, B)

Rel(A B) <y

<y xid

Rel(4, B) xRelAB«”RelAB

whose component

04%3(&4’3)’4’: (I'<yS)<yR — T<;(5<sR)

—_—— —_——
CioRift ;(S)oRift s (R)  “ToRift s (SoRift 7 (R))
at (T,S, R) is given by

Rel(A,B),<y def .
aT,S,R d <,

where

~: Rift ;(S) o Rift ;(R) — Rift;(S ¢ RiftJ(R))
is the inclusion adjunct to the inclusion

€9 * idRiftJ(R) : JoRift; () o Rift;(R) — S o Rift ;(R)
. (Rift 7 (S)oRift 7 (R))

under the adjunction Ji - Rift;, where €: J o Rift; = idRei(4,p) 1s the
counit of the adjunction J, - Rift ;.

ooMV 5.4.4 The Left Skew Left Unitors
Let A and B be sets and let J: A - B be a relation.

oMW Definition 5.4.4.1.1. The left J-skew left unitor of Rel(A4, B) is
the natural transformation

ARCIAB).<r . g (12‘?1(’473) X id) ARei(4,5)
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as in the diagram

qRel(4.B)

pt x Rel(A, B) - Rel(A, B) x Rel(4, B)

% ARel(4,B),<7

h / =
.
.

N

Catsp N
ARel(A,B) S~

> Rel(4, B),

whose component

AReldB)r Ja;R <R

def
=JoRift ;(R)
at R is given by
Rel A,B ,<g def
)\R ( ) = €R,

where €: J, o Rift; = idRel(a,p) is the counit of the adjunction J, -
Rift ;.

ooMX 5.4.5 The Left Skew Right Unitors
Let A and B be sets and let J: A - B be a relation.

0oMY Definition 5.4.5.1.1. The left J-skew right unitor of Rel(A, B) is
the natural transformation

Rel(4,B),9; . plgta‘:f(gA . Qo (id o 11351(A,B))

p
as in the diagram

1Re1(A,B)

Rel(A, B) x pt —2 - Rel(A, B) x Rel(4, B),

\
\
\
\

\ pRel(A,B),<;
\\\ / <1J
Catsp \\\\\
PRel(4,B) S
7> Rel(4, B)
whose component
Rel(4,B),<
pRe( ) 7P R — R<;J

deftr
= RoRift ; (J)
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at R is given by the composition

R :N> ROXA

idrony 4

= "RoRifty(J(xa))
RoRiftj(J o xa)
R o Rift y(J)
R<y J,

& ||&
E |, 1E

where 7: idre)(4,4) = Rift ;o J, is the unit of the adjunction Ji 4 Rift;.

0oMZ 5.4.6 The Left Skew Monoidal Structure on Rel(A, B)

00N0 Proposition 5.4.6.1.1. The category Rel(A, B) admits a left skew
monoidal category structure consisting of

e The Underlying Category. The posetal category associated to
the poset Rel(A, B) of relations from A to B of Item 2 of Defini-
tion 5.1.1.1.3.

o The Left Skew Monoidal Product. The left J-skew monoidal product
<s: Rel(A, B) x Rel(A, B) — Rel(A, B)
of Definition 5.4.1.1.1.
o The Left Skew Monoidal Unit. The functor
1Rel(AB)97 pt — Rel(4, B)
of Definition 5.4.2.1.1.
o The Left Skew Associators. The natural transformation
QBB q; 0 (<) x id) = <1y 0 (id x <1y) 0 a%{aéi(A,B),Rel(A,B),Rel(A,B)
of Definition 5.4.3.1.1.
e The Left Skew Left Unitors. The natural transformation
\Rel(4,8),<; . o (11:?(,4,3) y id) . )‘1%:15(2A,B)
of Definition 5.4.4.1.1.

o The Left Skew Right Unitors. The natural transformation

Rel(A,B),<1y . ,Catsy

. Rel(4,B
0 .pRel(A’B):><1Jo(|d><l<j( ))

of Definition 5.4.5.1.1.
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Proof. Since Rel(A, B) is posetal, the commutativity of the pentagon
identity, the left skew left triangle identity, the left skew right triangle
identity, the left skew middle triangle identity, and the zigzag identity is
automatic, and thus Rel(A, B) together with the data in the statement
forms a left skew monoidal category. O

ooN1 5.5 The Right Skew Monoidal Structure on Rel(A, B)

Let A and B be sets and let J: A 5 B be a relation.

ooN2 5.5.1 The Right Skew Monoidal Product

00N3 Definition 5.5.1.1.1. The right J-skew monoidal product of
Rel(A, B) is the functor

>7: Rel(A, B) x Rel(A, B) — Rel(A, B)
where

o Action on Objects. For each R, S € Obj(Rel(A4, B)), we have
S R= Rany(S) o R, JJ(\
A

o Action on Morphisms. For each R, S, R', S" € Obj(Rel(A4, B)), the
action on Hom-sets

(DJ)(S,R),(S’,R’) : HomRel(A,B) (S, S/) XHomRel(A,B) (R, R/) — HomRel(A,B) (S >7 R, s’ >y R/)

of > at ((S, R),(S', R')) is defined by'®

for each # € Homgei(a,p)(5;S") and each o € Homgej(4,p) (R, ).

5Since Rel(A, B) is posetal, this is to say that if S ¢ S’ and R C R’, then
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5.5.2 The Right Skew Monoidal Unit

Definition 5.5.2.1.1. The right J-skew monoidal unit of Rel(4, B)
is the functor
18e1AB). bt 5 Rel(4, B)

picking the object

>z def
lRel(A B) — J

of Rel(4, B).

5.5.3 The Right Skew Associators

Definition 5.5.3.1.1. The right J-skew associator of Rel(A4, B) is
the natural transformation

aRMABIP I 1 o (id X 1>) = By o (g xid) o alC{aS(AlB) Rel(A,B),Rel(A,B)
as in the diagram

(Rel(4, B) x Rel(4, B)) x Rel(A, B)

Cats -1 ,"ﬂ .
*Rel(A,B),Rel(A,B),Rel(A, B) s > Xid

Rel(A4, B) x (Rel(A4, B ) x Rel(A ) x Rel(A, B)

Rel(A B) >y

idxD> s

Rel(4, B) x Rel( A Bjihel A, B),
whose component

??S?B)D]- T'>;(S>sR) — (TeyS>sR
—_—— R
_tRanJ T)oRanj(S)oR d:efRanJ(RanJ(T)oS)oR
at (T, S, R) is given by

Rel(A4,B).>- et 4
ar.SR =7 ©1dg,

where
v: Rany(T) ¢ Ran;(S) — Rany(Ran;(T") ¢ 5)
is the inclusion adjunct to the inclusion

idRan, (1) © €51 Rany(T) ¢ Ran;(S) ¢ J < Ran;(T) o S

207 (Ran s (T)oRan ; (S))

under the adjunction J* 4 Ran,, where €: Ran;¢J = idRei(4,p) s the
counit of the adjunction J* 4 Ranj.
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00N8 5.5.4 The Right Skew Left Unitors

00N9 Definition 5.5.4.1.1. The right J-skew left unitor of Rel(A4, B) is
the natural transformation

ARSIAB)Es, Nt =Dy (15‘3“’3) x id),

as in the diagram

Rel(4,B) .y

pt x Rel(A4, B) - Rel(A, B) x Rel(4, B)

\
\
\
\

\ A\Rel(4,B),> y

\

A / 7
.
\\

Catsy ~
)\Rel(A,B) S~o

whose component

At ABIET Ry ey R
dot——~—"

“Rany (J)oR
at R is given by the composition
R = xpoR
2E o iRan(J*(xa)) o R

& Rany(J*oxa)oR
= Rany(J)oR
£ Ryl

where 77: idrey(,B) = RanjoJ" is the unit of the adjunction J* 4 Ran,.

00NA 5.5.5 The Right Skew Right Unitors

00NB Definition 5.5.5.1.1. The right J-skew right unitor of Rel(A4, B)
is the natural transformation

pRel(AaB)PJ: > o (id % l];{el(A,B)) pCat52

= PRel(A,B)’

S>;RC S >;R.
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as in the diagram

idx 1Rel(A.B)

Rel(A, B) x pt —2— Rel(A, B) x Rel(4, B),

\ pRel(A,B),DJ

\ >
N J
N
N
N

Catsy AN
PRel(4,B) ~~

> Rel(4, B)
whose component

pelABLEs ST S

——
dzehanJ(S)oJ
at S is given by

Rel(A,B),>; def
pS = €R,

where €: J* o Ran; = idRe(4,p) is the counit of the adjunction J* -
RanJ.
0oNC 5.5.6 The Right Skew Monoidal Structure on Rel(A4, B)

00ND Proposition 5.5.6.1.1. The category Rel(A, B) admits a right skew
monoidal category structure consisting of

e The Underlying Category. The posetal category associated to
the poset Rel(A, B) of relations from A to B of Item 2 of Defini-
tion 5.1.1.1.3.

e The Right Skew Monoidal Product. The right J-skew monoidal
product

<7: Rel(A, B) x Rel(A, B) — Rel(A, B)
of Definition 5.5.1.1.1.
o The Right Skew Monoidal Unit. The functor
1Rel(A.5).97 . bt 5 Rel(A, B)
of Definition 5.5.2.1.1.

e The Right Skew Associators. The natural transformation

Cats,—1

Rel(A,B),> 7 . H i
QRMABIET s o (id X 1) = By o (> X id) 0 QRel(A,B),Rel(A,B),Rel(A,B)

of Definition 5.5.3.1.1.
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The Right Skew Left Unitors. The natural transformation

ARIAB) 27, 3L | = By o (15‘”“"3) x id)

of Definition 5.5.4.1.1.
The Right Skew Right Unitors. The natural transformation

. Rel(A4,B
pRel(A7B),\>J: >0 (Id y 1>e( )) — Pl%;ffA,B)

of Definition 5.5.5.1.1.

Proof. Since Rel(A, B) is posetal, the commutativity of the pentagon
identity, the right skew left triangle identity, the right skew right triangle
identity, the right skew middle triangle identity, and the zigzag identity is
automatic, and thus Rel(A, B) together with the data in the statement
forms a right skew monoidal category. O
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Chapter 6

Constructions With
Relations

0ONE This chapter contains some material about constructions with relations.
Notably, we discuss and explore:

1. The existence or non-existence of Kan extensions and Kan lifts in
the 2-category Rel (Section 6.2).

2. The various kinds of constructions involving relations, such as
graphs, domains, ranges, unions, intersections, products, inverse
relations, composition of relations, and collages (Section 6.3).

3. The adjoint pairs

R. 4 R_1: P(A)
R4 R:PB)

P(B)7
P(A)

o

of functors (morphisms of posets) between P(A) and P(B) induced
by a relation R: A -} B, as well as the properties of R,, R_1, R™!,
and Ry (Section 6.4).

Of particular note are the following points:
(a) These two pairs of adjoint functors are the counterpart for

relations of the adjoint triple f. 4 f~! 4 fi induced by a
function f: A — B studied in Section 2.4.

(b) We have R_; = R™! iff R is total and functional (Item 8 of
Proposition 6.4.2.1.3).

(c) As a consequence of the previous item, when R comes from a
function f, the pair of adjunctions

R.41R_1=R'4R

279
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280

reduces to the triple adjunction

ol b

from Section 2.4.

(d) The pairs R, 4 R_; and R~! 4 Ry turn out to be rather
important later on, as they appear in the definition and study
of continuous, open, and closed relations between topological
spaces (77).
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6.1 Co/Limits in the Category of Relations

This section is currently just a stub, and will be properly developed later
on.

6.2 Kan Extensions and Kan Lifts in the 2-Category
of Relations

6.2.1 Left Kan Extensions in Rel

Proposition 6.2.1.1.1. Let R: A - B be a relation.

1. Non-Existence of All Left Kan Extensions in Rel. Not all relations
in Rel admit left Kan extensions.

2. Characterisation of Relations Admitting Left Kan Extensions Along
Them. The following conditions are equivalent:

(a) The left Kan extension
Lang: Rel(A, X) — Rel(B, X)
along R exists.

(b) The relation R admits a left adjoint in Rel.

(c) The relation R is of the form f~! (as in Definition 6.3.2.1.1)
for some function f.

Proof. Item 1, Non-FExistence of All Left Kan Extensions in Rel: Omitted,
but will eventually follow Fosco Loregian’s comment on [MO 460656].

Item 2, Characterisation of Relations Admitting Left Kan Extensions
Along Them: Omitted, but will eventually follow Tim Campion’s answer
to to [MO 460656). O

Question 6.2.1.1.2. Given relations S: A - X and R: A 4 B, is there
a characterisation of when the left Kan extension

Lang(R): B $ X
exists in terms of properties of R and S?

This question also appears as [MO 461592].

Question 6.2.1.1.3. As shown in Item 2 of Proposition 6.2.1.1.1, the
left Kan extension

Lang: Rel(A, X) — Rel(B, X)

along a relation of the form R = f~! exists. Is there a explicit description
of it, similarly to the explicit description of right Kan extensions given
in Proposition 6.2.3.1.17

This question also appears as [MO 461592].
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6.2.2 Left Kan Lifts in Rel
Proposition 6.2.2.1.1. Let R: A - B be a relation.

1. Non-Ezistence of All Left Kan Lifts in Rel. Not all relations in
Rel admit left Kan lifts.

2. Characterisation of Relations Admitting Left Kan Lifts Along Them.
The following conditions are equivalent:

(a) The left Kan lift
Liftp: Rel(X, B) — Rel(X, A)

along R exists.
(b) The relation R admits a right adjoint in Rel.

(c¢) The relation R is of the form Gr(f) (as in Definition 6.3.1.1.1)
for some function f.

Proof. Item 1, Non-Ezxistence of All Left Kan Lifts in Rel: Omitted, but
will eventually follow (the dual of) Fosco Loregian’s comment on [MO
460656].

Item 2, Characterisation of Relations Admitting Left Kan Lifts Along
Them: Omitted, but will eventually follow Tim Campion’s answer to to
[MO 460656]. O

Question 6.2.2.1.2. Given relations S: A 4 X and R: A -+ B, is there
a characterisation of when the left Kan lift

Lifts(R): X - A

exists in terms of properties of R and S?
This question also appears as [MO 461592].

Question 6.2.2.1.3. As shown in Item 2 of Proposition 6.2.2.1.1, the
left Kan lift
Liftr: Rel(X, B) — Rel(X, A)

along a relation of the form R = Gr(f) exists. Is there a explicit
description of it, similarly to the explicit description of right Kan lifts
given in Proposition 6.2.4.1.17

This question also appears as [MO 461592].

ooNV 6.2.3 Right Kan Extensions in Rel


https://topological-modular-forms.github.io/the-clowder-project/tag/00NP
https://topological-modular-forms.github.io/the-clowder-project/tag/00NQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00NR
https://topological-modular-forms.github.io/the-clowder-project/tag/00NS
https://mathoverflow.net/questions/460656/existence-and-characterisations-of-left-kan-lifts-and-liftings-in-the-bicat#comment1194691_460656
https://mathoverflow.net/a/460693
https://topological-modular-forms.github.io/the-clowder-project/tag/00NT
https://topological-modular-forms.github.io/the-clowder-project/tag/00NU
https://topological-modular-forms.github.io/the-clowder-project/tag/00NV

6.2. Kan Extensions and Kan Lifts in the 2-Category of Relations 283

Let R: A - B be a relation.
0ONW Proposition 6.2.3.1.1. The right Kan extension
Rang: Rel(4, X) — Rel(B, X)
along R in Rel exists and is given by

Rang(9) 2 [ Homyq (R;7.5,")
a

for each S € Rel(A, X), so that the following conditions are equivalent:
1. We have b ~Rranp(s) @-

2. For each a € A, if a ~p b, then a ~g x.

Proof. We have

Hompgey(a,x)(S o R, T) = / Homy 1y ((S o R),, T;)
acA JxeX

beB
o / Hom{tﬂc}(( / ST x Rﬁ),T;)
acA JzxeX

= / / Homy, s (S§ x R, T7)
acAJzxeX JbeB

%/ / Hom{t,f}(ij,Hom{t,f}(RZ,Tt‘f))
acA JzeX JoeB

= / / Hom{t,f} (Sg:, Hom{t,f} (RZ, T;))
beB JzeX JacA

= / Homy g <Sf,/ Homy; (RZ,TZ”)>
beB JzeX a€A
= HomRel(Byx) (S, / Hom{tvf} (R;27T11_1)>
a€A

naturally in each S € Rel(B, X) and each T' € Rel(A4, X), showing that

/ Hom{t’f} (R;2, T(;l)
acA

is right adjoint to the precomposition functor — ¢ R, being thus the
right Kan extension along R. Here we have used the following results,
respectively (i.e. for each = sign):

1. Item 1 of Proposition 5.1.1.1.5.
2. Definition 6.3.12.1.1.

3. 77 of 77.
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4. Proposition 1.2.2.1.5.

5. 77 of 77.

6. 77 of 77.

7. Item 1 of Proposition 5.1.1.1.5.

This finishes the proof. O

00NX 6.2.4 Right Kan Lifts in Rel
Let R: A - B be a relation.
00NY Proposition 6.2.4.1.1. The right Kan lift

Riftz: Rel(X, B) — Rel(X, A)

along R in Rel exists and is given by

Riftn(S) | Homyy (B2, 5,)

for each S € Rel(X, B), so that the following conditions are equivalent:

1. We have & ~gif 5 (s) a-

2. Foreach b € B, if a ~g b, then = ~g b.
Proof. We have

HomRel(X’B)(ROS, T) %/
zeX JbeEB

acA
= / Homy, / RY x 8|, 1t
zeX JbeEB

= / / Homy, s (R% x S¢,T72)
zeX JbeEB JacA

= / / Hon’l{t’f} (Sg, Hon’l{t’f} (RZ, Tﬁ))
zeX JbeEB JaceA

= / / Homy, 1) (Sg, Homy, 1) (RZ, Tﬁ))
zeX Ja€eA JbeB

= / Hom{tyf} (Sg, / Hom{tyf} (RZ7 Tf))
z€X JacA beB

=~ Hompei(x, A) (S, / Homy, ¢, (R” 1,Tb2))
beB

naturally in each S € Rel(X, A) and each T € Rel(X, B), showing that

Hom, 1, ((Ro S)°, T;’)

5 Hom{t’f} (Rb,“ SE2)
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is right adjoint to the postcomposition functor R¢—, being thus the right
Kan lift along R. Here we have used the following results, respectively
(i.e. for each = sign):

1. Item 1 of Proposition 5.1.1.1.5.
2. Definition 6.3.12.1.1.

3. 77 of 77.

4. Proposition 1.2.2.1.5.

5. 77 of 77.

6. 77 of 77.

7. Item 1 of Proposition 5.1.1.1.5.

This finishes the proof. ]

6.3 More Constructions With Relations
6.3.1 The Graph of a Function
Let f: A — B be a function.

Definition 6.3.1.1.1. The graph of f is the relation Gr(f): A 4 B
defined as follows:"

e Viewing relations from A to B as subsets of A x B, we define

Cr(f) € {(a, f(a)) € Ax B|ac A}

o Viewing relations from A to B as functions A x B — {true, false},
we define

true if b= f(a),

false otherwise

[Gr(f)](a,b) = {

for each (a,b) € A x B.

o Viewing relations from A to B as functions A — P(B), we define

[Gr(f)](a) = {f(a)}

for each a € A, i.e. we define Gr(f) as the composition

AL B X2 p(B).

! Further Notation: We write Gr(A) for Gr(ida), and call it the graph of A.
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00P2 Proposition 6.3.1.1.2. Let f: A — B be a function.

00P3 1. Functoriality. The assignment A — Gr(A) defines a functor
Gr: Sets — Rel
where
o Action on Objects. For each A € Obj(Sets), we have
Gr(A) £ A.

o Action on Morphisms. For each A, B € Obj(Sets), the action
on Hom-sets

Gra p: Sets(A, B) — Rel(Gr(A), Gr(B))
LRel(4,B)

of Gr at (A, B) is defined by

Grap(f) = Gr(f),
where Gr(f) is the graph of f as in Definition 6.3.1.1.1.
In particular:
e Preservation of Identities. We have
Gr(ida) = xa

for each A € Obj(Sets).

e Preservation of Composition. We have

Gr(go f) = Gr(g) o Gr(f)
for each pair of functions f: A — B and g: B — C.

00P4 2. Adjointness Inside Rel. We have an adjunction

Gr(f)

(Gr(p) 457 4 $ B

f71

in Rel, where f~! is the inverse of f of Definition 6.3.2.1.1.
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3. Adjointness. We have an adjunction
Gr
~— ™
(Gr 4 Py): Sets L Rel,
5

witnessed by a bijection of sets
Rel(Gr(A), B) = Sets(A, P(B))
natural in A € Obj(Sets) and B € Obj(Rel).

4. Interaction With Inverses. We have

Ge(f)' =7,
(1) = .

5. Cocontinuity. The functor Gr: Sets — Rel of Item 1 preserves
colimits.

6. Characterisations. Let R: A - B be a relation. The following
conditions are equivalent:
(a) There exists a function f: A — B such that R = Gr(f).
(b) The relation R is total and functional.

(¢c) The weak and strong inverse images of R agree, i.e. we have
R = R_;.

(d) The relation R has a right adjoint R in Rel.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness Inside Rel: We need to check that there are inclusions

xa C f_l <>Gr(f)7
Gr(f)o f~' C xs.
These correspond respectively to the following conditions:

1. For each a € A, there exists some b € B such that a ~g,(y) b and
b~y a.
f

2. For each a,b € A, if a ~gy(y) b and b ~y-1 a, then a = b.

In other words, the first condition states that the image of any a € A
by f is nonempty, whereas the second condition states that f is not
multivalued. As f is a function, both of these statements are true, and
we are done.
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Item 3, Adjointness: The stated bijection follows from Remark 5.1.1.1.4,
with naturality being clear.

Item 4, Interaction With Inverses: Clear.

Item 5, Cocontinuity: Omitted.

Item 6, Characterisations: We claim that Items 6a to 6d are indeed
equivalent:

o Item 6a <= Item 6b. This is shown in the proof of 7?7 of 77?.

o [tem 6b = Item 6c. If R is total and functional, then, for each
a € A, the set R(a) is a singleton, implying that

RYV)E{ac A| R)NV #0},
R(V)E{ac A| R(a)CV}

are equal for all V' € P(B), as the conditions R(a) NV # () and
R(a) C V are equivalent when R(a) is a singleton.

e Jtem 6c = Item 6b. We claim that R is indeed total and func-
tional:

— Totality. If we had R(a) = () for some a € A, then we would
have a € R_1(0), so that R_1(0) # 0. But since R~(0) = 0,
this would imply R_1(0) # R~'(0), a contradiction. Thus
R(a) # 0 for all @ € A and R is total.

— Punctionality. 1f R~ = R_1, then we have
{a} = R7({b})
= R_1({b})

for each b € R(a) and each a € A, and thus R(a) C {b}. But
since R is total, we must have R(a) = {b}, and thus we see
that R is functional.

e Item 6a <= Item 6d. This follows from Proposition 5.3.3.1.1.

This finishes the proof. O

00PD 6.3.2 The Inverse of a Function
Let f: A — B be a function.

00PE Definition 6.3.2.1.1. The inverse of f is the relation f~!: B - A
defined as follows:
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e Viewing relations from B to A as subsets of B x A, we define

F1 d:ef{(b, f’l(b)> cBxA ] ac A},

where
FI0) ={ac A f(a) = b}
for each b € B.

o Viewing relations from B to A as functions B x A — {true, false},
we define

fﬁl(b ) dof {true if there exists a € A with f(a) = b,
7a =

false otherwise
for each (b,a) € B x A.
o Viewing relations from B to A as functions B — P(A), we define
i) = {ac Al fla)=1b)
for each b € B.
00PF Proposition 6.3.2.1.2. Let f: A — B be a function.
QOPG 1. Functoriality. The assignment A — A, f +— f~! defines a functor
(—=)"': Sets — Rel
where

o Action on Objects. For each A € Obj(Sets), we have
()=

o Action on Morphisms. For each A, B € Obj(Sets), the action
on Hom-sets

(—)a'p: Sets(A, B) = Rel(A, B)
of (=) ! at (A, B) is defined by
(S)ash) = ()7 !
where f~! is the inverse of f as in Definition 6.3.2.1.1.

In particular:
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e Preservation of Identities. We have
id;ll =XA

for each A € Obj(Sets).

e Preservation of Composition. We have

(go /) '=gtof
for pair of functions f: A — B and g: B — C.

00PH 2. Adjointness Inside Rel. We have an adjunction

Gr(f)

(Gr(f) - f*l): A $ B

f71
in Rel.

Q0PJ 3. Interaction With Inverses of Relations. We have

_1\ T
(£71) =G,
Gr(f)' = f7"
Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness Inside Rel: This is proved in Item 2 of Proposi-
tion 6.3.1.1.2.
Item 3, Interaction With Inverses of Relations: Clear. O
00PK 6.3.3 Representable Relations
Let A and B be sets.
00PL Definition 6.3.3.1.1. Let f: A — B and ¢g: B — A be functions.?

1. The representable relation associated to f is the relation

2More generally, given functions

f+A—C,
g:B—=D

and a relation B 4+ D, we may consider the composite relation
fxg R
A x B—= C x D — {true, false},

for which we have a ~go(rxg) b iff f(a) ~r g(b).
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Xf: A+ B defined as the composition

Ax BB pyop Xz, {true, false},

i.e. given by declaring a ~,, b iff f(a) ="b.

2. The corepresentable relation associated to g is the relation
x?: B - A defined as the composition

Bx AL 4y A X4 {true, false},

i.e. given by declaring b ~,4 a iff g(b) = a.

00PM 6.3.4 The Domain and Range of a Relation
Let A and B be sets.
00PN Definition 6.3.4.1.1. Let R C A x B be a relation.®*
1. The domain of R is the subset dom(R) of A defined by

dom(R) & {a €A

there exists some b € B
such that a ~g b )

2. The range of R is the subset range(R) of B defined by

range(R) = {b €eB

there exists some a € A
such that a ~ b '

3Following ??, we may compute the (characteristic functions associated to the)
domain and range of a relation using the following colimit formulas:

om = colim (R?, A
Xdom(R) (@) Cl?eléﬂ( ) (ac€A)

\ R,
beB
Xrange(r) (b) = colim(R%) (b€ B)

acA

\/ R,

acA

IR

IR

where the join \/ is taken in the poset ({true,false}, <) of Definition 1.2.2.1.3.
“Viewing R as a function R: A — P(B), we have

dom(R) = colim(R(y))

I
-
=
s

range(R) = colim(R(z))

I
-
=y
&
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6.3.5 Binary Unions of Relations

Let A and B be sets and let R and S be relations from A to B.

Definition 6.3.5.1.1. The union of R and S° is the relation RU S
from A to B defined as follows:

« Viewing relations from A to B as subsets of A x B, we define®

RUS < {(a,b) € Bx A | we have a ~g b or a ~g b}.

o Viewing relations from A to B as functions A — P(B), we define
[RU S](a) = R(a) U S(a)
for each a € A.

Proposition 6.3.5.1.2. Let R, S, R1, and Ry be relations from A to
B, and let S; and Ss be relations from B to C.

1. Interaction With Inverses. We have
(RUS)T = Rfu s,

2. Interaction With Composition. We have

poss.

(Sl <o Rl) U (SQ <>R2) =+ (Sl U SQ) o (Rl U RQ).

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Unwinding the definitions, we
see that:

1. The condition for (S1 ¢ R1) U (S2 ¢ Rg) is:

(a) There exists some b € B such that:
i. a ~p, band b~g, c;
or
i. a ~p, band b~g, ¢
3. The condition for (S; U S2) ¢ (R1 U Ry) is:
(a) There exists some b € B such that:
i. a~p, borar~p, b
and

i. b~g, corbnr~g, c

These two conditions may fail to agree (counterexample omitted), and
thus the two resulting relations on A x C' may differ. O

5 Further Terminology: Also called the binary union of R and S, for emphasis.
5This is the same as the union of R and S as subsets of A x B.
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6.3.6 Unions of Families of Relations

Let A and B be sets and let {R;},.; be a family of relations from A to
B.

Definition 6.3.6.1.1. The union of the family {R;},; is the relation
Uier Ri from A to B defined as follows:

« Viewing relations from A to B as subsets of A x B, we define”

URﬁg%QMEMXBVI

il

there exists some 7 € 1
such that a ~pg, b '

o Viewing relations from A to B as functions A — P(B), we define
Ur|@#Ur
icl iel

for each a € A.

Proposition 6.3.6.1.2. Let A and B be sets and let {R;},.; be a family
of relations from A to B.

1. Interaction With Inverses. We have
T
(U&>—U@-
iel iel
Proof. Item 1, Interaction With Inverses: Clear. O

6.3.7 Binary Intersections of Relations

Let A and B be sets and let R and S be relations from A to B.

Definition 6.3.7.1.1. The intersection of R and S?® is the relation
RN S from A to B defined as follows:

« Viewing relations from A to B as subsets of A x B, we define’

RNSE{(a,b) € Bx A| wehave a ~g band a ~g b}.

"This is the same as the union of {R:},c; as a collection of subsets of A x B.

8 Further Terminology: Also called the binary intersection of R and S, for
emphasis.

9This is the same as the intersection of R and S as subsets of A x B.
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o Viewing relations from A to B as functions A — P(B), we define
[RN S](a) = R(a) N S(a)
for each a € A.

00Q0 Proposition 6.3.7.1.2. Let R, S, Ry, and Rs be relations from A to
B, and let S; and Ss be relations from B to C.

0001 1. Interaction With Inverses. We have
(RNS) =R n st
00Q2 2. Interaction With Composition. We have

(Sl <>R1) N (Sg ORQ) = (51 N SQ) & (Rl N RQ).

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Unwinding the definitions, we
see that:

1. The condition for (S1 ¢ R1) N (S2 ¢ Re) is:
(a) There exists some b € B such that:
i. a ~p, band b ~g, c;
and
i. a ~p, band b ~g, ¢
3. The condition for (S1 N S2) ¢ (R1 N Ry) is:
(a) There exists some b € B such that:
i. a ~p, band a ~p, b;
and

i. b~g, cand b ~g, c.
These two conditions agree, and thus so do the two resulting relations
on AxC. ]
0003 6.3.8 Intersections of Families of Relations

Let A and B be sets and let {R;},.; be a family of relations from A to
B.

Definition 6.3.8.1.1. The intersection of the family {R;}, ; is the
relation | J;c; R; defined as follows:
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« Viewing relations from A to B as subsets of A x B, we define!”

URid:Cf{(a,b) e (Ax B)*!

el

for each i € I, }

we have a ~p, b

o Viewing relations from A to B as functions A — P(B), we define
Nrjwenae
icl i€l

for each a € A.

00Q5 Proposition 6.3.8.1.2. Let A and B be sets and let {R;},.; be a family
of relations from A to B.

0006 1. Interaction With Inverses. We have
]
(ﬂ Ri> =R}
el el

Proof. Item 1, Interaction With Inverses: Clear. O

0007 6.3.9 Binary Products of Relations

Let A, B, X, and Y be sets, let R: A - B be a relation from A to B,
and let S: X Y be a relation from X to Y.

0008 Definition 6.3.9.1.1. The product of R and S'! is the relation R x S
from A x X to B x Y defined as follows:

o Viewing relations from A x X to B x Y as subsets of (A x X) x
(B xY), we define R x S as the Cartesian product of R and S as
subsets of A x X and B x V.2

e Viewing relations from A x X to B x Y as functions A x X —
P(B xY), we define R x S as the composition

®

P
Ax X B pByxP(Y) & P(BxY)
in Sets, i.e. by
[R x S](a,2) = R(a) x S(z)

for each (a,z) € A x X.

%This is the same as the intersection of {Ri},c; as a collection of subsets of A x B.
Y Purther Terminology: Also called the binary product of R and S, for emphasis.
12That is, R x S is the relation given by declaring (a,z) ~rxs (b,y) iff a ~r b and
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00Q9 Proposition 6.3.9.1.2. Let A, B, X, and Y be sets.
000A 1. Interaction With Inverses. Let
R: A+ A,
S: X+ X
We have
(Rx S)" = Rf x sT.
00QB 2. Interaction With Composition. Let
R1 c A —i—> B,
Sli B —|—> C,
R2: X —|-> Y,
SQZ Y —{-> A

be relations. We have
(Sl <>R1) X (SQ <>R2> = (Sl X 52) < (Rl X RQ).

Proof. Item 1, Interaction With Inverses: Unwinding the definitions, we
see that:

1. We have (a,x) ~ (RxS)! (b,y) iff:

o We have (b,y) ~gxs (a,z), i.e. iff:
— We have b ~p a;
— We have y ~g ;

2. We have (a,z) ~pi gt (b,y) iff:

e We have a ~pt b and = ~gt y, i.e. iff:
— We have b ~p a;
— We have y ~g x.
These two conditions agree, and thus the two resulting relations on A x X
are equal.

Item 2, Interaction With Composition: Unwinding the definitions, we
see that:

1. We have (a,Z) ~(g,0R,)x(SaoRs) (C; 2) iff:

(a) We have a ~g,or, ¢ and x ~g,oR, 2, i.c. iff:



https://topological-modular-forms.github.io/the-clowder-project/tag/00Q9
https://topological-modular-forms.github.io/the-clowder-project/tag/00QA
https://topological-modular-forms.github.io/the-clowder-project/tag/00QB

6.3. More Constructions With Relations 297

i. There exists some b € B such that a ~g, b and b ~g, c;
ii. There exists some y € Y such that z ~p, y and y ~g, 2;

2. We have (a, ) ~ (s, x8s)o(Ri x Rz) (¢, 2) iff:

(a) There exists some (b,y) € BxY such that (a,z) ~g, xR, (b,Yy)
and (b,y) ~s,xs, (¢, 2), i.e. such that:

i. We have a ~pg, b and = ~p, ¥;
ii. We have b ~g, c and y ~g, 2.

These two conditions agree, and thus the two resulting relations from
A x X to C' x Z are equal. O
00QC 6.3.10 Products of Families of Relations

Let {A;};c; and {B;},c; be families of sets, and let {R;: A; 4 B;i},c; be
a family of relations.

00QD Definition 6.3.10.1.1. The product of the family {R;}, ; is the
relation [[;c; R; from [[;c; A; to [[;c; Bi defined as follows:

» Viewing relations as subsets, we define [[;,; I?; as its product as a
family of sets, i.e. we have

[17: = {(aiabi)z‘ef e [J(4i x By)

i€l i€l

for each i € I, }

we have a; ~p, b;

e Viewing relations as functions to powersets, we define
def
lH Ri] ((ai)ier) = T Rilas)
icl el

for each (a;);c; € [l;er Ri-

00QE 6.3.11 The Inverse of a Relation
Let A, B, and C be sets and let R C A X B be a relation.

00QF Definition 6.3.11.1.1. The inverse of R is the relation R defined
as follows:

o Viewing relations as subsets, we define

RT < {(b,a) € Bx A| we have b ~p a}.

T ~g Y.
13 Purther Terminology: Also called the opposite of R, the transpose of R, or
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o Viewing relations as functions A x B — {true, false}, we define
g

for each (b,a) € B x A.

o Viewing relations as functions A — P(B), we define
[BY] (6) = BT ({b))
“{aec Albe R(a)}
for each b € B, where RT({b}) is the fibre of R over {b}.
Example 6.3.11.1.2. Here are some examples of inverses of relations.

1. Less Than Equal Signs. We have (<)7 = >.

2. Greater Than FEqual Signs. Dually to Item 1, we have (2)T =<

3. Functions. Let f: A — B be a function. We have

Gr(f)' =7,
(1) =,

Proposition 6.3.11.1.3. Let R: A 4 B and S: B - C be relations.

1. Functoriality. The assignment R — R! defines a functor (i.e.
morphism of posets)

(=)": Rel(4, B) — Rel(B, A).
In particular, given relations R,S: A =t B, we have:
(%) If R C S, then RT C ST.
2. Interaction With Ranges and Domains. We have
dom (RT) = range(R),
range (RT) = dom(R).

3. Interaction With Composition I. We have

(SoR)' = R o 5T,
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00QQ 4. Interaction With Composition II. 'We have

XB C Ro R,
XA CR'oR.

00QR 5. Invertibility. We have

(r) =r
00QS 6. Identity. We have
Xl = xa.

Proof. Item 1, Functoriality: Clear.

Item 2, Interaction With Ranges and Domains: Clear.

Item 3, Interaction With Composition I: Clear.

Item 4, Interaction With Composition II: Clear.

Item 5, Invertibility: Clear.

Item 6, Identity: Clear. O

00QT 6.3.12 Composition of Relations
Let A, B, and C be sets and let R: A - B and S: B - C be relations.

00QU Definition 6.3.12.1.1. The composition of R and S is the relation
S ¢ R defined as follows:

o Viewing relations from A to C as subsets of A x C, we define

S<>Rd:ef{(a,c) eAxC

there exists some b € B such
that a ~g b and b ~g ¢ '

o Viewing relations as functions A x B — {true, false}, we define

_2_

beB
(SoR)”: ‘i—ef/ Syt x RV,

— —1 b
= \/ Syt x R,
beB

where the join \/ is taken in the poset ({true,false}, <) of Defini-
tion 1.2.2.1.3.

the converse of R.
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o Viewing relations as functions A — P(B), we define

B -2, p(C
SoR= Lan,,(S)o R, /
Lany 5 (S)

A—— P(B

where Lan, , (S) is computed by the formula

yeB
Lang, (SN0 = [ xpim) 00 V) @5,

yeB
= / XV(?/) © Sy
Uxvmos

yeB

U s

yev

1

I

for each V € P(B). In other words, S ¢ R is defined by'*

[S o R](a ) = S(R(a))

= U S()

zE€R(a)
for each a € A.

00QV Example 6.3.12.1.2. Here are some examples of composition of rela-
tions.

1. Composing Less/Greater Than Equal With Greater/Less Than
Equal Signs. We have

="~triv,

(AVARVAY

<
<

IN IV

="~triv -

2. Composing Less/Greater Than Equal Signs With Less/Greater
Than Equal Signs. We have

IV IA

<&
<

IV IA
IV IA

"“That is: the relation R may send a € A to a number of elements {b;},_; in B, and
then the relation S may send the image of each of the b;’s to a number of elements

{S(bi)}iel = {{cji}jiGJi}iEI in C.
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00QW Proposition 6.3.12.1.3. Let R: A $ B, S: B4 C,and T: C $ D
be relations.

00QX

00QY

00QZ

00RO

0O0R1

1. Interaction With Ranges and Domains. We have

w

4.

Proof. Item 1, Interaction With Ranges and Domains: Clear.

dom(S ¢ R) C dom(R),
range(S ¢ R) C range(S).

. Associativity. We have

(ToS)oR=To(SoR).

. Unitality. We have

xBoR=
Roxa=

R,
R.

Interaction With Inverses. We have

(SoR) = Rf o 5T,

. Interaction With Composition.

‘We have

xB C Ro R,

XACRTOR.

Item 2, Associativity: Indeed, we have

ceC
(ToS)oRE </ ! ><552><>R

o
m
ﬁ
/N
—
o
M
8y
R
<o
=
o
~—

T L Sc> oRb_2

b
T Lx Sp)oR”,

(T x Sp) <>Rb
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In the language of relations, given a € A and d € D, the stated equality
witnesses the equivalence of the following two statements:

1. We have a ~(1,5)sr d, i.e. there exists some b € B such that:

(a) We have a ~p b;
(b) We have b ~74g d, i.e. there exists some ¢ € C' such that:

i. We have b ~g c;
ii. We have ¢ ~p d;

2. We have a ~r4(soR) d, i.e. there exists some ¢ € C such that:

(a) We have a ~gsR ¢, i.e. there exists some b € B such that:

i. We have a ~p b;
ii. We have b ~g ¢;
(b) We have ¢ ~7 d;

both of which are equivalent to the statement
e There exist b € B and ¢ € C such that a ~g b ~g ¢ ~7 d.

Item 3, Unitality: Indeed, we have

and

dof €A B -
Roxa :/ Rt x (XA)fz

= \/ R;*
zeB
T=—2

= RZL.

In the language of relations, given a € A and b € B:
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e The equality
XB < R=R

witnesses the equivalence of the following two statements:

1. We have a ~ B.

2. There exists some b’ € B such that:
(a) We have a ~pg b/
(b) We have b’ ~,, b, i.e. b’ =b.

o The equality
Ro XA = R

witnesses the equivalence of the following two statements:

1. There exists some a’ € A such that:
(a) We have a ~y, @/, ie. a=d'.
(b) We have a’ ~r b

2. We have a ~p B.

Item 4, Interaction With Inverses: Clear.
Item &, Interaction With Composition: Clear. O

00R2 6.3.13 The Collage of a Relation
Let A and B be sets and let R: A - B be a relation from A to B.

00R3 Deﬁnﬁknﬂi&l&li.TheaﬂbgeofR“HsﬂwpowtCoHUﬂgg(CdKR%deum)
consisting of:

o The Underlying Set. The set Coll(R) defined by
Coll(R) £ A B.
e The Partial Order. The partial order
=coll(r): Coll(R) x Coll(R) — {true, false}
on Coll(R) defined by

<(a,b) d:ef{true ifa=bor an~pgb,

false otherwise.

00R4 Proposition 6.3.13.1.2. Let A and B be sets and let R: A -+ B be a
relation from A to B.

15 Purther Terminology: Also called the cograph of R.
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Q0R5 1. Functoriality I. The assignment R +— Coll(R) defines a functor'®
Coll: Rel(4, B) — Pos a1(A, B),
where
o Action on Objects. For each R € Obj(Rel(A, B)), we have
[Coll}(R) = (Coll(R), ¢r)

for each R € Rel(A, B), where

— The poset Coll(R) is the collage of R of Definition 6.3.13.1.1.
— The morphism ¢r: Coll(R) — A' is given by

0 ifzeA,

Pr(T) = {1 if € B

for each x € Coll(R).

o Action on Morphisms. For each R, S € Obj(Rel(A, B)), the
action on Hom-sets

Collg,s: Homgeja,p) (R, S) — Pos(Coll(R), Coll(S))
of Coll at (R, S) is given by sending an inclusion

t:RCS

16Here Pos,A1(A, B) is the category defined as the pullback

Pos,A1(A, B) =f pt X Pos /a1 X pt,
[A],Pos,fibg fiby ,Pos,[B]

as in the diagram

POS/Al A B
Pos, a1 >< pt pt >< Pos/A1
Pos /a1

\ IO %

Explicitly, an object of Pos,a1(A, B) is a pair (X, ¢x) consisting of
e A poset X;
o A morphism ¢x: X — A';
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to the morphism
Coll(:): Coll(R) — Coll(S)
of posets over Al defined by
[Coll(1)](z) £ «
for each x € Coll(R).!7

00R6 2. Fquivalence. The functor of Item 1 is an equivalence of categories.

Proof. Item 1, Functoriality: Clear.
Item 2, Equivalence: Omitted. O

00r7 6.4 Functoriality of Powersets

00R8 6.4.1 Direct Images
Let A and B be sets and let R: A - B be a relation.

00R9 Definition 6.4.1.1.1. The direct image function associated to R
is the function

R.: P(A) = P(B)
defined by!'®:19
R.(U) ¥ R(U)
= U Ra)

acU

:{beB

for each U € P(A).

00RA Remark 6.4.1.1.2. Identifying subsets of A with relations from pt to A
via [tem 3 of Proposition 2.4.3.1.6, we see that the direct image function
associated to R is equivalently the function

there exists some a € U
such that b € R(a)

R.: P(A) — P(B)
~—— ——
~Rel(pt,A) ~Rel(pt,B)

such that ¢'(0) = A and ¢'(0) = B, with morphisms between such objects being
morphisms of posets over Al
"Note that this is indeed a morphism of posets: if =con(r) ¥, then x = y or
x ~R ¥y, so we have either z =y or  ~s y (as R C S), and thus  <con(s) ¥-
8 Purther Terminology: The set R(U) is called the direct image of U by R.
19We also have
R.(U)= B\ R(A\U);
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defined by
R(U)ERoU

for each U € P(A), where Ro U is the composition
U R
pt - A B.
00RB Proposition 6.4.1.1.3. Let R: A - B be a relation.
Q0RC 1. Functoriality. The assignment U — R, (U) defines a functor
R.: (P(A),C) = (P(B),C)
where
o Action on Objects. For each U € P(A), we have
[RJ(U) = R(U).
o Action on Morphisms. For each U,V € P(A):
— If U C V, then R.(U) C R.(V).

Q0RD 2. Adjointness. We have an adjunction
(R« 1R_1): P(A) L P(B),

witnessed by a bijections of sets
Homp(4)(R«(U), V) = Homp ) (U, R-1(V)),
natural in U € P(A) and V € P(B), i.e. such that:

(x) The following conditions are equivalent:
— We have R, (U) C V.
— We have U C R_1(V).

00ORE 3. Preservation of Colimits. We have an equality of sets
R, <U UZ-) = |J R.(Uh),
iel el
natural in {U;};.; € P(A)*!. In particular, we have equalities

R.(U)URL(V)=R.(UUV),
R.(0) =10,

natural in U,V € P(A).
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00RF 4. Oplazx Preservation of Limits. We have an inclusion of sets
R, <ﬂ Ui> C () R«(U),
iel il
natural in {U;};.; € P(A)*!. In particular, we have inclusions

R (UNV) C R(U)N R.(V),
R.(A) C B,

natural in U,V € P(A).

00RG 5. Symmetric Strict Monoidality With Respect to Unions. The direct
image function of Item 1 has a symmetric strict monoidal structure

(Re, RZ,RE,): (P(A),U,0) = (P(B),U,0),
being equipped with equalities
RﬁU,V: R.,(U)URL(V)= R(UUYV),
Rfjlz 0=0,
natural in U,V € P(A).

QORH 6. Symmetric Oplax Monoidality With Respect to Intersections. The
direct image function of Item 1 has a symmetric oplax monoidal
structure

(R., RS, RS,): (P(4),0, 4) = (P(B),N, B),
being equipped with inclusions
Rij’V: R.(UNV)C R.(U)NR(V),
Rﬁlz R.(A) C B,
natural in U,V € P(A).
Q0RJ 7. Relation to Direct Images With Compact Support. We have
R.(U) = B\ Ri(A\U)
for each U € P(A).

Proof. Item 1, Functoriality: Clear.
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Item 2, Adjointness: This follows from ?7 of 77.

Item 3, Preservation of Colimits: This follows from Item 2 and 77 of ?77.
Item 4, Oplax Preservation of Limits: Omitted.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This
follows from Item 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections:
This follows from Item 4.

Item 7, Relation to Direct Images With Compact Support: The proof
proceeds in the same way as in the case of functions (?? of Proposi-
tion 2.4.4.1.4): applying Item 7 of Proposition 6.4.4.1.3 to A\ U, we
have

R(A\U) =B\ R(A\ (A\U))
= B\ R.(U).

Taking complements, we then obtain

R.(U) = B\ (B\ R.(U)),
=B\ R(A\U),

which finishes the proof. O
Proposition 6.4.1.1.4. Let R: A -+ B be a relation.

1. Functionality I. The assignment R — R, defines a function

(—),: Rel(4, B) — Sets(P(A),P(B)).
2. Functionality II. The assignment R +— R, defines a function
(—),: Rel(A4, B) = Pos((P(A), C), (P(B),C)).
3. Interaction With Identities. For each A € Obj(Sets), we have?’
(x4), = idp(a).

4. Interaction With Composition. For each pair of composable

see Item 7 of Proposition 6.4.1.1.3.
20That is, the postcomposition function

(xa),: Rel(pt, A) — Rel(pt, A)

is equal to idgrei(pt,a)-
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relations R: A - B and S: B - C, we have?!

P(A) I P(B)

(SoR),

P(C).

Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: Indeed, we have

(x4),(0) = | xala)

aclU

U}

aclU
=U

def

= idp(4)(U)

for each U € P(A). Thus (xa), = idp(a)-.
Item 4, Interaction With Composition: Indeed, we have

(SoR).(U)= | J[S o R](a)

acU

“ | S(R(a))

aclU

= U Su(R(a))

aclU

:&<UR@>

acU
= 5. (R(U))
&S, o R,(U)

for each U € P(A), where we used Item 3 of Proposition 6.4.1.1.3. Thus
(SoR), = SioR.. O

2IThat is, we have

Rel(pt, A) EiLN Rel(pt, B)

(SoR), = S0 R, \ %
(SoR),

Rel(pt, C).
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00RQ 6.4.2 Strong Inverse Images
Let A and B be sets and let R: A - B be a relation.

00RR Definition 6.4.2.1.1. The strong inverse image function associ-
ated to R is the function

R_i: P(B) —» P(A)
defined by??
R (V)E{aecA|R(a)CV}
for each V € P(B).

00RS Remark 6.4.2.1.2. Identifying subsets of B with relations from pt to B
via Item 3 of Proposition 2.4.3.1.6, we see that the inverse image function
associated to R is equivalently the function

R.i: PB) — PA)
~—~— ~—~—
>Rel(pt,B) >~Rel(pt,A)

defined by

A
Riftr(V y
R_1(V) ZRiftg(V), V) %R
B

and being explicitly computed by

def

R_1(V) Z Riftp(V)

~ b

b
—1’V—2>’
be

where we have used Proposition 6.2.4.1.1.

22 pyrther Terminology: The set R_1(V) is called the strong inverse image of V
by R.
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Proof. We have

RiftR(V) = / HOm{t7f} (Rb_l s VEQ)
beB

= {a €A ' / Homy ) (RZ,V:’) = true}
beB

for each b € B, at least one of the
following conditions hold:

1. We have R® = false
=qacd 2. The following conditions hold:

(a) We have R? = true
(b) We have V? = true

for each b € B, at least one of the
following conditions hold:

1. We have b ¢ R(a)
=qa€A 2. The following conditions hold:

(a) We have b € R(a)
(b) We have b e V

= {a € A | for each b € R(a), we have b e V}
={a€A| R(a) CV}

def

Y R_(V).
This finishes the proof. O
Q0RT Proposition 6.4.2.1.3. Let R: A - B be a relation.
Q0RU 1. Functoriality. The assignment V' — R_;(V') defines a functor
R_y: (P(B),C) = (P(4),Q)
where
o Action on Objects. For each V € P(B), we have
[R](V) < R_y(V).

o Action on Morphisms. For each U,V € P(B):
— IfU CV,then R_1(U) C R_1(V).
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00RV 2. Adjointness. We have an adjunction
(R« 1R_1): P(A) L P(B),

witnessed by a bijections of sets
Homp(4)(R.(U),V) = Homp(4)(U, R—1(V)),
natural in U € P(A) and V € P(B), i.e. such that:

(x) The following conditions are equivalent:

— We have R.(U) C V.
— We have U C R_1(V).

QORW 3. Lax Preservation of Colimits. We have an inclusion of sets
U R-1(Us) c Ry (U Uz‘),
icl icl

natural in {U;};.; € P(B )*!. In particular, we have inclusions

Rfl(U) URfl(V) C Rfl(UU V),
0 c R_(0),

natural in U,V € P(B).
QORX 4. Preservation of Limits. We have an equality of sets
R_4 <ﬂ Ui) = ﬂ R_(U;),
iel iel
natural in {Us};.; € P(B)*!. In particular, we have equalities

R_1(UNV)=R_,(U)NR_1(V),
R_,(B) = B,
natural in U,V € P(B).

Q0RY 5. Symmetric Lax Monoidality With Respect to Unions. The direct
image with compact support function of Item 1 has a symmetric
lax monoidal structure

(R4, B2, B2, 1)« (P(A),U,0) — (P(B),U,0),
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being equipped with inclusions

R®

Yy Ba(U)UR4 (V) C R4 (UUYV),

R® -0 C Ry(0),

natural in U,V € P(B).

. Symmetric Strict Monoidality With Respect to Intersections. The

direct image function of Item 1 has a symmetric strict monoidal
structure

(R-1,R21, R2y,): (P(A),0, 4) > (P(B),N, B),
being equipped with equalities

R®

BSTIAE (U)NR_1(V),

RA(UNV)S R,
~1(A) =B

&
RZ0 R

natural in U,V € P(B).

. Interaction With Weak Inverse Images 1. We have

R1(V)=A\R™Y(B\V)

for each V € P(B).

. Interaction With Weak Inverse Images II. Let R: A 4 B be a

relation from A to B.

(a) If R is a total relation, then we have an inclusion of sets
R (V) c R7YV)

natural in V € P(B).

(b) If R is total and functional, then the above inclusion is in fact
an equality.

(c) Conversely, if we have R_; = R™!, then R is total and func-
tional.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This follows from 77 of ?7.

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: This follows from Item 2 and 7?7 of ?7.
Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows
from Item 3.
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Item 6, Symmetric Strict Monoidality With Respect to Intersections:
This follows from Item 4.
Item 7, Interaction With Weak Inverse Images I: We claim we have an
equality

R_{(B\V)=A\R (V).

Indeed, we have

R_1(B\V)={a€A|R(a) C B\V},
A\R'V)={ac A|R(a)NV =0}

Taking V' = B\ V then implies the original statement.
Item 8, Interaction With Weak Inverse Images II: Item 8a is clear, while
Items 8b and 8¢ follow from Item 6 of Proposition 6.3.1.1.2. O

Proposition 6.4.2.1.4. Let R: A -+ B be a relation.

1. Punctionality I. The assignment R +— R_; defines a function
(—)_1: Sets(A, B) — Sets(P(A), P(B)).
2. Functionality II. The assignment R — R_; defines a function
(—)_q: Sets(A, B) — Pos((P(A),C),(P(B),C)).
3. Interaction With Identities. For each A € Obj(Sets), we have
(ida)_; = idp(a)-

4. Interaction With Composition. For each pair of composable
relations R: A - B and S: B b C, we have

SoR) ;=R_105_q,
( )1 1051 (sm)_\ IR_1

P(A).

Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: Indeed, we have

(xa)_,(U)={a€ Al xala) cU}
“aecAl|{a} CcU}
=U
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for each U € P(A). Thus (xa)_; = idp(a)-
Item 4, Interaction With Composition: Indeed, we have
(SoR)_(U)={ac A|[SoR](a) CU}

= {a€ A|S(R(a) CU}
= {a€ Al S.(R(a)) CU}
={a€ A| R(a) c S1(U)}
ER(S(U))
L[R1085.4)(U)

for each U € P(C), where we used Item 2 of Proposition 6.4.2.1.3, which
implies that the conditions

e We have S.(R(a)) C U.
o We have R(a) C S_1(U).

are equivalent. Thus (SoR)_; =R_105_;. O

6.4.3 Weak Inverse Images
Let A and B be sets and let R: A - B be a relation.

Definition 6.4.3.1.1. The weak inverse image function associated
to R% is the function

R™': P(B) = P(A)
defined by**
RIWV)E{ac A| R(a)NV # 0}
for each V € P(B).
Remark 6.4.3.1.2. Identifying subsets of B with relations from B to pt

via Item 3 of Proposition 2.4.3.1.6, we see that the weak inverse image
function associated to R is equivalently the function

RY PB) — PA)
—— ——
~Rel(B,pt) >~Rel(A,pt)

defined by
def

RYV)=VoR

23 Purther Terminology: Also called simply the inverse image function associated
to R.

24 Purther Terminology: The set R™(V) is called the weak inverse image of V/
by R or simply the inverse image of V by R.
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for each V€ P(A), where R ¢V is the composition
RV
A+ B b pt.
Explicitly, we have
R V)EVoR
ar (7P Vit x RY.
Proof. We have

wer [VEB ,
VoRY V, ' x RY,

beB
=<{acA / Vi x RY = true

there exists b € B such that the
following conditions hold:

=qae€d 1. We have V;* = true
2. We have R? = true

there exists b € B such that the
following conditions hold:

1. We have be V
2. We have b € R(a)

= {a € A | there exists b € V such that b € R(a)}
={a€A| R(a)NV # 0}
=RTNV)

This finishes the proof. O
00SD Proposition 6.4.3.1.3. Let R: A -+ B be a relation.
00SE 1. Functoriality. The assignment V +— R~!(V) defines a functor
R™': (P(B),C) — (P(4),0)
where

o Action on Objects. For each V € P(B), we have

[R’l] (V) E RL(V).
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o Action on Morphisms. For each U,V € P(B):
~ IfU CV, then R-N(U) c R™Y(V).

00SF 2. Adjointness. We have an adjunction

(R R): P(B)RS_ P(A),
Ry

witnessed by a bijections of sets
Homp 4) (R_I(U), V) = Homp(a) (U, Ri(V)),

natural in U € P(A) and V € P(B), i.e. such that:

(x) The following conditions are equivalent:

— We have R~Y(U) C V.
— We have U C Ry(V).

00SG 3. Preservation of Colimits. We have an equality of sets
w(yo) =y,
iel iel
natural in {Us};.; € P(B)*!. In particular, we have equalities

RYUO)URN(V)=R ' (UUV),
R(0) =0,

natural in U,V € P(B).
00SH 4. Oplazx Preservation of Limits. We have an inclusion of sets
R (ﬂ Ui) c (R (),
i€l i€l
natural in {Us},.; € P(B)*!. In particular, we have inclusions

RYUNV)c RRY(U)NR(V),
R™1(A) c B,

natural in U,V € P(B).

00SJ 5. Symmetric Strict Monoidality With Respect to Unions. The direct
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image function of Item 1 has a symmetric strict monoidal structure
(RL RS REME): (P(A),0,0) = (P(B),U,0),
being equipped with equalities

RV R U)URTN(V) SR UUY),
0,

RV 05

natural in U,V € P(B).

. Symmetric Oplax Monoidality With Respect to Intersections. The

direct image function of Item 1 has a symmetric oplax monoidal
structure

(R RV, REM9) 1 (P(4),0, 4) — (P(B),N, B),
being equipped with inclusions

RV RIUNV)C R U)NR V),
R R7Y(A) C B,

natural in U,V € P(B).

. Interaction With Strong Inverse Images I. We have

R (V)=A\R_{(B\V)

for each V € P(B).

. Interaction With Strong Inverse Images II. Let R: A - B be a

relation from A to B.

(a) If R is a total relation, then we have an inclusion of sets
R(V)C RY(V)

natural in V € P(B).

(b) If R is total and functional, then the above inclusion is in fact
an equality.

(c) Conversely, if we have R_; = R™!, then R is total and func-
tional.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This follows from ?7 of 77.
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Item 3, Preservation of Colimits: This follows from [tem 2 and 77 of ?77.
Item 4, Oplax Preservation of Limits: Omitted.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This
follows from Item 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections:
This follows from Item 4.

Item 7, Interaction With Strong Inverse Images I: This follows from
Item 7 of Proposition 6.4.2.1.3.

Item 8, Interaction With Strong Inverse Images II: This was proved in
Item 8 of Proposition 6.4.2.1.3. [

Proposition 6.4.3.1.4. Let R: A -+ B be a relation.

1. Punctionality I. The assignment R — R~! defines a function
(=)"': Rel(A, B) — Sets(P(A), P(B)).
2. Functionality II. The assignment R +— R~! defines a function
(=)' Rel(4, B) — Pos((P(A), C), (P(B), C)).
3. Interaction With Identities. For each A € Obj(Sets), we have?
(xa) ™" = idp(a).

4. Interaction With Composition. For each pair of composable
relations R: A - B and S: B - C, we have®0

(SoR) '=R1tos7t, .
(SoRr)™!

P(A).

25That is, the postcomposition
(xa)™': Rel(pt, A) — Rel(pt, A)

is equal to idRel(pt,a)-
26That is, we have

Rel(pt, C) 2 Rel(pt, B)

(SeR)'=RoST, \ Fl
(SoR)™ !

Rel(pt, A).
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Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: This follows from Item 5 of Proposi-

tion 8.1.6.1.2.
Item 4, Interaction With Composition: This follows from Item 2 of
Proposition 8.1.6.1.2. O

00SW 6.4.4 Direct Images With Compact Support
Let A and B be sets and let R: A - B be a relation.

00SX Definition 6.4.4.1.1. The direct image with compact support
function associated to R is the function

R: P(A) — P(B)

defined by?7-?8

R ben for each a € A, if we have
! B b€ R(a), then a € U

={ven ] R™'(b) U}
for each U € P(A).

00SY Remark 6.4.4.1.2. Identifying subsets of B with relations from pt to
B via Item 3 of Proposition 2.4.3.1.6, we see that the direct image with
compact support function associated to R is equivalently the function

R: P(A) — P(B)
—— ——
>~Rel(A,pt) =~Rel(B,pt)

defined by

-

. R
R[(U)d:fRaIlR(U), /7RanR(U)

A——
U

PR

ko)
s

2T Purther Terminology: The set Ri(U) is called the direct image with compact
support of U by R.
28We also have
Ri(U) =B\ R.(A\U);

see Item 7 of Proposition 6.4.4.1.3.
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being explicitly computed by
R*(U) £ Rang(U)
= / Homy gy (R, 2, U, 1),
acA
where we have used Proposition 6.2.3.1.1.
Proof. We have
Rang(V) = / Homy; r (R2,U )
acA
= {b €B ‘ / Homy, g (RS, UZ) = true}
a€A
for each a € A, at least one of the
following conditions hold:
1. We have R® = false
={beEB 2. The following conditions hold:
(a) We have R? = true
(b) We have U} = true
for each a € A, at least one of the
following conditions hold:
1. We have b ¢ R(A)
=¢beB 2. The following conditions hold:
(a) We have b € R(a)
(b) We have a € U
for each a € A, if we have
=JqbeB
b€ R(a), then a € U
={beB|R'(b)CcU}
ZRNU).
This finishes the proof. O

00SZ Proposition 6.4.4.1.3. Let R: A - B be a relation.

0070

1. Functoriality. The assignment U — Ri(U) defines a functor

Ry: (P(4),C) = (P(B),C)

where



https://topological-modular-forms.github.io/the-clowder-project/tag/00SZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00T0

6.4. Functoriality of Powersets 322

o Action on Objects. For each U € P(A), we have
[R](U) = Ry(U).
o Action on Morphisms. For each U,V € P(A):
— IfU CV, then R(U) C R(V).
00T1 2. Adjointness. We have an adjunction

(R R): P(B)Rz P(A),
Ry

witnessed by a bijections of sets
Homp 4 (Ril(U), V) = Homp(4)(U, Ri(V)),
natural in U € P(A) and V € P(B), i.e. such that:

(x) The following conditions are equivalent:

— We have R~Y(U) C V.
— We have U C Ry(V).

00T2 3. Lazx Preservation of Colimits. We have an inclusion of sets

U R(Ui) c Ry (U Uz‘>,
il iel

natural in {Us},.; € P(A)*!. In particular, we have inclusions

Ry(U) U R!(V) - R!(UU V),
0 c R(0),

natural in U,V € P(A).
00T3 4. Preservation of Limits. We have an equality of sets
R (ﬂ Ui> = R(U3),
i€l i€l
natural in {Us},.; € P(A)*!. In particular, we have equalities

R(UAV) = R(U) N R(V),
R'(A) = B7

natural in U,V € P(A).
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5. Symmetric Lax Monoidality With Respect to Unions. The direct
image with compact support function of Item 1 has a symmetric
lax monoidal structure

(B RE, B ) (P(4),0.0)  (P(B),U,0).
being equipped with inclusions

Rﬁavi R(U)UR((V)C R(UUV),
R(I?l: bc R'(@),

natural in U,V € P(A).

6. Symmetric Strict Monoidality With Respect to Intersections. The
direct image function of Item 1 has a symmetric strict monoidal
structure

(B, R?, By): (P(A),0,4) - (P(B),N, B),
being equipped with equalities

Ry Ri(UNV) S R(U) N R(V),
R Ri(A) 5 B,

natural in U,V € P(A).

7. Relation to Direct Images. We have
R(U) =B\ R.(A\U)
for each U € P(A).

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This follows from ?7 of 77.

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: This follows from Item 2 and ?7?7 of 77.
Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows
from Item 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections:
This follows from Item 4.

Item 7, Relation to Direct Images: This follows from Item 7 of Proposi-
tion 6.4.1.1.3. Alternatively, we may prove it directly as follows, with
the proof proceeding in the same way as in the case of functions (Item 9
of Proposition 2.4.6.1.6).

We claim that R(U) = B\ R.(A\U):
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The First Implication. We claim that

R(U) C B\ R.(A\ D).
Let b € R)(U). We need to show that b ¢ R.(A\ U), i.e. that there
isno a € A\ U such that b € R(a).

This is indeed the case, as otherwise we would have a € R~1(b) and
a & U, contradicting R~*(b) C U (which holds since b € R,(U)).

Thus b € B\ R.(A\U).
The Second Implication. We claim that
B\ R(A\U) C Ry(U).
Let b € B\ R«(A\U). We need to show that b € R|(U), i.e. that
R~ Y(b) CU.

Since b ¢ R.(A\ U), there exists no a € A\ U such that b € R(a),
and hence R™1(b) C U.

Thus b € Ri(U).

This finishes the proof. O
00T7 Proposition 6.4.4.1.4. Let R: A - B be a relation.
00T8 1. Functionality I. The assignment R — R) defines a function

(—),: Sets(A, B) — Sets(P(A), P(B)).
00T9 2. Functionality II. The assignment R — R) defines a function
(—),: Sets(A, B) — Hompos((P(A), C), (P(B),Q)).
Q0TA 3. Interaction With Identities. For each A € Obj(Sets), we have
(ida), = idp(a)-

00TB 4. Interaction With Composition. For each pair of composable

relations R: A - B and S: B - C, we have
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Proof. Item 1, Functionality I: Clear.
Item 2, Functionality II: Clear.
Item 3, Interaction With Identities: Indeed, we have
(xa)(U) = {a € A| x3'(a) c U}
“{acA|{a} CcU}
=U
for each U € P(A). Thus (xa), = idp(a).
Item 4, Interaction With Composition: Indeed, we have
(So R (U) = {ceC|[SeoR](c) c U}
d:ef{c eC ‘ S_1<R_1(c)) C U}
={cec| R c W)}
= Ri(S(U))
= [Rio SJ(U)
for each U € P(C'), where we used Item 2 of Proposition 6.4.4.1.3, which
implies that the conditions
o We have S71(R7(c)) C U.
o We have R71(c) C Si(U).
are equivalent. Thus (S o R), = S1 o R. O
6.4.5 Functoriality of Powersets
Proposition 6.4.5.1.1. The assignment X + P(X) defines functors®’
P : Rel — Sets,
P_1: Rel°® — Sets,
P~1: Rel® — Sets,
Pr: Rel — Sets
where

o Action on Objects. For each A € Obj(Rel), we have

®The functor P.: Rel — Sets admits a left adjoint;

see Item 3 of
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o Action on Morphisms. For each morphism R: A - B of Rel, the

1mages
P.(R): P(A) = P(B),
P_1(R): P(B) — P(A),
P~LYR): P(B) = P(A),
Pi(R): P(A) — P(B)

of R by P,, P_1, P~ !, and P, are defined by

P.(R) ¥ R,,
P_1(R) = R_4,
PUR)= R,

P(R) < R),

as in Definitions 6.4.1.1.1, 6.4.2.1.1, 6.4.3.1.1 and 6.4.4.1.1.

Proof. This follows from Items 3 and 4 of Proposition 6.4.1.1.4, Items 3
and 4 of Proposition 6.4.2.1.4, Items 3 and 4 of Proposition 6.4.3.1.4,
and Items 3 and 4 of Proposition 6.4.4.1.4. O

6.4.6 Functoriality of Powersets: Relations on Powersets

Let A and B be sets and let R: A - B be a relation.

Definition 6.4.6.1.1. The relation on powersets associated to R
is the relation

P(R): P(A) 4 P(B)

defined by’
P(R)}; = Rel(xpi, Vo RoU)

for each U € P(A) and each V € P(B).

Remark 6.4.6.1.2. In detail, we have U ~p(g) V iff the following
equivalent conditions hold:

e We have xpt CVoRoU.

e We have (Vo RoU)} = true, i.e. we have

acA rbeB b
/ Vi x R, x U = true.

Proposition 6.3.1.1.2.
30Tlustration:
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e There exists some a € A and some b € B such that:

— We have U? = true.
— We have R? = true.
— We have V;* = true.

o There exists some a € A and some b € B such that:

— We have a € U.
— We have a ~g b.
— We have be V.
00TH Proposition 6.4.6.1.3. The assignment R +— P(R) defines a functor
P: Rel — Rel.
Proof. Omitted. O
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Equivalence Relations and
Apartness Relations

00TJ This chapter contains some material about reflexive, symmetric, transi-
tive, equivalence, and apartness relations.
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007k 7.1 Reflexive Relations

00TL 7.1.1 Foundations

Let A be a set.
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Definition 7.1.1.1.1. A reflexive relation is equivalently:'
e An Ep-monoid in (Ne(Rel(A4, A)), x4).
o A pointed object in (Rel(A4, A), x4).

Remark 7.1.1.1.2. In detail, a relation R on A is reflexive if we have
an inclusion

NrR: xXa C R

of relations in Rel(A, A), i.e. if, for each a € A, we have a ~p a.
Definition 7.1.1.1.3. Let A be a set.

1. The set of reflexive relations on A is the subset Rel™(4, A)
of Rel(A, A) spanned by the reflexive relations.

2. The poset of relations on A is is the subposet Relreﬂ(A, A) of
Rel(A, A) spanned by the reflexive relations.

Proposition 7.1.1.1.4. Let R and S be relations on A.
1. Interaction With Inverses. If R is reflexive, then so is RT.

2. Interaction With Composition. If R and S are reflexive, then so
is So R.

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Clear. O

7.1.2 The Reflexive Closure of a Relation
Let R be a relation on A.

Definition 7.1.2.1.1. The reflexive closure of ~p is the relation ~
satisfying the following universal property:

refl2
R

(x) Given another reflexive relation ~g on A such that R C S, there
exists an inclusion Nﬂgﬂ C ~g.

Construction 7.1.2.1.2. Concretely, Nl}gﬂ is the free pointed object on

R in (Rel(4, A),xa)*, being given by
Rreﬁ def R HRel(A,A) A
=RUAY4
= {(a,b) € A x A | we have a ~ b or a = b}.

'Note that since Rel(A, A) is posetal, reflexivity is a property of a relation, rather
than extra structure.

2 Further Notation: Also written R™%.

3 Slogan: The reflexive closure of R is the smallest reflexive relation containing R.

40r, equivalently, the free Eo-monoid on R in (N¢(Rel(4, A)), x4)-
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Proof. Clear. O
Proposition 7.1.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

(_)reﬂ
refl | =Y. - refl
((-)"4%): Rel(4,4)_ 1 " Rel™(4,4),

witnessed by a bijection of sets

Rel"™” (Rreﬂ, 5) ~ Rel(R, S),
natural in R € Obj(Rel™"(4, 4)) and S € Obj(Rel(4, A)).

2. The Reflexive Closure of a Reflerive Relation. If R is reflexive,
then R™% = R.

3. Idempotency. We have
(Rreﬂ)mﬂ — Rreﬂ.
4. Interaction With Inverses. We have

_yrefl
Rel(A, 4) = Rel(4, A)

(RT)reﬂ = (Rreﬁyv <—>ﬂ [(—)*

Rel(4, 4) — Rel(4, 4).

5. Interaction With Composition. We have
Rel(A, A) x Rel(A, A) $ Rel(A4, A)
(S iod R)reﬂ = Sreﬂ <& Rreﬂ, (_)reﬂx(_)reﬂ[ [(_)reﬂ

Rel(A, A) x Rel(A, A) 3 Rel(A, A).

Proof. Item 1, Adjointness: This is a rephrasing of the universal property
of the reflexive closure of a relation, stated in Definition 7.1.2.1.1.

Item 2, The Reflexive Closure of a Reflexive Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of
Proposition 7.1.1.1.4. 0
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7.2 Symmetric Relations

7.2.1 Foundations
Let A be a set.

Definition 7.2.1.1.1. A relation R on A is symmetric if we have
R' =R.
Remark 7.2.1.1.2. In detail, a relation R is symmetric if it satisfies

the following condition:
(%) For each a,b € A, if a ~r b, then b ~g a.
Definition 7.2.1.1.3. Let A be a set.

1. The set of symmetric relations on A is the subset Rel*¥™™ (A, A)
of Rel(A, A) spanned by the symmetric relations.

2. The poset of relations on A is is the subposet Rel®™" (A, A) of
Rel(A, A) spanned by the symmetric relations.

Proposition 7.2.1.1.4. Let R and S be relations on A.
1. Interaction With Inverses. If R is symmetric, then so is RT.

2. Interaction With Composition. If R and S are symmetric, then
sois S o R.

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Clear. 0

7.2.2 The Symmetric Closure of a Relation

Let R be a relation on A.

Definition 7.2.2.1.1. The symmetric closure of ~p is the relation
Symm5 . . . . 6
~5 satisfying the following universal property:

(x) Given another symmetric relation ~g on A such that R C S, there

symm

exists an inclusion ~p C ~g.

Construction 7.2.2.1.2. Concretely, ~3™" is the symmetric relation

on A defined by

RY™™ R U R
={(a,b) € Ax A | we have a ~g bor b ~p a}.

® Further Notation: Also written RY™™,
6Slogan: The symmetric closure of R is the smallest symmetric relation containing
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Proof. Clear. O
Proposition 7.2.2.1.3. Let R be a relation on A.
1. Adjointness. We have an adjunction
(;)imi "
(=)™ 4X): Rel(A,A)&Jt__/ Rel¥™M(A, A),
witnessed by a bijection of sets
Rel¥MM(R¥»™M1 1 S) = Rel(R, S),
natural in R € Obj(Rel™™™ (A4, A)) and S € Obj(Rel(A, A)).
2. The Symmetric Closure of a Symmetric Relation. If R is symmet-
ric, then R®Y™" = R.
3. Idempotency. We have
(REY™Mm)Symm _ psymm,
4. Interaction With Inverses. We have
Rel(4, A) 75 Rel(4, A)
(R)™™ = (o). <—>*| [(—)*
Rel(4, A) e Rel(A, A).
5. Interaction With Composition. We have
Rel(A, A) x Rel(A, A) $ Rel(A4, A)
(S0 = ST, ] =

Rel(A, A) x Rel(A, A) ; Rel(A, A).

Proof. Item 1, Adjointness: This is a rephrasing of the universal property
of the symmetric closure of a relation, stated in Definition 7.2.2.1.1.
Item 2, The Symmetric Closure of a Symmetric Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of
Proposition 7.2.1.1.4. 0
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7.3 Transitive Relations

7.3.1 Foundations
Let A be a set.

Definition 7.3.1.1.1. A transitive relation is equivalently:”
o A non-unital E;-monoid in (Ne(Rel(A4, A)),©).
o A non-unital monoid in (Rel(4, A), ).

Remark 7.3.1.1.2. In detail, a relation R on A is transitive if we have
an inclusion

pur: ROoRCR

of relations in Rel(A, A), i.e. if, for each a,c € A, the following condition
is satisfied:

(%) If there exists some b € A such that a ~r b and b ~p ¢, then
a~pgec.

Definition 7.3.1.1.3. Let A be a set.

1. The set of transitive relations from A to B is the subset
Rel™(A) of Rel(A, A) spanned by the transitive relations.

2. The poset of relations from A to B is is the subposet Rel™@"(A)
of Rel(A, A) spanned by the transitive relations.

Proposition 7.3.1.1.4. Let R and S be relations on A.
1. Interaction With Inverses. If R is transitive, then so is RT.

2. Interaction With Composition. If R and S are transitive, then
S o R may fail to be transitive.

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: See [MSE 2096272].% O

R.

"Note that since Rel(A, A) is posetal, transitivity is a property of a relation, rather
than extra structure.

8 Intustion: Transitivity for R and S fails to imply that of S ¢ R because the
composition operation for relations intertwines R and S in an incompatible way:

1. If a ~sor c and ¢ ~ger €, then:

(a) There is some b € A such that:
i. a~gb;

ii. b~gc
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ooUz 7.3.2 The Transitive Closure of a Relation
Let R be a relation on A.

00V0 Definition 7.3.2.1.1. The transitive closure of ~p is the relation
Ngansg satisfying the following universal property:'’

(x) Given another transitive relation ~g on A such that R C S, there
exists an inclusion ~$2" C ~g.

00V1 Construction 7.3.2.1.2. Concretely, ~%™ is the free non-unital monoid
on R in (Rel(4, A),0)!!, being given by

(o]
Rtrans def H Ro™
n=1
def o
def U Ron
n=1
. there exists some (z1,...,2,) € R*"
2 (a,b) e Ax B (1 ) .
such that a ~p 1 ~g - ~p T, ~R b
Proof. Clear. O
00vV2 Proposition 7.3.2.1.3. Let R be a relation on A.

00V3 1. Adjointness. We have an adjunction

(_)trans

<(_)trans 4 ;:E.\) . ]_:{el(A7 A)z Reltrans(A?A)7

witnessed by a bijection of sets
Rel"™(R™™ §) = Rel(R, 5),

natural in R € Obj(Rel"™"(A, A)) and S € Obj(Rel(4, B)).

00V4 2. The Transitive Closure of a Transitive Relation. If R is transitive,
then R'a1S = R,

(b) There is some d € A such that:

i. ¢c~p d;

ii. d~ge.

% Further Notation: Also written RS,
10 Glogan: The transitive closure of R is the smallest transitive relation containing R.
1 Or, equivalently, the free non-unital E;-monoid on R in (Ne(Rel(4, A)), o).
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00V5 3. Idempotency. We have

trans trans trans
(Rrons) T = pirene,

00V6 4. Interaction With Inverses. We have

(_)trans

Rel(A4,A) —— Rel(4,A)

( RT)WS - ( Rtrans)ﬂ (_)T[ I(_)T

Rel(A, A) —— Rel(4, A).

(_)trans

0oVv7 5. Interaction With Composition. We have

Rel(4, A) x Rel(4, A) $ Rel(4, A)
poss.

(SOR)tranS # StranSORtrans, (_)transx(_)trans[ >< [(_)trans
Rel(A, A) x Rel(A, A) 3 Rel(A, A).

Proof. Item 1, Adjointness: This is a rephrasing of the universal property
of the transitive closure of a relation, stated in Definition 7.3.2.1.1.
Item 2, The Transitive Closure of a Transitive Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

Item /, Interaction With Inverses: We have

t trans _ ° t on
()™ = U ()

= Y@

=1

o0 T
ROn)
n=1

Rtrans) T’

3

Il
~

N

where we have used, respectively:

1. Construction 7.3.2.1.2.
2. Item 4 of Proposition 6.3.12.1.3.
3. Item 1 of Proposition 6.3.6.1.2.
4. Construction 7.3.2.1.2.

Item 5, Interaction With Composition: This follows from Item 2 of
Proposition 7.3.1.1.4. 0
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7.4 Equivalence Relations

7.4.1 Foundations
Let A be a set.

Definition 7.4.1.1.1. A relation R is an equivalence relation if it is
reflexive, symmetric, and transitive.'?

Example 7.4.1.1.2. The kernel of a function f: A — B is the
equivalence relation ~ger(s) on A obtained by declaring a ~ger(y) b iff

fla) = f(b)."?
Definition 7.4.1.1.3. Let A and B be sets.

1. The set of equivalence relations from A to B is the subset
Rel®d(A, B) of Rel(A, B) spanned by the equivalence relations.

2. The poset of relations from A to B is is the subposet Rel®(A, B)
of Rel(A, B) spanned by the equivalence relations.
7.4.2 The Equivalence Closure of a Relation

Let R be a relation on A.

Definition 7.4.2.1.1. The equivalence closure'? of ~p is the relation
N?K’ satisfying the following universal property:'©

(x) Given another equivalence relation ~g on A such that R C S, there
exists an inclusion NeRg C ~g.

12 Burther Terminology: If instead R is just symmetric and transitive, then it is
called a partial equivalence relation.

3The kernel Ker(f): A 4+ A of f is the underlying functor of the monad induced
by the adjunction Gr(f) 4 f~': A= B in Rel of Item 2 of Proposition 6.3.1.1.2.

Y Purther Terminology: Also called the equivalence relation associated to ~g.

15 Further Notation: Also written R,

16 Slogan: The equivalence closure of R is the smallest equivalence relation containing
R.
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00VH Construction 7.4.2.1.2. Concretely, N;? is the equivalence relation on
A defined by

Red def ( (Rreﬂ) Symm) trans

_ ( ( RSymm ) trans) refl

there exists (z1,...,2,) € R*" satisfying at
least one of the following conditions:

1. The following conditions are satisfied:

—{(a,b)c AxB (a) We have a ~p x1 or x1 ~p a;
(b) We have z; ~g xij11 Or o311 ~Rg T;
foreach 1 <i<n—1;

(¢) We have b ~p x,, or x, ~g b;

2. We have a = b.

Proof. From the universal properties of the reflexive, symmetric, and tran-
sitive closures of a relation (Definitions 7.1.2.1.1, 7.2.2.1.1 and 7.3.2.1.1),
we see that it suffices to prove that:

00VJ 1. The symmetric closure of a reflexive relation is still reflexive.
00OVK 2. The transitive closure of a symmetric relation is still symmetric.
which are both clear. O
0oVL Proposition 7.4.2.1.3. Let R be a relation on A.
00VM 1. Adjointness. We have an adjunction
(=)™
—
() 4%): Rel(A,B) L Rel*YA,B),
—_

witnessed by a bijection of sets
Rel®(R®,S) = Rel(R, 5),
natural in R € Obj(Rel®d(A, B)) and S € Obj(Rel(A4, B)).

QOVN 2. The Equivalence Closure of an Equivalence Relation. If R is an
equivalence relation, then R*Y = R.

Q0VP 3. Idempotency. We have

(Req)eq — Req‘
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Proof. Item 1, Adjointness: This is a rephrasing of the universal property
of the equivalence closure of a relation, stated in Definition 7.4.2.1.1.
Item 2, The Equivalence Closure of an Equivalence Relation: Clear.
Item 3, Idempotency: This follows from Item 2. O

7.5 Quotients by Equivalence Relations

7.5.1 Equivalence Classes

Let A be a set, let R be a relation on A, and let a € A.

Definition 7.5.1.1.1. The equivalence class associated to a is the
set [a] defined by

def

a] ={z € X |z ~ra}

={zxeX |a~grx}. (since R is symmetric)

7.5.2 Quotients of Sets by Equivalence Relations
Let A be a set and let R be a relation on A.

Definition 7.5.2.1.1. The quotient of X by R is the set X/~p defined
by

X/~rZ{[a] € P(X) | a € X}.
Remark 7.5.2.1.2. The reason we define quotient sets for equivalence
relations only is that each of the properties of being an equivalence

relation—reflexivity, symmetry, and transitivity—ensures that the equiv-
alences classes [a] of X under R are well-behaved:

o Reflexivity. If R is reflexive, then, for each a € X, we have a € [a].
o Symmetry. The equivalence class [a] of an element a of X is defined
by

def

[a]| ={z € X | x ~p a},
but we could equally well define
o] ©{xe X |a~pgax}

instead. This is not a problem when R is symmetric, as we then
have [a] = [a]’.'7

o Transitivity. If R is transitive, then [a] and [b] are disjoint iff
a »p b, and equal otherwise.

"When categorifying equivalence relations, one finds that [a] and [a]’ correspond to
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00VW Proposition 7.5.2.1.3. Let f: X — Y be a function and let R be a
relation on X.

00VX 1. As a Coequaliser. We have an isomorphism of sets

pry
—

X/~% =2 CoEq| R— X x X pry X |,

where ~%! is the equivalence relation generated by ~p.
ooVvY 2. As a Pushout. We have an isomorphism of sets'®
X/~G— X

r

X/N;g =X HEq(prhprz) X,
X <« Eq(pry, pry).

where ~%! is the equivalence relation generated by ~p.

0ovz 3. The First Isomorphism Theorem for Sets. We have an isomorphism
of sets!'?20
X/NKer(f) = Im(f)

presheaves and copresheaves; see 77.
18Dually, we also have an isomorphism of sets

Eq(pry, pry) — X
|

Eq(pry, pry) 2 X X /e X,
X — X/Ni?

19 Purther Terminology: The set X/~ker(y) is often called the coimage of f, and
denoted by Coim(f).

20Tn a sense this is a result relating the monad in Rel induced by f with the comonad
in Rel induced by f, as the kernel and image

Ker(f): X + X,
Im(f)CY

of f are the underlying functors of (respectively) the induced monad and comonad of
the adjunction
Gr(f)
— T
(Ge(/)4f7"): AL B
ot
of Item 2 of Proposition 6.3.1.1.2.
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00OWo 4. Descending Functions to Quotient Sets, I. Let R be an equivalence
relation on X. The following conditions are equivalent:

(a) There exists a map
7: X / ~p—Y
making the diagram

!

X ——

T
X/~g

commute.
(b) We have R C Ker(f).
(c) For each z,y € X, if x ~p y, then f(z) = f(y).

00OW1 5. Descending Functions to Quotient Sets, II. Let R be an equivalence
relation on X. If the conditions of Item 4 hold, then f is the unique
map making the diagram

X$Y

,

3 7
e g ?

X/~gr

q

commute.

00OW2 6. Descending Functions to Quotient Sets, I1I. Let R be an equivalence
relation on X. We have a bijection

HomSets(X/NRa Y) = Homgets (X7 Y)’

natural in X,Y € Obj(Sets), given by the assignment f ~ f of
Items 4 and 5, where Hom& (X, Y) is the set defined by

for each =,y € X,
def

Homgets(Xa Y) =J/f€ HomSets<X7 Y) if x ~p vy, then
f(x) = f(y)

00W3 7. Descending Functions to Quotient Sets, IV. Let R be an equivalence
relation on X. If the conditions of Item 4 hold, then the following
conditions are equivalent:
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(a) The map f is an injection.
(b) We have R = Ker(f).
(¢) For each z,y € X, we have z ~p y iff f(x) = f(y).
0oW4 8. Descending Functions to Quotient Sets, V. Let R be an equivalence
relation on X. If the conditions of Item 4 hold, then the following
conditions are equivalent:
(a) The map f: X — Y is surjective.
(b) The map f: X/~gr — Y is surjective.
QOW5 9. Descending Functions to Quotient Sets, VI. Let R be a relation

on X and let ~% be the equivalence relation associated to R. The
following conditions are equivalent:

Q0W6 (a) The map f satisfies the equivalent conditions of Item 4:

e There exists a map
[ X/~ =Y

making the diagram

x 1.y
a
X/~3
comimute.
o For each z,y € X, if z ~%' vy, then f(z) = f(y).
00W7 (b) For each z,y € X, if x ~g y, then f(z) = f(y).

Proof. Item 1, As a Coequaliser: Omitted.

Item 2, As a Pushout: Omitted.

Item 3, The First Isomorphism Theorem for Sets: Clear.

Item 4, Descending Functions to Quotient Sets, I: See [Pro240].

Item 5, Descending Functions to Quotient Sets, II: See [Pro24aa).
Item 6, Descending Functions to Quotient Sets, III: This follows from
Items 5 and 6.

Item 7, Descending Functions to Quotient Sets, IV: See [Pro24n].

Item 8, Descending Functions to Quotient Sets, V: See [Pro24m)].

Item 9, Descending Functions to Quotient Sets, VI: The implication
Item 9a = Item 9b is clear.

Conversely, suppose that, for each x,y € X, if x ~p y, then f(z) = f(y).
Spelling out the definition of the equivalence closure of R, we see that
the condition z ~% y unwinds to the following:
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(x) There exist (z1,...,2,) € R*" satisfying at least one of the follow-
ing conditions:

1. The following conditions are satisfied:
(a) We have z ~p x1 or x1 ~p x;
(b) We have x; ~g x;41 or xjy1 ~g x; for each 1 <i <n—1;
(¢) We have y ~g x,, or x, ~R ¥;

2. We have z = y.

Now, if =y, then f(z) = f(y) trivially; otherwise, we have

and f(x) = f(y), as we wanted to show. O
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Chapter 8

Categories

00W8 This chapter contains some elementary material about categories, func-

tors,
1.

2.

and natural transformations. Notably, we discuss and explore:
Categories (Section 8.1).

The quadruple adjunction my 4 (—=)gisc 7 Obj 7 (—)ipgicc PEtWeen
the category of categories and the category of sets (Section 8.2).

. Groupoids, categories in which all morphisms admit inverses (Sec-

tion 8.3).
Functors (Section 8.4).

The conditions one may impose on functors in decreasing order of
importance:

(a) Section 8.5 introduces the foundationally important conditions
one may impose on functors, such as faithfulness, conservativ-
ity, essential surjectivity, etc.

(b) Section 8.6 introduces more conditions one may impose on
functors that are still important but less omni-present than
those of Section 8.5, such as being dominant, being a monomor-
phism, being pseudomonic, etc.

(¢) Section 8.7 introduces some rather rare or uncommon condi-
tions one may impose on functors that are nevertheless still
useful to explicit record in this chapter.

6. Natural transformations (Section 8.8).

7. The various categorical and 2-categorical structures formed by

categories, functors, and natural transformations (Section 8.9).

344
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oow9 8.1 Categories

0oWA 8.1.1 Foundations

00WB Definition 8.1.1.1.1. A category (C, o, 1) consists of:
o Objects. A class Obj(C) of objects.

o Morphisms. For each A, B € Obj(C), a class Hom¢ (A, B), called
the class of morphisms of C from A to B.
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o Identities. For each A € Obj(C), a map of sets
lg: pt — Hom¢ (A, A),
called the unit map of C at A, determining a morphism
idg: A— A
of C, called the identity morphism of A.
o Composition. For each A, B,C € Obj(C), a map of sets
oG.p.c: Home(B, C) x Home (A, B) — Home (4, O),
called the composition map of C at (A, B, C).
such that the following conditions are satisfied:

1. Associativity. The diagram

Home (C, D) x (Home(B, C) x Home (A, B))

a

aSets e : C
Hom (C,D),Homg (B,C) Home (A,B) 5 idHome (¢,0) X% B¢

(Home (C, D) x Home ( B C ) x Homg(A, B)  Home(C, D) x Home (4, C)

deHon]C(Ax /

Hom¢ (B, D) x Homg (A .— Home (A, D)

ABD

commutes, i.e. for each composable triple (f, g, h) of morphisms of
C, we have

(fog)oh=fo(goh).
2. Left Unitality. The diagram

pt x Hom¢ (A, B)

N \Sets
c “. Homg (A, B)
13X1dHomC(A,B) ‘;{;\\

RSN

Home¢ (B, B) x Home (A, B) Hom¢ (A, B)

©A,B,B

commutes, i.e. for each morphism f: A — B of C, we have

idgo f= /.
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3. Right Unitality. The diagram

Hom¢ (A, B) x pt

Sets

) \‘\\\ pHomC(A,B)
idHomC(A,B)Xlg \:\‘;\‘\
s
Home (A, B) x Home (A, A) — Hom¢ (A, B)
©4,A,B

commutes, i.e. for each morphism f: A — B of C, we have
foida = f.
00WC Notation 8.1.1.1.2. Let C be a category.
0oWD 1. We also write C(A, B) for Hom¢ (A, B).
QOWE 2. We write Mor(C) for the class of all morphisms of C.

0oWF Definition 8.1.1.1.3. Let s be a regular cardinal. A category C is

1. Locally small if, for each A, B € Obj(C), the class Hom¢ (A, B)
0OWG is a set.

QOWH 2. Locally essentially small if, for each A, B € Obj(C), the class
Hom¢ (A, B)/{isomorphisms}
is a set.
eowJ 3. Small if C is locally small and Obj(C) is a set.

4. k-Smallif C is locally small, Obj(C) is a set, and we have #0bj(C) <
QWK K.

ooWL 8.1.2 Examples of Categories

00WM Example 8.1.2.1.1. The punctual category!' is the category pt where

e Objects. We have
Obj(pt) = {x}.

e Morphisms. The unique Hom-set of pt is defined by

Homp (x, %) < {id,}.

! Further Terminology: Also called the singleton category.
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e Identities. The unit map

1P*: pt — Homypt (%, x)

of pt at x is defined by
idPt £ id, .

e Composition. The composition map

of:‘*’*: Hompe (%, %) x Hompt (%, %) — Hompt (%, *)

of pt at (x,*,*) is given by the bijection pt x pt = pt.

00WN Example 8.1.2.1.2. We have an isomorphism of categories’

Mon —— Cats

|
Mon = pt x Cats, { {Obj

Sets

pt W Sets

via the delooping functor B: Mon — Cats of 77 of 7?7, exhibiting monoids
as exactly those categories having a single object.

Proof. Omitted. O

00WP Example 8.1.2.1.3. The empty category is the category et where
e Objects. We have
Obj(0cat) = 0.

e Morphisms. We have

o
@
e

Mor(Dcat) = 0.

o Identities and Composition. Having no objects, cat has no unit
nor composition maps.

2This can be enhanced to an isomorphism of 2-categories

Monagise —> Catsa,«
_

Monagisc = pt,; X Catso x,

Obj
Setspgisc

ptbi T Setszdisc
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00WQ Example 8.1.2.1.4. The nth ordinal category is the category n
where?

e Objects. We have
Obj(n) = {[0] -, [n]}-
o Morphisms. For each [i], [j] € Obj(n), we have

{id[i]} if [i] = [4],
Homn ([d], [4]) = { {[i] — [j]} if [j]
0 f

< [al,
if [5] > [a].
o Identities. For each [i] € Obj(n), the unit map
lB] : pt — Hompn([4], [i])
of n at [i] is defined by
. def .
ldE} = ld[z]
o Composition. For each [i],[j], [k] € Obj(n), the composition map
of, 1.k * Homn([j], [k]) x Homn([i], [5]) — Homn([i], [k])
of nat ([i], [j], [k]) is defined by
(7] = &) o ([i] = [5]) = ([1] = [K])-
between the discrete 2-category Monagisc on Mon and the 2-category of pointed cate-

gories with one object.
3In other words, n is the category associated to the poset

0 =[] = - —[n—-1] = [n].

The category n for n > 2 may also be defined in terms of 0 and joins (?7?): we have
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00WR Example 8.1.2.1.5. Here we list some of the other categories appearing
throughout this work.

QOWS 1. The category Sets, of pointed sets of Definition 3.1.3.1.1.

QOWT 2. The category Rel of sets and relations of Definition 5.2.1.1.1.
0OWU 3. The category Span(A, B) of spans from a set A to a set B of ?77.
oWV 4. The category ISets(K') of K-indexed sets of 7.

QOWW 5. The category ISets of indexed sets of 77.

oWX 6. The category FibSets(K) of K-fibred sets of ?7.

0OWY 7. The category FibSets of fibred sets of 77.

oWz 8. Categories of functors Fun(C, D) as in Definition 8.9.1.1.1.
00X0 9. The category of categories Cats of Definition 8.9.2.1.1.

00X1  10. The category of groupoids Grpd of Definition 8.9.4.1.1.

00x2 8.1.3 Posetal Categories
00X3 Definition 8.1.3.1.1. Let (X, <x) be a poset.

1. The posetal category associated to (X, =<x) is the category
00X4 Xpos Where

e Objects. We have

Obj(Xpos) = X.

isomorphisms of categories

1=0x0,
2=1x0

=~ (0x0)«0,
322x0

~(1x0)x0
>~ ((0x0)x0) %0,
3%x0
(2x0)x0
((1x0)*x0)x0
(((0x0)x0)x0) x 0,

4

111

and so on.
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o Morphisms. For each a,b € Obj(Xpoes), we have

o [pt ifa=<xb
HomXpos (a7 b) def {P Iaxx

®  otherwise.

o Identities. For each a € Obj(Xpos), the unit map
1?”‘”: pt — Homxpos(a, a)

of Xpos at a is given by the identity map.

o Composition. For each a,b,c € Obj(Xpos), the composition
map

Xpos

oa,b,c .

Homyx,,, (b, c) x Homx,,, (a,b) — Homy, (a,c)

of Xpos at (a,b, c) is defined as either the inclusion () < pt or
the identity map of pt, depending on whether we have a <x b,
b=<xc and a <x c.

2. A category C is posetal * if C is equivalent to X, pos for some poset
(X, =x).

Proposition 8.1.3.1.2. Let (X, <x) be a poset and let C be a category.

1. Functoriality. The assignment (X, <x) — Xpos defines a functor

(=) pos: Pos — Cats.

2. Fully Faithfulness. The functor (—)_ . of Item 1 is fully faithful.

pos
3. Characterisations. The following conditions are equivalent:

(a) The category C is posetal.

(b) For each A, B € Obj(C) and each f,g € Hom¢(A, B), we have
f=y

Proof. Item 1, Functoriality: Omitted.
Item 2, Fully Faithfulness: Omitted.
Item 3, Characterisations: Clear. O

8.1.4 Subcategories
Let C be a category.

4 Further Terminology: Also called a thin category or a (0,1)-category.
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00XD Definition 8.1.4.1.1. A subcategory of C is a category A satisfying
the following conditions:

1. Objects. We have Obj(A) C Obj(C).
2. Morphisms. For each A, B € Obj(A), we have

Hom#(A, B) C Hom¢ (A, B).
3. Identities. For each A € Obj(A), we have
171 =19,
4. Composition. For each A, B,C € Obj(A), we have

A _cC
OA.B,c = °A,B,C-

00XE Definition 8.1.4.1.2. A subcategory A of C is full if the canonical
inclusion functor A — C is full, i.e. if, for each A, B € Obj(A), the
inclusion

ta,p: Homg (A, B) — Hom¢ (A, B)
is surjective (and thus bijective).

00XF Definition 8.1.4.1.3. A subcategory A of a category C is strictly full
if it satisfies the following conditions:

1. Fullness. The subcategory A is full.

2. Closedness Under Isomorphisms. The class Obj(A) is closed under
isomorphisms.®

00XG Definition 8.1.4.1.4. A subcategory A of C is wide® if Obj(A) =
Obj(C).
00XH 8.1.5 Skeletons of Categories

00XJ Definition 8.1.5.1.1. A7 skeleton of a category C is a full subcategory
Sk(C) with one object from each isomorphism class of objects of C.

00XK Definition 8.1.5.1.2. A category C is skeletal if C = Sk(C).®

00XL Proposition 8.1.5.1.3. Let C be a category.

®That is, given A € Obj(A) and C € Obj(C), if C = A, then C € Obj(A).

8 Further Terminology: Also called lluf.

"Due to Item 3 of Proposition 8.1.5.1.3, we often refer to any such full subcategory
Sk(C) of C as the skeleton of C.

8That is, C is skeletal if isomorphic objects of C are equal.
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1. Ezistence. Assuming the axiom of choice, Sk(C) always exists.

2. Pseudofunctoriality. The assignment C — Sk(C) defines a pseud-

ofunctor
Sk: Catsy — Catss.
3. Uniqueness Up to Equivalence. Any two skeletons of C are
equivalent.

4. Inclusions of Skeletons Are Equivalences. The inclusion
lc: Sk(C ) —C
of a skeleton of C into C is an equivalence of categories.

Proof. Item 1, Existence: See [nLab23, Section “Existence of Skeletons
of Categories”].

Item 2, Pseudofunctoriality: See [nLab23, Section “Skeletons as an
Endo-Pseudofunctor on €at”].

Item 3, Uniqueness Up to Equivalence: Clear.

Item 4, Inclusions of Skeletons Are Equivalences: Clear. 0

8.1.6 Precomposition and Postcomposition
Let C be a category and let A, B,C € Obj(C).

Definition 8.1.6.1.1. Let f: A — B and ¢g: B — C be morphisms of
C.

1. The precomposition function associated to f is the function
f*: Home (B, C') — Home (A, C)

defined by
* def
fr(@)=¢dof
for each ¢ € Home (B, C).

2. The postcomposition function associated to g is the function
g«: Homg(A, B) — Home (A, C)

defined by
def

g«(@) =go¢
for each ¢ € Hom¢ (A, B).

Proposition 8.1.6.1.2. Let A, B,C,D € Obj(C) and let f: A — B
and g: B — C be morphisms of C.
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QOXW 1. Interaction Between Precomposition and Postcomposition. We
have

Home (B, C) 45 Home (B, D)
g*Of*:f*og*7 f*[ [f*
Home (A, C) - Home¢ (A, D).

QOXX 2. Interaction With Composition I. We have

Home (X, A) 2> Home (X, B)

(gof)' = frog", \ [g*
(gof),

Homg¢ (X7 0)7

Home (C, X) < Home(B, X)

Home (A, X).

QOXY 3. Interaction With Composition II. We have

pt iEN Hom¢ (A, B) pt 1, Home (B, C)
[g0 f]= g0 [fl], )
[%‘ k g0 f1=f* ol [N |f
Home (A, C) Home (A, C).

00XZ 4. Interaction With Composition III. We have

C

Home(B, C) x Home (A, B) —2% Home(A, C)
f*oofq,s,c :Og{,B,CO(f* x id), idxf*k kf*

HOmc(B,C) X HOrﬂc()(7 B)

HOI“ﬂc()(7 C),

°x,B,C
C
Homg (B, C) x Home(A, B) —2% Homc(A, C)

c c .
gx 004 B¢ =04 p,p o (id X g«), g*xidk {g*

Home¢ (B, D) x Hom¢ (A, B) ——— Homc(A, D).

A,B,D
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5. Interaction With Identities. We have

(ldA)* = idHomc(A,B)7
(idB), = idHome(4,B)-
Proof. Item 1, Interaction Between Precomposition and Postcomposition:
Clear.
Item 2, Interaction With Composition I: Clear.
Item 3, Interaction With Composition II: Clear.

Item 4, Interaction With Composition III: Clear.
Item 5, Interaction With Identities: Clear. ]

8.2 The Quadruple Adjunction With Sets

8.2.1 Statement

Let C be a category.

Proposition 8.2.1.1.1. We have a quadruple adjunction

(10 (=)gec # Obj + (=) goc): Sets . L Cats,

indisc

(_)indisc
witnessed by bijections of sets
Homsgets (770 (C)7 X) = Homcats (07 Xdisc>7

HomCats(Xdism C) = HomSets(Xa ObJ (C)),
HomSets(Obj (C)a X) = HomCats(07 Xindisc)a

natural in C € Obj(Cats) and X € Obj(Sets), where

¢ The functor
mo: Cats — Sets,

the connected components functor, is the functor sending a
category to its set of connected components of Definition 8.2.2.2.1.

o The functor
(—)gisc : Sets — Cats,

the discrete category functor, is the functor sending a set to its
associated discrete category of Item 1.
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e The functor
Obj: Cats — Sets,

the object functor, is the functor sending a category to its set of
objects.

e The functor
(—) : Sets — Cats,

indisc *
the indiscrete category functor, is the functor sending a set to
its associated indiscrete category of Item 1.

Proof. Omitted. O]

8.2.2 Connected Components and Connected Categories
8.2.2.1 Connected Components of Categories
Let C be a category.

Definition 8.2.2.1.1. A connected component of C is a full subcate-
gory I of C satisfying the following conditions:’

1. Non-Emptiness. We have Obj(I) # (.
2. Connectedness. There exists a zigzag of arrows between any two
objects of I.
8.2.2.2 Sets of Connected Components of Categories
Let C be a category.

Definition 8.2.2.2.1. The set of connected components of C is the
set mp(C) whose elements are the connected components of C.

Proposition 8.2.2.2.2. Let C be a category.

1. Functoriality. The assignment C — m(C) defines a functor

7o : Cats — Sets.

2. Adjointness. We have a quadruple adjunction

(70 7 (=) gise 1 ObJ A (=) indisc): Sets L Cats.

(_)indisc

°In other words, a connected component of C is an element of the set Obj(C)/~
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3.

4.

5.

6.

Interaction With Groupoids. 1If C is a groupoid, then we have an
isomorphism of categories

where K(C) is the set of isomorphism classes of C of ?7?.

Preservation of Colimits. The functor my of Item 1 preserves
colimits. In particular, we have bijections of sets

m0(C 1 D) = 7o(C) [ mo(D),
m0(C [lg D) = m0(C) Ly (e) (D),

F 7o(F)
0 (CoEq(C = D)) = CoEq <7T0(C) = ﬂo(@)),
G 70 (G)

natural in C, D, & € Obj(Cats).

Symmetric Strong Monoidality With Respect to Coproducts. The
connected components functor of Item 1 has a symmetric strong
monoidal structure

(wo,w(])-[,wg-'[l> : (Cats, [, Ocat) — (Sets, 11, 0),

being equipped with isomorphisms

~

T o7 () T mo(D) 5 mo(C 11 D),
77(])-‘[1: 0= mo(Deat),
natural in C, D € Obj(Cats).

Symmetric Strong Monoidality With Respect to Products. The
connected components functor of Item 1 has a symmetric strong
monoidal structure

(7T0,7T6<,7['6<|1) : (Cats, x, pt) — (Sets, X, pt),
being equipped with isomorphisms
71'0X|C72): 70(C) X mo(D) = mo(C x D),
7T(>)<‘li pt — mo(pt),

natural in C, D € Obj(Cats).
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Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.

Item 3, Interaction With Groupoids: Clear.

Item 4, Preservation of Colimits: This follows from Item 2 and 77 of ?77.

Item b5, Symmetric Strong Monoidality With Respect to Coproducts:

Clear.

Item 6, Symmetric Strong Monoidality With Respect to Products: Clear.
O

00YG 8.2.2.3 Connected Categories
00YH Definition 8.2.2.3.1. A category C is connected if 7o(C) & pt.!%!!

00YJ 8.2.3 Discrete Categories
00YK Definition 8.2.3.1.1. Let X be a set.
00YL 1. The discrete category on X is the category Xyisc where
e Objects. We have
Obj(Xaisc) = X.
o Morphisms. For each A, B € Obj(Xyisc), we have

o |idg if A= B,
Homxe(4.5) = {@ it A% B

o Identities. For each A € Obj(Xgisc), the unit map
11)4(‘““: pt = Homy, (A4, A)
of Xgisc at A is defined by
id s i 4.

o Composition. For each A, B,C € Obj(Xyisc), the composition
map

Oz)élfjﬁéic : Homyy, (B,C) x Homx,, (A, B) — Homy,, (4, C)
of Xyisc at (4, B, C) is defined by

. . def .
idgoidg = idy4.

with ~ the equivalence relation generated by the relation ~’ obtained by declaring
A ~' B iff there exists a morphism of C from A to B.

10 pyrther Terminology: A category is disconnected if it is not connected.

" Example: A groupoid is connected iff any two of its objects are isomorphic.
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2. A category C is discrete if it is equivalent to Xgisc for some set X.
00YM

00YN Proposition 8.2.3.1.2. Let X be a set.
Q0YP 1. Functoriality. The assignment X — Xgisc defines a functor

(—)gisc: Sets — Cats.

00YQ 2. Adjointness. We have a quadruple adjunction

(770 = (_)disc B ObJ - <_)indisc): Sets ~ L /Cats.

(_)indisc

00YR 3. Symmetric Strong Monoidality With Respect to Coproducts. The
functor of Item 1 has a symmetric strong monoidal structure

((_)disu (_)<]:iilsc? (_)l_ilsdl) : (Setsv H? (Z)) — (Cats, Ha wcat)y

being equipped with isomorphisms

(_)c]iilsc|X,Y: Xdisc H Ydisc i (X H Y)disu
I

(_)discu: wcat i @disc:
natural in X,Y € Obj(Sets).

00YS 4. Symmetric Strong Monoidality With Respect to Products. The
functor of Item 1 has a symmetric strong monoidal structure

<(_)disc’ (_)<;<isc7 (_)é<isc\1> : (Sets, X,pt) - (Cat57 X, pt)v
being equipped with isomorphisms

(_)(TiSCIX,Y: XdiSC X Ydisc i) (X X Y)diSC’

(_);fisc\lz pt - ptdism
natural in X,Y € Obj(Sets).

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.

Item 3, Symmetric Strong Monoidality With Respect to Coproducts:

Clear.

Item 4, Symmetric Strong Monoidality With Respect to Products: Clear.
O
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00YT 8.2.4 Indiscrete Categories
00YU Definition 8.2.4.1.1. Let X be a set.
oYV 1. The indiscrete category on X ' is the category Xindisc where
e Objects. We have
Obj(Xindisc) = X.
o Morphisms. For each A, B € Obj(Xjndisc), we have
Homy,, (4, B) 4] — [B]}
= pt.
o Identities. For each A € Obj(Xjndisc), the unit map
12(‘”‘““: pt = Homy, ,. (A4, A)
of Xindisc at A is defined by
i = {[A] = [4]).

o Composition. For each A, B,C € Obj(Xindisc), the composi-
tion map
Oﬁ:’ﬁ‘f& HomXindisc(B7 C) X HomXindisc (A7 B) - HomXindisc (A7 C)
of Xyisc at (4, B, C) is defined by
def
([B] = [C]) o ([A] — [B]) = ([A] = [C]).
2. A category C is indiscrete if it is equivalent to Xjndisc for some
00YW set X.
00YX Proposition 8.2.4.1.2. Let X be a set.

o0YY 1. Functoriality. The assignment X — Xjndisc defines a functor

(= )indisc : Sets — Cats.

00YZ 2. Adjointness. We have a quadruple adjunction

0
€L

_— (_)disr:\
(0 3 (=) gisc T Obj 7 (=)ingisc):  Sets ol Cats.
disc disc \Obj —

Nt S

(_)indisc

12 Purther Terminology: Sometimes called the chaotic category on X.
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3. Symmetric Strong Monoidality With Respect to Products. 'The
functor of Item 1 has a symmetric strong monoidal structure

((_)indisc7 (_)i>r<1disc7 (_)i>r<1disc\l> : (SetS, X’pt) - (Cat57 X, pt)’
being equipped with isomorphisms

(_)i>r<1disc|X,Y: Xindisc X Yindisc — (X X Y)indisc’
(_)i>r<1disc\1: pt — Plindisc)
natural in X,Y € Obj(Sets).

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.

Item 3, Symmetric Strong Monoidality With Respect to Products: Clear.
O

8.3 Groupoids

8.3.1 Foundations

Let C be a category.

Definition 8.3.1.1.1. A morphism f: A — B of C is an isomorphism
if there exists a morphism f~': B — A of C such that

fof=idg,
f~to f=idy.

Notation 8.3.1.1.2. We write Isoc(A, B) for the set of all isomorphisms
in C from A to B.

Definition 8.3.1.1.3. A groupoid is a category in which every mor-
phism is an isomorphism.

8.3.2 The Groupoid Completion of a Category
Let C be a category.

Definition 8.3.2.1.1. The groupoid completion of C'? is the pair
(Ko(C), t¢) consisting of

e A groupoid Ky(C);

13 Purther Terminology: Also called the Grothendieck groupoid of C or the
Grothendieck groupoid completion of C.
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o A functor tc: C — Ko(C);
satisfying the following universal property:'*

(UP) Given another such pair (G,i), there exists a unique functor

Ko(C) Ny making the diagram
Ko(C)

/3!
v

C—

commute.

00Z8 Construction 8.3.2.1.2. Concretely, the groupoid completion of C is

the Gabriel Zisman localisation Mor(C) 'C of C at the set Mor(C) of
all morphisms of C; see 77.
(To be expanded upon later on.)

Proof. Omitted. ]

0079 Proposition 8.3.2.1.3. Let C be a category.
00ZA 1. Functoriality. The assignment C — Ko(C) defines a functor

Ko: Cats — Grpd.

00ZB 2. 2-Functoriality. The assignment C — Ko(C) defines a 2-functor

Kp: Catsp — Grpd,.

00ZC 3. Adjointness. We have an adjunction

Ko
(Ko 4¢): Cats_ L~ Grpd,

witnessed by a bijection of sets

HOHlGrpd(KO (C), g) = HomCats(Cv g)a

natural in C € Obj(Cats) and G € Obj(Grpd), forming, together
with the functor Core of Item 1 of Proposition 8.3.3.1.4, a triple
adjunction

Ko
TN
(Ko 4¢ - Core): Catse<—:— Grpd,
~L 7

Core

HSee Ttem 5 of Proposition 8.3.2.1.3 for an explicit construction.
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4.

5.

witnessed by bijections of sets

Homgpd(Ko(C), G) = Homcais(C, G),
Homcats(G, D) = Homgrpd (G, Core(D)),

natural in C, D € Obj(Cats) and G € Obj(Grpd).
2-Adjointness. We have a 2-adjunction

Ko
(Ko 4¢): Cats_ L, Grpd,
L

witnessed by an isomorphism of categories
Fun(Ko(C),G) = Fun(C,G),

natural in C € Obj(Cats) and G € Obj(Grpd), forming, together
with the 2-functor Core of Item 2 of Proposition 8.3.3.1.4, a triple
2-adjunction

Ko
SN
(Ko 4¢ - Core): Catse<—:— Grpd,

N 3
Core
witnessed by isomorphisms of categories
FUH(K(](C), g) = FUH(C, g)>
Fun(G, D) = Fun(G, Core(D)),
natural in C, D € Obj(Cats) and G € Obj(Grpd).

Interaction With Classifying Spaces. We have an isomorphism of
groupoids
Ko(C) = <1 (INe(C)1),

natural in C € Obj(Cats); i.e. the diagram

sSets a Top

commutes up to natural isomorphism.
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00ZF 6. Symmetric Strong Monoidality With Respect to Coproducts. The
groupoid completion functor of Item 1 has a symmetric strong
monoidal structure

(K07K(])_17K(])_[1> : (Cats, H) (Z)cat) — (Grpd, H, (Z)cat)

being equipped with isomorphisms

K(])T[c,zf Ko(C) [1 Ko(D) =+ Ko(C [1 D),
Kg_‘ll: Deat i) KO(®C3t)7
natural in C, D € Obj(Cats).

007G 7. Symmetric Strong Monoidality With Respect to Products. The
groupoid completion functor of Item 1 has a symmetric strong
monoidal structure

(KO,KS,KOXH) : (Cats, x, pt) — (Grpd, x, pt)
being equipped with isomorphisms

Kc.p: Ko(C) x Ko(D) = Ko(C x D),

Kal: pt = Ko(pt),

natural in C, D € Obj(Cats).

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item 5, Interaction With Classifying Spaces: See Corollary 18.33 of https:

//web.ma.utexas.edu/users/dafr/M392C-2012/Notes/lecturel8.pdf.

Item 6, Symmetric Strong Monoidality With Respect to Coproducts:

Omitted.

Item 7, Symmetric Strong Monoidality With Respect to Products: Omitted.
O

00zH 8.3.3 The Core of a Category
Let C be a category.

00ZJ Definition 8.3.3.1.1. The core of C is the pair (Core(C), ¢c) consisting
of

o A groupoid Core(C);
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o A functor ¢¢: Core(C) < C;

satisfying the following universal property:

(UP) Given another such pair (G, i), there exists a unique functor G =N
Core(C) making the diagram

Core(C)
3
/7 e
G——¢
commute.
00ZK Notation 8.3.3.1.2. We also write C~ for Core(C).
00ZL Construction 8.3.3.1.3. The core of C is the wide subcategory of C

spanned by the isomorphisms of C, i.e. the category Core(C) where!®

1. Objects. We have
Obj(Core(C)) = Obj(C).

2. Morphisms. The morphisms of Core(C) are the isomorphisms of C.

Proof. This follows from the fact that functors preserve isomorphisms
(Item 1 of Proposition 8.4.1.1.6). O

00ZM Proposition 8.3.3.1.4. Let C be a category.

Q0ZN 1. Functoriality. The assignment C +— Core(C) defines a functor

Core: Cats — Grpd.

Q0ZP 2. 2-Functoriality. The assignment C — Core(C) defines a 2-functor

Core: Catsp — Grpd,.

00ZQ 3. Adjointness. We have an adjunction

(¢ 4 Core): Grpd” L Cats,
~—_

Core

15 Slogan: The groupoid Core(C) is the maximal subgroupoid of C.
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witnessed by a bijection of sets
Homcats(G, D) = Homgrpd (G, Core(D)),

natural in G € Obj(Grpd) and D € Obj(Cats), forming, together
with the functor Ky of Item 1 of Proposition 8.3.2.1.3, a triple
adjunction

Ko
TN
(Ko 4¢ - Core): Catse<—:— Grpd,

Nt
Core
witnessed by bijections of sets
HomGrpd (KO (C>7 g) = Homcats (Cv g)?
HomCats(g7 D) = HomGrpd (ga COFG(D)),
natural in C, D € Obj(Cats) and G € Obj(Grpd).

00ZR 4. 2-Adjointness. We have an adjunction

(¢ 4 Core): Grpdg Cats,

Core

witnessed by an isomorphism of categories
Fun(G, D) = Fun(G, Core(D)),

natural in G € Obj(Grpd) and D € Obj(Cats), forming, together
with the 2-functor Ky of Item 2 of Proposition 8.3.2.1.3, a triple
2-adjunction

Ko
SN
(Ko ¢ - Core):  Catse—+— Grpd,

D 3
Core
witnessed by isomorphisms of categories
Fun(Ko(C),G) = Fun(C,G),
Fun(@, D) = Fun(G, Core(D)),

natural in C, D € Obj(Cats) and G € Obj(Grpd).
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5. Symmetric Strong Monoidality With Respect to Products. 'The
core functor of Item 1 has a symmetric strong monoidal structure

(Core, Core™, Coref) : (Cats, x, pt) — (Grpd, x, pt)

being equipped with isomorphisms

o

Coreg 4 Core(C) x Core(D) — Core(C x D),
Core] : pt = Core(pt),
natural in C, D € Obj(Cats).

6. Symmetric Strong Monoidality With Respect to Coproducts. The
core functor of Item 1 has a symmetric strong monoidal structure

<Core, CoreH, Corelﬂ) : (Cats, [, Ocat) — (Grpd, I1, Dcat)
being equipped with isomorphisms

Coregz): Core(C) [[ Core(D) = Core(C 11 D),
Core{-[: Deat = Core(Deat),
natural in C, D € Obj(Cats).

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item 5, Symmetric Strong Monoidality With Respect to Products: Omit-
ted.

Item 6, Symmetric Strong Monoidality With Respect to Coproducts:
Omitted. O

8.4 Functors

8.4.1 Foundations
Let C and D be categories.

Definition 8.4.1.1.1. A functor F: C — D from C to D' consists
of:

6 Pyrther Terminology: Also called a covariant functor.
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1. Action on Objects. A map of sets
F: Obj(C) — Obj(D),
called the action on objects of F.
2. Action on Morphisms. For each A, B € Obj(C), a map
Fy p: Home(A, B) — Homgp (F(A), F(B)),
called the action on morphisms of F at (4, B)!'".

satisfying the following conditions:

1. Preservation of Identities. For each A € Obj(C), the diagram

Homc (A, A) z— Homgp(F(A), F(A))

AA
commutes, i.e. we have

2. Preservation of Composition. For each A, B,C € Obj(C), the
diagram

Hom¢ (B, C) x Homg (A, B) LEC Home (4, C)

Fp,cxFa B Fy,c

Homp (F(B), F(C)) x Homp(F(A), F(B)),; Homg (F(A), F(C))

OF(A),F(B),F(C)

commutes, i.e. for each composable pair (g, f) of morphisms of C,
we have

F(go f)=F(g) o F(f).

00ZX Notation 8.4.1.1.2. Let C and D be categories, and write C°P for the
opposite category of C of ?77.

00zZY 1. Given a functor
F:C— D,
we also write Fy for F'(A).

Y7 Purther Terminology: Also called action on Hom-sets of F at (A, B).
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2. Given a functor
F:C% = D,

we also write F4 for F(A).
3. Given a functor
F:CxC— D,
we also write Fy g for F(A, B).

4. Given a functor
F:CPxC— D,
we also write F for F(A, B).

We employ a similar notation for morphisms, writing e.g. F'y for F'(f)
given a functor F': C — D.

Notation 8.4.1.1.3. Following the notation [z — f(z)] for a function

f: X — Y introduced in Notation 1.1.1.1.2, we will sometimes denote a
functor F': C — D by
F A F(A)],

specially when the action on morphisms of F' is clear from its action on
objects.

Example 8.4.1.1.4. The identity functor of a category C is the
functor id¢: C — C where

1. Action on Objects. For each A € Obj(C), we have
ide(A) & A.
2. Action on Morphisms. For each A, B € Obj(C), the action on
morphisms
(idC)A,B: HomC(A, B) — HOHIC (idc(A), idc(B))

d:efHomc(A7B)

of id¢ at (A, B) is defined by
(idC)A,B = idHmmc(A,B)'

Proof. Preservation of Identities: We have id¢(idy) 4 idy for each
A € Obj(C) by definition.

Preservation of Compositions: For each composable pair A I B Bof
morphisms of C, we have

ide(go f)=gof
def

=1ide(g) cide(f).
This finishes the proof. O
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Definition 8.4.1.1.5. The composition of two functors F': C — D
and G: D — & is the functor G o F' where

o Action on Objects. For each A € Obj(C), we have
[G o F](A) = G(F(A)).

o Action on Morphisms. For each A, B € Obj(C), the action on
morphisms

(GoF), p: Home(A, B) = Homg(GF,, Gry)
of Go F at (A, B) is defined by
[G o FI(f) = G(F(f))-
Proof. Preservation of Identities: For each A € Obj(C), we have
Gr, ay = Giq oy (functoriality of F)
=iday, - (functoriality of G)

Preservation of Composition: For each composable pair (g, f) of mor-
phisms of C, we have

GF,o; = GEyor; (functoriality of F)

=Gp,oGr;. (functoriality of G)

This finishes the proof. ]
Proposition 8.4.1.1.6. Let F': C — D be a functor.

1. Preservation of Isomorphisms. If f is an isomorphism in C, then
F(f) is an isomorphism in D.!8

Proof. Item 1, Preservation of Isomorphisms: Indeed, we have

F(f) "o F(f)=F(f "o )

= F(ida)
= idp(a)
and
F(f)oF(f) " =F(fof™)
= F(idp)
=idp(B),
showing F'(f) to be an isomorphism. O

¥When the converse holds, we call F' conservative, see Definition 8.5.4.1.1.
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0107 8.4.2 Contravariant Functors

Let C and D be categories, and let C°P denote the opposite category of
C of 77.

0108 Definition 8.4.2.1.1. A contravariant functor from C to D is a
functor from C°P to D.

0109 Remark 8.4.2.1.2. In detail, a contravariant functor from C to D
consists of:

1. Action on Objects. A map of sets
F: Obj(C) — Obj(D),
called the action on objects of F.
2. Action on Morphisms. For each A, B € Obj(C), a map
Fy p: Home(A, B) — Homgp (F(B), F(A)),
called the action on morphisms of F' at (A4, B).
satisfying the following conditions:

1. Preservation of Identities. For each A € Obj(C), the diagram
pt
Homg (A, A) i Homgp (F(A), F(A))
commutes, i.e. we have
F(ida) = idp(a).-

2. Preservation of Composition. For each A, B,C € Obj(C), the
diagram

Homap(F(C), F(B)) x Homp (F(B), F(4))

\\ O.Sets
Fp,cXFaB ,\, Homg, (F(C),F(B)),Homg, (F(B),F(A))

AN

Hom¢ (B, C) x Home (A, Blomg (F(B), F(A)) x Homg (F(C), F(B))

D
A,B,C °F(C),F(B),F(A)

Home (A4, C) s Homq (F(C), F(A))
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commutes, i.e. for each composable pair (g, f) of morphisms of C,
we have

Flgo f)=F(f)o F(g)-

Remark 8.4.2.1.3. Throughout this work we will not use the term
“contravariant” functor, speaking instead simply of functors F': C°P — D.
We will usually, however, write

Fa p: Home(A, B) — Homg (F(B), F(A))
for the action on morphisms
Fa p: Homeer (A, B) — Homgp (F(A), F(B))

of F, as well as write F(go f) = F(f) o F(g).

8.4.3 Forgetful Functors

Definition 8.4.3.1.1. There isn’t a precise definition of a forgetful
functor.

Remark 8.4.3.1.2. Despite there not being a formal or precise definition
of a forgetful functor, the term is often very useful in practice, similarly
to the word “canonical”. The idea is that a “forgetful functor” is a
functor that forgets structure or properties, and is best explained through
examples, such as the ones below (see Examples 8.4.3.1.3 and 8.4.3.1.4).

Example 8.4.3.1.3. Examples of forgetful functors that forget structure
include:

1. Forgetting Group Structures. The functor Grp — Sets sending a
group (G, g, ne) to its underlying set G, forgetting the multipli-
cation and unit maps pug and ng of G.

2. Forgetting Topologies. The functor Top — Sets sending a topolog-
ical space (X, Tx) to its underlying set X, forgetting the topology
Tx.

3. Forgetting Fibrations. The functor FibSets(K) — Sets sending a
K-fibred set ¢x: X — K to the set X, forgetting the map ¢x and
the base set K.

Example 8.4.3.1.4. Examples of forgetful functors that forget properties
include:

1. Forgetting Commutativity. The inclusion functor ¢.: CMon < Mon
which forgets the property of being commutative.
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010L 2. Forgetting Inverses. The inclusion functor ¢: Grp — Mon which
forgets the property of having inverses.

010M Notation 8.4.3.1.5. Throughout this work, we will denote forgetful
functors that forget structure by =%, e.g. as in

*=: Grp — Sets.

The symbol =, pronounced wasureru (see Item 1 of Remark 8.4.3.1.6
below), means to forget, and is a kanji found in the following words in
Japanese and Chinese:

010N 1. =M 3, transcribed as wasureru, meaning to forget.

2. =HIBIF, transcribed as boukyaku kanshu, meaning forgetful func-
010P tor.

010Q 3. =IC or /=ac, transcribed as wdngji, meaning to forget.

4. BERF or IBSEKF, transcribed as yiwdng hdnzi, meaning for-
010R getful functor.

010S Remark 8.4.3.1.6. Here we collect the pronunciation of the words in
Notation 8.4.3.1.5 for accuracy and completeness.

0107 1. Pronunciation of =43
o Audio: see https://topological-modular-forms.github.io
/the-clowder-project/static/sounds/wasureru-01.mp3
o IPA broad transcription: [wiswrerw].

o IPA narrow transcription: [wPisifrerw®|.
010U 2. Pronunciation of S#IEF: Pronunciation:

o Audio: see https://topological-modular-forms.github.io
/the-clowder-project/static/sounds/wasureru-02.mp3
o IPA broad transcription: [bo:kidkw kidjew].

o IPA narrow transcription: [bo:kiikw® kdgjew®].
010V 3. Pronunciation of =ig:

e Audio: see https://topological-modular-forms.github.io
/the-clowder-project/static/sounds/wasureru-03.ogg
o Broad IPA transcription: [wantei].

o Sinological IPA transcription: [wan®~53gid!].

010w 4. Pronunciation of & &K F:
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e Audio: see https://topological-modular-forms.github.io
/the-clowder-project/static/sounds/wasureru-04.mp3

o Broad IPA transcription: [iwar xédnfszi|.

 Sinological IPA transcription: [i3®wan®! xdn35f3z214-21(4)].

8.4.4 The Natural Transformation Associated to a Functor
Definition 8.4.4.1.1. Every functor F': C — D defines a natural trans-

. Qg
formation'?

op
CoP x ¢ I2XE pyop

Ff/?
FT: Home = Homgp o (F° x F), . = -
omg omgp

Sets,

called the natural transformation associated to F’, consisting of the
collection

T,
{FA,B- Home (A, B) — Homp (Fa, FB)}(A,B)GObj(C°P><C)

with
Fl 5= Fap.

Proof. The naturality condition for F' is the requirement that for each
morphism

(¢.): (X,Y) — (A, B)
of C°P x C, the diagram

¢ o =tp.00"

Home(X,Y) Hom¢ (A, B)

FX,YI kFA,B

Hom@(FX,Fy) *HomD(FAaFB)7

F(¢)"oF (), =F(¢),0F(¢)

acting on elements as

[ Yofog

! l

F(f) /= F) o F(f) o F(¢) = F(do fod)

commutes, which follows from the functoriality of F'. O

19This is the 1-categorical version of Ttem 1 of Proposition 2.4.1.1.3.


https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-04.mp3
https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-04.mp3
https://topological-modular-forms.github.io/the-clowder-project/tag/010X
https://topological-modular-forms.github.io/the-clowder-project/tag/010Y

0107

0110

0111
0112

0113

0114

0115

0116

0117

0118

8.5. Conditions on Functors 376

Proposition 8.4.4.1.2. Let F': C — D and G: D — & be functors.
1. Interaction With Natural Isomorphisms. The following conditions
are equivalent:
(a) The natural transformation F': Home = Homgpo (F°P x F)
associated to F' is a natural isomorphism.
(b) The functor F' is fully faithful.
2. Interaction With Composition. We have an equality of pasting
diagrams
CoP x ¢ X, pop oy GFXG cop g COPXCWSOPXS’
Vil = =
%Ff ; ‘ _=G" — 4(G0F)T
Hom¢ Ofl@ Homg Home Homg
Sets Sets
in Catsp, i.e. we have
(Go F)T = (GT *idFopXF) o F'.
3. Interaction With Identities. We have

i}, = idHomg(—y,—»):

i.e. the natural transformation associated to id¢ is the identity
natural transformation of the functor Home(—1, —2).

Proof. Item 1, Interaction With Natural Isomorphisms: Clear.
Item 2, Interaction With Composition: Clear.
Item 3, Interaction With Identities: Clear. ]

8.5 Conditions on Functors
8.5.1 Faithful Functors

Let C and D be categories.

Definition 8.5.1.1.1. A functor F': C — D is faithful if, for each
A, B € Obj(C), the action on morphisms

FA,B : Homc(A, B) — Hom@(FA, FB)
of F at (A, B) is injective.

Proposition 8.5.1.1.2. Let F': C — D be a functor.
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1. Interaction With Postcomposition. The following conditions are
equivalent:

(a) The functor F': C — D is faithful.
(b) For each X € Obj(Cats), the postcomposition functor

F.: Fun(X,C) — Fun(X, D)

is faithful.

(¢) The functor F': C — D is a representably faithful morphism
in Cats, in the sense of Definition 9.1.1.1.1.

2. Interaction With Precomposition 1. Let F': C — D be a functor.
(a) If F is faithful, then the precomposition functor
F*: Fun(D,X) — Fun(C, X)

can fail to be faithful.

(b) Conversely, if the precomposition functor
F*: Fun(D,X) — Fun(C, X)
is faithful, then F' can fail to be faithful.

3. Interaction With Precomposition II. If F' is essentially surjective,
then the precomposition functor

F*: Fun(D,X) — Fun(C, X)
is faithful.

4. Interaction With Precomposition III. The following conditions are
equivalent:

(a) For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)

is faithful.
(b) For each X € Obj(Cats), the precomposition functor

F*: Fun(D,X) — Fun(C, X)

is conservative.
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011L (c) For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)

is monadic.
(d) The functor F': C — D is a corepresentably faithful morphism
011M in Cats, in the sense of Definition 9.2.1.1.1.

011N (e) The components
ng: G = Ranp(Go F)
of the unit
1 idfun(p,x) = Rang o F”*

of the adjunction F* 4 Ranp are all monomorphisms.
011P (f) The components

eqg: Lanp(Go F) = G
of the counit
e: Lang o F* = idpyn(p x)

of the adjunction Lang 4 F* are all epimorphisms.

(g) The functor F' is dominant (Definition 8.6.1.1.1), i.e. every
011Q object of D is a retract of some object in Im(F):
(x) For each B € Obj(D), there exist:
— An object A of C;
— A morphism s: B — F(A) of D;
— A morphism r: F(A) — B of D;
such that r o s = idg.

Proof. Item 1, Interaction With Postcomposition: Omitted.

Item 2, Interaction With Precomposition I: See [MSE 733163 for Item 2a.
Item 2b follows from Item 3 and the fact that there are essentially
surjective functors that are not faithful.

Item 3, Interaction With Precomposition II: Omitted, but see https:
//unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor
y.precomp_fully_faithful.html for a formalised proof.

Item 4, Interaction With Precomposition II1: We claim Items 4a to 4g
are equivalent:

o Items ja and 4d Are Equivalent: This is true by the definition of
corepresentably faithful morphism; see Definition 9.2.1.1.1.
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o Items 4a to jc and Jg Are Equivalent: See [Ada+01, Proposition
4.1] or alternatively [Fre09, Lemmas 3.1 and 3.2] for the equivalence
between Items 4a and 4g.

o ltems 4a, 4e and Jf Are Equivalent: See 77 of 77.

This finishes the proof. O

8.5.2 Full Functors
Let C and D be categories.

Definition 8.5.2.1.1. A functor F': C — D is full if, for each A, B €
Obj(C), the action on morphisms

FA,B : HomC(A, B) — HOIH@(FA, FB)
of F at (A, B) is surjective.
Proposition 8.5.2.1.2. Let F': C — D be a functor.

1. Interaction With Postcomposition. The following conditions are
equivalent:

(a) The functor F': C — D is full.
(b) For each X € Obj(Cats), the postcomposition functor

F,: Fun(X,C) — Fun(X, D)

is full.

(¢) The functor F': C — D is a representably full morphism in
Catsy in the sense of Definition 9.1.2.1.1.

2. Interaction With Precomposition I. If F is full, then the precom-
position functor

F*: Fun(D,X) — Fun(C, X)
can fail to be full.
3. Interaction With Precomposition II. If the precomposition functor
F*: Fun(D,X) — Fun(C, X)
is full, then F' can fail to be full.

4. Interaction With Precomposition I1I. If F' is essentially surjective
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5.

and full, then the precomposition functor

F*: Fun(D,X) — Fun(C, X)

is full (and also faithful by Item 3 of Proposition 8.5.1.1.2).

Interaction With Precomposition IV. The following conditions are
equivalent:

(a)

For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)

is full.

The functor F': C — D is a corepresentably full morphism in
Cats, in the sense of Definition 9.2.1.1.1.

The components
ng: G = Ranp(Go F)
of the unit
n: idrun(p,x) = Ranp o F™*

of the adjunction F* 4 Rany are all retractions/split epimor-
phisms.

The components
¢q: Lanp(Go F) = G
of the counit
e: Lang o F* = idryn(p x)

of the adjunction Lanp - F™* are all sections/split monomor-
phisms.
For each B € Obj(D), there exist:
e An object Ap of C;
e A morphism sp: B — F(Ap) of D;
e A morphism rp: F(Ag) — B of D;
satisfying the following condition:
(x) For each A € Obj(C) and each pair of morphisms
r: F(A) — B,
s: B— F(A)

of D, we have

[(Ap,sp,rB)] = [(A,s,rosporp)]

. AeC 1 B! Fa
in [“=" hp, x byt
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Proof. Item 1, Interaction With Postcomposition: Omitted.

Item 2, Interaction With Precomposition I: Omitted.

Item 3, Interaction With Precomposition II: See [BS10, p. 47].

Item 4, Interaction With Precomposition III: Omitted, but see https:
//unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor
y.precomp_fully_faithful.html for a formalised proof.

Item 5, Interaction With Precomposition IV: We claim Items Ha to 5e
are equivalent:

e Items Sa and 5b Are Equivalent: This is true by the definition of
corepresentably full morphism; see Definition 9.2.2.1.1.

o [tems b5a, 5¢ and 5d Are Equivalent: See 77 of 77.

o Items 5a and 5e Are Equivalent: See [Ada+01, Item (b) of Remark

4.3].
This finishes the proof. O
Question 8.5.2.1.3. Item 5 of Proposition 8.5.2.1.2 gives a characteri-

sation of the functors F' for which F™* is full, but the characterisations
given there are really messy. Are there better ones?

This question also appears as [MO 468121b].

8.5.3 Fully Faithful Functors

Let C and D be categories.

Definition 8.5.3.1.1. A functor F': C — D is fully faithful if F is full
and faithful, i.e. if, for each A, B € Obj(C), the action on morphisms

Fy p: Hom¢(A, B) = Homgp (Fa, FiB)
of F' at (A, B) is bijective.
Proposition 8.5.3.1.2. Let F': C — D be a functor.
1. Characterisations. The following conditions are equivalent:

(a) The functor F' is fully faithful.
(b) We have a pullback square

Arr(C) A,

Arr(C) =2 (C x C) xpxp Arr(D), srcxtgt[

Arr(D)
o
[srcxtgt

CXCW@XD

in Cats.
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. Conservativity. If F is fully faithful, then F' is conservative.

. Bssential Injectivity. If F is fully faithful, then F' is essentially

injective.

. Interaction With Co/Limits. If F is fully faithful, then F reflects

co/limits.

. Interaction With Postcomposition. The following conditions are

equivalent:

(a) The functor F': C — D is fully faithful.
(b) For each X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)

is fully faithful.

(¢) The functor F': C — D is a representably fully faithful mor-
phism in Catsy in the sense of Definition 9.1.3.1.1.

. Interaction With Precomposition I. If F' is fully faithful, then the

precomposition functor
F*: Fun(D,X) — Fun(C, X)

can fail to be fully faithful.

. Interaction With Precomposition II. If the precomposition functor

F*: Fun(D,X) — Fun(C, X)

is fully faithful, then F' can fail to be fully faithful (and in fact it
can also fail to be either full or faithful).

. Interaction With Precomposition III. If F is essentially surjective

and full, then the precomposition functor
F*: Fun(D,X) — Fun(C, X)

is fully faithful.

. Interaction With Precomposition IV. The following conditions are

equivalent:
(a) For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)

is fully faithful.
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012S (b) The precomposition functor
F*: Fun(D, Sets) — Fun(C, Sets)

is fully faithful.
Q12T (¢) The functor

Lang: Fun(C, Sets) — Fun(D, Sets)

is fully faithful.
(d) The functor F' is a corepresentably fully faithful morphism in

012U Catss in the sense of Definition 9.2.3.1.1.
012V (e) The functor F is absolutely dense.
012w (f) The components

ng: G = Ranp(Go F)
of the unit
n: idrun(p,x) = Ranp o F*

of the adjunction F* 4 Ranp are all isomorphisms.

012X (g) The components
¢g: Lanp(Go F) = G
of the counit
€: Lang o F* = idryn(p x)

of the adjunction Lang 4 F* are all isomorphisms.

012y (h) The natural transformation
. F
o LanhF(h ) = h
with components
Aec ,
ap B / hg, x hi* — hf

given by
ap B([(¢,9)]) =og
is a natural isomorphism.
0127 (i) For each B € Obj(D), there exist:
e An object Ap of C;
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e A morphism sp: B — F(Apg) of D;
o A morphism rg: F(Ap) — B of D;
satisfying the following conditions:

i. The triple (F(Ag),rp,sp) is a retract of B, i.e. we have

TBOoSp = idB.
ii. For each morphism f: B’ — B of D, we have
(A, sp/, forp)] =[(AB,spo f,7B)]
in [ASCRE x hit.
Proof. Item 1, Characterisations: Omitted.
Item 2, Conservativity: This is a repetition of Item 2 of Proposi-
tion 8.5.4.1.2, and is proved there.
Item 3, Essential Injectivity: Omitted.
Item 4, Interaction With Co/Limits: Omitted.
Item 5, Interaction With Postcomposition: This follows from Item 1 of
Proposition 8.5.1.1.2 and Item 1 of Proposition 8.5.2.1.2.
Item 6, Interaction With Precomposition I: See [MSE 733161] for an
example of a fully faithful functor whose precomposition with which fails
to be full.
Item 7, Interaction With Precomposition II: See [MSE 749304, Item 3].
Item 8, Interaction With Precomposition III: Omitted, but see https:
//unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor
y.precomp_fully_faithful.html for a formalised proof.
Item 9, Interaction With Precomposition IV: We claim [tems 9a to 9i
are equivalent:
o Items 9a and 9d Are Equivalent: This is true by the definition of
corepresentably fully faithful morphism; see Definition 9.2.3.1.1.
e [Ttems 9a, 9f and 99 Are Equivalent: See 77 of 77.
o Items 9a to 9c¢ Are Equivalent: This follows from [Low15, Proposi-
tion A.1.5].
o [ltems 9a, 9e, 9h and 9i Are Equivalent: See [Fre09, Theorem 4.1]
and [Ada+01, Theorem 1.1].
This finishes the proof. O
8.5.4 Conservative Functors

Let C and D be categories.
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Definition 8.5.4.1.1. A functor F': C — D is conservative if it

satisfies the following condition:?’

(x) For each f € Mor(C), if F(f) is an isomorphism in D, then f is
an isomorphism in C.

Proposition 8.5.4.1.2. Let F': C — D be a functor.
1. Characterisations. The following conditions are equivalent:

(a) The functor F is conservative.
(b) For each f € Mor(C), the morphism F(f) is an isomorphism
in O iff f is an isomorphism in C.

2. Interaction With Fully Faithfulness. Every fully faithful functor
is conservative.

3. Interaction With Precomposition. The following conditions are
equivalent:

(a) For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)

is conservative.

(b) The equivalent conditions of Item 4 of Proposition 8.5.1.1.2
are satisfied.

Proof. Item 1, Characterisations: This follows from Item 1 of Proposi-
tion 8.4.1.1.6.

Item 2, Interaction With Fully Faithfulness: Let F': C — D be a fully
faithful functor, let f: A — B be a morphism of C, and suppose that FY
is an isomorphism. We have

F(idB) = idF(B)
=F(f)oF(f)~"
=F(for™).

Similarly, F(id4) = F(f~! o f). But since F is fully faithful, we must
have

f © f_l = idB’
flo f=ida,
showing f to be an isomorphism. Thus F' is conservative. O

208logan: A functor F is conservative if it reflects isomorphisms.
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Question 8.5.4.1.3. Is there a characterisation of functors F': C — D
satisfying the following condition:

(%) For each X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is conservative?

This question also appears as [MO 468121a).

8.5.5 Essentially Injective Functors
Let C and D be categories.

Definition 8.5.5.1.1. A functor F': C — D is essentially injective if
it satisfies the following condition:

(x) For each A, B € Obj(C), if F(A) = F(B), then A = B.

Question 8.5.5.1.2. Is there a characterisation of functors F': C — D
such that:

1. For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C,X)

is essentially injective, i.e. if ¢ o F' = 1) o F', then ¢ = 1 for all
functors ¢ and ¥?

2. For each X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is essentially injective, i.e. if F o ¢ = F o), then ¢ = 7

This question also appears as [MO 468121a].

8.5.6 Essentially Surjective Functors
Let C and D be categories.

Definition 8.5.6.1.1. A functor F': C — D is essentially surjective?!
if it satisfies the following condition:

(x) For each D € Obj(D), there exists some object A of C such that
F(A) = D.

2 Purther Terminology: Also called an eso functor, where the name “eso” comes
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013L Question 8.5.6.1.2. Is there a characterisation of functors F': C — D
such that:

013M 1. For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)
is essentially surjective?

013N 2. For each X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is essentially surjective?

This question also appears as [MO 468121a).

013P 8.5.7 Equivalences of Categories
013Q Definition 8.5.7.1.1. Let C and D be categories.

1. An equivalence of categories between C and D consists of a
013R pair of functors

F:C— D,
G:D—¢C

together with natural isomorphisms
n:idec = G o F,
€: Fo(G = idp.
2. An adjoint equivalence of categories between C and D is an

equivalence (F,G,n,€) between C and D which is also an adjunc-
013S tion.

013T Proposition 8.5.7.1.2. Let ': C — D be a functor.

013U 1. Characterisations. If C and D are small??] then the following
conditions are equivalent:*?

from essentially surjective on objects.

22Otherwise there will be size issues. One can also work with large categories and
universes, or require F' to be constructively essentially surjective; see [MSE 1465107].

23In ZFC, the equivalence between Item 1a and Item 1b is equivalent to the axiom
of choice; see [MO 119454].

In Univalent Foundations, this is true without requiring neither the axiom of choice
nor the law of excluded middle.
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(a) The functor F' is an equivalence of categories.
(b) The functor F is fully faithful and essentially surjective.
(¢) The induced functor

Flsyc): SK(C) — Sk(D)

is an isomorphism of categories.

(d) For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)

is an equivalence of categories.

(e) For each X € Obj(Cats), the postcomposition functor
F,: Fun(X,C) — Fun(X, D)
is an equivalence of categories.
2. Two-Out-of-Three. Let

CGOF8

™ /o

D

be a diagram in Cats. If two out of the three functors among F', G,
and G o F' are equivalences of categories, then so is the third.

3. Stability Under Composition. Let
Ce—= D=8
G/

be a diagram in Cats. If (F,G) and (F',G’) are equivalences of
categories, then so is their composite (F' o F, G’ o G).

4. FEquivalences vs.Adjoint Equivalences. Every equivalence of cate-
gories can be promoted to an adjoint equivalence.?*

5. Interaction With Groupoids. If C and D are groupoids, then the
following conditions are equivalent:

(a) The functor F' is an equivalence of groupoids.

(b) The following conditions are satisfied:

24More precisely, we can promote an equivalence of categories (F,G,n,¢€) to adjoint
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i. The functor F' induces a bijection
7o(F): mo(C) — mo(D)

of sets.
ii. For each A € Obj(C), the induced map

Fpa: Aute(A) = Autp(Fy)

is an isomorphism of groups.

Proof. Item 1, Characterisations: We claim that Items la to le are
indeed equivalent:

1.
2.

4.

5.

Item 1a = Item 1b: Clear.

Item 10 = Item 1a: Since F is essentially surjective and C and
P are small, we can choose, using the axiom of choice, for each
B € Obj(D), an object jp of C and an isomorphism ig: B — Fj,
of D.

Since F' is fully faithful, we can extend the assignment B +— jp to a
unique functor j: O — C such that the isomorphisms ip: B — Fj,
assemble into a natural isomorphism 7: idp == F o7, with a similar
natural isomorphism €: idec == j o F. Hence F is an equivalence.

. Item la = Item 1c: This follows from Item 4 of Proposi-

tion 8.1.5.1.3.
Item 1c = Item 1a: Omitted.

Items 1a, 1d and 1e Are Fquivalent: This follows from ?7.

This finishes the proof of Item 1.

Item 2, Two-Out-of-Three: Omitted.

Item 3, Stability Under Composition: Clear.

Item 4, Equivalences vs.Adjoint Equivalences: See [Riel7, Proposition
4.4.5).

Item 5, Interaction With Groupoids: See [nLa24, Proposition 4.4]. [

8.5.8 Isomorphisms of Categories

Definition 8.5.8.1.1. An isomorphism of categories is a pair of
functors

F:C—9D,
G:D—¢C
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such that we have

GoF = idc,
FoG=idgp.
Example 8.5.8.1.2. Categories can be equivalent but non-isomorphic.

For example, the category consisting of two isomorphic objects is equiva-
lent to pt, but not isomorphic to it.

Proposition 8.5.8.1.3. Let F': C — D be a functor.

1. Characterisations. If C and D are small, then the following
conditions are equivalent:

(a) The functor F' is an isomorphism of categories.
(b) The functor F' is fully faithful and bijective on objects.
(¢) For each X € Obj(Cats), the precomposition functor

F*: Fun(D,X) — Fun(C, X)

is an isomorphism of categories.

(d) For each X € Obj(Cats), the postcomposition functor
F,: Fun(X,C) — Fun(X, D)
is an isomorphism of categories.

Proof. Item 1, Characterisations: We claim that Items la to 1d are
indeed equivalent:

1. Items 1a and 1b Are Equivalent: Omitted, but similar to Item 1 of
Proposition 8.5.7.1.2.

2. Items 1a, 1c and 1d Are Equivalent: This follows from 77.

This finishes the proof. O

8.6 More Conditions on Functors

8.6.1 Dominant Functors
Let C and D be categories.

Definition 8.6.1.1.1. A functor F': C — D is dominant if every object
of D is a retract of some object in Im(F'), i.e.:
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(x) For each B € Obj(D), there exist:

— An object A of C;
— A morphism r: F(A) — B of D;
— A morphism s: B — F(A) of D;

such that we have

ros=idp,

014L Proposition 8.6.1.1.2. Let F,G: C = D be functors and let [: X — C
be a functor.

014M 1. Interaction With Right Whiskering. If I is full and dominant,
then the map

—%id;: Nat(F,G) = Nat(Fol,Gol)
is a bijection.

014N 2. Interaction With Adjunctions. Let (F,G): C =2 D be an adjunc-

tion.
014P (a) If F'is dominant, then G is faithful.
014Q (b) The following conditions are equivalent:
014R i. The functor G is full.
014S ii. The restriction

Gl Im(F) = C
of G to Im(F) is full.

Proof. Item 1, Interaction With Right Whiskering: See [DFHT75, Propo-
sition 1.4].
Item 2, Interaction With Adjunctions: See [DFHT5, Proposition 1.7]. [

014T Question 8.6.1.1.3. Is there a characterisation of functors F': C — D
such that:

equivalences (F,G,n’,¢) and (F,G,n,¢€).
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014U 1. For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)
is dominant?
014V 2. For each X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is dominant?

This question also appears as [MO 468121a].

014W 8.6.2 Monomorphisms of Categories
Let C and D be categories.

014X Definition 8.6.2.1.1. A functor F': C — D is a monomorphism of
categories if it is a monomorphism in Cats (see 77).

014Y Proposition 8.6.2.1.2. Let F': C — D be a functor.
0142 1. Characterisations. The following conditions are equivalent:

0150 (a) The functor F' is a monomorphism of categories.

(b) The functor F' is injective on objects and morphisms, i.e. F' is
0151 injective on objects and the map

F': Mor(C) — Mor(D)

is injective.

Proof. Item 1, Characterisations: Omitted. O
0152 Question 8.6.2.1.3. Is there a characterisation of functors F': C — D
such that:

0153 1. For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)
is a monomorphism of categories?
0154 2. For each X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is a monomorphism of categories?

This question also appears as [MO 468121a].
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8.6.3 Epimorphisms of Categories
Let C and D be categories.

Definition 8.6.3.1.1. A functor F': C — D is a epimorphism of
categories if it is a epimorphism in Cats (see ?7).

Proposition 8.6.3.1.2. Let F': C — D be a functor.

1. Characterisations. The following conditions are equivalent:?

(a) The functor F' is a epimorphism of categories.

(b) For each morphism f: A — B of D, we have a diagram

N\ a1 a2 ag e a6 a2m—2 Q2m—1 Q2m
N N g g N N z

\\ //
\\V

—--3B

in D satisfying the following conditions:
i. We have f = ago ¢;.
ii. We have f = ¥, o aop,.
iii. For each 0 <14 < 2m, we have a; € Mor(Im(F)).

2. Surjectivity on Objects. If F' is an epimorphism of categories, then
F' is surjective on objects.

Proof. Item 1, Characterisations: See [Isb68].

Item 2, Surjectivity on Objects: Omitted. O
Question 8.6.3.1.3. Is there a characterisation of functors F': C — D
such that:

1. For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)

is an epimorphism of categories?

2 Purther Terminology: This statement is known as Isbell’s zigzag theorem.
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015H 2. For each X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is an epimorphism of categories?

This question also appears as [MO 468121a].

0157 8.6.4 Pseudomonic Functors

Let C and D be categories.

015K Definition 8.6.4.1.1. A functor F: C — D is pseudomonic if it
satisfies the following conditions:

015L 1. For all diagrams of the form
Ly
F
X iﬂ@ C D,
(0

if we have
idF*a = idF*,B,

then a = p.

015M 2. For each X € Obj(Cats) and each natural isomorphism

Fog¢
~ 7 >
B:Fo¢p=>Foy, X g| D,
~_ 7
Foy
there exists a natural isomorphism
¢
~ TR
arp=s1, X o ~C
~~_ “
Y
such that we have an equality
¢ Fo¢
TR - TR
X o "cH0 = X8 D
~_ ~_ 7
% Fovy

of pasting diagrams, i.e. such that we have

/BzidF*Oé.
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015N Proposition 8.6.4.1.2. Let F': C — D be a functor.
015P 1. Characterisations. The following conditions are equivalent:
015Q (a) The functor F' is pseudomonic.
Q15R (b) The functor F' satisfies the following conditions:
i. The functor F is faithful, i.e. for each A, B € Obj(C), the
015S action on morphisms

Fy p: Homg(A, B) = Homgp (Fa, Fig)

of F at (A, B) is injective.
15T ii. For each A, B € Obj(C), the restriction

Fii%: Tsoc(A, B) = Isop(Fa, F)

of the action on morphisms of F' at (A, B) to isomorphisms
is surjective.

015U (c) We have an isocomma square of the form

in Catsy up to equivalence.

015V (d) We have an isocomma square of the form

C —> Arr(C)

A
s Arr(F)
74

D — Arr(D)

eq &
C=CXanm D, F

in Catsp up to equivalence.

Q15W (e) For each X € Obj(Cats), the postcomposition 2 functor
F.: Fun(X,C) — Fun(X, D)

is pseudomonic.

26 Asking the precomposition functors

F*: Fun(D,X) — Fun(C, X)
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2. Conservativity. If F' is pseudomonic, then F' is conservative.

3. Essential Injectivity. 1If F is pseudomonic, then F' is essentially
injective.

Proof. Item 1, Characterisations: Omitted.

Item 2, Conservativity: Omitted.

Item 3, Essential Injectivity: Omitted. 0
8.6.5 Pseudoepic Functors

Let C and D be categories.

Definition 8.6.5.1.1. A functor F': C — D is pseudoepic if it satisfies
the following conditions:

1. For all diagrams of the form

¢
F PR
c-5 D iﬂ@ X,
P
if we have
axidp = Bxidp,
then o = .

2. For each X € Obj(C) and each 2-isomorphism

¢oF
~ 7 ™
: F F
/8 ¢ © :> ¢ o ) C iu/ X
PoF
of C, there exists a 2-isomorphism
¢
~ FEETERS
arg==1v, D o X
~_
¥
of C such that we have an equality
¢ ¢oF
TR - TR
cHo o Tx = cTs X
~_ ~_ 7
P Yok

of pasting diagrams in C, i.e. such that we have

b =axidp.
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Proposition 8.6.5.1.2. Let F': C — D be a functor.
1. Characterisations. The following conditions are equivalent:

(a) The functor F' is pseudoepic.
(b) For each X € Obj(Cats), the functor

F*: Fun(D,X) — Fun(C, X)

given by precomposition by F' is pseudomonic.

(¢) We have an isococomma square of the form

d

D
— D
Pt
//////

/,
/
2

i
F
v

D
eq. >
D=DIeD: iy
in Catsp up to equivalence.

2. Dominance. If F is pseudoepic, then F' is dominant (Defini-
tion 8.6.1.1.1).

Proof. Item 1, Characterisations: Omitted.
Item 2, Dominance: If F' is pseudoepic, then

F*: Fun(D,X) — Fun(C, X)

is pseudomonic for all X € Obj(Cats), and thus in particular faithful. By
Item 4g of Item 4 of Proposition 8.5.1.1.2, this is equivalent to requiring
F' to be dominant. O

Question 8.6.5.1.3. Is there a nice characterisation of the pseudoepic
functors, similarly to the characterisaiton of pseudomonic functors given
in Item 1b of Item 1 of Proposition 8.6.4.1.27

This question also appears as [MO 321971].

Question 8.6.5.1.4. A pseudomonic and pseudoepic functor is dominant,
faithful, essentially injective, and full on isomorphisms. Is it necessarily
an equivalence of categories? If not, how bad can this fail, i.e. how far
can a pseudomonic and pseudoepic functor be from an equivalence of
categories?

This question also appears as [MO 468334].

to be pseudomonic leads to pseudoepic functors; see Item 1b of Item 1 of
Proposition 8.6.5.1.2.
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016B Question 8.6.5.1.5. Is there a characterisation of functors F': C — D
such that:

016C 1. For each X € Obj(Cats), the precomposition functor
F*: Fun(D,X) — Fun(C, X)
is pseudoepic?
016D 2. For each X € Obj(Cats), the postcomposition functor
F.: Fun(X,C) — Fun(X, D)
is pseudoepic?

This question also appears as [MO 468121a].

016 8.7 Even More Conditions on Functors
016F 8.7.1 Injective on Objects Functors
Let C and D be categories.

016G Definition 8.7.1.1.1. A functor F': C — D is injective on objects if
the action on objects

F: Obj(C) — Obj(D)
of F' is injective.
016H Proposition 8.7.1.1.2. Let F': C — D be a functor.
0167 1. Characterisations. The following conditions are equivalent:

016K (a) The functor F' is injective on objects.
016L (b) The functor F' is an isocofibration in Cats,.

Proof. Item 1, Characterisations: Omitted. 0

016M 8.7.2 Surjective on Objects Functors

Let C and D be categories.

016N Definition 8.7.2.1.1. A functor F': C — D is surjective on objects
if the action on objects

F: Obj(C) — Obj(D)

of I is surjective.
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8.7.3 Bijective on Objects Functors
Let C and D be categories.

Definition 8.7.3.1.1. A functor F': C — D is bijective on objects®’
if the action on objects

F: Obj(C) — Obj(D)

of F'is a bijection.

8.7.4 Functors Representably Faithful on Cores
Let C and D be categories.

Definition 8.7.4.1.1. A functor F': C — D is representably faithful
on cores if, for each X € Obj(Cats), the postcomposition by F' functor

F,: Core(Fun(X,C)) — Core(Fun(X, D))
is faithful.

Remark 8.7.4.1.2. In detail, a functor F': C — D is representably
faithful on cores if, given a diagram of the form

é
TR F
Xiﬂiﬂ&c%@,

if « and B are natural isomorphisms and we have
idpxa = idF*ﬁ,
then o = .

Question 8.7.4.1.3. Is there a characterisation of functors representably
faithful on cores?

8.7.5 Functors Representably Full on Cores
Let C and D be categories.

Definition 8.7.5.1.1. A functor F': C — D is representably full on
cores if, for each X € Obj(Cats), the postcomposition by F' functor

F,: Core(Fun(X,C)) — Core(Fun(X, D))

is full.

2T Purther Terminology: Also called a bo functor.
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016X Remark 8.7.5.1.2. In detail, a functor F': C — D is representably
full on cores if, for each X € Obj(Cats) and each natural isomorphism

Fog¢
~ S
B:Fop=>Foy, X 4| D,
~_ 7
Foy
there exists a natural isomorphism
¢
o=y, X o S C
o ’ ~ Y
P
such that we have an equality
o Fed
TR —_
X o "cHDo = x5 D
~_ ~_ 7
P Foy

of pasting diagrams in Catsy, i.e. such that we have
/8 =id F x Q.

016Y Question 8.7.5.1.3. Is there a characterisation of functors representably
full on cores?
This question also appears as [MO 468121a].

016Z 8.7.6 Functors Representably Fully Faithful on Cores
Let C and D be categories.

0170 Definition 8.7.6.1.1. A functor F': C — D is representably fully
faithful on cores if, for each X € Obj(Cats), the postcomposition by
F functor

F,: Core(Fun(X,C)) — Core(Fun(X, D))
is fully faithful.

0171 Remark 8.7.6.1.2. In detail, a functor F': C — D is representably
fully faithful on cores if it satisfies the conditions in Remarks 8.7.4.1.2
and 8.7.5.1.2, i.e.:

0172 1. For all diagrams of the form
/¢\
F
X a\l{pﬂ& C — D,

with o and 8 natural isomorphisms, if we have idg * @ = idp * 3,
then a = g.
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0173 2. For each X € Obj(Cats) and each natural isomorphism

Fog¢
B:Fop=>Foy, X 4 D
“ow

of C, there exists a natural isomorphism

L= X /K\A c
a: ¢ =, \oc_/
%
of C such that we have an equality
v e
X o cHo = x4 o
~~_ ~_
P Foy

of pasting diagrams in Catsp, i.e. such that we have
B =id F*x Q.

0174 Question 8.7.6.1.3. Is there a characterisation of functors representably
fully faithful on cores?

0175 8.7.7 Functors Corepresentably Faithful on Cores

Let C and D be categories.

0176 Definition 8.7.7.1.1. A functor F': C — D is corepresentably faith-
ful on cores if, for each X € Obj(Cats), the postcomposition by F
functor

F,: Core(Fun(X,C)) — Core(Fun(X, D))
is faithful.

0177 Remark 8.7.7.1.2. In detail, a functor F': C — D is corepresentably
faithful on cores if, given a diagram of the form

¢
¢ Lo L7 .
Y
if « and B are natural isomorphisms and we have
axidp = g xidp,
then o = .

0178 Question 8.7.7.1.3. Is there a characterisation of functors corepre-
sentably faithful on cores?
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0179 8.7.8 Functors Corepresentably Full on Cores
Let C and D be categories.

017A Definition 8.7.8.1.1. A functor F': C — D is corepresentably full
on cores if, for each X € Obj(Cats), the postcomposition by F' functor

F,: Core(Fun(X,C)) — Core(Fun(X, D))
is full.

017B Remark 8.7.8.1.2. In detail, a functor F': C — D is corepresentably
full on cores if, for each X € Obj(Cats) and each natural isomorphism

¢oF
~ T ™
: F—= F, C X,
s:00FyoF ¢ o
YoF
there exists a natural isomorphism
¢
~ FTER
a:p=1v, D au X
~_ “
P
such that we have an equality
¢ Fog¢
TR S TR
X o "cHo = x5 0
~_ ~_ 7
P Foy
of pasting diagrams in Catsy, i.e. such that we have
,B = axid F.
017C Question 8.7.8.1.3. Is there a characterisation of functors corepre-

sentably full on cores?
This question also appears as [MO 468121a].

017D 8.7.9 Functors Corepresentably Fully Faithful on Cores

Let C and D be categories.

017E Definition 8.7.9.1.1. A functor F': C — D is corepresentably fully
faithful on cores if, for each X € Obj(Cats), the postcomposition by

F functor
F,: Core(Fun(X,C)) — Core(Fun(X, D))

is fully faithful.
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017F Remark 8.7.9.1.2. In detail, a functor F': C — D is corepresentably
fully faithful on cores if it satisfies the conditions in Remarks 8.7.7.1.2
and 8.7.8.1.2, i.e.:

017G 1. For all diagrams of the form

¢
¢ o L5 x,
¥
if « and B are natural isomorphisms and we have
axidp = g xidp,
then a = g.

017H 2. For each X € Obj(Cats) and each natural isomorphism

¢oF
B:poF=syoF, C 4| X
: ¢} o
) LV _~ )
PoF
there exists a natural isomorphism
¢
~ FTER
a:p=1v, D au X
~_
P
such that we have an equality
0 Py
TR JR—
X o "cHo = X8 O
~~_ ~_
P Foy

of pasting diagrams in Catsp, i.e. such that we have

ﬂ:a*idp.

0177 Question 8.7.9.1.3. Is there a characterisation of functors corepre-
sentably fully faithful on cores?

017k 8.8 Natural Transformations

017L 8.8.1 Transformations

Let C and D be categories and F,G: C = D be functors.


https://topological-modular-forms.github.io/the-clowder-project/tag/017F
https://topological-modular-forms.github.io/the-clowder-project/tag/017G
https://topological-modular-forms.github.io/the-clowder-project/tag/017H
https://topological-modular-forms.github.io/the-clowder-project/tag/017J
https://topological-modular-forms.github.io/the-clowder-project/tag/017K
https://topological-modular-forms.github.io/the-clowder-project/tag/017L

017M

017N

017P

017Q

017R

017S

o177

8.8. Natural Transformations 404

Definition 8.8.1.1.1. A transformation®® a: F = G from F to G
is a collection

{aa: F(A) = G(A)} sconic)

of morphisms of D.

Notation 8.8.1.1.2. We write Trans(F, G) for the set of transformations
from F' to G.

8.8.2 Natural Transformations

Let C and D be categories and F,G: C = D be functors.

Definition 8.8.2.1.1. A natural transformation o: F' = G from
F to @ is a transformation

{aa: F(A) = G(A)} sconic)

from F to G such that, for each morphism f: A — B of C, the diagram

commutes.??

Remark 8.8.2.1.2. We denote natural transformations in diagrams as

Notation 8.8.2.1.3. We write Nat(F, G) for the set of natural transfor-
mations from F' to G.

Example 8.8.2.1.4. The identity natural transformation idg: FF —
F of F is the natural transformation consisting of the collection

{idF(A)i F(A) — F(A)}Aeobj(c)'

Proof. The naturality condition for idp is the requirement that, for each

28 Purther Terminology: Also called an unnatural transformation for emphasis.
29 Further Terminology: The morphism a4: Fa — G4 is called the component of
o at A.
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morphism f: A — B of C, the diagram

L F(B)

idF(A) \lldF(B)
— F(B
F(f) (B)
commutes, which follows from unitality of the composition of C. O

Definition 8.8.2.1.5. Two natural transformations «, 8: F' =— G are
equal if we have

aq = fa
for each A € Obj(C).

8.8.3 Vertical Composition of Natural Transformations
Definition 8.8.3.1.1. The vertical composition of two natural trans-
formations a: F' = G and f: G = H as in the diagram

F

/o N
C—G— 9D
A

is the natural transformation § o «: F' = H consisting of the collection

{(Boa),: F(A) = H(A)} 4conic)
with
(Boa),= Bacas
for each A € Obj(C).

Proof. The naturality condition for § o « is the requirement that the
boundary of the diagram

commutes. Since
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1. Subdiagram (1) commutes by the naturality of «.

2. Subdiagram (2) commutes by the naturality of 3.

so does the boundary diagram. Hence o « is a natural transformation.
O

017X Proposition 8.8.3.1.2. Let C, D, and & be categories.

017Y 1. Functionality. The assignment (3, ) — [ o « defines a function

OFG,H: Nat(G,H) X Nat(F, G) — Nat(F, H)

=
0177 2. Associativity. Let F,G,H,K: C = D be functors. The diagram
Nat(H, K) x (Nat(G, H) x Nat(F,G))

aSets L7 .
Nat(H,K),Nat(G,H),Nat(F,G) 1;_3' idNat(H,K) XOF,G,H

(Nat(H, K) x Nat(G,ﬁ)) x Nat(F,G) Nat(H,K) x Nat(F, H)

oG, H,K XidNat(F,q) OF H,K

Nat(G, K) x Nat(F, GleKNat(F, K)
commutes, i.e. given natural transformations
F2 e LK,
we have
(yoB)oa=ryo(Boa).
0180 3. Unitality. Let F,G: C = D be functors.
(a) Left Unitality. The diagram

pt x Nat(F,G)
)\SNets(F @)
‘\\ at N
lida] xidNat(7,q) N

RN

Nat(G,G) x Nat(F,G) —— Nat(F, Q)

°F,G,G

commutes, i.e. given a natural transformation a: F = G,
we have
idgoa = a.
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(b) Right Unitality. The diagram

Nat(F,G) x pt
~. Sets
\\\\pNat(F,G)

idNat(r,q) X [IdF] o

Tha

Nat(F,G) x Nat(F, F) —— Nat(F,G)
°F,F,G

commutes, i.e. given a natural transformation a: F = G,

we have
aoidp = a.

0181 4. Middle Four Exchange. Let Fi, Fo, F3: C — Dand G1,G2,Gs: D —
& be functors. The diagram

(Nat(Ga, G3) x Nat(G1, Ga)) x (Nat(Fy, F5) x Nat(F1, F)) & (Nat(Ga, Gs) x Nat(Fy, Fy)) x (Nat(G1,Ga) x Nat(F}, Fy))

©G1,G2,G3 XOF ,Fa,Fy *Fy,F3,Ga,G3 X*Fy,Fp,G1,Ga

Nat(G1,G3) x Nat(Fy, F3) Nat(Gz o Fy, Gz 0 F3) x Nat(Gy o Fi,Ga 0 F»)

*F|,F3,G1,Gg

Nat(Gy o F1,G3 0 F3)

0G| 0F|,GooFy,GgoFy

commutes, i.e. given a diagram

in Catsy, we have

(B'xa’)o(Bxa)= (B 0op)*(a'ca).

Proof. Item 1, Functionality: Clear.
Item 2, Associativity: Indeed, we have

(Yo B)oa), = (yoB) 0an
= (ya0Ba)oaa

=40 (Baocax)
def

i p0 (Boa)
Y (yo (Boa))
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for each A € Obj(C), showing the desired equality.
Item 3, Unitality: We have

(idgoa), =idgoaqy
=y,
(aoidF)A :aAoidF

for each A € Obj(C), showing the desired equality.
Item 4, Middle Four Exchange: This is proved in Item 4 of Proposi-
tion 8.8.4.1.3. O

0182 8.8.4 Horizontal Composition of Natural Transformations

0183 Definition 8.8.4.1.1. The horizontal composition®’:?! of two natural
transformations a: F'=—= G and : H = K as in the diagram

/F\A/I_{\
C o O 4 &
YY

of o and [ is the natural transformation
Bra: (HoF)= (KoG),

as in the diagram

consisting of the collection

{(Bxa),: H(F(A)) = K(G(A))} sconic):

of morphisms of & with

H(F(4) Z4 H(G(4))

(Bxa), = Baayo H(aa)
= K(aa) o Br(a), 6F(A)t [BG(A)
K(F(A)) Ko (G(A))

30 Purther Terminology: Also called the Godement product of o and 3.
31Horizontal composition forms a map

*(p,H), (¢, k) - Nat(H, K) x Nat(F,G) — Nat(H o F, K o G).
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Proof. First, we claim that we indeed have

H(aa)

H(F(A)) H(G(A))

Baa) o H(aa) = K(aa) o Bray, 5F<A)| [ﬁam)

K(F(A)) K(G(A)).

K(aA)
This is, however, simply the naturality square for [ applied to the
morphism a4: F'(A) - G(A). Next, we check the naturality condition
for B x «, which is the requirement that the boundary of the diagram

H(aya) 1) H(ap)
H(G(A)) —HG(H)— H(G(B))

Ba(a) (2) Bes)

commutes. Since
1. Subdiagram (1) commutes by the naturality of a.
2. Subdiagram (2) commutes by the naturality of 3.

so does the boundary diagram. Hence o« is a natural transformation.>?

O]

Definition 8.8.4.1.2. Let
[
T
XLceco 08y
T

be a diagram in Catsy.

32 Reference: [Bor94, Proposition 1.3.4].
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0185 1. The left whiskering of o with G is the natural transformation 3

idgxa: Gogp = Go.

2. The right whiskering of o with F' is the natural transforma-
0186 tion *1
axidp: o F = 1y o F.

0187 Proposition 8.8.4.1.3. Let C, D, and & be categories.
0188 1. Functionality. The assignment (3, ) — [ x v defines a function

*(F,a),(H,K): Nat(H, K) x Nat(F,G) — Nat(H o F, K o G).

0189 2. Associativity. Let

It I F3
CSDZZEF
G1 Ga G

be a diagram in Catsp. The diagram

N X(Fy,Ga).(F3,G3) X1d
at(Fg, G3) X Nat(Fg, GQ) X Nat(Fl, Gl) —_— Nat(Fg o Fy,Gso Gg) X Nat(Fh Gl)
idX*(Fy,Gq),(Fy,Ga) *(F30Fy),(G30G,F1,G1)

Nat(F3,Gs) x Nat(Fy 0 Fy,Ga 0 G1) Nat(F5 0 Fy 0 F1,G3 0 Gg 0 G1)

-
*(FpoFy),(G20G1,F3.G3)

commutes, i.e. given natural transformations

F 2y F
¢ o] To T4 e,
G1 Go Gs

we have
(% B)xa=7*(B*a).

018A 3. Interaction With Identities. Let F: C — D and G: D — & be
functors. The diagram

pt X pt Hdelxfide] Nat(G,G) x Nat(F, F)

A
'

2 *(F,F),(G,G)

pt Nat(G o F,G o F)

[idGoF]

33 Burther Notation: Also written Ga or G % v, although we won’t use either of these
notations in this work.
34 Purther Notation: Also written aF or a* F, although we won’t use either of these
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commutes, i.e. we have
idg xidp = idgor.

018B 4. Middle Four Exchange. Let Fy, Fo, F3: C — Dand G1,G2,Gs: D —
& be functors. The diagram

(Nat(Gs, G3) x Nat(G1, Ga)) x (Nat(Fy, F5) x Nat(F1, Fy)) /& (Nat(Ga, Gs) x Nat(Fj, Fy)) x (Nat(G1,Ga) x Nat(F}, Fy))

©G1,G2,G3 X OF ,Fa,Fy *Fy,F3,Go,G3 X*F1,Fy,G1,Gy

Nat(G1,G3) x Nat(Fy, F3) Nat(G3 o Fy, G 0 F3) x Nat(Gy o F1,Ga o F)

*Fy,F3,G1,G3 0G0F|,GaoFy,G30F3

Nat(Gy o Fi,G3 0 F3)

commutes, i.e. given a diagram

F1 G’1
/o N B N
C—FmH—> 9D —G— &

D N
F3 G3
in Catsp, we have
(B xad)o(Bra)=(8"0pB)*(a0a).

Proof. Item 1, Functionality: Clear.
Item 2, Associativity: Omitted.
Item 3, Interaction With Identities: We have

(idg *idp) 4 = (idg) , © Giay),
Zidgy, © Giap,

= idGFA o idGFA

= idg,,

def

= (idgor) 4

for each A € Obj(C), showing the desired equality.

notations in this work.
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Item 4, Middle Four Exchange: Let A € Obj(C) and consider the diagram

G1(F3(A))

G (o) WA)

G1(F2(A)) (1) G2(F3(A))

BFX‘ G2 (044)

Ga(F2(A))

/
Gi(aa) Brs(a)
e _—>

G1(F1(A)) G3(F3(A)).

The top composition

G1(F3(A))

e N
’
F3(4)

Gi(aa) B
—5 G1(Fy(4)) Go(F3(A)) —— G3(F3(A)).

G1(F1(A))

is given by ((8' o 8) * (&’ o @)) 4, while the bottom composition

Gi(aa) 5}3(14)

G1(F1(A4)) —— G1(F2(A)) Go(F3(A)) —— G3(F3(A)).
ﬁFx G2 (o))
Ga(F3(A))

is given by ((5' x ) o (8 x«)) 4. Now, Subdiagram (1) corresponds to
the naturality condition

G (o)
G1(F(A)) —— Gi(F5(4))

G (0‘14) © /BFQ(A) = Bry(A) 0 G (O/A)a BFQ(,@[ [/31?3(14)

G2(F2(A)) —— Ga(F3(A))

Ga ()
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for B: G1 = G at o/y: F5(A) — F3(A), and thus commutes. Thus we
have

(B0 B) x (a'0a)), = ((B'xa') o (Bxa)),
for each A € Obj(C) and therefore
(B xad)o(Bra)=(8"0pB)*(a0a).

This finishes the proof. O

018C 8.8.5 Properties of Natural Transformations

018D Proposition 8.8.5.1.1. Let F,G: C = D be functors. The following
data are equivalent:*°

018E 1. A natural transformation o: F' = G.

018F 2. A functor [a]: C — D? filling the diagram

D

(o]
G

C —[o]— DL

\ evy

D

018G 3. A functor [a]: C x 1 — D filling the diagram

C

o X‘

Cx1l—[d— D.

evy
/

C

Proof. From Item 1 to Item 2 and Back: We may identify D! with

35Taken from [MO 64365].
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Arr(D). Given a natural transformation a: F' = G, we have a functor

[o]: C p?t

A s

making the diagram in Item 2 commute. Conversely, every such functor
gives rise to a natural transformation from F' to G, and these construc-
tions are inverse to each other.

From Item 2 to Item 3 and Back: This follows from Item 3 of Proposi-
tion 8.9.1.1.2. ]

018H 8.8.6 Natural Isomorphisms
Let C and D be categories and let F,G: C = D be functors.

0187 Definition 8.8.6.1.1. A natural transformation «: F' = G is a natu-
ral isomorphism if there exists a natural transformation a=!: G = F

such that
—1 .
a "t oa=idp,

aoa”l = idg.
018K Proposition 8.8.6.1.2. Let oo: F' = G be a natural transformation.
018L 1. Characterisations. The following conditions are equivalent:

018M (a) The natural transformation « is a natural isomorphism.
(b) For each A € Obj(C), the morphism a4: Fg — G4 is an
018N isomorphism.

2. Componentwise Inverses of Natural Transformations Assemble Into
018P Natural Transformations. Let a~': G = F be a transformation
such that, for each A € Obj(C), we have

-1 .
Qp oQy :1dF(A)7

1 .
QA Oy :ldG(A)-

Then o~ ! is a natural transformation.
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Proof. Item 1, Characterisations: The implication Item la = Item 1b
is clear, whereas the implication Item 1b = Item la follows from Item 2.
Item 2, Componentwise Inverses of Natural Transformations Assem-
ble Into Natural Transformations: The naturality condition for a™!
corresponds to the commutativity of the diagram

for each A, B € Obj(C) and each f € Hom¢(A, B). Considering the

diagram

ca) L, qBy)
a;l (1) agl

oa (2) ap
G(A) W G(B),

where the boundary diagram as well as Subdiagram (2) commute, we
have

G(f) = G(f) oidga)
=G(f)oasoay’

=apo F(f) 004;11.
Postcomposing both sides with agl, we get

a;l oG(f) = Oz];l ocapo F(f) oozzll
= ldF(B) OF(f) OOé;‘l
= F(f)oay’,

which is the naturality condition we wanted to show. Thus o~ ! is a
natural transformation. O
8.9 Categories of Categories

8.9.1 Functor Categories

Let C be a category and D be a small category.
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0185 Definition 8.9.1.1.1. The category of functors from C to D is
the category Fun(C, D)3" where

o Objects. The objects of Fun(C, D) are functors from C to D.
e Morphisms. For each F,G € Obj(Fun(C, D)), we have
Homgyn(c,p) (F, G) < Nat(F, G).
o Identities. For each F' € Obj(Fun(C, D)), the unit map
170n(CD): bt s Nat(F, F)

of Fun(C, D) at F is given by

. JFun(C,D) def .
1dF“n( ):eldF,

where idp: FF = F' is the identity natural transformation of F' of
Example 8.8.2.1.4.

o Composition. For each F,G, H € Obj(Fun(C, D)), the composition
map

ofunCD): Nat(G, H) x Nat(F, G) — Nat(F, H)

of Fun(C, D) at (F,G, H) is given by

Fun(C,D) _ def
Borau a=pfoa

where 3 o « is the vertical composition of o and S of Item 1 of
Proposition 8.8.3.1.2.

018T Proposition 8.9.1.1.2. Let C and D be categories and let F': C — D
be a functor.

018U 1. Functoriality. The assignments C, D, (C,D) — Fun(C, D) define
functors
Fun(C, —2): Cats — Cats,
Fun(—1,D): Cats®® — Cats,

Fun(—1, —2): Cats®? x Cats — Cats.

018V 2. 2-Functoriality. The assignments C, D, (C,D) — Fun(C,D)
define 2-functors

Fun(C, —2): Cats, — Catsy,
Fun(—1, D): Cats;” — Catsy,

Fun(—1, —2): Catsy® x Catsp — Catsp.

36 Purther Terminology: Also called the functor category Fun(C, D).
37 Purther Notation: Also written D€ and [C, D].
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018W 3. Adjointness. We have adjunctions

Cx—
(C x — 4 Fun(C,—)): Catsz_\/ Cats,
Fun(C,—)
—xD
~— ™
(—xDAFun(D,—)): Cats L Cats,

-
Fun(D,—-)

witnessed by bijections of sets

Homc,is(C X D, E) = Homeas (D, Fun(C, 8)),
Homc,is(C X D, E) = Homeys(C, Fun(D, 8)),

natural in C, D, & € Obj(Cats).
018X 4. 2-Adjointness. We have 2-adjunctions

Cx—
(C x — 4 Fun(C,—)): Cats; L, Catsy,
Fun(C,)
—xD
(= x D A4 Fun(D, —)): Catszg Catsp,
Fun(D,-)

witnessed by isomorphisms of categories

Fun(C x D, &) = Fun(D, Fun(C, &)),
Fun(C x D, &) = Fun(C, Fun(D, &),

natural in C, D, & € Obj(Catsy).

018Y 5. Interaction With Punctual Categories. We have a canonical
isomorphism of categories

Fun(pt,C) = C,
natural in C € Obj(Cats).
018Z 6. Objectwise Computation of Co/Limits. Let
D: T — Fun(C, D)
be a diagram in Fun(C, D). We have isomorphisms
lin(D) , = lim(Di(4),
colim(D) 4 = C?éi]m(Di(A))’

naturally in A € Obj(C).
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7. Interaction With Co/Completeness. 1If & is co/complete, then so
is Fun(C, &).

8. Monomorphisms and Epimorphisms. Let a: FF = G be a
morphism of Fun(C, D). The following conditions are equivalent:

(a) The natural transformation
a F= G

is a monomorphism (resp. epimorphism) in Fun(C, D).
(b) For each A € Obj(C), the morphism

ag: Fyp— Gy
is a monomorphism (resp. epimorphism) in D.

Proof. Item 1, Functoriality: Omitted.

Item 2, 2-Functoriality: Omitted.

Item 3, Adjointness: Omitted.

Item 4, 2-Adjointness: Omitted.

Item b5, Interaction With Punctual Categories: Omitted.

Item 6, Objectwise Computation of Co/Limits: Omitted.

Item 7, Interaction With Co/Completeness: This follows from ?7.
Item 8, Monomorphisms and Epimorphisms: Omitted. O

8.9.2 The Category of Categories and Functors

Definition 8.9.2.1.1. The category of (small) categories and func-
tors is the category Cats where

e Objects. The objects of Cats are small categories.

o Morphisms. For each C,D € Obj(Cats), we have

Homcas(C, D) & Obj(Fun(C, D)).

o Identities. For each C € Obj(Cats), the unit map
lgats: pt — Homcais(C, C)
of Cats at C is defined by
dGs def

= idc,

where id¢: C — C is the identity functor of C of Example 8.4.1.1.4.
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o Composition. For each C,D,E € Obj(Cats), the composition map
06’561 Homcars(D, &) x Homeas(C, D) — Homeas(C, E)
of Cats at (C, D, &) is given by
GoSs e FEGoF,

where G o F': C — & is the composition of F' and G of Defini-
tion 8.4.1.1.5.

0196 Proposition 8.9.2.1.2. Let C be a category.
0197 1. Co/Completeness. The category Cats is complete and cocomplete.

0198 2. Cartesian Monoidal Structure. The quadruple (Cats, x, pt, Fun)
is a Cartesian closed monoidal category.

Proof. Item 1, Co/Completeness: Omitted.
Item 2, Cartesian Monoidal Structure: Omitted. O

8.9.3 The 2-Category of Categories, Functors, and Natural
0199 Transformations

219A Definition 8.9.3.1.1. The 2-category of (small) categories, func-
tors, and natural transformations is the 2-category Catsy where

Objects. The objects of Catsy are small categories.

Hom-Categories. For each C,D € Obj(Catsy), we have

def

Homcats, (C, D) = Fun(C, D).

o Identities. For each C € Obj(Catsy), the unit functor
15 pt — Fun(C,C)

of Cats; at C is the functor picking the identity functor ide: C — C
of C.

o Composition. For each C,D,E € Obj(Catsy), the composition
bifunctor

O(C:?zt;?s: Homcats, (D, &) x Homcats, (C, D) — Homcats, (C, &)
of Catsy at (C, D, &) is the functor where

— Action on Objects. For each object (G, F) € Obj(Homcats, (D, E) x Homeais, (C, D)),
we have
GG ) G E
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— Action on Morphisms. For each morphism (8,«): (K, H) =
(G, F) of Homcats, (D, E) x Homcats, (C, D), we have

C def
OC?;)S?‘S(/Ba Oé) :e B * «,

where 3 x « is the horizontal composition of o and g of Defi-
nition 8.8.4.1.1.

019B Proposition 8.9.3.1.2. Let C be a category.

019C 1. 2-Categorical Co/Completeness. The 2-category Catsy is com-
plete and cocomplete as a 2-category, having all 2-categorical and
bicategorical co/limits.

Proof. Item 1, Co/Completeness: Omitted. O

219D 8.9.4 The Category of Groupoids

019E Definition 8.9.4.1.1. The category of (small) groupoids is the full
subcategory Grpd of Cats spanned by the groupoids.

019F 8.9.5 The 2-Category of Groupoids

019G Definition 8.9.5.1.1. The 2-category of (small) groupoids is the
full sub-2-category Grpd, of Catsy spanned by the groupoids.
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Chapter 9

Types of Morphisms in
Bicategories

019H In this chapter, we study special kinds of morphisms in bicategories:

1. Monomorphisms and Epimorphisms in Bicategories (Sections 9.1
and 9.2). There is a large number of different notions capturing the
idea of a “monomorphism” or of an “epimorphism” in a bicategory.

Arguably, the notion that best captures these concepts is that of
a pseudomonic morphism (Definition 9.1.10.1.1) and of a pseu-
doepic morphism (Definition 9.2.10.1.1), although the other notions
introduced in Sections 9.1 and 9.2 are also interesting on their own.
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0197 9.1 Monomorphisms in Bicategories

219K 9.1.1 Representably Faithful Morphisms
Let C be a bicategory.

019L Definition 9.1.1.1.1. A l-morphism f: A — B of C is representably
faithful' if, for each X € Obj(C), the functor

fx: Home(X, A) — Home (X, B)
given by postcomposition by f is faithful.

019 Remark 9.1.1.1.2. In detail, f is representably faithful if, for all
diagrams in C of the form

¢
TR f
x G aLs
¥

if we have
idf*oz = idf*ﬁ,
then oo = .
019N Example 9.1.1.1.3. Here are some examples of representably faithful
morphisms.

! Further Terminology: Also called simply a faithful morphism, based on Item 1
of Example 9.1.1.1.3.
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019pP 1. Representably Faithful Morphisms in Catsy;. The representably
faithful morphisms in Catsy are precisely the faithful functors; see
Item 1 of Proposition 8.5.1.1.2.

019Q 2. Representably Faithful Morphisms in Rel. Every morphism of Rel
is representably faithful; see Item 1 of Proposition 5.3.8.1.1.
219R 9.1.2 Representably Full Morphisms

Let C be a bicategory.

019S Definition 9.1.2.1.1. A l-morphism f: A — B of C is representably
full? if, for each X € Obj(C), the functor

f«: Home(X, A) — Home (X, B)
given by postcomposition by f is full.

019T Remark 9.1.2.1.2. In detail, f is representably full if, for each X €
Obj(C) and each 2-morphism

foo
7
B:fop=foy, X 8| B
~_ “
foyp
of C, there exists a 2-morphism
¢
FEETERS
arp=1, X o A
~_ 7
P
of C such that we have an equality
¢ fog
FTER - FTER
X o *alp = x7s B
~_ 7 ~_ “
P foyp

of pasting diagrams in C, i.e. such that we have
,3 =id f*o.

019U Example 9.1.2.1.3. Here are some examples of representably full mor-
phisms.

019V 1. Representably Full Morphisms in Catsy. The representably full
morphisms in Catsy are precisely the full functors; see Item 1 of
Proposition 8.5.2.1.2.

019w 2. Representably Full Morphisms in Rel. The representably full mor-
phisms in Rel are characterised in Item 2 of Proposition 5.3.8.1.1.

2 Further Terminology: Also called simply a full morphism, based on Item 1 of
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9.1.3 Representably Fully Faithful Morphisms
Let C be a bicategory.

Definition 9.1.3.1.1. A 1-morphism f: A — B of C is representably
fully faithful® if the following equivalent conditions are satisfied:

1. The 1-morphism f is representably faithful (Definition 9.1.1.1.1)
and representably full (Definition 9.1.2.1.1).

2. For each X € Obj(C), the functor
fx: Home(X, A) — Hom¢ (X, B)
given by postcomposition by f is fully faithful.

Remark 9.1.3.1.2. In detail, f is representably fully faithful if the
conditions in Remark 9.1.1.1.2 and Remark 9.1.2.1.2 hold:

1. For all diagrams in C of the form
/QS\
f
X \%ﬂﬂ A B,

if we have
idf*a = idf*ﬁ,

then a = g.

2. For each X € Obj(C) and each 2-morphism

fop
T
B:fop= fop, X | B
~_ “
foyp
of C, there exists a 2-morphism
¢
TR
arg=1v, X of A
~_ 7
P
of C such that we have an equality
N ey
X o *atp = x7s B
~_ 7 ~_ “
P foyp

Example 9.1.2.1.3.
3 Purther Terminology: Also called simply a fully faithful morphism, based on
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of pasting diagrams in C, i.e. such that we have
ﬁ =id fx o
01A2 Example 9.1.3.1.3. Here are some examples of representably fully
faithful morphisms.

01A3 1. Representably Fully Faithful Morphisms in Cats;.  The repre-
sentably fully faithful morphisms in Catsy are precisely the fully
faithful functors; see Item 5 of Proposition 8.5.3.1.2.

01A4 2. Representably Fully Faithful Morphisms in Rel. The repre-
sentably fully faithful morphisms of Rel coincide (Item 3 of Proposi-
tion 5.3.8.1.1) with the representably full morphisms in Rel, which
are characterised in Item 2 of Proposition 5.3.8.1.1.

01A5 9.1.4 Morphisms Representably Faithful on Cores
Let C be a bicategory.

01A6 Definition 9.1.4.1.1. A l-morphism f: A — B of C is representably
faithful on cores if, for each X € Obj(C), the functor

f«: Core(Hom¢ (X, A)) — Core(Hom¢ (X, B))
given by postcomposition by f is faithful.

01A7 Remark 9.1.4.1.2. In detail, f is representably faithful on cores if, for
all diagrams in C of the form

¢
TR f
X@_@AHB,
¥

if « and (8 are 2-isomorphisms and we have
idf*a = idf*ﬁ,
then a = f.

01A8 9.1.5 Morphisms Representably Full on Cores
Let C be a bicategory.

Item 1 of Example 9.1.3.1.3.


https://topological-modular-forms.github.io/the-clowder-project/tag/01A2
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01A9 Definition 9.1.5.1.1. A l-morphism f: A — B of C is representably
full on cores if, for each X € Obj(C), the functor

f«: Core(Hom¢ (X, A)) — Core(Home (X, B))
given by postcomposition by f is full.

01AA Remark 9.1.5.1.2. In detail, f is representably full on cores if, for each
X € Obj(C) and each 2-isomorphism

foo
~ 0
B:fop=>foy, X 4| B
~_
foy
of C, there exists a 2-isomorphism
¢
~ FETER
arp=>vy, X o A
~_
P
of C such that we have an equality
e e
X o *alp = x7s B
~_ 7 ~_ “
(4 foy

of pasting diagrams in C, i.e. such that we have
,5 = idf * Q.
21AB 9.1.6 Morphisms Representably Fully Faithful on Cores

Let C be a bicategory.

01AC Definition 9.1.6.1.1. A 1-morphism f: A — B of C is representably
fully faithful on cores if the following equivalent conditions are satis-
fied:

1. The 1-morphism f is representably faithful on cores (Definition 9.1.5.1.1)
Q1AD and representably full on cores (Definition 9.1.4.1.1).

01AE 2. For each X € Obj(C), the functor
f«: Core(Hom¢ (X, A)) — Core(Home (X, B))

given by postcomposition by f is fully faithful.
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01AF Remark 9.1.6.1.2. In detail, f is representably fully faithful on cores
if the conditions in Remark 9.1.4.1.2 and Remark 9.1.5.1.2 hold:

1. For all diagrams in C of the form
i
f
X A— B

if « and B are 2-isomorphisms and we have
idf xa =idy x f3,
then a = g.
2. For each X € Obj(C) and each 2-isomorphism

foo
B:fop=fop, X | B
foy
of C, there exists a 2-isomorphism
¢
~ FEETERS
a:p=1v, X O‘U A
~_ 7
P
of C such that we have an equality
e e
X o a4l = x7s B
~_ 7 ~_ 7
P foy

of pasting diagrams in C, i.e. such that we have
ﬁ =id f* o
01AG 9.1.7 Representably Essentially Injective Morphisms

Let C be a bicategory.

01AH Definition 9.1.7.1.1. A l-morphism f: A — B of C is representably
essentially injective if, for each X € Obj(C), the functor

f*l Homc(X, A) — HomC(X, B)
given by postcomposition by f is essentially injective.

01AT Remark 9.1.7.1.2. In detail, f is representably essentially injective if,
for each pair of morphisms ¢, : X = A of C, the following condition is
satisfied:

() If fo$ = fot), then ¢ = ¢
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https://topological-modular-forms.github.io/the-clowder-project/tag/01AG
https://topological-modular-forms.github.io/the-clowder-project/tag/01AH
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01AQ
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9.1.8 Representably Conservative Morphisms
Let C be a bicategory.

Definition 9.1.8.1.1. A 1-morphism f: A — B of C is representably
conservative if, for each X € Obj(C), the functor

f*l HOmc(AXP7 A) — HOmc(AXP7 B)
given by postcomposition by f is conservative.

Remark 9.1.8.1.2. In detail, f is representably conservative if, for each
pair of morphisms ¢,¥: X = A and each 2-morphism

¢
a: =1, X /aF A
~_ 7
P
of C, if the 2-morphism
fog
N
idf*a:fogb:>foqp, X id pxce B
N
fop
is a 2-isomorphism, then so is «a.
9.1.9 Strict Monomorphisms
Let C be a bicategory.
Definition 9.1.9.1.1. A l-morphism f: A — B of C is a strict

monomorphism if, for each X € Obj(C), the functor
fx: Home(X, A) — Home (X, B)

given by postcomposition by f is injective on objects, i.e. its action on
objects
f«: Obj(Homg(X, A)) — Obj(Hom¢ (X, B))

is injective.
Remark 9.1.9.1.2. In detail, f is a strict monomorphism in C if, for
each diagram in C of the form

b
X — A-L B,
m

if fogp= fonr), then ¢ = .
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01AR Example 9.1.9.1.3. Here are some examples of strict monomorphisms.

01AS 1. Strict Monomorphisms in Catsy. The strict monomorphisms in
Catsy are precisely the functors which are injective on objects and
injective on morphisms; see Item 1 of Proposition 8.6.2.1.2.

Q1AT 2. Strict Monomorphisms in Rel. The strict monomorphisms in Rel
are characterised in Proposition 5.3.7.1.1.

01AU 9.1.10 Pseudomonic Morphisms

Let C be a bicategory.

01AV Definition 9.1.10.1.1. A 1-morphism f: A — B of C is pseudomonic
if, for each X € Obj(C), the functor

fx: Home(X, A) — Home (X, B)
given by postcomposition by f is pseudomonic.

01AW Remark 9.1.10.1.2. In detail, a 1-morphism f: A — B of C is pseu-
domonic if it satisfies the following conditions:

01AX 1. For all diagrams in C of the form
o
f
X A— B
2l ’
P

if we have
idf*Oé = idf*ﬁ,

then a = f.

@1AY 2. For each X € Obj(C) and each 2-isomorphism

B:fop=>foy, X 8| B
~_ 7
foyp
of C, there exists a 2-isomorphism
¢

~ FETER

arg=1, X o A
~_
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of C such that we have an equality

¢ oo
X o) atip = x5 "B
~_ 7 ~_ 7
v fou

of pasting diagrams in C, i.e. such that we have
,3 =id fxo.

01AZ Proposition 9.1.10.1.3. Let f: A — B be a 1-morphism of C.

01B0@ 1. Characterisations. The following conditions are equivalent:
01B1 (a) The morphism f is pseudomonic.
(b) The morphism f is representably full on cores and repre-
01B2 sentably faithful.
01B3 (c) We have an isocomma square of the form
A,y
A= AxpA, s, 2 |F
17

in C up to equivalence.

01B4 2. Interaction With Cotensors. If C has cotensors with 1, then the
following conditions are equivalent:

(a) The morphism f is pseudomonic.
(b) We have an isocomma square of the form
A——1MA

A=Axawr B, g |14 F

4

B——1mMB
in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.
Item 2, Interaction With Cotensors: Omitted. O
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9.2 Epimorphisms in Bicategories

9.2.1 Corepresentably Faithful Morphisms
Let C be a bicategory.

Definition 9.2.1.1.1. A l-morphism f: A — B of C is corepre-
sentably faithful if, for each X € Obj(C), the functor

f*: Home(B, X) — Home (A, X)

given by precomposition by f is faithful.

Remark 9.2.1.1.2. In detail, f is corepresentably faithful if, for all
diagrams in C of the form
¢
f PTITIR
A— B X
<, %,
P
if we have
axidy = Bxidy,
then o = .

Example 9.2.1.1.3. Here are some examples of corepresentably faithful
morphisms.

1. Corepresentably Faithful Morphisms in Catsy. The corepresentably
faithful morphisms in Cats, are characterised in Item 4 of Proposi-
tion 8.5.1.1.2.

2. Corepresentably Faithful Morphisms in Rel. Every morphism of
Rel is corepresentably faithful; see Item 1 of Proposition 5.3.10.1.1.

9.2.2 Corepresentably Full Morphisms
Let C be a bicategory.

Definition 9.2.2.1.1. A l-morphism f: A — B of C is corepre-
sentably full if, for each X € Obj(C), the functor

f*: Homg(B, X) — Hom¢ (A, X)

given by precomposition by f is full.
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01BE Remark 9.2.2.1.2. In detail, f is corepresentably full if, for each
X € Obj(C) and each 2-morphism
¢of
Bigof=vof, A4 X
’ ’ ~_ 7
Yof
of C, there exists a 2-morphism
¢
T
ar¢p=>1¢, B o X
~_"'" 7
¥
of C such that we have an equality
¢ ¢of
—_ TR
AL B x = a7 Tx
~_ 7 ~_" 7
¥ pof
of pasting diagrams in C, i.e. such that we have
B =axidy.
01BF Example 9.2.2.1.3. Here are some examples of corepresentably full

morphisms.

01BG 1. Corepresentably Full Morphisms in Catsy. The corepresentably
full morphisms in Catsp are characterised in Item 5 of Proposi-
tion 8.5.2.1.2.

01BH 2. Corepresentably Full Morphisms in Rel. The corepresentably full
morphisms in Rel are characterised in ?? of Proposition 5.3.8.1.1.

01BJ 9.2.3 Corepresentably Fully Faithful Morphisms
Let C be a bicategory.

01BK Definition 9.2.3.1.1. A l-morphism f: A — B of C is corepre-
sentably fully faithful® if the following equivalent conditions are
satisfied:

1. The 1-morphism f is corepresentably full (Definition 9.2.2.1.1) and
01BL corepresentably faithful (Definition 9.2.1.1.1).

4 Further Terminology: Corepresentably fully faithful morphisms have also been
called lax epimorphisms in the literature (e.g. in [Ad4+01]), though we will always
use the name “corepresentably fully faithful morphism” instead in this work.


https://topological-modular-forms.github.io/the-clowder-project/tag/01BE
https://topological-modular-forms.github.io/the-clowder-project/tag/01BF
https://topological-modular-forms.github.io/the-clowder-project/tag/01BG
https://topological-modular-forms.github.io/the-clowder-project/tag/01BH
https://topological-modular-forms.github.io/the-clowder-project/tag/01BJ
https://topological-modular-forms.github.io/the-clowder-project/tag/01BK
https://topological-modular-forms.github.io/the-clowder-project/tag/01BL

9.2. Epimorphisms in Bicategories 434

01BM 2. For each X € Obj(C), the functor
f*: Homg(B, X) — Hom¢ (A, X)
given by precomposition by f is fully faithful.

01BN Remark 9.2.3.1.2. In detail, f is corepresentably fully faithful if the
conditions in Remark 9.2.1.1.2 and Remark 9.2.2.1.2 hold:

1. For all diagrams in C of the form

¢
f ETETIRS
A— B X
<, X,
P
if we have
Oé*idf = ﬂ*idf,
then a = g.

2. For each X € Obj(C) and each 2-morphism

pof
B:gof=vof, A 8| X
. (6] (@]
w ’ ~_ 7
pof
of C, there exists a 2-morphism
¢
ar¢=1, B o X
~_"' 7
P
of C such that we have an equality
/d)\ /¢if\
AL B Tx = a7 Tx
~_ 7 ~_""
Y pof
of pasting diagrams in C, i.e. such that we have

ﬁ:a*idf.

01BP Example 9.2.3.1.3. Here are some examples of corepresentably fully
faithful morphisms.

01BQ 1. Corepresentably Fully Faithful Morphisms in Catspy.  The fully
faithful epimorphisms in Cats, are characterised in Item 9 of Propo-
sition 8.5.3.1.2.

01BR 2. Corepresentably Fully Faithful Morphisms in Rel.  The corep-
resentably fully faithful morphisms of Rel coincide (Item 3 of
Proposition 5.3.10.1.1) with the corepresentably full morphisms in
Rel, which are characterised in Item 2 of Proposition 5.3.10.1.1.
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01BS 9.2.4 Morphisms Corepresentably Faithful on Cores
Let C be a bicategory.

01BT Definition 9.2.4.1.1. A l-morphism f: A — B of C is corepre-
sentably faithful on cores if, for each X € Obj(C), the functor

f*: Core(Hom¢ (B, X)) — Core(Hom¢ (A, X))
given by precomposition by f is faithful.

01BU Remark 9.2.4.1.2. In detail, f is corepresentably faithful on cores if,
for all diagrams in C of the form

¢
f S
A— B X
e, %,
P
if « and B are 2-isomorphisms and we have

Oz*idf Iﬁ*idf,

then a = j.

01BV 9.2.5 Morphisms Corepresentably Full on Cores
Let C be a bicategory.

01BW Definition 9.2.5.1.1. A l-morphism f: A — B of C is corepre-
sentably full on cores if, for each X € Obj(C), the functor

f*: Core(Hom¢ (B, X)) — Core(Home (A4, X))
given by precomposition by f is full.

01BX Remark 9.2.5.1.2. In detail, f is corepresentably full on cores if, for
each X € Obj(C) and each 2-isomorphism

dof
~ TR
Bipof=dof, A4 X
v
Yof
of C, there exists a 2-isomorphism
¢
~ TR
ar¢=1¢, B o X
v
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of C such that we have an equality

¢ ¢of
AL BT Tx = a4 “x
T el

of pasting diagrams in C, i.e. such that we have
B = axid;.

01BY 9.2.6 Morphisms Corepresentably Fully Faithful on Cores

Let C be a bicategory.

01BZ Definition 9.2.6.1.1. A l-morphism f: A — B of C is corepre-
sentably fully faithful on cores if the following equivalent conditions
are satisfied:

1. The 1-morphism f is corepresentably full on cores (Definition 9.2.5.1.1)
01Co and corepresentably faithful on cores (Definition 9.2.1.1.1).

01C1 2. For each X € Obj(C), the functor
f*: Core(Hom¢ (B, X)) — Core(Hom¢ (A, X))
given by precomposition by f is fully faithful.

01C2 Remark 9.2.6.1.2. In detail, f is corepresentably fully faithful on cores
if the conditions in Remark 9.2.4.1.2 and Remark 9.2.5.1.2 hold:

1. For all diagrams in C of the form

¢
f PR
A= 5ol x
Y

if @ and B are 2-isomorphisms and we have
axidy = fxidy,
then a = g.
2. For each X € Obj(C) and each 2-isomorphism

¢of
~ TR
B:pof=1of, A\Zl%/X
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of C, there exists a 2-isomorphism

N iy
ar¢p=1, B o X
~_ 7
Y
of C such that we have an equality
¢ g
AL B Tx = A7 Tx
~_ 7 ~_""
Y Yof

of pasting diagrams in C, i.e. such that we have
ﬁ =axid f-

01C3 9.2.7 Corepresentably Essentially Injective Morphisms
Let C be a bicategory.

01C4 Definition 9.2.7.1.1. A l-morphism f: A — B of C is corepre-
sentably essentially injective if, for each X € Obj(C), the functor

f*: Homg(B, X) — Hom¢ (A, X)
given by precomposition by f is essentially injective.

01C5 Remark 9.2.7.1.2. In detail, f is corepresentably essentially injective
if, for each pair of morphisms ¢, : B = X of C, the following condition
is satisfied:

() I g0 f 2 4o f, then ¢ = ¢,

01C6 9.2.8 Corepresentably Conservative Morphisms
Let C be a bicategory.

01C7 Definition 9.2.8.1.1. A l-morphism f: A — B of C is corepre-
sentably conservative if, for each X € Obj(C), the functor

f*l HOmc(B,X) — HOmc(A,X)

given by precomposition by f is conservative.

01C8 Remark 9.2.8.1.2. In detail, f is corepresentably conservative if, for
each pair of morphisms ¢, : B = X and each 2-morphism
¢
~ T
a: o=, B aﬂ X
v
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of C, if the 2-morphism
pof
SN
axidf: pof= o f, A axds X
Y
Yof

is a 2-isomorphism, then so is a.

9.2.9 Strict Epimorphisms
Let C be a bicategory.

Definition 9.2.9.1.1. A 1-morphism f: A — B is a strict epimor-
phism in C if, for each X € Obj(C), the functor

f*: Homg(B, X) — Hom¢ (A, X)

given by precomposition by f is injective on objects, i.e. its action on

objects
f«: Obj(Hom¢ (B, X)) — Obj(Hom¢ (A, X))

is injective.
Remark 9.2.9.1.2. In detail, f is a strict epimorphism if, for each
diagram in C of the form

6
AL B x,
"

if o f=1of, then ¢ = .
Example 9.2.9.1.3. Here are some examples of strict epimorphisms.

1. Strict Epimorphisms in Catspy. The strict epimorphisms in Catsp
are characterised in Item 1 of Proposition 8.6.3.1.2.

2. Strict Epimorphisms in Rel. The strict epimorphisms in Rel are
characterised in Proposition 5.3.9.1.1.
9.2.10 Pseudoepic Morphisms
Let C be a bicategory.

Definition 9.2.10.1.1. A 1-morphism f: A — B of C is pseudoepic
if, for each X € Obj(C), the functor

f*: Homg(B, X) — Hom¢ (A, X)

given by precomposition by f is pseudomonic.
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01CH Remark 9.2.10.1.2. In detail, a 1I-morphism f: A — B of C is pseu-
doepic if it satisfies the following conditions:

01CJ 1. For all diagrams in C of the form

@
f ETETIRS
A— B X
<, X,
Y
if we have
axidy = B xidy,
then a = g.

01CK 2. For each X € Obj(C) and each 2-isomorphism

pof
~ P
B:gof=dof, A 8| X
~_" 7
Yof
of C, there exists a 2-isomorphism
¢
~ TR
a: o=, B aﬂ X
~_ 7
%
of C such that we have an equality
¢ gof
—_— 7 ™
A i) B aﬂ X — A BU X
~_ 7 ~_"
¥ Yof

of pasting diagrams in C, i.e. such that we have
B = axid;.

01CL Proposition 9.2.10.1.3. Let f: A — B be a 1-morphism of C.
01CM 1. Characterisations. The following conditions are equivalent:

Q1CN (a) The morphism f is pseudoepic.

(b) The morphism f is corepresentably full on cores and corepre-
01CP sentably faithful.


https://topological-modular-forms.github.io/the-clowder-project/tag/01CH
https://topological-modular-forms.github.io/the-clowder-project/tag/01CJ
https://topological-modular-forms.github.io/the-clowder-project/tag/01CK
https://topological-modular-forms.github.io/the-clowder-project/tag/01CL
https://topological-modular-forms.github.io/the-clowder-project/tag/01CM
https://topological-modular-forms.github.io/the-clowder-project/tag/01CN
https://topological-modular-forms.github.io/the-clowder-project/tag/01CP

01CQ

9.A.

Other Chapters 440

(c) We have an isococomma square of the form

B _p
< o1t P
B= B[4 B, iy 2 |F
74
in C up to equivalence.
Proof. Item 1, Characterisations: Omitted. O
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21cs 10.1 To Do List

01CT 10.1.1 Omitted Proofs To Add

Truth does not do as much good in

He Tax 6/1arorBopHa MCTHHA, KaK the world as the appearance of
3JIOBPEIHA €€ BUINMOCTD. truth does evil.
Lanuun dankosckudl Daniil Dankovsky

There’s a very large number of omitted proofs throughout these notes.
Here I list them in decreasing order of how nice it would be to add them.

01CU Remark 10.1.1.1.1. Proofs that need to be added at some point:
1. 772
2. 77

3. Horizontal composition of natural transformations is associative:
77 of 77.

4. Fully faithful functors are essentially injective: 7?7 of 77.

Proofs that would be very nice to be added at some point:

442


https://topological-modular-forms.github.io/the-clowder-project/tag/01CR
https://topological-modular-forms.github.io/the-clowder-project/tag/01CS
https://topological-modular-forms.github.io/the-clowder-project/tag/01CT
https://topological-modular-forms.github.io/the-clowder-project/tag/01CU

10.1. To Do List 443

1. Properties of pseudomonic functors: ?77.

2. Characterisation of fully faithful functors: 77 of 77.
Proofs that would be nice to be added at some point:

1. Properties of posetal categories: 77.

2. The quadruple adjunction between categories and sets: 77.

@

Properties of groupoid completions: 77.

e~

Properties of cores: 77.
5. F, faithful iff I faithful: 7?7 of 77.
6. Fy full iff F' full: 77 of 77.

7. Injective on objects functors are precisely the isocofibrations in
Catsp: 7?7 of 77.

8. Characterisations of monomorphisms of categories: 77 of 77.
9. Epimorphisms of categories are surjective on objects: 77 of ?7.

10. Properties of pseudoepic functors: 77.

01CV 10.1.2 Things To Explore/Add
Here we list things to be explored/added to this work in the future.
01CW Remark 10.1.2.1.1. Set theory through a category theory lens:
1. Isbell duality for sets.
2. Density comonads and codensity monads for sets.
Relations:
1. 2-Categorical monomorphisms and epimorphisms in Rel.
2. Co/limits in Rel.

3. Apartness composition, categorical properties of Rel with apartness,
and apartness relations.

4. Apartness defines a composition for relations, but its analogue
def — A
q0p = / pa HaZ
Aec' ?

fails to be unital for profunctors. Is there a less obvious analogue
of apartness composition for profunctors?


https://topological-modular-forms.github.io/the-clowder-project/tag/01CV
https://topological-modular-forms.github.io/the-clowder-project/tag/01CW
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5. Codensity monad Ranjy(J) of a relation (What about Rift ;(J)?)
6. Relative comonads in the 2-category of relations

7. Discrete fibrations and Street fibrations in Rel.

8. Consider adding the sections

e The Monoidal Bicategory of Relations
e The Monoidal Double Category of Relations

to Relations.
Spans:

1. Universal property of the bicategory of spans, https://ncatlab.
org/nlab/show/span

2. Write about cospans.
Un/Straightening;:

1. Write proper sections on straightening for lax functors from sets to
Rel or Span (displayed sets)

Categories:
1. Expand 7?7 and add a proof to it.

2. Sections and retractions; retracts, https://ncatlab.org/nlab/s
how/retract.

3. Regular categories: https://arxiv.org/pdf/2004.08964.pdf.

4. Are pseudoepic functors those functors whose restricted Yoneda
embedding is pseudomonic and Yoneda preserves absolute colimits?

5. Absolutely dense functors enriched over RT apparently reduce to
topological density

Types of Morphisms in Categories:

1. Behaviour in Fun(C, D), e.g. pointwise sections vs. sections in
Fun(C, D).

2. A faithful functor from balanced category is conservative
Yoneda stuff:

1. Properties of restricted Yoneda embedding, e.g. if the restricted
Yoneda embedding is full, then what can we conclude? Related:
https://qchu.wordpress.com/2015/05/17/generators/
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Adjunctions:

1. Adjunctions, units, counits, and fully faithfulness as in https:
//mathoverflow.net/questions/100808/properties-of-functor
s-and-their-adjoints.

2. Morphisms between adjunctions and bicategory Adj(C).
3. https://ncatlab.org/nlab/show/transformation+of+adjoints
Constructions With Categories:

1. Comparison between pseudopullbacks and isocomma categories:

R4
the “evident” functor C xgs D — C xg D is essentially surjective
and full, but not faithful in general.

Co/limits:

1. Add the characterisations of absolutely dense functors given in 77
to 77.

2. Absolutely dense functors, https://ncatlab.org/nlab/show/abso
lutely+dense+functor. Also theorem 1.1 here: http://www. tac.
mta.ca/tac/volumes/8/n20/n20.pdf.

3. Dense functors, codense functors, and absolutely codense functors.
Co/ends:
1. Examples of co/ends: https://mathoverflow.net/a/461814

2. Cofinality for co/ends, https://mathoverflow.net/questions/3
53876

Fibred category theory:
1. Internal Hom in categories of co/Cartesian fibrations.

2. Tensor structures on fibered categories by Luca Terenzi: https:
//arxiv.org/abs/2401.13491. Check also the other papers by
Luca Terenzi.

3. https://ncatlab.org/nlab/show/cartesiantnatural+transfor
mation (this is a cartesian morphism in Fun(C, D) apparently)

4. CoCartesian fibration classifying Fun(F,G), https://mathoverfl
ow.net/questions/457533/cocartesian-fibration-classifying
-mathrmfunf-g

Monoidal categories:
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1. Free braided monoidal category with a braided monoid: https:
//ncatlab.org/nlab/show/vine

Skew monoidal categories:

1. Does the E; tensor product of monoids admit a skew monoidal
category structure?

2. Is there a (right?) skew monoidal category structure on Fun(C, D)
using right Kan extensions instead of left Kan extensions?

3. Similarly, are there skew monoidal category structures on the
subcategory of Rel(A, B) spanned by the functions using left Kan
extensions and left Kan lifts?

Higher categories:

1. Internal adjunctions in Mod as in [JY21, Section 6.3]; see [JY21,
Example 6.2.6].

2. Comonads in the bicategory of profunctors.
Monoids:

1. Isbell’s zigzag theorem for semigroups: the following conditions are
equivalent:
(a) A morphism f: A — B of semigroups is an epimorphism.
(b) For each b € B, one of the following conditions is satisfied:

o We have f(a) =b.
o There exist some m € N> and two factorisations

b= aoy1,

b= zmaom
connected by relations

ag = Tiaq,

a1y = a2y2,

Triaz = x203,

@2m—1Ym = A2m
such that, for each 1 < i < m, we have a; € Im(f).

Wikipedia says in https://en.wikipedia.org/wiki/Isbell%27s
_zigzag_theorem:
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For monoids, this theorem can be written more concisely:

Types of morphisms in bicategories:

1. Behaviour in 2-categories of pseudofunctors (or lax functors, etc.),
e.g. pointwise pseudoepic morphisms in vs. pseudoepic morphisms
in 2-categories of pseudofunctors.

2. Statements like “coequifiers are lax epimorphisms”, Item 2 of Ex-
amples 2.4 of https://arxiv.org/abs/2109.09836, along with
most of the other statements/examples there.

3. Dense, absolutely dense, etc. morphisms in bicategories

Other:

1. https://qchu.wordpress.com/

2. https://aroundtoposes.com/

3. https://ncatlab.org/nlab/show/essentially+surjective+and
+full+functor

4. https://mathoverflow.net/questions/415363/0bjects-whose-r
epresentable-presheaf-is-a-fibration

5. https://mathoverflow.net/questions/460146/universal-prope
rty-of-isbell-duality

6. http://www.tac.mta.ca/tac/volumes/36/12/36-12abs.html (
Isbell conjugacy and the reflexive completion )

7. https://ncatlab.org/nlab/show/enrichment+versus+internal
isation

8. The works of Philip Saville, https://philipsaville.co.uk/

9. https://golem.ph.utexas.edu/category/2024/02/from_cartes
ian_to_symmetric_mo.html

10. https://mathoverflow.net/q/463855 (One-object lax transforma-
tions)

11. https://ncatlab.org/nlab/show/analytictcompletion+of+a+r
ing

12. https://en.wikipedia.org/wiki/Quaternionic_analysis

13. https://arxiv.org/abs/2401.15051 (The Norm Functor over

Schemes)
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14. https://mathoverflow.net/questions/407291/ (Adjunctions
with respect to profunctors)

15. https://mathoverflow.net/a/462726 (Prof is free completion of
Cats under right extensions)

16. there’s some cool stuff in https://arxiv.org/abs/2312.00990
(Polynomial Functors: A Mathematical Theory of Interaction), e.g.
on cofunctors.

17. https://ncatlab.org/nlab/show/adjoint+lifting+theorem

18. https://ncatlab.org/nlab/show/Gabriel%E2%80%93Ulmer+dual
ity
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