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Sets

1



Chapter 1

Sets

0000 This chapter (will eventually) contain material on axiomatic set theory,
as well as a couple other things.

Contents
1.1 Sets and Functions ......................................... 2

1.1.1 Functions ............................................... 2
1.2 The Enrichment of Sets in Classical Truth

Values ......................................................................... 4
1.2.1 (−2)-Categories ....................................... 4
1.2.2 (−1)-Categories ....................................... 4
1.2.3 0-Categories............................................ 8
1.2.4 Tables of Analogies Between Set Theory and

Category Theory............................................................. 8
1.A Other Chapters.............................................. 10

1.1 Sets and Functions0001

1.1.1 Functions0002

Definition 1.1.1.1.1.0003 A function is a functional and total relation.

Notation 1.1.1.1.2.0004 Throughout this work, we will sometimes denote
a function f : X → Y by

f
def= Jx 7→ f(x)K.

1. For example, given a function

Φ: HomSets(X,Y ) → K

2

https://topological-modular-forms.github.io/the-clowder-project/tag/0000
https://topological-modular-forms.github.io/the-clowder-project/tag/0001
https://topological-modular-forms.github.io/the-clowder-project/tag/0002
https://topological-modular-forms.github.io/the-clowder-project/tag/0003
https://topological-modular-forms.github.io/the-clowder-project/tag/0004


1.1. Sets and Functions 3

taking values on a set of functions such as HomSets(X,Y ), we will
sometimes also write

Φ(f) def= Φ(Jx 7→ f(x)K).

2. This notational choice is based on the lambda notation

f
def= (λx. f(x)),

but uses a “ 7→” symbol for better spacing and double brackets
instead of either:

(a) Square brackets [x 7→ f(x)];
(b) Parentheses (x 7→ f(x));

hoping to improve readability when dealing with e.g.:

(a) Equivalence classes, cf.:
i. J[x] 7→ f([x])K
ii. [[x] 7→ f([x])]
iii. (λ[x]. f([x]))

(b) Function evaluations, cf.:
i. Φ(Jx 7→ f(x)K)
ii. Φ((x 7→ f(x)))
iii. Φ((λx. f(x)))

3. We will also sometimes write −1, −2, etc. for the arguments of a
function. Some examples include:

(a) Writing f(−1) for a function f : A → B.
(b) Writing f(−1,−2) for a function f : A×B → C.
(c) Given a function f : A×B → C, writing

f(a,−) : B → C

for the function Jb 7→ f(a, b)K.
(d) Denoting a composition of the form

A×B
φ×idB−−−−→ A′ ×B

f−−→ C

by f(φ(−1),−2).

4. Finally, given a function f : A → B, we write

eva(f) def= f(a)

for the value of f at some a ∈ A.



1.2. The Enrichment of Sets in Classical Truth Values 4

For an example of the above notations being used in practice, see the
proof of the adjunction

(A× − a HomSets(A,−)): Sets Sets,
A×−

HomSets(A,−)

a
stated in Item 2 of Proposition 2.1.3.1.2.

1.2 The Enrichment of Sets in Classical Truth
Values0005

1.2.1 (−2)-Categories0006

Definition 1.2.1.1.1.0007 A (−2)-category is the “necessarily true” truth
value.1,2,3

1.2.2 (−1)-Categories0008

Definition 1.2.2.1.1.0009 A (−1)-category is a classical truth value.

Remark 1.2.2.1.2.000A 4(−1)-categories should be thought of as being
“categories enriched in (−2)-categories”, having a collection of objects
and, for each pair of objects, a Hom-object Hom(x, y) that is a (−2)-
category (i.e. trivial).
Therefore, a (−1)-category C is either ([BS10, pp. 33–34]):

1. Empty, having no objects;

2. Contractible, having a collection of objects {a, b, c, . . .}, but with
HomC(a, b) being a (−2)-category (i.e. trivial) for all a, b ∈ Obj(C),
forcing all objects of C to be uniquely isomorphic to each other.

As such, there are only two (−1)-categories, up to equivalence:

• The (−1)-category false (the empty one);

• The (−1)-category true (the contractible one).

Definition 1.2.2.1.3.000B The poset of truth values5 is the poset ({true, false},�)
consisting of

1Thus, there is only one (−2)-category.
2A (−n)-category for n = 3, 4, . . . is also the “necessarily true” truth value, coin-

ciding with a (−2)-category.
3For motivation, see [BS10, p. 13].
4For more motivation, see [BS10, p. 13].
5Further Terminology: Also called the poset of (−1)-categories.

https://topological-modular-forms.github.io/the-clowder-project/tag/0005
https://topological-modular-forms.github.io/the-clowder-project/tag/0006
https://topological-modular-forms.github.io/the-clowder-project/tag/0007
https://topological-modular-forms.github.io/the-clowder-project/tag/0008
https://topological-modular-forms.github.io/the-clowder-project/tag/0009
https://topological-modular-forms.github.io/the-clowder-project/tag/000A
https://topological-modular-forms.github.io/the-clowder-project/tag/000B


1.2. The Enrichment of Sets in Classical Truth Values 5

• The Underlying Set. The set {true, false} whose elements are the
truth values true and false.

• The Partial Order. The partial order

� : {true, false} × {true, false} → {true, false}

on {true, false} defined by6

false � false def= true,
true � false def= false,
false � true def= true,
true � true def= true.

Notation 1.2.2.1.4.000C We also write {t, f} for the poset {true, false}.

Proposition 1.2.2.1.5.000D The poset of truth values {t, f} is Cartesian
closed with product given by7

t × t = t,
t × f = f,
f × t = f,
f × f = f,

and internal Hom Hom{t,f} given by the partial order of {t, f}, i.e. by

Hom{t,f}(t, t) = t,
Hom{t,f}(t, f) = f,
Hom{t,f}(f, t) = t,
Hom{t,f}(f, f) = t.

Proof. Existence of Products: We claim that the products t × t, t × f,
f × t, and f × f satisfy the universal property of the product in {t, f}.
Indeed, consider the diagrams

P1

t t × t︸ ︷︷ ︸
=t

t

p1
2

∃!
p1

1

pr1 pr2

P2

t t × f︸ ︷︷ ︸
=f

f

p2
2

∃!
p2

1

pr1 pr2

P3

f f × t︸ ︷︷ ︸
=f

t

p3
2

∃!
p3

1

pr1 pr2

P4

f f × f︸ ︷︷ ︸
=f

f.

p4
2

∃!
p4

1

pr1 pr2

Here:
6This partial order coincides with logical implication.
7Note that × coincides with the “and” operator, while Hom{t,f} coincides with

https://topological-modular-forms.github.io/the-clowder-project/tag/000C
https://topological-modular-forms.github.io/the-clowder-project/tag/000D
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1. If P1 = t, then p1
1 = p1

2 = idt, and there’s indeed a unique morphism
from P1 to t making the diagram commute, namely idt;

2. If P1 = f, then p1
1 = p1

2 are given by the unique morphism from f
to t, and there’s indeed a unique morphism from P1 to t making
the diagram commute, namely the unique morphism from f to t;

3. If P2 = t, then there is no morphism p2
2.

4. If P2 = f, then p2
1 is the unique morphism from f to t while p2

2 = idf ,
and there’s indeed a unique morphism from P2 to f making the
diagram commute, namely idf ;

5. The proof for P3 is similar to the one for P2;

6. If P4 = t, then there is no morphism p4
1 or p4

2.

7. If P4 = f, then p4
1 = p4

2 = idf , and there’s indeed a unique morphism
from P4 to f making the diagram commute, namely idf .

Cartesian Closedness: We claim there’s a bijection

Hom{t,f}(A×B,C) ∼= Hom{t,f}
(
A,Hom{t,f}(B,C)

)
natural in A,B,C ∈ {t, f}. Indeed:

• For (A,B,C) = (t, t, t), we have

Hom{t,f}(t × t, t) ∼= Hom{t,f}(t, t)
= {idtrue}
∼= Hom{t,f}(t, t)
∼= Hom{t,f}

(
t,Hom{t,f}(t, t)

)
.

• For (A,B,C) = (t, t, f), we have

Hom{t,f}(t × t, f) ∼= Hom{t,f}(t, f)
= ∅
∼= Hom{t,f}(t, f)
∼= Hom{t,f}

(
t,Hom{t,f}(t, f)

)
.

• For (A,B,C) = (t, f, t), we have

Hom{t,f}(t × f, t) ∼= Hom{t,f}(f, t)
∼= pt
∼= Hom{t,f}(f, t)
∼= Hom{t,f}

(
f,Hom{t,f}(f, t)

)
.
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• For (A,B,C) = (t, f, f), we have

Hom{t,f}(t × f, f) ∼= Hom{t,f}(f, f)
∼= {idfalse}
∼= Hom{t,f}(f, f)
∼= Hom{t,f}

(
t,Hom{t,f}(f, f)

)
.

• For (A,B,C) = (f, t, t), we have

Hom{t,f}(f × t, t) ∼= Hom{t,f}(f, t)
∼= pt
∼= Hom{t,f}(f, t)
∼= Hom{t,f}

(
f,Hom{t,f}(t, t)

)
.

• For (A,B,C) = (f, t, f), we have

Hom{t,f}(f × t, f) ∼= Hom{t,f}(f, f)
∼= {idfalse}
∼= Hom{t,f}(f, f)
∼= Hom{t,f}

(
f,Hom{t,f}(t, f)

)
.

• For (A,B,C) = (f, f, t), we have

Hom{t,f}(f × f, t) ∼= Hom{t,f}(f, t)
∼= pt
∼= Hom{t,f}(f, t)
∼= Hom{t,f}

(
f,Hom{t,f}(f, t)

)
.

• For (A,B,C) = (f, f, f), we have

Hom{t,f}(f × f, f) ∼= Hom{t,f}(f, f)
= {idfalse}
∼= Hom{t,f}(f, f)
∼= Hom{t,f}

(
f,Hom{t,f}(f, f)

)
.

The proof of naturality is omitted.
the logical implication operator.
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1.2.3 0-Categories000E

Definition 1.2.3.1.1.000F A 0-category is a poset.8

Definition 1.2.3.1.2.000G A 0-groupoid is a 0-category in which every
morphism is invertible.9

1.2.4 Tables of Analogies Between Set Theory and Cate-
gory Theory000H

Here we record some analogies between notions in set theory and category
theory. Note that the analogies relating to presheaves relate equally well
to copresheaves, as the opposite Xop of a set X is just X again.
Basics:

Set Theory Category Theory
Enrichment in {true, false} Enrichment in Sets

Set X Category C
Element x ∈ X Object X ∈ Obj(C)

Function Functor
Function X → {true, false} Functor C → Sets
Function X → {true, false} Presheaf Cop → Sets

Powersets and categories of presheaves:

8Motivation: A 0-category is precisely a category enriched in the poset of (−1)-
categories.

9That is, a set.

https://topological-modular-forms.github.io/the-clowder-project/tag/000E
https://topological-modular-forms.github.io/the-clowder-project/tag/000F
https://topological-modular-forms.github.io/the-clowder-project/tag/000G
https://topological-modular-forms.github.io/the-clowder-project/tag/000H
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Set Theory Category Theory
Powerset P(X) Presheaf category PSh(C)

Characteristic function χ{x} Representable presheaf hX
Characteristic embedding

χ(−) : X ↪→ P(X)
Yoneda embedding
よ : Cop ↪→ PSh(C)

Characteristic relation χX(−1,−2) Hom profunctor HomC(−1,−2)
The Yoneda lemma for sets
HomP(X)(χx, χU ) = χU (x)

The Yoneda lemma for categories
Nat(hX ,F) ∼= F(X)

The characteristic
embedding is fully faithful,

HomP(X)(χx, χy) = χX(x, y)

The Yoneda
embedding is fully faithful,
Nat(hX , hY ) ∼= HomC(X,Y )

Subsets are unions of their elements
U =

⋃
x∈U

{x}

or
χU = colim

χx∈Sets(U,{t,f})
(χx)

Presheaves are
colimits of representables,

F ∼= colim
hX∈

∫
C F

(hX)

Categories of elements:

Set Theory Category Theory

Assignment U 7→ χU
Assignment F 7→

∫
CF

(the category of elements)

Assignment U 7→ χU
giving an isomorphism
P(X) ∼= Sets(X, {t, f})

Assignment F 7→
∫
CF

giving an equivalence
PSh(C)

eq.∼= DFib(C)

Functions between powersets and functors between presheaf categories:

Set Theory Category Theory
Direct image function
f∗ : P(X) → P(Y )

Inverse image functor
f−1 : PSh(C) → PSh(D)

Inverse image function
f−1 : P(Y ) → P(X)

Direct image functor
f∗ : PSh(D) → PSh(C)

Direct image with
compact support function

f! : P(X) → P(Y )

Direct image with
compact support functor
f! : PSh(C) → PSh(D)

Relations and profunctors:
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Set Theory Category Theory
Relation R : X × Y → {t, f} Profunctor p : Dop × C → Sets

Relation R : X → P(Y ) Profunctor p : C → PSh(D)
Relation as a

cocontinuous morphism of posets
R : (P(X),⊂) → (P(Y ),⊂)

Profunctor as a
colimit-preserving functor
p : PSh(C) → PSh(D)

Appendices
1.A Other Chapters

Sets

1. Sets

2. Constructions With Sets

3. Pointed Sets

4. Tensor Products of Pointed
Sets

Relations

5. Relations

6. Constructions With Relations

7. Equivalence Relations and
Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicat-
egories



Chapter 2

Constructions With Sets

000J This chapter develops some material relating to constructions with sets
with an eye towards its categorical and higher-categorical counterparts
to be introduced later in this work. In particular, it contains:

1. Explicit descriptions of the major types of co/limits in Sets, includ-
ing in particular explicit descriptions of pushouts and coequalis-
ers (see Definitions 2.2.4.1.1 and 2.2.5.1.1 and Remarks 2.2.4.1.2
and 2.2.5.1.2).

2. A discussion of powersets as decategorifications of categories of
presheaves (Remarks 2.4.1.1.2 and 2.4.3.1.2), including a (−1)-
categorical analogue of un/straightening, described in Items 1 and 2
of Proposition 2.4.3.1.6 and Remark 2.4.3.1.7.

3. A lengthy discussion of the adjoint triple

f∗ a f−1 a f! : P(A) �→ P(B)

of functors (morphisms of posets) between P(A) and P(B) induced
by a map of sets f : A → B, along with a discussion of the properties
of f∗, f−1, and f!.
In line with the categorical viewpoint developed here, this adjoint
triple may be described in terms of Kan extensions, and, as it turns
out, it also shows up in some definitions and results in point-set
topology, such as in e.g. notions of continuity for functions (??).

Contents
2.1 Limits of Sets................................................. 12

2.1.1 The Terminal Set..................................... 12
2.1.2 Products of Families of Sets ....................... 13

11

https://topological-modular-forms.github.io/the-clowder-project/tag/000J
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2.1 Limits of Sets000K

2.1.1 The Terminal Set000L

Definition 2.1.1.1.1.000M The terminal set is the pair
(
pt, {!A}A∈Obj(Sets)

)
consisting of:

• The Limit. The punctual set pt def= {?}.

https://topological-modular-forms.github.io/the-clowder-project/tag/000K
https://topological-modular-forms.github.io/the-clowder-project/tag/000L
https://topological-modular-forms.github.io/the-clowder-project/tag/000M
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• The Cone. The collection of maps

{!A : A → pt}A∈Obj(Sets)

defined by
!A(a) def= ?

for each a ∈ A and each A ∈ Obj(Sets).

Proof. We claim that pt is the terminal object of Sets. Indeed, suppose
we have a diagram of the form

A pt

in Sets. Then there exists a unique map φ : A → pt making the diagram

A ptφ

∃!

commute, namely !A.

2.1.2 Products of Families of Sets000N

Let {Ai}i∈I be a family of sets.

Definition 2.1.2.1.1.000P The product1 of {Ai}i∈I is the pair
(∏

i∈I Ai, {pri}i∈I
)

consisting of:

• The Limit. The set
∏
i∈I Ai defined by2

∏
i∈I

Ai
def=

f ∈ Sets
(
I,
⋃
i∈I

Ai

) ∣∣∣∣∣∣
for each i ∈ I,
we have f(i) ∈
Ai

.
• The Cone. The collection{

pri :
∏
i∈I

Ai → Ai

}
i∈I

of maps given by
pri(f) def= f(i)

for each f ∈
∏
i∈I Ai and each i ∈ I.

1Further Terminology: Also called the Cartesian product of {Ai}i∈I .
2Less formally,

∏
i∈I

Ai is the set whose elements are I-indexed collections (ai)i∈I

https://topological-modular-forms.github.io/the-clowder-project/tag/000N
https://topological-modular-forms.github.io/the-clowder-project/tag/000P
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Proof. We claim that
∏
i∈I Ai is the categorical product of {Ai}i∈I in

Sets. Indeed, suppose we have, for each i ∈ I, a diagram of the form

P

∏
i∈I

Ai Ai

pi

pri

in Sets. Then there exists a unique map φ : P →
∏
i∈I Ai making the

diagram
P

∏
i∈I

Ai Ai

piφ ∃!

pri

commute, being uniquely determined by the condition pri ◦ φ = pi for
each i ∈ I via

φ(x) = (pi(x))i∈I
for each x ∈ P .

Proposition 2.1.2.1.2.000Q Let {Ai}i∈I be a family of sets.

1. Functoriality.000R The assignment {Ai}i∈I 7→
∏
i∈I Ai defines a

functor ∏
i∈I

: Fun(Idisc,Sets) → Sets

where

• Action on Objects. For each (Ai)i∈I ∈ Obj(Fun(Idisc, Sets)),
we have [∏

i∈I

](
(Ai)i∈I

) def=
∏
i∈I

Ai

• Action on Morphisms. For each (Ai)i∈I , (Bi)i∈I ∈ Obj(Fun(Idisc, Sets)),

with ai ∈ Ai for each i ∈ I. The projection maps{
pri :

∏
i∈I

Ai → Ai

}
i∈I

are then given by
pri

(
(aj)j∈I

) def= ai

for each (aj)j∈I ∈
∏

i∈I
Ai and each i ∈ I.

https://topological-modular-forms.github.io/the-clowder-project/tag/000Q
https://topological-modular-forms.github.io/the-clowder-project/tag/000R
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the action on Hom-sets(∏
i∈I

)
(Ai)i∈I ,(Bi)i∈I

: Nat
(
(Ai)i∈I , (Bi)i∈I

)
→ Sets

(∏
i∈I

Ai,
∏
i∈I

Bi

)

of
∏
i∈I at

(
(Ai)i∈I , (Bi)i∈I

)
is defined by sending a map

{fi : Ai → Bi}i∈I

in Nat
(
(Ai)i∈I , (Bi)i∈I

)
to the map of sets∏

i∈I
fi :

∏
i∈I

Ai →
∏
i∈I

Bi

defined by[∏
i∈I

fi

](
(ai)i∈I

) def= (fi(ai))i∈I

for each (ai)i∈I ∈
∏
i∈I Ai.

Proof. Item 1, Functoriality: This follows from ?? of ??.

2.1.3 Binary Products of Sets000S

Let A and B be sets.

Definition 2.1.3.1.1.000T The product3 of A and B is the pair (A×B, {pr1,pr2})
consisting of:

• The Limit. The set A×B defined by4

A×B
def=

∏
z∈{A,B}

z

def= {f ∈ Sets({0, 1}, A ∪B) | we have f(0) ∈ A and f(1) ∈ B}
∼= {{{a}, {a, b}} ∈ P(P(A ∪B)) | we have a ∈ A and b ∈ B}.

• The Cone. The maps

pr1 : A×B → A,

pr2 : A×B → B

3Further Terminology: Also called the Cartesian product of A and B or the
binary Cartesian product of A and B, for emphasis.

This can also be thought of as the (E−1,E−1)-tensor product of A and B.
4In other words, A×B is the set whose elements are ordered pairs (a, b) with a ∈ A

https://topological-modular-forms.github.io/the-clowder-project/tag/000S
https://topological-modular-forms.github.io/the-clowder-project/tag/000T
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defined by

pr1(a, b) def= a,

pr2(a, b) def= b

for each (a, b) ∈ A×B.

Proof. We claim that A × B is the categorical product of A and B in
Sets. Indeed, suppose we have a diagram of the form

P

A A×B B

p1 p2

pr1 pr2

in Sets. Then there exists a unique map φ : P → A × B making the
diagram

P

A A×B B

p1 p2
φ ∃!

pr1 pr2

commute, being uniquely determined by the conditions

pr1 ◦ φ = p1,

pr2 ◦ φ = p2

via
φ(x) = (p1(x), p2(x))

for each x ∈ P .

Proposition 2.1.3.1.2.000U Let A, B, C, and X be sets.

1. Functoriality.000V The assignments A,B, (A,B) 7→ A × B define
functors

A× − : Sets → Sets,
− ×B : Sets → Sets,

−1 × −2 : Sets × Sets → Sets,

where −1 × −2 is the functor where

• Action on Objects. For each (A,B) ∈ Obj(Sets × Sets), we
have

[−1 × −2](A,B) def= A×B.

https://topological-modular-forms.github.io/the-clowder-project/tag/000U
https://topological-modular-forms.github.io/the-clowder-project/tag/000V
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• Action on Morphisms. For each (A,B), (X,Y ) ∈ Obj(Sets),
the action on Hom-sets

×(A,B),(X,Y ) : Sets(A,X) × Sets(B, Y ) → Sets(A×B,X × Y )

of × at ((A,B), (X,Y )) is defined by sending (f, g) to the
function

f × g : A×B → X × Y

defined by

[f × g](a, b) def= (f(a), g(b))

for each (a, b) ∈ A×B.

and where A× − and − ×B are the partial functors of −1 × −2
at A,B ∈ Obj(Sets).

2. Adjointness.000W We have adjunctions

(A× − a HomSets(A,−)): Sets Sets,
A×−

HomSets(A,−)

a

(− ×B a HomSets(B,−)): Sets Sets,
−×B

HomSets(B,−)

a

witnessed by bijections

HomSets(A×B,C) ∼= HomSets(A,HomSets(B,C)),
HomSets(A×B,C) ∼= HomSets(B,HomSets(A,C)),

natural in A,B,C ∈ Obj(Sets).

3. Associativity.000X We have an isomorphism of sets

(A×B) × C ∼= A× (B × C),

natural in A,B,C ∈ Obj(Sets).

4. Unitality.000Y We have isomorphisms of sets

pt ×A ∼= A,

A× pt ∼= A,

natural in A ∈ Obj(Sets).

https://topological-modular-forms.github.io/the-clowder-project/tag/000W
https://topological-modular-forms.github.io/the-clowder-project/tag/000X
https://topological-modular-forms.github.io/the-clowder-project/tag/000Y
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5. Commutativity.000Z We have an isomorphism of sets

A×B ∼= B ×A,

natural in A,B ∈ Obj(Sets).

6. Annihilation With the Empty Set.0010 We have isomorphisms of sets

A× ∅ ∼= ∅,
∅ ×A ∼= ∅,

natural in A ∈ Obj(Sets).

7. Distributivity Over Unions.0011 We have isomorphisms of sets

A× (B ∪ C) = (A×B) ∪ (A× C),
(A ∪B) × C = (A× C) ∪ (B × C).

8. Distributivity Over Intersections.0012 We have isomorphisms of sets

A× (B ∩ C) = (A×B) ∩ (A× C),
(A ∩B) × C = (A× C) ∩ (B × C).

9. Middle-Four Exchange with Respect to Intersections.0013 We have an
isomorphism of sets

(A×B) ∩ (C ×D) ∼= (A ∩B) × (C ∩D).

10. Distributivity Over Differences.0014 We have isomorphisms of sets

A× (B \ C) = (A×B) \ (A× C),
(A \B) × C = (A× C) \ (B × C),

natural in A,B,C ∈ Obj(Sets).

11. Distributivity Over Symmetric Differences.0015 We have isomorphisms
of sets

A× (B 4 C) = (A×B) 4 (A× C),
(A4B) × C = (A× C) 4 (B × C),

natural in A,B,C ∈ Obj(Sets).

12. Symmetric Monoidality.0016 The triple (Sets,×,pt) is a symmetric
monoidal category.

https://topological-modular-forms.github.io/the-clowder-project/tag/000Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0010
https://topological-modular-forms.github.io/the-clowder-project/tag/0011
https://topological-modular-forms.github.io/the-clowder-project/tag/0012
https://topological-modular-forms.github.io/the-clowder-project/tag/0013
https://topological-modular-forms.github.io/the-clowder-project/tag/0014
https://topological-modular-forms.github.io/the-clowder-project/tag/0015
https://topological-modular-forms.github.io/the-clowder-project/tag/0016
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13. Symmetric Bimonoidality.0017 The quintuple (Sets,
∐
, ∅,×,pt) is a

symmetric bimonoidal category.

Proof. Item 1, Functoriality: This follows from ?? of ??.
Item 2, Adjointness: We prove only that there’s an adjunction − ×B a
HomSets(B,−), witnessed by a bijection

HomSets(A×B,C) ∼= HomSets(A,HomSets(B,C)),

natural in B,C ∈ Obj(Sets), as the proof of the existence of the ad-
junction A × − a HomSets(A,−) follows almost exactly in the same
way.

• Map I. We define a map

ΦB,C : HomSets(A×B,C) → HomSets(A,HomSets(B,C)),

by sending a function

ξ : A×B → C

to the function

ξ† : A HomSets(B,C),

a
(
ξ†
a : B → C

)
,

where we define
ξ†
a(b)

def= ξ(a, b)

for each b ∈ B. In terms of the Ja 7→ f(a)K notation of Nota-
tion 1.1.1.1.2, we have

ξ† def= Ja 7→ Jb 7→ ξ(a, b)KK.

• Map II. We define a map

ΨB,C : HomSets(A,HomSets(B,C)),→ HomSets(A×B,C)

given by sending a function

ξ : A HomSets(B,C),

a (ξa : B → C),

to the function
ξ† : A×B → C

https://topological-modular-forms.github.io/the-clowder-project/tag/0017
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defined by

ξ†(a, b) def= evb(eva(ξ))
def= evb(ξa)
def= ξa(b)

for each (a, b) ∈ A×B.

• Invertibility I. We claim that

ΨA,B ◦ ΦA,B = idHomSets(A×B,C).

Indeed, given a function ξ : A×B → C, we have

[ΨA,B ◦ ΦA,B](ξ) = ΨA,B(ΦA,B(ξ))
= ΨA,B(ΦA,B(J(a, b) 7→ ξ(a, b)K))
= ΨA,B(Ja 7→ Jb 7→ ξ(a, b)KK)
= ΨA,B

(
Ja′ 7→ Jb′ 7→ ξ

(
a′, b′)KK)

= J(a, b) 7→ evb
(
eva
(
Ja′ 7→ Jb′ 7→ ξ

(
a′, b′)KK))K

= J(a, b) 7→ evb
(
Jb′ 7→ ξ

(
a, b′)K)K

= J(a, b) 7→ ξ(a, b)K
= ξ.

• Invertibility II. We claim that

ΦA,B ◦ ΨA,B = idHomSets(A,HomSets(B,C)).

Indeed, given a function

ξ : A HomSets(B,C),

a (ξa : B → C),

we have

[ΦA,B ◦ ΨA,B](ξ) def= ΦA,B(ΨA,B(ξ))
def= ΦA,B(J(a, b) 7→ ξa(b)K)
def= ΦA,B

(
J
(
a′, b′) 7→ ξa′

(
b′)K)

def= Ja 7→ Jb 7→ ev(a,b)
(
J
(
a′, b′) 7→ ξa′

(
b′)K)KK

def= Ja 7→ Jb 7→ ξa(b)KK
def= Ja 7→ ξaK
def= ξ.
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• Naturality for Φ, Part I. We need to show that, given a function
g : B → B′, the diagram

HomSets(A×B′, C) HomSets(A,HomSets(B′, C)),

HomSets(A×B,C) HomSets(A,HomSets(B,C))

ΦB′,C

idA×g∗ (g∗)∗

ΦB,C

commutes. Indeed, given a function

ξ : A×B′ → C,

we have

[ΦB,C ◦ (idA × g∗)](ξ) = ΦB,C([idA × g∗](ξ))
= ΦB,C(ξ(−1, g(−2)))
= [ξ(−1, g(−2))]†

= ξ†
−1(g(−2))

= (g∗)∗

(
ξ†
)

= (g∗)∗
(
ΦB′,C(ξ)

)
=
[
(g∗)∗ ◦ ΦB′,C

]
(ξ).

Alternatively, using the Ja 7→ f(a)K notation of Notation 1.1.1.1.2,
we have

[ΦB,C ◦ (idA × g∗)](ξ) = ΦB,C([idA × g∗](ξ))
= ΦB,C

(
[idA × g∗]

(
J
(
a, b′) 7→ ξ

(
a, b′)K))

= ΦB,C(J(a, b) 7→ ξ(a, g(b))K)
= Ja 7→ Jb 7→ ξ(a, g(b))KK
= Ja 7→ g∗(Jb′ 7→ ξ

(
a, b′)K)K

= (g∗)∗
(
Ja 7→ Jb′ 7→ ξ

(
a, b′)KK)

= (g∗)∗
(
ΦB′,C

(
J
(
a, b′) 7→ ξ

(
a, b′)K))

= (g∗)∗
(
ΦB′,C(ξ)

)
=
[
(g∗)∗ ◦ ΦB′,C

]
(ξ).

• Naturality for Φ, Part II. We need to show that, given a function

and b ∈ B as in Definition 2.3.4.1.1
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h : C → C ′, the diagram

HomSets(A×B,C) HomSets(A,HomSets(B,C)),

HomSets(A×B,C ′) HomSets(A,HomSets(B,C ′))

ΦB,C

h∗ (h∗)∗

ΦB,C′

commutes. Indeed, given a function

ξ : A×B → C,

we have

[ΦB,C ◦ h∗](ξ) = ΦB,C(h∗(ξ))
= ΦB,C(h∗(J(a, b) 7→ ξ(a, b)K))
= ΦB,C(J(a, b) 7→ h(ξ(a, b))K)
= Ja 7→ Jb 7→ h(ξ(a, b))KK
= Ja 7→ h∗(Jb 7→ ξ(a, b)KK)
= (h∗)∗(Ja 7→ Jb 7→ ξ(a, b)KK)
= (h∗)∗(ΦB,C(J(a, b) 7→ ξ(a, b)K))
= (h∗)∗(ΦB,C(ξ))
= [(h∗)∗ ◦ ΦB,C ](ξ).

• Naturality for Ψ. Since Φ is natural in each argument and Φ is a
componentwise inverse to Ψ in each argument, it follows from Item 2
of Proposition 8.8.6.1.2 that Ψ is also natural in each argument.

Item 3, Associativity: See [Pro24a].
Item 4, Unitality: Clear.
Item 5, Commutativity: See [Pro24b].
Item 6, Annihilation With the Empty Set: See [Pro24f].
Item 7, Distributivity Over Unions: See [Pro24e].
Item 8, Distributivity Over Intersections: See [Pro24g, Corollary 1].
Item 9, Middle-Four Exchange With Respect to Intersections: See [Pro24g,
Corollary 1].
Item 10, Distributivity Over Differences: See [Pro24c].
Item 11, Distributivity Over Symmetric Differences: See [Pro24d].
Item 12, Symmetric Monoidality: See [MO 382264].
Item 13, Symmetric Bimonoidality: Omitted.
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2.1.4 Pullbacks0018

Let A, B, and C be sets and let f : A → C and g : B → C be functions.

Definition 2.1.4.1.1.0019 The pullback of A and B over C along f
and g5 is the pair6 (A×C B, {pr1,pr2}) consisting of:

• The Limit. The set A×C B defined by

A×C B
def= {(a, b) ∈ A×B | f(a) = g(b)}.

• The Cone. The maps

pr1 : A×C B → A,

pr2 : A×C B → B

defined by

pr1(a, b) def= a,

pr2(a, b) def= b

for each (a, b) ∈ A×C B.

Proof. We claim that A ×C B is the categorical pullback of A and B
over C with respect to (f, g) in Sets. First we need to check that the
relevant pullback diagram commutes, i.e. that we have

f ◦ pr1 = g ◦ pr2,

A×C B B

A C.

pr2

pr1 g

f

Indeed, given (a, b) ∈ A×C B, we have

[f ◦ pr1](a, b) = f(pr1(a, b))
= f(a)
= g(b)
= g(pr2(a, b))
= [g ◦ pr2](a, b),

where f(a) = g(b) since (a, b) ∈ A×C B. Next, we prove that A×C B

5Further Terminology: Also called the fibre product of A and B over C along
f and g.

6Further Notation: Also written A ×f,C,g B.

https://topological-modular-forms.github.io/the-clowder-project/tag/0018
https://topological-modular-forms.github.io/the-clowder-project/tag/0019
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satisfies the universal property of the pullback. Suppose we have a
diagram of the form

P

A×C B B

A C

p2

p1
y

pr2

pr1 g

f

in Sets. Then there exists a unique map φ : P → A ×C B making the
diagram

P

A×C B B

A C

p2

p1

φ

∃!

y

pr2

pr1 g

f

commute, being uniquely determined by the conditions

pr1 ◦ φ = p1,

pr2 ◦ φ = p2

via
φ(x) = (p1(x), p2(x))

for each x ∈ P , where we note that (p1(x), p2(x)) ∈ A×B indeed lies in
A×C B by the condition

f ◦ p1 = g ◦ p2,

which gives
f(p1(x)) = g(p2(x))

for each x ∈ P , so that (p1(x), p2(x)) ∈ A×C B.

Example 2.1.4.1.2.001A Here are some examples of pullbacks of sets.

1. Unions via Intersections.001B Let A,B ⊂ X. We have a bijection of

https://topological-modular-forms.github.io/the-clowder-project/tag/001A
https://topological-modular-forms.github.io/the-clowder-project/tag/001B
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sets

A ∩B ∼= A×A∪B B,

A ∩B B

A A ∪B.

y
ιB

ιA

Proof. Item 1, Unions via Intersections: Indeed, we have

A×A∪B B ∼= {(x, y) ∈ A×B | x = y}
∼= A ∩B.

This finishes the proof.

Proposition 2.1.4.1.3.001C Let A, B, C, and X be sets.

1. Functoriality.001D The assignment (A,B,C, f, g) 7→ A×f,C,gB defines
a functor

−1 ×−3 −1 : Fun(P, Sets) → Sets,

where P is the category that looks like this:

•

• •.

In particular, the action on morphisms of −1 ×−3 −1 is given by
sending a morphism

A×C B B

A′ ×C′ B′ B′

A C

A′ C ′

y
g

ψ

y

g′f

φ
χ

f ′

in Fun(P,Sets) to the map ξ : A×C B
∃!−−→ A′ ×C′ B′ given by

ξ(a, b) def= (φ(a), ψ(b))

https://topological-modular-forms.github.io/the-clowder-project/tag/001C
https://topological-modular-forms.github.io/the-clowder-project/tag/001D
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for each (a, b) ∈ A ×C B, which is the unique map making the
diagram

A×C B B

A′ ×C′ B′ B′

A C

A′ C ′

y
g

ψ

y

g′f

φ
χ

f ′

commute.

2. Associativity.001E Given a diagram

A B C

X Y
f g h k

in Sets, we have isomorphisms of sets

(A×X B) ×Y C ∼= (A×X B) ×B (B ×Y C) ∼= A×X (B ×Y C),

where these pullbacks are built as in the diagrams

(A×X B) ×Y C

A×X B

A B C,

X Y
f g h k

y

y

(A×X B) ×B (B ×Y C)

A×X B B ×Y C

A B C,

X Y
f g h k

y

y y

A×X (B ×Y C)

B ×Y C

A B C.

X Y
f g h k

y

y

3. Unitality.001F We have isomorphisms of sets

A A

X X

f

y
f

X ×X A ∼= A,

A×X X ∼= A,

A X

X X.

f

y

f

https://topological-modular-forms.github.io/the-clowder-project/tag/001E
https://topological-modular-forms.github.io/the-clowder-project/tag/001F


2.1. Limits of Sets 27

4. Commutativity.001G We have an isomorphism of sets

A×X B B

A X,

y
g

f

A×X B ∼= B ×X A

B ×X A A

B X.

y
f

g

5. Annihilation With the Empty Set.001H We have isomorphisms of sets

∅ ∅

A X,

y

f

A×X ∅ ∼= ∅,
∅ ×X A ∼= ∅,

∅ A

∅ X.

y
f

6. Interaction With Products.001J We have an isomorphism of sets

A×pt B ∼= A×B,

A×B B

A pt.

y
!B

!A

7. Symmetric Monoidality.001K The triple (Sets,×X , X) is a symmetric
monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of
co/limits, ?? of ??, with the explicit expression for ξ following from the
commutativity of the cube pullback diagram.
Item 2, Associativity: Indeed, we have

(A×X B) ×Y C ∼= {((a, b), c) ∈ (A×X B) × C | h(b) = k(c)}
∼= {((a, b), c) ∈ (A×B) × C | f(a) = g(b) and h(b) = k(c)}
∼= {(a, (b, c)) ∈ A× (B × C) | f(a) = g(b) and h(b) = k(c)}
∼= {(a, (b, c)) ∈ A× (B ×Y C) | f(a) = g(b)}
∼= A×X (B ×Y C)

https://topological-modular-forms.github.io/the-clowder-project/tag/001G
https://topological-modular-forms.github.io/the-clowder-project/tag/001H
https://topological-modular-forms.github.io/the-clowder-project/tag/001J
https://topological-modular-forms.github.io/the-clowder-project/tag/001K


2.1. Limits of Sets 28

and
(A ×X B) ×B (B ×Y C) ∼=

{(
(a, b),

(
b′, c
))

∈ (A ×X B) × (B ×Y C)
∣∣ b = b′}

∼=

{(
(a, b),

(
b′, c
))

∈ (A × B) × (B × C)

∣∣∣∣∣ f(a) = g(b), b = b′,

and h
(
b′) = k(c)

}

∼=

{(
a,
(
b,
(
b′, c
)))

∈ A × (B × (B × C))

∣∣∣∣∣ f(a) = g(b), b = b′,

and h
(
b′) = k(c)

}

∼=

{(
a,
((

b, b′), c
))

∈ A × ((B × B) × C)

∣∣∣∣∣ f(a) = g(b), b = b′,

and h
(
b′) = k(c)

}

∼=

{(
a,
((

b, b′), c
))

∈ A × ((B ×B B) × C)

∣∣∣∣∣ f(a) = g(b) and

h
(
b′) = k(c)

}
∼= {(a, (b, c)) ∈ A × (B × C) | f(a) = g(b) and h(b) = k(c)}
∼= A ×X (B ×Y C),

where we have used Item 3 for the isomorphism B ×B B ∼= B.
Item 3, Unitality: Indeed, we have

X ×X A ∼= {(x, a) ∈ X ×A | f(a) = x},
A×X X ∼= {(a, x) ∈ X ×A | f(a) = x},

which are isomorphic to A via the maps (x, a) 7→ a and (a, x) 7→ a.
Item 4, Commutativity: Clear.
Item 5, Annihilation With the Empty Set: Clear.
Item 6, Interaction With Products: Clear.
Item 7, Symmetric Monoidality: Omitted.

2.1.5 Equalisers001L

Let A and B be sets and let f, g : A⇒ B be functions.

Definition 2.1.5.1.1.001M The equaliser of f and g is the pair (Eq(f, g), eq(f, g))
consisting of:

• The Limit. The set Eq(f, g) defined by

Eq(f, g) def= {a ∈ A | f(a) = g(a)}.

• The Cone. The inclusion map

eq(f, g) : Eq(f, g) ↪→ A.

Proof. We claim that Eq(f, g) is the categorical equaliser of f and g
in Sets. First we need to check that the relevant equaliser diagram
commutes, i.e. that we have

f ◦ eq(f, g) = g ◦ eq(f, g),

https://topological-modular-forms.github.io/the-clowder-project/tag/001L
https://topological-modular-forms.github.io/the-clowder-project/tag/001M
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which indeed holds by the definition of the set Eq(f, g). Next, we prove
that Eq(f, g) satisfies the universal property of the equaliser. Suppose
we have a diagram of the form

Eq(f, g) A B

E

eq(f,g) f

g

e

in Sets. Then there exists a unique map φ : E → Eq(f, g) making the
diagram

Eq(f, g) A B

E

eq(f,g) f

g

eφ ∃!

commute, being uniquely determined by the condition

eq(f, g) ◦ φ = e

via
φ(x) = e(x)

for each x ∈ E, where we note that e(x) ∈ A indeed lies in Eq(f, g) by
the condition

f ◦ e = g ◦ e,

which gives
f(e(x)) = g(e(x))

for each x ∈ E, so that e(x) ∈ Eq(f, g).

Proposition 2.1.5.1.2.001N Let A, B, and C be sets.

1. Associativity.001P We have isomorphisms of sets7

Eq(f ◦ eq(g, h), g ◦ eq(g, h))︸ ︷︷ ︸
=Eq(f◦eq(g,h),h◦eq(g,h))

∼= Eq(f, g, h) ∼= Eq(f ◦ eq(f, g), h ◦ eq(f, g))︸ ︷︷ ︸
=Eq(g◦eq(f,g),h◦eq(f,g))

,

7That is, the following three ways of forming “the” equaliser of (f, g, h) agree:
1. Take the equaliser of (f, g, h), i.e. the limit of the diagram

A B
f

g

h

in Sets.

https://topological-modular-forms.github.io/the-clowder-project/tag/001N
https://topological-modular-forms.github.io/the-clowder-project/tag/001P
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where Eq(f, g, h) is the limit of the diagram

A B
f

g

h

in Sets, being explicitly given by

Eq(f, g, h) ∼= {a ∈ A | f(a) = g(a) = h(a)}.

4. Unitality.001Q We have an isomorphism of sets

Eq(f, f) ∼= A.

5. Commutativity.001R We have an isomorphism of sets

Eq(f, g) ∼= Eq(g, f).

6. Interaction With Composition.001S Let

A
f

⇒
g
B

h
⇒
k
C

2. First take the equaliser of f and g, forming a diagram

Eq(f, g)
eq(f,g)

↪→ A
f

⇒
g

B

and then take the equaliser of the composition

Eq(f, g)
eq(f,g)

↪→ A
f

⇒
h

B,

obtaining a subset

Eq(f ◦ eq(f, g), h ◦ eq(f, g)) = Eq(g ◦ eq(f, g), h ◦ eq(f, g))

of Eq(f, g).
3. First take the equaliser of g and h, forming a diagram

Eq(g, h)
eq(g,h)

↪→ A
g

⇒
h

B

and then take the equaliser of the composition

Eq(g, h)
eq(g,h)

↪→ A
f

⇒
g

B,

obtaining a subset

Eq(f ◦ eq(g, h), g ◦ eq(g, h)) = Eq(f ◦ eq(g, h), h ◦ eq(g, h))

of Eq(g, h).

https://topological-modular-forms.github.io/the-clowder-project/tag/001Q
https://topological-modular-forms.github.io/the-clowder-project/tag/001R
https://topological-modular-forms.github.io/the-clowder-project/tag/001S
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be functions. We have an inclusion of sets

Eq(h ◦ f ◦ eq(f, g), k ◦ g ◦ eq(f, g)) ⊂ Eq(h ◦ f, k ◦ g),

where Eq(h ◦ f ◦ eq(f, g), k ◦ g ◦ eq(f, g)) is the equaliser of the
composition

Eq(f, g)
eq(f,g)
↪→ A

f

⇒
g
B

h
⇒
k
C.

Proof. Item 1, Associativity: We first prove that Eq(f, g, h) is indeed
given by

Eq(f, g, h) ∼= {a ∈ A | f(a) = g(a) = h(a)}.
Indeed, suppose we have a diagram of the form

Eq(f, g, h) A B

E

eq(f,g,h) f

g

h

e

in Sets. Then there exists a unique map φ : E → Eq(f, g, h), uniquely
determined by the condition

eq(f, g) ◦ φ = e

being necessarily given by

φ(x) = e(x)

for each x ∈ E, where we note that e(x) ∈ A indeed lies in Eq(f, g, h) by
the condition

f ◦ e = g ◦ e = h ◦ e,

which gives
f(e(x)) = g(e(x)) = h(e(x))

for each x ∈ E, so that e(x) ∈ Eq(f, g, h).
We now check the equalities

Eq(f ◦ eq(g, h), g ◦ eq(g, h)) ∼= Eq(f, g, h) ∼= Eq(f ◦ eq(f, g), h ◦ eq(f, g)).

Indeed, we have
Eq(f ◦ eq(g, h), g ◦ eq(g, h)) ∼= {x ∈ Eq(g, h) | [f ◦ eq(g, h)](a) = [g ◦ eq(g, h)](a)}

∼= {x ∈ Eq(g, h) | f(a) = g(a)}
∼= {x ∈ A | f(a) = g(a) and g(a) = h(a)}
∼= {x ∈ A | f(a) = g(a) = h(a)}
∼= Eq(f, g, h).
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Similarly, we have

Eq(f ◦ eq(f, g), h ◦ eq(f, g)) ∼= {x ∈ Eq(f, g) | [f ◦ eq(f, g)](a) = [h ◦ eq(f, g)](a)}
∼= {x ∈ Eq(f, g) | f(a) = h(a)}
∼= {x ∈ A | f(a) = h(a) and f(a) = g(a)}
∼= {x ∈ A | f(a) = g(a) = h(a)}
∼= Eq(f, g, h).

Item 4, Unitality: Clear.
Item 5, Commutativity: Clear.
Item 6, Interaction With Composition: Indeed, we have

Eq(h ◦ f ◦ eq(f, g), k ◦ g ◦ eq(f, g)) ∼= {a ∈ Eq(f, g) | h(f(a)) = k(g(a))}
∼= {a ∈ A | f(a) = g(a) and h(f(a)) = k(g(a))}.

and
Eq(h ◦ f, k ◦ g) ∼= {a ∈ A | h(f(a)) = k(g(a))},

and thus there’s an inclusion from Eq(h ◦ f ◦ eq(f, g), k ◦ g ◦ eq(f, g)) to
Eq(h ◦ f, k ◦ g).

2.2 Colimits of Sets001T

2.2.1 The Initial Set001U

Definition 2.2.1.1.1.001V The initial set is the pair
(
∅, {ιA}A∈Obj(Sets)

)
consisting of:

• The Limit. The empty set ∅ of Definition 2.3.1.1.1.

• The Cone. The collection of maps

{ιA : ∅ → A}A∈Obj(Sets)

given by the inclusion maps from ∅ to A.

Proof. We claim that ∅ is the initial object of Sets. Indeed, suppose we
have a diagram of the form

∅ A

in Sets. Then there exists a unique map φ : ∅ → A making the diagram

∅ A
φ

∃!

commute, namely the inclusion map ιA.

https://topological-modular-forms.github.io/the-clowder-project/tag/001T
https://topological-modular-forms.github.io/the-clowder-project/tag/001U
https://topological-modular-forms.github.io/the-clowder-project/tag/001V
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2.2.2 Coproducts of Families of Sets001W

Let {Ai}i∈I be a family of sets.

Definition 2.2.2.1.1.001X The disjoint union of the family {Ai}i∈I is
the pair

(∐
i∈I Ai, {inji}i∈I

)
consisting of:

• The Colimit. The set
∐
i∈I Ai defined by

∐
i∈I

Ai
def=
{

(i, x) ∈ I ×
(⋃
i∈I

Ai

) ∣∣∣∣∣ x ∈ Ai

}
.

• The Cocone. The collection{
inji : Ai →

∐
i∈I

Ai

}
i∈I

of maps given by
inji(x) def= (i, x)

for each x ∈ Ai and each i ∈ I.

Proof. We claim that
∐
i∈I Ai is the categorical coproduct of {Ai}i∈I in

Sets. Indeed, suppose we have, for each i ∈ I, a diagram of the form

C

Ai
∐
i∈I

Ai

ιi

inji

in Sets. Then there exists a unique map φ :
∐
i∈I Ai → C making the

diagram
C

Ai
∐
i∈I

Ai

ιi

inji

φ ∃!

commute, being uniquely determined by the condition φ ◦ inji = ιi for
each i ∈ I via

φ((i, x)) = ιi(x)

for each (i, x) ∈
∐
i∈I Ai.

Proposition 2.2.2.1.2.001Y Let {Ai}i∈I be a family of sets.

https://topological-modular-forms.github.io/the-clowder-project/tag/001W
https://topological-modular-forms.github.io/the-clowder-project/tag/001X
https://topological-modular-forms.github.io/the-clowder-project/tag/001Y
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1. Functoriality.001Z The assignment {Ai}i∈I 7→
∐
i∈I Ai defines a

functor ∐
i∈I

: Fun(Idisc,Sets) → Sets

where

• Action on Objects. For each (Ai)i∈I ∈ Obj(Fun(Idisc, Sets)),
we have [∐

i∈I

](
(Ai)i∈I

) def=
∐
i∈I

Ai

• Action on Morphisms. For each (Ai)i∈I , (Bi)i∈I ∈ Obj(Fun(Idisc, Sets)),
the action on Hom-sets(∐

i∈I

)
(Ai)i∈I ,(Bi)i∈I

: Nat
(
(Ai)i∈I , (Bi)i∈I

)
→ Sets

(∐
i∈I

Ai,
∐
i∈I

Bi

)

of
∐
i∈I at

(
(Ai)i∈I , (Bi)i∈I

)
is defined by sending a map

{fi : Ai → Bi}i∈I

in Nat
(
(Ai)i∈I , (Bi)i∈I

)
to the map of sets∐

i∈I
fi :

∐
i∈I

Ai →
∐
i∈I

Bi

defined by [∐
i∈I

fi

]
(i, a) def= fi(a)

for each (i, a) ∈
∐
i∈I Ai.

Proof. Item 1, Functoriality: This follows from ?? of ??.

2.2.3 Binary Coproducts0020

Let A and B be sets.

Definition 2.2.3.1.1.0021 The coproduct8 of A and B is the pair (A
∐
B, {inj1, inj2})

consisting of:

• The Colimit. The set A
∐
B defined by

A
∐
B

def=
∐

z∈{A,B}
z

∼= {(0, a) | a ∈ A} ∪ {(1, b) | b ∈ B}.
8Further Terminology: Also called the disjoint union of A and B, or the binary

https://topological-modular-forms.github.io/the-clowder-project/tag/001Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0020
https://topological-modular-forms.github.io/the-clowder-project/tag/0021
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• The Cocone. The maps

inj1 : A → A
∐
B,

inj2 : B → A
∐
B,

given by

inj1(a) def= (0, a),
inj2(b) def= (1, b),

for each a ∈ A and each b ∈ B.

Proof. We claim that A
∐
B is the categorical coproduct of A and B in

Sets. Indeed, suppose we have a diagram of the form

C

A A
∐
B B

ιA ιB

injA injB

in Sets. Then there exists a unique map φ : A
∐
B → C making the

diagram
C

A A
∐
B B

ιA ιB
φ ∃!

injA injB

commute, being uniquely determined by the conditions

φ ◦ injA = ιA,

φ ◦ injB = ιB

via

φ(x) =
{
ιA(a) if x = (0, a),
ιB(b) if x = (1, b)

for each x ∈ A
∐
B.

Proposition 2.2.3.1.2.0022 Let A, B, C, and X be sets.

1. Functoriality.0023 The assignment A,B, (A,B) 7→ A
∐
B defines

functors
A
∐

− : Sets → Sets,
−
∐
B : Sets → Sets,

−1
∐

−2 : Sets × Sets → Sets,

where −1
∐

−2 is the functor where

https://topological-modular-forms.github.io/the-clowder-project/tag/0022
https://topological-modular-forms.github.io/the-clowder-project/tag/0023
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• Action on Objects. For each (A,B) ∈ Obj(Sets × Sets), we
have

[−1
∐

−2](A,B) def= A
∐
B.

• Action on Morphisms. For each (A,B), (X,Y ) ∈ Obj(Sets),
the action on Hom-sets∐

(A,B),(X,Y ) : Sets(A,X) × Sets(B, Y ) → Sets(A
∐
B,X

∐
Y )

of
∐

at ((A,B), (X,Y )) is defined by sending (f, g) to the
function

f
∐
g : A

∐
B → X

∐
Y

defined by

[f
∐
g](x) def=

{
(0, f(a)) if x = (0, a),
(1, g(b)) if x = (1, b),

for each x ∈ A
∐
B.

and where A
∐

− and −
∐
B are the partial functors of −1

∐
−2

at A,B ∈ Obj(Sets).

2. Associativity.0024 We have an isomorphism of sets

(A
∐
B)
∐
C ∼= A

∐
(B
∐
C),

natural in A,B,C ∈ Obj(Sets).

3. Unitality.0025 We have isomorphisms of sets

A
∐

∅ ∼= A,

∅
∐
A ∼= A,

natural in A ∈ Obj(Sets).

4. Commutativity.0026 We have an isomorphism of sets

A
∐
B ∼= B

∐
A,

natural in A,B ∈ Obj(Sets).

5. Symmetric Monoidality.0027 The triple (Sets,
∐
, ∅) is a symmetric

monoidal category.

Proof. Item 1, Functoriality: This follows from ?? of ??.
Item 2, Associativity: Clear.
Item 3, Unitality: Clear.
Item 4, Commutativity: Clear.
Item 5, Symmetric Monoidality: Omitted.

https://topological-modular-forms.github.io/the-clowder-project/tag/0024
https://topological-modular-forms.github.io/the-clowder-project/tag/0025
https://topological-modular-forms.github.io/the-clowder-project/tag/0026
https://topological-modular-forms.github.io/the-clowder-project/tag/0027
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2.2.4 Pushouts0028

Let A, B, and C be sets and let f : C → A and g : C → B be functions.

Definition 2.2.4.1.1.0029 The pushout of A and B over C along f and
g9 is the pair10 (A

∐
C B, {inj1, inj2}) consisting of:

• The Colimit. The set A
∐
C B defined by

A
∐
C B

def= A
∐
B/∼C ,

where ∼C is the equivalence relation on A
∐
B generated by

(0, f(c)) ∼C (1, g(c)).

• The Cocone. The maps

inj1 : A → A
∐
C B,

inj2 : B → A
∐
C B

given by

inj1(a) def= [(0, a)]
inj2(b) def= [(1, b)]

for each a ∈ A and each b ∈ B.

Proof. We claim that A
∐
C B is the categorical pushout of A and B over

C with respect to (f, g) in Sets. First we need to check that the relevant
pushout diagram commutes, i.e. that we have

inj1 ◦ f = inj2 ◦ g,

A
∐
C B B

A C.

inj2

inj1 g

f

Indeed, given c ∈ C, we have

[inj1 ◦ f ](c) = inj1(f(c))
= [(0, f(c))]
= [(1, g(c))]
= inj2(g(c))
= [inj2 ◦ g](c),

disjoint union of A and B, for emphasis.
9Further Terminology: Also called the fibre coproduct of A and B over C

along f and g.
10Further Notation: Also written A

∐
f,C,gB.

https://topological-modular-forms.github.io/the-clowder-project/tag/0028
https://topological-modular-forms.github.io/the-clowder-project/tag/0029
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where [(0, f(c))] = [(1, g(c))] by the definition of the relation ∼ on A
∐
B.

Next, we prove that A
∐

CB satisfies the universal property of the
pushout. Suppose we have a diagram of the form

P

A
∐
C B B

A C

ι2

ι1 p

inj2

inj1 g

f

in Sets. Then there exists a unique map φ : A
∐
C B → P making the

diagram
P

A
∐
C B B

A C

ι2

ι1

φ

∃!

p

inj2

inj1 g

f

commute, being uniquely determined by the conditions

φ ◦ inj1 = ι1,

φ ◦ inj2 = ι2

via

φ(x) =
{
ι1(a) if x = [(0, a)],
ι2(b) if x = [(1, b)]

for each x ∈ A
∐
C B, where the well-definedness of φ is guaranteed by

the equality ι1 ◦ f = ι2 ◦ g and the definition of the relation ∼ on A
∐
B

as follows:

1. Case 1: Suppose we have x = [(0, a)] = [(0, a′)] for some a, a′ ∈ A.
Then, by Remark 2.2.4.1.2, we have a sequence

(0, a) ∼′ x1 ∼′ · · · ∼′ xn ∼′ (0, a′).
2. Case 2: Suppose we have x = [(1, b)] = [(1, b′)] for some b, b′ ∈ B.

Then, by Remark 2.2.4.1.2, we have a sequence

(1, b) ∼′ x1 ∼′ · · · ∼′ xn ∼′ (1, b′).
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3. Case 3: Suppose we have x = [(0, a)] = [(1, b)] for some a ∈ A and
b ∈ B. Then, by Remark 2.2.4.1.2, we have a sequence

(0, a) ∼′ x1 ∼′ · · · ∼′ xn ∼′ (1, b).

In all these cases, we declare x ∼′ y iff there exists some c ∈ C such that
x = (0, f(c)) and y = (1, g(c)) or x = (1, g(c)) and y = (0, f(c)). Then,
the equality ι1 ◦ f = ι2 ◦ g gives

φ([x]) = φ([(0, f(c))])
def= ι1(f(c))
= ι2(g(c))
def= φ([(1, g(c))])
= φ([y]),

with the case where x = (1, g(c)) and y = (0, f(c)) similarly giving
φ([x]) = φ([y]). Thus, if x ∼′ y, then φ([x]) = φ([y]). Applying this
equality pairwise to the sequences

(0, a) ∼′ x1 ∼′ · · · ∼′ xn ∼′ (0, a′),
(1, b) ∼′ x1 ∼′ · · · ∼′ xn ∼′ (1, b′),
(0, a) ∼′ x1 ∼′ · · · ∼′ xn ∼′ (1, b)

gives

φ([(0, a)]) = φ
([(

0, a′)]),
φ([(1, b)]) = φ

([(
1, b′)]),

φ([(0, a)]) = φ([(1, b)]),

showing φ to be well-defined.

Remark 2.2.4.1.2.002A In detail, by Construction 7.4.2.1.2, the relation ∼
of Definition 2.2.4.1.1 is given by declaring a ∼ b iff one of the following
conditions is satisfied:

• We have a, b ∈ A and a = b;

• We have a, b ∈ B and a = b;

• There exist x1, . . . , xn ∈ A
∐
B such that a ∼′ x1 ∼′ · · · ∼′ xn ∼′ b,

where we declare x ∼′ y if one of the following conditions is satisfied:

1. There exists c ∈ C such that x = (0, f(c)) and y = (1, g(c)).
2. There exists c ∈ C such that x = (1, g(c)) and y = (0, f(c)).

https://topological-modular-forms.github.io/the-clowder-project/tag/002A
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That is: we require the following condition to be satisfied:

(?) There exist x1, . . . , xn ∈ A
∐
B satisfying the following condi-

tions:
1. There exists c0 ∈ C satisfying one of the following condi-

tions:
(a) We have a = f(c0) and x1 = g(c0).
(b) We have a = g(c0) and x1 = f(c0).

2. For each 1 ≤ i ≤ n− 1, there exists ci ∈ C satisfying one
of the following conditions:
(a) We have xi = f(ci) and xi+1 = g(ci).
(b) We have xi = g(ci) and xi+1 = f(ci).

3. There exists cn ∈ C satisfying one of the following condi-
tions:
(a) We have xn = f(cn) and b = g(cn).
(b) We have xn = g(cn) and b = f(cn).

Example 2.2.4.1.3.002B Here are some examples of pushouts of sets.

1. Wedge Sums of Pointed Sets.002C The wedge sum of two pointed sets
of Definition 3.3.3.1.1 is an example of a pushout of sets.

2. Intersections via Unions.002D Let A,B ⊂ X. We have a bijection of
sets

A ∪B ∼= A
∐
A∩B B,

A ∪B B

A A ∩B.

p

Proof. Item 1, Wedge Sums of Pointed Sets: Follows by definition.
Item 2, Intersections via Unions: Indeed, A

∐
A∩B B is the quotient of

A
∐
B by the equivalence relation obtained by declaring (0, a) ∼ (1, b)

iff a = b ∈ A ∩ B, which is in bijection with A ∪ B via the map with
[(0, a)] 7→ a and [(1, b)] 7→ b.

Proposition 2.2.4.1.4.002E Let A, B, C, and X be sets.

1. Functoriality.002F The assignment (A,B,C, f, g) 7→ A
∐
f,C,gB defines

a functor

−1
∐

−3 −1 : Fun(P, Sets) → Sets,

where P is the category that looks like this:

•

• •.

https://topological-modular-forms.github.io/the-clowder-project/tag/002B
https://topological-modular-forms.github.io/the-clowder-project/tag/002C
https://topological-modular-forms.github.io/the-clowder-project/tag/002D
https://topological-modular-forms.github.io/the-clowder-project/tag/002E
https://topological-modular-forms.github.io/the-clowder-project/tag/002F
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In particular, the action on morphisms of −1
∐

−3 −1 is given by
sending a morphism

A
∐
C B B

A′ ∐
C′ B′ B′

A C

A′ C ′

p

g

ψ

p

g′f

φ
χ

f ′

in Fun(P,Sets) to the map ξ : A
∐
C B

∃!−−→ A′ ∐
C′ B′ given by

ξ(x) def=
{
φ(a) if x = [(0, a)],
ψ(b) if x = [(1, b)]

for each x ∈ A
∐
C B, which is the unique map making the diagram

A
∐
C B B

A′ ∐
C′ B′ B′

A C

A′ C ′

p

g

ψ

p

g′f

φ
χ

f ′

commute.

2. Associativity.002G Given a diagram

A B C

X Y
f g h k

in Sets, we have isomorphisms of sets

(A
∐
X B)

∐
Y C

∼= (A
∐
X B)

∐
B (B

∐
Y C) ∼= A

∐
X (B

∐
Y C),

https://topological-modular-forms.github.io/the-clowder-project/tag/002G
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where these pullbacks are built as in the diagrams

(A
∐
X B)

∐
Y C

A
∐
X B

A B C,

X Y
f g h k

q

q

(A
∐
X B)

∐
B (B

∐
Y C)

A
∐
X B B

∐
Y C

A B C,

X Y
f g h k

p

p p

A
∐
X (B

∐
Y C)

B
∐
Y C

A B C.

X Y
f g h k

p

p

3. Unitality.002H We have isomorphisms of sets

A A

X X

f

p
f

X
∐
X A ∼= A,

A
∐
X X ∼= A,

A X

X X.

f

p

f

4. Commutativity.002J We have an isomorphism of sets

A
∐
X B B

A X,

p
g

f

A
∐
X B ∼= B

∐
X A

B
∐
X A A

B X.

p
f

g

5. Interaction With Coproducts.002K We have

A
∐

∅ B
∼= A

∐
B,

A
∐
B B

A ∅.

p
ιB

ιA

6. Symmetric Monoidality.002L The triple (Sets,
∐
X , X) is a symmetric

monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of
co/limits, ?? of ??, with the explicit expression for ξ following from the
commutativity of the cube pushout diagram.
Item 2, Associativity: Omitted.
Item 3, Unitality: Omitted.
Item 4, Commutativity: Clear.
Item 5, Interaction With Coproducts: Clear.
Item 6, Symmetric Monoidality: Omitted.

https://topological-modular-forms.github.io/the-clowder-project/tag/002H
https://topological-modular-forms.github.io/the-clowder-project/tag/002J
https://topological-modular-forms.github.io/the-clowder-project/tag/002K
https://topological-modular-forms.github.io/the-clowder-project/tag/002L
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2.2.5 Coequalisers002M

Let A and B be sets and let f, g : A⇒ B be functions.

Definition 2.2.5.1.1.002N The coequaliser of f and g is the pair (CoEq(f, g), coeq(f, g))
consisting of:

• The Colimit. The set CoEq(f, g) defined by

CoEq(f, g) def= B/∼,

where ∼ is the equivalence relation on B generated by f(a) ∼ g(a).

• The Cocone. The map

coeq(f, g) : B → CoEq(f, g)

given by the quotient map π : B � B/∼ with respect to the
equivalence relation generated by f(a) ∼ g(a).

Proof. We claim that CoEq(f, g) is the categorical coequaliser of f and
g in Sets. First we need to check that the relevant coequaliser diagram
commutes, i.e. that we have

coeq(f, g) ◦ f = coeq(f, g) ◦ g.

Indeed, we have

[coeq(f, g) ◦ f ](a) def= [coeq(f, g)](f(a))
def= [f(a)]
= [g(a)]
def= [coeq(f, g)](g(a))
def= [coeq(f, g) ◦ g](a)

for each a ∈ A. Next, we prove that CoEq(f, g) satisfies the universal
property of the coequaliser. Suppose we have a diagram of the form

A B CoEq(f, g)

C

f

g

coeq(f,g)

c

in Sets. Then, since c(f(a)) = c(g(a)) for each a ∈ A, it follows from
Items 4 and 5 of Proposition 7.5.2.1.3 that there exists a unique map

https://topological-modular-forms.github.io/the-clowder-project/tag/002M
https://topological-modular-forms.github.io/the-clowder-project/tag/002N
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CoEq(f, g) ∃!−−→ C making the diagram

A B CoEq(f, g)

C

f

g

coeq(f,g)

c ∃!

commute.

Remark 2.2.5.1.2.002P In detail, by Construction 7.4.2.1.2, the relation ∼
of Definition 2.2.5.1.1 is given by declaring a ∼ b iff one of the following
conditions is satisfied:

• We have a = b;

• There exist x1, . . . , xn ∈ B such that a ∼′ x1 ∼′ · · · ∼′ xn ∼′ b,
where we declare x ∼′ y if one of the following conditions is satisfied:

1. There exists z ∈ A such that x = f(z) and y = g(z).
2. There exists z ∈ A such that x = g(z) and y = f(z).

That is: we require the following condition to be satisfied:

(?) There exist x1, . . . , xn ∈ B satisfying the following conditions:
1. There exists z0 ∈ A satisfying one of the following condi-

tions:
(a) We have a = f(z0) and x1 = g(z0).
(b) We have a = g(z0) and x1 = f(z0).

2. For each 1 ≤ i ≤ n− 1, there exists zi ∈ A satisfying one
of the following conditions:
(a) We have xi = f(zi) and xi+1 = g(zi).
(b) We have xi = g(zi) and xi+1 = f(zi).

3. There exists zn ∈ A satisfying one of the following condi-
tions:
(a) We have xn = f(zn) and b = g(zn).
(b) We have xn = g(zn) and b = f(zn).

Example 2.2.5.1.3.002Q Here are some examples of coequalisers of sets.

1. Quotients by Equivalence Relations.002R Let R be an equivalence
relation on a set X. We have a bijection of sets

X/∼R
∼= CoEq

(
R ↪→ X ×X

pr1
⇒
pr2

X

)
.

https://topological-modular-forms.github.io/the-clowder-project/tag/002P
https://topological-modular-forms.github.io/the-clowder-project/tag/002Q
https://topological-modular-forms.github.io/the-clowder-project/tag/002R
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Proof. Item 1, Quotients by Equivalence Relations: See [Pro24ad].

Proposition 2.2.5.1.4.002S Let A, B, and C be sets.

1. Associativity.002T We have isomorphisms of sets11

CoEq(coeq(f, g) ◦ f, coeq(f, g) ◦ h)︸ ︷︷ ︸
=CoEq(coeq(f,g)◦g,coeq(f,g)◦h)

∼= CoEq(f, g, h) ∼= CoEq(coeq(g, h) ◦ f, coeq(g, h) ◦ g)︸ ︷︷ ︸
=CoEq(coeq(g,h)◦f,coeq(g,h)◦h)

,

where CoEq(f, g, h) is the colimit of the diagram

A B
f

g

h

in Sets.
11That is, the following three ways of forming “the” coequaliser of (f, g, h) agree:

1. Take the coequaliser of (f, g, h), i.e. the colimit of the diagram

A B
f

g

h

in Sets.
2. First take the coequaliser of f and g, forming a diagram

A
f

⇒
g

B
coeq(f,g)

� CoEq(f, g)

and then take the coequaliser of the composition

A
f

⇒
h

B
coeq(f,g)

� CoEq(f, g),

obtaining a quotient

CoEq(coeq(f, g) ◦ f, coeq(f, g) ◦ h) = CoEq(coeq(f, g) ◦ g, coeq(f, g) ◦ h)

of CoEq(f, g)
3. First take the coequaliser of g and h, forming a diagram

A
g

⇒
h

B
coeq(g,h)

� CoEq(g, h)

and then take the coequaliser of the composition

A
f

⇒
g

B
coeq(g,h)

� CoEq(g, h),

obtaining a quotient

CoEq(coeq(g, h) ◦ f, coeq(g, h) ◦ g) = CoEq(coeq(g, h) ◦ f, coeq(g, h) ◦ h)

of CoEq(g, h).

https://topological-modular-forms.github.io/the-clowder-project/tag/002S
https://topological-modular-forms.github.io/the-clowder-project/tag/002T
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4. Unitality.002U We have an isomorphism of sets

CoEq(f, f) ∼= B.

5. Commutativity.002V We have an isomorphism of sets

CoEq(f, g) ∼= CoEq(g, f).

6. Interaction With Composition.002W Let

A
f

⇒
g
B

h
⇒
k
C

be functions. We have a surjection

CoEq(h ◦ f, k ◦ g) � CoEq(coeq(h, k) ◦ h ◦ f, coeq(h, k) ◦ k ◦ g)

exhibiting CoEq(coeq(h, k) ◦ h ◦ f, coeq(h, k) ◦ k ◦ g) as a quotient
of CoEq(h ◦ f, k ◦ g) by the relation generated by declaring h(y) ∼
k(y) for each y ∈ B.

Proof. Item 1, Associativity: Omitted.
Item 4, Unitality: Clear.
Item 5, Commutativity: Clear.
Item 6, Interaction With Composition: Omitted.

2.3 Operations With Sets002X

2.3.1 The Empty Set002Y

Definition 2.3.1.1.1.002Z The empty set is the set ∅ defined by

∅ def= {x ∈ X | x 6= x},

where A is the set in the set existence axiom, ?? of ??.

2.3.2 Singleton Sets0030

Let X be a set.

Definition 2.3.2.1.1.0031 The singleton set containing X is the set {X}
defined by

{X} def= {X,X},

where {X,X} is the pairing of X with itself (Definition 2.3.3.1.1).

https://topological-modular-forms.github.io/the-clowder-project/tag/002U
https://topological-modular-forms.github.io/the-clowder-project/tag/002V
https://topological-modular-forms.github.io/the-clowder-project/tag/002W
https://topological-modular-forms.github.io/the-clowder-project/tag/002X
https://topological-modular-forms.github.io/the-clowder-project/tag/002Y
https://topological-modular-forms.github.io/the-clowder-project/tag/002Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0030
https://topological-modular-forms.github.io/the-clowder-project/tag/0031
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2.3.3 Pairings of Sets0032

Let X and Y be sets.

Definition 2.3.3.1.1.0033 The pairing of X and Y is the set {X,Y }
defined by

{X,Y } def= {x ∈ A | x = X or x = Y },

where A is the set in the axiom of pairing, ?? of ??.

2.3.4 Ordered Pairs0034

Let A and B be sets.

Definition 2.3.4.1.1.0035 The ordered pair associated to A and B is
the set (A,B) defined by

(A,B) def= {{A}, {A,B}}.

Proposition 2.3.4.1.2.0036 Let A and B be sets.

1. Uniqueness.0037 Let A, B, C, and D be sets. The following conditions
are equivalent:

(a) We have (A,B) = (C,D).0038

(b) We have A = C and B = D.0039

Proof. Item 1, Uniqueness: See [Cie97, Theorem 1.2.3].

2.3.5 Sets of Maps003A

Let A and B be sets.

Definition 2.3.5.1.1.003B The set of maps from A to B12 is the set
HomSets(A,B)13 whose elements are the functions from A to B.

Proposition 2.3.5.1.2.003C Let A and B be sets.

1. Functoriality.003D The assignments X,Y, (X,Y ) 7→ HomSets(X,Y )
define functors

HomSets(X,−) : Sets → Sets,
HomSets(−, Y ) : Setsop → Sets,

HomSets(−1,−2) : Setsop × Sets → Sets.

Proof. Item 1, Functoriality: This follows from Items 2 and 5 of Propo-
sition 8.1.6.1.2.

12Further Terminology: Also called the Hom set from A to B.
13Further Notation: Also written Sets(A, B).

https://topological-modular-forms.github.io/the-clowder-project/tag/0032
https://topological-modular-forms.github.io/the-clowder-project/tag/0033
https://topological-modular-forms.github.io/the-clowder-project/tag/0034
https://topological-modular-forms.github.io/the-clowder-project/tag/0035
https://topological-modular-forms.github.io/the-clowder-project/tag/0036
https://topological-modular-forms.github.io/the-clowder-project/tag/0037
https://topological-modular-forms.github.io/the-clowder-project/tag/0038
https://topological-modular-forms.github.io/the-clowder-project/tag/0039
https://topological-modular-forms.github.io/the-clowder-project/tag/003A
https://topological-modular-forms.github.io/the-clowder-project/tag/003B
https://topological-modular-forms.github.io/the-clowder-project/tag/003C
https://topological-modular-forms.github.io/the-clowder-project/tag/003D
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2.3.6 Unions of Families003E

Let {Ai}i∈I be a family of sets.

Definition 2.3.6.1.1.003F The union of the family {Ai}i∈I is the set⋃
i∈I Ai defined by⋃

i∈I
Ai

def= {x ∈ F | there exists some i ∈ I such that x ∈ Ai},

where F is the set in the axiom of union, ?? of ??.

2.3.7 Binary Unions003G

Let A and B be sets.

Definition 2.3.7.1.1.003H The union14 of A and B is the set A∪B defined
by

A ∪B
def=

⋃
z∈{A,B}

z.

Proposition 2.3.7.1.2.003J Let X be a set.

1. Functoriality.003K The assignments U, V, (U, V ) 7→ U ∪ V define
functors

U ∪ − : (P(X),⊂) → (P(X),⊂),
− ∪ V : (P(X),⊂) → (P(X),⊂),

−1 ∪ −2 : (P(X) × P(X),⊂ × ⊂) → (P(X),⊂),

where −1 ∪ −2 is the functor where

• Action on Objects. For each (U, V ) ∈ P(X) × P(X), we have

[−1 ∪ −2](U, V ) def= U ∪ V.

• Action on Morphisms. For each pair of morphisms

ιU : U ↪→ U ′,

ιV : V ↪→ V ′

of P(X) × P(X), the image

ιU ∪ ιV : U ∪ V ↪→ U ′ ∪ V ′

of (ιU , ιV ) by ∪ is the inclusion

U ∪ V ⊂ U ′ ∪ V ′

i.e. where we have
14Further Terminology: Also called the binary union of A and B, for emphasis.

https://topological-modular-forms.github.io/the-clowder-project/tag/003E
https://topological-modular-forms.github.io/the-clowder-project/tag/003F
https://topological-modular-forms.github.io/the-clowder-project/tag/003G
https://topological-modular-forms.github.io/the-clowder-project/tag/003H
https://topological-modular-forms.github.io/the-clowder-project/tag/003J
https://topological-modular-forms.github.io/the-clowder-project/tag/003K


2.3. Operations With Sets 49

(?) If U ⊂ U ′ and V ⊂ V ′, then U ∪ V ⊂ U ′ ∪ V ′.

and where U ∪ − and − ∪ V are the partial functors of −1 ∪ −2 at
U, V ∈ P(X).

2. Via Intersections and Symmetric Differences.003L We have an equality
of sets

U ∪ V = (U 4 V ) 4 (U ∩ V )

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

3. Associativity.003M We have an equality of sets

(U ∪ V ) ∪W = U ∪ (V ∪W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

4. Unitality.003N We have equalities of sets

U ∪ ∅ = U,

∅ ∪ U = U

for each X ∈ Obj(Sets) and each U ∈ P(X).

5. Commutativity.003P We have an equality of sets

U ∪ V = V ∪ U

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

6. Idempotency.003Q We have an equality of sets

U ∪ U = U

for each X ∈ Obj(Sets) and each U ∈ P(X).

7. Distributivity Over Intersections.003R We have equalities of sets

U ∪ (V ∩W ) = (U ∪ V ) ∩ (U ∪W ),
(U ∩ V ) ∪W = (U ∪W ) ∩ (V ∪W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

8. Interaction With Characteristic Functions I.003S We have

χU∪V = max(χU , χV )

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

https://topological-modular-forms.github.io/the-clowder-project/tag/003L
https://topological-modular-forms.github.io/the-clowder-project/tag/003M
https://topological-modular-forms.github.io/the-clowder-project/tag/003N
https://topological-modular-forms.github.io/the-clowder-project/tag/003P
https://topological-modular-forms.github.io/the-clowder-project/tag/003Q
https://topological-modular-forms.github.io/the-clowder-project/tag/003R
https://topological-modular-forms.github.io/the-clowder-project/tag/003S
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9. Interaction With Characteristic Functions II.003T We have

χU∪V = χU + χV − χU∩V

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

10. Interaction With Powersets and Semirings.003U The quintuple
(P(X),∪,∩, ∅, X) is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Pro24ar].
Item 2, Via Intersections and Symmetric Differences: See [Pro24bc].
Item 3, Associativity: See [Pro24be].
Item 4, Unitality: This follows from [Pro24bh] and Item 5.
Item 5, Commutativity: See [Pro24bf].
Item 6, Idempotency: See [Pro24aq].
Item 7, Distributivity Over Intersections: See [Pro24bd].
Item 8, Interaction With Characteristic Functions I : See [Pro24k].
Item 9, Interaction With Characteristic Functions II : See [Pro24k].
Item 10, Interaction With Powersets and Semirings: This follows from
Items 3 to 6 and Items 3 to 5, 7 and 8 of Proposition 2.3.9.1.2.

2.3.8 Intersections of Families003V

Let F be a family of sets.

Definition 2.3.8.1.1.003W The intersection of a family F of sets is the
set

⋂
X∈F X defined by

⋂
X∈F

X
def=
{
z ∈

⋃
X∈F

X

∣∣∣∣∣ for each X ∈ F , we have z ∈ X

}
.

2.3.9 Binary Intersections003X

Let X and Y be sets.

Definition 2.3.9.1.1.003Y The intersection15 of X and Y is the set X ∩Y
defined by

X ∩ Y
def=

⋂
z∈{X,Y }

z.

Proposition 2.3.9.1.2.003Z Let X be a set.

1. Functoriality.0040 The assignments U, V, (U, V ) 7→ U ∩ V define
15Further Terminology: Also called the binary intersection of X and Y , for

emphasis.

https://topological-modular-forms.github.io/the-clowder-project/tag/003T
https://topological-modular-forms.github.io/the-clowder-project/tag/003U
https://topological-modular-forms.github.io/the-clowder-project/tag/003V
https://topological-modular-forms.github.io/the-clowder-project/tag/003W
https://topological-modular-forms.github.io/the-clowder-project/tag/003X
https://topological-modular-forms.github.io/the-clowder-project/tag/003Y
https://topological-modular-forms.github.io/the-clowder-project/tag/003Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0040
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functors

U ∩ − : (P(X),⊂) → (P(X),⊂),
− ∩ V : (P(X),⊂) → (P(X),⊂),

−1 ∩ −2 : (P(X) × P(X),⊂ × ⊂) → (P(X),⊂),

where −1 ∩ −2 is the functor where

• Action on Objects. For each (U, V ) ∈ P(X) × P(X), we have

[−1 ∩ −2](U, V ) def= U ∩ V.

• Action on Morphisms. For each pair of morphisms

ιU : U ↪→ U ′,

ιV : V ↪→ V ′

of P(X) × P(X), the image

ιU ∩ ιV : U ∩ V ↪→ U ′ ∩ V ′

of (ιU , ιV ) by ∩ is the inclusion

U ∩ V ⊂ U ′ ∩ V ′

i.e. where we have
(?) If U ⊂ U ′ and V ⊂ V ′, then U ∩ V ⊂ U ′ ∩ V ′.

and where U ∩ − and − ∩ V are the partial functors of −1 ∩ −2 at
U, V ∈ P(X).

2. Adjointness.0041 We have adjunctions

(
U ∩ − a HomP(X)(U,−)

)
:

U∩−

HomP(X)(U,−)

aP(X) P(X),

(
− ∩ V a HomP(X)(V,−)

)
:

−∩V

HomP(X)(V,−)

aP(X) P(X),

where

HomP(X)(−1,−2) : P(X)op × P(X) → P(X)

https://topological-modular-forms.github.io/the-clowder-project/tag/0041
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is the bifunctor defined by16

HomP(X)(U, V ) def= (X \ U) ∪ V

witnessed by bijections

HomP(X)(U ∩ V,W ) ∼= HomP(X)
(
U,HomP(X)(V,W )

)
,

HomP(X)(U ∩ V,W ) ∼= HomP(X)
(
V,HomP(X)(U,W )

)
,

natural in U, V,W ∈ P(X), i.e. where:

(a) The following conditions are equivalent:
i. We have U ∩ V ⊂ W .
ii. We have U ⊂ HomP(X)(V,W ).
iii. We have U ⊂ (X \ V ) ∪W .

(b) The following conditions are equivalent:
i. We have V ∩ U ⊂ W .
ii. We have V ⊂ HomP(X)(U,W ).
iii. We have V ⊂ (X \ U) ∪W .

3. Associativity.0042 We have an equality of sets

(U ∩ V ) ∩W = U ∩ (V ∩W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

4. Unitality.0043 Let X be a set and let U ∈ P(X). We have equalities
of sets

X ∩ U = U,

U ∩X = U

for each X ∈ Obj(Sets) and each U ∈ P(X).

5. Commutativity.0044 We have an equality of sets

U ∩ V = V ∩ U

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

6. Idempotency.0045 We have an equality of sets

U ∩ U = U

for each X ∈ Obj(Sets) and each U ∈ P(X).
16For intuition regarding the expression defining HomP(X)(U, V ), see

https://topological-modular-forms.github.io/the-clowder-project/tag/0042
https://topological-modular-forms.github.io/the-clowder-project/tag/0043
https://topological-modular-forms.github.io/the-clowder-project/tag/0044
https://topological-modular-forms.github.io/the-clowder-project/tag/0045


2.3. Operations With Sets 53

7. Distributivity Over Unions.0046 We have equalities of sets

U ∩ (V ∪W ) = (U ∩ V ) ∪ (U ∩W ),
(U ∪ V ) ∩W = (U ∩W ) ∪ (V ∩W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

8. Annihilation With the Empty Set.0047 We have an equality of sets

∅ ∩X = ∅,
X ∩ ∅ = ∅

for each X ∈ Obj(Sets) and each U ∈ P(X).

9. Interaction With Characteristic Functions I.0048 We have

χU∩V = χUχV

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

10. Interaction With Characteristic Functions II.0049 We have

χU∩V = min(χU , χV )

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

11. Interaction With Powersets and Monoids With Zero.004A The quadru-
ple ((P(X), ∅),∩, X) is a commutative monoid with zero.

12. Interaction With Powersets and Semirings.004B The quintuple
(P(X),∪,∩, ∅, X) is an idempotent commutative semiring.

Proof. Item 1, Functoriality: See [Pro24ap].
Item 2, Adjointness: See [MSE 267469].
Item 3, Associativity: See [Pro24v].
Item 4, Unitality: This follows from [Pro24z] and Item 5.
Item 5, Commutativity: See [Pro24w].
Item 6, Idempotency: See [Pro24ao].
Item 7, Distributivity Over Unions: See [Pro24an].
Item 8, Annihilation With the Empty Set: This follows from [Pro24x]
and Item 5.
Item 9, Interaction With Characteristic Functions I : See [Pro24h].
Item 10, Interaction With Characteristic Functions II : See [Pro24h].
Item 11, Interaction With Powersets and Monoids With Zero: This
follows from Items 3 to 5 and 8.
Item 12, Interaction With Powersets and Semirings: This follows from
Items 3 to 6 and Items 3 to 5, 7 and 8 of Proposition 2.3.9.1.2.

https://topological-modular-forms.github.io/the-clowder-project/tag/0046
https://topological-modular-forms.github.io/the-clowder-project/tag/0047
https://topological-modular-forms.github.io/the-clowder-project/tag/0048
https://topological-modular-forms.github.io/the-clowder-project/tag/0049
https://topological-modular-forms.github.io/the-clowder-project/tag/004A
https://topological-modular-forms.github.io/the-clowder-project/tag/004B
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Remark 2.3.9.1.3.004C Since intersections are the products in P(X) (Item 1
of Proposition 2.4.3.1.3), the left adjoint HomP(X)(U, V ) may be thought
of as a function type [U, V ].
Then, under the Curry–Howard correspondence, the function type [U, V ]
corresponds to implication U =⇒ V , which is logically equivalent to
the statement ¬U ∨ V . This in turn corresponds to the set U c ∨ V =
(X \ U) ∪ V .

2.3.10 Differences004D

Let X and Y be sets.

Definition 2.3.10.1.1.004E The difference of X and Y is the set X \ Y
defined by

X \ Y def= {a ∈ X | a 6∈ Y }.

Proposition 2.3.10.1.2.004F Let X be a set.

1. Functoriality.004G The assignments U, V, (U, V ) 7→ U ∩ V define
functors

U \ − : (P(X),⊃) → (P(X),⊂),
− \ V : (P(X),⊂) → (P(X),⊂),

−1 \ −2 : (P(X) × P(X),⊂ × ⊃) → (P(X),⊂),

where −1 \ −2 is the functor where

• Action on Objects. For each (U, V ) ∈ P(X) × P(X), we have

[−1 \ −2](U, V ) def= U \ V.

• Action on Morphisms. For each pair of morphisms

ιA : A ↪→ B,

ιU : U ↪→ V

of P(X) × P(X), the image

ιU \ ιV : A \ V ↪→ B \ U

of (ιU , ιV ) by \ is the inclusion

A \ V ⊂ B \ U

i.e. where we have
Remark 2.3.9.1.3.

https://topological-modular-forms.github.io/the-clowder-project/tag/004C
https://topological-modular-forms.github.io/the-clowder-project/tag/004D
https://topological-modular-forms.github.io/the-clowder-project/tag/004E
https://topological-modular-forms.github.io/the-clowder-project/tag/004F
https://topological-modular-forms.github.io/the-clowder-project/tag/004G


2.3. Operations With Sets 55

(?) If A ⊂ B and U ⊂ V , then A \ V ⊂ B \ U .

and where U \ − and − \ V are the partial functors of −1 \ −2 at
U, V ∈ P(X).

2. De Morgan’s Laws.004H We have equalities of sets

X \ (U ∪ V ) = (X \ U) ∩ (X \ V ),
X \ (U ∩ V ) = (X \ U) ∪ (X \ V )

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

3. Interaction With Unions I.004J We have equalities of sets

U \ (V ∪W ) = (U \ V ) ∩ (U \W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

4. Interaction With Unions II.004K We have equalities of sets

(U \ V ) ∪W = (U ∪W ) \ (V \W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

5. Interaction With Unions III.004L We have equalities of sets

U \ (V ∪W ) = (U ∪W ) \ (V ∪W )
= (U \ V ) \W
= (U \W ) \ V

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

6. Interaction With Unions IV.004M We have equalities of sets

(U ∪ V ) \W = (U \W ) ∪ (V \W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

7. Interaction With Intersections.004N We have equalities of sets

(U \ V ) ∩W = (U ∩W ) \ V
= U ∩ (W \ V )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

8. Interaction With Complements.004P We have an equality of sets

U \ V = U ∩ V c

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

https://topological-modular-forms.github.io/the-clowder-project/tag/004H
https://topological-modular-forms.github.io/the-clowder-project/tag/004J
https://topological-modular-forms.github.io/the-clowder-project/tag/004K
https://topological-modular-forms.github.io/the-clowder-project/tag/004L
https://topological-modular-forms.github.io/the-clowder-project/tag/004M
https://topological-modular-forms.github.io/the-clowder-project/tag/004N
https://topological-modular-forms.github.io/the-clowder-project/tag/004P
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9. Interaction With Symmetric Differences.004Q We have an equality of
sets

U \ V = U 4 (U ∩ V )

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

10. Triple Differences.004R We have

U \ (V \W ) = (U ∩W ) ∪ (U \ V )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

11. Left Annihilation.004S We have

∅ \ U = ∅

for each X ∈ Obj(Sets) and each U ∈ P(X).

12. Right Unitality.004T We have

U \ ∅ = U

for each X ∈ Obj(Sets) and each U ∈ P(X).

13. Invertibility.004U We have

U \ U = ∅

for each X ∈ Obj(Sets) and each U ∈ P(X).

14. Interaction With Containment.004V The following conditions are
equivalent:

(a) We have V \ U ⊂ W .004W

(b) We have V \W ⊂ U .004X

15. Interaction With Characteristic Functions.004Y We have

χU\V = χU − χU∩V

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

Proof. Item 1, Functoriality: See [Pro24ah] and [Pro24al].
Item 2, De Morgan’s Laws: See [Pro24p].
Item 3, Interaction With Unions I : See [Pro24q].
Item 4, Interaction With Unions II : Omitted.
Item 5, Interaction With Unions III : See [Pro24am].
Item 6, Interaction With Unions IV : See [Pro24ag].
Item 7, Interaction With Intersections: See [Pro24y].

https://topological-modular-forms.github.io/the-clowder-project/tag/004Q
https://topological-modular-forms.github.io/the-clowder-project/tag/004R
https://topological-modular-forms.github.io/the-clowder-project/tag/004S
https://topological-modular-forms.github.io/the-clowder-project/tag/004T
https://topological-modular-forms.github.io/the-clowder-project/tag/004U
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https://topological-modular-forms.github.io/the-clowder-project/tag/004X
https://topological-modular-forms.github.io/the-clowder-project/tag/004Y


2.3. Operations With Sets 57

Item 8, Interaction With Complements: See [Pro24ae].
Item 9, Interaction With Symmetric Differences: See [Pro24af].
Item 10, Triple Differences: See [Pro24ak].
Item 11, Left Annihilation: Clear.
Item 12, Right Unitality: See [Pro24ai].
Item 13, Invertibility: See [Pro24aj].
Item 14, Interaction With Containment: Omitted.
Item 15, Interaction With Characteristic Functions: See [Pro24i].

2.3.11 Complements004Z

Let X be a set and let U ∈ P(X).

Definition 2.3.11.1.1.0050 The complement of U is the set U c defined by

U c def= X \ U
def= {a ∈ X | a 6∈ U}.

Proposition 2.3.11.1.2.0051 Let X be a set.

1. Functoriality.0052 The assignment U 7→ U c defines a functor

(−)c : P(X)op → P(X),

where

• Action on Objects. For each U ∈ P(X), we have

[(−)c](U) def= U c.

• Action on Morphisms. For each morphism ιU : U ↪→ V of
P(X), the image

ιcU : V c ↪→ U c

of ιU by (−)c is the inclusion

V c ⊂ U c

i.e. where we have
(?) If U ⊂ V , then V c ⊂ U c.

2. De Morgan’s Laws.0053 We have equalities of sets

(U ∪ V )c = U c ∩ V c,

(U ∩ V )c = U c ∪ V c

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

https://topological-modular-forms.github.io/the-clowder-project/tag/004Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0050
https://topological-modular-forms.github.io/the-clowder-project/tag/0051
https://topological-modular-forms.github.io/the-clowder-project/tag/0052
https://topological-modular-forms.github.io/the-clowder-project/tag/0053
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3. Involutority.0054 We have

(U c)c = U

for each X ∈ Obj(Sets) and each U ∈ P(X).

4. Interaction With Characteristic Functions.0055 We have

χU c = 1 − χU

for each X ∈ Obj(Sets) and each U ∈ P(X).

Proof. Item 1, Functoriality: This follows from Item 1 of Proposi-
tion 2.3.10.1.2.
Item 2, De Morgan’s Laws: See [Pro24p].
Item 3, Involutority: See [Pro24l].
Item 4, Interaction With Characteristic Functions: Clear.

2.3.12 Symmetric Differences0056

Let A and B be sets.

Definition 2.3.12.1.1.0057 The symmetric difference of A and B is the
set A4B defined by

A4B
def= (A \B) ∪ (B \A).

Proposition 2.3.12.1.2.0058 Let X be a set.

1. Lack of Functoriality.0059 The assignment (U, V ) 7→ U 4 V need not
define functors

U 4 − : (P(X),⊂) → (P(X),⊂),
− 4 V : (P(X),⊂) → (P(X),⊂),

−1 4 −2 : (P(X) × P(X),⊂ × ⊂) → (P(X),⊂).

2. Via Unions and Intersections.005A We have17

U 4 V = (U ∪ V ) \ (U ∩ V )

for each X ∈ Obj(Sets) and each U, V ∈ P(X).
17Illustration:

U 4 V

=
U ∪ V

\
U ∩ V

.

https://topological-modular-forms.github.io/the-clowder-project/tag/0054
https://topological-modular-forms.github.io/the-clowder-project/tag/0055
https://topological-modular-forms.github.io/the-clowder-project/tag/0056
https://topological-modular-forms.github.io/the-clowder-project/tag/0057
https://topological-modular-forms.github.io/the-clowder-project/tag/0058
https://topological-modular-forms.github.io/the-clowder-project/tag/0059
https://topological-modular-forms.github.io/the-clowder-project/tag/005A
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3. Associativity.005B We have18

(U 4 V ) 4W = U 4 (V 4W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

4. Commutativity.005C We have

U 4 V = V 4 U

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

5. Unitality.005D We have

U 4 ∅ = U,

∅ 4 U = U

for each X ∈ Obj(Sets) and each U ∈ P(X).

6. Invertibility.005E We have

U 4 U = ∅

for each X ∈ Obj(Sets) and each U ∈ P(X).

7. Interaction With Unions.005F We have

(U 4 V ) ∪ (V 4 T ) = (U ∪ V ∪W ) \ (U ∩ V ∩W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

8. Interaction With Complements I.005G We have

U 4 U c = X

for each X ∈ Obj(Sets) and each U ∈ P(X).

9. Interaction With Complements II.005H We have

U 4X = U c,

X 4 U = U c

for each X ∈ Obj(Sets) and each U ∈ P(X).
18Illustration:

U 4 V

4
W

=
U 4 V 4 W

=
U

4
V 4 W

.

https://topological-modular-forms.github.io/the-clowder-project/tag/005B
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10. Interaction With Complements III.005J We have

U c 4 V c = U 4 V

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

11. “Transitivity”.005K We have

(U 4 V ) 4 (V 4W ) = U 4W

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

12. The Triangle Inequality for Symmetric Differences.005L We have

U 4W ⊂ U 4 V ∪ V 4W

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

13. Distributivity Over Intersections.005M We have

U ∩ (V 4W ) = (U ∩ V ) 4 (U ∩W ),
(U 4 V ) ∩W = (U ∩W ) 4 (V ∩W )

for each X ∈ Obj(Sets) and each U, V,W ∈ P(X).

14. Interaction With Characteristic Functions.005N We have

χU4V = χU + χV − 2χU∩V

and thus, in particular, we have

χU4V ≡ χU + χV mod 2

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

15. Bijectivity.005P Given A,B ⊂ P(X), the maps

A4 − : P(X) → P(X),
− 4B : P(X) → P(X)

are bijections with inverses given by

(A4 −)−1 = − ∪ (A ∩ −),
(− 4B)−1 = − ∪ (B ∩ −).

Moreover, the map

C 7→ C 4 (A4B)

is a bijection of P(X) onto itself sending A to B and B to A.

https://topological-modular-forms.github.io/the-clowder-project/tag/005J
https://topological-modular-forms.github.io/the-clowder-project/tag/005K
https://topological-modular-forms.github.io/the-clowder-project/tag/005L
https://topological-modular-forms.github.io/the-clowder-project/tag/005M
https://topological-modular-forms.github.io/the-clowder-project/tag/005N
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16. Interaction With Powersets and Groups.005Q Let X be a set.

(a) The quadruple
(
P(X),4, ∅, idP(X)

)
is an abelian group.005R 19

(b) Every element of P(X) has order 2 with respect to 4, and
thus P(X) is a Boolean group (i.e. an abelian 2-group).005S

4. Interaction With Powersets and Vector Spaces I.005T The pair
(
P(X), αP(X)

)
consisting of

• The group P(X) of ??;
• The map αP(X) : F2 × P(X) → P(X) defined by

0 · U def= ∅,
1 · U def= U ;

is an F2-vector space.

5. Interaction With Powersets and Vector Spaces II.005U If X is finite,
then:

(a) The set of singletons sets on the elements of X forms a basis
for the F2-vector space

(
P(X), αP(X)

)
of Item 4.

(b) We have
dim(P(X)) = #P(X).

6. Interaction With Powersets and Rings.005V The quintuple (P(X),4,∩, ∅, X)
is a commutative ring.20

Proof. Item 1, Lack of Functoriality: Omitted.

19Here are some examples:
1. When X = ∅, we have an isomorphism of groups between P(∅) and the trivial

group: (
P(∅), 4, ∅, idP(∅)

) ∼= pt.

2. When X = pt, we have an isomorphism of groups between P(pt) and Z/2:(
P(pt), 4, ∅, idP(pt)

) ∼= Z/2.

3. When X = {0, 1}, we have an isomorphism of groups between P({0, 1}) and
Z/2 × Z/2: (

P({0, 1}), 4, ∅, idP({0,1})
) ∼= Z/2 × Z/2.

20
�

Warning: The analogous statement replacing intersections by unions (i.e. that
the quintuple (P(X), 4, ∪, ∅, X) is a ring) is false, however. See [Pro24ba] for a proof.

END TEXTDBEND
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Item 2, Via Unions and Intersections: See [Pro24r].
Item 3, Associativity: See [Pro24as].
Item 4, Commutativity: See [Pro24at].
Item 5, Unitality: This follows from Item 4 and [Pro24ax].
Item 6, Invertibility: See [Pro24az].
Item 7, Interaction With Unions: See [Pro24bg].
Item 8, Interaction With Complements I : See [Pro24aw].
Item 9, Interaction With Complements II : This follows from Item 4 and
[Pro24bb].
Item 10, Interaction With Complements III : See [Pro24au].
Item 11, “Transitivity”: We have

(U 4 V ) 4 (V 4W ) = U 4 (V 4 (V 4W )) (by Item 3)
= U 4 ((V 4 V ) 4W ) (by Item 3)
= U 4 (∅ 4W ) (by Item 6)
= U 4W (by Item 5)

Item 12, The Triangle Inequality for Symmetric Differences: This follows
from Items 2 and 11.
Item 13, Distributivity Over Intersections: See [Pro24u].
Item 14, Interaction With Characteristic Functions: See [Pro24j].
Item 15, Bijectivity: Clear.
Item 16, Interaction With Powersets and Groups: Item 16a follows from21

Items 3 to 6, while Item 3b follows from Item 6.
Item 4, Interaction With Powersets and Vector Spaces I : Clear.
Item 5, Interaction With Powersets and Vector Spaces II : Omitted.
Item 6, Interaction With Powersets and Rings: This follows from Items 8
and 11 of Proposition 2.3.9.1.2 and Items 13 and 16.22

2.4 Powersets005W

2.4.1 Characteristic Functions005X

Let X be a set.

Definition 2.4.1.1.1.005Y Let U ⊂ X and let x ∈ X.

1. The characteristic function of U005Z 23 is the function24

χU : X → {t, f}
21Reference: [Pro24av].
22Reference: [Pro24ay].
23Further Terminology: Also called the indicator function of U .
24Further Notation: Also written χX(U, −) or χX(−, U).

https://topological-modular-forms.github.io/the-clowder-project/tag/005W
https://topological-modular-forms.github.io/the-clowder-project/tag/005X
https://topological-modular-forms.github.io/the-clowder-project/tag/005Y
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defined by

χU (x) def=
{

true if x ∈ U ,
false if x 6∈ U

for each x ∈ X.

2. The characteristic function of x is the function0060 25

χx : X → {t, f}

defined by
χx

def= χ{x},

i.e. by

χx(y) def=
{

true if x = y,
false if x 6= y

for each y ∈ X.

3. The characteristic relation on X0061 26 is the relation27

χX(−1,−2) : X ×X → {t, f}

on X defined by28

χX(x, y) def=
{

true if x = y,
false if x 6= y

for each x, y ∈ X.

4. The characteristic embedding0062 29 of X into P(X) is the function

χ(−) : X ↪→ P(X)

defined by
χ(−)(x) def= χx

for each x ∈ X.
25Further Notation: Also written χx, χX(x, −), or χX(−, x).
26Further Terminology: Also called the identity relation on X.
27Further Notation: Also written χ−1

−2 , or ∼id in the context of relations.
28As a subset of X × X, the relation χX corresponds to the diagonal ∆X ⊂ X × X

of X.
29The name “characteristic embedding” comes from the fact that there is an analogue

of fully faithfulness for χ(−): given a set X, we have

HomP(X)(χx, χy) = χX(x, y),

for each x, y ∈ X.

https://topological-modular-forms.github.io/the-clowder-project/tag/0060
https://topological-modular-forms.github.io/the-clowder-project/tag/0061
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Remark 2.4.1.1.2.0063 The definitions in Definition 2.4.1.1.1 are decategori-
fications of co/presheaves, representable co/presheaves, Hom profunctors,
and the Yoneda embedding:30

1. A function0064
f : X → {t, f}

is a decategorification of a presheaf

F : Cop → Sets,

with the characteristic functions χU of the subsets of X being the
primordial examples (and, in fact, all examples) of these.

2. The characteristic function0065

χx : X → {t, f}

of an element x of X is a decategorification of the representable
presheaf

hX : Cop → Sets

of an object x of a category C.

3. The characteristic relation0066

χX(−1,−2) : X ×X → {t, f}
30These statements can be made precise by using the embeddings

(−)disc : Sets ↪→ Cats,
(−)disc : {t, f}disc ↪→ Sets

of sets into categories and of classical truth values into sets.
For instance, in this approach the characteristic function

χx : X → {t, f}

of an element x of X, defined by

χx(y) def=
{

true if x = y,
false if x 6= y

for each y ∈ X, is recovered as the representable presheaf

HomXdisc (−, x) : Xdisc → Sets

of the corresponding object x of Xdisc, defined on objects by

HomXdisc (y, x) def=
{

pt if x = y,
∅ if x 6= y

for each y ∈ Obj(Xdisc).

https://topological-modular-forms.github.io/the-clowder-project/tag/0063
https://topological-modular-forms.github.io/the-clowder-project/tag/0064
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of X is a decategorification of the Hom profunctor

HomC(−1,−2) : Cop × C → Sets

of a category C.

4. The characteristic embedding0067

χ(−) : X ↪→ P(X)

of X into P(X) is a decategorification of the Yoneda embedding

よ : Cop ↪→ PSh(C)

of a category C into PSh(C).

5. There is also a direct parallel between unions and colimits:0068

• An element of P(X) is a union of elements of X, viewed as
one-point subsets {x} ∈ P(A).

• An object of PSh(C) is a colimit of objects of C, viewed as
representable presheaves hX ∈ Obj(PSh(C)).

Proposition 2.4.1.1.3.0069 Let X be a set.

1. The Inclusion of Characteristic Relations Associated to a Function.
006A Let f : A → B be a function. We have an inclusion31

χB ◦ (f × f) ⊂ χA,

A×A B ×B

{t, f}.

f×f

χA χB
⊃

2. Interaction With Unions I.006B We have

χU∪V = max(χU , χV )

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

3. Interaction With Unions II.006C We have

χU∪V = χU + χV − χU∩V

for each X ∈ Obj(Sets) and each U, V ∈ P(X).
31This is the 0-categorical version of Definition 8.4.4.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/0067
https://topological-modular-forms.github.io/the-clowder-project/tag/0068
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4. Interaction With Intersections I.006D We have

χU∩V = χUχV

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

5. Interaction With Intersections II.006E We have

χU∩V = min(χU , χV )

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

6. Interaction With Differences.006F We have

χU\V = χU − χU∩V

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

7. Interaction With Complements.006G We have

χU c = 1 − χU

for each X ∈ Obj(Sets) and each U ∈ P(X).

8. Interaction With Symmetric Differences.006H We have

χU4V = χU + χV − 2χU∩V

and thus, in particular, we have

χU4V ≡ χU + χV mod 2

for each X ∈ Obj(Sets) and each U, V ∈ P(X).

9. Interaction Between the Characteristic Embedding and Morphisms.
006J Let f : X → Y be a map of sets. The diagram

f∗ ◦ χX = χX′ ◦ f,

X X ′

P(X) P(X ′).

f

χX χX′

f∗

commutes.

Proof. Item 1, The Inclusion of Characteristic Relations Associated to
a Function: The inclusion χB(f(a), f(b)) ⊂ χA(a, b) is equivalent to the

https://topological-modular-forms.github.io/the-clowder-project/tag/006D
https://topological-modular-forms.github.io/the-clowder-project/tag/006E
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statement “if a = b, then f(a) = f(b)”, which is true.
Item 2, Interaction With Unions I : This is a repetition of Item 8 of
Proposition 2.3.7.1.2 and is proved there.
Item 3, Interaction With Unions II : This is a repetition of Item 9 of
Proposition 2.3.7.1.2 and is proved there.
Item 4, Interaction With Intersections I : This is a repetition of Item 9
of Proposition 2.3.9.1.2 and is proved there.
Item 5, Interaction With Intersections II : This is a repetition of Item 10
of Proposition 2.3.9.1.2 and is proved there.
Item 6, Interaction With Differences: This is a repetition of Item 15 of
Proposition 2.3.10.1.2 and is proved there.
Item 7, Interaction With Complements: This is a repetition of Item 4 of
Proposition 2.3.11.1.2 and is proved there.
Item 8, Interaction With Symmetric Differences: This is a repetition of
Item 14 of Proposition 2.3.12.1.2 and is proved there.
Item 9, Interaction Between the Characteristic Embedding and Morphisms:
Indeed, we have

[f∗ ◦ χX ](x) def= f∗(χX(x))
def= f∗({x})
= {f(x)}
def= χX′(f(x))
def= [χX′ ◦ f ](x),

for each x ∈ X, showing the desired equality.

2.4.2 The Yoneda Lemma for Sets006K

Let X be a set and let U ⊂ X be a subset of X.

Proposition 2.4.2.1.1.006L We have

χP(X)(χx, χU ) = χU (x)

for each x ∈ X, giving an equality of functions

χP(X)
(
χ(−), χU

)
= χU .

Proof. Clear.

Corollary 2.4.2.1.2.006M The characteristic embedding is fully faithful, i.e.,
we have

χP(X)(χx, χy) = χX(x, y)
for each x, y ∈ X.

Proof. This follows from Proposition 2.4.2.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/006K
https://topological-modular-forms.github.io/the-clowder-project/tag/006L
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2.4.3 Powersets006N

Let X be a set.

Definition 2.4.3.1.1.006P The powerset of X is the set P(X) defined by

P(X) def= {U ∈ P | U ⊂ X},

where P is the set in the axiom of powerset, ?? of ??.

Remark 2.4.3.1.2.006Q The powerset of a set is a decategorification of the
category of presheaves of a category: while32

• The powerset of a set X is equivalently (Items 1 and 2 of Proposi-
tion 2.4.3.1.6) the set

Sets(X, {t, f})

of functions from X to the set {t, f} of classical truth values.

• The category of presheaves on a category C is the category

Fun(Cop, Sets)

of functors from Cop to the category Sets of sets.

Proposition 2.4.3.1.3.006R Let X be a set.

1. Co/Completeness.006S The (posetal) category (associated to) (P(X),⊂)
is complete and cocomplete:

(a) Products. The products in P(X) are given by intersection of
subsets.

(b) Coproducts. The coproducts in P(X) are given by union of
subsets.

(c) Co/Equalisers. Being a posetal category, P(X) only has at
32This parallel is based on the following comparison:

• A category is enriched over the category

Sets def= Cats0

of sets (i.e. “0-categories”), with presheaves taking values on it.
• A set is enriched over the set

{t, f} def= Cats−1

of classical truth values (i.e. “(−1)-categories”), with characteristic functions
taking values on it.

https://topological-modular-forms.github.io/the-clowder-project/tag/006N
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most one morphisms between any two objects, so co/equalisers
are trivial.

2. Cartesian Closedness.006T The category P(X) is Cartesian closed
with internal Hom

HomP(X)(−1,−2) : P(X)op × P(X) → P(X)

given by33

HomP(X)(U, V ) def= (X \ U) ∪ V

for each U, V ∈ Obj(P(X)).

Proof. Item 1, Co/Completeness: Clear.
Item 2, Cartesian Closedness: This follows from Item 2 of Proposi-
tion 2.3.9.1.2.

Proposition 2.4.3.1.4.006U Let X be a set.

1. Functoriality I.006V The assignment X 7→ P(X) defines a functor

P∗ : Sets → Sets,

where

• Action on Objects. For each A ∈ Obj(Sets), we have

P∗(A) def= P(A).

• Action on Morphisms. For each A,B ∈ Obj(Sets), the action
on morphisms

P∗|A,B : Sets(A,B) → Sets(P(A),P(B))

of P∗ at (A,B) is the map defined by by sending a map of
sets f : A → B to the map

P∗(f) : P(A) → P(B)

defined by
P∗(f) def= f∗,

as in Definition 2.4.4.1.1.

33For intuition regarding the expression defining HomP(X)(U, V ), see
Remark 2.3.9.1.3.

https://topological-modular-forms.github.io/the-clowder-project/tag/006T
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2. Functoriality II.006W The assignment X 7→ P(X) defines a functor

P−1 : Setsop → Sets,

where

• Action on Objects. For each A ∈ Obj(Sets), we have

P−1(A) def= P(A).

• Action on Morphisms. For each A,B ∈ Obj(Sets), the action
on morphisms

P−1
A,B : Sets(A,B) → Sets(P(B),P(A))

of P−1 at (A,B) is the map defined by by sending a map of
sets f : A → B to the map

P−1(f) : P(B) → P(A)

defined by
P−1(f) def= f−1,

as in Definition 2.4.5.1.1.

3. Functoriality III.006X The assignment X 7→ P(X) defines a functor

P! : Sets → Sets,

where

• Action on Objects. For each A ∈ Obj(Sets), we have

P!(A) def= P(A).

• Action on Morphisms. For each A,B ∈ Obj(Sets), the action
on morphisms

P!|A,B : Sets(A,B) → Sets(P(A),P(B))

of P! at (A,B) is the map defined by by sending a map of sets
f : A → B to the map

P!(f) : P(A) → P(B)

defined by
P!(f) def= f!,

as in Definition 2.4.6.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/006W
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4. Adjointness I.006Y We have an adjunction

(
P−1 a P−1,op

)
:

P−1

P−1,op

aSetsop Sets,

witnessed by a bijection

Setsop(P(A), B)︸ ︷︷ ︸
def= Sets(B,P(A))

∼= Sets(A,P(B)),

natural in A ∈ Obj(Sets) and B ∈ Obj(Setsop).

5. Adjointness II.006Z We have an adjunction

(Gr a P∗) :
Gr

P∗

aSets Rel,

witnessed by a bijection of sets

Rel(Gr(A), B) ∼= Sets(A,P(B))

natural in A ∈ Obj(Sets) and B ∈ Obj(Rel), where Gr is the graph
functor of Item 1 of Proposition 6.3.1.1.2 and P∗ is the functor of
Proposition 6.4.5.1.1.

Proof. Item 1, Functoriality I : This follows from Items 3 and 4 of
Proposition 2.4.4.1.5.
Item 2, Functoriality II : This follows Items 3 and 4 of Proposition 2.4.5.1.4.
Item 3, Functoriality III : This follows Items 3 and 4 of Proposition 2.4.6.1.7.
Item 4, Adjointness I : We have

Setsop(P(A), B) def= Sets(B,P(A))
∼= Sets(B, Sets(A, {t, f}))

(by Item 1 of Proposition 2.4.3.1.6)
∼= Sets(A×B, {t, f})

(by Item 2 of Proposition 2.1.3.1.2)
∼= Sets(A,Sets(B, {t, f}))

(by Item 2 of Proposition 2.1.3.1.2)
∼= Sets(A,P(B)) (by Item 1 of Proposition 2.4.3.1.6)

with all bijections natural in A and B (where we use Item 2 of Proposi-
tion 2.4.3.1.6 here).

https://topological-modular-forms.github.io/the-clowder-project/tag/006Y
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Item 5, Adjointness II : We have

Rel(Gr(A), B) ∼= P(A×B)
∼= Sets(A×B, {t, f})

(by Item 1 of Proposition 2.4.3.1.6)
∼= Sets(A, Sets(B, {t, f}))

(by Item 2 of Proposition 2.1.3.1.2)
∼= Sets(A,P(B)) (by Item 1 of Proposition 2.4.3.1.6)

with all bijections natural inA (where we use Item 2 of Proposition 2.4.3.1.6
here). Explicitly, this isomorphism is given by sending a relationR : Gr(A) →|
B to the map R† : A → P(B) sending a to the subset R(a) of B, as in
Remark 5.1.1.1.4.
Naturality in B is then the statement that given a relation R : B →| B′,
the diagram

Rel(Gr(A), B) Rel(Gr(A), B′)

Sets(A,P(B)) Sets(A,P(B′))

R�−
∼ ∼

R∗

commutes, which follows from Remark 6.4.1.1.2.

Proposition 2.4.3.1.5.0070 Let X be a set.

1. Symmetric Strong Monoidality With Respect to Coproducts I.0071 The
powerset functor P∗ of Item 1 of Proposition 2.4.3.1.4 has a sym-
metric strong monoidal structure(

P∗,P
∐
∗ ,P

∐
∗|1

)
: (Sets,×,pt) → (Sets,

∐
, ∅)

being equipped with isomorphisms

P
∐
∗|X,Y : P(X) × P(Y )

∼=−→ P(X
∐
Y ),

P
∐
∗|1 : pt

∼=−→ P(∅),

natural in X,Y ∈ Obj(Sets).

2. Symmetric Strong Monoidality With Respect to Coproducts II.0072 The
powerset functor P−1 of Item 2 of Proposition 2.4.3.1.4 has a
symmetric strong monoidal structure(

P−1,P−1|
∐
,P−1|

∐
1

)
: (Setsop,×op,pt) → (Sets,

∐
, ∅)

https://topological-modular-forms.github.io/the-clowder-project/tag/0070
https://topological-modular-forms.github.io/the-clowder-project/tag/0071
https://topological-modular-forms.github.io/the-clowder-project/tag/0072


2.4. Powersets 73

being equipped with isomorphisms

P−1|
∐

X,Y : P(X) × P(Y )
∼=−→ P(X

∐
Y ),

P−1|
∐

1 : pt
∼=−→ P(∅),

natural in X,Y ∈ Obj(Sets).

3. Symmetric Strong Monoidality With Respect to Coproducts III.
0073 The powerset functor P! of Item 3 of Proposition 2.4.3.1.4 has a

symmetric strong monoidal structure(
P!,P

∐
! ,P

∐
!|1

)
: (Sets,×,pt) → (Sets,

∐
, ∅)

being equipped with isomorphisms

P
∐
!|X,Y : P(X) × P(Y )

∼=−→ P(X
∐
Y ),

P
∐
!|1 : pt

∼=−→ P(∅),

natural in X,Y ∈ Obj(Sets).

4. Symmetric Lax Monoidality With Respect to Products I.0074 The pow-
erset functor P∗ of Item 1 of Proposition 2.4.3.1.4 has a symmetric
lax monoidal structure(

P∗,P⊗
∗ ,P⊗

∗|1

)
: (Sets,×,pt) → (Sets,×,pt)

being equipped with morphisms

P×
∗|X,Y : P(X) × P(Y ) → P(X × Y ),

P×
∗|1 : pt → P(pt),

natural in X,Y ∈ Obj(Sets), where

• The map P×
∗|X,Y is given by

P×
∗|X,Y (U, V ) def= U × V

for each (U, V ) ∈ P(X) × P(Y ),
• The map P×

∗|1 is given by

P×
∗|1(?) = pt.

https://topological-modular-forms.github.io/the-clowder-project/tag/0073
https://topological-modular-forms.github.io/the-clowder-project/tag/0074
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5. Symmetric Lax Monoidality With Respect to Products II.0075 The
powerset functor P−1 of Item 2 of Proposition 2.4.3.1.4 has a
symmetric lax monoidal structure(

P−1,P−1|⊗,P−1|⊗
1

)
: (Setsop,×op,pt) → (Sets,×,pt)

being equipped with morphisms

P−1|×
X,Y : P(X) × P(Y ) → P(X × Y ),

P×
1 : pt → P(∅),

natural in X,Y ∈ Obj(Sets), defined as in Item 4.

6. Symmetric Lax Monoidality With Respect to Products III.0076 The pow-
erset functor P! of Item 3 of Proposition 2.4.3.1.4 has a symmetric
lax monoidal structure(

P!,P⊗
! ,P

⊗
!|1

)
: (Sets,×,pt) → (Sets,×,pt)

being equipped with morphisms

P×
!|X,Y : P(X) × P(Y ) → P(X × Y ),

P×
!|1 : pt → P(∅),

natural in X,Y ∈ Obj(Sets), defined as in Item 4.

Proof. Item 1, Symmetric Strong Monoidality With Respect to Coproducts
I : The isomorphism

P
∐
∗|X,Y : P(X) × P(Y ) → P(X

∐
Y )

is given by sending (U, V ) ∈ P(X) × P(Y ) to U
∐
V , with inverse given

by sending a subset S of X
∐
Y to the pair (SX , SY ) ∈ P(X) × P(Y )

with

SX
def= {x ∈ X | (0, x) ∈ S}

SY
def= {y ∈ Y | (1, y) ∈ S}.

The isomorphism pt ∼= P(∅) is given by ? 7→ ∅ ∈ P(∅).
Naturality for the isomorphism P

∐
∗|X,Y is the statement that, given maps

of sets f : X → X ′ and g : Y → Y ′, the diagram

P(X) × P(Y ) P(X ′) × P(Y ′)

P(X
∐
Y ) P(X ′ ∐ Y ′)

f∗×g∗

∼ ∼

(
f
∐
g
)

∗

https://topological-modular-forms.github.io/the-clowder-project/tag/0075
https://topological-modular-forms.github.io/the-clowder-project/tag/0076
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commutes, which is clear, as it acts on elements as

(U, V ) (f∗(U), g∗(V ))

U
∐
V (f

∐
g)∗(U

∐
V ) = f∗(U)

∐
g∗(V ),

where we are using Item 7 of Proposition 2.4.4.1.4.
Finally, monoidality, unity, and symmetry of P∗ as a monoidal func-
tor follow by checking the commutativity of the relevant diagrams on
elements.
Item 2, Symmetric Strong Monoidality With Respect to Coproducts II :
The proof is similar to Item 1, and is hence omitted.
Item 3, Symmetric Strong Monoidality With Respect to Coproducts III :
The proof is similar to Item 1, and is hence omitted.
Item 4, Symmetric Lax Monoidality With Respect to Products I : Natu-
rality for the morphism P×

∗|X,Y is the statement that, given maps of sets
f : X → X ′ and g : Y → Y ′, the diagram

P(X) × P(Y ) P(X ′) × P(Y ′)

P(X × Y ) P(X ′ × Y ′)

f∗×g∗

∼ ∼

(f×g)∗

commutes, which is clear, as it acts on elements as

(U, V ) (f∗(U), g∗(V ))

U × V (f × g)∗(U × V ) = f∗(U) × g∗(V ),

where we are using Item 8 of Proposition 2.4.4.1.4.
Finally, monoidality, unity, and symmetry of P∗ as a monoidal func-
tor follow by checking the commutativity of the relevant diagrams on
elements.
Item 5, Symmetric Lax Monoidality With Respect to Products II : The
proof is similar to Item 4, and is hence omitted.
Item 6, Symmetric Lax Monoidality With Respect to Products III : The
proof is similar to Item 4, and is hence omitted.

Proposition 2.4.3.1.6.0077 Let X be a set.

https://topological-modular-forms.github.io/the-clowder-project/tag/0077
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1. Powersets as Sets of Functions I.0078 The assignment U 7→ χU defines
a bijection

χ(−) : P(X)
∼=−→ Sets(X, {t, f}),

for each X ∈ Obj(Sets).

2. Powersets as Sets of Functions II.0079 The bijection

P(X) ∼= Sets(X, {t, f})

of Item 1 is natural in X ∈ Obj(Sets), refining to a natural isomor-
phism of functors

P−1 ∼= Sets(−, {t, f}).

3. Powersets as Sets of Relations.007A We have bijections

P(X) ∼= Rel(pt, X),
P(X) ∼= Rel(X, pt),

natural in X ∈ Obj(Sets).

Proof. Item 1, Powersets as Sets of Functions I : Indeed, the inverse of
χ(−) is given by sending a function f : X → {t, f} to the subset Uf of
P(X) defined by

Uf
def= {x ∈ X | f(x) = true},

i.e. by Uf = f−1(true). That χ(−) and f 7→ Uf are inverses is then
straightforward to check.
Item 2, Powersets as Sets of Functions II : We need to check that, given
a function f : X → Y , the diagram

P(Y ) P(X)

Sets(Y, {t, f}) Sets(X, {t, f})

f−1

∼

χ(−)

∼

χ(−)

f∗

commutes, i.e. that for each V ∈ P(Y ), we have

χV ◦ f = χf−1(V ).

https://topological-modular-forms.github.io/the-clowder-project/tag/0078
https://topological-modular-forms.github.io/the-clowder-project/tag/0079
https://topological-modular-forms.github.io/the-clowder-project/tag/007A
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And indeed, we have

[χV ◦ f ](v) def= χV (f(v))

=
{

true if f(v) ∈ V ,
false otherwise

=
{

true if v ∈ f−1(V ),
false otherwise

def= χf−1(V )(v)

for each v ∈ V .
Item 3, Powersets as Sets of Relations: Indeed, we have

Rel(pt, X) def= P(pt ×X)
∼= P(X)

and

Rel(X, pt) def= P(X × pt)
∼= P(X),

where we have used Item 4 of Proposition 2.1.3.1.2.

Remark 2.4.3.1.7.007B The bijection

P(X) ∼= Sets(X, {t, f})

of Item 1 of Proposition 2.4.3.1.6, which

• Takes a subset U ↪→ X of X and straightens it to a function
χU : X → {true, false};

• Takes a function f : X → {true, false} and unstraightens it to a
subset f−1(true) ↪→ X of X;

may be viewed as the (−1)-categorical version of the un/straightening
isomorphism for indexed and fibred sets

FibSets(X)︸ ︷︷ ︸
def=Sets/X

∼= ISets(X)︸ ︷︷ ︸
def=Fun(Xdisc,Sets)

of ??, where we view:

• Subsets U ↪→ X as analogous to X-fibred sets φX : A → X.

• Functions f : X → {t, f} as analogous to X-indexed sets A : Xdisc →
Sets.

https://topological-modular-forms.github.io/the-clowder-project/tag/007B
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Proposition 2.4.3.1.8.007C Let X be a set.

1. Universal Property.007D The pair
(
P(X), χ(−)

)
consisting of

• The powerset P(X) of X;
• The characteristic embedding χ(−) : X ↪→ P(X) of X into

P(X);

satisfies the following universal property:

(?) Given another pair (Y, f) consisting of
– A cocomplete poset (Y,�);
– A function f : X → Y ;

there exists a unique cocontinuous morphism of posets

(P(X),⊂) ∃!−−→ (Y,�)

making the diagram

P(X)

X Y

∃!

f

χX

commute.

2. Adjointness.007E We have an adjunction34

(
P a忘

)
:

P

忘

aSets Poscocomp.,

witnessed by a bijection

Poscocomp.((P(X),⊂), (Y,�)) ∼= Sets(X,Y ),

natural in X ∈ Obj(Sets) and (Y,�) ∈ Obj(Poscocomp.), where the
maps witnessing this bijection are given by

• The map

χ∗
X : Poscocomp.((P(X),⊂), (Y,�)) → Sets(X,Y )

34In this sense, P(A) is the free cocompletion of A. (Note that, despite its name,
however, this is not an idempotent operation, as we have P(P(A)) 6= P(A).)

https://topological-modular-forms.github.io/the-clowder-project/tag/007C
https://topological-modular-forms.github.io/the-clowder-project/tag/007D
https://topological-modular-forms.github.io/the-clowder-project/tag/007E
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defined by
χ∗
X(f) def= f ◦ χX ,

i.e. by sending a cocontinuous morphism of posets f : P(X) →
Y to the composition

X
χX
↪→ P(X) f−−→ Y.

• The map

LanχX : Sets(X,Y ) → Poscocomp.((P(X),⊂), (Y,�))

is given by sending a function f : X → Y to its left Kan
extension along χX ,

LanχX (f) : P(X) → Y,

P(X)

X Y .

LanχX
(f)

χX

f

Moreover, LanχX (f) can be explicitly computed by

[LanχX (f)](U) ∼=
∫ x∈X

χP(X)(χx, U) � f(x)

∼=
∫ x∈X

χU (x) � f(x) (by Proposition 2.4.2.1.1)

∼=
∨
x∈X

(χU (x) � f(x))

for each U ∈ P(X), where:
–
∨

is the join in (Y,�).
– We have

true � f(x) def= f(x),
false � f(x) def= ∅Y ,

where ∅Y is the minimal element of (Y,�).

Proof. Item 1, Universal Property: This is a rephrasing of Item 2.
Item 2, Adjointness: We claim we have adjunction P a忘, witnessed by
a bijection

Poscocomp.((P(X),⊂), (Y,�)) ∼= Sets(X,Y ),

natural in X ∈ Obj(Sets) and (Y,�) ∈ Obj(Poscocomp.).
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• Map I. We define a map

ΦX,Y : Poscocomp.((P(X),⊂), (Y,�)) → Sets(X,Y )

as in the statement, by

ΦX,Y (f) def= f ◦ χX

for each f ∈ Poscocomp.((P(X),⊂), (Y,�)).

• Map II. We define a map

ΨX,Y : Sets(X,Y ) → Poscocomp.((P(X),⊂), (Y,�))

as in the statement, by

ΨX,Y (f) def= LanχX (f),

P(X)

X Y ,

LanχX
(f)

χX

f

for each f ∈ Sets(X,Y ).

• Invertibility I. We claim that

ΨX,Y ◦ ΦX,Y = idPoscocomp.((P(X),⊂),(Y,�)).

Indeed, given a cocontinuous morphism of posets

ξ : (P(X),⊂) → (Y,�),

we have

[ΨX,Y ◦ ΦX,Y ](ξ) def= ΨX,Y (ΦX,Y (ξ))
def= ΨX,Y (ξ ◦ χX)
def= LanχX (ξ ◦ χX)
∼=
∨
x∈X

χ(−)(x) � ξ(χX(x))

clm= ξ,
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where indeed[∨
x∈X

χ(−)(x) � ξ(χX(x))

]
(U) def=

∨
x∈X

χU (x) � ξ(χX(x))

=

(∨
x∈U

χU (x) � ξ(χX(x))

)
∨

 ∨
x∈X\U

χU (x) � ξ(χX(x))


=

(∨
x∈U

ξ(χX(x))

)
∨

 ∨
x∈X\U

∅Y


=
∨

x∈U

ξ(χX(x))

(†)= ξ

(∨
x∈U

χX(x)

)
= ξ(U)

for each U ∈ P(X), where we have used that ξ is cocontinuous for
the equality (†)=.

• Invertibility II. We claim that

ΦX,Y ◦ ΨX,Y = idSets(X,Y ).

Indeed, given a function f : X → Y , we have

[ΦX,Y ◦ ΨX,Y ](f) def= ΦX,Y (ΨX,Y (f))
def= ΦX,Y (LanχX (f))
def= LanχX (f) ◦ χX
clm= f,

where indeed

[LanχX (f) ◦ χX ](x) def=
∨
y∈X

χ{x}(y) � f(y)

=
(
χ{x}(x) � f(x)

)
∨

 ∨
y∈X\{x}

χ{x}(y) � f(y)


= f(x) ∨

 ∨
y∈X\{x}

∅Y


= f(x) ∨ ∅Y

= f(x)

for each x ∈ X.
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• Naturality for Φ, Part I. We need to show that, given a function
f : X → X ′, the diagram

Poscocomp.((P(X ′),⊂), (Y,�)) Sets(X ′, Y )

Poscocomp.((P(X),⊂), (Y,�)) Sets(X,Y )

ΦX′,Y

P∗(f)∗ f∗

ΦX,Y

commutes. Indeed, given a cocontinuous morphism of posets

ξ :
(
P
(
X ′),⊂) → (Y,�),

we have

[ΦX,Y ◦ P∗(f)∗](ξ) def= ΦX,Y (P∗(f)∗(ξ))
def= ΦX,Y (ξ ◦ f∗)
def= (ξ ◦ f∗) ◦ χX
= ξ ◦ (f∗ ◦ χX)
(†)= ξ ◦ (χX′ ◦ f)
= (ξ ◦ χX′) ◦ f
def= ΦX′,Y (ξ) ◦ f
def= f∗(ΦX′,Y (ξ)

)
def=
[
f∗ ◦ ΦX′,Y

]
(ξ),

where we have used Item 9 of Proposition 2.4.1.1.3 for the equality
(†)= above.

• Naturality for Φ, Part II. We need to show that, given a cocontin-
uous morphism of posets

g : (Y,�Y ) →
(
Y ′,�Y ′

)
,

the diagram

Poscocomp.((P(X),⊂), (Y,�)) Sets(X,Y )

Poscocomp.((P(X),⊂), (Y ′,�)) Sets(X,Y ′)

ΦX,Y

g∗ g∗

ΦX,Y ′

commutes. Indeed, given a cocontinuous morphism of posets

ξ : (P(X),⊂) → (Y,�),
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we have [
ΦX,Y ′ ◦ g∗

]
(ξ) def= ΦX,Y ′(g∗(ξ))

def= ΦX,Y ′(g ◦ ξ)
def= (g ◦ ξ) ◦ χX
= g ◦ (ξ ◦ χX)
def= g ◦ (ΦX,Y (ξ))
def= g∗(ΦX,Y (ξ))
def= [g∗ ◦ ΦX,Y ](ξ).

• Naturality for Ψ. Since Φ is natural in each argument and Φ is a
componentwise inverse to Ψ in each argument, it follows from Item 2
of Proposition 8.8.6.1.2 that Ψ is also natural in each argument.

This finishes the proof.

2.4.4 Direct Images007F

Let A and B be sets and let f : A → B be a function.

Definition 2.4.4.1.1.007G The direct image function associated to f
is the function

f∗ : P(A) → P(B)

defined by35,36

f∗(U) def= f(U)

def=
{
b ∈ B

∣∣∣∣∣ there exists some a ∈ U

such that b = f(a)

}
= {f(a) ∈ B | a ∈ U}

for each U ∈ P(A).

Notation 2.4.4.1.2.007H Sometimes one finds the notation

∃f : P(A) → P(B)

for f∗. This notation comes from the fact that the following statements
are equivalent, where b ∈ B and U ∈ P(A):

• We have b ∈ ∃f (U).
35Further Terminology: The set f(U) is called the direct image of U by f .
36We also have

f∗(U) = B \ f!(A \ U);

https://topological-modular-forms.github.io/the-clowder-project/tag/007F
https://topological-modular-forms.github.io/the-clowder-project/tag/007G
https://topological-modular-forms.github.io/the-clowder-project/tag/007H
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• There exists some a ∈ U such that f(a) = b.

Remark 2.4.4.1.3.007J Identifying subsets of A with functions from A to
{true, false} via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the
direct image function associated to f is equivalently the function

f∗ : P(A) → P(B)

defined by

f∗(χU ) def= Lanf (χU )

= colim
((
f

→
× (−1)

) pr
� A

χU−−→ {t, f}
)

= colim
a∈A

f(a)=−1

(χU (a))

=
∨
a∈A

f(a)=−1

(χU (a)),

where we have used ?? for the second equality. In other words, we have

[f∗(χU )](b) =
∨
a∈A
f(a)=b

(χU (a))

=


true if there exists some a ∈ A such

that f(a) = b and a ∈ U,

false otherwise

=


true if there exists some a ∈ U

such that f(a) = b,
false otherwise

for each b ∈ B.

Proposition 2.4.4.1.4.007K Let f : A → B be a function.

1. Functoriality.007L The assignment U 7→ f∗(U) defines a functor

f∗ : (P(A),⊂) → (P(B),⊂)

where

• Action on Objects. For each U ∈ P(A), we have

[f∗](U) def= f∗(U).

https://topological-modular-forms.github.io/the-clowder-project/tag/007J
https://topological-modular-forms.github.io/the-clowder-project/tag/007K
https://topological-modular-forms.github.io/the-clowder-project/tag/007L
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• Action on Morphisms. For each U, V ∈ P(A):
(?) If U ⊂ V , then f∗(U) ⊂ f∗(V ).

2. Triple Adjointness.007M We have a triple adjunction

(
f∗ a f−1 a f!

)
:

f∗

f!

f−1

a
aP(A) P(B),

witnessed by bijections of sets

HomP(B)(f∗(U), V ) ∼= HomP(A)
(
U, f−1(V )

)
,

HomP(A)
(
f−1(U), V

)
∼= HomP(A)(U, f!(V )),

natural in U ∈ P(A) and V ∈ P(B) and (respectively) V ∈ P(A)
and U ∈ P(B), i.e. where:

(a) The following conditions are equivalent:
i. We have f∗(U) ⊂ V .
ii. We have U ⊂ f−1(V ).

(b) The following conditions are equivalent:
i. We have f−1(U) ⊂ V .
ii. We have U ⊂ f!(V ).

3. Preservation of Colimits.007N We have an equality of sets

f∗

(⋃
i∈I

Ui

)
=
⋃
i∈I

f∗(Ui),

natural in {Ui}i∈I ∈ P(A)×I . In particular, we have equalities

f∗(U) ∪ f∗(V ) = f∗(U ∪ V ),
f∗(∅) = ∅,

natural in U, V ∈ P(A).

4. Oplax Preservation of Limits.007P We have an inclusion of sets

f∗

(⋂
i∈I

Ui

)
⊂
⋂
i∈I

f∗(Ui),

see Item 9 of Proposition 2.4.4.1.4.

https://topological-modular-forms.github.io/the-clowder-project/tag/007M
https://topological-modular-forms.github.io/the-clowder-project/tag/007N
https://topological-modular-forms.github.io/the-clowder-project/tag/007P
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natural in {Ui}i∈I ∈ P(A)×I . In particular, we have inclusions

f∗(U ∩ V ) ⊂ f∗(U) ∩ f∗(V ),
f∗(A) ⊂ B,

natural in U, V ∈ P(A).

5. Symmetric Strict Monoidality With Respect to Unions.007Q The direct
image function of Item 1 has a symmetric strict monoidal structure(

f∗, f
⊗
∗ , f

⊗
∗|1

)
: (P(A),∪, ∅) → (P(B),∪, ∅),

being equipped with equalities

f⊗
∗|U,V : f∗(U) ∪ f∗(V ) =→ f∗(U ∪ V ),

f⊗
∗|1 : ∅ =→ ∅,

natural in U, V ∈ P(A).

6. Symmetric Oplax Monoidality With Respect to Intersections.007R The
direct image function of Item 1 has a symmetric oplax monoidal
structure(

f∗, f
⊗
∗ , f

⊗
∗|1

)
: (P(A),∩, A) → (P(B),∩, B),

being equipped with inclusions

f⊗
∗|U,V : f∗(U ∩ V ) ↪→ f∗(U) ∩ f∗(V ),

f⊗
∗|1 : f∗(A) ↪→ B,

natural in U, V ∈ P(A).

7. Interaction With Coproducts.007S Let f : A → A′ and g : B → B′ be
maps of sets. We have

(f
∐
g)∗(U

∐
V ) = f∗(U)

∐
g∗(V )

for each U ∈ P(A) and each V ∈ P(B).

8. Interaction With Products.007T Let f : A → A′ and g : B → B′ be
maps of sets. We have

(f × g)∗(U × V ) = f∗(U) × g∗(V )

for each U ∈ P(A) and each V ∈ P(B).

https://topological-modular-forms.github.io/the-clowder-project/tag/007Q
https://topological-modular-forms.github.io/the-clowder-project/tag/007R
https://topological-modular-forms.github.io/the-clowder-project/tag/007S
https://topological-modular-forms.github.io/the-clowder-project/tag/007T
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9. Relation to Direct Images With Compact Support.007U We have

f∗(U) = B \ f!(A \ U)

for each U ∈ P(A).

Proof. Item 1, Functoriality: Clear.
Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Re-
mark 2.4.5.1.2, Remark 2.4.6.1.3, and ?? of ??.
Item 3, Preservation of Colimits: This follows from Item 2 and ?? of
??.37

Item 4, Oplax Preservation of Limits: The inclusion f∗(A) ⊂ B is clear.
See [Pro24s] for the other inclusions.
Item 5, Symmetric Strict Monoidality With Respect to Unions: This
follows from Item 3.
Item 6, Symmetric Oplax Monoidality With Respect to Intersections:
This follows from Item 4.
Item 7, Interaction With Coproducts: Clear.
Item 8, Interaction With Products: Clear.
Item 9, Relation to Direct Images With Compact Support: Applying
Item 9 of Proposition 2.4.6.1.6 to A \ U , we have

f!(A \ U) = B \ f∗(A \ (A \ U))
= B \ f∗(U).

Taking complements, we then obtain

f∗(U) = B \ (B \ f∗(U)),
= B \ f!(A \ U),

which finishes the proof.

Proposition 2.4.4.1.5.007V Let f : A → B be a function.

1. Functionality I.007W The assignment f 7→ f∗ defines a function

(−)∗|A,B : Sets(A,B) → Sets(P(A),P(B)).

2. Functionality II.007X The assignment f 7→ f∗ defines a function

(−)∗|A,B : Sets(A,B) → Pos((P(A),⊂), (P(B),⊂)).

3. Interaction With Identities.007Y For each A ∈ Obj(Sets), we have

(idA)∗ = idP(A).
37See also [Pro24t].

https://topological-modular-forms.github.io/the-clowder-project/tag/007U
https://topological-modular-forms.github.io/the-clowder-project/tag/007V
https://topological-modular-forms.github.io/the-clowder-project/tag/007W
https://topological-modular-forms.github.io/the-clowder-project/tag/007X
https://topological-modular-forms.github.io/the-clowder-project/tag/007Y
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4. Interaction With Composition.007Z For each pair of composable
functions f : A → B and g : B → C, we have

(g ◦ f)∗ = g∗ ◦ f∗,

P(A) P(B)

P(C).

f∗

(g◦f)∗
g∗

Proof. Item 1, Functionality I : Clear.
Item 2, Functionality II : Clear.
Item 3, Interaction With Identities: This follows from Remark 2.4.4.1.3
and ?? of ??.
Item 4, Interaction With Composition: This follows from Remark 2.4.4.1.3
and ?? of ??.

2.4.5 Inverse Images0080

Let A and B be sets and let f : A → B be a function.

Definition 2.4.5.1.1.0081 The inverse image function associated to f
is the function38

f−1 : P(B) → P(A)

defined by39

f−1(V ) def= {a ∈ A | we have f(a) ∈ V }

for each V ∈ P(B).

Remark 2.4.5.1.2.0082 Identifying subsets of B with functions from B to
{true, false} via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the
inverse image function associated to f is equivalently the function

f∗ : P(B) → P(A)

defined by
f∗(χV ) def= χV ◦ f

for each χV ∈ P(B), where χV ◦ f is the composition

A
f−−→ B

χV−−→ {true, false}

in Sets.
38Further Notation: Also written f∗ : P(B) → P(A).
39Further Terminology: The set f−1(V ) is called the inverse image of V by f .

https://topological-modular-forms.github.io/the-clowder-project/tag/007Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0080
https://topological-modular-forms.github.io/the-clowder-project/tag/0081
https://topological-modular-forms.github.io/the-clowder-project/tag/0082
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Proposition 2.4.5.1.3.0083 Let f : A → B be a function.

1. Functoriality.0084 The assignment V 7→ f−1(V ) defines a functor

f−1 : (P(B),⊂) → (P(A),⊂)

where

• Action on Objects. For each V ∈ P(B), we have[
f−1

]
(V ) def= f−1(V ).

• Action on Morphisms. For each U, V ∈ P(B):
(?) If U ⊂ V , then f−1(U) ⊂ f−1(V ).

2. Triple Adjointness.0085 We have a triple adjunction

(
f∗ a f−1 a f!

)
:

f∗

f!

f−1

a
aP(A) P(B),

witnessed by bijections of sets

HomP(B)(f∗(U), V ) ∼= HomP(A)
(
U, f−1(V )

)
,

HomP(A)
(
f−1(U), V

)
∼= HomP(A)(U, f!(V )),

natural in U ∈ P(A) and V ∈ P(B) and (respectively) V ∈ P(A)
and U ∈ P(B), i.e. where:

(a) The following conditions are equivalent:
i. We have f∗(U) ⊂ V ;
ii. We have U ⊂ f−1(V );

(b) The following conditions are equivalent:
i. We have f−1(U) ⊂ V .
ii. We have U ⊂ f!(V ).

3. Preservation of Colimits.0086 We have an equality of sets

f−1
(⋃
i∈I

Ui

)
=
⋃
i∈I

f−1(Ui),

natural in {Ui}i∈I ∈ P(B)×I . In particular, we have equalities

f−1(U) ∪ f−1(V ) = f−1(U ∪ V ),
f−1(∅) = ∅,

natural in U, V ∈ P(B).

https://topological-modular-forms.github.io/the-clowder-project/tag/0083
https://topological-modular-forms.github.io/the-clowder-project/tag/0084
https://topological-modular-forms.github.io/the-clowder-project/tag/0085
https://topological-modular-forms.github.io/the-clowder-project/tag/0086
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4. Preservation of Limits.0087 We have an equality of sets

f−1
(⋂
i∈I

Ui

)
=
⋂
i∈I

f−1(Ui),

natural in {Ui}i∈I ∈ P(B)×I . In particular, we have equalities

f−1(U) ∩ f−1(V ) = f−1(U ∩ V ),
f−1(B) = A,

natural in U, V ∈ P(B).

5. Symmetric Strict Monoidality With Respect to Unions.0088 The
inverse image function of Item 1 has a symmetric strict monoidal
structure(

f−1, f−1,⊗, f−1,⊗
1

)
: (P(B),∪, ∅) → (P(A),∪, ∅),

being equipped with equalities

f−1,⊗
U,V : f−1(U) ∪ f−1(V ) =→ f−1(U ∪ V ),

f−1,⊗
1 : ∅ =→ f−1(∅),

natural in U, V ∈ P(B).

6. Symmetric Strict Monoidality With Respect to Intersections.0089 The
inverse image function of Item 1 has a symmetric strict monoidal
structure(

f−1, f−1,⊗, f−1,⊗
1

)
: (P(B),∩, B) → (P(A),∩, A),

being equipped with equalities

f−1,⊗
U,V : f−1(U) ∩ f−1(V ) =→ f−1(U ∩ V ),

f−1,⊗
1 : A =→ f−1(B),

natural in U, V ∈ P(B).

7. Interaction With Coproducts.008A Let f : A → A′ and g : B → B′ be
maps of sets. We have

(f
∐
g)−1(U ′ ∐ V ′) = f−1(U ′) ∐ g−1(V ′)

for each U ′ ∈ P(A′) and each V ′ ∈ P(B′).

https://topological-modular-forms.github.io/the-clowder-project/tag/0087
https://topological-modular-forms.github.io/the-clowder-project/tag/0088
https://topological-modular-forms.github.io/the-clowder-project/tag/0089
https://topological-modular-forms.github.io/the-clowder-project/tag/008A
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8. Interaction With Products.008B Let f : A → A′ and g : B → B′ be
maps of sets. We have

(f × g)−1(U ′ × V ′) = f−1(U ′)× g−1(V ′)
for each U ′ ∈ P(A′) and each V ′ ∈ P(B′).

Proof. Item 1, Functoriality: Clear.
Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Re-
mark 2.4.5.1.2, Remark 2.4.6.1.3, and ?? of ??.
Item 3, Preservation of Colimits: This follows from Item 2 and ?? of
??.40

Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.41

Item 5, Symmetric Strict Monoidality With Respect to Unions: This
follows from Item 3.
Item 6, Symmetric Strict Monoidality With Respect to Intersections:
This follows from Item 4.
Item 7, Interaction With Coproducts: Clear.
Item 8, Interaction With Products: Clear.

Proposition 2.4.5.1.4.008C Let f : A → B be a function.

1. Functionality I.008D The assignment f 7→ f−1 defines a function

(−)−1
A,B : Sets(A,B) → Sets(P(B),P(A)).

2. Functionality II.008E The assignment f 7→ f−1 defines a function

(−)−1
A,B : Sets(A,B) → Pos((P(B),⊂), (P(A),⊂)).

3. Interaction With Identities.008F For each A ∈ Obj(Sets), we have

id−1
A = idP(A).

4. Interaction With Composition.008G For each pair of composable
functions f : A → B and g : B → C, we have

(g ◦ f)−1 = f−1 ◦ g−1,

P(C) P(B)

P(A).

g−1

(g◦f)−1 f−1

40See also [Pro24ac].
41See also [Pro24ab].

https://topological-modular-forms.github.io/the-clowder-project/tag/008B
https://topological-modular-forms.github.io/the-clowder-project/tag/008C
https://topological-modular-forms.github.io/the-clowder-project/tag/008D
https://topological-modular-forms.github.io/the-clowder-project/tag/008E
https://topological-modular-forms.github.io/the-clowder-project/tag/008F
https://topological-modular-forms.github.io/the-clowder-project/tag/008G
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Proof. Item 1, Functionality I : Clear.
Item 2, Functionality II : Clear.
Item 3, Interaction With Identities: This follows from Remark 2.4.5.1.2
and Item 5 of Proposition 8.1.6.1.2.
Item 4, Interaction With Composition: This follows from Remark 2.4.5.1.2
and Item 2 of Proposition 8.1.6.1.2.

2.4.6 Direct Images With Compact Support008H

Let A and B be sets and let f : A → B be a function.

Definition 2.4.6.1.1.008J The direct image with compact support
function associated to f is the function

f! : P(A) → P(B)

defined by42,43

f!(U) def=
{
b ∈ B

∣∣∣∣∣ for each a ∈ A, if we have
f(a) = b, then a ∈ U

}
=
{
b ∈ B

∣∣∣ we have f−1(b) ⊂ U
}

for each U ∈ P(A).

Notation 2.4.6.1.2.008K Sometimes one finds the notation

∀f : P(A) → P(B)

for f∗. This notation comes from the fact that the following statements
are equivalent, where b ∈ B and U ∈ P(A):

• We have b ∈ ∀f (U).

• For each a ∈ A, if b = f(a), then a ∈ U .

Remark 2.4.6.1.3.008L Identifying subsets of A with functions from A to
{true, false} via Items 1 and 2 of Proposition 2.4.3.1.6, we see that the
direct image with compact support function associated to f is equivalently
the function

f! : P(A) → P(B)
42Further Terminology: The set f!(U) is called the direct image with compact

support of U by f .
43We also have

f!(U) = B \ f∗(A \ U);
see Item 9 of Proposition 2.4.6.1.6.

https://topological-modular-forms.github.io/the-clowder-project/tag/008H
https://topological-modular-forms.github.io/the-clowder-project/tag/008J
https://topological-modular-forms.github.io/the-clowder-project/tag/008K
https://topological-modular-forms.github.io/the-clowder-project/tag/008L
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defined by

f!(χU ) def= Ranf (χU )

= lim
((

(−1)
→
× f

) pr
� A

χU−−→ {true, false}
)

= lim
a∈A

f(a)=−1

(χU (a))

=
∧
a∈A

f(a)=−1

(χU (a)).

where we have used ?? for the second equality. In other words, we have

[f!(χU )](b) =
∧
a∈A
f(a)=b

(χU (a))

=


true if, for each a ∈ A such that

f(a) = b, we have a ∈ U,

false otherwise

=
{

true if f−1(b) ⊂ U

false otherwise

for each b ∈ B.

Definition 2.4.6.1.4.008M Let U be a subset of A.44,45

1. The image part of the direct image with compact support
44Note that we have

f!(U) = f!,im(U) ∪ f!,cp(U),
as

f!(U) = f!(U) ∩ B

= f!(U) ∩ (Im(f) ∪ (B \ Im(f)))
= (f!(U) ∩ Im(f)) ∪ (f!(U) ∩ (B \ Im(f)))
def= f!,im(U) ∪ f!,cp(U).

45In terms of the meet computation of f!(U) of Remark 2.4.6.1.3, namely

f!(χU ) =
∧

a∈A
f(a)=−1

(χU (a)),

we see that f!,im corresponds to meets indexed over nonempty sets, while f!,cp corre-
sponds to meets indexed over the empty set.

https://topological-modular-forms.github.io/the-clowder-project/tag/008M
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f!(U) of U is the set f!,im(U) defined by008N

f!,im(U) def= f!(U) ∩ Im(f)

=
{
b ∈ B

∣∣∣∣ we have f−1(b) ⊂
U and f−1(b) 6= ∅

}
.

2. The complement part of the direct image with compact
support f!(U) of U is the set f!,cp(U) defined by008P

f!,cp(U) def= f!(U) ∩ (B \ Im(f))
= B \ Im(f)

=
{
b ∈ B

∣∣∣∣ we have f−1(b) ⊂
U and f−1(b) = ∅

}
=
{
b ∈ B

∣∣∣ f−1(b) = ∅
}
.

Example 2.4.6.1.5.008Q Here are some examples of direct images with
compact support.

1. The Multiplication by Two Map on the Natural Numbers. Consider
the function f : N → N given by

f(n) def= 2n

for each n ∈ N. Since f is injective, we have

f!,im(U) = f∗(U)
f!,cp(U) = {odd natural numbers}

for any U ⊂ N.

2. Parabolas. Consider the function f : R → R given by

f(x) def= x2

for each x ∈ R. We have

f!,cp(U) = R<0

for any U ⊂ R. Moreover, since f−1(x) = {−
√
x,

√
x}, we have

e.g.:

f!,im([0, 1]) = {0},
f!,im([−1, 1]) = [0, 1],
f!,im([1, 2]) = ∅,

f!,im([−2,−1] ∪ [1, 2]) = [1, 4].

https://topological-modular-forms.github.io/the-clowder-project/tag/008N
https://topological-modular-forms.github.io/the-clowder-project/tag/008P
https://topological-modular-forms.github.io/the-clowder-project/tag/008Q
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3. Circles. Consider the function f : R2 → R given by

f(x, y) def= x2 + y2

for each (x, y) ∈ R2. We have

f!,cp(U) = R<0

for any U ⊂ R2, and since

f−1(r) =


a circle of radius r about the origin if r > 0,
{(0, 0)} if r = 0,
∅ if r < 0,

we have e.g.:

f!,im([−1, 1] × [−1, 1]) = [0, 1],
f!,im(([−1, 1] × [−1, 1]) \ [−1, 1] × {0}) = ∅.

Proposition 2.4.6.1.6.008R Let f : A → B be a function.

1. Functoriality.008S The assignment U 7→ f!(U) defines a functor

f! : (P(A),⊂) → (P(B),⊂)

where

• Action on Objects. For each U ∈ P(A), we have

[f!](U) def= f!(U).

• Action on Morphisms. For each U, V ∈ P(A):
(?) If U ⊂ V , then f!(U) ⊂ f!(V ).

2. Triple Adjointness.008T We have a triple adjunction

(
f∗ a f−1 a f!

)
:

f∗

f!

f−1

a
aP(A) P(B),

witnessed by bijections of sets

HomP(B)(f∗(U), V ) ∼= HomP(A)
(
U, f−1(V )

)
,

HomP(A)
(
f−1(U), V

)
∼= HomP(A)(U, f!(V )),

natural in U ∈ P(A) and V ∈ P(B) and (respectively) V ∈ P(A)
and U ∈ P(B), i.e. where:

https://topological-modular-forms.github.io/the-clowder-project/tag/008R
https://topological-modular-forms.github.io/the-clowder-project/tag/008S
https://topological-modular-forms.github.io/the-clowder-project/tag/008T
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(a) The following conditions are equivalent:
i. We have f∗(U) ⊂ V .
ii. We have U ⊂ f−1(V ).

(b) The following conditions are equivalent:
i. We have f−1(U) ⊂ V .
ii. We have U ⊂ f!(V ).

3. Lax Preservation of Colimits.008U We have an inclusion of sets

⋃
i∈I

f!(Ui) ⊂ f!

(⋃
i∈I

Ui

)
,

natural in {Ui}i∈I ∈ P(A)×I . In particular, we have inclusions

f!(U) ∪ f!(V ) ↪→ f!(U ∪ V ),
∅ ↪→ f!(∅),

natural in U, V ∈ P(A).

4. Preservation of Limits.008V We have an equality of sets

f!

(⋂
i∈I

Ui

)
=
⋂
i∈I

f!(Ui),

natural in {Ui}i∈I ∈ P(A)×I . In particular, we have equalities

f−1(U ∩ V ) = f!(U) ∩ f−1(V ),
f!(A) = B,

natural in U, V ∈ P(A).

5. Symmetric Lax Monoidality With Respect to Unions.008W The direct
image with compact support function of Item 1 has a symmetric
lax monoidal structure(

f!, f
⊗
! , f

⊗
!|1

)
: (P(A),∪, ∅) → (P(B),∪, ∅),

being equipped with inclusions

f⊗
!|U,V : f!(U) ∪ f!(V ) ↪→ f!(U ∪ V ),

f⊗
!|1 : ∅ ↪→ f!(∅),

natural in U, V ∈ P(A).

https://topological-modular-forms.github.io/the-clowder-project/tag/008U
https://topological-modular-forms.github.io/the-clowder-project/tag/008V
https://topological-modular-forms.github.io/the-clowder-project/tag/008W
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6. Symmetric Strict Monoidality With Respect to Intersections.008X The
direct image function of Item 1 has a symmetric strict monoidal
structure(

f!, f
⊗
! , f

⊗
!|1

)
: (P(A),∩, A) → (P(B),∩, B),

being equipped with equalities

f⊗
!|U,V : f!(U ∩ V ) =→ f!(U) ∩ f!(V ),

f⊗
!|1 : f!(A) =→B,

natural in U, V ∈ P(A).

7. Interaction With Coproducts.008Y Let f : A → A′ and g : B → B′ be
maps of sets. We have

(f
∐
g)!(U

∐
V ) = f!(U)

∐
g!(V )

for each U ∈ P(A) and each V ∈ P(B).

8. Interaction With Products.008Z Let f : A → A′ and g : B → B′ be
maps of sets. We have

(f × g)!(U × V ) = f!(U) × g!(V )

for each U ∈ P(A) and each V ∈ P(B).

9. Relation to Direct Images.0090 We have

f!(U) = B \ f∗(A \ U)

for each U ∈ P(A).

10. Interaction With Injections.0091 If f is injective, then we have

f!,im(U) = f∗(U),
f!,cp(U) = B \ Im(f),
f!(U) = f!,im(U) ∪ f!,cp(U)

= f∗(U) ∪ (B \ Im(f))

for each U ∈ P(A).

11. Interaction With Surjections.0092 If f is surjective, then we have

f!,im(U) ⊂ f∗(U),
f!,cp(U) = ∅,
f!(U) ⊂ f∗(U)

for each U ∈ P(A).

https://topological-modular-forms.github.io/the-clowder-project/tag/008X
https://topological-modular-forms.github.io/the-clowder-project/tag/008Y
https://topological-modular-forms.github.io/the-clowder-project/tag/008Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0090
https://topological-modular-forms.github.io/the-clowder-project/tag/0091
https://topological-modular-forms.github.io/the-clowder-project/tag/0092
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Proof. Item 1, Functoriality: Clear.
Item 2, Triple Adjointness: This follows from Remark 2.4.4.1.3, Re-
mark 2.4.5.1.2, Remark 2.4.6.1.3, and ?? of ??.
Item 3, Lax Preservation of Colimits: Omitted.
Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.
Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows
from Item 3.
Item 6, Symmetric Strict Monoidality With Respect to Intersections:
This follows from Item 4.
Item 7, Interaction With Coproducts: Clear.
Item 8, Interaction With Products: Clear.
Item 9, Relation to Direct Images: We claim that f!(U) = B \ f∗(A \ U).

• The First Implication. We claim that

f!(U) ⊂ B \ f∗(A \ U).

Let b ∈ f!(U). We need to show that b 6∈ f∗(A \ U), i.e. that there
is no a ∈ A \ U such that f(a) = b.
This is indeed the case, as otherwise we would have a ∈ f−1(b) and
a 6∈ U , contradicting f−1(b) ⊂ U (which holds since b ∈ f!(U)).
Thus b ∈ B \ f∗(A \ U).

• The Second Implication. We claim that

B \ f∗(A \ U) ⊂ f!(U).

Let b ∈ B \ f∗(A \ U). We need to show that b ∈ f!(U), i.e. that
f−1(b) ⊂ U .
Since b 6∈ f∗(A \ U), there exists no a ∈ A \ U such that b = f(a),
and hence f−1(b) ⊂ U .
Thus b ∈ f!(U).

This finishes the proof of Item 9.
Item 10, Interaction With Injections: Clear.
Item 11, Interaction With Surjections: Clear.

Proposition 2.4.6.1.7.0093 Let f : A → B be a function.

1. Functionality I.0094 The assignment f 7→ f! defines a function

(−)!|A,B : Sets(A,B) → Sets(P(A),P(B)).

2. Functionality II.0095 The assignment f 7→ f! defines a function

(−)!|A,B : Sets(A,B) → Pos((P(A),⊂), (P(B),⊂)).

https://topological-modular-forms.github.io/the-clowder-project/tag/0093
https://topological-modular-forms.github.io/the-clowder-project/tag/0094
https://topological-modular-forms.github.io/the-clowder-project/tag/0095
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3. Interaction With Identities.0096 For each A ∈ Obj(Sets), we have

(idA)! = idP(A).

4. Interaction With Composition.0097 For each pair of composable
functions f : A → B and g : B → C, we have

(g ◦ f)! = g! ◦ f!,

P(A) P(B)

P(C).

f!

(g◦f)!
g!

Proof. Item 1, Functionality I : Clear.
Item 2, Functionality II : Clear.
Item 3, Interaction With Identities: This follows from Remark 2.4.6.1.3
and ?? of ??.
Item 4, Interaction With Composition: This follows from Remark 2.4.6.1.3
and ?? of ??.
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3.1.1 Foundations009A

Definition 3.1.1.1.1.009B A pointed set1 is equivalently:

• An E0-monoid in (N•(Sets),pt).

• A pointed object in (Sets,pt).

Remark 3.1.1.1.2.009C In detail, a pointed set is a pair (X,x0) consisting
of:

• The Underlying Set. A set X, called the underlying set of
(X,x0).

• The Basepoint. A morphism

[x0] : pt → X

in Sets, determining an element x0 ∈ X, called the basepoint of
X.

Example 3.1.1.1.3.009D The 0-sphere2 is the pointed set
(
S0, 0

)3 consisting
of:

• The Underlying Set. The set S0 defined by

S0 def= {0, 1}.

• The Basepoint. The element 0 of S0.

Example 3.1.1.1.4.009E The trivial pointed set is the pointed set (pt, ?)
consisting of:

• The Underlying Set. The punctual set pt def= {?}.

• The Basepoint. The element ? of pt.

Example 3.1.1.1.5.009F The underlying pointed set of a semimodule
(M,αM ) is the pointed set (M, 0M ).

Example 3.1.1.1.6.009G The underlying pointed set of a module (M,αM )
is the pointed set (M, 0M ).

1Further Terminology: In the context of monoids with zero as models for F1-
algebras, pointed sets are viewed as F1-modules.

2Further Terminology: In the context of monoids with zero as models for F1-
algebras, the 0-sphere is viewed as the underlying pointed set of the field with
one element.

3Further Notation: In the context of monoids with zero as models for F1-algebras,
S0 is also denoted (F1, 0).

https://topological-modular-forms.github.io/the-clowder-project/tag/009A
https://topological-modular-forms.github.io/the-clowder-project/tag/009B
https://topological-modular-forms.github.io/the-clowder-project/tag/009C
https://topological-modular-forms.github.io/the-clowder-project/tag/009D
https://topological-modular-forms.github.io/the-clowder-project/tag/009E
https://topological-modular-forms.github.io/the-clowder-project/tag/009F
https://topological-modular-forms.github.io/the-clowder-project/tag/009G
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3.1.2 Morphisms of Pointed Sets009H

Definition 3.1.2.1.1.009J A morphism of pointed sets4,5 is equivalently:

• A morphism of E0-monoids in (N•(Sets),pt).

• A morphism of pointed objects in (Sets,pt).

Remark 3.1.2.1.2.009K In detail, a morphism of pointed sets f : (X,x0) →
(Y, y0) is a morphism of sets f : X → Y such that the diagram

pt

X Y

[x0] [y0]

f

commutes, i.e. such that
f(x0) = y0.

3.1.3 The Category of Pointed Sets009L

Definition 3.1.3.1.1.009M The category of pointed sets is the category
Sets∗ defined equivalently as

• The homotopy category of the ∞-category MonE0(N•(Sets),pt) of
??;

• The category Sets∗ of ??.

Remark 3.1.3.1.2.009N In detail, the category of pointed sets is the
category Sets∗ where

• Objects. The objects of Sets∗ are pointed sets;

• Morphisms. The morphisms of Sets∗ are morphisms of pointed
sets;

• Identities. For each (X,x0) ∈ Obj(Sets∗), the unit map

1Sets∗
(X,x0) : pt → Sets∗((X,x0), (X,x0))

of Sets∗ at (X,x0) is defined by6

idSets∗
(X,x0)

def= idX ;
4Further Terminology: Also called a pointed function.
5Further Terminology: In the context of monoids with zero as models for F1-

algebras, morphisms of pointed sets are also called morphism of F1-modules.
6Note that idX is indeed a morphism of pointed sets, as we have idX(x0) = x0.

https://topological-modular-forms.github.io/the-clowder-project/tag/009H
https://topological-modular-forms.github.io/the-clowder-project/tag/009J
https://topological-modular-forms.github.io/the-clowder-project/tag/009K
https://topological-modular-forms.github.io/the-clowder-project/tag/009L
https://topological-modular-forms.github.io/the-clowder-project/tag/009M
https://topological-modular-forms.github.io/the-clowder-project/tag/009N


3.1. Pointed Sets 103

• Composition. For each (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗), the
composition map

◦Sets∗
(X,x0),(Y,y0),(Z,z0) : Sets∗((Y, y0), (Z, z0)) × Sets∗((X, x0), (Y, y0)) → Sets∗((X, x0), (Z, z0))

of Sets∗ at ((X,x0), (Y, y0), (Z, z0)) is defined by7

g ◦Sets∗
(X,x0),(Y,y0),(Z,z0) f

def= g ◦ f.

3.1.4 Elementary Properties of Pointed Sets009P

Proposition 3.1.4.1.1.009Q Let (X,x0) be a pointed set.

1. Completeness.009R The category Sets∗ of pointed sets and morphisms
between them is complete, having in particular:

(a) Products, described as in Definition 3.2.3.1.1;009S

(b) Pullbacks, described as in Definition 3.2.4.1.1;009T

(c) Equalisers, described as in Definition 3.2.5.1.1.009U

2. Cocompleteness.009V The category Sets∗ of pointed sets and morphisms
between them is cocomplete, having in particular:

(a) Coproducts, described as in Definition 3.3.3.1.1;009W

(b) Pushouts, described as in Definition 3.3.4.1.1;009X

(c) Coequalisers, described as in Definition 3.3.5.1.1.009Y

3. Failure To Be Cartesian Closed.009Z The category Sets∗ is not
Cartesian closed.8

7Note that the composition of two morphisms of pointed sets is indeed a morphism
of pointed sets, as we have

g(f(x0)) = g(y0)
= z0,

or
pt

X Y Z

[x0]
[y0]

[z0]

f g

in terms of diagrams.
8The category Sets∗ does admit monoidal closed structures however; see Tensor

Products of Pointed Sets.

https://topological-modular-forms.github.io/the-clowder-project/tag/009P
https://topological-modular-forms.github.io/the-clowder-project/tag/009Q
https://topological-modular-forms.github.io/the-clowder-project/tag/009R
https://topological-modular-forms.github.io/the-clowder-project/tag/009S
https://topological-modular-forms.github.io/the-clowder-project/tag/009T
https://topological-modular-forms.github.io/the-clowder-project/tag/009U
https://topological-modular-forms.github.io/the-clowder-project/tag/009V
https://topological-modular-forms.github.io/the-clowder-project/tag/009W
https://topological-modular-forms.github.io/the-clowder-project/tag/009X
https://topological-modular-forms.github.io/the-clowder-project/tag/009Y
https://topological-modular-forms.github.io/the-clowder-project/tag/009Z
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4. Morphisms From the Monoidal Unit.00A0 We have a bijection of sets9

Sets∗
(
S0, X

)
∼= X,

natural in (X,x0) ∈ Obj(Sets∗), internalising also to an isomor-
phism of pointed sets

Sets∗
(
S0, X

)
∼= (X,x0),

again natural in (X,x0) ∈ Obj(Sets∗).

5. Relation to Partial Functions.00A1 We have an equivalence of cate-
gories10

Sets∗
eq.∼= Setspart.

between the category of pointed sets and pointed functions between
them and the category of sets and partial functions between them,
where:

(a) From Pointed Sets to Sets With Partial Functions. The
equivalence

ξ : Sets∗
∼=→ Setspart.

sends:
i. A pointed set (X,x0) to X.
ii. A pointed function

f : (X,x0) → (Y, y0)

to the partial function

ξf : X → Y

defined on f−1(Y \ y0) and given by

ξf (x) def= f(x)

for each x ∈ f−1(Y \ y0).
9In other words, the forgetful functor

忘 : Sets∗ → Sets

defined on objects by sending a pointed set to its underlying set is corepresentable by S0.

10
�

Warning: This is not an isomorphism of categories, only an equivalence.
END TEXTDBEND

https://topological-modular-forms.github.io/the-clowder-project/tag/00A0
https://topological-modular-forms.github.io/the-clowder-project/tag/00A1
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(b) From Sets With Partial Functions to Pointed Sets. The
equivalence

ξ−1 : Setspart. ∼=→ Sets∗

sends:
i. A set X is to the pointed set (X, ?) with ? an element

that is not in X.
ii. A partial function

f : X → Y

defined on U ⊂ X to the pointed function

ξ−1
f : (X,x0) → (Y, y0)

defined by

ξf (x) def=
{
f(x) if x ∈ U ,
y0 otherwise.

for each x ∈ X.

Proof. Item 1, Completeness: This follows from (the proofs) of Defini-
tions 3.2.3.1.1, 3.2.4.1.1 and 3.2.5.1.1 and ??.
Item 2, Cocompleteness: This follows from (the proofs) of Definitions 3.3.3.1.1,
3.3.4.1.1 and 3.3.5.1.1 and ??.
Item 3, Failure To Be Cartesian Closed: See [MSE 2855868].
Item 4, Morphisms From the Monoidal Unit: Since a morphism from S0

to a pointed set (X,x0) sends 0 ∈ S0 to x0 and then can send 1 ∈ S0 to
any element of X, we obtain a bijection between pointed maps S0 → X
and the elements of X.
The isomorphism then

Sets∗
(
S0, X

)
∼= (X,x0)

follows by noting that ∆x0 : S0 → X, the basepoint of Sets∗
(
S0, X

)
,

corresponds to the pointed map S0 → X picking the element x0 of X,
and thus we see that the bijection between pointed maps S0 → X and
elements of X is compatible with basepoints, lifting to an isomorphism
of pointed sets.
Item 5, Relation to Partial Functions: See [MSE 884460].
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3.2 Limits of Pointed Sets00A2

3.2.1 The Terminal Pointed Set00A3

Definition 3.2.1.1.1.00A4 The terminal pointed set is the pair
(
(pt, ?), {!X}(X,x0)∈Obj(Sets∗)

)
consisting of:

• The Limit. The pointed set (pt, ?).

• The Cone. The collection of morphisms of pointed sets

{!X : (X,x0) → (pt, ?)}(X,x0)∈Obj(Sets)

defined by
!X(x) def= ?

for each x ∈ X and each (X,x0) ∈ Obj(Sets).

Proof. We claim that (pt, ?) is the terminal object of Sets∗. Indeed,
suppose we have a diagram of the form

(X,x0) (pt, ?)

in Sets∗. Then there exists a unique morphism of pointed sets

φ : (X,x0) → (pt, ?)

making the diagram
(X,x0) (pt, ?)φ

∃!

commute, namely !X .

3.2.2 Products of Families of Pointed Sets00A5

Let
{(
Xi, x

i
0
)}
i∈I be a family of pointed sets.

Definition 3.2.2.1.1.00A6 The product of
{(
Xi, x

i
0
)}
i∈I is the pair

((∏
i∈I Xi,

(
xi0
)
i∈I

)
, {pri}i∈I

)
consisting of:

• The Limit. The pointed set
(∏

i∈I Xi,
(
xi0
)
i∈I

)
.

• The Cone. The collection{
pri :

(∏
i∈I

Xi,
(
xi0

)
i∈I

)
→
(
Xi, x

i
0

)}
i∈I

of maps given by

pri
(
(xj)j∈I

)
def= xi

for each (xj)j∈I ∈
∏
i∈I Xi and each i ∈ I.

https://topological-modular-forms.github.io/the-clowder-project/tag/00A2
https://topological-modular-forms.github.io/the-clowder-project/tag/00A3
https://topological-modular-forms.github.io/the-clowder-project/tag/00A4
https://topological-modular-forms.github.io/the-clowder-project/tag/00A5
https://topological-modular-forms.github.io/the-clowder-project/tag/00A6
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Proof. We claim that
(∏

i∈I Xi,
(
xi0
)
i∈I

)
is the categorical product of{(

Xi, x
i
0
)}
i∈I in Sets∗. Indeed, suppose we have, for each i ∈ I, a diagram

of the form
(P, ∗)

(∏
i∈I Xi,

(
xi0
)
i∈I

) (
Xi, x

i
0
)

pi

pri

in Sets∗. Then there exists a unique morphism of pointed sets

φ : (P, ∗) →
(∏
i∈I

Xi,
(
xi0

)
i∈I

)

making the diagram

(P, ∗)

(∏
i∈I Xi,

(
xi0
)
i∈I

) (
Xi, x

i
0
)

piφ ∃!

pri

commute, being uniquely determined by the condition pri ◦ φ = pi for
each i ∈ I via

φ(x) = (pi(x))i∈I
for each x ∈ P . Note that this is indeed a morphism of pointed sets, as
we have

φ(∗) = (pi(∗))i∈I
=
(
xi0

)
i∈I
,

where we have used that pi is a morphism of pointed sets for each
i ∈ I.

Proposition 3.2.2.1.2.00A7 Let
{(
Xi, x

i
0
)}
i∈I be a family of pointed sets.

1. Functoriality.00A8 The assignment
{(
Xi, x

i
0
)}
i∈I 7→

(∏
i∈I Xi,

(
xi0
)
i∈I

)
defines a functor∏

i∈I
: Fun(Idisc, Sets∗) → Sets∗.

Proof. Item 1, Functoriality: This follows from ?? of ??.

https://topological-modular-forms.github.io/the-clowder-project/tag/00A7
https://topological-modular-forms.github.io/the-clowder-project/tag/00A8
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3.2.3 Products00A9

Let (X,x0) and (Y, y0) be pointed sets.

Definition 3.2.3.1.1.00AA The product of (X,x0) and (Y, y0) is the pair
consisting of:

• The Limit. The pointed set (X × Y, (x0, y0)).

• The Cone. The morphisms of pointed sets

pr1 : (X × Y, (x0, y0)) → (X,x0),
pr2 : (X × Y, (x0, y0)) → (Y, y0)

defined by

pr1(x, y) def= x,

pr2(x, y) def= y

for each (x, y) ∈ X × Y .

Proof. We claim that (X × Y, (x0, y0)) is the categorical product of
(X,x0) and (Y, y0) in Sets∗. Indeed, suppose we have a diagram of
the form

(P, ∗)

(X,x0) (X × Y, (x0, y0)) (Y, y0)

p1 p2

pr1 pr2

in Sets∗. Then there exists a unique morphism of pointed sets

φ : (P, ∗) → (X × Y, (x0, y0))

making the diagram

(P, ∗)

(X,x0) (X × Y, (x0, y0)) (Y, y0)

p1 p2

φ ∃!

pr1 pr2

commute, being uniquely determined by the conditions

pr1 ◦ φ = p1,

pr2 ◦ φ = p2

via
φ(x) = (p1(x), p2(x))

https://topological-modular-forms.github.io/the-clowder-project/tag/00A9
https://topological-modular-forms.github.io/the-clowder-project/tag/00AA
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for each x ∈ P . Note that this is indeed a morphism of pointed sets, as
we have

φ(∗) = (p1(∗), p2(∗))
= (x0, y0),

where we have used that p1 and p2 are morphisms of pointed sets.

Proposition 3.2.3.1.2.00AB Let (X,x0), (Y, y0), and (Z, z0) be pointed sets.

1. Functoriality.00AC The assignments

(X,x0), (Y, y0), ((X,x0), (Y, y0)) 7→ (X × Y, (x0, y0))

define functors
X × − : Sets∗ → Sets∗,

− × Y : Sets∗ → Sets∗,

−1 × −2 : Sets∗ × Sets∗ → Sets∗,

defined in the same way as the functors of Item 1 of Proposi-
tion 2.1.3.1.2.

2. Associativity.00AD We have an isomorphism of pointed sets

((X × Y ) × Z, ((x0, y0), z0)) ∼= (X × (Y × Z), (x0, (y0, z0)))

natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗).

3. Unitality.00AE We have isomorphisms of pointed sets

(pt, ?) × (X,x0) ∼= (X,x0),
(X,x0) × (pt, ?) ∼= (X,x0),

natural in (X,x0) ∈ Obj(Sets∗).

4. Commutativity.00AF We have an isomorphism of pointed sets

(X × Y, (x0, y0)) ∼= (Y ×X, (y0, x0)),

natural in (X,x0), (Y, y0) ∈ Obj(Sets∗).

5. Symmetric Monoidality.00AG The triple (Sets∗,×, (pt, ?)) is a symmet-
ric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of
limits, ?? of ??.
Item 2, Associativity: This follows from Item 3 of Proposition 2.1.3.1.2.
Item 3, Unitality: This follows from Item 4 of Proposition 2.1.3.1.2.
Item 4, Commutativity: This follows from Item 5 of Proposition 2.1.3.1.2.
Item 5, Symmetric Monoidality: This follows from Item 12 of Proposi-
tion 2.1.3.1.2.

https://topological-modular-forms.github.io/the-clowder-project/tag/00AB
https://topological-modular-forms.github.io/the-clowder-project/tag/00AC
https://topological-modular-forms.github.io/the-clowder-project/tag/00AD
https://topological-modular-forms.github.io/the-clowder-project/tag/00AE
https://topological-modular-forms.github.io/the-clowder-project/tag/00AF
https://topological-modular-forms.github.io/the-clowder-project/tag/00AG
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3.2.4 Pullbacks00AH

Let (X,x0), (Y, y0), and (Z, z0) be pointed sets and let f : (X,x0) →
(Z, z0) and g : (Y, y0) → (Z, z0) be morphisms of pointed sets.

Definition 3.2.4.1.1.00AJ The pullback of (X,x0) and (Y, y0) over (Z, z0)
along (f, g) is the pair consisting of:

• The Limit. The pointed set (X ×Z Y, (x0, y0)).

• The Cone. The morphisms of pointed sets

pr1 : (X ×Z Y, (x0, y0)) → (X,x0),
pr2 : (X ×Z Y, (x0, y0)) → (Y, y0)

defined by

pr1(x, y) def= x,

pr2(x, y) def= y

for each (x, y) ∈ X ×Z Y .

Proof. We claim that X ×Z Y is the categorical pullback of (X,x0) and
(Y, y0) over (Z, z0) with respect to (f, g) in Sets∗. First we need to check
that the relevant pullback diagram commutes, i.e. that we have

f ◦ pr1 = g ◦ pr2,

(X ×Z Y, (x0, y0)) (Y, y0)

(X,x0) (Z, z0).

pr2

pr1 g

f

Indeed, given (x, y) ∈ X ×Z Y , we have

[f ◦ pr1](x, y) = f(pr1(x, y))
= f(x)
= g(y)
= g(pr2(x, y))
= [g ◦ pr2](x, y),

where f(x) = g(y) since (x, y) ∈ X ×Z Y . Next, we prove that X ×Z Y
satisfies the universal property of the pullback. Suppose we have a

https://topological-modular-forms.github.io/the-clowder-project/tag/00AH
https://topological-modular-forms.github.io/the-clowder-project/tag/00AJ


3.2. Limits of Pointed Sets 111

diagram of the form

(P, ∗)

(X ×Z Y, (x0, y0)) (Y, y0)

(X,x0) (Z, z0)

p2

p1

y
pr2

pr1 g

f

in Sets∗. Then there exists a unique morphism of pointed sets

φ : (P, ∗) → (X ×Z Y, (x0, y0))

making the diagram

(P, ∗)

(X ×Z Y, (x0, y0)) (Y, y0)

(X,x0) (Z, z0)

p2

p1

φ

∃!

y
pr2

pr1 g

f

commute, being uniquely determined by the conditions

pr1 ◦ φ = p1,

pr2 ◦ φ = p2

via
φ(x) = (p1(x), p2(x))

for each x ∈ P , where we note that (p1(x), p2(x)) ∈ X × Y indeed lies in
X ×Z Y by the condition

f ◦ p1 = g ◦ p2,

which gives
f(p1(x)) = g(p2(x))

for each x ∈ P , so that (p1(x), p2(x)) ∈ X ×Z Y . Lastly, we note that φ
is indeed a morphism of pointed sets, as we have

φ(∗) = (p1(∗), p2(∗))
= (x0, y0),

where we have used that p1 and p2 are morphisms of pointed sets.



3.2. Limits of Pointed Sets 112

Proposition 3.2.4.1.2.00AK Let (X,x0), (Y, y0), (Z, z0), and (A, a0) be
pointed sets.

1. Functoriality.00AL The assignment (X,Y, Z, f, g) 7→ X×f,Z,g Y defines
a functor

−1 ×−3 −1 : Fun(P,Sets∗) → Sets∗,

where P is the category that looks like this:
•

• •.

In particular, the action on morphisms of −1 ×−3 −1 is given by
sending a morphism

X ×Z Y Y

X ′ ×Z′ Y ′ Y ′

X Z

X ′ Z ′

y
g

ψ

y

g′f

φ
χ

f ′

in Fun(P,Sets∗) to the morphism of pointed sets

ξ : (X ×Z Y, (x0, y0)) ∃!−−→
(
X ′ ×Z′ Y ′,

(
x′

0, y
′
0
))

given by
ξ(x, y) def= (φ(x), ψ(y))

for each (x, y) ∈ X ×Z Y , which is the unique morphism of pointed
sets making the diagram

X ×Z Y Y

X ′ ×Z′ Y ′ Y ′

X Z

X ′ Z ′

y
g

ψ

y

g′f

φ
χ

f ′

commute.

https://topological-modular-forms.github.io/the-clowder-project/tag/00AK
https://topological-modular-forms.github.io/the-clowder-project/tag/00AL
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2. Associativity.00AM Given a diagram

X Y Z

W V
f g h k

in Sets∗, we have isomorphisms of pointed sets

(X ×W Y ) ×V Z ∼= (X ×W Y ) ×Y (Y ×V Z) ∼= X ×W (Y ×V Z),

where these pullbacks are built as in the diagrams

(X ×W Y ) ×Y Z

X ×W Y

X Y Z,

W V
f g h k

y

y

(X ×W Y ) ×Y (Y ×V Z)

X ×W Y Y ×V Z

X Y Z,

W V
f g h k

y

y y

X ×W (Y ×V Z)

Y ×V Z

X Y Z.

W V
f g h k

y

y

3. Unitality.00AN We have isomorphisms of pointed sets

A A

X X

f

y
f

X ×X A ∼= A,

A×X X ∼= A,

A X

X X.

f

y

f

4. Commutativity.00AP We have an isomorphism of pointed sets

A×X B B

A X,

y
g

f

A×X B ∼= B ×X A

B ×X A A

B X.

y
f

g

5. Interaction With Products.00AQ We have an isomorphism of pointed
sets

X ×pt Y ∼= X × Y,

X × Y Y

X pt.

y
!Y

!X

6. Symmetric Monoidality.00AR The triple (Sets∗,×X , X) is a symmetric
monoidal category.

https://topological-modular-forms.github.io/the-clowder-project/tag/00AM
https://topological-modular-forms.github.io/the-clowder-project/tag/00AN
https://topological-modular-forms.github.io/the-clowder-project/tag/00AP
https://topological-modular-forms.github.io/the-clowder-project/tag/00AQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00AR
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Proof. Item 1, Functoriality: This is a special case of functoriality of
co/limits, ?? of ??, with the explicit expression for ξ following from the
commutativity of the cube pullback diagram.
Item 2, Associativity: This follows from Item 2 of Proposition 3.2.4.1.2.
Item 3, Unitality: This follows from Item 3 of Proposition 2.1.4.1.3.
Item 4, Commutativity: This follows from Item 4 of Proposition 2.1.4.1.3.
Item 5, Interaction With Products: This follows from Item 6 of Proposi-
tion 2.1.4.1.3.
Item 6, Symmetric Monoidality: This follows from Item 7 of Proposi-
tion 2.1.4.1.3.

3.2.5 Equalisers00AS

Let f, g : (X,x0) ⇒ (Y, y0) be morphisms of pointed sets.

Definition 3.2.5.1.1.00AT The equaliser of (f, g) is the pair consisting of:

• The Limit. The pointed set (Eq(f, g), x0).

• The Cone. The morphism of pointed sets

eq(f, g) : (Eq(f, g), x0) ↪→ (X,x0)

given by the canonical inclusion eq(f, g) ↪→ Eq(f, g) ↪→ X.

Proof. We claim that (Eq(f, g), x0) is the categorical equaliser of f and
g in Sets∗. First we need to check that the relevant equaliser diagram
commutes, i.e. that we have

f ◦ eq(f, g) = g ◦ eq(f, g),

which indeed holds by the definition of the set Eq(f, g). Next, we prove
that Eq(f, g) satisfies the universal property of the equaliser. Suppose
we have a diagram of the form

(Eq(f, g), x0) (X,x0) (Y, y0)

(E, ∗)

eq(f,g) f

g

e

in Sets∗. Then there exists a unique morphism of pointed sets

φ : (E, ∗) → (Eq(f, g), x0)

https://topological-modular-forms.github.io/the-clowder-project/tag/00AS
https://topological-modular-forms.github.io/the-clowder-project/tag/00AT
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making the diagram

(Eq(f, g), x0) (X,x0) (Y, y0)

(E, ∗)

eq(f,g) f

g

e
φ ∃!

commute, being uniquely determined by the condition

eq(f, g) ◦ φ = e

via
φ(x) = e(x)

for each x ∈ E, where we note that e(x) ∈ A indeed lies in Eq(f, g) by
the condition

f ◦ e = g ◦ e,

which gives
f(e(x)) = g(e(x))

for each x ∈ E, so that e(x) ∈ Eq(f, g). Lastly, we note that φ is indeed
a morphism of pointed sets, as we have

φ(∗) = e(∗)
= x0,

where we have used that e is a morphism of pointed sets.

Proposition 3.2.5.1.2.00AU Let (X,x0) and (Y, y0) be pointed sets and let
f, g, h : (X,x0) → (Y, y0) be morphisms of pointed sets.

1. Associativity.00AV We have isomorphisms of pointed sets

Eq(f ◦ eq(g, h), g ◦ eq(g, h))︸ ︷︷ ︸
=Eq(f◦eq(g,h),h◦eq(g,h))

∼= Eq(f, g, h) ∼= Eq(f ◦ eq(f, g), h ◦ eq(f, g))︸ ︷︷ ︸
=Eq(g◦eq(f,g),h◦eq(f,g))

,

where Eq(f, g, h) is the limit of the diagram

(X,x0) (Y, y0)
f

g

h

in Sets∗, being explicitly given by

Eq(f, g, h) ∼= {a ∈ A | f(a) = g(a) = h(a)}.

https://topological-modular-forms.github.io/the-clowder-project/tag/00AU
https://topological-modular-forms.github.io/the-clowder-project/tag/00AV
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2. Unitality.00AW We have an isomorphism of pointed sets

Eq(f, f) ∼= X.

3. Commutativity.00AX We have an isomorphism of pointed sets

Eq(f, g) ∼= Eq(g, f).

Proof. Item 1, Associativity: This follows from Item 1 of Proposi-
tion 2.1.5.1.2.
Item 2, Unitality: This follows from Item 4 of Proposition 2.1.5.1.2.
Item 3, Commutativity: This follows from Item 5 of Proposition 2.1.5.1.2.

3.3 Colimits of Pointed Sets00AY

3.3.1 The Initial Pointed Set00AZ

Definition 3.3.1.1.1.00B0 The initial pointed set is the pair
(
(pt, ?), {ιX}(X,x0)∈Obj(Sets∗)

)
consisting of:

• The Limit. The pointed set (pt, ?).

• The Cone. The collection of morphisms of pointed sets

{ιX : (pt, ?) → (X,x0)}(X,x0)∈Obj(Sets)

defined by
ιX(?) def= x0.

Proof. We claim that (pt, ?) is the initial object of Sets∗. Indeed, suppose
we have a diagram of the form

(pt, ?) (X,x0)

in Sets∗. Then there exists a unique morphism of pointed sets

φ : (pt, ?) → (X,x0)

making the diagram
(pt, ?) (X,x0)φ

∃!

commute, namely ιX .

https://topological-modular-forms.github.io/the-clowder-project/tag/00AW
https://topological-modular-forms.github.io/the-clowder-project/tag/00AX
https://topological-modular-forms.github.io/the-clowder-project/tag/00AY
https://topological-modular-forms.github.io/the-clowder-project/tag/00AZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00B0
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3.3.2 Coproducts of Families of Pointed Sets00B1

Let
{(
Xi, x

i
0
)}
i∈I be a family of pointed sets.

Definition 3.3.2.1.1.00B2 The coproduct of the family
{(
Xi, x

i
0
)}
i∈I ,

also called their wedge sum, is the pair consisting of:

• The Colimit. The pointed set (
∨
i∈I Xi, p0) consisting of:

– The Underlying Set. The set
∨
i∈I Xi defined by

∨
i∈I

Xi
def=
(∐
i∈I

Xi

)
/∼,

where ∼ is the equivalence relation on
∐
i∈I Xi given by declar-

ing (
i, xi0

)
∼
(
j, xj0

)
for each i, j ∈ I.

– The Basepoint. The element p0 of
∨
i∈I Xi defined by

p0
def=
[(
i, xi0

)]
=
[(
j, xj0

)]
for any i, j ∈ I.

• The Cocone. The collection{
inji :

(
Xi, x

i
0

)
→
(∨
i∈I

Xi, p0

)}
i∈I

of morphism of pointed sets given by

inji(x) def= (i, x)

for each x ∈ Xi and each i ∈ I.

Proof. We claim that (
∨
i∈I Xi, p0) is the categorical coproduct of

{(
Xi, x

i
0
)}
i∈I

in Sets∗. Indeed, suppose we have, for each i ∈ I, a diagram of the form

(C, ∗)

(
Xi, x

i
0
) (∨

i∈I
Xi, p0

)ιi

inji

https://topological-modular-forms.github.io/the-clowder-project/tag/00B1
https://topological-modular-forms.github.io/the-clowder-project/tag/00B2
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in Sets∗. Then there exists a unique morphism of pointed sets

φ :
(∨
i∈I

Xi, p0

)
→ (C, ∗)

making the diagram

(C, ∗)

(
Xi, x

i
0
) (∨

i∈I
Xi, p0

)ιi

inji

φ ∃!

commute, being uniquely determined by the condition φ ◦ inji = ιi for
each i ∈ I via

φ([(i, x)]) = ιi(x)

for each [(i, x)] ∈
∨
i∈I Xi, where we note that φ is indeed a morphism of

pointed sets, as we have

φ(p0) = ιi
([(

i, xi0

)])
= ∗,

as ιi is a morphism of pointed sets.

Proposition 3.3.2.1.2.00B3 Let
{(
Xi, x

i
0
)}
i∈I be a family of pointed sets.

1. Functoriality.00B4 The assignment
{(
Xi, x

i
0
)}
i∈I 7→ (

∨
i∈I Xi, p0)

defines a functor∨
i∈I

: Fun(Idisc, Sets∗) → Sets∗.

Proof. Item 1, Functoriality: This follows from ?? of ??.

3.3.3 Coproducts00B5

Let (X,x0) and (Y, y0) be pointed sets.

Definition 3.3.3.1.1.00B6 The coproduct of (X,x0) and (Y, y0), also
called their wedge sum, is the pair consisting of:

• The Colimit. The pointed set (X ∨ Y, p0) consisting of:

https://topological-modular-forms.github.io/the-clowder-project/tag/00B3
https://topological-modular-forms.github.io/the-clowder-project/tag/00B4
https://topological-modular-forms.github.io/the-clowder-project/tag/00B5
https://topological-modular-forms.github.io/the-clowder-project/tag/00B6
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– The Underlying Set. The set X ∨ Y defined by

(X ∨ Y, p0) def= (X,x0)
∐

(Y, y0)
∼=
(
X
∐

pt Y, p0
)

∼= (X
∐
Y/∼, p0),

X ∨ Y Y

X pt,

p
[y0]

[x0]

where ∼ is the equivalence relation on X
∐
Y obtained by

declaring (0, x0) ∼ (1, y0).
– The Basepoint. The element p0 of X ∨ Y defined by

p0
def= [(0, x0)]
= [(1, y0)].

• The Cocone. The morphisms of pointed sets

inj1 : (X,x0) → (X ∨ Y, p0),
inj2 : (Y, y0) → (X ∨ Y, p0),

given by

inj1(x) def= [(0, x)],
inj2(y) def= [(1, y)],

for each x ∈ X and each y ∈ Y .

Proof. We claim that (X ∨ Y, p0) is the categorical coproduct of (X,x0)
and (Y, y0) in Sets∗. Indeed, suppose we have a diagram of the form

(C, ∗)

(X,x0) (X ∨ Y, p0) (Y, y0)

ιX ιY

injX injY

in Sets. Then there exists a unique morphism of pointed sets

φ : (X ∨ Y, p0) → (C, ∗)

making the diagram

(C, ∗)

(X,x0) (X ∨ Y, p0) (Y, y0)

ιX ιY

φ ∃!

injX injY
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commute, being uniquely determined by the conditions

φ ◦ injX = ιX ,

φ ◦ injY = ιY

via

φ(z) =
{
ιX(x) if z = [(0, x)] with x ∈ X,
ιY (y) if z = [(1, y)] with y ∈ Y

for each z ∈ X∨Y , where we note that φ is indeed a morphism of pointed
sets, as we have

φ(p0) = ιX([(0, x0)])
= ιY ([(1, y0)])
= ∗,

as ιX and ιY are morphisms of pointed sets.

Proposition 3.3.3.1.2.00B7 Let (X,x0) and (Y, y0) be pointed sets.

1. Functoriality.00B8 The assignments

(X,x0), (Y, y0), ((X,x0), (Y, y0)) 7→ (X ∨ Y, p0)

define functors

X ∨ − : Sets∗ → Sets∗,

− ∨ Y : Sets∗ → Sets∗,

−1 ∨ −2 : Sets∗ × Sets∗ → Sets∗.

2. Associativity.00B9 We have an isomorphism of pointed sets

(X ∨ Y ) ∨ Z ∼= X ∨ (Y ∨ Z),

natural in (X,x0), (Y, y0), (Z, z0) ∈ Sets∗.

3. Unitality.00BA We have isomorphisms of pointed sets

(pt, ∗) ∨ (X,x0) ∼= (X,x0),
(X,x0) ∨ (pt, ∗) ∼= (X,x0),

natural in (X,x0) ∈ Sets∗.

4. Commutativity.00BB We have an isomorphism of pointed sets

X ∨ Y ∼= Y ∨X,

natural in (X,x0), (Y, y0) ∈ Sets∗.

https://topological-modular-forms.github.io/the-clowder-project/tag/00B7
https://topological-modular-forms.github.io/the-clowder-project/tag/00B8
https://topological-modular-forms.github.io/the-clowder-project/tag/00B9
https://topological-modular-forms.github.io/the-clowder-project/tag/00BA
https://topological-modular-forms.github.io/the-clowder-project/tag/00BB
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5. Symmetric Monoidality.00BC The triple (Sets∗,∨,pt) is a symmetric
monoidal category.

6. The Fold Map.00BD We have a natural transformation

∇ : ∨ ◦ ∆Cats
Sets∗ =⇒ idSets∗ ,

Sets∗ × Sets∗

Sets∗ Sets∗,

∨∆Cats
Sets∗

idSets∗

∇

called the fold map, whose component

∇X : X ∨X → X

at X is given by

∇X(p) def=
{
x if p = [(0, x)],
x if p = [(1, x)]

for each p ∈ X ∨X.

Proof. Item 1, Functoriality: This follows from ?? of ??.
Item 2, Associativity: Clear.
Item 3, Unitality: Clear.
Item 4, Commutativity: Clear.
Item 5, Symmetric Monoidality: Omitted.
Item 6, The Fold Map: Naturality for the transformation ∇ is the
statement that, given a morphism of pointed sets f : (X,x0) → (Y, y0),
we have

∇Y ◦ (f ∨ f) = f ◦ ∇X ,

X ∨X X

Y ∨ Y Y .

∇X

f∨f f

∇Y

Indeed, we have

[∇Y ◦ (f ∨ f)]([(i, x)]) = ∇Y ([(i, f(x))])
= f(x)
= f(∇X([(i, x)]))
= [f ◦ ∇X ]([(i, x)])

for each [(i, x)] ∈ X ∨X, and thus ∇ is indeed a natural transformation.

https://topological-modular-forms.github.io/the-clowder-project/tag/00BC
https://topological-modular-forms.github.io/the-clowder-project/tag/00BD
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3.3.4 Pushouts00BE

Let (X,x0), (Y, y0), and (Z, z0) be pointed sets and let f : (Z, z0) →
(X,x0) and g : (Z, z0) → (Y, y0) be morphisms of pointed sets.
Definition 3.3.4.1.1.00BF The pushout of (X,x0) and (Y, y0) over (Z, z0)
along (f, g) is the pair consisting of:

• The Colimit. The pointed set
(
X
∐
f,Z,g Y, p0

)
, where:

– The set X
∐
f,Z,g Y is the pushout (of unpointed sets) of X

and Y over Z with respect to f and g;
– We have p0 = [x0] = [y0].

• The Cocone. The morphisms of pointed sets

inj1 : (X,x0) → (X
∐
Z Y, p0),

inj2 : (Y, y0) → (X
∐
Z Y, p0)

given by

inj1(x) def= [(0, x)]
inj2(y) def= [(1, y)]

for each x ∈ X and each y ∈ Y .
Proof. Firstly, we note that indeed [x0] = [y0], as we have

x0 = f(z0),
y0 = g(z0)

since f and g are morphisms of pointed sets, with the relation ∼ on
X
∐

ZY then identifying x0 = f(z0) ∼ g(z0) = y0.
We now claim that (X

∐
Z Y, p0) is the categorical pushout of (X,x0)

and (Y, y0) over (Z, z0) with respect to (f, g) in Sets∗. First we need to
check that the relevant pushout diagram commutes, i.e. that we have

inj1 ◦ f = inj2 ◦ g,

(X
∐
Z Y, p0) (Y, y0)

(X,x0) (Z, z0).

inj2

inj1 g

f

Indeed, given z ∈ Z, we have

[inj1 ◦ f ](z) = inj1(f(z))
= [(0, f(z))]
= [(1, g(z))]
= inj2(g(z))
= [inj2 ◦ g](z),

https://topological-modular-forms.github.io/the-clowder-project/tag/00BE
https://topological-modular-forms.github.io/the-clowder-project/tag/00BF
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where [(0, f(z))] = [(1, g(z))] by the definition of the relation ∼ on
X
∐
Y (the coproduct of unpointed sets of X and Y ). Next, we prove

that X
∐

ZY satisfies the universal property of the pushout. Suppose
we have a diagram of the form

(P, ∗)

(X
∐
Z Y, p0) (Y, y0)

(X,x0) (Z, z0)

ι2

ι1
p

inj2

inj1 g

f

in Sets∗. Then there exists a unique morphism of pointed sets

φ : (X
∐
Z Y, p0) → (P, ∗)

making the diagram

(P, ∗)

(X
∐
Z Y, p0) (Y, y0)

(X,x0) (Z, z0)

ι2

ι1

φ

∃!

p

inj2

inj1 g

f

commute, being uniquely determined by the conditions

φ ◦ inj1 = ι1,

φ ◦ inj2 = ι2

via

φ(p) =
{
ι1(x) if x = [(0, x)],
ι2(y) if x = [(1, y)]

for each p ∈ X
∐
Z Y , where the well-definedness of φ is proven in the

same way as in the proof of Definition 2.2.4.1.1. Finally, we show that φ
is indeed a morphism of pointed sets, as we have

φ(p0) = φ([(0, x0)])
= ι1(x0)
= ∗,
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or alternatively

φ(p0) = φ([(1, y0)])
= ι2(y0)
= ∗,

where we use that ι1 (resp. ι2) is a morphism of pointed sets.

Proposition 3.3.4.1.2.00BG Let (X,x0), (Y, y0), (Z, z0), and (A, a0) be
pointed sets.

1. Functoriality.00BH The assignment (X,Y, Z, f, g) 7→ X
∐
f,Z,gY defines

a functor

−1
∐

−3 −1 : Fun(P, Sets) → Sets∗,

where P is the category that looks like this:

•

• •.

In particular, the action on morphisms of −1
∐

−3 −1 is given by
sending a morphism

X
∐
Z Y Y

X ′ ∐
Z′ Y ′ Y ′

X Z

X ′ Z ′

p

g

ψ

p

g′f

φ
χ

f ′

in Fun(P,Sets∗) to the morphism of pointed sets

ξ : (X
∐
Z Y, p0) ∃!−−→

(
X ′ ∐

Z′ Y ′, p′
0
)

given by

ξ(p) def=
{
φ(x) if p = [(0, x)],
ψ(y) if p = [(1, y)]

for each p ∈ X
∐
Z Y , which is the unique morphism of pointed

https://topological-modular-forms.github.io/the-clowder-project/tag/00BG
https://topological-modular-forms.github.io/the-clowder-project/tag/00BH
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sets making the diagram

X
∐
Z Y Y

X ′ ∐
Z′ Y ′ Y ′

X Z

X ′ Z ′

p

g

ψ

p

g′f

φ
χ

f ′

commute.

2. Associativity.00BJ Given a diagram

X Y Z

W V
f g h k

in Sets, we have isomorphisms of pointed sets

(X
∐
W Y )

∐
V Z

∼= (X
∐
W Y )

∐
Y (Y

∐
V Z) ∼= X

∐
W (Y

∐
V Z),

where these pullbacks are built as in the diagrams
(X

∐
W Y )

∐
V Z

X
∐
W Y

X Y Z,

W V
f g h k

q

q

(X
∐
W Y )

∐
Y (Y

∐
V Z)

X
∐
W Y Y

∐
V Z

X Y Z,

W V
f g h k

p

p p

X
∐
W (Y

∐
V Z)

Y
∐
V Z

X Y Z.

W V
f g h k

p

p

3. Unitality.00BK We have isomorphisms of sets

A A

X X

f

p
f

X
∐
X A ∼= A,

A
∐
X X ∼= A,

A X

X X.

f

p

f

4. Commutativity.00BL We have an isomorphism of sets

X
∐
Z Y Y

X Z,

p
g

f

X
∐
Z Y

∼= Y
∐
Z X

Y
∐
Z X X

Y Z.

p
f

g

https://topological-modular-forms.github.io/the-clowder-project/tag/00BJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00BK
https://topological-modular-forms.github.io/the-clowder-project/tag/00BL
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5. Interaction With Coproducts.00BM We have

X
∐

pt Y
∼= X ∨ Y,

X ∨ Y Y

X pt.

p
[y0]

[x0]

6. Symmetric Monoidality.00BN The triple (Sets∗,
∐
X , (X,x0)) is a

symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of
co/limits, ?? of ??, with the explicit expression for ξ following from the
commutativity of the cube pushout diagram.
Item 2, Associativity: This follows from Item 2 of Proposition 2.2.4.1.4.
Item 3, Unitality: This follows from Item 3 of Proposition 2.2.4.1.4.
Item 4, Commutativity: This follows from Item 4 of Proposition 2.2.4.1.4.
Item 5, Interaction With Coproducts: Clear.
Item 6, Symmetric Monoidality: Omitted.

3.3.5 Coequalisers00BP

Let f, g : (X,x0) ⇒ (Y, y0) be morphisms of pointed sets.

Definition 3.3.5.1.1.00BQ The coequaliser of (f, g) is the pointed set
(CoEq(f, g), [y0]).

Proof. We claim that (CoEq(f, g), [y0]) is the categorical coequaliser of
f and g in Sets∗. First we need to check that the relevant coequaliser
diagram commutes, i.e. that we have

coeq(f, g) ◦ f = coeq(f, g) ◦ g.

Indeed, we have

[coeq(f, g) ◦ f ](x) def= [coeq(f, g)](f(x))
def= [f(x)]
= [g(x)]
def= [coeq(f, g)](g(x))
def= [coeq(f, g) ◦ g](x)

for each x ∈ X. Next, we prove that CoEq(f, g) satisfies the universal

https://topological-modular-forms.github.io/the-clowder-project/tag/00BM
https://topological-modular-forms.github.io/the-clowder-project/tag/00BN
https://topological-modular-forms.github.io/the-clowder-project/tag/00BP
https://topological-modular-forms.github.io/the-clowder-project/tag/00BQ
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property of the coequaliser. Suppose we have a diagram of the form

(X,x0) (Y, y0) (CoEq(f, g), [y0])

(C, ∗)

f

g

coeq(f,g)

c

in Sets. Then, since c(f(a)) = c(g(a)) for each a ∈ A, it follows from
Items 4 and 5 of Proposition 7.5.2.1.3 that there exists a unique map
φ : CoEq(f, g) ∃!−−→ C making the diagram

(X,x0) (Y, y0) (CoEq(f, g), [y0])

(C, ∗)

f

g

coeq(f,g)

c
φ ∃!

commute, where we note that φ is indeed a morphism of pointed sets
since

φ([y0]) = [φ ◦ coeq(f, g)]([y0])
= c([y0])
= ∗,

where we have used that c is a morphism of pointed sets.

Proposition 3.3.5.1.2.00BR Let (X,x0) and (Y, y0) be pointed sets and let
f, g, h : (X,x0) → (Y, y0) be morphisms of pointed sets.

1. Associativity.00BS We have isomorphisms of pointed sets

CoEq(coeq(f, g) ◦ f, coeq(f, g) ◦ h)︸ ︷︷ ︸
=CoEq(coeq(f,g)◦g,coeq(f,g)◦h)

∼= CoEq(f, g, h) ∼= CoEq(coeq(g, h) ◦ f, coeq(g, h) ◦ g)︸ ︷︷ ︸
=CoEq(coeq(g,h)◦f,coeq(g,h)◦h)

,

where CoEq(f, g, h) is the colimit of the diagram

(X,x0) (Y, y0)
f

g

h

in Sets∗.

2. Unitality.00BT We have an isomorphism of pointed sets

CoEq(f, f) ∼= B.

https://topological-modular-forms.github.io/the-clowder-project/tag/00BR
https://topological-modular-forms.github.io/the-clowder-project/tag/00BS
https://topological-modular-forms.github.io/the-clowder-project/tag/00BT
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3. Commutativity.00BU We have an isomorphism of pointed sets

CoEq(f, g) ∼= CoEq(g, f).

Proof. Item 1, Associativity: This follows from Item 1 of Proposi-
tion 2.2.5.1.4.
Item 2, Unitality: This follows from Item 4 of Proposition 2.2.5.1.4.
Item 3, Commutativity: This follows from Item 5 of Proposition 2.2.5.1.4.

3.4 Constructions With Pointed Sets00BV

3.4.1 Free Pointed Sets00BW

Let X be a set.

Definition 3.4.1.1.1.00BX The free pointed set on X is the pointed set
X+ consisting of:

• The Underlying Set. The set X+ defined by11

X+ def= X
∐

pt
def= X

∐
{?}.

• The Basepoint. The element ? of X+.

Proposition 3.4.1.1.2.00BY Let X be a set.

1. Functoriality.00BZ The assignment X 7→ X+ defines a functor

(−)+ : Sets → Sets∗,

where

• Action on Objects. For each X ∈ Obj(Sets), we have[
(−)+

]
(X) def= X+,

where X+ is the pointed set of Definition 3.4.1.1.1;
• Action on Morphisms. For each morphism f : X → Y of Sets,

the image
f+ : X+ → Y +

of f by (−)+ is the map of pointed sets defined by

f+(x) def=
{
f(x) if x ∈ X,
?Y if x = ?X .

11Further Notation: We sometimes write ?X for the basepoint of X+ for clarity

https://topological-modular-forms.github.io/the-clowder-project/tag/00BU
https://topological-modular-forms.github.io/the-clowder-project/tag/00BV
https://topological-modular-forms.github.io/the-clowder-project/tag/00BW
https://topological-modular-forms.github.io/the-clowder-project/tag/00BX
https://topological-modular-forms.github.io/the-clowder-project/tag/00BY
https://topological-modular-forms.github.io/the-clowder-project/tag/00BZ
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2. Adjointness.00C0 We have an adjunction

(
(−)+ a忘

)
:

(−)+

忘

aSets Sets∗,

witnessed by a bijection of sets

Sets∗
((
X+, ?X

)
, (Y, y0)

)
∼= Sets(X,Y ),

natural in X ∈ Obj(Sets) and (Y, y0) ∈ Obj(Sets∗).

3. Symmetric Strong Monoidality With Respect to Wedge Sums.00C1 The
free pointed set functor of Item 1 has a symmetric strong monoidal
structure(

(−)+, (−)+,
∐
, (−)+,

∐
1

)
: (Sets,

∐
, ∅) → (Sets∗,∨,pt),

being equipped with isomorphisms of pointed sets

(−)+,
∐

X,Y : X+ ∨ Y + ∼=−→ (X
∐
Y )+,

(−)+,
∐

1 : pt
∼=−→ ∅+,

natural in X,Y ∈ Obj(Sets).

4. Symmetric Strong Monoidality With Respect to Smash Products.
00C2 The free pointed set functor of Item 1 has a symmetric strong

monoidal structure(
(−)+, (−)+,×, (−)+,×

1

)
: (Sets,×,pt) →

(
Sets∗,∧, S0

)
,

being equipped with isomorphisms of pointed sets

(−)+,×
X,Y : X+ ∧ Y + ∼=−→ (X × Y )+,

(−)+,×
1 : S0 ∼=−→ pt+,

natural in X,Y ∈ Obj(Sets).

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: We claim there’s an adjunction (−)+ a忘, witnessed
by a bijection of sets

Sets∗
((
X+, ?X

)
, (Y, y0)

)
∼= Sets(X,Y ),

natural in X ∈ Obj(Sets) and (Y, y0) ∈ Obj(Sets∗).

https://topological-modular-forms.github.io/the-clowder-project/tag/00C0
https://topological-modular-forms.github.io/the-clowder-project/tag/00C1
https://topological-modular-forms.github.io/the-clowder-project/tag/00C2
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• Map I. We define a map

ΦX,Y : Sets∗
((
X+, ?X

)
, (Y, y0)

)
→ Sets(X,Y )

by sending a pointed function

ξ :
(
X+, ?X

)
→ (Y, y0)

to the function
ξ† : X → Y

given by
ξ†(x) def= ξ(x)

for each x ∈ X.

• Map II. We define a map

ΨX,Y : Sets(X,Y ) → Sets∗
((
X+, ?X

)
, (Y, y0)

)
given by sending a function ξ : X → Y to the pointed function

ξ† :
(
X+, ?X

)
→ (Y, y0)

defined by

ξ†(x) def=
{
ξ(x) if x ∈ X,
y0 if x = ?X

for each x ∈ X+.

• Invertibility I. We claim that

ΨX,Y ◦ ΦX,Y = idSets∗((X+,?X),(Y,y0)),

which is clear.

• Invertibility II. We claim that

ΦX,Y ◦ ΨX,Y = idSets(X,Y ),

which is clear.

• Naturality for Φ, Part I. We need to show that, given a pointed

when there are multiple free pointed sets involved in the current discussion.
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function g : (Y, y0) → (Y ′, y′
0), the diagram

Sets∗
((
X+, ?X

)
, (Y, y0)

)
Sets(X,Y )

Sets∗
((
X+, ?X

)
, (Y ′, y′

0)
)
, Sets(X,Y ′)

ΦX,Y

g∗ g∗

ΦX,Y ′

commutes. Indeed, given a pointed function

ξ† :
(
X+, ?X

)
→ (Y, y0)

we have [
ΦX,Y ′ ◦ g∗

]
(ξ) = ΦX,Y ′(g∗(ξ))

= ΦX,Y ′(g ◦ ξ)
= g ◦ ξ
= g ◦ ΦX,Y ′(ξ)
= g∗

(
ΦX,Y ′(ξ)

)
=
[
g∗ ◦ ΦX,Y ′

]
(ξ).

• Naturality for Φ, Part II. We need to show that, given a pointed
function f : (X,x0) → (X ′, x′

0), the diagram

Sets∗
((
X

′,+, ?X
)
, (Y, y0)

)
Sets(X ′, Y )

Sets∗
((
X+, ?X

)
, (Y, y0)

)
Sets(X,Y )

ΦX′,Y

f∗ f∗

ΦX,Y

commutes. Indeed, given a function

ξ : X ′ → Y,

we have

[ΦX,Y ◦ f∗](ξ) = ΦX,Y (f∗(ξ))
= ΦX,Y (ξ ◦ f)
= ξ ◦ f
= ΦX′,Y (ξ) ◦ f
= f∗(ΦX′,Y (ξ)

)
= f∗(ΦX′,Y (ξ)

)
=
[
f∗ ◦ ΦX′,Y

]
(ξ).
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• Naturality for Ψ. Since Φ is natural in each argument and Φ is a
componentwise inverse to Ψ in each argument, it follows from Item 2
of Proposition 8.8.6.1.2 that Ψ is also natural in each argument.

Item 3, Symmetric Strong Monoidality With Respect to Wedge Sums:
The isomorphism

φ : X+ ∨ Y + ∼=−→ (X
∐
Y )+

is given by

φ(z) =


x if z = [(0, x)] with x ∈ X,
y if z = [(1, y)] with y ∈ Y ,
?X
∐
Y if z = [(0, ?X)],

?X
∐
Y if z = [(1, ?Y )]

for each z ∈ X+ ∨ Y +, with inverse

φ−1 : (X
∐
Y )+ ∼=−→ X+ ∨ Y +

given by

φ−1(z) def=


[(0, x)] if z = [(0, x)],
[(0, y)] if z = [(1, y)],
p0 if z = ?X

∐
Y

for each z ∈ (X
∐
Y )+.

Meanwhile, the isomorphism pt ∼= ∅+ is given by sending ?X to ?∅.
That these isomorphisms satisfy the coherence conditions making the
functor (−)+ symmetric strong monoidal can be directly checked element
by element.
Item 4, Symmetric Strong Monoidality With Respect to Smash Products:
The isomorphism

φ : X+ ∧ Y + ∼=−→ (X × Y )+

is given by

φ(x ∧ y) =
{

(x, y) if x 6= ?X and y 6= ?Y

?X×Y otherwise

for each x ∧ y ∈ X+ ∧ Y +, with inverse

φ−1 : (X × Y )+ ∼=−→ X+ ∧ Y +

given by

φ−1(z) def=
{
x ∧ y if z = (x, y) with (x, y) ∈ X × Y ,
?X ∧ ?Y if z = ?X×Y ,
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for each z ∈ (X
∐
Y )+.

Meanwhile, the isomorphism S0 ∼= pt+ is given by sending ? to 1 ∈ S0 =
{0, 1} and ?pt to 0 ∈ S0.
That these isomorphisms satisfy the coherence conditions making the
functor (−)+ symmetric strong monoidal can be directly checked element
by element.
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Chapter 4

Tensor Products of Pointed
Sets

00C3 In this chapter we introduce, construct, and study tensor products of
pointed sets. The most well-known among these is the smash product of
pointed sets

∧ : Sets∗ × Sets∗ → Sets∗,

introduced in Section 4.5.1, defined via a universal property as inducing
a bijection between the following data:

• Pointed maps f : X ∧ Y → Z.

• Maps of sets f : X × Y → Z satisfying

f(x0, y) = z0,

f(x, y0) = z0

for each x ∈ X and each y ∈ Y .

As it turns out, however, dropping either of the bilinearity conditions

f(x0, y) = z0,

f(x, y0) = z0

while retaining the other leads to two other tensor products of pointed
sets,

C : Sets∗ × Sets∗ → Sets∗,

B : Sets∗ × Sets∗ → Sets∗,

called the left and right tensor products of pointed sets. In contrast to
∧, which turns out to endow Sets∗ with a monoidal category structure

134

https://topological-modular-forms.github.io/the-clowder-project/tag/00C3
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(Proposition 4.5.9.1.1), these do not admit invertible associators and
unitors, but do endow Sets∗ with the structure of a skew monoidal
category, however (Propositions 4.3.8.1.1 and 4.4.8.1.1).
Finally, in addition to the tensor products C, B, and ∧, we also have a
“tensor product” of the form

� : Sets × Sets∗ → Sets∗,

called the tensor of sets with pointed sets. All in all, these tensor products
assemble into a family of functors of the form

⊗k,` : MonEk
(Sets) × MonE`

(Sets) → MonEk+`
(Sets),

Ci,k : MonEk
(Sets) × MonEk

(Sets) → MonEk
(Sets),

Bi,k : MonEk
(Sets) × MonEk

(Sets) → MonEk
(Sets),

where k, `, i ∈ N with i ≤ k − 1. Together with the Cartesian product ×
of Sets, the tensor products studied in this chapter form the cases:

• (k, `) = (−1,−1) for the Cartesian product of Sets;

• (k, `) = (0,−1) and (−1, 0) for the tensor of sets with pointed sets
of Definition 4.2.1.1.1;

• (i, k) = (−1, 0) for the left and right tensor products of pointed
sets of Sections 4.3 and 4.4;

• (k, `) = (−1,−1) for the smash product of pointed sets of Sec-
tion 4.5.

In this chapter, we will carefully define and study bilinearity for pointed
sets, as well as all the tensor products described above. Then, in ??,
we will extend these to tensor products involving also monoids and
commutative monoids, which will end up covering all cases up to k, ` ≤ 2,
and hence all cases since Ek-monoids on Sets are the same as E2-monoids
on Sets when k ≥ 2.
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4.1 Bilinear Morphisms of Pointed Sets00C4

4.1.1 Left Bilinear Morphisms of Pointed Sets00C5

Let (X,x0), (Y, y0), and (Z, z0) be pointed sets.

Definition 4.1.1.1.1.00C6 A left bilinear morphism of pointed sets
from (X × Y, (x0, y0)) to (Z, z0) is a map of sets

f : X × Y → Z

satisfying the following condition:1,2

(?) Left Unital Bilinearity. The diagram

pt × pt

pt × Y pt

X × Y Z

idpt×εY ∼

[z0][x0]×idY

f

commutes, i.e. for each y ∈ Y , we have

f(x0, y) = z0.

Definition 4.1.1.1.2.00C7 The set of left bilinear morphisms of pointed
sets from (X × Y, (x0, y0)) to (Z, z0) is the set Hom⊗,L

Sets∗
(X × Y, Z)

defined by

Hom⊗,L
Sets∗

(X × Y, Z) def= {f ∈ HomSets(X × Y, Z) | f is left bilinear}.
1Slogan: The map f is left bilinear if it preserves basepoints in its first argument.
2Succinctly, f is bilinear if we have

f(x0, y) = z0

https://topological-modular-forms.github.io/the-clowder-project/tag/00C4
https://topological-modular-forms.github.io/the-clowder-project/tag/00C5
https://topological-modular-forms.github.io/the-clowder-project/tag/00C6
https://topological-modular-forms.github.io/the-clowder-project/tag/00C7
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4.1.2 Right Bilinear Morphisms of Pointed Sets00C8

Let (X,x0), (Y, y0), and (Z, z0) be pointed sets.

Definition 4.1.2.1.1.00C9 A right bilinear morphism of pointed sets
from (X × Y, (x0, y0)) to (Z, z0) is a map of sets

f : X × Y → Z

satisfying the following condition:3,4

(?) Right Unital Bilinearity. The diagram

pt × pt

X × pt pt

X × Y Z

εX×idpt ∼

[z0]idX×[y0]

f

commutes, i.e. for each x ∈ X, we have

f(x, y0) = z0.

Definition 4.1.2.1.2.00CA The set of right bilinear morphisms of
pointed sets from (X × Y, (x0, y0)) to (Z, z0) is the set Hom⊗,R

Sets∗
(X × Y, Z)

defined by

Hom⊗,R
Sets∗

(X × Y, Z) def= {f ∈ HomSets(X × Y, Z) | f is right bilinear}.

4.1.3 Bilinear Morphisms of Pointed Sets00CB

Let (X,x0), (Y, y0), and (Z, z0) be pointed sets.

Definition 4.1.3.1.1.00CC A bilinear morphism of pointed sets from
(X × Y, (x0, y0)) to (Z, z0) is a map of sets

f : X × Y → Z

that is both left bilinear and right bilinear.
for each y ∈ Y .

3Slogan: The map f is right bilinear if it preserves basepoints in its second argument.
4Succinctly, f is bilinear if we have

f(x, y0) = z0

https://topological-modular-forms.github.io/the-clowder-project/tag/00C8
https://topological-modular-forms.github.io/the-clowder-project/tag/00C9
https://topological-modular-forms.github.io/the-clowder-project/tag/00CA
https://topological-modular-forms.github.io/the-clowder-project/tag/00CB
https://topological-modular-forms.github.io/the-clowder-project/tag/00CC
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Remark 4.1.3.1.2.00CD In detail, a bilinear morphism of pointed sets
from (X × Y, (x0, y0)) to (Z, z0) is a map of sets

f : (X × Y, (x0, y0)) → (Z, z0)

satisfying the following conditions:5,6

1. Left Unital Bilinearity. The diagram

pt × pt

pt × Y pt

X × Y Z

idpt×εY ∼

[z0][x0]×idY

f

commutes, i.e. for each y ∈ Y , we have

f(x0, y) = z0.

2. Right Unital Bilinearity. The diagram

pt × pt

X × pt pt

X × Y Z

εX×idpt ∼

[z0]idX×[y0]

f

commutes, i.e. for each x ∈ X, we have

f(x, y0) = z0.

Definition 4.1.3.1.3.00CE The set of bilinear morphisms of pointed
sets from (X × Y, (x0, y0)) to (Z, z0) is the set Hom⊗

Sets∗
(X × Y, Z)

defined by

Hom⊗
Sets∗

(X × Y, Z) def= {f ∈ HomSets(X × Y, Z) | f is bilinear}.
for each x ∈ X.

5Slogan: The map f is bilinear if it preserves basepoints in each argument.
6Succinctly, f is bilinear if we have

f(x0, y) = z0,

f(x, y0) = z0

https://topological-modular-forms.github.io/the-clowder-project/tag/00CD
https://topological-modular-forms.github.io/the-clowder-project/tag/00CE
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4.2 Tensors and Cotensors of Pointed Sets by
Sets00CF

4.2.1 Tensors of Pointed Sets by Sets00CG

Let (X,x0) be a pointed set and let A be a set.

Definition 4.2.1.1.1.00CH The tensor of (X,x0) by A7 is the pointed set8

A� (X,x0) satisfying the following universal property:

(UP) We have a bijection

Sets∗(A�X,K) ∼= Sets(A,Sets∗(X,K)),

natural in (K, k0) ∈ Obj(Sets∗).

Remark 4.2.1.1.2.00CJ The universal property in Definition 4.2.1.1.1 is
equivalent to the following one:

(UP) We have a bijection

Sets∗(A�X,K) ∼= Sets⊗
E0

(A×X,K),

natural in (K, k0) ∈ Obj(Sets∗), where Sets⊗
E0

(A×X,K) is the set
defined by

Sets⊗
E0

(A×X,K) def=
{
f ∈ Sets(A×X,K)

∣∣∣∣∣ for each a ∈ A, we
have f(a, x0) = k0

}
.

Proof. We claim we have a bijection

Sets(A,Sets∗(X,K)) ∼= Sets⊗
E0

(A×X,K)

natural in (K, k0) ∈ Obj(Sets∗). Indeed, this bijection is a restriction of
the bijection

Sets(A,Sets(X,K)) ∼= Sets(A×X,K)

of Item 2 of Proposition 2.1.3.1.2:

• A map
ξ : A Sets∗(X,K),

a (ξa : X → K),

for each x ∈ X and each y ∈ Y .
7Further Terminology: Also called the copower of (X, x0) by A.
8Further Notation: Often written A � X for simplicity.

https://topological-modular-forms.github.io/the-clowder-project/tag/00CF
https://topological-modular-forms.github.io/the-clowder-project/tag/00CG
https://topological-modular-forms.github.io/the-clowder-project/tag/00CH
https://topological-modular-forms.github.io/the-clowder-project/tag/00CJ
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in Sets(A,Sets∗(X,K)) gets sent to the map

ξ† : A×X → K

defined by
ξ†(a, x) def= ξa(x)

for each (a, x) ∈ A×X, which indeed lies in Sets⊗
E0

(A×X,K), as
we have

ξ†(a, x0) def= ξa(x0)
def= k0

for each a ∈ A, where we have used that ξa ∈ Sets∗(X,K) is a
morphism of pointed sets.

• Conversely, a map

ξ : A×X → K

in Sets⊗
E0

(A×X,K) gets sent to the map

ξ† : A Sets∗(X,K),

a
(
ξ†
a : X → K

)
,

where
ξ†
a : X → K

is the map defined by

ξ†
a(x) def= ξ(a, x)

for each x ∈ X, and indeed lies in Sets∗(X,K), as we have

ξ†
a(x0) def= ξ(a, x0)

def= k0.

This finishes the proof.

Construction 4.2.1.1.3.00CK Concretely, the tensor of (X,x0) by A is
the pointed set A� (X,x0) consisting of:

• The Underlying Set. The set A�X given by

A�X ∼=
∨
a∈A

(X,x0),

where
∨
a∈A(X,x0) is the wedge product of the A-indexed family

((X,x0))a∈A of Definition 3.3.2.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/00CK
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• The Basepoint. The point [(a, x0)] = [(a′, x0)] of
∨
a∈A(X,x0).

Proof. (Proven below in a bit.)

Notation 4.2.1.1.4.00CL We write a� x for the element [(a, x)] of

A�X ∼=
∨
a∈A

(X,x0)

def=
(∐
i∈I

Xi

)
/∼.

Remark 4.2.1.1.5.00CM Taking the tensor of any element of A with the
basepoint x0 of X leads to the same element in A�X, i.e. we have

a� x0 = a′ � x0,

for each a, a′ ∈ A. This is due to the equivalence relation ∼ on∨
a∈A

(X,x0) def=
∐
a∈A

X/∼

identifying (a, x0) with (a′, x0), so that the equivalence class a � x0 is
independent from the choice of a ∈ A.

Proof. We claim we have a bijection

Sets∗(A�X,K) ∼= Sets(A, Sets∗(X,K))

natural in (K, k0) ∈ Obj(Sets∗).

• Map I. We define a map

ΦK : Sets∗(A�X,K) → Sets(A, Sets∗(X,K))

by sending a morphism of pointed sets

ξ : (A�X, a� x0) → (K, k0)

to the map of sets

ξ† : A Sets∗(X,K),

a (ξa : X → K),

where
ξa : (X,x0) → (K, k0)

is the morphism of pointed sets defined by

ξa(x) def= ξ(a� x)

https://topological-modular-forms.github.io/the-clowder-project/tag/00CL
https://topological-modular-forms.github.io/the-clowder-project/tag/00CM
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for each x ∈ X. Note that we have

ξa(x0) def= ξ(a� x0)
= k0,

so that ξa is indeed a morphism of pointed sets, where we have
used that ξ is a morphism of pointed sets.

• Map II. We define a map

ΨK : Sets(A,Sets∗(X,K)) → Sets∗(A�X,K)

given by sending a map

ξ : A Sets∗(X,K),

a (ξa : X → K),

to the morphism of pointed sets

ξ† : (A�X, a� x0) → (K, k0)

defined by
ξ†(a� x) def= ξa(x)

for each a � x ∈ A � X. Note that ξ† is indeed a morphism of
pointed sets, as we have

ξ†(a� x0) def= ξa(x0)
= k0,

where we have used that ξ(a) ∈ Sets∗(X,K) is a morphism of
pointed sets.

• Invertibility I. We claim that

ΨK ◦ ΦK = idSets∗(A�X,K).

Indeed, given a morphism of pointed sets

ξ : (A�X, a� x0) → (K, k0),

we have

[ΨK ◦ ΦK ](ξ) = ΨK(ΦK(ξ))
= ΨK(Ja 7→ Jx 7→ ξ(a� x)KK)
= ΨK

(
Ja′ 7→ Jx′ 7→ ξ

(
a′ � x′)KK)

= Ja� x 7→ evx
(
eva
(
Ja′ 7→ Jx′ 7→ ξ

(
a′ � x′)KK))K

= Ja� x 7→ evx
(
Jx′ 7→ ξ

(
a� x′)K)K

= Ja� x 7→ ξ(a� x)K
= ξ.
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• Invertibility II. We claim that

ΦK ◦ ΨK = idSets(A,Sets∗(X,K)).

Indeed, given a morphism ξ : A → Sets∗(X,K), we have

[ΦK ◦ ΨK ](ξ) = ΦK(ΨK(ξ))
= ΦK(Ja� x 7→ ξa(x)K)
= Ja 7→ Jx 7→ ξa(x)KK
= Ja 7→ ξ(a)K
= ξ.

• Naturality of Φ. We need to show that, given a morphism of
pointed sets

φ : (K, k0) →
(
K ′, k′

0
)
,

the diagram

Sets∗(A�X,K) Sets(A,Sets∗(X,K))

Sets∗(A�X,K ′) Sets(A, Sets∗(X,K ′))

ΦK

φ∗ (φ∗)∗

ΦK′

commutes. Indeed, given a morphism of pointed sets

ξ : (A�X, a� x0) → (K, k0),

we have

[ΦK′ ◦ φ∗](ξ) = ΦK′(φ∗(ξ))
= ΦK′(φ ◦ ξ)
= (φ ◦ ξ)†

= Ja 7→ φ ◦ ξ(a� −)K
= Ja 7→ φ∗(ξ(a� −))K
= (φ∗)∗(Ja 7→ ξ(a� −K))
= (φ∗)∗(ΦK(ξ))
= [(φ∗)∗ ◦ ΦK ](ξ).

• Naturality of Ψ. Since Φ is natural and Φ is a componentwise
inverse to Ψ, it follows from Item 2 of Proposition 8.8.6.1.2 that Ψ
is also natural.
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This finishes the proof.

Proposition 4.2.1.1.6.00CN Let (X,x0) be a pointed set and let A be a set.

1. Functoriality.00CP The assignments A, (X,x0), (A, (X,x0)) define
functors

A� − : Sets∗ → Sets∗,

− �X : Sets → Sets∗,

−1 � −2 : Sets × Sets∗ → Sets∗.

In particular, given:

• A map of sets f : A → B;
• A pointed map φ : (X,x0) → (Y, y0);

the induced map

f � φ : A�X → B � Y

is given by
[f � φ](a� x) def= f(a) � φ(x)

for each a� x ∈ A�X.

2. Adjointness I.00CQ We have an adjunction

(− �X a Sets∗(X,−)) :
−�X

Sets∗(X,−)

aSets Sets∗,

witnessed by a bijection

Sets∗(A�X,K) ∼= Sets(A,Sets∗(X,K)),

natural in A ∈ Obj(Sets) and X,Y ∈ Obj(Sets∗).

3. Adjointness II.00CR We have an adjunctions

(A� − a A t −) :
A�−

At−

aSets∗ Sets∗,

witnessed by a bijection

HomSets∗(A�X,Y ) ∼= HomSets∗(X,A t Y ),

natural in A ∈ Obj(Sets) and X,Y ∈ Obj(Sets∗).

https://topological-modular-forms.github.io/the-clowder-project/tag/00CN
https://topological-modular-forms.github.io/the-clowder-project/tag/00CP
https://topological-modular-forms.github.io/the-clowder-project/tag/00CQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00CR
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4. As a Weighted Colimit.00CS We have

A�X ∼= colim[A](X),

where in the right hand side we write:

• A for the functor A : pt → Sets picking A ∈ Obj(Sets);
• X for the functor X : pt → Sets∗ picking (X,x0) ∈ Obj(Sets∗).

5. Iterated Tensors.00CT We have an isomorphism of pointed sets

A� (B �X) ∼= (A×B) �X,

natural in A,B ∈ Obj(Sets) and (X,x0) ∈ Obj(Sets∗).

6. Interaction With Homs.00CU We have a natural isomorphism

Sets∗(A�X,−) ∼= A t Sets∗(X,−).

7. The Tensor Evaluation Map.00CV For each X,Y ∈ Obj(Sets∗), we
have a map

ev�
X,Y : Sets∗(X,Y ) �X → Y,

natural in X,Y ∈ Obj(Sets∗), and given by

ev�
X,Y (f � x) def= f(x)

for each f � x ∈ Sets∗(X,Y ) �X.

8. The Tensor Coevaluation Map.00CW For each A ∈ Obj(Sets) and each
X ∈ Obj(Sets∗), we have a map

coev�
A,X : A → Sets∗(X,A�X),

natural in A ∈ Obj(Sets) and X ∈ Obj(Sets∗), and given by

coev�
A,X(a) def= Jx 7→ a� xK

for each a ∈ A.

Proof. Item 1, Functoriality: This is the special case of ?? of ?? for
when C = Sets∗.
Item 2, Adjointness I : This is simply a rephrasing of Definition 4.2.1.1.1.
Item 3, : Adjointness II : This is the special case of ?? of ?? for when
C = Sets∗.
Item 4, As a Weighted Colimit: This is the special case of ?? of ?? for
when C = Sets∗.

https://topological-modular-forms.github.io/the-clowder-project/tag/00CS
https://topological-modular-forms.github.io/the-clowder-project/tag/00CT
https://topological-modular-forms.github.io/the-clowder-project/tag/00CU
https://topological-modular-forms.github.io/the-clowder-project/tag/00CV
https://topological-modular-forms.github.io/the-clowder-project/tag/00CW
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Item 5, Iterated Tensors: This is the special case of ?? of ?? for when
C = Sets∗.
Item 6, Interaction With Homs: This is the special case of ?? of ?? for
when C = Sets∗.
Item 7, The Tensor Evaluation Map: This is the special case of ?? of ??
for when C = Sets∗.
Item 8, The Tensor Coevaluation Map: This is the special case of ?? of
?? for when C = Sets∗.

4.2.2 Cotensors of Pointed Sets by Sets00CX

Let (X,x0) be a pointed set and let A be a set.

Definition 4.2.2.1.1.00CY The cotensor of (X,x0) by A9 is the pointed
set10 A t (X,x0) satisfying the following universal property:

(UP) We have a bijection

Sets∗(K,A t X) ∼= Sets(A,Sets∗(K,X)),

natural in (K, k0) ∈ Obj(Sets∗).

Remark 4.2.2.1.2.00CZ The universal property of Definition 4.2.2.1.1 is
equivalent to the following one:

(UP) We have a bijection

Sets∗(K,A t X) ∼= Sets⊗
E0

(A×K,X),

natural in (K, k0) ∈ Obj(Sets∗), where Sets⊗
E0

(A×K,X) is the set
defined by

Sets⊗
E0

(A×K,X) def=
{
f ∈ Sets(A×K,X)

∣∣∣∣∣ for each a ∈ A, we
have f(a, k0) = x0

}
.

Proof. This follows from the bijection

Sets(A,Sets∗(K,X)) ∼= Sets⊗
E0

(A×K,X),

natural in (K, k0) ∈ Obj(Sets∗) constructed in the proof of Remark 4.2.1.1.2.

Construction 4.2.2.1.3.00D0 Concretely, the cotensor of (X,x0) by A is
the pointed set A t (X,x0) consisting of:

9Further Terminology: Also called the power of (X, x0) by A.
10Further Notation: Often written A t X for simplicity.

https://topological-modular-forms.github.io/the-clowder-project/tag/00CX
https://topological-modular-forms.github.io/the-clowder-project/tag/00CY
https://topological-modular-forms.github.io/the-clowder-project/tag/00CZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00D0
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• The Underlying Set. The set A t X given by

A t X ∼=
∧
a∈A

(X,x0),

where
∧
a∈A(X,x0) is the smash product of the A-indexed family

((X,x0))a∈A of Definition 4.6.1.1.1.

• The Basepoint. The point
[
(x0)a∈A

]
= [(x0, x0, x0, . . .)] of

∧
a∈A(X,x0).

Proof. We claim we have a bijection

Sets∗(K,A t X) ∼= Sets(A,Sets∗(K,X)),

natural in (K, k0) ∈ Obj(Sets∗).

• Map I. We define a map

ΦK : Sets∗(K,A t X) → Sets(A,Sets∗(K,X)),

by sending a morphism of pointed sets

ξ : (K, k0) →
(
A t X,

[
(x0)a∈A

])
to the map of sets

ξ† : A Sets∗(K,X),

a (ξa : K → X),

where
ξa : (K, k0) → (X,x0)

is the morphism of pointed sets defined by

ξa(k) =
{
xka if ξ(k) 6=

[
(x0)a∈A

]
,

x0 if ξ(k) =
[
(x0)a∈A

]
for each k ∈ K, where xka is the ath component of ξ(k) =

[(
xka

)
a∈A

]
.

Note that:

1. The definition of ξa(k) is independent of the choice of equiva-
lence class. Indeed, suppose we have

ξ(k) =
[(
xka

)
a∈A

]
=
[(
yka

)
a∈A

]
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with xka 6= yka for some a ∈ A. Then there exist ax, ay ∈ A
such that xkax

= ykay
= x0. The equivalence relation ∼ on∏

a∈AX then forces[(
xka

)
a∈A

]
=
[
(x0)a∈A

]
,[(

yka

)
a∈A

]
=
[
(x0)a∈A

]
,

however, and ξa(k) is defined to be x0 in this case.
2. The map ξa is indeed a morphism of pointed sets, as we have

ξa(k0) = x0

since ξ(k0) =
[
(x0)a∈A

]
as ξ is a morphism of pointed sets

and ξa(k0), defined to be the ath component of
[
(x0)a∈A

]
, is

equal to x0.

• Map II. We define a map

ΨK : Sets(A,Sets∗(K,X)) → Sets∗(K,A t X),

given by sending a map

ξ : A Sets∗(K,X),

a (ξa : K → X),

to the morphism of pointed sets

ξ† : (K, k0) →
(
A t X,

[
(x0)a∈A

])
defined by

ξ†(k) def=
[
(ξa(k))a∈A

]
for each k ∈ K. Note that ξ† is indeed a morphism of pointed sets,
as we have

ξ†(k0) def=
[
(ξa(k0))a∈A

]
= x0,

where we have used that ξa ∈ Sets∗(K,X) is a morphism of pointed
sets for each a ∈ A.

• Naturality of Ψ. We need to show that, given a morphism of
pointed sets

φ : (K, k0) →
(
K ′, k′

0
)
,
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the diagram

Sets(A,Sets∗(K ′, X)) Sets∗(K ′, A t X)

Sets(A,Sets∗(K,X)) Sets∗(K,A t X)

ΨK′

(φ∗)∗ φ∗

ΨK

commutes. Indeed, given a map of sets

ξ : A Sets∗(K ′, X),

a (ξa : K ′ → X),

we have

[ΨK ◦ (φ∗)∗](ξ) = ΨK((φ∗)∗(ξ))
= ΨK((φ∗)∗(Ja 7→ ξaK))
= ΨK((Ja 7→ φ∗(ξa)K))
= ΨK((Ja 7→ Jk 7→ ξa(φ(k))KK))
= Jk 7→

[
(ξa(φ(k)))a∈A

]
K

= φ∗
(
Jk′ 7→

[(
ξa
(
k′))

a∈A

]
K
)

= φ∗(ΨK′(ξ))
= [φ∗ ◦ ΨK′ ](ξ).

• Naturality of Φ. Since Ψ is natural and Ψ is a componentwise
inverse to Φ, it follows from Item 2 of Proposition 8.8.6.1.2 that Φ
is also natural.

• Invertibility I. We claim that

ΨK ◦ ΦK = idSets∗(K,AtX).

Indeed, given a morphism of pointed sets

ξ : (K, k0) →
(
A t X,

[
(x0)a∈A

])
we have

[ΨK ◦ ΦK ](ξ) = ΨK(ΦK(ξ))
= ΨK(Ja 7→ ξaK)
= ΨK

(
Ja′ 7→ ξa′K

)
= Jk 7→

[(
eva
(
Ja′ 7→ ξa′(k)K

))
a∈A

]
K

= Jk 7→
[
(ξa(k))a∈A

]
K.

Now, we have two cases:
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1. If ξ(k) =
[
(x0)a∈A

]
, we have

[ΨK ◦ ΦK ](ξ) = · · ·
= Jk 7→

[
(ξa(k))a∈A

]
K

= Jk 7→
[
(x0)a∈A

]
K

= Jk 7→ ξ(k)K
= ξ.

2. If ξ(k) 6=
[
(x0)a∈A

]
and ξ(k) =

[(
xka

)
a∈A

]
instead, we have

[ΨK ◦ ΦK ](ξ) = · · ·
= Jk 7→

[
(ξa(k))a∈A

]
K

= Jk 7→
[(
xka

)
a∈A

]
K

= Jk 7→ ξ(k)K
= ξ.

In both cases, we have [ΨK ◦ ΦK ](ξ) = ξ, and thus we are done.

• Invertibility II. We claim that

ΦK ◦ ΨK = idSets(A,Sets∗(K,X)).

Indeed, given a morphism ξ : A → Sets∗(K,X), we have

[ΦK ◦ ΨK ](ξ) = ΦK(ΨK(ξ))
= ΦK

(
Jk 7→

[
(ξa(k))a∈A

]
K
)

= Ja 7→ Jk 7→ ξa(k)KK
= ξ

This finishes the proof.

Proposition 4.2.2.1.4.00D1 Let (X,x0) be a pointed set and let A be a set.

1. Functoriality.00D2 The assignments A, (X,x0), (A, (X,x0)) define
functors

A t − : Sets∗ → Sets∗,

− t X : Setsop → Sets∗,

−1 t −2 : Setsop × Sets∗ → Sets∗.

In particular, given:

https://topological-modular-forms.github.io/the-clowder-project/tag/00D1
https://topological-modular-forms.github.io/the-clowder-project/tag/00D2
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• A map of sets f : A → B;
• A pointed map φ : (X,x0) → (Y, y0);

the induced map

f � φ : A t X → B t Y

is given by

[f � φ]
([

(xa)a∈A
]) def=

[(
φ
(
xf(a)

))
a∈A

]
for each

[
(xa)a∈A

]
∈ A t X.

2. Adjointness I.00D3 We have an adjunction

(− t X a Sets∗(−, X)) :
−tX

Sets∗(−,X)

aSetsop Sets∗,

witnessed by a bijection

Setsop
∗ (A t X,K) ∼= Sets(A, Sets∗(K,X)),

i.e. by a bijection

Sets∗(K,A t X) ∼= Sets(A,Sets∗(K,X)),

natural in A ∈ Obj(Sets) and X,Y ∈ Obj(Sets∗).

3. Adjointness II.00D4 We have an adjunctions

(A� − a A t −) :
A�−

At−

aSets∗ Sets∗,

witnessed by a bijection

HomSets∗(A�X,Y ) ∼= HomSets∗(X,A t Y ),

natural in A ∈ Obj(Sets) and X,Y ∈ Obj(Sets∗).

4. As a Weighted Limit.00D5 We have

A t X ∼= lim[A](X),

where in the right hand side we write:

• A for the functor A : pt → Sets picking A ∈ Obj(Sets);

https://topological-modular-forms.github.io/the-clowder-project/tag/00D3
https://topological-modular-forms.github.io/the-clowder-project/tag/00D4
https://topological-modular-forms.github.io/the-clowder-project/tag/00D5
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• X for the functor X : pt → Sets∗ picking (X,x0) ∈ Obj(Sets∗).

5. Iterated Cotensors.00D6 We have an isomorphism of pointed sets

A t (B t X) ∼= (A×B) t X,

natural in A,B ∈ Obj(Sets) and (X,x0) ∈ Obj(Sets∗).

6. Commutativity With Homs.00D7 We have natural isomorphisms

A t Sets∗(X,−) ∼= Sets∗(A�X,−),
A t Sets∗(−, Y ) ∼= Sets∗(−, A t Y ).

7. The Cotensor Evaluation Map.00D8 For each X,Y ∈ Obj(Sets∗), we
have a map

evt
X,Y : X → Sets∗(X,Y ) t Y,

natural in X,Y ∈ Obj(Sets∗), and given by

evt
X,Y (x) def=

[
(f(x))f∈Sets∗(X,Y )

]
for each x ∈ X.

8. The Cotensor Coevaluation Map.00D9 For each X ∈ Obj(Sets∗) and
each A ∈ Obj(Sets), we have a map

coevt
A,X : A → Sets∗(A t X,X),

natural in X ∈ Obj(Sets∗) and A ∈ Obj(Sets), and given by

coevt
A,X(a) def= J

[
(xb)b∈A

]
7→ xaK

for each a ∈ A.

Proof. Item 1, Functoriality: This is the special case of ?? of ?? for
when C = Sets∗.
Item 2, Adjointness I : This is simply a rephrasing of Definition 4.2.2.1.1.
Item 3, : Adjointness II : This is the special case of ?? of ?? for when
C = Sets∗.
Item 4, As a Weighted Limit: This is the special case of ?? of ?? for
when C = Sets∗.
Item 5, Iterated Cotensors: This is the special case of ?? of ?? for when
C = Sets∗.
Item 6, Commutativity With Homs: This is the special case of ?? of ??
for when C = Sets∗.
Item 7, The Cotensor Evaluation Map: This is the special case of ?? of
?? for when C = Sets∗.
Item 8, The Cotensor Coevaluation Map: This is the special case of ??
of ?? for when C = Sets∗.

https://topological-modular-forms.github.io/the-clowder-project/tag/00D6
https://topological-modular-forms.github.io/the-clowder-project/tag/00D7
https://topological-modular-forms.github.io/the-clowder-project/tag/00D8
https://topological-modular-forms.github.io/the-clowder-project/tag/00D9
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4.3 The Left Tensor Product of Pointed Sets00DA

4.3.1 Foundations00DB

Let (X,x0) and (Y, y0) be pointed sets.

Definition 4.3.1.1.1.00DC The left tensor product of pointed sets is
the functor11

C : Sets∗ × Sets∗ → Sets∗

defined as the composition

Sets∗ × Sets∗
id×忘−−−→ Sets∗ × Sets

β
Cats2
Sets∗,Sets−−−−−→ Sets × Sets∗

�−−→ Sets∗,

where:

• 忘 : Sets∗ → Sets is the forgetful functor from pointed sets to sets.

• βCats2
Sets∗,Sets : Sets∗ × Sets

∼=−→ Sets × Sets∗ is the braiding of Cats2, i.e.
the functor witnessing the isomorphism

Sets∗ × Sets ∼= Sets × Sets∗.

• � : Sets × Sets∗ → Sets∗ is the tensor functor of Item 1 of Proposi-
tion 4.2.1.1.6.

Remark 4.3.1.1.2.00DD The left tensor product of pointed sets satisfies the
following natural bijection:

Sets∗(X C Y, Z) ∼= Hom⊗,L
Sets∗

(X × Y, Z).

That is to say, the following data are in natural bijection:

1. Pointed maps f : X C Y → Z.

2. Maps of sets f : X×Y → Z satisfying f(x0, y) = z0 for each y ∈ Y .

Remark 4.3.1.1.3.00DE The left tensor product of pointed sets may be
described as follows:

• The left tensor product of (X,x0) and (Y, y0) is the pair ((X C Y, x0 C y0), ι)
consisting of

– A pointed set (X C Y, x0 C y0);
– A left bilinear morphism of pointed sets ι : (X × Y, (x0, y0)) →
X C Y ;

11Further Notation: Also written CSets∗ .

https://topological-modular-forms.github.io/the-clowder-project/tag/00DA
https://topological-modular-forms.github.io/the-clowder-project/tag/00DB
https://topological-modular-forms.github.io/the-clowder-project/tag/00DC
https://topological-modular-forms.github.io/the-clowder-project/tag/00DD
https://topological-modular-forms.github.io/the-clowder-project/tag/00DE
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satisfying the following universal property:

(UP) Given another such pair ((Z, z0), f) consisting of
∗ A pointed set (Z, z0);
∗ A left bilinear morphism of pointed sets f : (X × Y, (x0, y0)) →
X C Y ;

there exists a unique morphism of pointed sets X C Y
∃!−−→ Z

making the diagram

X C Y

X × Y Z

∃!

f

ι

commute.

Construction 4.3.1.1.4.00DF In detail, the left tensor product of (X,x0)
and (Y, y0) is the pointed set (X C Y, [x0]) consisting of

• The Underlying Set. The set X C Y defined by

X C Y
def= |Y | �X

∼=
∨
y∈Y

(X,x0),

where |Y | denotes the underlying set of (Y, y0);

• The Underlying Basepoint. The point [(y0, x0)] of
∨
y∈Y (X,x0),

which is equal to [(y, x0)] for any y ∈ Y .

Notation 4.3.1.1.5.00DG We write12 xC y for the element [(y, x)] of

X C Y ∼= |Y | �X.

Remark 4.3.1.1.6.00DH Employing the notation introduced in Notation 4.3.1.1.5,
we have

x0 C y0 = x0 C y

for each y ∈ Y , and
x0 C y = x0 C y′

for each y, y′ ∈ Y .

Proposition 4.3.1.1.7.00DJ Let (X,x0) and (Y, y0) be pointed sets.
12Further Notation: Also written x CSets∗ y.

https://topological-modular-forms.github.io/the-clowder-project/tag/00DF
https://topological-modular-forms.github.io/the-clowder-project/tag/00DG
https://topological-modular-forms.github.io/the-clowder-project/tag/00DH
https://topological-modular-forms.github.io/the-clowder-project/tag/00DJ
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1. Functoriality.00DK The assignments X,Y, (X,Y ) 7→ X C Y define
functors

X C − : Sets∗ → Sets∗,

− C Y : Sets∗ → Sets∗,

−1 C −2 : Sets∗ × Sets∗ → Sets∗.

In particular, given pointed maps

f : (X,x0) → (A, a0),
g : (Y, y0) → (B, b0),

the induced map

f C g : X C Y → ACB

is given by
[f C g](xC y) def= f(x) C g(y)

for each xC y ∈ X C Y .

2. Adjointness I.00DL We have an adjunction

(
− C Y a [Y,−]CSets∗

)
:

−CY

[Y,−]CSets∗

aSets∗ Sets∗,

witnessed by a bijection of sets

HomSets∗(X C Y, Z) ∼= HomSets∗

(
X, [Y, Z]CSets∗

)
natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗), where [X,Y ]CSets∗
is the pointed set of Definition 4.3.2.1.1.

3. Adjointness II.00DM The functor

X C − : Sets∗ → Sets∗

does not admit a right adjoint.

4. Adjointness III.00DN We have a bijection of sets

HomSets∗(X C Y, Z) ∼= HomSets(|Y |, Sets∗(X,Z))

natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗).

https://topological-modular-forms.github.io/the-clowder-project/tag/00DK
https://topological-modular-forms.github.io/the-clowder-project/tag/00DL
https://topological-modular-forms.github.io/the-clowder-project/tag/00DM
https://topological-modular-forms.github.io/the-clowder-project/tag/00DN
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Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness I : This follows from Item 3 of Proposition 4.2.1.1.6.
Item 3, Adjointness II : For X C− to admit a right adjoint would require
it to preserve colimits by ?? of ??. However, we have

X C pt def= |pt| �X
∼= X

� pt,

and thus we see that X C − does not have a right adjoint.
Item 4, Adjointness III : This follows from Item 2 of Proposition 4.2.1.1.6.

Remark 4.3.1.1.8.00DP Here is some intuition on why X C − fails to be a
left adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural
bijection

HomSets∗(X C Y, Z) ∼= HomSets(|Y |, Sets∗(X,Z)),

so it would be reasonable to wonder whether a natural bijection of the
form

HomSets∗(X C Y, Z) ∼= HomSets∗(Y,Sets∗(X,Z)),

also holds, which would give X C − a Sets∗(X,−). However, such a
bijection would require every map

f : X C Y → Z

to satisfy
f(xC y0) = z0

for each x ∈ X, whereas we are imposing such a basepoint preservation
condition only for elements of the form x0Cy. Thus Sets∗(X,−) can’t be
a right adjoint for XC−, and as shown by Item 3 of Proposition 4.3.1.1.7,
no functor can.13

4.3.2 The Left Internal Hom of Pointed Sets00DQ

Let (X,x0) and (Y, y0) be pointed sets.

Definition 4.3.2.1.1.00DR The left internal Hom of pointed sets is the
functor

[−,−]CSets∗
: Setsop

∗ × Sets∗ → Sets∗

13The functor Sets∗(X, −) is instead right adjoint to X ∧ −, the smash product of
pointed sets of Definition 4.5.1.1.1. See Item 2 of Proposition 4.5.1.1.9.

https://topological-modular-forms.github.io/the-clowder-project/tag/00DP
https://topological-modular-forms.github.io/the-clowder-project/tag/00DQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00DR
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defined as the composition

Setsop
∗ × Sets∗

忘×id−−−→ Setsop × Sets∗
t−−→ Sets∗,

where:

• 忘 : Sets∗ → Sets is the forgetful functor from pointed sets to sets.

• t : Setsop × Sets∗ → Sets∗ is the cotensor functor of Item 1 of
Proposition 4.2.2.1.4.

Proof. For a proof that [−,−]CSets∗
is indeed the left internal Hom of

Sets∗ with respect to the left tensor product of pointed sets, see Item 2
of Proposition 4.3.1.1.7.

Remark 4.3.2.1.2.00DS The left internal Hom of pointed sets satisfies the
following universal property:

Sets∗(X C Y, Z) ∼= Sets∗
(
X, [Y, Z]CSets∗

)
That is to say, the following data are in bijection:

1. Pointed maps f : X C Y → Z.

2. Pointed maps f : X → [Y, Z]CSets∗
.

Remark 4.3.2.1.3.00DT In detail, the left internal Hom of (X,x0) and
(Y, y0) is the pointed set

(
[X,Y ]CSets∗

,
[
(y0)x∈X

])
consisting of

• The Underlying Set. The set [X,Y ]CSets∗
defined by

[X,Y ]CSets∗

def= |X| t Y

∼=
∧
x∈X

(Y, y0),

where |X| denotes the underlying set of (X,x0);

• The Underlying Basepoint. The point
[
(y0)x∈X

]
of
∧
x∈X(Y, y0).

Proposition 4.3.2.1.4.00DU Let (X,x0) and (Y, y0) be pointed sets.

1. Functoriality.00DV The assignments X,Y, (X,Y ) 7→ [X,Y ]CSets∗
define

functors

[X,−]CSets∗
: Sets∗ → Sets∗,

[−, Y ]CSets∗
: Setsop

∗ → Sets∗,

[−1,−2]CSets∗
: Setsop

∗ × Sets∗ → Sets∗.

https://topological-modular-forms.github.io/the-clowder-project/tag/00DS
https://topological-modular-forms.github.io/the-clowder-project/tag/00DT
https://topological-modular-forms.github.io/the-clowder-project/tag/00DU
https://topological-modular-forms.github.io/the-clowder-project/tag/00DV
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In particular, given pointed maps

f : (X,x0) → (A, a0),
g : (Y, y0) → (B, b0),

the induced map

[f, g]CSets∗
: [A, Y ]CSets∗

→ [X,B]CSets∗

is given by

[f, g]CSets∗

([
(ya)a∈A

]) def=
[(
g
(
yf(x)

))
x∈X

]
for each

[
(ya)a∈A

]
∈ [A, Y ]CSets∗

.

2. Adjointness I.00DW We have an adjunction

(
− C Y a [Y,−]CSets∗

)
:

−CY

[Y,−]CSets∗

aSets∗ Sets∗,

witnessed by a bijection of sets

HomSets∗(X C Y, Z) ∼= HomSets∗

(
X, [Y, Z]CSets∗

)
natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗)

3. Adjointness II.00DX The functor

X C − : Sets∗ → Sets∗

does not admit a right adjoint.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness I : This is a repetition of Item 2 of Proposition 4.3.1.1.7,
and is proved there.
Item 3, Adjointness II : This is a repetition of Item 3 of Proposi-
tion 4.3.1.1.7, and is proved there.

4.3.3 The Left Skew Unit00DY

Definition 4.3.3.1.1.00DZ The left skew unit of the left tensor product
of pointed sets is the functor

1Sets∗,C : pt → Sets∗

defined by
1C

Sets∗
def= S0.

https://topological-modular-forms.github.io/the-clowder-project/tag/00DW
https://topological-modular-forms.github.io/the-clowder-project/tag/00DX
https://topological-modular-forms.github.io/the-clowder-project/tag/00DY
https://topological-modular-forms.github.io/the-clowder-project/tag/00DZ
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4.3.4 The Left Skew Associator00E0

Definition 4.3.4.1.1.00E1 The skew associator of the left tensor prod-
uct of pointed sets is the natural transformation

αSets∗,C : C ◦ (C × idSets∗) =⇒ C ◦ (idSets∗ × C) ◦ αCats
Sets∗,Sets∗,Sets∗

as in the diagram

Sets∗ × (Sets∗ × Sets∗)

(Sets∗ × Sets∗) × Sets∗ Sets∗ × Sets∗

Sets∗ × Sets∗ Sets∗,

αCats
Sets∗,Sets∗,Sets∗ ∼

id×C

CC×id

C

αSets∗,C

whose component

αSets∗,C
X,Y,Z : (X C Y ) C Z → X C (Y C Z)

at (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗) is given by

(X C Y ) C Z
def= |Z| � (X C Y )
def= |Z| � (|Y | �X)
∼=
∨
z∈Z

|Y | �X

∼=
∨
z∈Z

∨
y∈Y

X


→

∨
[(z,y)]∈

∨
z∈Z

Y

X

∼=
∨

[(z,y)]∈|Z|�Y
X

∼= ||Z| � Y | �X
def= |Y C Z| �X
def= X C (Y C Z),

where the map ∨
z∈Z

∨
y∈Y

X

 →
∨

(z,y)∈
∨

z∈Z
Y

X

is given by [(z, [(y, x)])] 7→ [([(z, y)], x)].

https://topological-modular-forms.github.io/the-clowder-project/tag/00E0
https://topological-modular-forms.github.io/the-clowder-project/tag/00E1
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Proof. (Proven below in a bit.)

Remark 4.3.4.1.2.00E2 Unwinding the notation for elements, we have

[(z, [(y, x)])] def= [(z, xC y)]
def= (xC y) C z

and

[([(z, y)], x)] def= [(y C z, x)]
def= xC (y C z).

So, in other words, αSets∗,C
X,Y,Z acts on elements via

αSets∗,C
X,Y,Z ((xC y) C z) def= xC (y C z)

for each (xC y) C z ∈ (X C Y ) C Z.

Remark 4.3.4.1.3.00E3 Taking y = y0, we see that the morphism αSets∗,C
X,Y,Z

acts on elements as

αSets∗,C
X,Y,Z ((xC y0) C z) def= xC (y0 C z).

However, by the definition of C, we have y0 C z = y0 C z′ for all z, z′ ∈ Z,
preventing αSets∗,C

X,Y,Z from being non-invertible.

Proof. Firstly, note that, given (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗), the
map

αSets∗,C
X,Y,Z : (X C Y ) C Z → X C (Y C Z)

is indeed a morphism of pointed sets, as we have

αSets∗,C
X,Y,Z ((x0 C y0) C z0) = x0 C (y0 C z0).

Next, we claim that αSets∗,C is a natural transformation. We need to
show that, given morphisms of pointed sets

f : (X,x0) →
(
X ′, x′

0
)
,

g : (Y, y0) →
(
Y ′, y′

0
)
,

h : (Z, z0) →
(
Z ′, z′

0
)

the diagram

(X C Y ) C Z (X ′ C Y ′) C Z ′

X C (Y C Z) X ′ C (Y ′ C Z ′)

(fCg)Ch

αSets∗,C
X,Y,Z

αSets∗,C
X′,Y ′,Z′

fC(gCh)

https://topological-modular-forms.github.io/the-clowder-project/tag/00E2
https://topological-modular-forms.github.io/the-clowder-project/tag/00E3
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commutes. Indeed, this diagram acts on elements as

(xC y) C z (f(x) C g(y)) C h(z)

xC (y C z) f(x) C (g(y) C h(z))

and hence indeed commutes, showing αSets∗,C to be a natural transfor-
mation. This finishes the proof.

4.3.5 The Left Skew Left Unitor00E4

Definition 4.3.5.1.1.00E5 The skew left unitor of the left tensor prod-
uct of pointed sets is the natural transformation

λSets∗,C : C◦
(
1Sets∗ × idSets∗

) ∼=⇒λCats2
Sets∗

pt × Sets∗ Sets∗ × Sets∗

Sets∗,

1Sets∗ ×id

λ
Cats2
Sets∗

C

λSets∗,C

whose component
λSets∗,C
X : S0 CX → X

at (X,x0) ∈ Obj(Sets∗) is given by the composition

S0 CX ∼= |X| � S0

∼=
∨
x∈X

S0

� X,

where
∨
x∈X S

0 → X is the map given by

[(x, 0)] 7→ x0,

[(x, 1)] 7→ x.

Proof. (Proven below in a bit.)

Remark 4.3.5.1.2.00E6 In other words, λSets∗,C
X acts on elements as

λSets∗,C
X (0 C x) def= x0,

λSets∗,C
X (1 C x) def= x

for each 1 C x ∈ S0 CX.

https://topological-modular-forms.github.io/the-clowder-project/tag/00E4
https://topological-modular-forms.github.io/the-clowder-project/tag/00E5
https://topological-modular-forms.github.io/the-clowder-project/tag/00E6
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Remark 4.3.5.1.3.00E7 The morphism λSets∗,C
X is almost invertible, with its

would-be-inverse
φX : X → S0 CX

given by
φX(x) def= 1 C x

for each x ∈ X. Indeed, we have[
λSets∗,C
X ◦ φ

]
(x) = λSets∗,C

X (φ(x))

= λSets∗,C
X (1 C x)

= x

= [idX ](x)

so that
λSets∗,C
X ◦ φ = idX

and [
φ ◦ λSets∗,C

X

]
(1 C x) = φ

(
λSets∗,C
X (1 C x)

)
= φ(x)
= 1 C x

= [idS0CX ](1 C x),

but [
φ ◦ λSets∗,C

X

]
(0 C x) = φ

(
λSets∗,C
X (0 C x)

)
= φ(x0)
= 1 C x0,

where 0 C x 6= 1 C x0. Thus

φ ◦ λSets∗,C
X

?= idS0CX

holds for all elements in S0 CX except one.

Proof. Firstly, note that, given (X,x0) ∈ Obj(Sets∗), the map

λSets∗,C
X : S0 CX → X

is indeed a morphism of pointed sets, as we have

λSets∗,C
X (0 C x0) = x0.

Next, we claim that λSets∗,C is a natural transformation. We need to
show that, given a morphism of pointed sets

f : (X,x0) → (Y, y0),

https://topological-modular-forms.github.io/the-clowder-project/tag/00E7
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the diagram

S0 CX S0 C Y

X Y

idS0Cf

λSets∗,C
X λSets∗,C

Y

f

commutes. Indeed, this diagram acts on elements as

0 C x

x0 f(x0)

0 C x 0 C f(x)

y0

and
1 C x 1 C f(x)

x f(x)

and hence indeed commutes, showing λSets∗,C to be a natural transfor-
mation. This finishes the proof.

4.3.6 The Left Skew Right Unitor00E8

Definition 4.3.6.1.1.00E9 The skew right unitor of the left tensor
product of pointed sets is the natural transformation

ρSets∗,C : ρCats2
Sets∗

∼=⇒ C ◦
(
id × 1Sets∗

)
,

Sets∗ × pt Sets∗ × Sets∗

Sets∗,

id×1Sets∗

ρ
Cats2
Sets∗

C

ρSets∗,C

whose component
ρSets∗,C
X : X → X C S0

at (X,x0) ∈ Obj(Sets∗) is given by the composition

X � X ∨X

∼= |S0| �X

∼= X C S0,

https://topological-modular-forms.github.io/the-clowder-project/tag/00E8
https://topological-modular-forms.github.io/the-clowder-project/tag/00E9
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where X → X ∨X is the map sending X to the second factor of X in
X ∨X.

Proof. (Proven below in a bit.)

Remark 4.3.6.1.2.00EA In other words, ρSets∗,C
X acts on elements as

ρSets∗,C
X (x) def= [(1, x)]

i.e. by
ρSets∗,C
X (x) def= xC 1

for each x ∈ X.

Remark 4.3.6.1.3.00EB The morphism ρSets∗,C
X is non-invertible, as it is

non-surjective when viewed as a map of sets, since the elements xC 0 of
X C S0 with x 6= x0 are outside the image of ρSets∗,C

X , which sends x to
xC 1.

Proof. Firstly, note that, given (X,x0) ∈ Obj(Sets∗), the map

ρSets∗,C
X : X → X C S0

is indeed a morphism of pointed sets as we have

ρSets∗,C
X (x0) = x0 C 1

= x0 C 0.

Next, we claim that ρSets∗,C is a natural transformation. We need to
show that, given a morphism of pointed sets

f : (X,x0) → (Y, y0),

the diagram
X Y

X C S0 Y C S0

f

ρSets∗,C
X ρSets∗,C

Y

fCidS0

commutes. Indeed, this diagram acts on elements as

x f(x)

xC 0 f(x) C 0

and hence indeed commutes, showing ρSets∗,C to be a natural transfor-
mation. This finishes the proof.

https://topological-modular-forms.github.io/the-clowder-project/tag/00EA
https://topological-modular-forms.github.io/the-clowder-project/tag/00EB
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4.3.7 The Diagonal00EC

Definition 4.3.7.1.1.00ED The diagonal of the left tensor product of
pointed sets is the natural transformation

∆C : idSets∗ =⇒ C ◦ ∆Cats2
Sets∗

,

Sets∗ Sets∗

Sets∗ × Sets∗,

idSets∗

∆Cats2
Sets∗ C

∆C

whose component

∆C
X : (X,x0) → (X CX,x0 C x0)

at (X,x0) ∈ Obj(Sets∗) is given by

∆C
X(x) def= xC x

for each x ∈ X.

Proof. Being a Morphism of Pointed Sets: We have

∆C
X(x0) def= x0 C x0,

and thus ∆C
X is a morphism of pointed sets.

Naturality: We need to show that, given a morphism of pointed sets

f : (X,x0) → (Y, y0),

the diagram
X Y

X CX Y C Y

f

∆C
X ∆C

Y

fCf

commutes. Indeed, this diagram acts on elements as

x f(x)

xC x f(x) C f(x)

and hence indeed commutes, showing ∆C to be natural.

https://topological-modular-forms.github.io/the-clowder-project/tag/00EC
https://topological-modular-forms.github.io/the-clowder-project/tag/00ED
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4.3.8 The Left Skew Monoidal Structure on Pointed Sets
Associated to C00EE

Proposition 4.3.8.1.1.00EF The category Sets∗ admits a left-closed left
skew monoidal category structure consisting of

• The Underlying Category. The category Sets∗ of pointed sets;

• The Left Skew Monoidal Product. The left tensor product functor

C : Sets∗ × Sets∗ → Sets∗

of Definition 4.3.1.1.1;

• The Left Internal Skew Hom. The left internal Hom functor

[−,−]CSets∗
: Setsop

∗ × Sets∗ → Sets∗

of Definition 4.3.2.1.1;

• The Left Skew Monoidal Unit. The functor

1Sets∗,C : pt → Sets∗

of Definition 4.3.3.1.1;

• The Left Skew Associators. The natural transformation

αSets∗,C : C ◦ (C × idSets∗) =⇒ C ◦ (idSets∗ × C) ◦ αCats
Sets∗,Sets∗,Sets∗

of Definition 4.3.4.1.1;

• The Left Skew Left Unitors. The natural transformation

λSets∗,C : C ◦
(
1Sets∗ × idSets∗

) ∼=⇒ λCats2
Sets∗

of Definition 4.3.5.1.1;

• The Left Skew Right Unitors. The natural transformation

ρSets∗,C : ρCats2
Sets∗

∼=⇒ C ◦
(
id × 1Sets∗

)
of Definition 4.3.6.1.1.

Proof. The Pentagon Identity: Let (W,w0), (X,x0), (Y, y0) and (Z, z0)

https://topological-modular-forms.github.io/the-clowder-project/tag/00EE
https://topological-modular-forms.github.io/the-clowder-project/tag/00EF
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be pointed sets. We have to show that the diagram

(W C (X C Y )) C Z

((W CX) C Y ) C Z W C ((X C Y ) C Z)

(W CX) C (Y C Z) W C (X C (Y C Z))

αSets∗,C
W,X,Y CidZ αSets∗,C

W,XCY,Z

idW CαSets∗,C
X,Y,ZαSets∗,C

WCX,Y,Z

αSets∗,C
W,X,Y CZ

commutes. Indeed, this diagram acts on elements as

(w C (xC y)) C z

((w C x) C y) C z w C ((xC y) C z)

(w C x) C (y C z) w C (xC (y C z))

and thus we see that the pentagon identity is satisfied.
The Left Skew Left Triangle Identity: Let (X,x0) and (Y, y0) be pointed
sets. We have to show that the diagram

(
S0 CX

)
C Y S0 C (X C Y )

X C Y

αSets∗,C
S0,X,Y

λSets∗,C
X CidY

λSets∗,C
XCY
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commutes. Indeed, this diagram acts on elements as

(0 C x) C y 0 C (xC y)

x0 C y = x0 C y0

and
(1 C x) C y 1 C (xC y)

xC y

and hence indeed commutes. Thus the left skew triangle identity is
satisfied.
The Left Skew Right Triangle Identity: Let (X,x0) and (Y, y0) be pointed
sets. We have to show that the diagram

X C Y

(X C Y ) C S0 X C
(
Y C S0)

idXCρSets∗,C
Y

ρSets∗,C
XCY

αSets∗,C
X,Y,S0

commutes. Indeed, this diagram acts on elements as

xC y

(xC y) C 1 xC (y C 1)

and hence indeed commutes. Thus the right skew triangle identity is
satisfied.
The Left Skew Middle Triangle Identity: Let (X,x0) and (Y, y0) be
pointed sets. We have to show that the diagram

X C Y X C Y

(
X C S0)C Y X C

(
S0 C Y

)ρSets∗,C
X CidY idACλSets∗,C

Y

αSets∗,C
X,S0,Y
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commutes. Indeed, this diagram acts on elements as

xC y xC y

(xC 1) C y xC (1 C y)

and hence indeed commutes. Thus the right skew triangle identity is
satisfied.
The Zig-Zag Identity: We have to show that the diagram

S0 S0 C S0

S0

ρSets∗,C
S0

λSets∗,C
S0

commutes. Indeed, this diagram acts on elements as

0 0 C 1

0

and
1 1 C 1

1

and hence indeed commutes. Thus the zig-zag identity is satisfied.
Left Skew Monoidal Left-Closedness: This follows from Item 2 of Propo-
sition 4.3.1.1.7.

4.3.9 Monoids With Respect to the Left Tensor Product
of Pointed Sets00EG

Proposition 4.3.9.1.1.00EH The category of monoids on
(
Sets∗,C, S0) is

isomorphic to the category of “monoids with left zero”14 and morphisms
between them.

14A monoid with left zero is defined similarly as the monoids with zero of ??.
Succinctly, they are monoids (A, µA, ηA) with a special element 0A satisfying

0Aa = 0A

https://topological-modular-forms.github.io/the-clowder-project/tag/00EG
https://topological-modular-forms.github.io/the-clowder-project/tag/00EH
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Proof. Monoids on
(
Sets∗,C, S0): A monoid on

(
Sets∗,C, S0) consists

of:

• The Underlying Object. A pointed set (A, 0A).

• The Multiplication Morphism. A morphism of pointed sets

µA : ACA → A,

determining a left bilinear morphism of pointed sets

A×A A

(a, b) ab.

• The Unit Morphism. A morphism of pointed sets

ηA : S0 → A

picking an element 1A of A.

satisfying the following conditions:

1. Associativity. The diagram

AC (ACA)

(ACA) CA ACA

ACA A

αSets∗,C
A,A,A idACµA

µAµACidA

µA

2. Left Unitality. The diagram

S0 CA ACA

A

ηA×idA

λSets∗,C
A

µA

commutes.

for each a ∈ A.



4.3. The Left Tensor Product of Pointed Sets 172

3. Right Unitality. The diagram

A AC S0

A ACA

ρSets∗,C
A

idA×ηA

µA

commutes.

Being a left-bilinear morphism of pointed sets, the multiplication map
satisfies

0Aa = 0A
for each a ∈ A. Now, the associativity, left unitality, and right unitality
conditions act on elements as follows:

1. Associativity. The associativity condition acts as

(aC b) C c

abC c (ab)c

aC (bC c)

(aC b) C c aC bc

a(bc)

This gives
(ab)c = a(bc)

for each a, b, c ∈ A.

2. Left Unitality. The left unitality condition acts:

(a) On 0 C a as

0 C a

0A

0 C a 0A C a

0Aa.

(b) On 1 C a as

1 C a

a

1 C a 1A C a

1Aa.
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This gives

1Aa = a,

0Aa = 0A

for each a ∈ A.

3. Right Unitality. The right unitality condition acts as

a

a

a aC 1

a1A aC 1A

This gives
a1A = a

for each a ∈ A.

Thus we see that monoids with respect to C are exactly monoids with
left zero.
Morphisms of Monoids on

(
Sets∗,C, S0): A morphism of monoids on(

Sets∗,C, S0) from (A,µA, ηA, 0A) to (B,µB, ηB, 0B) is a morphism of
pointed sets

f : (A, 0A) → (B, 0B)

satisfying the following conditions:

1. Compatibility With the Multiplication Morphisms. The diagram

ACA B CB

A B

fCf

µA µB

f

commutes.

2. Compatibility With the Unit Morphisms. The diagram

S0 A

B

ηA

ηB
f

commutes.
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These act on elements as

aC b

ab f(ab)

aC b f(a) C f(b)

f(a)f(b)

and
0

0B

0 0A

f(0A)

and
1

1B

1 1A

f(1A)

giving

f(ab) = f(a)f(b),
f(0A) = 0B,
f(1A) = 1B,

for each a, b ∈ A, which is exactly a morphism of monoids with left zero.
Identities and Composition: Similarly, the identities and composition of
Mon

(
Sets∗,C, S0) can be easily seen to agree with those of monoids with

left zero, which finishes the proof.

4.4 The Right Tensor Product of Pointed Sets00EJ

4.4.1 Foundations00EK

Let (X,x0) and (Y, y0) be pointed sets.

Definition 4.4.1.1.1.00EL The right tensor product of pointed sets is
the functor15

B : Sets∗ × Sets∗ → Sets∗

defined as the composition

Sets∗ × Sets∗
忘×id−−−→ Sets × Sets∗

�−−→ Sets∗,

where:
15Further Notation: Also written BSets∗ .

https://topological-modular-forms.github.io/the-clowder-project/tag/00EJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00EK
https://topological-modular-forms.github.io/the-clowder-project/tag/00EL
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• 忘 : Sets∗ → Sets is the forgetful functor from pointed sets to sets.

• � : Sets × Sets∗ → Sets∗ is the tensor functor of Item 1 of Proposi-
tion 4.2.1.1.6.

Remark 4.4.1.1.2.00EM The right tensor product of pointed sets satisfies
the following natural bijection:

Sets∗(X B Y, Z) ∼= Hom⊗,R
Sets∗

(X × Y, Z).

That is to say, the following data are in natural bijection:

1. Pointed maps f : X B Y → Z.

2. Maps of sets f : X×Y → Z satisfying f(x, y0) = z0 for each x ∈ X.

Remark 4.4.1.1.3.00EN The right tensor product of pointed sets may be
described as follows:

• The right tensor product of (X,x0) and (Y, y0) is the pair ((X B Y, x0 B y0), ι)
consisting of

– A pointed set (X B Y, x0 B y0);
– A right bilinear morphism of pointed sets ι : (X × Y, (x0, y0)) →
X B Y ;

satisfying the following universal property:

(UP) Given another such pair ((Z, z0), f) consisting of
∗ A pointed set (Z, z0);
∗ A right bilinear morphism of pointed sets f : (X × Y, (x0, y0)) →
X B Y ;

there exists a unique morphism of pointed sets X B Y
∃!−−→ Z

making the diagram

X B Y

X × Y Z

∃!

f

ι

commute.

Construction 4.4.1.1.4.00EP In detail, the right tensor product of
(X,x0) and (Y, y0) is the pointed set (X B Y, [y0]) consisting of:

https://topological-modular-forms.github.io/the-clowder-project/tag/00EM
https://topological-modular-forms.github.io/the-clowder-project/tag/00EN
https://topological-modular-forms.github.io/the-clowder-project/tag/00EP
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• The Underlying Set. The set X B Y defined by

X B Y
def= |X| � Y

∼=
∨
x∈X

(Y, y0),

where |X| denotes the underlying set of (X,x0).

• The Underlying Basepoint. The point [(x0, y0)] of
∨
x∈X(Y, y0),

which is equal to [(x, y0)] for any x ∈ X.

Notation 4.4.1.1.5.00EQ We write16 xB y for the element [(x, y)] of

X B Y ∼= |X| � Y.

Remark 4.4.1.1.6.00ER Employing the notation introduced in Notation 4.4.1.1.5,
we have

x0 B y0 = xB y0

for each x ∈ X, and
xB y0 = x′ B y0

for each x, x′ ∈ X.

Proposition 4.4.1.1.7.00ES Let (X,x0) and (Y, y0) be pointed sets.

1. Functoriality.00ET The assignments X,Y, (X,Y ) 7→ X B Y define
functors

X B − : Sets∗ → Sets∗,

− B Y : Sets∗ → Sets∗,

−1 B −2 : Sets∗ × Sets∗ → Sets∗.

In particular, given pointed maps

f : (X,x0) → (A, a0),
g : (Y, y0) → (B, b0),

the induced map

f B g : X B Y → ABB

is given by
[f B g](xB y) def= f(x) B g(y)

for each xB y ∈ X B Y .
16Further Notation: Also written x BSets∗ y.

https://topological-modular-forms.github.io/the-clowder-project/tag/00EQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00ER
https://topological-modular-forms.github.io/the-clowder-project/tag/00ES
https://topological-modular-forms.github.io/the-clowder-project/tag/00ET
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2. Adjointness I.00EU We have an adjunction

(
X B − a [X,−]BSets∗

)
:

XB−

[X,−]BSets∗

aSets∗ Sets∗,

witnessed by a bijection of sets

HomSets∗(X B Y, Z) ∼= HomSets∗

(
Y, [X,Z]BSets∗

)
natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗), where [X,Y ]BSets∗
is the pointed set of Definition 4.4.2.1.1.

3. Adjointness II.00EV The functor

− B Y : Sets∗ → Sets∗

does not admit a right adjoint.

4. Adjointness III.00EW We have a bijection of sets

HomSets∗(X B Y, Z) ∼= HomSets(|X|,Sets∗(Y, Z))

natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗).

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness I : This follows from Item 3 of Proposition 4.2.1.1.6.
Item 3, Adjointness II : For −B Y to admit a right adjoint would require
it to preserve colimits by ?? of ??. However, we have

pt BX
def= |pt| �X
∼= X

� pt,

and thus we see that − B Y does not have a right adjoint.
Item 4, Adjointness III : This follows from Item 2 of Proposition 4.2.1.1.6.

Remark 4.4.1.1.8.00EX Here is some intuition on why − B Y fails to be a
left adjoint. Item 4 of Proposition 4.3.1.1.7 states that we have a natural
bijection

HomSets∗(X B Y, Z) ∼= HomSets(|X|,Sets∗(Y, Z)),

so it would be reasonable to wonder whether a natural bijection of the
form

HomSets∗(X B Y, Z) ∼= HomSets∗(X,Sets∗(Y, Z)),

https://topological-modular-forms.github.io/the-clowder-project/tag/00EU
https://topological-modular-forms.github.io/the-clowder-project/tag/00EV
https://topological-modular-forms.github.io/the-clowder-project/tag/00EW
https://topological-modular-forms.github.io/the-clowder-project/tag/00EX
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also holds, which would give − B Y a Sets∗(Y,−). However, such a
bijection would require every map

f : X B Y → Z

to satisfy
f(x0 B y) = z0

for each x ∈ X, whereas we are imposing such a basepoint preservation
condition only for elements of the form xBy0. Thus Sets∗(Y,−) can’t be
a right adjoint for −BY , and as shown by Item 3 of Proposition 4.4.1.1.7,
no functor can.17

4.4.2 The Right Internal Hom of Pointed Sets00EY

Let (X,x0) and (Y, y0) be pointed sets.

Definition 4.4.2.1.1.00EZ The right internal Hom of pointed sets is
the functor

[−,−]BSets∗
: Setsop

∗ × Sets∗ → Sets∗

defined as the composition

Setsop
∗ × Sets∗

忘×id−−−→ Setsop × Sets∗
t−−→ Sets∗,

where:

• 忘 : Sets∗ → Sets is the forgetful functor from pointed sets to sets.

• t : Setsop × Sets∗ → Sets∗ is the cotensor functor of Item 1 of
Proposition 4.2.2.1.4.

Proof. For a proof that [−,−]BSets∗
is indeed the right internal Hom of

Sets∗ with respect to the right tensor product of pointed sets, see Item 2
of Proposition 4.4.1.1.7.

Remark 4.4.2.1.2.00F0 We have

[−,−]CSets∗
= [−,−]BSets∗

.

Remark 4.4.2.1.3.00F1 The right internal Hom of pointed sets satisfies the
following universal property:

Sets∗(X B Y, Z) ∼= Sets∗
(
Y, [X,Z]BSets∗

)
That is to say, the following data are in bijection:

17The functor Sets∗(Y, −) is instead right adjoint to − ∧ Y , the smash product of

https://topological-modular-forms.github.io/the-clowder-project/tag/00EY
https://topological-modular-forms.github.io/the-clowder-project/tag/00EZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00F0
https://topological-modular-forms.github.io/the-clowder-project/tag/00F1
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1. Pointed maps f : X B Y → Z.

2. Pointed maps f : Y → [X,Z]BSets∗
.

Remark 4.4.2.1.4.00F2 In detail, the right internal Hom of (X,x0) and
(Y, y0) is the pointed set

(
[X,Y ]BSets∗

,
[
(y0)x∈X

])
consisting of

• The Underlying Set. The set [X,Y ]BSets∗
defined by

[X,Y ]BSets∗

def= |X| t Y

∼=
∧
x∈X

(Y, y0),

where |X| denotes the underlying set of (X,x0);

• The Underlying Basepoint. The point
[
(y0)x∈X

]
of
∧
x∈X(Y, y0).

Proposition 4.4.2.1.5.00F3 Let (X,x0) and (Y, y0) be pointed sets.

1. Functoriality.00F4 The assignments X,Y, (X,Y ) 7→ [X,Y ]BSets∗
define

functors

[X,−]BSets∗
: Sets∗ → Sets∗,

[−, Y ]BSets∗
: Setsop

∗ → Sets∗,

[−1,−2]BSets∗
: Setsop

∗ × Sets∗ → Sets∗.

In particular, given pointed maps

f : (X,x0) → (A, a0),
g : (Y, y0) → (B, b0),

the induced map

[f, g]BSets∗
: [A, Y ]BSets∗

→ [X,B]BSets∗

is given by

[f, g]BSets∗

([
(ya)a∈A

]) def=
[(
g
(
yf(x)

))
x∈X

]
for each

[
(ya)a∈A

]
∈ [A, Y ]BSets∗

.

2. Adjointness I.00F5 We have an adjunction

(
X B − a [X,−]BSets∗

)
:

XB−

[X,−]BSets∗

aSets∗ Sets∗,

https://topological-modular-forms.github.io/the-clowder-project/tag/00F2
https://topological-modular-forms.github.io/the-clowder-project/tag/00F3
https://topological-modular-forms.github.io/the-clowder-project/tag/00F4
https://topological-modular-forms.github.io/the-clowder-project/tag/00F5
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witnessed by a bijection of sets

HomSets∗(X B Y, Z) ∼= HomSets∗

(
Y, [X,Z]BSets∗

)
natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗), where [X,Y ]BSets∗
is the pointed set of Definition 4.4.2.1.1.

3. Adjointness II.00F6 The functor

− B Y : Sets∗ → Sets∗

does not admit a right adjoint.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness I : This is a repetition of Item 2 of Proposition 4.4.1.1.7,
and is proved there.
Item 3, Adjointness II : This is a repetition of Item 3 of Proposi-
tion 4.4.1.1.7, and is proved there.

4.4.3 The Right Skew Unit00F7

Definition 4.4.3.1.1.00F8 The right skew unit of the right tensor
product of pointed sets is the functor

1Sets∗,B : pt → Sets∗

defined by
1B

Sets∗
def= S0.

4.4.4 The Right Skew Associator00F9

Definition 4.4.4.1.1.00FA The skew associator of the right tensor
product of pointed sets is the natural transformation

αSets∗,B : B ◦ (idSets∗ × B) =⇒ B ◦ (B × idSets∗) ◦ αCats,−1
Sets∗,Sets∗,Sets∗

as in the diagram

(Sets∗ × Sets∗) × Sets∗

Sets∗ × (Sets∗ × Sets∗) Sets∗ × Sets∗

Sets∗ × Sets∗ Sets∗,

αCats,−1
Sets∗,Sets∗,Sets∗ ∼

B×id

Bid×B

B

αSets∗,B

https://topological-modular-forms.github.io/the-clowder-project/tag/00F6
https://topological-modular-forms.github.io/the-clowder-project/tag/00F7
https://topological-modular-forms.github.io/the-clowder-project/tag/00F8
https://topological-modular-forms.github.io/the-clowder-project/tag/00F9
https://topological-modular-forms.github.io/the-clowder-project/tag/00FA
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whose component

αSets∗,B
X,Y,Z : X B (Y B Z) → (X B Y ) B Z

at (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗) is given by

X B (Y B Z) def= |X| � (Y B Z)
def= |X| � (|Y | � Z)
∼=
∨
x∈X

(|Y | � Z)

∼=
∨
x∈X

∨
y∈Y

Z


→

∨
[(x,y)]∈

∨
x∈X

Y

Z

∼=
∨

[(x,y)]∈|X|�Y
Z

∼= ||X| � Y | � Z
def= |X B Y | � Z
def= (X B Y ) B Z,

where the map ∨
x∈X

∨
y∈Y

Z

 →
∨

[(x,y)]∈
∨

x∈X
Y

Z

is given by [(x, [(y, z)])] 7→ [([(x, y)], z)].

Proof. (Proven below in a bit.)

Remark 4.4.4.1.2.00FB Unwinding the notation for elements, we have

[(x, [(y, z)])] def= [(x, y B z)]
def= xB (y B z)

and

[([(x, y)], z)] def= [(xB y, z)]
def= (xB y) B z.

So, in other words, αSets∗,B
X,Y,Z acts on elements via

αSets∗,B
X,Y,Z (xB (y B z)) def= (xB y) B z

for each xB (y B z) ∈ X B (Y B Z).

https://topological-modular-forms.github.io/the-clowder-project/tag/00FB
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Remark 4.4.4.1.3.00FC Taking y = y0, we see that the morphism αSets∗,B
X,Y,Z

acts on elements as

αSets∗,B
X,Y,Z (xB (y0 B z)) def= (xB y0) B z.

However, by the definition of B, we have xBy0 = x′By0 for all x, x′ ∈ X,
preventing αSets∗,B

X,Y,Z from being non-invertible.

Proof. Firstly, note that, given (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗), the
map

αSets∗,B
X,Y,Z : X B (Y B Z) → (X B Y ) B Z

is indeed a morphism of pointed sets, as we have

αSets∗,B
X,Y,Z (x0 B (y0 B z0)) = (x0 B y0) B z0.

Next, we claim that αSets∗,B is a natural transformation. We need to
show that, given morphisms of pointed sets

f : (X,x0) →
(
X ′, x′

0
)
,

g : (Y, y0) →
(
Y ′, y′

0
)
,

h : (Z, z0) →
(
Z ′, z′

0
)

the diagram

X B (Y B Z) X ′ B (Y ′ B Z ′)

(X B Y ) B Z (X ′ B Y ′) B Z ′

fB(gBh)

αSets∗,B
X,Y,Z

αSets∗,B
X′,Y ′,Z′

(fBg)Bh

commutes. Indeed, this diagram acts on elements as

xB (y B z) f(x) B (g(y) B h(z))

(xB y) B z (f(x) B g(y)) B h(z)

and hence indeed commutes, showing αSets∗,B to be a natural transfor-
mation. This finishes the proof.

pointed sets of Definition 4.5.1.1.1. See Item 2 of Proposition 4.5.1.1.9.

https://topological-modular-forms.github.io/the-clowder-project/tag/00FC
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4.4.5 The Right Skew Left Unitor00FD

Definition 4.4.5.1.1.00FE The skew left unitor of the right tensor
product of pointed sets is the natural transformation

λSets∗,B : λCats2
Sets∗

∼=⇒B◦
(
1Sets∗ × idSets∗

)
pt × Sets∗ Sets∗ × Sets∗

Sets∗,

1Sets∗ ×id

λ
Cats2
Sets∗

B

λSets∗,B

whose component
λSets∗,B
X : X → S0 BX

at (X,x0) ∈ Obj(Sets∗) is given by the composition

X � X ∨X

∼= |S0| �X

∼= S0 BX,

where X → X ∨X is the map sending X to the second factor of X in
X ∨X.

Proof. (Proven below in a bit.)

Remark 4.4.5.1.2.00FF In other words, λSets∗,B
X acts on elements as

λSets∗,B
X (x) def= [(1, x)]

i.e. by
λSets∗,B
X (x) def= 1 B x

for each x ∈ X.

Remark 4.4.5.1.3.00FG The morphism λSets∗,B
X is non-invertible, as it is

non-surjective when viewed as a map of sets, since the elements 0 B x of
S0 BX with x 6= x0 are outside the image of λSets∗,B

X , which sends x to
1 B x.

Proof. Firstly, note that, given (X,x0) ∈ Obj(Sets∗), the map

λSets∗,B
X : X → S0 BX

https://topological-modular-forms.github.io/the-clowder-project/tag/00FD
https://topological-modular-forms.github.io/the-clowder-project/tag/00FE
https://topological-modular-forms.github.io/the-clowder-project/tag/00FF
https://topological-modular-forms.github.io/the-clowder-project/tag/00FG
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is indeed a morphism of pointed sets, as we have

λSets∗,B
X (x0) = 1 B x0

= 0 B x0.

Next, we claim that λSets∗,B is a natural transformation. We need to
show that, given a morphism of pointed sets

f : (X,x0) → (Y, y0),

the diagram
X Y

S0 BX S0 B Y

f

λSets∗,B
X λSets∗,B

Y

idS0Bf

commutes. Indeed, this diagram acts on elements as

x f(x)

1 B x 1 B f(x)

and hence indeed commutes, showing λSets∗,B to be a natural transfor-
mation. This finishes the proof.

4.4.6 The Right Skew Right Unitor00FH

Definition 4.4.6.1.1.00FJ The skew right unitor of the right tensor
product of pointed sets is the natural transformation

ρSets∗,B : B ◦
(
id × 1Sets∗

) ∼=⇒ ρCats2
Sets∗

,

Sets∗ × pt Sets∗ × Sets∗

Sets∗,

id×1Sets∗

ρ
Cats2
Sets∗

B

ρSets∗,B

whose component
ρSets∗,B
X : X B S0 → X

https://topological-modular-forms.github.io/the-clowder-project/tag/00FH
https://topological-modular-forms.github.io/the-clowder-project/tag/00FJ
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at (X,x0) ∈ Obj(Sets∗) is given by the composition

X B S0 ∼= |X| � S0

∼=
∨
x∈X

S0

� X,

where
∨
x∈X S

0 → X is the map given by

[(x, 0)] 7→ x0,

[(x, 1)] 7→ x.

Proof. (Proven below in a bit.)

Remark 4.4.6.1.2.00FK In other words, ρSets∗,B
X acts on elements as

ρSets∗,B
X (xB 0) def= x0,

ρSets∗,B
X (xB 1) def= x

for each xB 1 ∈ X B S0.

Remark 4.4.6.1.3.00FL The morphism ρSets∗,B
X is almost invertible, with its

would-be-inverse
φX : X → X B S0

given by
φX(x) def= xB 1

for each x ∈ X. Indeed, we have[
ρSets∗,B
X ◦ φ

]
(x) = ρSets∗,B

X (φ(x))

= ρSets∗,B
X (xB 1)

= x

= [idX ](x)

so that
ρSets∗,B
X ◦ φ = idX

and [
φ ◦ ρSets∗,B

X

]
(xB 1) = φ

(
ρSets∗,B
X (xB 1)

)
= φ(x)
= xB 1
= [idXBS0 ](xB 1),

https://topological-modular-forms.github.io/the-clowder-project/tag/00FK
https://topological-modular-forms.github.io/the-clowder-project/tag/00FL
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but [
φ ◦ ρSets∗,B

X

]
(xB 0) = φ

(
ρSets∗,B
X (xB 0)

)
= φ(x0)
= 1 B x0,

where xB 0 6= 1 B x0. Thus

φ ◦ ρSets∗,B
X

?= idXBS0

holds for all elements in X B S0 except one.

Proof. Firstly, note that, given (X,x0) ∈ Obj(Sets∗), the map

ρSets∗,B
X : X B S0 → X

is indeed a morphism of pointed sets as we have

ρSets∗,B
X (x0 B 0) = x0.

Next, we claim that ρSets∗,B is a natural transformation. We need to
show that, given a morphism of pointed sets

f : (X,x0) → (Y, y0),

the diagram

X B S0 Y B S0

X Y

fBidS0

ρSets∗,B
X ρSets∗,B

Y

f

commutes. Indeed, this diagram acts on elements as

xB 0

x0 f(x0)

xB 0 f(x) B 0

y0

and
xB 1 f(x) B 1

x f(x)

and hence indeed commutes, showing ρSets∗,B to be a natural transfor-
mation. This finishes the proof.
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4.4.7 The Diagonal00FM

Definition 4.4.7.1.1.00FN The diagonal of the right tensor product of
pointed sets is the natural transformation

∆B : idSets∗ =⇒ B ◦ ∆Cats2
Sets∗

,

Sets∗ Sets∗

Sets∗ × Sets∗,

idSets∗

∆Cats2
Sets∗ B

∆B

whose component

∆B
X : (X,x0) → (X BX,x0 B x0)

at (X,x0) ∈ Obj(Sets∗) is given by

∆B
X(x) def= xB x

for each x ∈ X.

Proof. Being a Morphism of Pointed Sets: We have

∆B
X(x0) def= x0 B x0,

and thus ∆B
X is a morphism of pointed sets.

Naturality: We need to show that, given a morphism of pointed sets

f : (X,x0) → (Y, y0),

the diagram
X Y

X BX Y B Y

f

∆B
X ∆B

Y

fBf

commutes. Indeed, this diagram acts on elements as

x f(x)

xB x f(x) B f(x)

and hence indeed commutes, showing ∆B to be natural.

https://topological-modular-forms.github.io/the-clowder-project/tag/00FM
https://topological-modular-forms.github.io/the-clowder-project/tag/00FN
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4.4.8 The Right Skew Monoidal Structure on Pointed Sets
Associated to B00FP

Proposition 4.4.8.1.1.00FQ The category Sets∗ admits a right-closed right
skew monoidal category structure consisting of

• The Underlying Category. The category Sets∗ of pointed sets;

• The Right Skew Monoidal Product. The right tensor product
functor

B : Sets∗ × Sets∗ → Sets∗

of Definition 4.4.1.1.1;

• The Right Internal Skew Hom. The right internal Hom functor

[−,−]BSets∗
: Setsop

∗ × Sets∗ → Sets∗

of Definition 4.4.2.1.1;

• The Right Skew Monoidal Unit. The functor

1Sets∗,B : pt → Sets∗

of Definition 4.4.3.1.1;

• The Right Skew Associators. The natural transformation

αSets∗,B : B ◦ (idSets∗ × B) =⇒ B ◦ (B × idSets∗) ◦ αCats,−1
Sets∗,Sets∗,Sets∗

of Definition 4.4.4.1.1;

• The Right Skew Left Unitors. The natural transformation

λSets∗,B : λCats2
Sets∗

∼=⇒ B ◦
(
1Sets∗ × idSets∗

)
of Definition 4.4.5.1.1;

• The Right Skew Right Unitors. The natural transformation

ρSets∗,B : B ◦
(
id × 1Sets∗

) ∼=⇒ ρCats2
Sets∗

of Definition 4.4.6.1.1.

Proof. The Pentagon Identity: Let (W,w0), (X,x0), (Y, y0) and (Z, z0)

https://topological-modular-forms.github.io/the-clowder-project/tag/00FP
https://topological-modular-forms.github.io/the-clowder-project/tag/00FQ
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be pointed sets. We have to show that the diagram

W B ((X B Y ) B Z)

W B (X B (Y B Z)) (W B (X B Y )) B Z

(W BX) B (Y B Z) ((W BX) B Y ) B Z

αSets∗,B
W,X,Y BidZ αSets∗,B

W,XBY,Z

idW BαSets∗,B
X,Y,ZαSets∗,B

WBX,Y,Z

αSets∗,B
W,X,Y BZ

commutes. Indeed, this diagram acts on elements as

w B ((xB y) B z)

w B (xB (y B z)) (w B (xB y)) B z

(w B x) B (y B z) ((w B x) B y) B z

and thus we see that the pentagon identity is satisfied.
The Right Skew Left Triangle Identity: Let (X,x0) and (Y, y0) be pointed
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sets. We have to show that the diagram

X B Y

S0 B (X B Y )
(
S0 BX

)
B Y

λSets∗,B
XBY

λSets∗,B
X BidY

αSets∗,B
S0,X,Y

commutes. Indeed, this diagram acts on elements as

xB y

1 B (xB y) (1 B x) B y

and hence indeed commutes. Thus the left skew triangle identity is
satisfied.
The Right Skew Right Triangle Identity: Let (X,x0) and (Y, y0) be
pointed sets. We have to show that the diagram

X B
(
Y B S0) (X B Y ) B S0

X B Y

αSets∗,B
S0,X,Y

idXBρSets∗,B
Y

ρSets∗,B
XBY

commutes. Indeed, this diagram acts on elements as

xB (y B 0) (xB y) B 0

xB y0 = x0 B y0

and
xB (y B 1) (xB y) B 1

xB y

and hence indeed commutes. Thus the right skew triangle identity is
satisfied.
The Right Skew Middle Triangle Identity: Let (X,x0) and (Y, y0) be
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pointed sets. We have to show that the diagram

X B Y X B Y

X B
(
S0 B Y

) (
X B S0)B Y

idXBλSets∗,B
Y ρSets∗,B

X BidY

αSets∗,B
X,S0,Y

commutes. Indeed, this diagram acts on elements as

xB y xB y

xB (1 B y) (xB 1) B y

and hence indeed commutes. Thus the right skew triangle identity is
satisfied.
The Zig-Zag Identity: We have to show that the diagram

S0 S0 B S0

S0

λSets∗,B
S0

ρSets∗,B
S0

commutes. Indeed, this diagram acts on elements as

0 1 B 0

0

and
1 1 B 1

1

and hence indeed commutes. Thus the zig-zag identity is satisfied.
Right Skew Monoidal Right-Closedness: This follows from Item 2 of
Proposition 4.4.1.1.7.
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4.4.9 Monoids With Respect to the Right Tensor Product
of Pointed Sets00FR

Proposition 4.4.9.1.1.00FS The category of monoids on
(
Sets∗,B, S0) is

isomorphic to the category of “monoids with right zero”18 and morphisms
between them.

Proof. Monoids on
(
Sets∗,B, S0): A monoid on

(
Sets∗,B, S0) consists

of:

• The Underlying Object. A pointed set (A, 0A).

• The Multiplication Morphism. A morphism of pointed sets

µA : ABA → A,

determining a right bilinear morphism of pointed sets

A×A A

(a, b) ab.

• The Unit Morphism. A morphism of pointed sets

ηA : S0 → A

picking an element 1A of A.

satisfying the following conditions:

1. Associativity. The diagram

AB (ABA)

(ABA) BA ABA

ABA A

αSets∗,B
A,A,A idABµA

µAµABidA

µA

18A monoid with right zero is defined similarly as the monoids with zero of ??.
Succinctly, they are monoids (A, µA, ηA) with a special element 0A satisfying

0Aa = 0A

for each a ∈ A.

https://topological-modular-forms.github.io/the-clowder-project/tag/00FR
https://topological-modular-forms.github.io/the-clowder-project/tag/00FS
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2. Left Unitality. The diagram

A S0 BA

A ABA

λSets∗,B
A

ηA×idA

µA

commutes.

3. Right Unitality. The diagram

AB S0 ABA

A

idA×ηA

ρSets∗,B
A

µA

commutes.

Being a right-bilinear morphism of pointed sets, the multiplication map
satisfies

0Aa = 0A
for each a ∈ A. Now, the associativity, left unitality, and right unitality
conditions act on elements as follows:

1. Associativity. The associativity condition acts as

(aB b) B c

abB c (ab)c

aB (bB c)

(aB b) B c aB bc

a(bc)

This gives
(ab)c = a(bc)

for each a, b, c ∈ A.

2. Left Unitality. The left unitality condition acts as

a

a

a 1 B a

1Aa 1A B a
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This gives
1Aa = a

for each a ∈ A.

3. Right Unitality. The right unitality condition acts:

(a) On 1 B 0 as

1 B 0

0A

aB 0 aB 0A

a0A.

(b) On aB 1 as

aB 1

a

aB 1 aB 1A

a1A.

This gives

a1A = a,

a0A = 0A

for each a ∈ A.

Thus we see that monoids with respect to B are exactly monoids with
right zero.
Morphisms of Monoids on

(
Sets∗,B, S0): A morphism of monoids on(

Sets∗,B, S0) from (A,µA, ηA, 0A) to (B,µB, ηB, 0B) is a morphism of
pointed sets

f : (A, 0A) → (B, 0B)

satisfying the following conditions:

1. Compatibility With the Multiplication Morphisms. The diagram

ABA B BB

A B

fBf

µA µB

f

commutes.
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2. Compatibility With the Unit Morphisms. The diagram

S0 A

B

ηA

ηB
f

commutes.

These act on elements as

aB b

ab f(ab)

aB b f(a) B f(b)

f(a)f(b)

and
0

0B

0 0A

f(0A)

and
1

1B

1 1A

f(1A)

giving

f(ab) = f(a)f(b),
f(0A) = 0B,
f(1A) = 1B,

for each a, b ∈ A, which is exactly a morphism of monoids with right
zero.
Identities and Composition: Similarly, the identities and composition of
Mon

(
Sets∗,B, S0) can be easily seen to agree with those of monoids with

right zero, which finishes the proof.

4.5 The Smash Product of Pointed Sets00FT

4.5.1 Foundations00FU

Let (X,x0) and (Y, y0) be pointed sets.

https://topological-modular-forms.github.io/the-clowder-project/tag/00FT
https://topological-modular-forms.github.io/the-clowder-project/tag/00FU
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Definition 4.5.1.1.1.00FV The smash product of (X,x0) and (Y, y0)19 is
the pointed set X ∧ Y 20 satisfying the bijection

Sets∗(X ∧ Y, Z) ∼= Hom⊗
Sets∗

(X × Y, Z),

naturally in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗).

Remark 4.5.1.1.2.00FW That is to say, the smash product of pointed sets is
defined so as to induce a bijection between the following data:

• Pointed maps f : X ∧ Y → Z.

• Maps of sets f : X × Y → Z satisfying

f(x0, y) = z0,

f(x, y0) = z0

for each x ∈ X and each y ∈ Y .

Remark 4.5.1.1.3.00FX The smash product of pointed sets may be described
as follows:

• The smash product of (X,x0) and (Y, y0) is the pair ((X ∧ Y, x0 ∧ y0), ι)
consisting of

– A pointed set (X ∧ Y, x0 ∧ y0);
– A bilinear morphism of pointed sets ι : (X × Y, (x0, y0)) →
X ∧ Y ;

satisfying the following universal property:

(UP) Given another such pair ((Z, z0), f) consisting of
∗ A pointed set (Z, z0);
∗ A bilinear morphism of pointed sets f : (X × Y, (x0, y0)) →
X ∧ Y ;

there exists a unique morphism of pointed sets X ∧ Y
∃!−−→ Z

making the diagram

X ∧ Y

X × Y Z

∃!

f

ι

commute.
19Further Terminology: In the context of monoids with zero as models for F1-

algebras, the smash product X ∧ Y is also called the tensor product of F1-modules
of (X, x0) and (Y, y0) or the tensor product of (X, x0) and (Y, y0) over F1.

20Further Notation: In the context of monoids with zero as models for F1-algebras,

https://topological-modular-forms.github.io/the-clowder-project/tag/00FV
https://topological-modular-forms.github.io/the-clowder-project/tag/00FW
https://topological-modular-forms.github.io/the-clowder-project/tag/00FX
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Construction 4.5.1.1.4.00FY Concretely, the smash product of (X,x0)
and (Y, y0) is the pointed set (X ∧ Y, x0 ∧ y0) consisting of

• The Underlying Set. The set X ∧ Y defined by

X ∧ Y ∼= (X × Y )/∼R,

where ∼R is the equivalence relation on X×Y obtained by declaring

(x0, y) ∼R

(
x0, y

′),
(x, y0) ∼R

(
x′, y0

)
for each x, x′ ∈ X and each y, y′ ∈ Y ;

• The Basepoint. The element [(x0, y0)] of X ∧ Y given by the
equivalence class of (x0, y0) under the equivalence relation ∼ on
X × Y .

Proof. By Item 6 of Proposition 7.5.2.1.3, we have a natural bijection

Sets∗(X ∧ Y, Z) ∼= HomR
Sets(X × Y, Z).

Now, by definition, HomR
Sets(X × Y, Z) is the set

HomR
Sets(X × Y, Z) def=

f ∈ HomSets(X × Y, Z)

∣∣∣∣∣∣∣
for each x, y ∈ X, if
(x, y) ∼R (x′, y′), then
f(x, y) = f(x′, y′)

.
However, the condition (x, y) ∼R (x′, y′) only holds when:

1. We have x = x′ and y = y′.

2. The following conditions are satisfied:

(a) We have x = x0 or y = y0.
(b) We have x′ = x0 or y′ = y0.

So, given f ∈ HomSets(X × Y, Z) with a corresponding f : X ∧ Y → Z,
the latter case above implies

f(x0, y) = f(x, y0)
= f(x0, y0),

and since f : X ∧ Y → Z is a pointed map, we have

f(x0, y0) = f(x0, y0)
= z0.

https://topological-modular-forms.github.io/the-clowder-project/tag/00FY
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Thus the elements f in HomSets(X × Y, Z) are precisely those functions
f : X × Y → Z satisfying the equalities

f(x0, y) = z0,

f(x, y0) = z0

for each x ∈ X and each y ∈ Y , giving an equality

HomR
Sets(X × Y, Z) = Hom⊗

Sets∗
(X × Y, Z)

of sets, which when composed with our earlier isomorphism

Sets∗(X ∧ Y, Z) ∼= HomR
Sets(X × Y, Z)

gives our desired natural bijection, finishing the proof.

Remark 4.5.1.1.5.00FZ It is also somewhat common to write

X ∧ Y
def= X × Y

X ∨ Y
,

identifying X ∨ Y with the subspace ({x0} × Y ) ∪ (X × {y0}) of X × Y ,
and having the quotient be defined by declaring (x, y) ∼ (x′, y′) iff we
have (x, y), (x′, y′) ∈ X ∨ Y .

Notation 4.5.1.1.6.00G0 We write x ∧ y for the element [(x, y)] of

X ∧ Y ∼= X × Y/∼.

Remark 4.5.1.1.7.00G1 Employing the notation introduced in Notation 4.5.1.1.6,
we have

x0 ∧ y0 = x ∧ y0,

= x0 ∧ y

for each x ∈ X and each y ∈ Y , and

x ∧ y0 = x′ ∧ y0,

x0 ∧ y = x0 ∧ y′

for each x, x′ ∈ X and each y, y′ ∈ Y .

Example 4.5.1.1.8.00G2 Here are some examples of smash products of
pointed sets.

the smash product X ∧ Y is also denoted X ⊗F1 Y .

https://topological-modular-forms.github.io/the-clowder-project/tag/00FZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00G0
https://topological-modular-forms.github.io/the-clowder-project/tag/00G1
https://topological-modular-forms.github.io/the-clowder-project/tag/00G2
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1. Smashing With pt.00G3 For any pointed set X, we have isomorphisms
of pointed sets

pt ∧X ∼= pt,
X ∧ pt ∼= pt.

2. Smashing With S000G4 . For any pointed set X, we have isomorphisms
of pointed sets

S0 ∧X ∼= X,

X ∧ S0 ∼= X.

Proposition 4.5.1.1.9.00G5 Let (X,x0) and (Y, y0) be pointed sets.

1. Functoriality.00G6 The assignments X,Y, (X,Y ) 7→ X ∧ Y define
functors

X ∧ − : Sets∗ → Sets∗,

− ∧ Y : Sets∗ → Sets∗,

−1 ∧ −2 : Sets∗ × Sets∗ → Sets∗.

In particular, given pointed maps

f : (X,x0) → (A, a0),
g : (Y, y0) → (B, b0),

the induced map

f ∧ g : X ∧ Y → A ∧B

is given by
[f ∧ g](x ∧ y) def= f(x) ∧ g(y)

for each x ∧ y ∈ X ∧ Y .

2. Adjointness.00G7 We have adjunctions

(X ∧ − a Sets∗(X,−)) :
X∧−

Sets∗(X,−)

aSets∗ Sets∗,

(− ∧ Y a Sets∗(Y,−)) :
−∧Y

Sets∗(Y,−)

aSets∗ Sets∗,

witnessed by bijections

HomSets∗(X ∧ Y, Z) ∼= HomSets∗(X,Sets∗(Y, Z)),
HomSets∗(X ∧ Y, Z) ∼= HomSets∗(X,Sets∗(A,Z)),

natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗).

https://topological-modular-forms.github.io/the-clowder-project/tag/00G3
https://topological-modular-forms.github.io/the-clowder-project/tag/00G4
https://topological-modular-forms.github.io/the-clowder-project/tag/00G5
https://topological-modular-forms.github.io/the-clowder-project/tag/00G6
https://topological-modular-forms.github.io/the-clowder-project/tag/00G7
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3. Enriched Adjointness.00G8 We have Sets∗-enriched adjunctions

(X ∧ − a Sets∗(X,−)) :
X∧−

Sets∗(X,−)

aSets∗ Sets∗,

(− ∧ Y a Sets∗(Y,−)) :
−∧Y

Sets∗(Y,−)
aSets∗ Sets∗,

witnessed by isomorphisms of pointed sets

Sets∗(X ∧ Y, Z) ∼= Sets∗(X,Sets∗(Y, Z)),
Sets∗(X ∧ Y, Z) ∼= Sets∗(X,Sets∗(A,Z)),

natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗).

4. As a Pushout.00G9 We have an isomorphism

X ∧ Y ∼= pt
∐
X∨Y

(X × Y ),

X ∧ Y X × Y

pt X ∨ Y ,

p
ι

!

natural in X,Y ∈ Obj(Sets∗), where the pushout is taken in Sets,
and the embedding ι : X ∨ Y ↪→ X × Y is defined following Re-
mark 4.5.1.1.5.

5. Distributivity Over Wedge Sums.00GA We have isomorphisms of pointed
sets

X ∧ (Y ∨ Z) ∼= (X ∧ Y ) ∨ (X ∧ Z),
(X ∨ Y ) ∧ Z ∼= (X ∧ Z) ∨ (Y ∧ Z),

natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗).
Proof. Item 1, Functoriality: The map f ∧ g comes from Item 4 of
Proposition 7.5.2.1.3 via the map

f ∧ g : X × Y → A ∧B

sending (x, y) to f(x) ∧ g(y), which we need to show satisfies

[f ∧ g](x, y) = [f ∧ g]
(
x′, y′)

for each (x, y), (x′, y′) ∈ X × Y with (x, y) ∼R (x′, y′), where ∼R is the
relation constructing X ∧ Y as

X ∧ Y ∼= (X × Y )/∼R

in Construction 4.5.1.1.4. The condition defining ∼ is that at least one
of the following conditions is satisfied:

https://topological-modular-forms.github.io/the-clowder-project/tag/00G8
https://topological-modular-forms.github.io/the-clowder-project/tag/00G9
https://topological-modular-forms.github.io/the-clowder-project/tag/00GA
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1. We have x = x′ and y = y′;

2. Both of the following conditions are satisfied:

(a) We have x = x0 or y = y0.
(b) We have x′ = x0 or y′ = y0.

We have five cases:

1. In the first case, we clearly have

[f ∧ g](x, y) = [f ∧ g]
(
x′, y′)

since x = x′ and y = y′.

2. If x = x0 and x′ = x0, we have

[f ∧ g](x0, y) def= f(x0) ∧ g(y)
= a0 ∧ g(y)
= a0 ∧ g

(
y′)

= f(x0) ∧ g
(
y′)

def= [f ∧ g]
(
x0, y

′).
3. If x = x0 and y′ = y0, we have

[f ∧ g](x0, y) def= f(x0) ∧ g(y)
= a0 ∧ g(y)
= a0 ∧ b0

= f
(
x′) ∧ b0

= f
(
x′) ∧ g(y0)

def= [f ∧ g]
(
x′, y0

)
.

4. If y = y0 and x′ = x0, we have

[f ∧ g](x, y0) def= f(x) ∧ g(y0)
= f(x) ∧ b0

= a0 ∧ b0

= a0 ∧ g
(
y′)

= f(x0) ∧ g
(
y′)

def= [f ∧ g]
(
x0, y

′).
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5. If y = y0 and y′ = y0, we have

[f ∧ g](x, y0) def= f(x) ∧ g(y0)
= f(x) ∧ b0

= f
(
x′) ∧ b0

= f(x) ∧ g(y0)
def= [f ∧ g]

(
x′, y0

)
.

Thus f ∧ g is well-defined. Next, we claim that ∧ preserves identities
and composition:

• Preservation of Identities. We have

[idX ∧ idY ](x ∧ y) def= idX(x) ∧ idY (y)
= x ∧ y

= [idX∧Y ](x ∧ y)

for each x ∧ y ∈ X ∧ Y , and thus

idX ∧ idY = idX∧Y .

• Preservation of Composition. Given pointed maps

f : (X,x0) →
(
X ′, x′

0
)
,

h :
(
X ′, x′

0
)

→
(
X ′′, x′′

0
)
,

g : (Y, y0) →
(
Y ′, y′

0
)
,

k :
(
Y ′, y′

0
)

→
(
Y ′′, y′′

0
)
,

we have

[(h ◦ f) ∧ (k ◦ g)](x ∧ y) def= h(f(x)) ∧ k(g(y))
def= [h ∧ k](f(x) ∧ g(y))
def= [h ∧ k]([f ∧ g](x ∧ y))
def= [(h ∧ k) ◦ (f ∧ g)](x ∧ y)

for each x ∧ y ∈ X ∧ Y , and thus

(h ◦ f) ∧ (k ◦ g) = (h ∧ k) ◦ (f ∧ g).

This finishes the proof.
Item 2, Adjointness: We prove only the adjunction − ∧ Y a Sets∗(Y,−),
witnessed by a natural bijection

HomSets∗(X ∧ Y, Z) ∼= HomSets∗(X,Sets∗(Y, Z)),
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as the proof of the adjunction X ∧ − a Sets∗(X,−) is similar. We claim
we have a bijection

Hom⊗
Sets∗

(X × Y, Z) ∼= HomSets∗(X,Sets∗(Y, Z))

natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗), impliying the desired
adjunction. Indeed, this bijection is a restriction of the bijection

Sets(X × Y, Z) ∼= Sets(X, Sets(Y, Z))

of Item 2 of Proposition 2.1.3.1.2:

• A map
ξ : X × Y → Z

in Hom⊗
Sets∗

(X × Y, Z) gets sent to the pointed map

ξ† : (X,x0) (Sets∗(Y, Z),∆z0),

x
(
ξ†
x : Y → Z

)
,

where ξ†
x : Y → Z is the map defined by

ξ†
x(y) def= ξ(x, y)

for each y ∈ Y , where:

– The map ξ† is indeed pointed, as we have

ξ†
x0(y) def= ξ(x0, y)

def= z0

for each y ∈ Y . Thus ξ†
x0 = ∆z0 and ξ† is pointed.

– The map ξ†
x indeed lies in Sets∗(Y, Z), as we have

ξ†
x(y0) def= ξ(x, y0)

def= z0.

• Conversely, a map

ξ : (X,x0) (Sets∗(Y, Z),∆z0),

x (ξx : Y → Z),

in HomSets∗(X,Sets∗(Y, Z)) gets sent to the map

ξ† : X × Y → Z

defined by
ξ†(x, y) def= ξx(y)

for each (x, y) ∈ X × Y , which indeed lies in Hom⊗
Sets∗

(X × Y, Z),
as:
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– Left Bilinearity. We have

ξ†(x0, y) def= ξx0(y)
def= ∆z0(y)
def= z0

for each y ∈ Y , since ξx0 = ∆z0 as ξ is assumed to be a pointed
map.

– Right Bilinearity. We have

ξ†(x, y0) def= ξx(y0)
def= z0

for each x ∈ X, since ξx ∈ Sets∗(Y, Z) is a morphism of
pointed sets.

This finishes the proof.
Item 3, Enriched Adjointness: This follows from Item 2 and ?? of ??.
Item 4, As a Pushout: Following the description of Remark 2.2.4.1.2, we
have

pt
∐

X∨Y (X × Y ) ∼= (pt × (X × Y ))/∼,

where ∼ identifies the elemenet ? in pt with all elements of the form
(x0, y) and (x, y0) in X×Y . Thus Item 4 of Proposition 7.5.2.1.3 coupled
with Remark 4.5.1.1.7 then gives us a well-defined map

pt
∐

X∨Y (X × Y ) → X ∧ Y

via [(?, (x, y))] 7→ x ∧ y, with inverse

X ∧ Y → pt
∐

X∨Y (X × Y )

given by x ∧ y 7→ [(?, (x, y))].
Item 5, Distributivity Over Wedge Sums: This follows from Proposi-
tion 4.5.9.1.1, ?? of ??, and the fact that ∨ is the coproduct in Sets∗
(Definition 3.3.3.1.1).

4.5.2 The Internal Hom of Pointed Sets00GB

Let (X,x0) and (Y, y0) be pointed sets.

Definition 4.5.2.1.1.00GC The internal Hom21 of pointed sets from
(X,x0) to (Y, y0) is the pointed set Sets∗((X,x0), (Y, y0))22 consisting
of:

21The pointed set Sets∗(X, Y ) is the internal Hom of Sets∗ with respect to the
smash product of Definition 4.5.1.1.1; see Item 2 of Proposition 4.5.1.1.9.

22Further Notation: Also written HomSets∗ (X, Y ).

https://topological-modular-forms.github.io/the-clowder-project/tag/00GB
https://topological-modular-forms.github.io/the-clowder-project/tag/00GC
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• The Underlying Set. The set Sets∗((X,x0), (Y, y0)) of morphisms
of pointed sets from (X,x0) to (Y, y0).

• The Basepoint. The element

∆y0 : (X,x0) → (Y, y0)

of Sets∗((X,x0), (Y, y0)) given by

∆y0(x) def= y0

for each x ∈ X.

Proof. For a proof that Sets∗ is indeed the internal Hom of Sets∗ with
respect to the smash product of pointed sets, see Item 2 of Proposi-
tion 4.5.1.1.9.

Proposition 4.5.2.1.2.00GD Let (X,x0) and (Y, y0) be pointed sets.

1. Functoriality.00GE The assignmentsX,Y, (X,Y ) 7→ Sets∗(X,Y ) define
functors

Sets∗(X,−) : Sets∗ → Sets∗,

Sets∗(−, Y ) : Setsop
∗ → Sets∗,

Sets∗(−1,−2) : Setsop
∗ × Sets∗ → Sets∗.

In particular, given pointed maps

f : (X,x0) → (A, a0),
g : (Y, y0) → (B, b0),

the induced map

Sets∗(f, g) : Sets∗(A, Y ) → Sets∗(X,B)

is given by
[Sets∗(f, g)](φ) def= g ◦ φ ◦ f

for each φ ∈ Sets∗(A, Y ).

2. Adjointness.00GF We have adjunctions

(X ∧ − a Sets∗(X,−)) :
X∧−

Sets∗(X,−)

aSets∗ Sets∗,

(− ∧ Y a Sets∗(Y,−)) :
−∧Y

Sets∗(Y,−)

aSets∗ Sets∗,

https://topological-modular-forms.github.io/the-clowder-project/tag/00GD
https://topological-modular-forms.github.io/the-clowder-project/tag/00GE
https://topological-modular-forms.github.io/the-clowder-project/tag/00GF


4.5. The Smash Product of Pointed Sets 206

witnessed by bijections

HomSets∗(X ∧ Y, Z) ∼= HomSets∗(X,Sets∗(Y, Z)),
HomSets∗(X ∧ Y, Z) ∼= HomSets∗(X,Sets∗(A,Z)),

natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗).

3. Enriched Adjointness.00GG We have Sets∗-enriched adjunctions

(X ∧ − a Sets∗(X,−)) :
X∧−

Sets∗(X,−)

aSets∗ Sets∗,

(− ∧ Y a Sets∗(Y,−)) :
−∧Y

Sets∗(Y,−)

aSets∗ Sets∗,

witnessed by isomorphisms of pointed sets

Sets∗(X ∧ Y, Z) ∼= Sets∗(X,Sets∗(Y, Z)),
Sets∗(X ∧ Y, Z) ∼= Sets∗(X,Sets∗(A,Z)),

natural in (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗).

Proof. Item 1, Functoriality: This follows from Item 1 of Proposi-
tion 2.3.5.1.2 and from the equalities

g ◦ ∆y0 = ∆z0 ,

∆y0 ◦ f = ∆y0

for morphisms f : (K, k0) → (X,x0) and g : (Y, y0) → (Z, z0), which
guarantee pre- and postcomposition by morphisms of pointed sets to also
be morphisms of pointed sets.
Item 2, Adjointness: This is a repetition of Item 2 of Proposition 4.5.1.1.9,
and is proved there.
Item 3, Enriched Adjointness: This is a repetition of Item 3 of Proposi-
tion 4.5.1.1.9, and is proved there.

4.5.3 The Monoidal Unit00GH

Definition 4.5.3.1.1.00GJ The monoidal unit of the smash product of
pointed sets is the functor

1Sets∗ : pt → Sets∗

defined by
1Sets∗

def= S0.

https://topological-modular-forms.github.io/the-clowder-project/tag/00GG
https://topological-modular-forms.github.io/the-clowder-project/tag/00GH
https://topological-modular-forms.github.io/the-clowder-project/tag/00GJ
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4.5.4 The Associator00GK

Definition 4.5.4.1.1.00GL The associator of the smash product of
pointed sets is the natural isomorphism

αSets∗ : ∧ ◦ (∧ × idSets∗) ∼=⇒ ∧ ◦ (idSets∗ × ∧) ◦ αCats
Sets∗,Sets∗,Sets∗ ,

as in the diagram

Sets∗ × (Sets∗ × Sets∗)

(Sets∗ × Sets∗) × Sets∗ Sets∗ × Sets∗

Sets∗ × Sets∗ Sets∗,

αCats
Sets∗,Sets∗,Sets∗ ∼

id×∧

∧∧×id

∧

αSets∗

whose component

αSets∗
X,Y,Z : (X ∧ Y ) ∧ Z

∼=−→ X ∧ (Y ∧ Z)

at (X,x0), (Y, y0), (Z, z0) ∈ Obj(Sets∗) is given by

αSets∗
X,Y,Z((x ∧ y) ∧ z) def= x ∧ (y ∧ z)

for each (x ∧ y) ∧ z ∈ (X ∧ Y ) ∧ Z.

Proof. Well-Definedness: Let [((x, y), z)] = [((x′, y′), z′)] be an element
in (X ∧ Y ) ∧ Z. Then either:

1. We have x = x′, y = y′, and z = z′.

2. Both of the following conditions are satisfied:

(a) We have x = x0 or y = y0 or z = z0.
(b) We have x′ = x0 or y′ = y0 or z′ = z0.

In the first case, αSets∗
X,Y,Z clearly sends both elements to the same element

in X ∧ (Y ∧ Z). Meanwhile, in the latter case both elements are equal
to the basepoint (x0 ∧ y0) ∧ z0 of (X ∧ Y ) ∧ Z, which gets sent to the
basepoint x0 ∧ (y0 ∧ z0) of X ∧ (Y ∧ Z).
Being a Morphism of Pointed Sets: As just mentioned, we have

αSets∗
X,Y,Z((x0 ∧ y0) ∧ z0) def= x0 ∧ (y0 ∧ z0),

and thus αSets∗
X,Y,Z is a morphism of pointed sets.

https://topological-modular-forms.github.io/the-clowder-project/tag/00GK
https://topological-modular-forms.github.io/the-clowder-project/tag/00GL
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Invertibility: Clearly, the inverse of αSets∗
X,Y,Z is given by the morphism

αSets∗,−1
X,Y,Z : X ∧ (Y ∧ Z)

∼=−→ (X ∧ Y ) ∧ Z

defined by
αSets∗,−1
X,Y,Z (x ∧ (y ∧ z)) def= (x ∧ y) ∧ z

for each x ∧ (y ∧ z) ∈ X ∧ (Y ∧ Z).
Naturality: We need to show that, given morphisms of pointed sets

f : (X,x0) →
(
X ′, x′

0
)
,

g : (Y, y0) →
(
Y ′, y′

0
)
,

h : (Z, z0) →
(
Z ′, z′

0
)

the diagram

(X ∧ Y ) ∧ Z (X ′ ∧ Y ′) ∧ Z ′

X ∧ (Y ∧ Z) X ′ ∧ (Y ′ ∧ Z ′)

(f∧g)∧h

αSets∗
X,Y,Z

αSets∗
X′,Y ′,Z′

f∧(g∧h)

commutes. Indeed, this diagram acts on elements as

(x ∧ y) ∧ z (f(x) ∧ g(y)) ∧ h(z)

x ∧ (y ∧ z) f(x) ∧ (g(y) ∧ h(z))

and hence indeed commutes, showing αSets∗ to be a natural transforma-
tion.
Being a Natural Isomorphism: Since αSets∗ is natural and αSets∗,−1 is
a componentwise inverse to αSets∗ , it follows from Item 2 of Proposi-
tion 8.8.6.1.2 that αSets∗,−1 is also natural. Thus αSets∗ is a natural
isomorphism.

4.5.5 The Left Unitor00GM

https://topological-modular-forms.github.io/the-clowder-project/tag/00GM
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Definition 4.5.5.1.1.00GN The left unitor of the smash product of
pointed sets is the natural isomorphism

λSets∗ : ∧ ◦
(
1Sets∗ × idSets∗

) ∼=⇒ λCats2
Sets∗

pt × Sets∗ Sets∗ × Sets∗

Sets∗,

1Sets∗ ×id

λ
Cats2
Sets∗

∧
λSets∗

whose component
λSets∗
X : S0 ∧X

∼=−→ X

at X ∈ Obj(Sets∗) is given by

0 ∧ x 7→ x0,

1 ∧ x 7→ x.

Proof. Well-Definedness: Let [(x, y)] = [(x′, y′)] be an element in S0 ∧X.
Then either:

1. We have x = x′ and y = y′.

2. Both of the following conditions are satisfied:

(a) We have x = 0 or y = x0.
(b) We have x′ = 0 or y′ = x0.

In the first case, λSets∗
X clearly sends both elements to the same element

in X. Meanwhile, in the latter case both elements are equal to the
basepoint 0 ∧ x0 of S0 ∧X, which gets sent to the basepoint x0 of X.
Being a Morphism of Pointed Sets: As just mentioned, we have

λSets∗
X (0 ∧ x0) def= x0,

and thus λSets∗
X is a morphism of pointed sets.

Invertibility: The inverse of λSets∗
X is the morphism

λSets∗,−1
X : X

∼=−→ S0 ∧X

defined by
λSets∗,−1
X (x) def= 1 ∧ x

for each x ∈ X. Indeed:

https://topological-modular-forms.github.io/the-clowder-project/tag/00GN
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• Invertibility I. We have[
λSets∗,−1
X ◦ λSets∗

X

]
(0 ∧ x) = λSets∗,−1

X

(
λSets∗
X (0 ∧ x)

)
= λSets∗,−1

X (x0)
= 1 ∧ x0

= 0 ∧ x,

and [
λSets∗,−1
X ◦ λSets∗

X

]
(1 ∧ x) = λSets∗,−1

X

(
λSets∗
X (1 ∧ x)

)
= λSets∗,−1

X (x)
= 1 ∧ x

for each x ∈ X, and thus we have

λSets∗,−1
X ◦ λSets∗

X = idS0∧X .

• Invertibility II. We have[
λSets∗
X ◦ λSets∗,−1

X

]
(x) = λSets∗

X

(
λSets∗,−1
X (x)

)
= λSets∗,−1

X (1 ∧ x)
= x

for each x ∈ X, and thus we have

λSets∗
X ◦ λSets∗,−1

X = idX .

This shows λSets∗
X to be invertible.

Naturality: We need to show that, given a morphism of pointed sets

f : (X,x0) → (Y, y0),

the diagram

S0 ∧X S0 ∧ Y

X Y

idS0 ∧f

λSets∗
X λSets∗

Y

f

commutes. Indeed, this diagram acts on elements as

0 ∧ x

x0 f(x0)

0 ∧ x 0 ∧ f(x)

y0



4.5. The Smash Product of Pointed Sets 211

and
1 ∧ x 1 ∧ f(x)

x f(x)

and hence indeed commutes, showing λSets∗ to be a natural transforma-
tion.
Being a Natural Isomorphism: Since λSets∗ is natural and λSets∗,−1 is
a componentwise inverse to λSets∗ , it follows from Item 2 of Proposi-
tion 8.8.6.1.2 that λSets∗,−1 is also natural. Thus λSets∗ is a natural
isomorphism.

4.5.6 The Right Unitor00GP

Definition 4.5.6.1.1.00GQ The right unitor of the smash product of
pointed sets is the natural isomorphism

ρSets∗ : ∧ ◦
(
id × 1Sets∗

) ∼=⇒ ρCats2
Sets∗

,

Sets∗ × pt Sets∗ × Sets∗

Sets∗,

id×1Sets∗

ρ
Cats2
Sets∗

∧

ρSets∗

whose component
ρSets∗
X : X ∧ S0 ∼=−→ X

at X ∈ Obj(Sets∗) is given by

x ∧ 0 7→ x0,

x ∧ 1 7→ x.

Proof. Well-Definedness: Let [(x, y)] = [(x′, y′)] be an element in X ∧ S0.
Then either:

1. We have x = x′ and y = y′.

2. Both of the following conditions are satisfied:

(a) We have x = x0 or y = 0.
(b) We have x′ = x0 or y′ = 0.

https://topological-modular-forms.github.io/the-clowder-project/tag/00GP
https://topological-modular-forms.github.io/the-clowder-project/tag/00GQ
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In the first case, ρSets∗
X clearly sends both elements to the same element in

X. Meanwhile, in the latter case both elements are equal to the basepoint
x0 ∧ 0 of X ∧ S0, which gets sent to the basepoint x0 of X.
Being a Morphism of Pointed Sets: As just mentioned, we have

ρSets∗
X (x0 ∧ 0) def= x0,

and thus ρSets∗
X is a morphism of pointed sets.

Invertibility: The inverse of ρSets∗
X is the morphism

ρSets∗,−1
X : X

∼=−→ X ∧ S0

defined by
ρSets∗,−1
X (x) def= x ∧ 1

for each x ∈ X. Indeed:

• Invertibility I. We have[
ρSets∗,−1
X ◦ ρSets∗

X

]
(x ∧ 0) = ρSets∗,−1

X

(
ρSets∗
X (x ∧ 0)

)
= ρSets∗,−1

X (x0)
= x0 ∧ 1
= x ∧ 0,

and [
ρSets∗,−1
X ◦ ρSets∗

X

]
(x ∧ 1) = ρSets∗,−1

X

(
ρSets∗
X (x ∧ 1)

)
= ρSets∗,−1

X (x)
= x ∧ 1

for each x ∈ X, and thus we have

ρSets∗,−1
X ◦ ρSets∗

X = idX∧S0 .

• Invertibility II. We have[
ρSets∗
X ◦ ρSets∗,−1

X

]
(x) = ρSets∗

X

(
ρSets∗,−1
X (x)

)
= ρSets∗,−1

X (x ∧ 1)
= x

for each x ∈ X, and thus we have

ρSets∗
X ◦ ρSets∗,−1

X = idX .
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This shows ρSets∗
X to be invertible.

Naturality: We need to show that, given a morphism of pointed sets

f : (X,x0) → (Y, y0),

the diagram

X ∧ S0 Y ∧ S0

X Y

f∧idS0

ρSets∗
X ρSets∗

Y

f

commutes. Indeed, this diagram acts on elements as

x ∧ 0

x0 f(x0)

x ∧ 0 f(x) ∧ 0

y0

and
x ∧ 1 f(x) ∧ 1

x f(x)

and hence indeed commutes, showing ρSets∗ to be a natural transforma-
tion.
Being a Natural Isomorphism: Since ρSets∗ is natural and ρSets∗,−1 is
a componentwise inverse to ρSets∗ , it follows from Item 2 of Proposi-
tion 8.8.6.1.2 that ρSets∗,−1 is also natural. Thus ρSets∗ is a natural
isomorphism.

4.5.7 The Symmetry00GR

Definition 4.5.7.1.1.00GS The symmetry of the smash product of
pointed sets is the natural isomorphism

σSets∗ : ∧ ∼=⇒ ∧ ◦ σCats2
Sets∗,Sets∗

,

Sets∗ × Sets∗ Sets∗,

Sets∗ × Sets∗

∧

σ
Cats2
Sets∗,Sets∗ ∧

σSets∗

whose component
σSets∗
X,Y : X ∧ Y

∼=−→ Y ∧X

https://topological-modular-forms.github.io/the-clowder-project/tag/00GR
https://topological-modular-forms.github.io/the-clowder-project/tag/00GS
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at X,Y ∈ Obj(Sets∗) is defined by

σSets∗
X,Y (x ∧ y) def= y ∧ x

for each x ∧ y ∈ X ∧ Y .

Proof. Well-Definedness: Let [(x, y)] = [(x′, y′)] be an element in X ∧ Y .
Then either:

1. We have x = x′ and y = y′.

2. Both of the following conditions are satisfied:

(a) We have x = x0 or y = y0.
(b) We have x′ = x0 or y′ = y0.

In the first case, σSets∗
X clearly sends both elements to the same element

in X. Meanwhile, in the latter case both elements are equal to the
basepoint x0 ∧ y0 of X ∧ Y , which gets sent to the basepoint y0 ∧ x0 of
Y ∧X.
Being a Morphism of Pointed Sets: As just mentioned, we have

σSets∗
X (x0 ∧ y0) def= y0 ∧ x0,

and thus σSets∗
X is a morphism of pointed sets.

Invertibility: Clearly, the inverse of σSets∗
X,Y is given by the morphism

σSets∗,−1
X,Y : Y ∧X

∼=−→ X ∧ Y

defined by
σSets∗,−1
X,Y (y ∧ x) def= x ∧ y

for each y ∧ x ∈ Y ∧X.
Naturality: We need to show that, given morphisms of pointed sets

f : (X,x0) → (A, a0),
g : (Y, y0) → (B, b0)

the diagram
X ∧ Y A ∧B

Y ∧X B ∧A

f∧g

σSets∗
X,Y σSets∗

A,B

g∧f
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commutes. Indeed, this diagram acts on elements as

x ∧ y f(x) ∧ g(y)

y ∧ x g(y) ∧ f(x)

and hence indeed commutes, showing σSets∗ to be a natural transforma-
tion.
Being a Natural Isomorphism: Since σSets∗ is natural and σSets∗,−1 is
a componentwise inverse to σSets∗ , it follows from Item 2 of Proposi-
tion 8.8.6.1.2 that σSets∗,−1 is also natural. Thus σSets∗ is a natural
isomorphism.

4.5.8 The Diagonal00GT

Definition 4.5.8.1.1.00GU The diagonal of the smash product of
pointed sets is the natural transformation

∆∧ : idSets∗ =⇒ ∧ ◦ ∆Cats2
Sets∗

,

Sets∗ Sets∗

Sets∗ ∧ Sets∗,

idSets∗

∆Cats2
Sets∗ ∧

∆∧

whose component

∆∧
X : (X,x0) → (X ∧X,x0 ∧ x0)

at (X,x0) ∈ Obj(Sets∗) is given by the composition

(X,x0) (X ×X, (x0, x0))

((X ×X)/∼, [(x0, x0)])

(X ∧X,x0 ∧ x0)

∆∧
X

def

in Sets∗, and thus by
∆∧
X(x) def= x ∧ x

for each x ∈ X.

Proof. Being a Morphism of Pointed Sets: We have

∆∧
X(x0) def= x0 ∧ x0,

and thus ∆∧
X is a morphism of pointed sets.

https://topological-modular-forms.github.io/the-clowder-project/tag/00GT
https://topological-modular-forms.github.io/the-clowder-project/tag/00GU
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Naturality: We need to show that, given a morphism of pointed sets

f : (X,x0) → (Y, y0),

the diagram
X Y

X ∧X Y ∧ Y

f

∆∧
X ∆∧

Y

f∧f

commutes. Indeed, this diagram acts on elements as

x f(x)

x ∧ x f(x) ∧ f(x)

and hence indeed commutes, showing ∆∧ to be natural.

Proposition 4.5.8.1.2.00GV Let (X,x0) ∈ Obj(Sets∗).

1. Monoidality.00GW The diagonal

∆∧ : idSets∗ =⇒ ∧ ◦ ∆Cats2
Sets∗

,

of the smash product of pointed sets is a monoidal natural trans-
formation:

(a) Compatibility With Strong Monoidality Constraints.00GX For each
(X,x0), (Y, y0) ∈ Obj(Sets∗), the diagram

X ∧ Y (X ∧X) ∧ (Y ∧ Y )

(X ∧ Y ) ∧ (X ∧ Y )

∆∧
X∧∆∧

Y

∆∧
X∧Y

∼

commutes.
(b) Compatibility With Strong Unitality Constraints.00GY The dia-

grams

S0 S0 ∧ S0

S0

∆∧
S0

λSets∗
S0

S0 S0 ∧ S0

S0

∆∧
S0

ρSets∗
S0

https://topological-modular-forms.github.io/the-clowder-project/tag/00GV
https://topological-modular-forms.github.io/the-clowder-project/tag/00GW
https://topological-modular-forms.github.io/the-clowder-project/tag/00GX
https://topological-modular-forms.github.io/the-clowder-project/tag/00GY
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commute, i.e. we have

∆∧
S0 = λSets∗,−1

S0

= ρSets∗,−1
S0 ,

where we recall that the equalities

λSets∗
S0 = ρSets∗

S0 ,

λSets∗,−1
S0 = ρSets∗,−1

S0

are always true in any monoidal category by ?? of ??.

2. The Diagonal of the Unit.00GZ The component

∆∧
S0 : S0 ∼=−→ S0 ∧ S0

of ∆∧ at S0 is an isomorphism.

Proof. Item 1, Monoidality: We claim that ∆∧ is indeed monoidal:

1. Item 1a: Compatibility With Strong Monoidality Constraints: We
need to show that the diagram

X ∧ Y (X ∧X) ∧ (Y ∧ Y )

(X ∧ Y ) ∧ (X ∧ Y )

∆∧
X∧∆∧

Y

∆∧
X∧Y

∼

commutes. Indeed, this diagram acts on elements as

x ∧ y (x ∧ x) ∧ (y ∧ y)

(x ∧ y) ∧ (x ∧ y)

and hence indeed commutes.

2. Item 1b: Compatibility With Strong Unitality Constraints: As
shown in the proof of Definition 4.5.5.1.1, the inverse of the left
unitor of Sets∗ with respect to to the smash product of pointed
sets at (X,x0) ∈ Obj(Sets∗) is given by

λSets∗,−1
X (x) def= 1 ∧ x

https://topological-modular-forms.github.io/the-clowder-project/tag/00GZ
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for each x ∈ X, so when X = S0, we have

λSets∗,−1
S0 (0) def= 1 ∧ 0,

λSets∗,−1
S0 (1) def= 1 ∧ 1.

But since 1 ∧ 0 = 0 ∧ 0 and

∆∧
S0(0) def= 0 ∧ 0,

∆∧
S0(1) def= 1 ∧ 1,

it follows that we indeed have ∆∧
S0 = λSets∗,−1

S0 .

This finishes the proof.
Item 2, The Diagonal of the Unit: This follows from Item 1 and the
invertibility of the left/right unitor of Sets∗ with respect to ∧, proved
in the proof of Definition 4.5.5.1.1 for the left unitor or the proof of
Definition 4.5.6.1.1 for the right unitor.

4.5.9 The Monoidal Structure on Pointed Sets Associated
to ∧00H0

Proposition 4.5.9.1.1.00H1 The category Sets∗ admits a closed monoidal
category with diagonals structure consisting of

• The Underlying Category. The category Sets∗ of pointed sets;

• The Monoidal Product. The smash product functor

∧ : Sets∗ × Sets∗ → Sets∗

of Item 1 of Proposition 4.5.1.1.9;

• The Internal Hom. The internal Hom functor

Sets∗ : Setsop
∗ × Sets∗ → Sets∗

of Item 1 of Proposition 4.5.2.1.2;

• The Monoidal Unit. The functor

1Sets∗ : pt → Sets∗

of Definition 4.5.3.1.1;

• The Associators. The natural isomorphism

αSets∗ : ∧ ◦ (∧ × idSets∗) ∼=⇒ ∧ ◦ (idSets∗ × ∧) ◦ αCats
Sets∗,Sets∗,Sets∗

of Definition 4.5.4.1.1;

https://topological-modular-forms.github.io/the-clowder-project/tag/00H0
https://topological-modular-forms.github.io/the-clowder-project/tag/00H1
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• The Left Unitors. The natural isomorphism

λSets∗ : ∧ ◦
(
1Sets∗ × idSets∗

) ∼=⇒ λCats2
Sets∗

of Definition 4.5.5.1.1;

• The Right Unitors. The natural isomorphism

ρSets∗ : ∧ ◦
(
id × 1Sets∗

) ∼=⇒ ρCats2
Sets∗

of Definition 4.5.6.1.1;

• The Symmetry. The natural isomorphism

σSets∗ : ∧ ∼=⇒ ∧ ◦ σCats2
Sets∗,Sets∗

of Definition 4.5.7.1.1;

• The Diagonals. The monoidal natural transformation

∆∧ : idSets∗ =⇒ ∧ ◦ ∆Cats2
Sets∗

of Definition 4.5.8.1.1.

Proof. The Pentagon Identity: Let (W,w0), (X,x0), (Y, y0) and (Z, z0)
be pointed sets. We have to show that the diagram

(W ∧ (X ∧ Y )) ∧ Z

((W ∧X) ∧ Y ) ∧ Z W ∧ ((X ∧ Y ) ∧ Z)

(W ∧X) ∧ (Y ∧ Z) W ∧ (X ∧ (Y ∧ Z))

αSets∗
W,X,Y ∧idZ αSets∗

W,X∧Y,Z

idW ∧αSets∗
X,Y,ZαSets∗

W ∧X,Y,Z

αSets∗
W,X,Y ∧Z
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commutes. Indeed, this diagram acts on elements as

(w ∧ (x ∧ y)) ∧ z

((w ∧ x) ∧ y) ∧ z w ∧ ((x ∧ y) ∧ z)

(w ∧ x) ∧ (y ∧ z) w ∧ (x ∧ (y ∧ z))

and thus we see that the pentagon identity is satisfied.
The Triangle Identity: Let (X,x0) and (Y, y0) be pointed sets. We have
to show that the diagram

(
X ∧ S0) ∧ Y X ∧

(
S0 ∧ Y

)

X ∧ Y

αSets∗
X,S0,Y

ρSets∗
X ∧idY idX∧λSets∗

Y

commutes. Indeed, this diagram acts on elements as

(x ∧ 0) ∧ y

x0 ∧ y

(x ∧ 0) ∧ y x ∧ (0 ∧ y)

x ∧ y0

and
(x ∧ 1) ∧ y x ∧ (1 ∧ y)

x ∧ y,

and thus we see that the triangle identity is satisfied.
The Left Hexagon Identity: Let (X,x0), (Y, y0), and (Z, z0) be pointed
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sets. We have to show that the diagram

(X ∧ Y ) ∧ Z

X ∧ (Y ∧ Z) (Y ∧X) ∧ Z

(Y ∧ Z) ∧X Y ∧ (X ∧ Z)

Y ∧ (Z ∧X)

αSets∗
X,Y,Z βSets∗

X,Y ∧idZ

βSets∗
X,Y ∧Z αSets∗

Y,X,Z

αSets∗
Y,Z,X idY ∧βSets∗

X,Z

commutes. Indeed, this diagram acts on elements as

(x ∧ y) ∧ z

x ∧ (y ∧ z) (y ∧ x) ∧ z

(y ∧ z) ∧ x y ∧ (x ∧ z)

y ∧ (z ∧ x)

and thus we see that the left hexagon identity is satisfied.
The Right Hexagon Identity: Let (X,x0), (Y, y0), and (Z, z0) be pointed
sets. We have to show that the diagram

X ∧ (Y ∧ Z)

(X ∧ Y ) ∧ Z X ∧ (Z ∧ Y )

Z ∧ (X ∧ Y ) (X ∧ Z) ∧ Y

(Z ∧X) ∧ Y

(
αSets∗

X,Y,Z

)−1
idX∧βSets∗

Y,Z

βSets∗
X∧Y,Z

(
αSets∗

X,Z,Y

)−1

(
αSets∗

Z,X,Y

)−1
βSets∗

X,Z ∧idY
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commutes. Indeed, this diagram acts on elements as

x ∧ (y ∧ z)

(x ∧ y) ∧ z x ∧ (z ∧ y)

z ∧ (x ∧ y) (x ∧ z) ∧ y

(z ∧ x) ∧ y

and thus we see that the right hexagon identity is satisfied.
Monoidal Closedness: This follows from Item 2 of Proposition 4.5.1.1.9.
Existence of Monoidal Diagonals: This follows from Items 1 and 2 of
Proposition 4.5.8.1.2.

4.5.10 Universal Properties of the Smash Product of Pointed
Sets I00H2

Theorem 4.5.10.1.1.00H3 The symmetric monoidal structure on the category
Sets∗ is uniquely determined by the following requirements:

1. Two-Sided Preservation of Colimits. The smash product

∧ : Sets∗ × Sets∗ → Sets∗

of Sets∗ preserves colimits separately in each variable.

2. The Unit Object Is S0. We have 1Sets∗ = S0.

Proof. Omitted.

4.5.11 Universal Properties of the Smash Product of Pointed
Sets II00H4

Theorem 4.5.11.1.1.00H5 The symmetric monoidal structure on the category
Sets∗ is the unique symmetric monoidal structure on Sets∗ such that the
free pointed set functor

(−)+ : Sets → Sets∗

admits a symmetric monoidal structure.

Proof. See [GGN15, Theorem 5.1].

https://topological-modular-forms.github.io/the-clowder-project/tag/00H2
https://topological-modular-forms.github.io/the-clowder-project/tag/00H3
https://topological-modular-forms.github.io/the-clowder-project/tag/00H4
https://topological-modular-forms.github.io/the-clowder-project/tag/00H5
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4.5.12 Monoids With Respect to the Smash Product of
Pointed Sets00H6

Proposition 4.5.12.1.1.00H7 The category of monoids on
(
Sets∗,∧, S0) is

isomorphic to the category of monoids with zero and morphisms between
them.

Proof. See ??, in particular ??, ??, and ??.

4.5.13 Comonoids With Respect to the Smash Product of
Pointed Sets00H8

Proposition 4.5.13.1.1.00H9 The symmetric monoidal functor(
(−)+, (−)+,×, (−)+,×

1

)
: (Sets,×,pt) →

(
Sets∗,∧, S0

)
,

of Item 4 of Proposition 3.4.1.1.2 lifts to an equivalence of categories

CoMon
(
Sets∗,∧, S0

) eq.∼= CoMon(Sets,×,pt)
∼= Sets.

Proof. See [PS19, Lemma 2.4].

4.6 Miscellany00HA

4.6.1 The Smash Product of a Family of Pointed Sets00HB

Let
{(
Xi, x

i
0
)}
i∈I be a family of pointed sets.

Definition 4.6.1.1.1.00HC The smash product of the family
{(
Xi, x

i
0
)}
i∈I

is the pointed set
∧
i∈I Xi consisting of:

• The Underlying Set. The set
∧
i∈I Xi defined by

∧
i∈I

Xi
def=
(∏
i∈I

Xi

)
/∼,

where ∼ is the equivalence relation on
∏
i∈I Xi obtained by declaring

(xi)i∈I ∼ (yi)i∈I
if there exist i0 ∈ I such that xi0 = x0 and yi0 = y0, for each
(xi)i∈I , (yi)i∈I ∈

∏
i∈I Xi.

• The Basepoint. The element
[
(x0)i∈I

]
of
∧
i∈I Xi.

Appendices

https://topological-modular-forms.github.io/the-clowder-project/tag/00H6
https://topological-modular-forms.github.io/the-clowder-project/tag/00H7
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https://topological-modular-forms.github.io/the-clowder-project/tag/00HB
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Chapter 5

Relations

00HD This chapter contains some material about relations. Notably, we discuss
and explore:

1. The definition of relations (Section 5.1.1).

2. How relations may be viewed as decategorification of profunctors
(Section 5.1.2).

3. The various kind of categories that relations form, namely:

(a) A category (Section 5.2.1).
(b) A monoidal category (Section 5.2.2).
(c) A 2-category (Section 5.2.3).
(d) A double category (Section 5.2.4).

4. The various categorical properties of the 2-category of relations,
including:

(a) The self-duality of Rel and Rel (Proposition 5.3.1.1.1).
(b) Identifications of equivalences and isomorphisms in Rel with

bijections (Proposition 5.3.2.1.1).
(c) Identifications of adjunctions in Rel with functions (Proposi-

tion 5.3.3.1.1).
(d) Identifications of monads in Rel with preorders (Proposi-

tion 5.3.4.1.1).
(e) Identifications of comonads in Rel with subsets (Proposi-

tion 5.3.5.1.1).
(f) A description of the monoids and comonoids in Rel with

respect to the Cartesian product (Remark 5.3.6.1.1).
(g) Characterisations of monomorphisms in Rel (Proposition 5.3.7.1.1).

226
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(h) Characterisations of 2-categorical notions of monomorphisms
in Rel (Proposition 5.3.8.1.1).

(i) Characterisations of epimorphisms in Rel (Proposition 5.3.9.1.1).
(j) Characterisations of 2-categorical notions of epimorphisms in

Rel (Proposition 5.3.10.1.1).
(k) The partial co/completeness of Rel (Proposition 5.3.11.1.1).
(l) The existence or non-existence of Kan extensions and Kan

lifts in Rel (Remark 5.3.12.1.1).
(m) The closedness of Rel (Proposition 5.3.13.1.1).
(n) The identification of Rel with the category of free algebras of

the powerset monad on Sets (Proposition 5.3.14.1.1).

5. A description of two notions of “skew composition” on Rel(A,B),
giving rise to left and right skew monoidal structures analogous
to the left skew monoidal structure on Fun(C,D) appearing in the
definition of a relative monad (Sections 5.4 and 5.5).
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5.1 Relations00HE

5.1.1 Foundations00HF

Let A and B be sets.

Definition 5.1.1.1.1.00HG A relation R : A →| B from A to B1,2 is a
subset R of A×B.

Notation 5.1.1.1.2.00HH Let R : A →| B be a relation.

1. Given elements a ∈ A and b ∈ B and a relation R : A →| B, we
write a ∼R b to mean (a, b) ∈ R.00HJ

1Further Terminology: Also called a multivalued function from A to B, a
relation over A and B, relation on A and B, a binary relation over A and B,
or a binary relation on A and B.

2Further Terminology: When A = B, we also call R ⊂ A × A a relation on A.

https://topological-modular-forms.github.io/the-clowder-project/tag/00HE
https://topological-modular-forms.github.io/the-clowder-project/tag/00HF
https://topological-modular-forms.github.io/the-clowder-project/tag/00HG
https://topological-modular-forms.github.io/the-clowder-project/tag/00HH
https://topological-modular-forms.github.io/the-clowder-project/tag/00HJ
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2. Viewing R as a function00HK

R : A×B → {t, f}

via Remark 5.1.1.1.4, we write Rba for the value of R at (a, b).3

Definition 5.1.1.1.3.00HL Let A and B be sets.

1. The set of relations from A to B is the set Rel(A,B) defined
by00HM

Rel(A,B) def= {Relations from A to B}.

2. The poset of relations from A to B is the poset00HN

Rel(A,B) def= (Rel(A,B),⊂)

consisting of:

• The Underlying Set. The set Rel(A,B) of Item 1.
• The Partial Order. The partial order

⊂ : Rel(A,B) × Rel(A,B) → {true, false}

on Rel(A,B) given by inclusion of relations.

3. The category of relations from A to B is the posetal cate-
gory Rel(A,B)00HP 4 associated to the poset Rel(A,B) of Item 2 via
Definition 8.1.3.1.1.

Remark 5.1.1.1.4.00HQ A relation from A to B is equivalently:5

1. A subset of A×B.00HR

2. A function from A×B to {true, false}.00HS

3. A function from A to P(B).00HT

4. A function from B to P(A).00HU

5. A cocontinuous morphism of posets from (P(A),⊂) to (P(B),⊂).
00HV

3The choice Rb
a in place of Ra

b is to keep the notation consistent with the notation
we will later employ for profunctors.

4Here we choose to slightly abuse notation by writing Rel(A, B) (instead of e.g.
Rel(A, B)pos) for the posetal category of relations from A to B, even though the same
notation is used for the poset of relations from A to B.

5Intuition: In particular, we may think of a relation R : A → P(B) from A to B as
a multivalued function from A to B (including the possibility of a given a ∈ A having

https://topological-modular-forms.github.io/the-clowder-project/tag/00HK
https://topological-modular-forms.github.io/the-clowder-project/tag/00HL
https://topological-modular-forms.github.io/the-clowder-project/tag/00HM
https://topological-modular-forms.github.io/the-clowder-project/tag/00HN
https://topological-modular-forms.github.io/the-clowder-project/tag/00HP
https://topological-modular-forms.github.io/the-clowder-project/tag/00HQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00HR
https://topological-modular-forms.github.io/the-clowder-project/tag/00HS
https://topological-modular-forms.github.io/the-clowder-project/tag/00HT
https://topological-modular-forms.github.io/the-clowder-project/tag/00HU
https://topological-modular-forms.github.io/the-clowder-project/tag/00HV
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That is: we have bijections of sets

Rel(A,B) def= P(A×B),
∼= HomSets(A×B, {true, false}),
∼= HomSets(A,P(B)),
∼= HomSets(B,P(A)),
∼= Homcocont

Pos (P(A),P(B)),

natural in A,B ∈ Obj(Sets).

Proof. We claim that Items 1 to 5 are indeed equivalent:

• Item 1 ⇐⇒ Item 2: This is a special case of Items 1 and 2 of
Proposition 2.4.3.1.6.

• Item 2 ⇐⇒ Item 3: This follows from the bijections

HomSets(A×B, {true, false}) ∼= HomSets(A,HomSets(B, {true, false}))
∼= HomSets(A,P(B)),

where the last bijection is from Items 1 and 2 of Proposition 2.4.3.1.6.

• Item 2 ⇐⇒ Item 4: This follows from the bijections

HomSets(A×B, {true, false}) ∼= HomSets(B,HomSets(B, {true, false}))
∼= HomSets(B,P(A)),

where again the last bijection is from Items 1 and 2 of Proposi-
tion 2.4.3.1.6.

• Item 2 ⇐⇒ Item 5: This follows from the universal property of
the powerset P(X) of a set X as the free cocompletion of X via
the characteristic embedding

χX : X ↪→ P(X)

of X into P(X), Item 2 of Proposition 2.4.3.1.8.
In particular, the bijection

Rel(A,B) ∼= Homcocont
Pos (P(A),P(B))

is given by taking a relation R : A →| B, passing to its associated
function f : A → P(B) from A to B and then extending f from A
to all of P(A) by taking its left Kan extension along χX .
This coincides with the direct image function f∗ : P(A) → P(B) of
Definition 2.4.4.1.1.
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This finishes the proof.

Proposition 5.1.1.1.5.00HW Let A and B be sets and let R,S : A →| B be
relations.

1. End Formula for the Set of Inclusions of Relations.00HX We have

HomRel(A,B)(R,S) ∼=
∫
a∈A

∫
b∈B

Hom{t,f}
(
Rba, S

b
a

)
.

Proof. Item 1, End Formula for the Set of Inclusions of Relations:
Unwinding the expression inside the end on the right hand side, we have

∫
a∈A

∫
b∈B

Hom{t,f}
(
Rba, S

b
a

)
∼=


pt if, for each a ∈ A and each b ∈ B,

we have Hom{t,f}
(
Rba, S

b
a

)
∼= pt

∅ otherwise.

Since we have Hom{t,f}
(
Rba, S

b
a

)
= {true} ∼= pt exactly when Rba = false

or Rba = Sba = true, we get

∫
a∈A

∫
b∈B

Hom{t,f}
(
Rba, S

b
a

)
∼=


pt if, for each a ∈ A and each b ∈ B,

if a ∼R b, then a ∼S b,
∅ otherwise.

On the left hand-side, we have

HomRel(A,B)(R,S) ∼=
{

pt if R ⊂ S,
∅ otherwise.

It is then clear that the conditions for each set to evaluate to pt (up to
isomorphism) are equivalent, implying that those two sets are isomorphic.

5.1.2 Relations as Decategorifications of Profunctors00HY

Remark 5.1.2.1.1.00HZ The notion of a relation is a decategorification of
that of a profunctor:

1. A profunctor from a category C to a category D is a functor

p : Dop × C → Sets.

2. A relation on sets A and B is a function

R : A×B → {true, false}.

https://topological-modular-forms.github.io/the-clowder-project/tag/00HW
https://topological-modular-forms.github.io/the-clowder-project/tag/00HX
https://topological-modular-forms.github.io/the-clowder-project/tag/00HY
https://topological-modular-forms.github.io/the-clowder-project/tag/00HZ
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Here we notice that:

• The opposite Xop of a set X is itself, as (−)op : Cats → Cats restricts
to the identity endofunctor on Sets.

• The values that profunctors and relations take are analogous:

– A category is enriched over the category

Sets def= Cats0

of sets, with profunctors taking values on it.
– A set is enriched over the set

{true, false} def= Cats−1

of classical truth values, with relations taking values on it.

Remark 5.1.2.1.2.00J0 Extending Remark 5.1.2.1.1, the equivalent defini-
tions of relations in Remark 5.1.1.1.4 are also related to the corresponding
ones for profunctors (??), which state that a profunctor p : C →| D is
equivalently:

1. A functor p : Dop × C → Sets.00J1

2. A functor p : C → PSh(D).00J2

3. A functor p : Dop → Fun(C,Sets).00J3

4. A colimit-preserving functor p : PSh(C) → PSh(D).00J4

Indeed:

• The equivalence between Items 1 and 2 (and also that between
Items 1 and 3, which is proved analogously) is an instance of
currying, both for profunctors as well as for relations, using the
isomorphisms

Sets(A×B, {true, false}) ∼= Sets(A, Sets(B, {true, false}))
∼= Sets(A,P(B)),

Fun(Dop ×D,Sets) ∼= Fun(C,Fun(Dop, Sets))
∼= Fun(C,PSh(D)).

• The equivalence between Items 1 and 3 follows from the universal
properties of:

no value at all).

https://topological-modular-forms.github.io/the-clowder-project/tag/00J0
https://topological-modular-forms.github.io/the-clowder-project/tag/00J1
https://topological-modular-forms.github.io/the-clowder-project/tag/00J2
https://topological-modular-forms.github.io/the-clowder-project/tag/00J3
https://topological-modular-forms.github.io/the-clowder-project/tag/00J4
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– The powerset P(X) of a set X as the free cocompletion of X
via the characteristic embedding

χ(−) : X ↪→ P(X)

of X into P(X), as stated and proved in Item 2 of Proposi-
tion 2.4.3.1.8.

– The category PSh(C) of presheaves on a category C as the
free cocompletion of C via the Yoneda embedding

よ : C ↪→ PSh(C)

of C into PSh(C), as stated and proved in ?? of ??.

5.1.3 Examples of Relations00J5

Example 5.1.3.1.1.00J6 The trivial relation on A and B is the relation
∼triv defined equivalently as follows:

1. As a subset of A×B, we have

∼triv
def= A×B.

2. As a function from A×B to {true, false}, the relation ∼triv is the
constant function

∆true : A×B → {true, false}

from A×B to {true, false} taking the value true.

3. As a function from A to P(B), the relation ∼triv is the function

∆true : A → P(B)

defined by
∆true(a) def= B

for each a ∈ A.

4. Lastly, it is the unique relation R on A and B such that we have
a ∼R b for each a ∈ A and each b ∈ B.

Example 5.1.3.1.2.00J7 The cotrivial relation on A and B is the relation
∼cotriv defined equivalently as follows:

1. As a subset of A×B, we have

∼cotriv
def= ∅.

https://topological-modular-forms.github.io/the-clowder-project/tag/00J5
https://topological-modular-forms.github.io/the-clowder-project/tag/00J6
https://topological-modular-forms.github.io/the-clowder-project/tag/00J7
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2. As a function from A×B to {true, false}, the relation ∼cotriv is the
constant function

∆false : A×B → {true, false}

from A×B to {true, false} taking the value false.

3. As a function from A to P(B), the relation ∼cotriv is the function

∆false : A → P(B)

defined by
∆false(a) def= ∅

for each a ∈ A.

4. Lastly, it is the unique relation R on A and B such that we have
a �R b for each a ∈ A and each b ∈ B.

Example 5.1.3.1.3.00J8 The characteristic relation

χX(−1,−2) : X ×X → {t, f}

on X of Item 3 of Definition 2.4.1.1.1, defined by

χX(x, y) def=
{

true if x = y,
false if x 6= y

for each x, y ∈ X, is another example of a relation.

Example 5.1.3.1.4.00J9 Square roots are examples of relations:

1. Square Roots in R. The assignment x 7→
√
x defines a relation

√
− : R → P(R)

from R to itself, being explicitly given by

√
x

def=

0 if x = 0,{
−
√

|x|,
√

|x|
}

if x 6= 0.

2. Square Roots in Q. Square roots in Q are similar to square roots in
R, though now additionally it may also occur that

√
− : Q → P(Q)

sends a rational number x (e.g. 2) to the empty set (since
√

2 6∈ Q).

https://topological-modular-forms.github.io/the-clowder-project/tag/00J8
https://topological-modular-forms.github.io/the-clowder-project/tag/00J9
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Example 5.1.3.1.5.00JA The complex logarithm defines a relation

log : C → P(C)

from C to itself, where we have

log(a+ bi) def=
{

log
(√

a2 + b2
)

+ i arg(a+ bi) + (2πi)k
∣∣∣ k ∈ Z

}
for each a+ bi ∈ C.
Example 5.1.3.1.6.00JB See [Wik24] for more examples of relations, such
as antiderivation, inverse trigonometric functions, and inverse hyperbolic
functions.

5.1.4 Functional Relations00JC

Let A and B be sets.
Definition 5.1.4.1.1.00JD A relation R : A →| B is functional if, for each
a ∈ A, the set R(a) is either empty or a singleton.
Proposition 5.1.4.1.2.00JE Let R : A →| B be a relation.

1. Characterisations.00JF The following conditions are equivalent:

(a) The relation R is functional.00JG

(b) We have R �R† ⊂ χB.00JH

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are
indeed equivalent:

• Item 1a =⇒ Item 1b: Let (b, b′) ∈ B ×B. We need to show that[
R �R†

](
b, b′) �{t,f} χB

(
b, b′),

i.e. that if there exists some a ∈ A such that b ∼R† a and a ∼R b
′,

then b = b′. But since b ∼R† a is the same as a ∼R b, we have both
a ∼R b and a ∼R b

′ at the same time, which implies b = b′ since R
is functional.

• Item 1b =⇒ Item 1a: Suppose that we have a ∼R b and a ∼R b′

for b, b′ ∈ B. We claim that b = b′:

1. Since a ∼R b, we have b ∼R† a.
2. Since R �R† ⊂ χB, we have[

R �R†
](
b, b′) �{t,f} χB

(
b, b′),

and since b ∼R† a and a ∼R b
′, it follows that

[
R �R†

]
(b, b′) =

true, and thus χB(b, b′) = true as well, i.e. b = b′.

This finishes the proof.

https://topological-modular-forms.github.io/the-clowder-project/tag/00JA
https://topological-modular-forms.github.io/the-clowder-project/tag/00JB
https://topological-modular-forms.github.io/the-clowder-project/tag/00JC
https://topological-modular-forms.github.io/the-clowder-project/tag/00JD
https://topological-modular-forms.github.io/the-clowder-project/tag/00JE
https://topological-modular-forms.github.io/the-clowder-project/tag/00JF
https://topological-modular-forms.github.io/the-clowder-project/tag/00JG
https://topological-modular-forms.github.io/the-clowder-project/tag/00JH
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5.1.5 Total Relations00JJ

Let A and B be sets.

Definition 5.1.5.1.1.00JK A relation R : A →| B is total if, for each a ∈ A,
we have R(a) 6= ∅.

Proposition 5.1.5.1.2.00JL Let R : A →| B be a relation.

1. Characterisations.00JM The following conditions are equivalent:

(a) The relation R is total.00JN

(b) We have χA ⊂ R† �R.00JP

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are
indeed equivalent:

• Item 1a =⇒ Item 1b: We have to show that, for each (a, a′) ∈ A,
we have

χA
(
a, a′) �{t,f}

[
R† �R

](
a, a′),

i.e. that if a = a′, then there exists some b ∈ B such that a ∼R b
and b ∼R† a′ (i.e. a ∼R b again), which follows from the totality of
R.

• Item 1b =⇒ Item 1a: Given a ∈ A, since χA ⊂ R† � R, we must
have

{a} ⊂
[
R† �R

]
(a),

implying that there must exist some b ∈ B such that a ∼R b and
b ∼R† a (i.e. a ∼R b) and thus R(a) 6= ∅, as b ∈ R(a).

This finishes the proof.

5.2 Categories of Relations00JQ

5.2.1 The Category of Relations00JR

Definition 5.2.1.1.1.00JS The category of relations is the category Rel
where

• Objects. The objects of Rel are sets.

• Morphisms. For each A,B ∈ Obj(Sets), we have

Rel(A,B) def= Rel(A,B).

https://topological-modular-forms.github.io/the-clowder-project/tag/00JJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00JK
https://topological-modular-forms.github.io/the-clowder-project/tag/00JL
https://topological-modular-forms.github.io/the-clowder-project/tag/00JM
https://topological-modular-forms.github.io/the-clowder-project/tag/00JN
https://topological-modular-forms.github.io/the-clowder-project/tag/00JP
https://topological-modular-forms.github.io/the-clowder-project/tag/00JQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00JR
https://topological-modular-forms.github.io/the-clowder-project/tag/00JS
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• Identities. For each A ∈ Obj(Rel), the unit map

1Rel
A : pt → Rel(A,A)

of Rel at A is defined by

idRel
A

def= χA(−1,−2),

where χA(−1,−2) is the characteristic relation of A of Item 3 of
Definition 2.4.1.1.1.

• Composition. For each A,B,C ∈ Obj(Rel), the composition map

◦Rel
A,B,C : Rel(B,C) × Rel(A,B) → Rel(A,C)

of Rel at (A,B,C) is defined by

S ◦Rel
A,B,C R

def= S �R

for each (S,R) ∈ Rel(B,C) × Rel(A,B), where S � R is the com-
position of S and R of Definition 6.3.12.1.1.

5.2.2 The Closed Symmetric Monoidal Category of Rela-
tions00JT

5.2.2.1 The Monoidal Product00JU

Definition 5.2.2.1.1.00JV The monoidal product of Rel is the functor

× : Rel × Rel → Rel

where

• Action on Objects. For each A,B ∈ Obj(Rel), we have

×(A,B) def= A×B,

where A×B is the Cartesian product of sets of Definition 2.1.3.1.1.

• Action on Morphisms. For each (A,C), (B,D) ∈ Obj(Rel × Rel),
the action on morphisms

×(A,C),(B,D) : Rel(A,B) × Rel(C,D) → Rel(A× C,B ×D)

of × is given by sending a pair of morphisms (R,S) of the form

R : A →| B,
S : C →| D

to the relation

R× S : A× C →| B ×D

of Definition 6.3.9.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/00JT
https://topological-modular-forms.github.io/the-clowder-project/tag/00JU
https://topological-modular-forms.github.io/the-clowder-project/tag/00JV
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5.2.2.2 The Monoidal Unit00JW

Definition 5.2.2.2.1.00JX The monoidal unit of Rel is the functor

1Rel : pt → Rel

picking the set
1Rel

def= pt
of Rel.

5.2.2.3 The Associator00JY

Definition 5.2.2.3.1.00JZ The associator of Rel is the natural isomorphism

αRel : × ◦ ((×) × id) ∼=⇒ × ◦ (id × (×)) ◦ αCats
Rel,Rel,Rel,

as in the diagram

Rel × (Rel × Rel)

(Rel × Rel) × Rel Rel × Rel

Rel × Rel Rel,

αCats
Rel,Rel,Rel

∼
id×(×)

×(×)×id

×

αRel

whose component

αRel
A,B,C : (A×B) × C →| A× (B × C)

at A,B,C ∈ Obj(Rel) is the relation defined by declaring

((a, b), c) ∼αRel
A,B,C

(
a′,
(
b′, c′))

iff a = a′, b = b′, and c = c′.

5.2.2.4 The Left Unitor00K0

Definition 5.2.2.4.1.00K1 The left unitor of Rel is the natural isomorphism

λRel : × ◦
(
1Rel × id

) ∼=⇒ λCats2
Rel ,

pt × Rel Rel × Rel,

Rel

1Rel×id

λ
Cats2
Rel

×
λRel

https://topological-modular-forms.github.io/the-clowder-project/tag/00JW
https://topological-modular-forms.github.io/the-clowder-project/tag/00JX
https://topological-modular-forms.github.io/the-clowder-project/tag/00JY
https://topological-modular-forms.github.io/the-clowder-project/tag/00JZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00K0
https://topological-modular-forms.github.io/the-clowder-project/tag/00K1
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whose component
λRel
A : 1Rel ×A →| A

at A is defined by declaring

(?, a) ∼λRel
A
b

iff a = b.

5.2.2.5 The Right Unitor00K2

Definition 5.2.2.5.1.00K3 The right unitor of Rel is the natural isomor-
phism

ρRel : × ◦
(
id × 1Rel

) ∼=⇒ ρCats2
Rel ,

Rel × pt Rel × Rel,

Rel

id×1Rel

ρ
Cats2
Rel

×
ρRel

whose component
ρRel
A : A× 1Rel →| A

at A is defined by declaring

(a, ?) ∼ρRel
A
b

iff a = b.

5.2.2.6 The Symmetry00K4

Definition 5.2.2.6.1.00K5 The symmetry of Rel is the natural isomorphism

σRel : × =⇒ × ◦ σCats2
Rel,Rel,

Rel × Rel Rel,

Rel × Rel

×

σ
Cats2
Rel,Rel ×

σRel

whose component
σRel
A,B : A×B → B ×A

at (A,B) is defined by declaring

(a, b) ∼σRel
A,B

(
b′, a′)

iff a = a′ and b = b′.

https://topological-modular-forms.github.io/the-clowder-project/tag/00K2
https://topological-modular-forms.github.io/the-clowder-project/tag/00K3
https://topological-modular-forms.github.io/the-clowder-project/tag/00K4
https://topological-modular-forms.github.io/the-clowder-project/tag/00K5
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5.2.2.7 The Internal Hom00K6

Definition 5.2.2.7.1.00K7 The internal Hom of Rel is the functor

Rel : Relop × Rel → Rel

defined

• On objects by sending A,B ∈ Obj(Rel) to the set Rel(A,B) of
Item 1 of Definition 5.1.1.1.3.

• On morphisms by pre/post-composition defined as in Definition 6.3.12.1.1.

Proposition 5.2.2.7.2.00K8 Let A,B,C ∈ Obj(Rel).

1. Adjointness.00K9 We have adjunctions

(A× − a Rel(A,−)) :
A×−

Rel(A,−)

aRel Rel,

(− ×B a Rel(B,−)) :
−×B

Rel(B,−)

aRel Rel,

witnessed by bijections

Rel(A×B,C) ∼= Rel(A,Rel(B,C)),
Rel(A×B,C) ∼= Rel(B,Rel(A,C)),

natural in A,B,C ∈ Obj(Rel).

Proof. Item 1, Adjointness: Indeed, we have

Rel(A×B,C) def= Sets(A×B × C, {true, false})
def= Rel(A,B × C)
def= Rel(A,Rel(B,C)),

and similarly for the bijection Rel(A×B,C) ∼= Rel(B,Rel(A,C)).

5.2.2.8 The Closed Symmetric Monoidal Category of Relations00KA

Proposition 5.2.2.8.1.00KB The category Rel admits a closed symmetric
monoidal category structure consisting of6

6
�

Warning: This is not a Cartesian monoidal structure, as the product on Rel is
in fact given by the disjoint union of sets; see ??.

https://topological-modular-forms.github.io/the-clowder-project/tag/00K6
https://topological-modular-forms.github.io/the-clowder-project/tag/00K7
https://topological-modular-forms.github.io/the-clowder-project/tag/00K8
https://topological-modular-forms.github.io/the-clowder-project/tag/00K9
https://topological-modular-forms.github.io/the-clowder-project/tag/00KA
https://topological-modular-forms.github.io/the-clowder-project/tag/00KB
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• The Underlying Category. The category Rel of sets and relations
of Definition 5.2.1.1.1.

• The Monoidal Product. The functor

× : Rel × Rel → Rel

of Definition 5.2.2.1.1.

• The Internal Hom. The internal Hom functor

Rel : Relop × Rel → Rel

of Definition 5.2.2.7.1.

• The Monoidal Unit. The functor

1Rel : pt → Rel

of Definition 5.2.2.2.1.

• The Associators. The natural isomorphism

αRel : × ◦ (× × idRel)
∼=⇒ × ◦ (idRel × ×) ◦ αCats

Rel,Rel,Rel

of Definition 5.2.2.3.1.

• The Left Unitors. The natural isomorphism

λRel : × ◦
(
1Rel × idRel

) ∼=⇒ λCats2
Rel

of Definition 5.2.2.4.1.

• The Right Unitors. The natural isomorphism

ρRel : × ◦
(
id × 1Rel

) ∼=⇒ ρCats2
Rel

of Definition 5.2.2.5.1.

• The Symmetry. The natural isomorphism

σRel : × ∼=⇒ × ◦ σCats2
Rel,Rel

of Definition 5.2.2.6.1.

Proof. Omitted.
END TEXTDBEND
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5.2.3 The 2-Category of Relations00KC

Definition 5.2.3.1.1.00KD The 2-category of relations is the locally
posetal 2-category Rel where

• Objects. The objects of Rel are sets.

• Hom-Objects. For each A,B ∈ Obj(Sets), we have

HomRel(A,B) def= Rel(A,B)
def= (Rel(A,B),⊂).

• Identities. For each A ∈ Obj(Rel), the unit map

1Rel
A : pt → Rel(A,A)

of Rel at A is defined by

idRel
A

def= χA(−1,−2),

where χA(−1,−2) is the characteristic relation of A of Item 3 of
Definition 2.4.1.1.1.

• Composition. For each A,B,C ∈ Obj(Rel), the composition map7

◦Rel
A,B,C : Rel(B,C) × Rel(A,B) → Rel(A,C)

of Rel at (A,B,C) is defined by

S ◦Rel
A,B,C R

def= S �R

for each (S,R) ∈ Rel(B,C) × Rel(A,B), where S � R is the com-
position of S and R of Definition 6.3.12.1.1.

5.2.4 The Double Category of Relations00KE

5.2.4.1 The Double Category of Relations00KF

Definition 5.2.4.1.1.00KG The double category of relations is the locally
posetal double category Reldbl where

• Objects. The objects of Reldbl are sets.
7Note that this is indeed a morphism of posets: given relations R1, R2 ∈ Rel(A, B)

and S1, S2 ∈ Rel(B, C) such that

R1 ⊂ R2,

S1 ⊂ S2,

https://topological-modular-forms.github.io/the-clowder-project/tag/00KC
https://topological-modular-forms.github.io/the-clowder-project/tag/00KD
https://topological-modular-forms.github.io/the-clowder-project/tag/00KE
https://topological-modular-forms.github.io/the-clowder-project/tag/00KF
https://topological-modular-forms.github.io/the-clowder-project/tag/00KG
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• Vertical Morphisms. The vertical morphisms of Reldbl are maps of
sets f : A → B.

• Horizontal Morphisms. The horizontal morphisms of Reldbl are
relations R : A →| X.

• 2-Morphisms. A 2-cell

A B

X Y

R

f g

S

α

of Reldbl is either non-existent or an inclusion of relations of the
form

R ⊂ S ◦ (f × g),

A×B {true, false}

X × Y {true, false}.

R

f×g id{true,false}

S

⊂

• Horizontal Identities. The horizontal unit functor of Reldbl is the
functor of Definition 5.2.4.2.1.

• Vertical Identities. For each A ∈ Obj
(
Reldbl

)
, we have

idReldbl
A

def= idA.

• Identity 2-Morphisms. For each horizontal morphism R : A →| B
of Reldbl, the identity 2-morphism

A B

A B

R

idA idB

R

idR

of R is the identity inclusion

R ⊂ R,

B ×A {true, false}

B ×A {true, false}.

R

idB×idA id{true,false}

R

⊂
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• Horizontal Composition. The horizontal composition functor of
Reldbl is the functor of Definition 5.2.4.3.1.

• Vertical Composition of 1-Morphisms. For each composable pair
A

F−−→B
G−−→C of vertical morphisms of Reldbl, i.e. maps of sets, we

have
g ◦Reldbl

f
def= g ◦ f.

• Vertical Composition of 2-Morphisms. The vertical composition of
2-morphisms in Reldbl is defined as in Definition 5.2.4.4.1.

• Associators. The associators of Reldbl is defined as in Defini-
tion 5.2.4.5.1.

• Left Unitors. The left unitors of Reldbl is defined as in Defini-
tion 5.2.4.6.1.

• Right Unitors. The right unitors of Reldbl is defined as in Defini-
tion 5.2.4.7.1.

5.2.4.2 Horizontal Identities00KH

Definition 5.2.4.2.1.00KJ The horizontal unit functor of Reldbl is the
functor

1Reldbl
: Reldbl

0 → Reldbl
1

of Reldbl is the functor where

• Action on Objects. For each A ∈ Obj
(
Reldbl

0

)
, we have

1A
def= χA(−1,−2).

• Action on Morphisms. For each vertical morphism f : A → B of
Reldbl, i.e. each map of sets f from A to B, the identity 2-morphism

A A

B B

1A

f f

1B

1f

we have also S1 � R1 ⊂ S2 � R2.

https://topological-modular-forms.github.io/the-clowder-project/tag/00KH
https://topological-modular-forms.github.io/the-clowder-project/tag/00KJ
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of f is the inclusion

χB ◦ (f × f) ⊂ χA,

A×A {true, false}

B ×B {true, false}

χA(−1,−2)

f×f id{true,false}

χB(−1,−2)

⊂

of Item 1 of Proposition 2.4.1.1.3.

5.2.4.3 Horizontal Composition00KK

Definition 5.2.4.3.1.00KL The horizontal composition functor of Reldbl

is the functor
�Reldbl

: Reldbl
1 ×

Reldbl
0

Reldbl
1 → Reldbl

1

of Reldbl is the functor where
• Action on Objects. For each composable pair A

R

→| B
S

→| C of hori-
zontal morphisms of Reldbl, we have

S �R
def= S �R,

where S �R is the composition of R and S of Definition 6.3.12.1.1.

• Action on Morphisms. For each horizontally composable pair

A B

X Y

R

f g

T

α

B C

Y Z

S

g h

U

β

of 2-morphisms of Reldbl, i.e. for each pair

A×B {true, false}

X × Y {true, false}

R

f×g id{true,false}

T

⊂

B × C {true, false}

Y × Z {true, false}

S

g×h id{true,false}

U

⊂

of inclusions of relations, the horizontal composition

A C

X Z

S�R

f h

U�T

β�α

https://topological-modular-forms.github.io/the-clowder-project/tag/00KK
https://topological-modular-forms.github.io/the-clowder-project/tag/00KL
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of α and β is the inclusion of relations8

(U � T ) ◦ (f × h) ⊂ (S �R)

A× C {true, false}

X × Z {true, false}.

S�R

f×h id{true,false}

U�T

⊂

5.2.4.4 Vertical Composition of 2-Morphisms00KM

Definition 5.2.4.4.1.00KN The vertical composition in Reldbl is defined
as follows: for each vertically composable pair

A X

B Y

R

f g

S

α

B Y

C Z

S

h k

T

β

of 2-morphisms of Reldbl, i.e. for each each pair

A×X {true, false}

B × Y {true, false}

R

f×g id{true,false}

S

⊂

B × Y {true, false}

C × Z {true, false}

S

h×k id{true,false}

T

⊂

of inclusions of relations, we define the vertical composition

A X

C Z

R

h◦f k◦g

T

β◦α

8This is justified by noting that, given (a, c) ∈ A × C, the statement
• We have a ∼(U�T )◦(f×h) c, i.e. f(a) ∼U�T h(c), i.e. there exists some y ∈ Y

such that:

1. We have f(a) ∼T y;
2. We have y ∼U h(c);

is implied by the statement
• We have a ∼S�R c, i.e. there exists some b ∈ B such that:

1. We have a ∼R b;

https://topological-modular-forms.github.io/the-clowder-project/tag/00KM
https://topological-modular-forms.github.io/the-clowder-project/tag/00KN
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of α and β as the inclusion of relations

T ◦ [(h ◦ f) × (k ◦ g)] ⊂ R,

A×X {true, false}

C × Z {true, false}

R

(h◦f)×(k◦g) id{true,false}

T

⊂

given by the pasting of inclusions9

A×X {true, false}

B × Y {true, false}

C × Z {true, false}.

R

f×g id{true,false}

S

h×k id{true,false}

T

⊂

⊂

5.2.4.5 The Associators00KP

Definition 5.2.4.5.1.00KQ For each composable triple

A
R

→| B
S

→| C
T

→| D

of horizontal morphisms of Reldbl, the component

αReldbl
T,S,R : (T � S) �R

∼=⇒ T � (S �R),

A B C D

A B C D

R

idA

S T

idD

R S T

αReldbl
T,S,R

2. We have b ∼S c;

since:
• If a ∼R b, then f(a) ∼T g(b), as T ◦ (f × g) ⊂ R;
• If b ∼S c, then g(b) ∼U h(c), as U ◦ (g × h) ⊂ S.

9This is justified by noting that, given (a, x) ∈ A × X, the statement
• We have h(f(a)) ∼T k(g(x));

is implied by the statement
• We have a ∼R x;

since

https://topological-modular-forms.github.io/the-clowder-project/tag/00KP
https://topological-modular-forms.github.io/the-clowder-project/tag/00KQ
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of the associator of Reldbl at (R,S, T ) is the identity inclusion10

(T � S) �R = T � (S �R)

A×B {true, false}

A×B {true, false}.

(T�S)�R

id{true,false}

T�(S�R)

=

5.2.4.6 The Left Unitors00KR

Definition 5.2.4.6.1.00KS For each horizontal morphism R : A →| B of Reldbl,
the component

λReldbl
R : 1B �R

∼=⇒R,

A B B

A B

R

idA

1B

idB

R

λReldbl
R

of the left unitor of Reldbl at R is the identity inclusion11

R = χB �R,

A×B {true, false}

A×B {true, false}.

χB�R

id{true,false}

R

=

5.2.4.7 The Right Unitors00KT

Definition 5.2.4.7.1.00KU For each horizontal morphism R : A →| B of Reldbl,
the component

ρReldbl
R : R� 1A

∼=⇒R,

A A B

A B

1A

idA

R

idB

R

ρReldbl
R

• If a ∼R x, then f(a) ∼S g(x), as S ◦ (f × g) ⊂ R;
• If b ∼S y, then h(b) ∼T k(y), as T ◦ (h × k) ⊂ S, and thus, in particular:

– If f(a) ∼S g(x), then h(f(a)) ∼T k(g(x)).

10This is justified by Item 2 of Proposition 6.3.12.1.3.
11This is justified by Item 3 of Proposition 6.3.12.1.3.

https://topological-modular-forms.github.io/the-clowder-project/tag/00KR
https://topological-modular-forms.github.io/the-clowder-project/tag/00KS
https://topological-modular-forms.github.io/the-clowder-project/tag/00KT
https://topological-modular-forms.github.io/the-clowder-project/tag/00KU
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of the right unitor of Reldbl at R is the identity inclusion12

R = R � χA,

A×B {true, false}

A×B {true, false}.

R�χA

id{true,false}

R

=

5.3 Properties of the 2-Category of Relations00KV

5.3.1 Self-Duality00KW

Proposition 5.3.1.1.1.00KX The (2-)category of relations is self-dual:

1. Self-Duality I.00KY We have an isomorphism

Relop eq.∼= Rel

of categories.

2. Self-Duality II.00KZ We have a 2-isomorphism

Relop eq.∼= Rel

of 2-categories.

Proof. Item 1, Self-Duality I : We claim that the functor

F : Relop → Rel

given by the identity on objects and by R 7→ R† on morphisms is an
isomorphism of categories.
By Item 1 of Proposition 8.5.8.1.3, it suffices to show that F is bijective
on objects (which is clear) and fully faithful. Indeed, the map

(−)† : Rel(A,B) → Rel(B,A)

defined by the assignment R 7→ R† is a bijection by Item 5 of Proposi-
tion 6.3.11.1.3, showing F to be fully faithful.
Item 2, Self-Duality II : We claim that the 2-functor

F : Relop → Rel

given by the identity on objects, by R 7→ R† on morphisms, and by
preserving inclusions on 2-morphisms via Item 1 of Proposition 6.3.11.1.3,
is an isomorphism of categories.
By ?? of ??, it suffices to show that F is:

12This is justified by Item 3 of Proposition 6.3.12.1.3.

https://topological-modular-forms.github.io/the-clowder-project/tag/00KV
https://topological-modular-forms.github.io/the-clowder-project/tag/00KW
https://topological-modular-forms.github.io/the-clowder-project/tag/00KX
https://topological-modular-forms.github.io/the-clowder-project/tag/00KY
https://topological-modular-forms.github.io/the-clowder-project/tag/00KZ
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• Bijective on objects, which is clear.

• Bijective on 1-morphisms, which was shown in Item 1.

• Bijective on 2-morphisms, which follows from Item 1 of Proposi-
tion 6.3.11.1.3.

Thus F is indeed a 2-isomorphism of categories.

5.3.2 Isomorphisms and Equivalences in Rel00L0

Let R : A →| B be a relation from A to B.

Proposition 5.3.2.1.1.00L1 The following conditions are equivalent:

1. The relation R : A →| B is an equivalence in Rel, i.e.:00L2

(?) There exists a relation R−1 : B →| A from B to A together
with isomorphisms

R−1 �R ∼= χA,

R �R−1 ∼= χB.

2. The relation R : A →| B is an isomorphism in Rel, i.e.:00L3

(?) There exists a relation R−1 : B →| A from B to A such that
we have

R−1 �R = χA,

R �R−1 = χB.

3. There exists a bijection f : A
∼=−→ B with R = Gr(f).00L4

Proof. We claim that Items 1 to 3 are indeed equivalent:

• Item 1 ⇐⇒ Item 2: This follows from the fact that Rel is locally
posetal, so that natural isomorphisms and equalities of 1-morphisms
in Rel coincide.

• Item 2 =⇒ Item 3: The equalities in Item 2 imply R a R−1, and
thus by Proposition 5.3.3.1.1, there exists a function fR : A → B
associated to R, where, for each a ∈ A, the image fR(a) of a by fR is
the unique element of R(a), which implies R = Gr(fR) in particular.
Furthermore, we have R−1 = f−1

R (as in Definition 6.3.2.1.1). The
conditions from Item 2 then become the following:

f−1
R � fR = χA,

fR � f−1
R = χB.

All that is left is to show then is that fR is a bijection:

https://topological-modular-forms.github.io/the-clowder-project/tag/00L0
https://topological-modular-forms.github.io/the-clowder-project/tag/00L1
https://topological-modular-forms.github.io/the-clowder-project/tag/00L2
https://topological-modular-forms.github.io/the-clowder-project/tag/00L3
https://topological-modular-forms.github.io/the-clowder-project/tag/00L4
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– The Function fR Is Injective. Let a, b ∈ A and suppose that
fR(a) = fR(b). Since a ∼R fR(a) and fR(a) = fR(b) ∼R−1 b,
the condition f−1

R � fR = χA implies that a = b, showing fR
to be injective.

– The Function fR Is Surjective. Let b ∈ B. Applying the
condition fR � f−1

R = χB to (b, b), it follows that there exists
some a ∈ A such that f−1

R (b) = a and fR(a) = b. This shows
fR to be surjective.

• Item 3 =⇒ Item 2: By Item 2 of Proposition 6.3.1.1.2, we have an
adjunction Gr(f) a f−1, giving inclusions

χA ⊂ f−1 � Gr(f),
Gr(f) � f−1 ⊂ χB.

We claim the reverse inclusions are also true:

– f−1 � Gr(f) ⊂ χA: This is equivalent to the statement that
if f(a) = b and f−1(b) = a′, then a = a′, which follows from
the injectivity of f .

– χB ⊂ Gr(f) � f−1: This is equivalent to the statement that
given b ∈ B there exists some a ∈ A such that f−1(b) = a and
f(a) = b, which follows from the surjectivity of f .

This finishes the proof.

5.3.3 Adjunctions in Rel00L5

Let A and B be sets.

Proposition 5.3.3.1.1.00L6 We have a natural bijection{
Adjunctions in Rel

from A to B

}
∼=
{

Functions
from A to B

}
,

with every adjunction in Rel being of the form Gr(f) a f−1 for some
function f .

Proof. We proceed step by step:

1. From Adjunctions in Rel to Functions. An adjunction in Rel from
A to B consists of a pair of relations

R : A →| B,
S : B →| A,

https://topological-modular-forms.github.io/the-clowder-project/tag/00L5
https://topological-modular-forms.github.io/the-clowder-project/tag/00L6
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together with inclusions

χA ⊂ S �R,
R � S ⊂ χB.

We claim that these conditions imply that R is total and functional,
i.e. that R(a) is a singleton for each a ∈ A:

(a) R(a) Has an Element. Given a ∈ A, since χA ⊂ S � R, we
must have {a} ⊂ S(R(a)), implying that there exists some
b ∈ B such that a ∼R b and b ∼S a, and thus R(a) 6= ∅, as
b ∈ R(a).

(b) R(a) Has No More Than One Element. Suppose that we have
a ∼R b and a ∼R b

′ for b, b′ ∈ B. We claim that b = b′:
i. Since χA ⊂ S � R, there exists some k ∈ B such that
a ∼R k and k ∼S a.

ii. Since R �S ⊂ χB , if b′′ ∼S a
′ and a′ ∼R b

′′′, then b′′ = b′′′.
iii. Applying the above to b′′ = k, b′′′ = b, and a′ = a, since

k ∼S a and a ∼R b
′, we have k = b.

iv. Similarly k = b′.
v. Thus b = b′.

Together, the above two items show R(a) to be a singleton, being
thus given by Gr(f) for some function f : A → B, which gives a
map {

Adjunctions in Rel
from A to B

}
→
{

Functions
from A to B

}
.

Moreover, by uniqueness of adjoints (?? of ??), this implies also
that S = f−1.

2. From Functions to Adjunctions in Rel. By Item 2 of Proposi-
tion 6.3.1.1.2, every function f : A → B gives rise to an adjunction
Gr(f) a f−1 in Rel, giving a map{

Functions
from A to B

}
→
{

Adjunctions in Rel
from A to B

}
.

3. Invertibility: From Functions to Adjunctions Back to Functions.
We need to show that starting with a function f : A → B, passing
to Gr(f) a f−1, and then passing again to a function gives f again.
This is clear however, since we have a ∼Gr(f) b iff f(a) = b.
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4. Invertibility: From Adjunctions to Functions Back to Adjunctions.
We need to show that, given an adjunction R a S in Rel giving
rise to a function fR,S : A → B, we have

Gr(fR,S) = R,

f−1
R,S = S.

We check these explicitly:

• Gr(fR,S) = R. We have

Gr(fR,S) def= {(a, fR,S(a)) ∈ A×B | a ∈ A}
def= {(a,R(a)) ∈ A×B | a ∈ A}
= R.

• f−1
R,S = S. We first claim that, given a ∈ A and b ∈ B, the

following conditions are equivalent:
– We have a ∼R b.
– We have b ∼S a.

Indeed:
– If a ∼R b, then b ∼S a: Since χA ⊂ S � R, there exists
k ∈ B such that a ∼R k and k ∼S a, but since a ∼R b
and R is functional, we have k = b and thus b ∼S a.

– If b ∼S a, then a ∼R b: First note that since R is total
we have a ∼R b

′ for some b′ ∈ B. Now, since R � S ⊂ χB ,
b ∼S a, and a ∼R b

′, we have b = b′, and thus a ∼R b.
Having show this, we now have

f−1
R,S(b) def= {a ∈ A | fR,S(a) = b}

def= {a ∈ A | a ∼R b}
= {a ∈ A | b ∼S a}
def= S(b).

for each b ∈ B, showing f−1
R,S = S.

This finishes the proof.

5.3.4 Monads in Rel00L7

Let A be a set.

https://topological-modular-forms.github.io/the-clowder-project/tag/00L7
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Proposition 5.3.4.1.1.00L8 We have a natural identification13

{
Monads in
Rel on A

}
∼= {Preorders on A}.

Proof. A monad in Rel on A consists of a relation R : A →| A together
with maps

µR : R �R ⊂ R,

ηR : χA ⊂ R

making the diagrams

χA �R R �R

R

ηR�idR

λ
Rel(A,B)
R

µR

R � (R �R)

(R �R) �R R �R

R �R R

α
Rel(A,B)
R,R,R

idR�µR

µRµR�idR

µR

R � χA R �R

R

idR�ηR

ρ
Rel(A,B)
R

µR

commute. However, since all morphisms involved are inclusions, the
commutativity of the above diagrams is automatic, and hence all that is
left is the data of the two maps µR and ηR, which correspond respectively
to the following conditions:

1. For each a, b, c ∈ A, if a ∼R b and b ∼R c, then a ∼R c.

2. For each a ∈ A, we have a ∼R a.

These are exactly the requirements for R to be a preorder (??). Con-
versely any preorder � gives rise to a pair of maps µ� and η�, forming
a monad on A.

5.3.5 Comonads in Rel00L9

Let A be a set.

Proposition 5.3.5.1.1.00LA We have a natural identification{
Comonads in

Rel on A

}
∼= {Subsets of A}.

13See also ?? for an extension of this correspondence to “relative monads in Rel”.

https://topological-modular-forms.github.io/the-clowder-project/tag/00L8
https://topological-modular-forms.github.io/the-clowder-project/tag/00L9
https://topological-modular-forms.github.io/the-clowder-project/tag/00LA
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Proof. A comonad in Rel on A consists of a relation R : A →| A together
with maps

∆R : R ⊂ R �R,
εR : R ⊂ χA

making the diagrams

R R � R

χA � R

∆R

λ
Rel(A,B),−1
R

εR�idR

R � R

R R � (R � R)

R � R (R � R) � R

∆R
idR�∆R

α
Rel(A,B),−1
R,R,R

∆R

∆R�idR

R R � R

R � χA

∆R

ρ
Rel(A,B),−1
R

idR�εR

commute. However, since all morphisms involved are inclusions, the
commutativity of the above diagrams is automatic, and hence all that is
left is the data of the two maps ∆R and εR, which correspond respectively
to the following conditions:

1. For each a, b ∈ A, if a ∼R b, then there exists some k ∈ A such
that a ∼R k and k ∼R b.

2. For each a, b ∈ A, if a ∼R b, then a = b.

Taking k = b in the first condition above shows it to be trivially satisfied,
while the second condition implies R ⊂ ∆A, i.e. R must be a subset of
A. Conversely, any subset U of A satisfies U ⊂ ∆A, defining a comonad
as above.

5.3.6 Co/Monoids in Rel00LB

Remark 5.3.6.1.1.00LC The monoids in Rel with respect to the Cartesian
monoidal structure of Proposition 5.2.2.8.1 are called hypermonoids, and
their theory is explored in ??. Similarly, the comonoids in Rel are called
hypercomonoids, and they are defined and studied in ??.

5.3.7 Monomorphisms in Rel00LD

In this section we characterise the epimorphisms in the category Rel,
following ??.

Proposition 5.3.7.1.1.00LE Let R : A →| B be a relation. The following
conditions are equivalent:

https://topological-modular-forms.github.io/the-clowder-project/tag/00LB
https://topological-modular-forms.github.io/the-clowder-project/tag/00LC
https://topological-modular-forms.github.io/the-clowder-project/tag/00LD
https://topological-modular-forms.github.io/the-clowder-project/tag/00LE
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1. The relation R is a monomorphism in Rel.00LF

2. The direct image function00LG

R∗ : P(A) → P(B)

associated to R is injective.

3. The direct image with compact support function00LH

R! : P(A) → P(B)

associated to R is injective.

Moreover, if R is a monomorphism, then it satisfies the following condi-
tion, and the converse holds if R is total:

(?) For each a, a′ ∈ A, if there exists some b ∈ B such that

a ∼R b,

a′ ∼R b,

then a = a′.

Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Propo-
sition 6.4.1.1.3. We then claim that Items 1 and 2 are also equivalent:

• Item 1 =⇒ Item 2: Let U, V ∈ P(A) and consider the diagram

pt A B.
U

V

R

By Remark 6.4.1.1.2, we have

R∗(U) = R � U,
R∗(V ) = R � V.

Now, if R � U = R � V , i.e. R∗(U) = R∗(V ), then U = V since R
is assumed to be a monomorphism, showing R∗ to be injective.

• Item 2 =⇒ Item 1: Conversely, suppose that R∗ is injective,
consider the diagram

X A B,
S

T

R

and suppose that R � S = R � T . Note that, since R∗ is injective,

https://topological-modular-forms.github.io/the-clowder-project/tag/00LF
https://topological-modular-forms.github.io/the-clowder-project/tag/00LG
https://topological-modular-forms.github.io/the-clowder-project/tag/00LH


5.3. Properties of the 2-Category of Relations 257

given a diagram of the form

pt A B,
U

V

R

if R∗(U) = R � U = R � V = R∗(V ), then U = V . In particular,
for each x ∈ X, we may consider the diagram

pt X A B,
[x] S

T

R

for which we have R � S � [x] = R � T � [x], implying that we have

S(x) = S � [x] = T � [x] = T (x)

for each x ∈ X, implying S = T , and thus R is a monomorphism.

We can also prove this in a more abstract way, following [MSE 350788]:

• Item 1 =⇒ Item 2: Assume that R is a monomorphism.

– We first notice that the functor Rel(pt,−) : Rel → Sets maps
R to R∗ by Remark 6.4.1.1.2.

– Since Rel(pt,−) preserves all limits by ?? of ??, it follows by
?? of ?? that Rel(pt,−) also preserves monomorphisms.

– Since R is a monomorphism and Rel(pt,−) maps R to R∗, it
follows that R∗ is also a monomorphism.

– Since the monomorphisms in Sets are precisely the injections
(?? of ??), it follows that R∗ is injective.

• Item 2 =⇒ Item 1: Assume that R∗ is injective.

– We first notice that the functor Rel(pt,−) : Rel → Sets maps
R to R∗ by Remark 6.4.1.1.2.

– Since the monomorphisms in Sets are precisely the injections
(?? of ??), it follows that R∗ is a monomorphism.

– Since Rel(pt,−) is faithful, it follows by ?? of ?? that Rel(pt,−)
reflects monomorphisms.

– Since R∗ is a monomorphism and Rel(pt,−) maps R to R∗,
it follows that R is also a monomorphism.

Finally, we prove the second part of the statement. Assume that R is
a monomorphism, let a, a′ ∈ A such that a ∼R b and a′ ∼R b for some
b ∈ B, and consider the diagram

pt A B.
[a]

[a′]

R
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Since ? ∼[a] a and a ∼R b, we have ? ∼R�[a] b. Similarly, ? ∼R�[a′] b.
Thus R� [a] = R� [a′], and since R is a monomorphism, we have [a] = [a′],
i.e. a = a′.
Conversely, assume the condition

(?) For each a, a′ ∈ A, if there exists some b ∈ B such that

a ∼R b,

a′ ∼R b,

then a = a′.

consider the diagram

X A B,
S

T

R

and let (x, a) ∈ S. Since R is total and a ∈ A, there exists some b ∈ B
such that a ∼R b. In this case, we have x ∼R�S b, and since R�S = R�T ,
we have also x ∼R�T b. Thus there must exist some a′ ∈ A such that
x ∼T a

′ and a′ ∼R b. However, since a, a′ ∼R b, we must have a = a′,
and thus (x, a) ∈ T as well.
A similar argument shows that if (x, a) ∈ T , then (x, a) ∈ S, and thus
S = T and it follows that R is a monomorphism.

5.3.8 2-Categorical Monomorphisms in Rel00LJ

In this section we characterise (for now, some of) the 2-categorical
monomorphisms in Rel, following Section 9.1.

Proposition 5.3.8.1.1.00LK Let R : A →| B be a relation.

1. Representably Faithful Morphisms in Rel.00LL Every morphism of Rel
is a representably faithful morphism.

2. Representably Full Morphisms in Rel.00LM The following conditions
are equivalent:

(a) The morphism R : A →| B is a representably full morphism.00LN

(b) For each pair of relations S, T : X ⇒| A, the following condition
is satisfied:00LP

(?) If R � S ⊂ R � T , then S ⊂ T .
(c) The functor00LQ

R∗ : (P(A),⊂) → (P(B),⊂)

is full.

https://topological-modular-forms.github.io/the-clowder-project/tag/00LJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00LK
https://topological-modular-forms.github.io/the-clowder-project/tag/00LL
https://topological-modular-forms.github.io/the-clowder-project/tag/00LM
https://topological-modular-forms.github.io/the-clowder-project/tag/00LN
https://topological-modular-forms.github.io/the-clowder-project/tag/00LP
https://topological-modular-forms.github.io/the-clowder-project/tag/00LQ
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(d) For each U, V ∈ P(A), if R∗(U) ⊂ R∗(V ), then U ⊂ V .00LR

(e) The functor00LS

R! : (P(A),⊂) → (P(B),⊂)

is full.
(f) For each U, V ∈ P(A), if R!(U) ⊂ R!(V ), then U ⊂ V .00LT

3. Representably Fully Faithful Morphisms in Rel.00LU Every representaly
full morphism in Rel is a representably fully faithful morphism.

Proof. Item 1, Representably Faithful Morphisms in Rel: The relation R
is a representably faithful morphism in Rel iff, for each X ∈ Obj(Rel),
the functor

R∗ : Rel(X,A) → Rel(X,B)
is faithful, i.e. iff the morphism

R∗|S,T : HomRel(X,A)(S, T ) → HomRel(X,B)(R � S,R � T )

is injective for each S, T ∈ Obj(Rel(X,A)). However, HomRel(X,A)(S, T )
is either empty or a singleton, in either case of which the map R∗|S,T is
necessarily injective.
Item 2, Representably Full Morphisms in Rel: We claim Items 2a to 2f
are indeed equivalent:

• Item 2a ⇐⇒ Item 2b: This is simply a matter of unwinding
definitions: The relation R is a representably full morphism in Rel
iff, for each X ∈ Obj(Rel), the functor

R∗ : Rel(X,A) → Rel(X,B)

is full, i.e. iff the morphism

R∗|S,T : HomRel(X,A)(S, T ) → HomRel(X,B)(R � S,R � T )

is surjective for each S, T ∈ Obj(Rel(X,A)), i.e. iff, whenever
R � S ⊂ R � T , we also have S ⊂ T .

• Item 2c ⇐⇒ Item 2d: This is also simply a matter of unwinding
definitions: The functor

R∗ : (P(A),⊂) → (P(B),⊂)

is full iff, for each U, V ∈ P(A), the morphism

R∗|U,V : HomP(A)(U, V ) → HomP(B)(R∗(U), R∗(V ))

is surjective, i.e. iff whenever R∗(U) ⊂ R∗(V ), we also necessarily
have U ⊂ V .

https://topological-modular-forms.github.io/the-clowder-project/tag/00LR
https://topological-modular-forms.github.io/the-clowder-project/tag/00LS
https://topological-modular-forms.github.io/the-clowder-project/tag/00LT
https://topological-modular-forms.github.io/the-clowder-project/tag/00LU
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• Item 2e ⇐⇒ Item 2f: This is once again simply a matter of
unwinding definitions, and proceeds exactly in the same way as in
the proof of the equivalence between Items 2c and 2d given above.

• Item 2d =⇒ Item 2f: Suppose that the following condition is true:

(?) For each U, V ∈ P(A), if R∗(U) ⊂ R∗(V ), then U ⊂ V .

We need to show that the condition

(?) For each U, V ∈ P(A), if R!(U) ⊂ R!(V ), then U ⊂ V .

is also true. We proceed step by step:

1. Suppose we have U, V ∈ P(A) with R!(U) ⊂ R!(V ).
2. By Item 7 of Proposition 6.4.4.1.3, we have

R!(U) = B \R∗(A \ U),
R!(V ) = B \R∗(A \ V ).

3. By Item 1 of Proposition 2.3.10.1.2 we have R∗(A \ V ) ⊂
R∗(A \ U).

4. By assumption, we then have A \ V ⊂ A \ U .
5. By Item 1 of Proposition 2.3.10.1.2 again, we have U ⊂ V .

• Item 2f =⇒ Item 2d: Suppose that the following condition is true:

(?) For each U, V ∈ P(A), if R!(U) ⊂ R!(V ), then U ⊂ V .

We need to show that the condition

(?) For each U, V ∈ P(A), if R∗(U) ⊂ R∗(V ), then U ⊂ V .

is also true. We proceed step by step:

1. Suppose we have U, V ∈ P(A) with R∗(U) ⊂ R∗(V ).
2. By Item 7 of Proposition 6.4.1.1.3, we have

R∗(U) = B \R!(A \ U),
R∗(V ) = B \R!(A \ V ).

3. By Item 1 of Proposition 2.3.10.1.2 we have R!(A \ V ) ⊂
R!(A \ U).

4. By assumption, we then have A \ V ⊂ A \ U .
5. By Item 1 of Proposition 2.3.10.1.2 again, we have U ⊂ V .
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• Item 2b =⇒ Item 2d: Consider the diagram

X A B,
S

T

R

and suppose that R � S ⊂ R � T . Note that, by assumption, given
a diagram of the form

pt A B,
U

V

R

if R∗(U) = R � U ⊂ R � V = R∗(V ), then U ⊂ V . In particular,
for each x ∈ X, we may consider the diagram

pt X A B,
[x] S

T

R

for which we have R � S � [x] ⊂ R � T � [x], implying that we have

S(x) = S � [x] ⊂ T � [x] = T (x)

for each x ∈ X, implying S ⊂ T .

• Item 2d =⇒ Item 2b: Let U, V ∈ P(A) and consider the diagram

pt A B.
U

V

R

By Remark 6.4.1.1.2, we have

R∗(U) = R � U,
R∗(V ) = R � V.

Now, if R∗(U) ⊂ R∗(V ), i.e. R � U ⊂ R � V , then U ⊂ V by
assumption.

??, Fully Faithful Monomorphisms in Rel: This follows from Items 1
and 2.

Question 5.3.8.1.2.00LV Item 2 of Proposition 5.3.8.1.1 gives a characteri-
sation of the representably full morphisms in Rel.
Are there other nice characterisations of these?
This question also appears as [MO 467527].

https://topological-modular-forms.github.io/the-clowder-project/tag/00LV
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5.3.9 Epimorphisms in Rel00LW

In this section we characterise the epimorphisms in the category Rel,
following ??.

Proposition 5.3.9.1.1.00LX Let R : A →| B be a relation. The following
conditions are equivalent:

1. The relation R is an epimorphism in Rel.00LY

2. The weak inverse image function00LZ

R−1 : P(B) → P(A)

associated to R is injective.

3. The strong inverse image function00M0

R−1 : P(B) → P(A)

associated to R is injective.

4. The function R : A → P(B) is “surjective on singletons”:00M1

(?) For each b ∈ B, there exists some a ∈ A such that R(a) = {b}.

Moreover, if R is total and an epimorphism, then it satisfies the following
equivalent conditions:

1. For each b ∈ B, there exists some a ∈ A such that a ∼R b.

2. We have Im(R) = B.

Proof. Firstly note that Items 2 and 3 are equivalent by Item 7 of Propo-
sition 6.4.2.1.3. We then claim that Items 1 and 2 are also equivalent:

• Item 1 =⇒ Item 2: Let U, V ∈ P(A) and consider the diagram

A B pt.
R U

V

By Remark 6.4.1.1.2, we have

R−1(U) = U �R,
R−1(V ) = V �R.

Now, if U �R = V �R, i.e. R−1(U) = R−1(V ), then U = V since
R is assumed to be an epimorphism, showing R−1 to be injective.

https://topological-modular-forms.github.io/the-clowder-project/tag/00LW
https://topological-modular-forms.github.io/the-clowder-project/tag/00LX
https://topological-modular-forms.github.io/the-clowder-project/tag/00LY
https://topological-modular-forms.github.io/the-clowder-project/tag/00LZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00M0
https://topological-modular-forms.github.io/the-clowder-project/tag/00M1
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• Item 2 =⇒ Item 1: Conversely, suppose that R−1 is injective,
consider the diagram

A B X,
R S

T

and suppose that S �R = T �R. Note that, since R−1 is injective,
given a diagram of the form

A B pt,
R U

V

if R−1(U) = U �R = V �R = R−1(V ), then U = V . In particular,
for each x ∈ X, we may consider the diagram

A B X pt,
R S

T

[x]

for which we have [x] � S �R = [x] � T �R, implying that we have

S−1(x) = [x] � S = [x] � T = T−1(x)

for each x ∈ X, implying S = T , and thus R is an epimorphism.

We can also prove this in a more abstract way, following [MSE 350788]:

• Item 1 =⇒ Item 2: Assume that R is an epimorphism.

– We first notice that the functor Rel(−,pt) : Relop → Sets maps
R to R−1 by Remark 6.4.3.1.2.

– Since Rel(−,pt) preserves limits by ?? of ??, it follows by ??
of ?? that Rel(−,pt) also preserves monomorphisms.

– That is: Rel(−,pt) sends monomorphisms in Relop to monomor-
phisms in Sets.

– The monomorphisms Relop are precisely the epimorphisms in
Rel by ?? of ??.

– Since R is an epimorphism and Rel(−,pt) maps R to R−1, it
follows that R−1 is a monomorphism.

– Since the monomorphisms in Sets are precisely the injections
(?? of ??), it follows that R−1 is injective.

• Item 2 =⇒ Item 1: Assume that R−1 is injective.

– We first notice that the functor Rel(−,pt) : Relop → Sets maps
R to R−1 by Remark 6.4.3.1.2.
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– Since the monomorphisms in Sets are precisely the injections
(?? of ??), it follows that R−1 is a monomorphism.

– Since Rel(−,pt) is faithful, it follows by ?? of ?? that Rel(,pt)
reflects monomorphisms.

– That is: Rel(−,pt) reflects monomorphisms in Sets to monomor-
phisms in Relop.

– The monomorphisms Relop are precisely the epimorphisms in
Rel by ?? of ??.

– Since R−1 is a monomorphism and Rel(−,pt) maps R to R−1,
it follows that R is an epimorphism.

We also claim that Items 2 and 4 are equivalent, following [MO 350788]:

• Item 2 =⇒ Item 4: Since B \ {b} ⊂ B and R−1 is injective,
we have R−1(B \ {b}) ( R−1(B). So taking some a ∈ R−1(B) \
R−1(B \ {b}) we get an element of A such that R(a) = {b}.

• Item 4 =⇒ Item 2: Let U, V ⊂ B with U 6= V . Without loss of
generality, we can assume U \ V 6= ∅; otherwise just swap U and
V . Let then b ∈ U \ V . By assumption, there exists an a ∈ A
with R(a) = {b}. Then a ∈ R−1(U) but a 6∈ R−1(V ), and thus
R−1(U) 6= R−1(V ), showing R−1 to be injective.

Finally, we prove the second part of the statement. So assume R is a
total epimorphism in Rel and consider the diagram

A B {0, 1},
R S

T

where b ∼S 0 for each b ∈ B and where we have

b ∼T

{
0 if b ∈ Im(R),
1 otherwise

for each b ∈ B. Since R is total, we have a ∼S�R 0 and a ∼T�R 0 for
all a ∈ A, and no element of A is related to 1 by S �R or T �R. Thus
S �R = T �R, and since R is an epimorphism, we have S = T . But by
the definition of T , this implies Im(R) = B.

5.3.10 2-Categorical Epimorphisms in Rel00M2

In this section we characterise (for now, some of) the 2-categorical
epimorphisms in Rel, following Section 9.2.

Proposition 5.3.10.1.1.00M3 Let R : A →| B be a relation.

https://topological-modular-forms.github.io/the-clowder-project/tag/00M2
https://topological-modular-forms.github.io/the-clowder-project/tag/00M3
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1. Corepresentably Faithful Morphisms in Rel.00M4 Every morphism of
Rel is a corepresentably faithful morphism.

2. Corepresentably Full Morphisms in Rel.00M5 The following conditions
are equivalent:

(a) The morphism R : A →| B is a corepresentably full morphism.
00M6

(b) For each pair of relations S, T : X ⇒| A, the following condition
is satisfied:00M7

(?) If S �R ⊂ T �R, then S ⊂ T .
(c) The functor00M8

R−1 : (P(B),⊂) → (P(A),⊂)

is full.
(d) For each U, V ∈ P(B), if R−1(U) ⊂ R−1(V ), then U ⊂ V .00M9

(e) The functor00MA

R−1 : (P(B),⊂) → (P(A),⊂)

is full.
(f) For each U, V ∈ P(B), if R−1(U) ⊂ R−1(V ), then U ⊂ V .00MB

3. Corepresentably Fully Faithful Morphisms in Rel.00MC Every corep-
resentably full morphism of Rel is a corepresentably fully faithful
morphism.

Proof. Item 1, Corepresentably Faithful Morphisms in Rel: The relation
R is a corepresentably faithful morphism in Rel iff, for each X ∈ Obj(Rel),
the functor

R∗ : Rel(B,X) → Rel(A,X)

is faithful, i.e. iff the morphism

R∗
S,T : HomRel(B,X)(S, T ) → HomRel(A,X)(S �R, T �R)

is injective for each S, T ∈ Obj(Rel(B,X)). However, HomRel(B,X)(S, T )
is either empty or a singleton, in either case of which the map R∗

S,T is
necessarily injective.
Item 2, Corepresentably Full Morphisms in Rel: We claim Items 2a to 2f
are indeed equivalent:

• Item 2a ⇐⇒ Item 2b: This is simply a matter of unwinding
definitions: The relation R is a corepresentably full morphism in

https://topological-modular-forms.github.io/the-clowder-project/tag/00M4
https://topological-modular-forms.github.io/the-clowder-project/tag/00M5
https://topological-modular-forms.github.io/the-clowder-project/tag/00M6
https://topological-modular-forms.github.io/the-clowder-project/tag/00M7
https://topological-modular-forms.github.io/the-clowder-project/tag/00M8
https://topological-modular-forms.github.io/the-clowder-project/tag/00M9
https://topological-modular-forms.github.io/the-clowder-project/tag/00MA
https://topological-modular-forms.github.io/the-clowder-project/tag/00MB
https://topological-modular-forms.github.io/the-clowder-project/tag/00MC
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Rel iff, for each X ∈ Obj(Rel), the functor

R∗ : Rel(B,X) → Rel(A,X)

is full, i.e. iff the morphism

R∗
S,T : HomRel(B,X)(S, T ) → HomRel(A,X)(S �R, T �R)

is surjective for each S, T ∈ Obj(Rel(B,X)), i.e. iff, whenever
S �R ⊂ T �R, we also have S ⊂ T .

• Item 2c ⇐⇒ Item 2d: This is also simply a matter of unwinding
definitions: The functor

R−1 : (P(B),⊂) → (P(A),⊂)

is full iff, for each U, V ∈ P(A), the morphism

R−1
U,V : HomP(B)(U, V ) → HomP(A)

(
R−1(U), R−1(V )

)
is surjective, i.e. iff whenever R−1(U) ⊂ R−1(V ), we also necessarily
have U ⊂ V .

• Item 2e ⇐⇒ Item 2f: This is once again simply a matter of
unwinding definitions, and proceeds exactly in the same way as in
the proof of the equivalence between Items 2c and 2d given above.

• Item 2d =⇒ Item 2f: Suppose that the following condition is true:

(?) For each U, V ∈ P(B), if R−1(U) ⊂ R−1(V ), then U ⊂ V .

We need to show that the condition

(?) For each U, V ∈ P(B), if R−1(U) ⊂ R−1(V ), then U ⊂ V .

is also true. We proceed step by step:

1. Suppose we have U, V ∈ P(B) with R−1(U) ⊂ R−1(V ).
2. By Item 7 of Proposition 6.4.2.1.3, we have

R−1(U) = B \R−1(A \ U),
R−1(V ) = B \R−1(A \ V ).

3. By Item 1 of Proposition 2.3.10.1.2 we have R−1(A \ V ) ⊂
R−1(A \ U).

4. By assumption, we then have A \ V ⊂ A \ U .
5. By Item 1 of Proposition 2.3.10.1.2 again, we have U ⊂ V .
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• Item 2f =⇒ Item 2d: Suppose that the following condition is true:

(?) For each U, V ∈ P(B), if R−1(U) ⊂ R−1(V ), then U ⊂ V .

We need to show that the condition

(?) For each U, V ∈ P(B), if R−1(U) ⊂ R−1(V ), then U ⊂ V .

is also true. We proceed step by step:

1. Suppose we have U, V ∈ P(B) with R−1(U) ⊂ R−1(V ).
2. By Item 7 of Proposition 6.4.3.1.3, we have

R−1(U) = B \R−1(A \ U),
R−1(V ) = B \R−1(A \ V ).

3. By Item 1 of Proposition 2.3.10.1.2 we have R−1(A \ V ) ⊂
R−1(A \ U).

4. By assumption, we then have A \ V ⊂ A \ U .
5. By Item 1 of Proposition 2.3.10.1.2 again, we have U ⊂ V .

• Item 2b =⇒ Item 2d: Consider the diagram

A B X,
R S

T

and suppose that S �R ⊂ T �R. Note that, by assumption, given
a diagram of the form

A B pt,
R U

V

if R−1(U) = R � U ⊂ R � V = R−1(V ), then U ⊂ V . In particular,
for each x ∈ X, we may consider the diagram

A B X pt,
R S

T

[x]

for which we have [x] � S �R ⊂ [x] � T �R, implying that we have

S−1(x) = [x] � S ⊂ [x] � T = T−1(x)

for each x ∈ X, implying S ⊂ T .



5.3. Properties of the 2-Category of Relations 268

• Item 2d =⇒ Item 2b: Let U, V ∈ P(B) and consider the diagram

A B pt.
R U

V

By Remark 6.4.1.1.2, we have

R−1(U) = U �R,
R−1(V ) = V �R.

Now, if R−1(U) ⊂ R−1(V ), i.e. U � R ⊂ V � R, then U ⊂ V by
assumption.

Item 3, Corepresentably Fully Faithful Morphisms in Rel: This follows
from Items 1 and 2.

Question 5.3.10.1.2.00MD Item 2 of Proposition 5.3.10.1.1 gives a charac-
terisation of the corepresentably full morphisms in Rel.
Are there other nice characterisations of these?
This question also appears as [MO 467527].

5.3.11 Co/Limits in Rel00ME

Proposition 5.3.11.1.1.00MF This will be properly written later on.

Proof. Omitted.

5.3.12 Kan Extensions and Kan Lifts in Rel00MG

Remark 5.3.12.1.1.00MH The 2-category Rel admits all right Kan extensions
and right Kan lifts, though not all left Kan extensions and neither does
it admit all left Kan lifts. See Section 6.2 for a detailed discussion of
this.

5.3.13 Closedness of Rel00MJ

Proposition 5.3.13.1.1.00MK The 2-category Rel is a closed bicategory,
there being, for each R : A →| B and set X, a pair of adjunctions

(R∗ a RanR) :
R∗

RanR

aRel(B,X) Rel(A,X),

(R∗ a RiftR) :
R∗

RiftR

aRel(X,A) Rel(X,B),

https://topological-modular-forms.github.io/the-clowder-project/tag/00MD
https://topological-modular-forms.github.io/the-clowder-project/tag/00ME
https://topological-modular-forms.github.io/the-clowder-project/tag/00MF
https://topological-modular-forms.github.io/the-clowder-project/tag/00MG
https://topological-modular-forms.github.io/the-clowder-project/tag/00MH
https://topological-modular-forms.github.io/the-clowder-project/tag/00MJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00MK
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witnessed by bijections

Rel(S �R, T ) ∼= Rel(S,RanR(T )),
Rel(R � U, V ) ∼= Rel(U,RiftR(V )),

natural in S ∈ Rel(B,X), T ∈ Rel(A,X), U ∈ Rel(X,A), and V ∈
Rel(X,B).

Proof. This follows from Propositions 6.2.3.1.1 and 6.2.4.1.1.

5.3.14 Rel as a Category of Free Algebras00ML

Proposition 5.3.14.1.1.00MM We have an isomorphism of categories

Rel ∼= FreeAlgP∗(Sets),

where P∗ is the powerset monad of ??.

Proof. Omitted.

5.4 The Left Skew Monoidal Structure on Rel(A, B)00MN

5.4.1 The Left Skew Monoidal Product00MP

Let A and B be sets and let J : A →| B be a relation.

Definition 5.4.1.1.1.00MQ The left J-skew monoidal product of Rel(A,B)
is the functor

CJ : Rel(A,B) × Rel(A,B) → Rel(A,B)

where

• Action on Objects. For each R,S ∈ Obj(Rel(A,B)), we have

S CJ R
def= S � RiftJ(R),

A B.

A B

S

J

RiftJ (R)

R

• Action on Morphisms. For each R,S,R′, S′ ∈ Obj(Rel(A,B)), the
action on Hom-sets

(CJ )(G,F ),(G′,F ′) : HomRel(A,B)
(
S, S′

)
×HomRel(A,B)

(
R,R′

)
→ HomRel(A,B)

(
S CJ R,S

′ CJ R
′
)

https://topological-modular-forms.github.io/the-clowder-project/tag/00ML
https://topological-modular-forms.github.io/the-clowder-project/tag/00MM
https://topological-modular-forms.github.io/the-clowder-project/tag/00MN
https://topological-modular-forms.github.io/the-clowder-project/tag/00MP
https://topological-modular-forms.github.io/the-clowder-project/tag/00MQ
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of CJ at ((R,S), (R′, S′)) is defined by14

β CJ α
def= β � RiftJ(α),

A B

A B

S

S′

J

RiftJ
(R

)

RiftJ
(R

′ )

R

R′

α

RiftJ
(α)

β

for each β ∈ HomRel(A,B)(S, S′) and each α ∈ HomRel(A,B)(R,R′).

5.4.2 The Left Skew Monoidal Unit00MR

Let A and B be sets and let J : A →| B be a relation.

Definition 5.4.2.1.1.00MS The left J-skew monoidal unit of Rel(A,B)
is the functor

1Rel(A,B)
CJ

: pt → Rel(A,B)

picking the object
1CJ

Rel(A,B)
def= J

of Rel(A,B).

5.4.3 The Left Skew Associators00MT

Let A and B be sets and let J : A →| B be a relation.

Definition 5.4.3.1.1.00MU The left J-skew associator of Rel(A,B) is
the natural transformation

αRel(A,B),CJ : CJ ◦ (CJ × id) =⇒ CJ ◦ (id × CJ) ◦ αCats
Rel(A,B),Rel(A,B),Rel(A,B),

14Since Rel(A, B) is posetal, this is to say that if S ⊂ S′ and R ⊂ R′, then
S CJ R ⊂ S′ CJ R′.

https://topological-modular-forms.github.io/the-clowder-project/tag/00MR
https://topological-modular-forms.github.io/the-clowder-project/tag/00MS
https://topological-modular-forms.github.io/the-clowder-project/tag/00MT
https://topological-modular-forms.github.io/the-clowder-project/tag/00MU
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as in the diagram

Rel(A,B) × (Rel(A,B) × Rel(A,B))

(Rel(A,B) × Rel(A,B)) × Rel(A,B)Rel(A,B) × Rel(A,B)

Rel(A,B) × Rel(A,B) Rel(A,B),

αCats
Rel(A,B),Rel(A,B),Rel(A,B) ∼

id×CJ

CJCJ ×id

CJ

αRel(A,B),CJ

whose component

α
Rel(A,B),CJ

T,S,R : (T CJ S) CJ R︸ ︷︷ ︸
def=T�RiftJ (S)�RiftJ (R)

↪→ T CJ (S CJ R)︸ ︷︷ ︸
def=T�RiftJ (S�RiftJ (R))

at (T, S,R) is given by

α
Rel(A,B),CJ

T,S,R
def= idT � γ,

where
γ : RiftJ(S) � RiftJ(R) ↪→ RiftJ(S � RiftJ(R))

is the inclusion adjunct to the inclusion

εS ? idRiftJ (R) : J � RiftJ(S) � RiftJ(R)︸ ︷︷ ︸
def=J∗(RiftJ (S)�RiftJ (R))

↪→ S � RiftJ(R)

under the adjunction J∗ a RiftJ , where ε : J � RiftJ =⇒ idRel(A,B) is the
counit of the adjunction J∗ a RiftJ .

5.4.4 The Left Skew Left Unitors00MV

Let A and B be sets and let J : A →| B be a relation.

Definition 5.4.4.1.1.00MW The left J-skew left unitor of Rel(A,B) is
the natural transformation

λRel(A,B),CJ : CJ ◦
(
1Rel(A,B)
CJ

× id
)

=⇒ λCats2
Rel(A,B)

https://topological-modular-forms.github.io/the-clowder-project/tag/00MV
https://topological-modular-forms.github.io/the-clowder-project/tag/00MW
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as in the diagram

pt × Rel(A,B) Rel(A,B) × Rel(A,B)

Rel(A,B),

1Rel(A,B)
CJ

×id

λ
Cats2
Rel(A,B)

CJ

λRel(A,B),CJ

whose component

λ
Rel(A,B),CJ

R : J CJ R︸ ︷︷ ︸
def=J�RiftJ (R)

↪→ R

at R is given by
λ

Rel(A,B),CJ

R
def= εR,

where ε : J∗ � RiftJ =⇒ idRel(A,B) is the counit of the adjunction J∗ a
RiftJ .

5.4.5 The Left Skew Right Unitors00MX

Let A and B be sets and let J : A →| B be a relation.

Definition 5.4.5.1.1.00MY The left J-skew right unitor of Rel(A,B) is
the natural transformation

ρRel(A,B),CJ : ρCats2
Rel(A,B) =⇒ CJ ◦

(
id × 1Rel(A,B)

CJ

)
as in the diagram

Rel(A,B) × pt Rel(A,B) × Rel(A,B),

Rel(A,B)

id×1Rel(A,B)
CJ

ρ
Cats2
Rel(A,B)

CJ

ρRel(A,B),CJ

whose component

ρ
Rel(A,B),CJ

R : R ↪→ RCJ J︸ ︷︷ ︸
def=R�RiftJ (J)

https://topological-modular-forms.github.io/the-clowder-project/tag/00MX
https://topological-modular-forms.github.io/the-clowder-project/tag/00MY


5.4. The Left Skew Monoidal Structure on Rel(A,B) 273

at R is given by the composition

R
∼=⇒ R � χA

idR�ηχA=⇒ R � RiftJ(J∗(χA))
def= R � RiftJ(J � χA)

∼=⇒ R � RiftJ(J)
def= RCJ J,

where η : idRel(A,A) =⇒ RiftJ ◦J∗ is the unit of the adjunction J∗ a RiftJ .

5.4.6 The Left Skew Monoidal Structure on Rel(A, B)00MZ

Proposition 5.4.6.1.1.00N0 The category Rel(A,B) admits a left skew
monoidal category structure consisting of

• The Underlying Category. The posetal category associated to
the poset Rel(A,B) of relations from A to B of Item 2 of Defini-
tion 5.1.1.1.3.

• The Left Skew Monoidal Product. The left J-skew monoidal product

CJ : Rel(A,B) × Rel(A,B) → Rel(A,B)

of Definition 5.4.1.1.1.

• The Left Skew Monoidal Unit. The functor

1Rel(A,B),CJ : pt → Rel(A,B)

of Definition 5.4.2.1.1.

• The Left Skew Associators. The natural transformation

αRel(A,B),CJ : CJ ◦ (CJ × id) =⇒ CJ ◦ (id × CJ) ◦ αCats
Rel(A,B),Rel(A,B),Rel(A,B)

of Definition 5.4.3.1.1.

• The Left Skew Left Unitors. The natural transformation

λRel(A,B),CJ : CJ ◦
(
1Rel(A,B)
CJ

× id
)

=⇒ λCats2
Rel(A,B)

of Definition 5.4.4.1.1.

• The Left Skew Right Unitors. The natural transformation

ρRel(A,B),CJ : ρCats2
Rel(A,B) =⇒ CJ ◦

(
id × 1Rel(A,B)

CJ

)
of Definition 5.4.5.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/00MZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00N0
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Proof. Since Rel(A,B) is posetal, the commutativity of the pentagon
identity, the left skew left triangle identity, the left skew right triangle
identity, the left skew middle triangle identity, and the zigzag identity is
automatic, and thus Rel(A,B) together with the data in the statement
forms a left skew monoidal category.

5.5 The Right Skew Monoidal Structure on Rel(A, B)00N1

Let A and B be sets and let J : A →| B be a relation.

5.5.1 The Right Skew Monoidal Product00N2

Definition 5.5.1.1.1.00N3 The right J-skew monoidal product of
Rel(A,B) is the functor

BJ : Rel(A,B) × Rel(A,B) → Rel(A,B)

where

• Action on Objects. For each R,S ∈ Obj(Rel(A,B)), we have

S BJ R
def= RanJ(S) �R,

A B B.

A

R RanJ (S)

J
S

• Action on Morphisms. For each R,S,R′, S′ ∈ Obj(Rel(A,B)), the
action on Hom-sets

(BJ )(S,R),(S′,R′) : HomRel(A,B)
(
S, S′

)
×HomRel(A,B)

(
R,R′

)
→ HomRel(A,B)

(
S BJ R,S

′ BJ R
′
)

of BJ at ((S,R), (S′, R′)) is defined by15

β BJ α
def= RanJ(β) � α,

A B B

A

R′

R

RanJ (S′)

RanJ (S)

J S′

S

α

β

RanJ (β)

for each β ∈ HomRel(A,B)(S, S′) and each α ∈ HomRel(A,B)(R,R′).
15Since Rel(A, B) is posetal, this is to say that if S ⊂ S′ and R ⊂ R′, then

https://topological-modular-forms.github.io/the-clowder-project/tag/00N1
https://topological-modular-forms.github.io/the-clowder-project/tag/00N2
https://topological-modular-forms.github.io/the-clowder-project/tag/00N3
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5.5.2 The Right Skew Monoidal Unit00N4

Definition 5.5.2.1.1.00N5 The right J-skew monoidal unit of Rel(A,B)
is the functor

1Rel(A,B)
BJ

: pt → Rel(A,B)
picking the object

1BJ

Rel(A,B)
def= J

of Rel(A,B).

5.5.3 The Right Skew Associators00N6

Definition 5.5.3.1.1.00N7 The right J-skew associator of Rel(A,B) is
the natural transformation
αRel(A,B),BJ : BJ ◦ (id × BJ) =⇒ BJ ◦ (BJ × id) ◦ αCats,−1

Rel(A,B),Rel(A,B),Rel(A,B),

as in the diagram

(Rel(A,B) × Rel(A,B)) × Rel(A,B)

Rel(A,B) × (Rel(A,B) × Rel(A,B))Rel(A,B) × Rel(A,B)

Rel(A,B) × Rel(A,B) Rel(A,B),

αCats,−1
Rel(A,B),Rel(A,B),Rel(A,B) ∼

BJ ×id

BJid×BJ

BJ

αRel(A,B),BJ

whose component

α
Rel(A,B),BJ

T,S,R : T BJ (S BJ R)︸ ︷︷ ︸
def=RanJ (T )�RanJ (S)�R

↪→ (T BJ S) BJ R︸ ︷︷ ︸
def=RanJ (RanJ (T )�S)�R

at (T, S,R) is given by

α
Rel(A,B),B
T,S,R

def= γ � idR,

where
γ : RanJ(T ) � RanJ(S) ↪→ RanJ(RanJ(T ) � S)

is the inclusion adjunct to the inclusion

idRanJ (T ) � εS : RanJ(T ) � RanJ(S) � J︸ ︷︷ ︸
def=J∗(RanJ (T )�RanJ (S))

↪→ RanJ(T ) � S

under the adjunction J∗ a RanJ , where ε : RanJ �J =⇒ idRel(A,B) is the
counit of the adjunction J∗ a RanJ .

https://topological-modular-forms.github.io/the-clowder-project/tag/00N4
https://topological-modular-forms.github.io/the-clowder-project/tag/00N5
https://topological-modular-forms.github.io/the-clowder-project/tag/00N6
https://topological-modular-forms.github.io/the-clowder-project/tag/00N7
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5.5.4 The Right Skew Left Unitors00N8

Definition 5.5.4.1.1.00N9 The right J-skew left unitor of Rel(A,B) is
the natural transformation

λRel(A,B),BJ : λCats2
Rel(A,B) =⇒ BJ ◦

(
1Rel(A,B)
B × id

)
,

as in the diagram

pt × Rel(A,B) Rel(A,B) × Rel(A,B)

Rel(A,B),

1Rel(A,B)
BJ

×id

λ
Cats2
Rel(A,B)

BJ

λRel(A,B),BJ

whose component

λ
Rel(A,B),BJ

R : R ↪→ J BJ R︸ ︷︷ ︸
def=RanJ (J)�R

at R is given by the composition

R
∼=⇒ χB �R
ηχB=⇒ � idRRanJ(J∗(χA)) �R
def= RanJ(J∗ � χA) �R

∼=⇒ RanJ(J) �R
def= RBJ J,

where η : idRel(B,B) =⇒ RanJ ◦J∗ is the unit of the adjunction J∗ a RanJ .

5.5.5 The Right Skew Right Unitors00NA

Definition 5.5.5.1.1.00NB The right J-skew right unitor of Rel(A,B)
is the natural transformation

ρRel(A,B),BJ : BJ ◦
(
id × 1Rel(A,B)

B

)
=⇒ ρCats2

Rel(A,B),

S BJ R ⊂ S′ BJ R′.

https://topological-modular-forms.github.io/the-clowder-project/tag/00N8
https://topological-modular-forms.github.io/the-clowder-project/tag/00N9
https://topological-modular-forms.github.io/the-clowder-project/tag/00NA
https://topological-modular-forms.github.io/the-clowder-project/tag/00NB


5.5. The Right Skew Monoidal Structure on Rel(A,B) 277

as in the diagram

Rel(A,B) × pt Rel(A,B) × Rel(A,B),

Rel(A,B)

id×1Rel(A,B)
BJ

ρ
Cats2
Rel(A,B)

BJ

ρRel(A,B),BJ

whose component

ρ
Rel(A,B),BJ

S : S BJ J︸ ︷︷ ︸
def=RanJ (S)�J

↪→ S

at S is given by
ρ

Rel(A,B),BJ

S
def= εR,

where ε : J∗ ◦ RanJ =⇒ idRel(A,B) is the counit of the adjunction J∗ a
RanJ .

5.5.6 The Right Skew Monoidal Structure on Rel(A, B)00NC

Proposition 5.5.6.1.1.00ND The category Rel(A,B) admits a right skew
monoidal category structure consisting of

• The Underlying Category. The posetal category associated to
the poset Rel(A,B) of relations from A to B of Item 2 of Defini-
tion 5.1.1.1.3.

• The Right Skew Monoidal Product. The right J-skew monoidal
product

CJ : Rel(A,B) × Rel(A,B) → Rel(A,B)

of Definition 5.5.1.1.1.

• The Right Skew Monoidal Unit. The functor

1Rel(A,B),CJ : pt → Rel(A,B)

of Definition 5.5.2.1.1.

• The Right Skew Associators. The natural transformation

αRel(A,B),BJ : BJ ◦ (id × BJ) =⇒ BJ ◦ (BJ × id) ◦ αCats,−1
Rel(A,B),Rel(A,B),Rel(A,B)

of Definition 5.5.3.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/00NC
https://topological-modular-forms.github.io/the-clowder-project/tag/00ND
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• The Right Skew Left Unitors. The natural transformation

λRel(A,B),BJ : λCats2
Rel(A,B) =⇒ BJ ◦

(
1Rel(A,B)
B × id

)
of Definition 5.5.4.1.1.

• The Right Skew Right Unitors. The natural transformation

ρRel(A,B),BJ : BJ ◦
(
id × 1Rel(A,B)

B

)
=⇒ ρCats2

Rel(A,B)

of Definition 5.5.5.1.1.

Proof. Since Rel(A,B) is posetal, the commutativity of the pentagon
identity, the right skew left triangle identity, the right skew right triangle
identity, the right skew middle triangle identity, and the zigzag identity is
automatic, and thus Rel(A,B) together with the data in the statement
forms a right skew monoidal category.

Appendices
5.A Other Chapters

Sets

1. Sets

2. Constructions With Sets

3. Pointed Sets

4. Tensor Products of Pointed
Sets

Relations

5. Relations

6. Constructions With Relations

7. Equivalence Relations and
Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicat-
egories



Chapter 6

Constructions With
Relations

00NE This chapter contains some material about constructions with relations.
Notably, we discuss and explore:

1. The existence or non-existence of Kan extensions and Kan lifts in
the 2-category Rel (Section 6.2).

2. The various kinds of constructions involving relations, such as
graphs, domains, ranges, unions, intersections, products, inverse
relations, composition of relations, and collages (Section 6.3).

3. The adjoint pairs

R∗ a R−1 : P(A) � P(B),
R−1 a R! : P(B) � P(A)

of functors (morphisms of posets) between P(A) and P(B) induced
by a relation R : A →| B, as well as the properties of R∗, R−1, R−1,
and R! (Section 6.4).
Of particular note are the following points:

(a) These two pairs of adjoint functors are the counterpart for
relations of the adjoint triple f∗ a f−1 a f! induced by a
function f : A → B studied in Section 2.4.

(b) We have R−1 = R−1 iff R is total and functional (Item 8 of
Proposition 6.4.2.1.3).

(c) As a consequence of the previous item, when R comes from a
function f , the pair of adjunctions

R∗ a R−1 = R−1 a R!

279
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reduces to the triple adjunction

f∗ a f−1 a f!

from Section 2.4.
(d) The pairs R∗ a R−1 and R−1 a R! turn out to be rather

important later on, as they appear in the definition and study
of continuous, open, and closed relations between topological
spaces (??).
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6.1 Co/Limits in the Category of Relations00NF

This section is currently just a stub, and will be properly developed later
on.

6.2 Kan Extensions and Kan Lifts in the 2-Category
of Relations00NG

6.2.1 Left Kan Extensions in Rel00NH

Proposition 6.2.1.1.1.00NJ Let R : A →| B be a relation.
1. Non-Existence of All Left Kan Extensions in Rel.00NK Not all relations

in Rel admit left Kan extensions.

2. Characterisation of Relations Admitting Left Kan Extensions Along
Them.00NL The following conditions are equivalent:

(a) The left Kan extension

LanR : Rel(A,X) → Rel(B,X)

along R exists.
(b) The relation R admits a left adjoint in Rel.
(c) The relation R is of the form f−1 (as in Definition 6.3.2.1.1)

for some function f .

Proof. Item 1, Non-Existence of All Left Kan Extensions in Rel: Omitted,
but will eventually follow Fosco Loregian’s comment on [MO 460656].
Item 2, Characterisation of Relations Admitting Left Kan Extensions
Along Them: Omitted, but will eventually follow Tim Campion’s answer
to to [MO 460656].

Question 6.2.1.1.2.00NM Given relations S : A →| X and R : A →| B, is there
a characterisation of when the left Kan extension

LanS(R) : B →| X

exists in terms of properties of R and S?
This question also appears as [MO 461592].
Question 6.2.1.1.3.00NN As shown in Item 2 of Proposition 6.2.1.1.1, the
left Kan extension

LanR : Rel(A,X) → Rel(B,X)

along a relation of the form R = f−1 exists. Is there a explicit description
of it, similarly to the explicit description of right Kan extensions given
in Proposition 6.2.3.1.1?
This question also appears as [MO 461592].

https://topological-modular-forms.github.io/the-clowder-project/tag/00NF
https://topological-modular-forms.github.io/the-clowder-project/tag/00NG
https://topological-modular-forms.github.io/the-clowder-project/tag/00NH
https://topological-modular-forms.github.io/the-clowder-project/tag/00NJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00NK
https://topological-modular-forms.github.io/the-clowder-project/tag/00NL
https://mathoverflow.net/questions/460656/existence-and-characterisations-of-left-kan-extensions-and-liftings-in-the-bicat#comment1194691_460656
https://mathoverflow.net/a/460693
https://mathoverflow.net/a/460693
https://topological-modular-forms.github.io/the-clowder-project/tag/00NM
https://topological-modular-forms.github.io/the-clowder-project/tag/00NN
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6.2.2 Left Kan Lifts in Rel00NP

Proposition 6.2.2.1.1.00NQ Let R : A →| B be a relation.

1. Non-Existence of All Left Kan Lifts in Rel.00NR Not all relations in
Rel admit left Kan lifts.

2. Characterisation of Relations Admitting Left Kan Lifts Along Them.
00NS The following conditions are equivalent:

(a) The left Kan lift

LiftR : Rel(X,B) → Rel(X,A)

along R exists.
(b) The relation R admits a right adjoint in Rel.
(c) The relation R is of the form Gr(f) (as in Definition 6.3.1.1.1)

for some function f .

Proof. Item 1, Non-Existence of All Left Kan Lifts in Rel: Omitted, but
will eventually follow (the dual of) Fosco Loregian’s comment on [MO
460656].
Item 2, Characterisation of Relations Admitting Left Kan Lifts Along
Them: Omitted, but will eventually follow Tim Campion’s answer to to
[MO 460656].

Question 6.2.2.1.2.00NT Given relations S : A →| X and R : A →| B, is there
a characterisation of when the left Kan lift

LiftS(R) : X →| A

exists in terms of properties of R and S?
This question also appears as [MO 461592].

Question 6.2.2.1.3.00NU As shown in Item 2 of Proposition 6.2.2.1.1, the
left Kan lift

LiftR : Rel(X,B) → Rel(X,A)

along a relation of the form R = Gr(f) exists. Is there a explicit
description of it, similarly to the explicit description of right Kan lifts
given in Proposition 6.2.4.1.1?
This question also appears as [MO 461592].

6.2.3 Right Kan Extensions in Rel00NV

https://topological-modular-forms.github.io/the-clowder-project/tag/00NP
https://topological-modular-forms.github.io/the-clowder-project/tag/00NQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00NR
https://topological-modular-forms.github.io/the-clowder-project/tag/00NS
https://mathoverflow.net/questions/460656/existence-and-characterisations-of-left-kan-lifts-and-liftings-in-the-bicat#comment1194691_460656
https://mathoverflow.net/a/460693
https://topological-modular-forms.github.io/the-clowder-project/tag/00NT
https://topological-modular-forms.github.io/the-clowder-project/tag/00NU
https://topological-modular-forms.github.io/the-clowder-project/tag/00NV
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Let R : A →| B be a relation.

Proposition 6.2.3.1.1.00NW The right Kan extension

RanR : Rel(A,X) → Rel(B,X)

along R in Rel exists and is given by

RanR(S) def=
∫
a∈A

Hom{t,f}
(
R−2
a , S−1

a

)
for each S ∈ Rel(A,X), so that the following conditions are equivalent:

1. We have b ∼RanR(S) x.

2. For each a ∈ A, if a ∼R b, then a ∼S x.

Proof. We have

HomRel(A,X)(S �R, T ) ∼=
∫

a∈A

∫
x∈X

Hom{t,f}((S �R)x
a, T

x
a )

∼=
∫

a∈A

∫
x∈X

Hom{t,f}

((∫ b∈B

Sx
b ×Rb

a

)
, T x

a

)
∼=
∫

a∈A

∫
x∈X

∫
b∈B

Hom{t,f}
(
Sx

b ×Rb
a, T

x
a

)
∼=
∫

a∈A

∫
x∈X

∫
b∈B

Hom{t,f}
(
Sx

b ,Hom{t,f}
(
Rb

a, T
x
a

))
∼=
∫

b∈B

∫
x∈X

∫
a∈A

Hom{t,f}
(
Sx

b ,Hom{t,f}
(
Rb

a, T
x
a

))
∼=
∫

b∈B

∫
x∈X

Hom{t,f}

(
Sx

b ,

∫
a∈A

Hom{t,f}
(
Rb

a, T
x
a

))
∼= HomRel(B,X)

(
S,

∫
a∈A

Hom{t,f}
(
R−2

a , T−1
a

))
naturally in each S ∈ Rel(B,X) and each T ∈ Rel(A,X), showing that∫

a∈A
Hom{t,f}

(
R−2
a , T−1

a

)
is right adjoint to the precomposition functor − � R, being thus the
right Kan extension along R. Here we have used the following results,
respectively (i.e. for each ∼= sign):

1. Item 1 of Proposition 5.1.1.1.5.

2. Definition 6.3.12.1.1.

3. ?? of ??.

https://topological-modular-forms.github.io/the-clowder-project/tag/00NW
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4. Proposition 1.2.2.1.5.

5. ?? of ??.

6. ?? of ??.

7. Item 1 of Proposition 5.1.1.1.5.

This finishes the proof.

6.2.4 Right Kan Lifts in Rel00NX

Let R : A →| B be a relation.

Proposition 6.2.4.1.1.00NY The right Kan lift

RiftR : Rel(X,B) → Rel(X,A)

along R in Rel exists and is given by

RiftR(S) def=
∫
b∈B

Hom{t,f}
(
Rb−1 , S

b
−2

)
for each S ∈ Rel(X,B), so that the following conditions are equivalent:

1. We have x ∼RiftR(S) a.

2. For each b ∈ B, if a ∼R b, then x ∼S b.

Proof. We have

HomRel(X,B)(R � S, T ) ∼=
∫

x∈X

∫
b∈B

Hom{t,f}

(
(R � S)b

x, T
b
x

)
∼=
∫

x∈X

∫
b∈B

Hom{t,f}

((∫ a∈A

Rb
a × Sa

x

)
, T b

x

)
∼=
∫

x∈X

∫
b∈B

∫
a∈A

Hom{t,f}
(
Rb

a × Sa
x , T

b
x

)
∼=
∫

x∈X

∫
b∈B

∫
a∈A

Hom{t,f}
(
Sa

x ,Hom{t,f}
(
Rb

a, T
b
x

))
∼=
∫

x∈X

∫
a∈A

∫
b∈B

Hom{t,f}
(
Sa

x ,Hom{t,f}
(
Rb

a, T
b
x

))
∼=
∫

x∈X

∫
a∈A

Hom{t,f}

(
Sa

x ,

∫
b∈B

Hom{t,f}
(
Rb

a, T
b
x

))
∼= HomRel(X,A)

(
S,

∫
b∈B

Hom{t,f}
(
Rb

−1
, T b

−2

))
naturally in each S ∈ Rel(X,A) and each T ∈ Rel(X,B), showing that∫

b∈B
Hom{t,f}

(
Rb−1 , S

b
−2

)

https://topological-modular-forms.github.io/the-clowder-project/tag/00NX
https://topological-modular-forms.github.io/the-clowder-project/tag/00NY
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is right adjoint to the postcomposition functor R�−, being thus the right
Kan lift along R. Here we have used the following results, respectively
(i.e. for each ∼= sign):

1. Item 1 of Proposition 5.1.1.1.5.

2. Definition 6.3.12.1.1.

3. ?? of ??.

4. Proposition 1.2.2.1.5.

5. ?? of ??.

6. ?? of ??.

7. Item 1 of Proposition 5.1.1.1.5.

This finishes the proof.

6.3 More Constructions With Relations00NZ

6.3.1 The Graph of a Function00P0

Let f : A → B be a function.

Definition 6.3.1.1.1.00P1 The graph of f is the relation Gr(f) : A →| B
defined as follows:1

• Viewing relations from A to B as subsets of A×B, we define

Gr(f) def= {(a, f(a)) ∈ A×B | a ∈ A}.

• Viewing relations from A to B as functions A×B → {true, false},
we define

[Gr(f)](a, b) def=
{

true if b = f(a),
false otherwise

for each (a, b) ∈ A×B.

• Viewing relations from A to B as functions A → P(B), we define

[Gr(f)](a) def= {f(a)}

for each a ∈ A, i.e. we define Gr(f) as the composition

A
f−−→ B

χB−−→ P(B).
1Further Notation: We write Gr(A) for Gr(idA), and call it the graph of A.

https://topological-modular-forms.github.io/the-clowder-project/tag/00NZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00P0
https://topological-modular-forms.github.io/the-clowder-project/tag/00P1
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Proposition 6.3.1.1.2.00P2 Let f : A → B be a function.

1. Functoriality.00P3 The assignment A 7→ Gr(A) defines a functor

Gr : Sets → Rel

where

• Action on Objects. For each A ∈ Obj(Sets), we have

Gr(A) def= A.

• Action on Morphisms. For each A,B ∈ Obj(Sets), the action
on Hom-sets

GrA,B : Sets(A,B) → Rel(Gr(A),Gr(B))︸ ︷︷ ︸
def=Rel(A,B)

of Gr at (A,B) is defined by

GrA,B(f) def= Gr(f),

where Gr(f) is the graph of f as in Definition 6.3.1.1.1.

In particular:

• Preservation of Identities. We have

Gr(idA) = χA

for each A ∈ Obj(Sets).
• Preservation of Composition. We have

Gr(g ◦ f) = Gr(g) � Gr(f)

for each pair of functions f : A → B and g : B → C.

2. Adjointness Inside Rel.00P4 We have an adjunction

(
Gr(f) a f−1

)
: A B

Gr(f)

f−1

a

in Rel, where f−1 is the inverse of f of Definition 6.3.2.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/00P2
https://topological-modular-forms.github.io/the-clowder-project/tag/00P3
https://topological-modular-forms.github.io/the-clowder-project/tag/00P4
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3. Adjointness.00P5 We have an adjunction

(Gr a P∗) :
Gr

P∗

aSets Rel,

witnessed by a bijection of sets

Rel(Gr(A), B) ∼= Sets(A,P(B))

natural in A ∈ Obj(Sets) and B ∈ Obj(Rel).

4. Interaction With Inverses.00P6 We have

Gr(f)† = f−1,(
f−1

)†
= Gr(f).

5. Cocontinuity.00P7 The functor Gr : Sets → Rel of Item 1 preserves
colimits.

6. Characterisations.00P8 Let R : A →| B be a relation. The following
conditions are equivalent:

(a) There exists a function f : A → B such that R = Gr(f).00P9

(b) The relation R is total and functional.00PA

(c) The weak and strong inverse images of R agree, i.e. we have
R−1 = R−1.00PB

(d) The relation R has a right adjoint R† in Rel.00PC

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness Inside Rel: We need to check that there are inclusions

χA ⊂ f−1 � Gr(f),
Gr(f) � f−1 ⊂ χB.

These correspond respectively to the following conditions:

1. For each a ∈ A, there exists some b ∈ B such that a ∼Gr(f) b and
b ∼f−1 a.

2. For each a, b ∈ A, if a ∼Gr(f) b and b ∼f−1 a, then a = b.

In other words, the first condition states that the image of any a ∈ A
by f is nonempty, whereas the second condition states that f is not
multivalued. As f is a function, both of these statements are true, and
we are done.

https://topological-modular-forms.github.io/the-clowder-project/tag/00P5
https://topological-modular-forms.github.io/the-clowder-project/tag/00P6
https://topological-modular-forms.github.io/the-clowder-project/tag/00P7
https://topological-modular-forms.github.io/the-clowder-project/tag/00P8
https://topological-modular-forms.github.io/the-clowder-project/tag/00P9
https://topological-modular-forms.github.io/the-clowder-project/tag/00PA
https://topological-modular-forms.github.io/the-clowder-project/tag/00PB
https://topological-modular-forms.github.io/the-clowder-project/tag/00PC
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Item 3, Adjointness: The stated bijection follows from Remark 5.1.1.1.4,
with naturality being clear.
Item 4, Interaction With Inverses: Clear.
Item 5, Cocontinuity: Omitted.
Item 6, Characterisations: We claim that Items 6a to 6d are indeed
equivalent:

• Item 6a ⇐⇒ Item 6b. This is shown in the proof of ?? of ??.

• Item 6b =⇒ Item 6c. If R is total and functional, then, for each
a ∈ A, the set R(a) is a singleton, implying that

R−1(V ) def= {a ∈ A | R(a) ∩ V 6= ∅},
R−1(V ) def= {a ∈ A | R(a) ⊂ V }

are equal for all V ∈ P(B), as the conditions R(a) ∩ V 6= ∅ and
R(a) ⊂ V are equivalent when R(a) is a singleton.

• Item 6c =⇒ Item 6b. We claim that R is indeed total and func-
tional:

– Totality. If we had R(a) = ∅ for some a ∈ A, then we would
have a ∈ R−1(∅), so that R−1(∅) 6= ∅. But since R−1(∅) = ∅,
this would imply R−1(∅) 6= R−1(∅), a contradiction. Thus
R(a) 6= ∅ for all a ∈ A and R is total.

– Functionality. If R−1 = R−1, then we have

{a} = R−1({b})
= R−1({b})

for each b ∈ R(a) and each a ∈ A, and thus R(a) ⊂ {b}. But
since R is total, we must have R(a) = {b}, and thus we see
that R is functional.

• Item 6a ⇐⇒ Item 6d. This follows from Proposition 5.3.3.1.1.

This finishes the proof.

6.3.2 The Inverse of a Function00PD

Let f : A → B be a function.

Definition 6.3.2.1.1.00PE The inverse of f is the relation f−1 : B →| A
defined as follows:

https://topological-modular-forms.github.io/the-clowder-project/tag/00PD
https://topological-modular-forms.github.io/the-clowder-project/tag/00PE
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• Viewing relations from B to A as subsets of B ×A, we define

f−1 def=
{(
b, f−1(b)

)
∈ B ×A

∣∣∣ a ∈ A
}
,

where
f−1(b) def= {a ∈ A | f(a) = b}

for each b ∈ B.

• Viewing relations from B to A as functions B ×A → {true, false},
we define

f−1(b, a) def=
{

true if there exists a ∈ A with f(a) = b,
false otherwise

for each (b, a) ∈ B ×A.

• Viewing relations from B to A as functions B → P(A), we define

f−1(b) def= {a ∈ A | f(a) = b}

for each b ∈ B.

Proposition 6.3.2.1.2.00PF Let f : A → B be a function.

1. Functoriality.00PG The assignment A 7→ A, f 7→ f−1 defines a functor

(−)−1 : Sets → Rel

where

• Action on Objects. For each A ∈ Obj(Sets), we have[
(−)−1

]
(A) def= A.

• Action on Morphisms. For each A,B ∈ Obj(Sets), the action
on Hom-sets

(−)−1
A,B : Sets(A,B) → Rel(A,B)

of (−)−1 at (A,B) is defined by

(−)−1
A,B(f) def=

[
(−)−1

]
(f),

where f−1 is the inverse of f as in Definition 6.3.2.1.1.

In particular:

https://topological-modular-forms.github.io/the-clowder-project/tag/00PF
https://topological-modular-forms.github.io/the-clowder-project/tag/00PG
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• Preservation of Identities. We have

id−1
A = χA

for each A ∈ Obj(Sets).
• Preservation of Composition. We have

(g ◦ f)−1 = g−1 � f−1

for pair of functions f : A → B and g : B → C.

2. Adjointness Inside Rel.00PH We have an adjunction

(
Gr(f) a f−1

)
: A B

Gr(f)

f−1

a

in Rel.

3. Interaction With Inverses of Relations.00PJ We have

(
f−1

)†
= Gr(f),

Gr(f)† = f−1.

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness Inside Rel: This is proved in Item 2 of Proposi-
tion 6.3.1.1.2.
Item 3, Interaction With Inverses of Relations: Clear.

6.3.3 Representable Relations00PK

Let A and B be sets.

Definition 6.3.3.1.1.00PL Let f : A → B and g : B → A be functions.2

1. The representable relation associated to f is the relation
2More generally, given functions

f : A → C,

g : B → D

and a relation B →| D, we may consider the composite relation

A × B
f×g−−→ C × D

R−−→ {true, false},

for which we have a ∼R◦(f×g) b iff f(a) ∼R g(b).

https://topological-modular-forms.github.io/the-clowder-project/tag/00PH
https://topological-modular-forms.github.io/the-clowder-project/tag/00PJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00PK
https://topological-modular-forms.github.io/the-clowder-project/tag/00PL
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χf : A →| B defined as the composition

A×B
f×idB−−−−→ B ×B

χB−−→ {true, false},

i.e. given by declaring a ∼χf
b iff f(a) = b.

2. The corepresentable relation associated to g is the relation
χg : B →| A defined as the composition

B ×A
g×idA−−−−→ A×A

χA−−→ {true, false},

i.e. given by declaring b ∼χg a iff g(b) = a.

6.3.4 The Domain and Range of a Relation00PM

Let A and B be sets.

Definition 6.3.4.1.1.00PN Let R ⊂ A×B be a relation.3,4

1. The domain of R is the subset dom(R) of A defined by

dom(R) def=
{
a ∈ A

∣∣∣∣∣ there exists some b ∈ B

such that a ∼R b

}
.

2. The range of R is the subset range(R) of B defined by

range(R) def=
{
b ∈ B

∣∣∣∣∣ there exists some a ∈ A

such that a ∼R b

}
.

3Following ??, we may compute the (characteristic functions associated to the)
domain and range of a relation using the following colimit formulas:

χdom(R)(a) ∼= colim
b∈B

(
Rb

a

)
(a ∈ A)

∼=
∨
b∈B

Rb
a,

χrange(R)(b) ∼= colim
a∈A

(
Rb

a

)
(b ∈ B)

∼=
∨

a∈A

Rb
a,

where the join
∨

is taken in the poset ({true, false}, �) of Definition 1.2.2.1.3.
4Viewing R as a function R : A → P(B), we have

dom(R) ∼= colim
y∈Y

(R(y))

∼=
⋃

y∈Y

R(y),

range(R) ∼= colim
x∈X

(R(x))

∼=
⋃

x∈X

R(x),

https://topological-modular-forms.github.io/the-clowder-project/tag/00PM
https://topological-modular-forms.github.io/the-clowder-project/tag/00PN
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6.3.5 Binary Unions of Relations00PP

Let A and B be sets and let R and S be relations from A to B.

Definition 6.3.5.1.1.00PQ The union of R and S5 is the relation R ∪ S
from A to B defined as follows:

• Viewing relations from A to B as subsets of A×B, we define6

R ∪ S
def= {(a, b) ∈ B ×A | we have a ∼R b or a ∼S b}.

• Viewing relations from A to B as functions A → P(B), we define

[R ∪ S](a) def= R(a) ∪ S(a)

for each a ∈ A.

Proposition 6.3.5.1.2.00PR Let R, S, R1, and R2 be relations from A to
B, and let S1 and S2 be relations from B to C.

1. Interaction With Inverses.00PS We have

(R ∪ S)† = R† ∪ S†.

2. Interaction With Composition.00PT We have

(S1 �R1) ∪ (S2 �R2)
poss.
6= (S1 ∪ S2) � (R1 ∪R2).

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Unwinding the definitions, we
see that:

1. The condition for (S1 �R1) ∪ (S2 �R2) is:

(a) There exists some b ∈ B such that:
i. a ∼R1 b and b ∼S1 c;

or
i. a ∼R2 b and b ∼S2 c;

3. The condition for (S1 ∪ S2) � (R1 ∪R2) is:

(a) There exists some b ∈ B such that:
i. a ∼R1 b or a ∼R2 b;

and
i. b ∼S1 c or b ∼S2 c.

These two conditions may fail to agree (counterexample omitted), and
thus the two resulting relations on A× C may differ.

5Further Terminology: Also called the binary union of R and S, for emphasis.
6This is the same as the union of R and S as subsets of A × B.

https://topological-modular-forms.github.io/the-clowder-project/tag/00PP
https://topological-modular-forms.github.io/the-clowder-project/tag/00PQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00PR
https://topological-modular-forms.github.io/the-clowder-project/tag/00PS
https://topological-modular-forms.github.io/the-clowder-project/tag/00PT
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6.3.6 Unions of Families of Relations00PU

Let A and B be sets and let {Ri}i∈I be a family of relations from A to
B.

Definition 6.3.6.1.1.00PV The union of the family {Ri}i∈I is the relation⋃
i∈I Ri from A to B defined as follows:

• Viewing relations from A to B as subsets of A×B, we define7

⋃
i∈I

Ri
def=
{

(a, b) ∈ (A×B)×I
∣∣∣∣∣ there exists some i ∈ I

such that a ∼Ri b

}
.

• Viewing relations from A to B as functions A → P(B), we define[⋃
i∈I

Ri

]
(a) def=

⋃
i∈I

Ri(a)

for each a ∈ A.

Proposition 6.3.6.1.2.00PW Let A and B be sets and let {Ri}i∈I be a family
of relations from A to B.

1. Interaction With Inverses.00PX We have

(⋃
i∈I

Ri

)†

=
⋃
i∈I

R†
i .

Proof. Item 1, Interaction With Inverses: Clear.

6.3.7 Binary Intersections of Relations00PY

Let A and B be sets and let R and S be relations from A to B.

Definition 6.3.7.1.1.00PZ The intersection of R and S8 is the relation
R ∩ S from A to B defined as follows:

• Viewing relations from A to B as subsets of A×B, we define9

R ∩ S
def= {(a, b) ∈ B ×A | we have a ∼R b and a ∼S b}.

7This is the same as the union of {Ri}i∈I as a collection of subsets of A × B.
8Further Terminology: Also called the binary intersection of R and S, for

emphasis.
9This is the same as the intersection of R and S as subsets of A × B.

https://topological-modular-forms.github.io/the-clowder-project/tag/00PU
https://topological-modular-forms.github.io/the-clowder-project/tag/00PV
https://topological-modular-forms.github.io/the-clowder-project/tag/00PW
https://topological-modular-forms.github.io/the-clowder-project/tag/00PX
https://topological-modular-forms.github.io/the-clowder-project/tag/00PY
https://topological-modular-forms.github.io/the-clowder-project/tag/00PZ
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• Viewing relations from A to B as functions A → P(B), we define

[R ∩ S](a) def= R(a) ∩ S(a)

for each a ∈ A.

Proposition 6.3.7.1.2.00Q0 Let R, S, R1, and R2 be relations from A to
B, and let S1 and S2 be relations from B to C.

1. Interaction With Inverses.00Q1 We have

(R ∩ S)† = R† ∩ S†.

2. Interaction With Composition.00Q2 We have

(S1 �R1) ∩ (S2 �R2) = (S1 ∩ S2) � (R1 ∩R2).

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Unwinding the definitions, we
see that:

1. The condition for (S1 �R1) ∩ (S2 �R2) is:

(a) There exists some b ∈ B such that:
i. a ∼R1 b and b ∼S1 c;

and
i. a ∼R2 b and b ∼S2 c;

3. The condition for (S1 ∩ S2) � (R1 ∩R2) is:

(a) There exists some b ∈ B such that:
i. a ∼R1 b and a ∼R2 b;

and
i. b ∼S1 c and b ∼S2 c.

These two conditions agree, and thus so do the two resulting relations
on A× C.

6.3.8 Intersections of Families of Relations00Q3

Let A and B be sets and let {Ri}i∈I be a family of relations from A to
B.

Definition 6.3.8.1.1. The intersection of the family {Ri}i∈I is the
relation

⋃
i∈I Ri defined as follows:

https://topological-modular-forms.github.io/the-clowder-project/tag/00Q0
https://topological-modular-forms.github.io/the-clowder-project/tag/00Q1
https://topological-modular-forms.github.io/the-clowder-project/tag/00Q2
https://topological-modular-forms.github.io/the-clowder-project/tag/00Q3
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• Viewing relations from A to B as subsets of A×B, we define10

⋃
i∈I

Ri
def=
{

(a, b) ∈ (A×B)×I
∣∣∣∣∣ for each i ∈ I,

we have a ∼Ri b

}
.

• Viewing relations from A to B as functions A → P(B), we define[⋂
i∈I

Ri

]
(a) def=

⋂
i∈I

Ri(a)

for each a ∈ A.

Proposition 6.3.8.1.2.00Q5 Let A and B be sets and let {Ri}i∈I be a family
of relations from A to B.

1. Interaction With Inverses.00Q6 We have(⋂
i∈I

Ri

)†

=
⋂
i∈I

R†
i .

Proof. Item 1, Interaction With Inverses: Clear.

6.3.9 Binary Products of Relations00Q7

Let A, B, X, and Y be sets, let R : A →| B be a relation from A to B,
and let S : X →| Y be a relation from X to Y .

Definition 6.3.9.1.1.00Q8 The product of R and S11 is the relation R×S
from A×X to B × Y defined as follows:

• Viewing relations from A×X to B × Y as subsets of (A×X) ×
(B × Y ), we define R× S as the Cartesian product of R and S as
subsets of A×X and B × Y .12

• Viewing relations from A × X to B × Y as functions A × X →
P(B × Y ), we define R× S as the composition

A×X
R×S−−−→ P(B) × P(Y )

P⊗
B,Y
↪→ P(B × Y )

in Sets, i.e. by

[R× S](a, x) def= R(a) × S(x)

for each (a, x) ∈ A×X.
10This is the same as the intersection of {Ri}i∈I as a collection of subsets of A × B.
11Further Terminology: Also called the binary product of R and S, for emphasis.
12That is, R × S is the relation given by declaring (a, x) ∼R×S (b, y) iff a ∼R b and

https://topological-modular-forms.github.io/the-clowder-project/tag/00Q5
https://topological-modular-forms.github.io/the-clowder-project/tag/00Q6
https://topological-modular-forms.github.io/the-clowder-project/tag/00Q7
https://topological-modular-forms.github.io/the-clowder-project/tag/00Q8
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Proposition 6.3.9.1.2.00Q9 Let A, B, X, and Y be sets.

1. Interaction With Inverses.00QA Let

R : A →| A,
S : X →| X

We have
(R× S)† = R† × S†.

2. Interaction With Composition.00QB Let

R1 : A →| B,
S1 : B →| C,
R2 : X →| Y,
S2 : Y →| Z

be relations. We have

(S1 �R1) × (S2 �R2) = (S1 × S2) � (R1 ×R2).

Proof. Item 1, Interaction With Inverses: Unwinding the definitions, we
see that:

1. We have (a, x) ∼(R×S)† (b, y) iff:

• We have (b, y) ∼R×S (a, x), i.e. iff:
– We have b ∼R a;
– We have y ∼S x;

2. We have (a, x) ∼R†×S† (b, y) iff:

• We have a ∼R† b and x ∼S† y, i.e. iff:
– We have b ∼R a;
– We have y ∼S x.

These two conditions agree, and thus the two resulting relations on A×X
are equal.
Item 2, Interaction With Composition: Unwinding the definitions, we
see that:

1. We have (a, x) ∼(S1�R1)×(S2�R2) (c, z) iff:

(a) We have a ∼S1�R1 c and x ∼S2�R2 z, i.e. iff:

https://topological-modular-forms.github.io/the-clowder-project/tag/00Q9
https://topological-modular-forms.github.io/the-clowder-project/tag/00QA
https://topological-modular-forms.github.io/the-clowder-project/tag/00QB
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i. There exists some b ∈ B such that a ∼R1 b and b ∼S1 c;
ii. There exists some y ∈ Y such that x ∼R2 y and y ∼S2 z;

2. We have (a, x) ∼(S1×S2)�(R1×R2) (c, z) iff:

(a) There exists some (b, y) ∈ B×Y such that (a, x) ∼R1×R2 (b, y)
and (b, y) ∼S1×S2 (c, z), i.e. such that:

i. We have a ∼R1 b and x ∼R2 y;
ii. We have b ∼S1 c and y ∼S2 z.

These two conditions agree, and thus the two resulting relations from
A×X to C × Z are equal.

6.3.10 Products of Families of Relations00QC

Let {Ai}i∈I and {Bi}i∈I be families of sets, and let {Ri : Ai →| Bi}i∈I be
a family of relations.

Definition 6.3.10.1.1.00QD The product of the family {Ri}i∈I is the
relation

∏
i∈I Ri from

∏
i∈I Ai to

∏
i∈I Bi defined as follows:

• Viewing relations as subsets, we define
∏
i∈I Ri as its product as a

family of sets, i.e. we have

∏
i∈I

Ri
def=
{

(ai, bi)i∈I ∈
∏
i∈I

(Ai ×Bi)
∣∣∣∣∣ for each i ∈ I,

we have ai ∼Ri bi

}
.

• Viewing relations as functions to powersets, we define[∏
i∈I

Ri

](
(ai)i∈I

) def=
∏
i∈I

Ri(ai)

for each (ai)i∈I ∈
∏
i∈I Ri.

6.3.11 The Inverse of a Relation00QE

Let A, B, and C be sets and let R ⊂ A×B be a relation.

Definition 6.3.11.1.1.00QF The inverse of R13 is the relation R† defined
as follows:

• Viewing relations as subsets, we define

R† def= {(b, a) ∈ B ×A | we have b ∼R a}.
x ∼S y.

13Further Terminology: Also called the opposite of R, the transpose of R, or

https://topological-modular-forms.github.io/the-clowder-project/tag/00QC
https://topological-modular-forms.github.io/the-clowder-project/tag/00QD
https://topological-modular-forms.github.io/the-clowder-project/tag/00QE
https://topological-modular-forms.github.io/the-clowder-project/tag/00QF
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• Viewing relations as functions A×B → {true, false}, we define[
R†
]
a
b

def= Rba

for each (b, a) ∈ B ×A.

• Viewing relations as functions A → P(B), we define[
R†
]
(b) def= R†({b})

def= {a ∈ A | b ∈ R(a)}

for each b ∈ B, where R†({b}) is the fibre of R over {b}.

Example 6.3.11.1.2.00QG Here are some examples of inverses of relations.

1. Less Than Equal Signs.00QH We have (≤)† = ≥.

2. Greater Than Equal Signs.00QJ Dually to Item 1, we have (≥)† = ≤.

3. Functions.00QK Let f : A → B be a function. We have

Gr(f)† = f−1,(
f−1

)†
= Gr(f).

Proposition 6.3.11.1.3.00QL Let R : A →| B and S : B →| C be relations.

1. Functoriality.00QM The assignment R 7→ R† defines a functor (i.e.
morphism of posets)

(−)† : Rel(A,B) → Rel(B,A).

In particular, given relations R,S : A⇒| B, we have:

(?) If R ⊂ S, then R† ⊂ S†.

2. Interaction With Ranges and Domains.00QN We have

dom
(
R†
)

= range(R),

range
(
R†
)

= dom(R).

3. Interaction With Composition I.00QP We have

(S �R)† = R† � S†.

https://topological-modular-forms.github.io/the-clowder-project/tag/00QG
https://topological-modular-forms.github.io/the-clowder-project/tag/00QH
https://topological-modular-forms.github.io/the-clowder-project/tag/00QJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00QK
https://topological-modular-forms.github.io/the-clowder-project/tag/00QL
https://topological-modular-forms.github.io/the-clowder-project/tag/00QM
https://topological-modular-forms.github.io/the-clowder-project/tag/00QN
https://topological-modular-forms.github.io/the-clowder-project/tag/00QP
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4. Interaction With Composition II.00QQ We have

χB ⊂ R �R†,

χA ⊂ R† �R.

5. Invertibility.00QR We have

(
R†
)†

= R.

6. Identity.00QS We have
χ†
A = χA.

Proof. Item 1, Functoriality: Clear.
Item 2, Interaction With Ranges and Domains: Clear.
Item 3, Interaction With Composition I : Clear.
Item 4, Interaction With Composition II : Clear.
Item 5, Invertibility: Clear.
Item 6, Identity: Clear.

6.3.12 Composition of Relations00QT

Let A, B, and C be sets and let R : A →| B and S : B →| C be relations.

Definition 6.3.12.1.1.00QU The composition of R and S is the relation
S �R defined as follows:

• Viewing relations from A to C as subsets of A× C, we define

S �R def=
{

(a, c) ∈ A× C

∣∣∣∣∣ there exists some b ∈ B such
that a ∼R b and b ∼S c

}
.

• Viewing relations as functions A×B → {true, false}, we define

(S �R)−1
−2

def=
∫ b∈B

S−1
b ×Rb−2

=
∨
b∈B

S−1
b ×Rb−2 ,

where the join
∨

is taken in the poset ({true, false},�) of Defini-
tion 1.2.2.1.3.

the converse of R.

https://topological-modular-forms.github.io/the-clowder-project/tag/00QQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00QR
https://topological-modular-forms.github.io/the-clowder-project/tag/00QS
https://topological-modular-forms.github.io/the-clowder-project/tag/00QT
https://topological-modular-forms.github.io/the-clowder-project/tag/00QU
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• Viewing relations as functions A → P(B), we define

S �R def= LanχB (S) ◦R,

B P(C),

A P(B)

S

χB

R

LanχB
(S)

where LanχB (S) is computed by the formula

[LanχB (S)](V ) ∼=
∫ y∈B

χP(B)(χy, V ) � Sy

∼=
∫ y∈B

χV (y) � Sy

∼=
⋃
y∈B

χV (y) � Sy

∼=
⋃
y∈V

Sy

for each V ∈ P(B). In other words, S �R is defined by14

[S �R](a) def= S(R(a))
def=

⋃
x∈R(a)

S(x).

for each a ∈ A.

Example 6.3.12.1.2.00QV Here are some examples of composition of rela-
tions.

1. Composing Less/Greater Than Equal With Greater/Less Than
Equal Signs. We have

≤ � ≥ =∼triv,

≥ � ≤ =∼triv .

2. Composing Less/Greater Than Equal Signs With Less/Greater
Than Equal Signs. We have

≤ � ≤ = ≤,
≥ � ≥ = ≥.

14That is: the relation R may send a ∈ A to a number of elements {bi}i∈I in B, and
then the relation S may send the image of each of the bi’s to a number of elements
{S(bi)}i∈I =

{
{cji }ji∈Ji

}
i∈I

in C.

https://topological-modular-forms.github.io/the-clowder-project/tag/00QV
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Proposition 6.3.12.1.3.00QW Let R : A →| B, S : B →| C, and T : C →| D
be relations.

1. Interaction With Ranges and Domains.00QX We have

dom(S �R) ⊂ dom(R),
range(S �R) ⊂ range(S).

2. Associativity.00QY We have

(T � S) �R = T � (S �R).

3. Unitality.00QZ We have

χB �R = R,

R � χA = R.

4. Interaction With Inverses.00R0 We have

(S �R)† = R† � S†.

5. Interaction With Composition.00R1 We have

χB ⊂ R �R†,

χA ⊂ R† �R.

Proof. Item 1, Interaction With Ranges and Domains: Clear.
Item 2, Associativity: Indeed, we have

(T � S) �R def=
(∫ c∈C

T−1
c × Sc−2

)
�R

def=
∫ b∈B

(∫ c∈C
T−1
c × Scb

)
�Rb−2

=
∫ b∈B ∫ c∈C(

T−1
c × Scb

)
�Rb−2

=
∫ c∈C ∫ b∈B(

T−1
c × Scb

)
�Rb−2

=
∫ c∈C ∫ b∈B

T−1
c ×

(
Scb �Rb−2

)
=
∫ c∈C

T−1
c ×

(∫ b∈B
Scb �Rb−2

)
def=
∫ c∈C

T−1
c × (S �R)c−2

def= T � (S �R).

https://topological-modular-forms.github.io/the-clowder-project/tag/00QW
https://topological-modular-forms.github.io/the-clowder-project/tag/00QX
https://topological-modular-forms.github.io/the-clowder-project/tag/00QY
https://topological-modular-forms.github.io/the-clowder-project/tag/00QZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00R0
https://topological-modular-forms.github.io/the-clowder-project/tag/00R1
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In the language of relations, given a ∈ A and d ∈ D, the stated equality
witnesses the equivalence of the following two statements:

1. We have a ∼(T�S)�R d, i.e. there exists some b ∈ B such that:

(a) We have a ∼R b;
(b) We have b ∼T�S d, i.e. there exists some c ∈ C such that:

i. We have b ∼S c;
ii. We have c ∼T d;

2. We have a ∼T�(S�R) d, i.e. there exists some c ∈ C such that:

(a) We have a ∼S�R c, i.e. there exists some b ∈ B such that:
i. We have a ∼R b;
ii. We have b ∼S c;

(b) We have c ∼T d;

both of which are equivalent to the statement

• There exist b ∈ B and c ∈ C such that a ∼R b ∼S c ∼T d.

Item 3, Unitality: Indeed, we have

χB �R def=
∫ x∈B

(χB)−1
x ×Rx−2

=
∨
x∈B

(χB)−1
x ×Rx−2

=
∨
x∈B
x=−1

Rx−2

= R−1
−2 ,

and

R � χA
def=
∫ x∈A

R−1
x × (χA)x−2

=
∨
x∈B

R−1
x × (χA)x−2

=
∨
x∈B
x=−2

R−1
x

= R−1
−2 .

In the language of relations, given a ∈ A and b ∈ B:
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• The equality
χB �R = R

witnesses the equivalence of the following two statements:

1. We have a ∼b B.
2. There exists some b′ ∈ B such that:

(a) We have a ∼R b
′

(b) We have b′ ∼χB b, i.e. b′ = b.

• The equality
R � χA = R

witnesses the equivalence of the following two statements:

1. There exists some a′ ∈ A such that:
(a) We have a ∼χB a′, i.e. a = a′.
(b) We have a′ ∼R b

2. We have a ∼b B.

Item 4, Interaction With Inverses: Clear.
Item 5, Interaction With Composition: Clear.

6.3.13 The Collage of a Relation00R2

Let A and B be sets and let R : A →| B be a relation from A to B.

Definition 6.3.13.1.1.00R3 The collage of R15 is the poset Coll(R) def=
(
Coll(R),�Coll(R)

)
consisting of:

• The Underlying Set. The set Coll(R) defined by

Coll(R) def= A
∐
B.

• The Partial Order. The partial order

�Coll(R) : Coll(R) × Coll(R) → {true, false}

on Coll(R) defined by

�(a, b) def=
{

true if a = b or a ∼R b,
false otherwise.

Proposition 6.3.13.1.2.00R4 Let A and B be sets and let R : A →| B be a
relation from A to B.

15Further Terminology: Also called the cograph of R.

https://topological-modular-forms.github.io/the-clowder-project/tag/00R2
https://topological-modular-forms.github.io/the-clowder-project/tag/00R3
https://topological-modular-forms.github.io/the-clowder-project/tag/00R4
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1. Functoriality I.00R5 The assignment R 7→ Coll(R) defines a functor16

Coll : Rel(A,B) → Pos/∆1(A,B),

where

• Action on Objects. For each R ∈ Obj(Rel(A,B)), we have

[Coll](R) def= (Coll(R), φR)

for each R ∈ Rel(A,B), where
– The poset Coll(R) is the collage ofR of Definition 6.3.13.1.1.
– The morphism φR : Coll(R) → ∆1 is given by

φR(x) def=
{

0 if x ∈ A,
1 if x ∈ B

for each x ∈ Coll(R).
• Action on Morphisms. For each R,S ∈ Obj(Rel(A,B)), the

action on Hom-sets

CollR,S : HomRel(A,B)(R,S) → Pos(Coll(R),Coll(S))

of Coll at (R,S) is given by sending an inclusion

ι : R ⊂ S

16Here Pos/∆1 (A, B) is the category defined as the pullback

Pos/∆1 (A, B) def= pt ×
[A],Pos,fib0

Pos/∆1 ×
fib1,Pos,[B]

pt,

as in the diagram

Pos/∆1 (A, B)

Pos/∆1 ×
Pos

pt pt ×
Pos

Pos/∆1

pt Pos/∆1 pt.

Pos Pos
[A] fib[0] fib[1] [B]

y

y

y

Explicitly, an object of Pos/∆1 (A, B) is a pair (X, φX) consisting of
• A poset X;
• A morphism φX : X → ∆1;

https://topological-modular-forms.github.io/the-clowder-project/tag/00R5


6.4. Functoriality of Powersets 305

to the morphism

Coll(ι) : Coll(R) → Coll(S)

of posets over ∆1 defined by

[Coll(ι)](x) def= x

for each x ∈ Coll(R).17

2. Equivalence.00R6 The functor of Item 1 is an equivalence of categories.

Proof. Item 1, Functoriality: Clear.
Item 2, Equivalence: Omitted.

6.4 Functoriality of Powersets00R7

6.4.1 Direct Images00R8

Let A and B be sets and let R : A →| B be a relation.

Definition 6.4.1.1.1.00R9 The direct image function associated to R
is the function

R∗ : P(A) → P(B)

defined by18,19

R∗(U) def= R(U)
def=
⋃
a∈U

R(a)

=
{
b ∈ B

∣∣∣∣∣ there exists some a ∈ U

such that b ∈ R(a)

}

for each U ∈ P(A).

Remark 6.4.1.1.2.00RA Identifying subsets of A with relations from pt to A
via Item 3 of Proposition 2.4.3.1.6, we see that the direct image function
associated to R is equivalently the function

R∗ : P(A)︸ ︷︷ ︸
∼=Rel(pt,A)

→ P(B)︸ ︷︷ ︸
∼=Rel(pt,B)

such that φ−1
X (0) = A and φ−1

X (0) = B, with morphisms between such objects being
morphisms of posets over ∆1.

17Note that this is indeed a morphism of posets: if x �Coll(R) y, then x = y or
x ∼R y, so we have either x = y or x ∼S y (as R ⊂ S), and thus x �Coll(S) y.

18Further Terminology: The set R(U) is called the direct image of U by R.
19We also have

R∗(U) = B \ R!(A \ U);

https://topological-modular-forms.github.io/the-clowder-project/tag/00R6
https://topological-modular-forms.github.io/the-clowder-project/tag/00R7
https://topological-modular-forms.github.io/the-clowder-project/tag/00R8
https://topological-modular-forms.github.io/the-clowder-project/tag/00R9
https://topological-modular-forms.github.io/the-clowder-project/tag/00RA
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defined by
R∗(U) def= R � U

for each U ∈ P(A), where R � U is the composition

pt
U

→| A
R

→| B.

Proposition 6.4.1.1.3.00RB Let R : A →| B be a relation.

1. Functoriality.00RC The assignment U 7→ R∗(U) defines a functor

R∗ : (P(A),⊂) → (P(B),⊂)

where

• Action on Objects. For each U ∈ P(A), we have

[R∗](U) def= R∗(U).

• Action on Morphisms. For each U, V ∈ P(A):
– If U ⊂ V , then R∗(U) ⊂ R∗(V ).

2. Adjointness.00RD We have an adjunction

(R∗ a R−1) :
R∗

R−1

aP(A) P(B),

witnessed by a bijections of sets

HomP(A)(R∗(U), V ) ∼= HomP(A)(U,R−1(V )),

natural in U ∈ P(A) and V ∈ P(B), i.e. such that:

(?) The following conditions are equivalent:
– We have R∗(U) ⊂ V .
– We have U ⊂ R−1(V ).

3. Preservation of Colimits.00RE We have an equality of sets

R∗

(⋃
i∈I

Ui

)
=
⋃
i∈I

R∗(Ui),

natural in {Ui}i∈I ∈ P(A)×I . In particular, we have equalities

R∗(U) ∪R∗(V ) = R∗(U ∪ V ),
R∗(∅) = ∅,

natural in U, V ∈ P(A).

https://topological-modular-forms.github.io/the-clowder-project/tag/00RB
https://topological-modular-forms.github.io/the-clowder-project/tag/00RC
https://topological-modular-forms.github.io/the-clowder-project/tag/00RD
https://topological-modular-forms.github.io/the-clowder-project/tag/00RE
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4. Oplax Preservation of Limits.00RF We have an inclusion of sets

R∗

(⋂
i∈I

Ui

)
⊂
⋂
i∈I

R∗(Ui),

natural in {Ui}i∈I ∈ P(A)×I . In particular, we have inclusions

R∗(U ∩ V ) ⊂ R∗(U) ∩R∗(V ),
R∗(A) ⊂ B,

natural in U, V ∈ P(A).

5. Symmetric Strict Monoidality With Respect to Unions.00RG The direct
image function of Item 1 has a symmetric strict monoidal structure(

R∗, R
⊗
∗ , R

⊗
∗|1

)
: (P(A),∪, ∅) → (P(B),∪, ∅),

being equipped with equalities

R⊗
∗|U,V : R∗(U) ∪R∗(V ) =→R∗(U ∪ V ),

R⊗
∗|1 : ∅ =→ ∅,

natural in U, V ∈ P(A).

6. Symmetric Oplax Monoidality With Respect to Intersections.00RH The
direct image function of Item 1 has a symmetric oplax monoidal
structure(

R∗, R
⊗
∗ , R

⊗
∗|1

)
: (P(A),∩, A) → (P(B),∩, B),

being equipped with inclusions

R⊗
∗|U,V : R∗(U ∩ V ) ⊂ R∗(U) ∩R∗(V ),

R⊗
∗|1 : R∗(A) ⊂ B,

natural in U, V ∈ P(A).

7. Relation to Direct Images With Compact Support.00RJ We have

R∗(U) = B \R!(A \ U)

for each U ∈ P(A).

Proof. Item 1, Functoriality: Clear.

https://topological-modular-forms.github.io/the-clowder-project/tag/00RF
https://topological-modular-forms.github.io/the-clowder-project/tag/00RG
https://topological-modular-forms.github.io/the-clowder-project/tag/00RH
https://topological-modular-forms.github.io/the-clowder-project/tag/00RJ
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Item 2, Adjointness: This follows from ?? of ??.
Item 3, Preservation of Colimits: This follows from Item 2 and ?? of ??.
Item 4, Oplax Preservation of Limits: Omitted.
Item 5, Symmetric Strict Monoidality With Respect to Unions: This
follows from Item 3.
Item 6, Symmetric Oplax Monoidality With Respect to Intersections:
This follows from Item 4.
Item 7, Relation to Direct Images With Compact Support: The proof
proceeds in the same way as in the case of functions (?? of Proposi-
tion 2.4.4.1.4): applying Item 7 of Proposition 6.4.4.1.3 to A \ U , we
have

R!(A \ U) = B \R∗(A \ (A \ U))
= B \R∗(U).

Taking complements, we then obtain

R∗(U) = B \ (B \R∗(U)),
= B \R!(A \ U),

which finishes the proof.

Proposition 6.4.1.1.4.00RK Let R : A →| B be a relation.

1. Functionality I.00RL The assignment R 7→ R∗ defines a function

(−)∗ : Rel(A,B) → Sets(P(A),P(B)).

2. Functionality II.00RM The assignment R 7→ R∗ defines a function

(−)∗ : Rel(A,B) → Pos((P(A),⊂), (P(B),⊂)).

3. Interaction With Identities.00RN For each A ∈ Obj(Sets), we have20

(χA)∗ = idP(A).

4. Interaction With Composition.00RP For each pair of composable

see Item 7 of Proposition 6.4.1.1.3.
20That is, the postcomposition function

(χA)∗ : Rel(pt, A) → Rel(pt, A)

is equal to idRel(pt,A).

https://topological-modular-forms.github.io/the-clowder-project/tag/00RK
https://topological-modular-forms.github.io/the-clowder-project/tag/00RL
https://topological-modular-forms.github.io/the-clowder-project/tag/00RM
https://topological-modular-forms.github.io/the-clowder-project/tag/00RN
https://topological-modular-forms.github.io/the-clowder-project/tag/00RP
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relations R : A →| B and S : B →| C, we have21

(S �R)∗ = S∗ ◦R∗,

P(A) P(B)

P(C).

R∗

(S�R)∗
S∗

Proof. Item 1, Functionality I : Clear.
Item 2, Functionality II : Clear.
Item 3, Interaction With Identities: Indeed, we have

(χA)∗(U) def=
⋃
a∈U

χA(a)

def=
⋃
a∈U

{a}

= U
def= idP(A)(U)

for each U ∈ P(A). Thus (χA)∗ = idP(A).
Item 4, Interaction With Composition: Indeed, we have

(S �R)∗(U) def=
⋃
a∈U

[S �R](a)

def=
⋃
a∈U

S(R(a))

def=
⋃
a∈U

S∗(R(a))

= S∗

(⋃
a∈U

R(a)
)

def= S∗(R∗(U))
def= [S∗ ◦R∗](U)

for each U ∈ P(A), where we used Item 3 of Proposition 6.4.1.1.3. Thus
(S �R)∗ = S∗ ◦R∗.

21That is, we have

(S � R)∗ = S∗ ◦ R∗,

Rel(pt, A) Rel(pt, B)

Rel(pt, C).

R∗

(S�R)∗
S∗
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6.4.2 Strong Inverse Images00RQ

Let A and B be sets and let R : A →| B be a relation.

Definition 6.4.2.1.1.00RR The strong inverse image function associ-
ated to R is the function

R−1 : P(B) → P(A)

defined by22

R−1(V ) def= {a ∈ A | R(a) ⊂ V }

for each V ∈ P(B).

Remark 6.4.2.1.2.00RS Identifying subsets of B with relations from pt to B
via Item 3 of Proposition 2.4.3.1.6, we see that the inverse image function
associated to R is equivalently the function

R−1 : P(B)︸ ︷︷ ︸
∼=Rel(pt,B)

→ P(A)︸ ︷︷ ︸
∼=Rel(pt,A)

defined by

R−1(V ) def= RiftR(V ),

A

pt B,

R

RiftR(V )

V

and being explicitly computed by

R−1(V ) def= RiftR(V )
∼=
∫
b∈B

Hom{t,f}
(
Rb−1 , V

b
−2

)
,

where we have used Proposition 6.2.4.1.1.
22Further Terminology: The set R−1(V ) is called the strong inverse image of V

by R.

https://topological-modular-forms.github.io/the-clowder-project/tag/00RQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00RR
https://topological-modular-forms.github.io/the-clowder-project/tag/00RS
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Proof. We have

RiftR(V ) ∼=
∫

b∈B

Hom{t,f}
(
Rb

−1
, V b

−2

)
=
{
a ∈ A

∣∣∣∣ ∫
b∈B

Hom{t,f}
(
Rb

a, V
b

?

)
= true

}

=


a ∈ A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for each b ∈ B, at least one of the
following conditions hold:

1. We have Rb
a = false

2. The following conditions hold:

(a) We have Rb
a = true

(b) We have V b
? = true



=


a ∈ A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for each b ∈ B, at least one of the
following conditions hold:

1. We have b 6∈ R(a)
2. The following conditions hold:

(a) We have b ∈ R(a)
(b) We have b ∈ V


= {a ∈ A | for each b ∈ R(a), we have b ∈ V }
= {a ∈ A | R(a) ⊂ V }
def= R−1(V ).

This finishes the proof.

Proposition 6.4.2.1.3.00RT Let R : A →| B be a relation.

1. Functoriality.00RU The assignment V 7→ R−1(V ) defines a functor

R−1 : (P(B),⊂) → (P(A),⊂)

where

• Action on Objects. For each V ∈ P(B), we have

[R−1](V ) def= R−1(V ).

• Action on Morphisms. For each U, V ∈ P(B):
– If U ⊂ V , then R−1(U) ⊂ R−1(V ).

https://topological-modular-forms.github.io/the-clowder-project/tag/00RT
https://topological-modular-forms.github.io/the-clowder-project/tag/00RU
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2. Adjointness.00RV We have an adjunction

(R∗ a R−1) :
R∗

R−1

aP(A) P(B),

witnessed by a bijections of sets

HomP(A)(R∗(U), V ) ∼= HomP(A)(U,R−1(V )),

natural in U ∈ P(A) and V ∈ P(B), i.e. such that:

(?) The following conditions are equivalent:
– We have R∗(U) ⊂ V .
– We have U ⊂ R−1(V ).

3. Lax Preservation of Colimits.00RW We have an inclusion of sets

⋃
i∈I

R−1(Ui) ⊂ R−1

(⋃
i∈I

Ui

)
,

natural in {Ui}i∈I ∈ P(B)×I . In particular, we have inclusions

R−1(U) ∪R−1(V ) ⊂ R−1(U ∪ V ),
∅ ⊂ R−1(∅),

natural in U, V ∈ P(B).

4. Preservation of Limits.00RX We have an equality of sets

R−1

(⋂
i∈I

Ui

)
=
⋂
i∈I

R−1(Ui),

natural in {Ui}i∈I ∈ P(B)×I . In particular, we have equalities

R−1(U ∩ V ) = R−1(U) ∩R−1(V ),
R−1(B) = B,

natural in U, V ∈ P(B).

5. Symmetric Lax Monoidality With Respect to Unions.00RY The direct
image with compact support function of Item 1 has a symmetric
lax monoidal structure(

R−1, R
⊗
−1, R

⊗
−1|1

)
: (P(A),∪, ∅) → (P(B),∪, ∅),

https://topological-modular-forms.github.io/the-clowder-project/tag/00RV
https://topological-modular-forms.github.io/the-clowder-project/tag/00RW
https://topological-modular-forms.github.io/the-clowder-project/tag/00RX
https://topological-modular-forms.github.io/the-clowder-project/tag/00RY
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being equipped with inclusions

R⊗
−1|U,V : R−1(U) ∪R−1(V ) ⊂ R−1(U ∪ V ),

R⊗
−1|1 : ∅ ⊂ R−1(∅),

natural in U, V ∈ P(B).

6. Symmetric Strict Monoidality With Respect to Intersections.00RZ The
direct image function of Item 1 has a symmetric strict monoidal
structure(

R−1, R
⊗
−1, R

⊗
−1|1

)
: (P(A),∩, A) → (P(B),∩, B),

being equipped with equalities

R⊗
−1|U,V : R−1(U ∩ V ) =→R−1(U) ∩R−1(V ),

R⊗
−1|1 : R−1(A) =→B,

natural in U, V ∈ P(B).

7. Interaction With Weak Inverse Images I.00S0 We have

R−1(V ) = A \R−1(B \ V )

for each V ∈ P(B).

8. Interaction With Weak Inverse Images II.00S1 Let R : A →| B be a
relation from A to B.

(a) If R is a total relation, then we have an inclusion of sets00S2

R−1(V ) ⊂ R−1(V )

natural in V ∈ P(B).
(b) If R is total and functional, then the above inclusion is in fact

an equality.00S3

(c) Conversely, if we have R−1 = R−1, then R is total and func-
tional.00S4

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This follows from ?? of ??.
Item 3, Lax Preservation of Colimits: Omitted.
Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.
Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows
from Item 3.

https://topological-modular-forms.github.io/the-clowder-project/tag/00RZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00S0
https://topological-modular-forms.github.io/the-clowder-project/tag/00S1
https://topological-modular-forms.github.io/the-clowder-project/tag/00S2
https://topological-modular-forms.github.io/the-clowder-project/tag/00S3
https://topological-modular-forms.github.io/the-clowder-project/tag/00S4
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Item 6, Symmetric Strict Monoidality With Respect to Intersections:
This follows from Item 4.
Item 7, Interaction With Weak Inverse Images I : We claim we have an
equality

R−1(B \ V ) = A \R−1(V ).

Indeed, we have

R−1(B \ V ) = {a ∈ A | R(a) ⊂ B \ V },
A \R−1(V ) = {a ∈ A | R(a) ∩ V = ∅}.

Taking V = B \ V then implies the original statement.
Item 8, Interaction With Weak Inverse Images II : Item 8a is clear, while
Items 8b and 8c follow from Item 6 of Proposition 6.3.1.1.2.

Proposition 6.4.2.1.4.00S5 Let R : A →| B be a relation.

1. Functionality I.00S6 The assignment R 7→ R−1 defines a function

(−)−1 : Sets(A,B) → Sets(P(A),P(B)).

2. Functionality II.00S7 The assignment R 7→ R−1 defines a function

(−)−1 : Sets(A,B) → Pos((P(A),⊂), (P(B),⊂)).

3. Interaction With Identities.00S8 For each A ∈ Obj(Sets), we have

(idA)−1 = idP(A).

4. Interaction With Composition.00S9 For each pair of composable
relations R : A →| B and S : B →| C, we have

(S �R)−1 = R−1 ◦ S−1,

P(C) P(B)

P(A).

S−1

(S�R)−1
R−1

Proof. Item 1, Functionality I : Clear.
Item 2, Functionality II : Clear.
Item 3, Interaction With Identities: Indeed, we have

(χA)−1(U) def= {a ∈ A | χA(a) ⊂ U}
def= {a ∈ A | {a} ⊂ U}
= U

https://topological-modular-forms.github.io/the-clowder-project/tag/00S5
https://topological-modular-forms.github.io/the-clowder-project/tag/00S6
https://topological-modular-forms.github.io/the-clowder-project/tag/00S7
https://topological-modular-forms.github.io/the-clowder-project/tag/00S8
https://topological-modular-forms.github.io/the-clowder-project/tag/00S9
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for each U ∈ P(A). Thus (χA)−1 = idP(A).
Item 4, Interaction With Composition: Indeed, we have

(S �R)−1(U) def= {a ∈ A | [S �R](a) ⊂ U}
def= {a ∈ A | S(R(a)) ⊂ U}
def= {a ∈ A | S∗(R(a)) ⊂ U}
= {a ∈ A | R(a) ⊂ S−1(U)}
def= R−1(S−1(U))
def= [R−1 ◦ S−1](U)

for each U ∈ P(C), where we used Item 2 of Proposition 6.4.2.1.3, which
implies that the conditions

• We have S∗(R(a)) ⊂ U .

• We have R(a) ⊂ S−1(U).

are equivalent. Thus (S �R)−1 = R−1 ◦ S−1.

6.4.3 Weak Inverse Images00SA

Let A and B be sets and let R : A →| B be a relation.

Definition 6.4.3.1.1.00SB The weak inverse image function associated
to R23 is the function

R−1 : P(B) → P(A)

defined by24

R−1(V ) def= {a ∈ A | R(a) ∩ V 6= ∅}

for each V ∈ P(B).

Remark 6.4.3.1.2.00SC Identifying subsets of B with relations from B to pt
via Item 3 of Proposition 2.4.3.1.6, we see that the weak inverse image
function associated to R is equivalently the function

R−1 : P(B)︸ ︷︷ ︸
∼=Rel(B,pt)

→ P(A)︸ ︷︷ ︸
∼=Rel(A,pt)

defined by
R−1(V ) def= V �R

23Further Terminology: Also called simply the inverse image function associated
to R.

24Further Terminology: The set R−1(V ) is called the weak inverse image of V
by R or simply the inverse image of V by R.

https://topological-modular-forms.github.io/the-clowder-project/tag/00SA
https://topological-modular-forms.github.io/the-clowder-project/tag/00SB
https://topological-modular-forms.github.io/the-clowder-project/tag/00SC
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for each V ∈ P(A), where R � V is the composition

A
R

→| B
V

→| pt.

Explicitly, we have

R−1(V ) def= V �R
def=
∫ b∈B

V −1
b ×Rb−2 .

Proof. We have

V �R def=
∫ b∈B

V −1
b ×Rb−2

=
{
a ∈ A

∣∣∣∣∣
∫ b∈B

V ?
b ×Rba = true

}

=


a ∈ A

∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists b ∈ B such that the
following conditions hold:

1. We have V ?
b = true

2. We have Rba = true



=


a ∈ A

∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists b ∈ B such that the
following conditions hold:

1. We have b ∈ V

2. We have b ∈ R(a)


= {a ∈ A | there exists b ∈ V such that b ∈ R(a)}
= {a ∈ A | R(a) ∩ V 6= ∅}
def= R−1(V )

This finishes the proof.

Proposition 6.4.3.1.3.00SD Let R : A →| B be a relation.

1. Functoriality.00SE The assignment V 7→ R−1(V ) defines a functor

R−1 : (P(B),⊂) → (P(A),⊂)

where

• Action on Objects. For each V ∈ P(B), we have[
R−1

]
(V ) def= R−1(V ).

https://topological-modular-forms.github.io/the-clowder-project/tag/00SD
https://topological-modular-forms.github.io/the-clowder-project/tag/00SE
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• Action on Morphisms. For each U, V ∈ P(B):
– If U ⊂ V , then R−1(U) ⊂ R−1(V ).

2. Adjointness.00SF We have an adjunction

(
R−1 a R!

)
:

R−1

R!

aP(B) P(A),

witnessed by a bijections of sets

HomP(A)
(
R−1(U), V

)
∼= HomP(A)(U,R!(V )),

natural in U ∈ P(A) and V ∈ P(B), i.e. such that:

(?) The following conditions are equivalent:
– We have R−1(U) ⊂ V .
– We have U ⊂ R!(V ).

3. Preservation of Colimits.00SG We have an equality of sets

R−1
(⋃
i∈I

Ui

)
=
⋃
i∈I

R−1(Ui),

natural in {Ui}i∈I ∈ P(B)×I . In particular, we have equalities

R−1(U) ∪R−1(V ) = R−1(U ∪ V ),
R−1(∅) = ∅,

natural in U, V ∈ P(B).

4. Oplax Preservation of Limits.00SH We have an inclusion of sets

R−1
(⋂
i∈I

Ui

)
⊂
⋂
i∈I

R−1(Ui),

natural in {Ui}i∈I ∈ P(B)×I . In particular, we have inclusions

R−1(U ∩ V ) ⊂ R−1(U) ∩R−1(V ),
R−1(A) ⊂ B,

natural in U, V ∈ P(B).

5. Symmetric Strict Monoidality With Respect to Unions.00SJ The direct

https://topological-modular-forms.github.io/the-clowder-project/tag/00SF
https://topological-modular-forms.github.io/the-clowder-project/tag/00SG
https://topological-modular-forms.github.io/the-clowder-project/tag/00SH
https://topological-modular-forms.github.io/the-clowder-project/tag/00SJ
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image function of Item 1 has a symmetric strict monoidal structure(
R−1, R−1,⊗, R−1,⊗

1

)
: (P(A),∪, ∅) → (P(B),∪, ∅),

being equipped with equalities

R−1,⊗
U,V : R−1(U) ∪R−1(V ) =→R−1(U ∪ V ),

R−1,⊗
1 : ∅ =→ ∅,

natural in U, V ∈ P(B).

6. Symmetric Oplax Monoidality With Respect to Intersections.00SK The
direct image function of Item 1 has a symmetric oplax monoidal
structure(

R−1, R−1,⊗, R−1,⊗
1

)
: (P(A),∩, A) → (P(B),∩, B),

being equipped with inclusions

R−1,⊗
U,V : R−1(U ∩ V ) ⊂ R−1(U) ∩R−1(V ),

R−1,⊗
1 : R−1(A) ⊂ B,

natural in U, V ∈ P(B).

7. Interaction With Strong Inverse Images I.00SL We have

R−1(V ) = A \R−1(B \ V )

for each V ∈ P(B).

8. Interaction With Strong Inverse Images II.00SM Let R : A →| B be a
relation from A to B.

(a) If R is a total relation, then we have an inclusion of sets00SN

R−1(V ) ⊂ R−1(V )

natural in V ∈ P(B).
(b) If R is total and functional, then the above inclusion is in fact

an equality.00SP

(c) Conversely, if we have R−1 = R−1, then R is total and func-
tional.00SQ

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This follows from ?? of ??.

https://topological-modular-forms.github.io/the-clowder-project/tag/00SK
https://topological-modular-forms.github.io/the-clowder-project/tag/00SL
https://topological-modular-forms.github.io/the-clowder-project/tag/00SM
https://topological-modular-forms.github.io/the-clowder-project/tag/00SN
https://topological-modular-forms.github.io/the-clowder-project/tag/00SP
https://topological-modular-forms.github.io/the-clowder-project/tag/00SQ
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Item 3, Preservation of Colimits: This follows from Item 2 and ?? of ??.
Item 4, Oplax Preservation of Limits: Omitted.
Item 5, Symmetric Strict Monoidality With Respect to Unions: This
follows from Item 3.
Item 6, Symmetric Oplax Monoidality With Respect to Intersections:
This follows from Item 4.
Item 7, Interaction With Strong Inverse Images I : This follows from
Item 7 of Proposition 6.4.2.1.3.
Item 8, Interaction With Strong Inverse Images II : This was proved in
Item 8 of Proposition 6.4.2.1.3.

Proposition 6.4.3.1.4.00SR Let R : A →| B be a relation.

1. Functionality I.00SS The assignment R 7→ R−1 defines a function

(−)−1 : Rel(A,B) → Sets(P(A),P(B)).

2. Functionality II.00ST The assignment R 7→ R−1 defines a function

(−)−1 : Rel(A,B) → Pos((P(A),⊂), (P(B),⊂)).

3. Interaction With Identities.00SU For each A ∈ Obj(Sets), we have25

(χA)−1 = idP(A).

4. Interaction With Composition.00SV For each pair of composable
relations R : A →| B and S : B →| C, we have26

(S �R)−1 = R−1 ◦ S−1,

P(C) P(B)

P(A).

S−1

(S�R)−1 R−1

25That is, the postcomposition

(χA)−1 : Rel(pt, A) → Rel(pt, A)

is equal to idRel(pt,A).
26That is, we have

(S � R)−1 = R−1 ◦ S−1,

Rel(pt, C) Rel(pt, B)

Rel(pt, A).

R−1

(S�R)−1 S−1

https://topological-modular-forms.github.io/the-clowder-project/tag/00SR
https://topological-modular-forms.github.io/the-clowder-project/tag/00SS
https://topological-modular-forms.github.io/the-clowder-project/tag/00ST
https://topological-modular-forms.github.io/the-clowder-project/tag/00SU
https://topological-modular-forms.github.io/the-clowder-project/tag/00SV
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Proof. Item 1, Functionality I : Clear.
Item 2, Functionality II : Clear.
Item 3, Interaction With Identities: This follows from Item 5 of Proposi-
tion 8.1.6.1.2.
Item 4, Interaction With Composition: This follows from Item 2 of
Proposition 8.1.6.1.2.

6.4.4 Direct Images With Compact Support00SW

Let A and B be sets and let R : A →| B be a relation.

Definition 6.4.4.1.1.00SX The direct image with compact support
function associated to R is the function

R! : P(A) → P(B)

defined by27,28

R!(U) def=
{
b ∈ B

∣∣∣∣∣ for each a ∈ A, if we have
b ∈ R(a), then a ∈ U

}
=
{
b ∈ B

∣∣∣ R−1(b) ⊂ U
}

for each U ∈ P(A).

Remark 6.4.4.1.2.00SY Identifying subsets of B with relations from pt to
B via Item 3 of Proposition 2.4.3.1.6, we see that the direct image with
compact support function associated to R is equivalently the function

R! : P(A)︸ ︷︷ ︸
∼=Rel(A,pt)

→ P(B)︸ ︷︷ ︸
∼=Rel(B,pt)

defined by

R!(U) def= RanR(U),

B

A pt,

RanR(U)
R

U

27Further Terminology: The set R!(U) is called the direct image with compact
support of U by R.

28We also have
R!(U) = B \ R∗(A \ U);

see Item 7 of Proposition 6.4.4.1.3.

https://topological-modular-forms.github.io/the-clowder-project/tag/00SW
https://topological-modular-forms.github.io/the-clowder-project/tag/00SX
https://topological-modular-forms.github.io/the-clowder-project/tag/00SY
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being explicitly computed by

R∗(U) def= RanR(U)
∼=
∫
a∈A

Hom{t,f}
(
R−2
a , U−1

a

)
,

where we have used Proposition 6.2.3.1.1.

Proof. We have

RanR(V ) ∼=
∫

a∈A

Hom{t,f}
(
R−2

a , U−1
a

)
=
{
b ∈ B

∣∣∣∣ ∫
a∈A

Hom{t,f}
(
Rb

a, U
?
a

)
= true

}

=


b ∈ B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for each a ∈ A, at least one of the
following conditions hold:

1. We have Rb
a = false

2. The following conditions hold:

(a) We have Rb
a = true

(b) We have U?
a = true



=


b ∈ B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for each a ∈ A, at least one of the
following conditions hold:

1. We have b 6∈ R(A)
2. The following conditions hold:

(a) We have b ∈ R(a)
(b) We have a ∈ U


=
{
b ∈ B

∣∣∣∣∣ for each a ∈ A, if we have
b ∈ R(a), then a ∈ U

}
=
{
b ∈ B

∣∣ R−1(b) ⊂ U
}

def= R−1(U).

This finishes the proof.

Proposition 6.4.4.1.3.00SZ Let R : A →| B be a relation.

1. Functoriality.00T0 The assignment U 7→ R!(U) defines a functor

R! : (P(A),⊂) → (P(B),⊂)

where

https://topological-modular-forms.github.io/the-clowder-project/tag/00SZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00T0
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• Action on Objects. For each U ∈ P(A), we have

[R!](U) def= R!(U).

• Action on Morphisms. For each U, V ∈ P(A):
– If U ⊂ V , then R!(U) ⊂ R!(V ).

2. Adjointness.00T1 We have an adjunction

(
R−1 a R!

)
:

R−1

R!

aP(B) P(A),

witnessed by a bijections of sets

HomP(A)
(
R−1(U), V

)
∼= HomP(A)(U,R!(V )),

natural in U ∈ P(A) and V ∈ P(B), i.e. such that:

(?) The following conditions are equivalent:
– We have R−1(U) ⊂ V .
– We have U ⊂ R!(V ).

3. Lax Preservation of Colimits.00T2 We have an inclusion of sets

⋃
i∈I

R!(Ui) ⊂ R!

(⋃
i∈I

Ui

)
,

natural in {Ui}i∈I ∈ P(A)×I . In particular, we have inclusions

R!(U) ∪R!(V ) ⊂ R!(U ∪ V ),
∅ ⊂ R!(∅),

natural in U, V ∈ P(A).

4. Preservation of Limits.00T3 We have an equality of sets

R!

(⋂
i∈I

Ui

)
=
⋂
i∈I

R!(Ui),

natural in {Ui}i∈I ∈ P(A)×I . In particular, we have equalities

R!(U ∩ V ) = R!(U) ∩R!(V ),
R!(A) = B,

natural in U, V ∈ P(A).

https://topological-modular-forms.github.io/the-clowder-project/tag/00T1
https://topological-modular-forms.github.io/the-clowder-project/tag/00T2
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5. Symmetric Lax Monoidality With Respect to Unions.00T4 The direct
image with compact support function of Item 1 has a symmetric
lax monoidal structure(

R!, R
⊗
! , R

⊗
!|1

)
: (P(A),∪, ∅) → (P(B),∪, ∅),

being equipped with inclusions

R⊗
!|U,V : R!(U) ∪R!(V ) ⊂ R!(U ∪ V ),

R⊗
!|1 : ∅ ⊂ R!(∅),

natural in U, V ∈ P(A).

6. Symmetric Strict Monoidality With Respect to Intersections.00T5 The
direct image function of Item 1 has a symmetric strict monoidal
structure(

R!, R
⊗
! , R

⊗
!|1

)
: (P(A),∩, A) → (P(B),∩, B),

being equipped with equalities

R⊗
!|U,V : R!(U ∩ V ) =→R!(U) ∩R!(V ),

R⊗
!|1 : R!(A) =→B,

natural in U, V ∈ P(A).

7. Relation to Direct Images.00T6 We have

R!(U) = B \R∗(A \ U)

for each U ∈ P(A).

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This follows from ?? of ??.
Item 3, Lax Preservation of Colimits: Omitted.
Item 4, Preservation of Limits: This follows from Item 2 and ?? of ??.
Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows
from Item 3.
Item 6, Symmetric Strict Monoidality With Respect to Intersections:
This follows from Item 4.
Item 7, Relation to Direct Images: This follows from Item 7 of Proposi-
tion 6.4.1.1.3. Alternatively, we may prove it directly as follows, with
the proof proceeding in the same way as in the case of functions (Item 9
of Proposition 2.4.6.1.6).
We claim that R!(U) = B \R∗(A \ U):

https://topological-modular-forms.github.io/the-clowder-project/tag/00T4
https://topological-modular-forms.github.io/the-clowder-project/tag/00T5
https://topological-modular-forms.github.io/the-clowder-project/tag/00T6
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• The First Implication. We claim that

R!(U) ⊂ B \R∗(A \ U).

Let b ∈ R!(U). We need to show that b 6∈ R∗(A \ U), i.e. that there
is no a ∈ A \ U such that b ∈ R(a).
This is indeed the case, as otherwise we would have a ∈ R−1(b) and
a 6∈ U , contradicting R−1(b) ⊂ U (which holds since b ∈ R!(U)).
Thus b ∈ B \R∗(A \ U).

• The Second Implication. We claim that

B \R∗(A \ U) ⊂ R!(U).

Let b ∈ B \R∗(A \ U). We need to show that b ∈ R!(U), i.e. that
R−1(b) ⊂ U .
Since b 6∈ R∗(A \ U), there exists no a ∈ A \ U such that b ∈ R(a),
and hence R−1(b) ⊂ U .
Thus b ∈ R!(U).

This finishes the proof.

Proposition 6.4.4.1.4.00T7 Let R : A →| B be a relation.

1. Functionality I.00T8 The assignment R 7→ R! defines a function

(−)! : Sets(A,B) → Sets(P(A),P(B)).

2. Functionality II.00T9 The assignment R 7→ R! defines a function

(−)! : Sets(A,B) → HomPos((P(A),⊂), (P(B),⊂)).

3. Interaction With Identities.00TA For each A ∈ Obj(Sets), we have

(idA)! = idP(A).

4. Interaction With Composition.00TB For each pair of composable
relations R : A →| B and S : B →| C, we have

(S �R)! = S! ◦R!,

P(A) P(B)

P(C).

R!

(S�R)!
S!

https://topological-modular-forms.github.io/the-clowder-project/tag/00T7
https://topological-modular-forms.github.io/the-clowder-project/tag/00T8
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Proof. Item 1, Functionality I : Clear.
Item 2, Functionality II : Clear.
Item 3, Interaction With Identities: Indeed, we have

(χA)!(U) def=
{
a ∈ A

∣∣∣ χ−1
A (a) ⊂ U

}
def= {a ∈ A | {a} ⊂ U}
= U

for each U ∈ P(A). Thus (χA)! = idP(A).
Item 4, Interaction With Composition: Indeed, we have

(S �R)!(U) def=
{
c ∈ C

∣∣∣ [S �R]−1(c) ⊂ U
}

def=
{
c ∈ C

∣∣∣ S−1
(
R−1(c)

)
⊂ U

}
=
{
c ∈ C

∣∣∣ R−1(c) ⊂ S!(U)
}

def= R!(S!(U))
def= [R! ◦ S!](U)

for each U ∈ P(C), where we used Item 2 of Proposition 6.4.4.1.3, which
implies that the conditions

• We have S−1(R−1(c)
)

⊂ U .

• We have R−1(c) ⊂ S!(U).

are equivalent. Thus (S �R)! = S! ◦R!.

6.4.5 Functoriality of Powersets00TC

Proposition 6.4.5.1.1.00TD The assignment X 7→ P(X) defines functors29

P∗ : Rel → Sets,
P−1 : Relop → Sets,
P−1 : Relop → Sets,
P! : Rel → Sets

where

• Action on Objects. For each A ∈ Obj(Rel), we have

P∗(A) def= P(A),
P−1(A) def= P(A),
P−1(A) def= P(A),
P!(A) def= P(A).

29The functor P∗ : Rel → Sets admits a left adjoint; see Item 3 of

https://topological-modular-forms.github.io/the-clowder-project/tag/00TC
https://topological-modular-forms.github.io/the-clowder-project/tag/00TD
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• Action on Morphisms. For each morphism R : A →| B of Rel, the
images

P∗(R) : P(A) → P(B),
P−1(R) : P(B) → P(A),
P−1(R) : P(B) → P(A),
P!(R) : P(A) → P(B)

of R by P∗, P−1, P−1, and P! are defined by

P∗(R) def= R∗,

P−1(R) def= R−1,

P−1(R) def= R−1,

P!(R) def= R!,

as in Definitions 6.4.1.1.1, 6.4.2.1.1, 6.4.3.1.1 and 6.4.4.1.1.

Proof. This follows from Items 3 and 4 of Proposition 6.4.1.1.4, Items 3
and 4 of Proposition 6.4.2.1.4, Items 3 and 4 of Proposition 6.4.3.1.4,
and Items 3 and 4 of Proposition 6.4.4.1.4.

6.4.6 Functoriality of Powersets: Relations on Powersets

00TE Let A and B be sets and let R : A →| B be a relation.

Definition 6.4.6.1.1.00TF The relation on powersets associated to R
is the relation

P(R) : P(A) →| P(B)

defined by30

P(R)VU
def= Rel(χpt, V �R � U)

for each U ∈ P(A) and each V ∈ P(B).

Remark 6.4.6.1.2.00TG In detail, we have U ∼P(R) V iff the following
equivalent conditions hold:

• We have χpt ⊂ V �R � U .

• We have (V �R � U)?? = true, i.e. we have∫ a∈A ∫ b∈B
V ?
b ×Rba × Ua? = true.

Proposition 6.3.1.1.2.
30Illustration:

pt A B pt.

χpt

U R V

https://topological-modular-forms.github.io/the-clowder-project/tag/00TE
https://topological-modular-forms.github.io/the-clowder-project/tag/00TF
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• There exists some a ∈ A and some b ∈ B such that:

– We have Ua? = true.
– We have Rba = true.
– We have V ?

b = true.

• There exists some a ∈ A and some b ∈ B such that:

– We have a ∈ U .
– We have a ∼R b.
– We have b ∈ V .

Proposition 6.4.6.1.3.00TH The assignment R 7→ P(R) defines a functor

P : Rel → Rel.

Proof. Omitted.
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Definition 7.1.1.1.1.00TM A reflexive relation is equivalently:1

• An E0-monoid in (N•(Rel(A,A)), χA).

• A pointed object in (Rel(A,A), χA).

Remark 7.1.1.1.2.00TN In detail, a relation R on A is reflexive if we have
an inclusion

ηR : χA ⊂ R

of relations in Rel(A,A), i.e. if, for each a ∈ A, we have a ∼R a.

Definition 7.1.1.1.3.00TP Let A be a set.

1. The set of reflexive relations on A is the subset Relrefl(A,A)
of Rel(A,A) spanned by the reflexive relations.00TQ

2. The poset of relations on A is is the subposet Relrefl(A,A) of
Rel(A,A) spanned by the reflexive relations.00TR

Proposition 7.1.1.1.4.00TS Let R and S be relations on A.

1. Interaction With Inverses.00TT If R is reflexive, then so is R†.

2. Interaction With Composition.00TU If R and S are reflexive, then so
is S �R.

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Clear.

7.1.2 The Reflexive Closure of a Relation00TV

Let R be a relation on A.

Definition 7.1.2.1.1.00TW The reflexive closure of ∼R is the relation ∼refl
R

2

satisfying the following universal property:3

(?) Given another reflexive relation ∼S on A such that R ⊂ S, there
exists an inclusion ∼refl

R ⊂ ∼S .

Construction 7.1.2.1.2.00TX Concretely, ∼refl
R is the free pointed object on

R in (Rel(A,A), χA)4, being given by

Rrefl def= R
∐Rel(A,A) ∆A

= R ∪ ∆A

= {(a, b) ∈ A×A | we have a ∼R b or a = b}.
1Note that since Rel(A, A) is posetal, reflexivity is a property of a relation, rather

than extra structure.
2Further Notation: Also written Rrefl.
3Slogan: The reflexive closure of R is the smallest reflexive relation containing R.
4Or, equivalently, the free E0-monoid on R in (N•(Rel(A, A)), χA).

https://topological-modular-forms.github.io/the-clowder-project/tag/00TM
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Proof. Clear.

Proposition 7.1.2.1.3.00TY Let R be a relation on A.

1. Adjointness.00TZ We have an adjunction

(
(−)refl a忘

)
:

(−)refl

忘

aRel(A,A) Relrefl(A,A),

witnessed by a bijection of sets

Relrefl
(
Rrefl, S

)
∼= Rel(R,S),

natural in R ∈ Obj
(
Relrefl(A,A)

)
and S ∈ Obj(Rel(A,A)).

2. The Reflexive Closure of a Reflexive Relation.00U0 If R is reflexive,
then Rrefl = R.

3. Idempotency.00U1 We have(
Rrefl

)refl
= Rrefl.

4. Interaction With Inverses.00U2 We have

(
R†
)refl

=
(
Rrefl

)†
,

Rel(A,A) Rel(A,A)

Rel(A,A) Rel(A,A).

(−)refl

(−)† (−)†

(−)refl

5. Interaction With Composition.00U3 We have

(S �R)refl = Srefl �Rrefl,

Rel(A,A) × Rel(A,A) Rel(A,A)

Rel(A,A) × Rel(A,A) Rel(A,A).

�

(−)refl×(−)refl (−)refl

�

Proof. Item 1, Adjointness: This is a rephrasing of the universal property
of the reflexive closure of a relation, stated in Definition 7.1.2.1.1.
Item 2, The Reflexive Closure of a Reflexive Relation: Clear.
Item 3, Idempotency: This follows from Item 2.
Item 4, Interaction With Inverses: Clear.
Item 5, Interaction With Composition: This follows from Item 2 of
Proposition 7.1.1.1.4.
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7.2 Symmetric Relations00U4

7.2.1 Foundations00U5

Let A be a set.

Definition 7.2.1.1.1.00U6 A relation R on A is symmetric if we have
R† = R.

Remark 7.2.1.1.2.00U7 In detail, a relation R is symmetric if it satisfies
the following condition:

(?) For each a, b ∈ A, if a ∼R b, then b ∼R a.

Definition 7.2.1.1.3.00U8 Let A be a set.

1. The set of symmetric relations on A is the subset Relsymm(A,A)
of Rel(A,A) spanned by the symmetric relations.00U9

2. The poset of relations on A is is the subposet Relsymm(A,A) of
Rel(A,A) spanned by the symmetric relations.00UA

Proposition 7.2.1.1.4.00UB Let R and S be relations on A.

1. Interaction With Inverses.00UC If R is symmetric, then so is R†.

2. Interaction With Composition.00UD If R and S are symmetric, then
so is S �R.

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: Clear.

7.2.2 The Symmetric Closure of a Relation00UE

Let R be a relation on A.

Definition 7.2.2.1.1.00UF The symmetric closure of ∼R is the relation
∼symm
R

5 satisfying the following universal property:6

(?) Given another symmetric relation ∼S on A such that R ⊂ S, there
exists an inclusion ∼symm

R ⊂ ∼S .

Construction 7.2.2.1.2.00UG Concretely, ∼symm
R is the symmetric relation

on A defined by

Rsymm def= R ∪R†

= {(a, b) ∈ A×A | we have a ∼R b or b ∼R a}.
5Further Notation: Also written Rsymm.
6Slogan: The symmetric closure of R is the smallest symmetric relation containing

https://topological-modular-forms.github.io/the-clowder-project/tag/00U4
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Proof. Clear.

Proposition 7.2.2.1.3.00UH Let R be a relation on A.

1. Adjointness.00UJ We have an adjunction

(
(−)symm a忘

)
:

(−)symm

忘

aRel(A,A) Relsymm(A,A),

witnessed by a bijection of sets

Relsymm(Rsymm, S) ∼= Rel(R,S),

natural in R ∈ Obj(Relsymm(A,A)) and S ∈ Obj(Rel(A,A)).

2. The Symmetric Closure of a Symmetric Relation.00UK If R is symmet-
ric, then Rsymm = R.

3. Idempotency.00UL We have

(Rsymm)symm = Rsymm.

4. Interaction With Inverses.00UM We have

(
R†
)symm

=
(
Rsymm

)†
,

Rel(A,A) Rel(A,A)

Rel(A,A) Rel(A,A).

(−)symm

(−)† (−)†

(−)symm

5. Interaction With Composition.00UN We have

(S �R)symm = Ssymm�Rsymm,

Rel(A,A) × Rel(A,A) Rel(A,A)

Rel(A,A) × Rel(A,A) Rel(A,A).

�

(−)symm×(−)symm (−)symm

�

Proof. Item 1, Adjointness: This is a rephrasing of the universal property
of the symmetric closure of a relation, stated in Definition 7.2.2.1.1.
Item 2, The Symmetric Closure of a Symmetric Relation: Clear.
Item 3, Idempotency: This follows from Item 2.
Item 4, Interaction With Inverses: Clear.
Item 5, Interaction With Composition: This follows from Item 2 of
Proposition 7.2.1.1.4.
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7.3 Transitive Relations00UP

7.3.1 Foundations00UQ

Let A be a set.

Definition 7.3.1.1.1.00UR A transitive relation is equivalently:7

• A non-unital E1-monoid in (N•(Rel(A,A)), �).

• A non-unital monoid in (Rel(A,A), �).

Remark 7.3.1.1.2.00US In detail, a relation R on A is transitive if we have
an inclusion

µR : R �R ⊂ R

of relations in Rel(A,A), i.e. if, for each a, c ∈ A, the following condition
is satisfied:

(?) If there exists some b ∈ A such that a ∼R b and b ∼R c, then
a ∼R c.

Definition 7.3.1.1.3.00UT Let A be a set.

1. The set of transitive relations from A to B is the subset
Reltrans(A) of Rel(A,A) spanned by the transitive relations.00UU

2. The poset of relations from A to B is is the subposet Reltrans(A)
of Rel(A,A) spanned by the transitive relations.00UV

Proposition 7.3.1.1.4.00UW Let R and S be relations on A.

1. Interaction With Inverses.00UX If R is transitive, then so is R†.

2. Interaction With Composition.00UY If R and S are transitive, then
S �R may fail to be transitive.

Proof. Item 1, Interaction With Inverses: Clear.
Item 2, Interaction With Composition: See [MSE 2096272].8

R.
7Note that since Rel(A, A) is posetal, transitivity is a property of a relation, rather

than extra structure.
8Intuition: Transitivity for R and S fails to imply that of S � R because the

composition operation for relations intertwines R and S in an incompatible way:
1. If a ∼S�R c and c ∼S�r e, then:

(a) There is some b ∈ A such that:
i. a ∼R b;

ii. b ∼S c;
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7.3.2 The Transitive Closure of a Relation00UZ

Let R be a relation on A.

Definition 7.3.2.1.1.00V0 The transitive closure of ∼R is the relation
∼trans
R

9 satisfying the following universal property:10

(?) Given another transitive relation ∼S on A such that R ⊂ S, there
exists an inclusion ∼trans

R ⊂ ∼S .

Construction 7.3.2.1.2.00V1 Concretely, ∼trans
R is the free non-unital monoid

on R in (Rel(A,A), �)11, being given by

Rtrans def=
∞∐
n=1

R�n

def=
∞⋃
n=1

R�n

def=
{

(a, b) ∈ A×B

∣∣∣∣∣ there exists some (x1, . . . , xn) ∈ R×n

such that a ∼R x1 ∼R · · · ∼R xn ∼R b

}
.

Proof. Clear.

Proposition 7.3.2.1.3.00V2 Let R be a relation on A.

1. Adjointness.00V3 We have an adjunction

(
(−)trans a忘

)
:

(−)trans

忘

aRel(A,A) Reltrans(A,A),

witnessed by a bijection of sets

Reltrans
(
Rtrans, S

)
∼= Rel(R,S),

natural in R ∈ Obj
(
Reltrans(A,A)

)
and S ∈ Obj(Rel(A,B)).

2. The Transitive Closure of a Transitive Relation.00V4 If R is transitive,
then Rtrans = R.

(b) There is some d ∈ A such that:
i. c ∼R d;

ii. d ∼S e.

9Further Notation: Also written Rtrans.
10Slogan: The transitive closure of R is the smallest transitive relation containing R.
11Or, equivalently, the free non-unital E1-monoid on R in (N•(Rel(A, A)), �).
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3. Idempotency.00V5 We have(
Rtrans

)trans
= Rtrans.

4. Interaction With Inverses.00V6 We have

(
R†
)trans

=
(
Rtrans

)†
,

Rel(A,A) Rel(A,A)

Rel(A,A) Rel(A,A).

(−)trans

(−)† (−)†

(−)trans

5. Interaction With Composition.00V7 We have

(S �R)trans poss.
6= Strans�Rtrans,

Rel(A,A) × Rel(A,A) Rel(A,A)

Rel(A,A) × Rel(A,A) Rel(A,A).

�

(−)trans×(−)trans (−)trans

�

×

Proof. Item 1, Adjointness: This is a rephrasing of the universal property
of the transitive closure of a relation, stated in Definition 7.3.2.1.1.
Item 2, The Transitive Closure of a Transitive Relation: Clear.
Item 3, Idempotency: This follows from Item 2.
Item 4, Interaction With Inverses: We have(

R†
)trans

=
∞⋃
n=1

(
R†
)�n

=
∞⋃
n=1

(R�n)†

=
( ∞⋃
n=1

R�n
)†

=
(
Rtrans

)†
,

where we have used, respectively:
1. Construction 7.3.2.1.2.

2. Item 4 of Proposition 6.3.12.1.3.

3. Item 1 of Proposition 6.3.6.1.2.

4. Construction 7.3.2.1.2.
Item 5, Interaction With Composition: This follows from Item 2 of
Proposition 7.3.1.1.4.

https://topological-modular-forms.github.io/the-clowder-project/tag/00V5
https://topological-modular-forms.github.io/the-clowder-project/tag/00V6
https://topological-modular-forms.github.io/the-clowder-project/tag/00V7


7.4. Equivalence Relations 336

7.4 Equivalence Relations00V8

7.4.1 Foundations00V9

Let A be a set.

Definition 7.4.1.1.1.00VA A relation R is an equivalence relation if it is
reflexive, symmetric, and transitive.12

Example 7.4.1.1.2.00VB The kernel of a function f : A → B is the
equivalence relation ∼Ker(f) on A obtained by declaring a ∼Ker(f) b iff
f(a) = f(b).13

Definition 7.4.1.1.3.00VC Let A and B be sets.

1. The set of equivalence relations from A to B is the subset
Releq(A,B) of Rel(A,B) spanned by the equivalence relations.00VD

2. The poset of relations from A to B is is the subposet Releq(A,B)
of Rel(A,B) spanned by the equivalence relations.00VE

7.4.2 The Equivalence Closure of a Relation00VF

Let R be a relation on A.

Definition 7.4.2.1.1.00VG The equivalence closure14 of ∼R is the relation
∼eq
R

15 satisfying the following universal property:16

(?) Given another equivalence relation ∼S on A such that R ⊂ S, there
exists an inclusion ∼eq

R ⊂ ∼S .

12Further Terminology: If instead R is just symmetric and transitive, then it is
called a partial equivalence relation.

13The kernel Ker(f) : A →| A of f is the underlying functor of the monad induced
by the adjunction Gr(f) a f−1 : A � B in Rel of Item 2 of Proposition 6.3.1.1.2.

14Further Terminology: Also called the equivalence relation associated to ∼R.
15Further Notation: Also written Req.
16Slogan: The equivalence closure of R is the smallest equivalence relation containing

R.
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Construction 7.4.2.1.2.00VH Concretely, ∼eq
R is the equivalence relation on

A defined by

Req def=
((
Rrefl

)symm)trans

=
(
(Rsymm)trans

)refl

=



(a, b) ∈ A×B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists (x1, . . . , xn) ∈ R×n satisfying at
least one of the following conditions:

1. The following conditions are satisfied:

(a) We have a ∼R x1 or x1 ∼R a;
(b) We have xi ∼R xi+1 or xi+1 ∼R xi

for each 1 ≤ i ≤ n− 1;
(c) We have b ∼R xn or xn ∼R b;

2. We have a = b.



.

Proof. From the universal properties of the reflexive, symmetric, and tran-
sitive closures of a relation (Definitions 7.1.2.1.1, 7.2.2.1.1 and 7.3.2.1.1),
we see that it suffices to prove that:

1. The symmetric closure of a reflexive relation is still reflexive.00VJ

2. The transitive closure of a symmetric relation is still symmetric.00VK

which are both clear.

Proposition 7.4.2.1.3.00VL Let R be a relation on A.

1. Adjointness.00VM We have an adjunction

(
(−)eq a忘

)
:

(−)eq

忘

aRel(A,B) Releq(A,B),

witnessed by a bijection of sets

Releq(Req, S) ∼= Rel(R,S),

natural in R ∈ Obj(Releq(A,B)) and S ∈ Obj(Rel(A,B)).

2. The Equivalence Closure of an Equivalence Relation.00VN If R is an
equivalence relation, then Req = R.

3. Idempotency.00VP We have

(Req)eq = Req.
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Proof. Item 1, Adjointness: This is a rephrasing of the universal property
of the equivalence closure of a relation, stated in Definition 7.4.2.1.1.
Item 2, The Equivalence Closure of an Equivalence Relation: Clear.
Item 3, Idempotency: This follows from Item 2.

7.5 Quotients by Equivalence Relations00VQ

7.5.1 Equivalence Classes00VR

Let A be a set, let R be a relation on A, and let a ∈ A.

Definition 7.5.1.1.1.00VS The equivalence class associated to a is the
set [a] defined by

[a] def= {x ∈ X | x ∼R a}
= {x ∈ X | a ∼R x}. (since R is symmetric)

7.5.2 Quotients of Sets by Equivalence Relations00VT

Let A be a set and let R be a relation on A.

Definition 7.5.2.1.1.00VU The quotient of X by R is the set X/∼R defined
by

X/∼R
def= {[a] ∈ P(X) | a ∈ X}.

Remark 7.5.2.1.2.00VV The reason we define quotient sets for equivalence
relations only is that each of the properties of being an equivalence
relation—reflexivity, symmetry, and transitivity—ensures that the equiv-
alences classes [a] of X under R are well-behaved:

• Reflexivity. If R is reflexive, then, for each a ∈ X, we have a ∈ [a].

• Symmetry. The equivalence class [a] of an element a of X is defined
by

[a] def= {x ∈ X | x ∼R a},

but we could equally well define

[a]′ def= {x ∈ X | a ∼R x}

instead. This is not a problem when R is symmetric, as we then
have [a] = [a]′.17

• Transitivity. If R is transitive, then [a] and [b] are disjoint iff
a �R b, and equal otherwise.

17When categorifying equivalence relations, one finds that [a] and [a]′ correspond to
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Proposition 7.5.2.1.3.00VW Let f : X → Y be a function and let R be a
relation on X.

1. As a Coequaliser.00VX We have an isomorphism of sets

X/∼eq
R

∼= CoEq

R ↪→ X ×X

pr1→
→
pr2 X

,
where ∼eq

R is the equivalence relation generated by ∼R.

2. As a Pushout.00VY We have an isomorphism of sets18

X/∼eq
R

∼= X
∐

Eq(pr1,pr2) X,

X/∼eq
R X

X Eq(pr1,pr2).

p

where ∼eq
R is the equivalence relation generated by ∼R.

3. The First Isomorphism Theorem for Sets.00VZ We have an isomorphism
of sets19,20

X/∼Ker(f) ∼= Im(f).
presheaves and copresheaves; see ??.

18Dually, we also have an isomorphism of sets

Eq(pr1, pr2) ∼= X ×X/∼eq
R

X,

Eq(pr1, pr2) X

X X/∼eq
R .

y

19Further Terminology: The set X/∼Ker(f) is often called the coimage of f , and
denoted by Coim(f).

20In a sense this is a result relating the monad in Rel induced by f with the comonad
in Rel induced by f , as the kernel and image

Ker(f) : X →| X,

Im(f) ⊂ Y

of f are the underlying functors of (respectively) the induced monad and comonad of
the adjunction (

Gr(f) a f−1): A B

Gr(f)

f−1

a

of Item 2 of Proposition 6.3.1.1.2.
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4. Descending Functions to Quotient Sets, I.00W0 Let R be an equivalence
relation on X. The following conditions are equivalent:

(a) There exists a map

f : X/∼R → Y

making the diagram

X Y

X/∼R

f

q
f

∃

commute.
(b) We have R ⊂ Ker(f).
(c) For each x, y ∈ X, if x ∼R y, then f(x) = f(y).

5. Descending Functions to Quotient Sets, II.00W1 Let R be an equivalence
relation on X. If the conditions of Item 4 hold, then f is the unique
map making the diagram

X Y

X/∼R

f

q
f

∃!

commute.

6. Descending Functions to Quotient Sets, III.00W2 LetR be an equivalence
relation on X. We have a bijection

HomSets(X/∼R, Y ) ∼= HomR
Sets(X,Y ),

natural in X,Y ∈ Obj(Sets), given by the assignment f 7→ f of
Items 4 and 5, where HomR

Sets(X,Y ) is the set defined by

HomR
Sets(X,Y ) def=

f ∈ HomSets(X,Y )

∣∣∣∣∣∣∣∣
for each x, y ∈ X,
if x ∼R y, then
f(x) = f(y)

.
7. Descending Functions to Quotient Sets, IV.00W3 Let R be an equivalence

relation on X. If the conditions of Item 4 hold, then the following
conditions are equivalent:
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(a) The map f is an injection.
(b) We have R = Ker(f).
(c) For each x, y ∈ X, we have x ∼R y iff f(x) = f(y).

8. Descending Functions to Quotient Sets, V.00W4 Let R be an equivalence
relation on X. If the conditions of Item 4 hold, then the following
conditions are equivalent:

(a) The map f : X → Y is surjective.
(b) The map f : X/∼R → Y is surjective.

9. Descending Functions to Quotient Sets, VI.00W5 Let R be a relation
on X and let ∼eq

R be the equivalence relation associated to R. The
following conditions are equivalent:

(a) The map f satisfies the equivalent conditions of Item 4:00W6

• There exists a map

f : X/∼eq
R → Y

making the diagram

X Y

X/∼eq
R

f

q
f

∃

commute.
• For each x, y ∈ X, if x ∼eq

R y, then f(x) = f(y).
(b) For each x, y ∈ X, if x ∼R y, then f(x) = f(y).00W7

Proof. Item 1, As a Coequaliser : Omitted.
Item 2, As a Pushout: Omitted.
Item 3, The First Isomorphism Theorem for Sets: Clear.
Item 4, Descending Functions to Quotient Sets, I : See [Pro24o].
Item 5, Descending Functions to Quotient Sets, II : See [Pro24aa].
Item 6, Descending Functions to Quotient Sets, III : This follows from
Items 5 and 6.
Item 7, Descending Functions to Quotient Sets, IV : See [Pro24n].
Item 8, Descending Functions to Quotient Sets, V : See [Pro24m].
Item 9, Descending Functions to Quotient Sets, VI : The implication
Item 9a =⇒ Item 9b is clear.
Conversely, suppose that, for each x, y ∈ X, if x ∼R y, then f(x) = f(y).
Spelling out the definition of the equivalence closure of R, we see that
the condition x ∼eq

R y unwinds to the following:
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(?) There exist (x1, . . . , xn) ∈ R×n satisfying at least one of the follow-
ing conditions:

1. The following conditions are satisfied:
(a) We have x ∼R x1 or x1 ∼R x;
(b) We have xi ∼R xi+1 or xi+1 ∼R xi for each 1 ≤ i ≤ n− 1;
(c) We have y ∼R xn or xn ∼R y;

2. We have x = y.

Now, if x = y, then f(x) = f(y) trivially; otherwise, we have

f(x) = f(x1),
f(x1) = f(x2),

...
f(xn−1) = f(xn),
f(xn) = f(y),

and f(x) = f(y), as we wanted to show.
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Chapter 8

Categories

00W8 This chapter contains some elementary material about categories, func-
tors, and natural transformations. Notably, we discuss and explore:

1. Categories (Section 8.1).

2. The quadruple adjunction π0 a (−)disc a Obj a (−)indisc between
the category of categories and the category of sets (Section 8.2).

3. Groupoids, categories in which all morphisms admit inverses (Sec-
tion 8.3).

4. Functors (Section 8.4).

5. The conditions one may impose on functors in decreasing order of
importance:

(a) Section 8.5 introduces the foundationally important conditions
one may impose on functors, such as faithfulness, conservativ-
ity, essential surjectivity, etc.

(b) Section 8.6 introduces more conditions one may impose on
functors that are still important but less omni-present than
those of Section 8.5, such as being dominant, being a monomor-
phism, being pseudomonic, etc.

(c) Section 8.7 introduces some rather rare or uncommon condi-
tions one may impose on functors that are nevertheless still
useful to explicit record in this chapter.

6. Natural transformations (Section 8.8).

7. The various categorical and 2-categorical structures formed by
categories, functors, and natural transformations (Section 8.9).

344
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8.1 Categories00W9

8.1.1 Foundations00WA

Definition 8.1.1.1.1.00WB A category
(
C, ◦C,1C

)
consists of:

• Objects. A class Obj(C) of objects.

• Morphisms. For each A,B ∈ Obj(C), a class HomC(A,B), called
the class of morphisms of C from A to B.

https://topological-modular-forms.github.io/the-clowder-project/tag/00W9
https://topological-modular-forms.github.io/the-clowder-project/tag/00WA
https://topological-modular-forms.github.io/the-clowder-project/tag/00WB
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• Identities. For each A ∈ Obj(C), a map of sets

1CA : pt → HomC(A,A),

called the unit map of C at A, determining a morphism

idA : A → A

of C, called the identity morphism of A.

• Composition. For each A,B,C ∈ Obj(C), a map of sets

◦CA,B,C : HomC(B,C) × HomC(A,B) → HomC(A,C),

called the composition map of C at (A,B,C).

such that the following conditions are satisfied:

1. Associativity. The diagram

HomC(C,D) × (HomC(B,C) × HomC(A,B))

(HomC(C,D) × HomC(B,C)) × HomC(A,B) HomC(C,D) × HomC(A,C)

HomC(B,D) × HomC(A,B) HomC(A,D)

αSets
HomC(C,D),HomC(B,C),HomC(A,B)

∼
idHomC(C,D)×◦CA,B,C

◦CA,C,D◦CB,C,D×idHomC(A,B)

◦CA,B,D

commutes, i.e. for each composable triple (f, g, h) of morphisms of
C, we have

(f ◦ g) ◦ h = f ◦ (g ◦ h).

2. Left Unitality. The diagram

pt × HomC(A,B)

HomC(B,B) × HomC(A,B) HomC(A,B)

λSets
HomC(A,B)

∼1CB×idHomC(A,B)

◦CA,B,B

commutes, i.e. for each morphism f : A → B of C, we have

idB ◦ f = f.
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3. Right Unitality. The diagram

HomC(A,B) × pt

HomC(A,B) × HomC(A,A) HomC(A,B)

ρSets
HomC(A,B)

∼idHomC(A,B)×1CA

◦CA,A,B

commutes, i.e. for each morphism f : A → B of C, we have

f ◦ idA = f.

Notation 8.1.1.1.2.00WC Let C be a category.

1. We also write C(A,B) for HomC(A,B).00WD

2. We write Mor(C) for the class of all morphisms of C.00WE

Definition 8.1.1.1.3.00WF Let κ be a regular cardinal. A category C is

1. Locally small if, for each A,B ∈ Obj(C), the class HomC(A,B)
is a set.00WG

2. Locally essentially small if, for each A,B ∈ Obj(C), the class00WH

HomC(A,B)/{isomorphisms}

is a set.

3. Small if C is locally small and Obj(C) is a set.00WJ

4. κ-Small if C is locally small, Obj(C) is a set, and we have #Obj(C) <
κ.00WK

8.1.2 Examples of Categories00WL

Example 8.1.2.1.1.00WM The punctual category1 is the category pt where

• Objects. We have
Obj(pt) def= {?}.

• Morphisms. The unique Hom-set of pt is defined by

Hompt(?, ?)
def= {id?}.

1Further Terminology: Also called the singleton category.

https://topological-modular-forms.github.io/the-clowder-project/tag/00WC
https://topological-modular-forms.github.io/the-clowder-project/tag/00WD
https://topological-modular-forms.github.io/the-clowder-project/tag/00WE
https://topological-modular-forms.github.io/the-clowder-project/tag/00WF
https://topological-modular-forms.github.io/the-clowder-project/tag/00WG
https://topological-modular-forms.github.io/the-clowder-project/tag/00WH
https://topological-modular-forms.github.io/the-clowder-project/tag/00WJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00WK
https://topological-modular-forms.github.io/the-clowder-project/tag/00WL
https://topological-modular-forms.github.io/the-clowder-project/tag/00WM
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• Identities. The unit map

1pt
? : pt → Hompt(?, ?)

of pt at ? is defined by

idpt
?

def= id?.

• Composition. The composition map

◦pt
?,?,? : Hompt(?, ?) × Hompt(?, ?) → Hompt(?, ?)

of pt at (?, ?, ?) is given by the bijection pt × pt ∼= pt.

Example 8.1.2.1.2.00WN We have an isomorphism of categories2

Mon ∼= pt ×
Sets

Cats,

Mon Cats

pt Sets

y
Obj

[pt]

via the delooping functor B : Mon → Cats of ?? of ??, exhibiting monoids
as exactly those categories having a single object.

Proof. Omitted.

Example 8.1.2.1.3.00WP The empty category is the category ∅cat where

• Objects. We have
Obj(∅cat)

def= ∅.

• Morphisms. We have

Mor(∅cat)
def= ∅.

• Identities and Composition. Having no objects, ∅cat has no unit
nor composition maps.

2This can be enhanced to an isomorphism of 2-categories

Mon2disc ∼= ptbi ×
Sets2disc

Cats2,∗,

Mon2disc Cats2,∗

ptbi Sets2disc

y

Obj

[pt]

https://topological-modular-forms.github.io/the-clowder-project/tag/00WN
https://topological-modular-forms.github.io/the-clowder-project/tag/00WP
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Example 8.1.2.1.4.00WQ The nth ordinal category is the category n
where3

• Objects. We have

Obj(n) def= {[0], . . . , [n]}.

• Morphisms. For each [i], [j] ∈ Obj(n), we have

Homn([i], [j]) def=


{

id[i]
}

if [i] = [j],
{[i] → [j]} if [j] < [i],
∅ if [j] > [i].

• Identities. For each [i] ∈ Obj(n), the unit map

1n
[i] : pt → Homn([i], [i])

of n at [i] is defined by

idn
[i]

def= id[i].

• Composition. For each [i], [j], [k] ∈ Obj(n), the composition map

◦n
[i],[j],[k] : Homn([j], [k]) × Homn([i], [j]) → Homn([i], [k])

of n at ([i], [j], [k]) is defined by

id[i] ◦ id[i] = id[i],

([j] → [k]) ◦ ([i] → [j]) = ([i] → [k]).
between the discrete 2-category Mon2disc on Mon and the 2-category of pointed cate-
gories with one object.

3In other words, n is the category associated to the poset

[0] → [1] → · · · → [n − 1] → [n].

The category n for n ≥ 2 may also be defined in terms of 0 and joins (??): we have

https://topological-modular-forms.github.io/the-clowder-project/tag/00WQ
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Example 8.1.2.1.5.00WR Here we list some of the other categories appearing
throughout this work.

1. The category Sets∗ of pointed sets of Definition 3.1.3.1.1.00WS

2. The category Rel of sets and relations of Definition 5.2.1.1.1.00WT

3. The category Span(A,B) of spans from a set A to a set B of ??.00WU

4. The category ISets(K) of K-indexed sets of ??.00WV

5. The category ISets of indexed sets of ??.00WW

6. The category FibSets(K) of K-fibred sets of ??.00WX

7. The category FibSets of fibred sets of ??.00WY

8. Categories of functors Fun(C,D) as in Definition 8.9.1.1.1.00WZ

9. The category of categories Cats of Definition 8.9.2.1.1.00X0

10. The category of groupoids Grpd of Definition 8.9.4.1.1.00X1

8.1.3 Posetal Categories00X2

Definition 8.1.3.1.1.00X3 Let (X,�X) be a poset.

1. The posetal category associated to (X,�X) is the category
Xpos where00X4

• Objects. We have

Obj(Xpos)
def= X.

isomorphisms of categories

1 ∼= 0 ? 0,

2 ∼= 1 ? 0
∼= (0 ? 0) ? 0,

3 ∼= 2 ? 0
∼= (1 ? 0) ? 0
∼= ((0 ? 0) ? 0) ? 0,

4 ∼= 3 ? 0
∼= (2 ? 0) ? 0
∼= ((1 ? 0) ? 0) ? 0
∼= (((0 ? 0) ? 0) ? 0) ? 0,

and so on.

https://topological-modular-forms.github.io/the-clowder-project/tag/00WR
https://topological-modular-forms.github.io/the-clowder-project/tag/00WS
https://topological-modular-forms.github.io/the-clowder-project/tag/00WT
https://topological-modular-forms.github.io/the-clowder-project/tag/00WU
https://topological-modular-forms.github.io/the-clowder-project/tag/00WV
https://topological-modular-forms.github.io/the-clowder-project/tag/00WW
https://topological-modular-forms.github.io/the-clowder-project/tag/00WX
https://topological-modular-forms.github.io/the-clowder-project/tag/00WY
https://topological-modular-forms.github.io/the-clowder-project/tag/00WZ
https://topological-modular-forms.github.io/the-clowder-project/tag/00X0
https://topological-modular-forms.github.io/the-clowder-project/tag/00X1
https://topological-modular-forms.github.io/the-clowder-project/tag/00X2
https://topological-modular-forms.github.io/the-clowder-project/tag/00X3
https://topological-modular-forms.github.io/the-clowder-project/tag/00X4
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• Morphisms. For each a, b ∈ Obj(Xpos), we have

HomXpos(a, b)
def=
{

pt if a �X b,

∅ otherwise.

• Identities. For each a ∈ Obj(Xpos), the unit map

1Xpos
a : pt → HomXpos(a, a)

of Xpos at a is given by the identity map.
• Composition. For each a, b, c ∈ Obj(Xpos), the composition

map

◦Xpos
a,b,c : HomXpos(b, c) × HomXpos(a, b) → HomXpos(a, c)

of Xpos at (a, b, c) is defined as either the inclusion ∅ ↪→ pt or
the identity map of pt, depending on whether we have a �X b,
b �X c, and a �X c.

2. A category C is posetal00X5 4 if C is equivalent to Xpos for some poset
(X,�X).

Proposition 8.1.3.1.2.00X6 Let (X,�X) be a poset and let C be a category.

1. Functoriality.00X7 The assignment (X,�X) 7→ Xpos defines a functor

(−)pos : Pos → Cats.

2. Fully Faithfulness.00X8 The functor (−)pos of Item 1 is fully faithful.

3. Characterisations.00X9 The following conditions are equivalent:

(a) The category C is posetal.00XA

(b) For each A,B ∈ Obj(C) and each f, g ∈ HomC(A,B), we have
f = g.00XB

Proof. Item 1, Functoriality: Omitted.
Item 2, Fully Faithfulness: Omitted.
Item 3, Characterisations: Clear.

8.1.4 Subcategories00XC

Let C be a category.

4Further Terminology: Also called a thin category or a (0, 1)-category.

https://topological-modular-forms.github.io/the-clowder-project/tag/00X5
https://topological-modular-forms.github.io/the-clowder-project/tag/00X6
https://topological-modular-forms.github.io/the-clowder-project/tag/00X7
https://topological-modular-forms.github.io/the-clowder-project/tag/00X8
https://topological-modular-forms.github.io/the-clowder-project/tag/00X9
https://topological-modular-forms.github.io/the-clowder-project/tag/00XA
https://topological-modular-forms.github.io/the-clowder-project/tag/00XB
https://topological-modular-forms.github.io/the-clowder-project/tag/00XC
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Definition 8.1.4.1.1.00XD A subcategory of C is a category A satisfying
the following conditions:

1. Objects. We have Obj(A) ⊂ Obj(C).

2. Morphisms. For each A,B ∈ Obj(A), we have

HomA(A,B) ⊂ HomC(A,B).

3. Identities. For each A ∈ Obj(A), we have

1AA = 1CA.

4. Composition. For each A,B,C ∈ Obj(A), we have

◦AA,B,C = ◦CA,B,C .

Definition 8.1.4.1.2.00XE A subcategory A of C is full if the canonical
inclusion functor A → C is full, i.e. if, for each A,B ∈ Obj(A), the
inclusion

ιA,B : HomA(A,B) ↪→ HomC(A,B)

is surjective (and thus bijective).

Definition 8.1.4.1.3.00XF A subcategory A of a category C is strictly full
if it satisfies the following conditions:

1. Fullness. The subcategory A is full.

2. Closedness Under Isomorphisms. The class Obj(A) is closed under
isomorphisms.5

Definition 8.1.4.1.4.00XG A subcategory A of C is wide6 if Obj(A) =
Obj(C).

8.1.5 Skeletons of Categories00XH

Definition 8.1.5.1.1.00XJ A7 skeleton of a category C is a full subcategory
Sk(C) with one object from each isomorphism class of objects of C.

Definition 8.1.5.1.2.00XK A category C is skeletal if C ∼= Sk(C).8

Proposition 8.1.5.1.3.00XL Let C be a category.
5That is, given A ∈ Obj(A) and C ∈ Obj(C), if C ∼= A, then C ∈ Obj(A).
6Further Terminology: Also called lluf.
7Due to Item 3 of Proposition 8.1.5.1.3, we often refer to any such full subcategory

Sk(C) of C as the skeleton of C.
8That is, C is skeletal if isomorphic objects of C are equal.

https://topological-modular-forms.github.io/the-clowder-project/tag/00XD
https://topological-modular-forms.github.io/the-clowder-project/tag/00XE
https://topological-modular-forms.github.io/the-clowder-project/tag/00XF
https://topological-modular-forms.github.io/the-clowder-project/tag/00XG
https://topological-modular-forms.github.io/the-clowder-project/tag/00XH
https://topological-modular-forms.github.io/the-clowder-project/tag/00XJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00XK
https://topological-modular-forms.github.io/the-clowder-project/tag/00XL
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1. Existence.00XM Assuming the axiom of choice, Sk(C) always exists.

2. Pseudofunctoriality.00XN The assignment C 7→ Sk(C) defines a pseud-
ofunctor

Sk : Cats2 → Cats2.

3. Uniqueness Up to Equivalence.00XP Any two skeletons of C are
equivalent.

4. Inclusions of Skeletons Are Equivalences.00XQ The inclusion

ιC : Sk(C) ↪→ C

of a skeleton of C into C is an equivalence of categories.

Proof. Item 1, Existence: See [nLab23, Section “Existence of Skeletons
of Categories”].
Item 2, Pseudofunctoriality: See [nLab23, Section “Skeletons as an
Endo-Pseudofunctor on Cat”].
Item 3, Uniqueness Up to Equivalence: Clear.
Item 4, Inclusions of Skeletons Are Equivalences: Clear.

8.1.6 Precomposition and Postcomposition00XR

Let C be a category and let A,B,C ∈ Obj(C).

Definition 8.1.6.1.1.00XS Let f : A → B and g : B → C be morphisms of
C.

1. The precomposition function associated to f is the function00XT

f∗ : HomC(B,C) → HomC(A,C)

defined by
f∗(φ) def= φ ◦ f

for each φ ∈ HomC(B,C).

2. The postcomposition function associated to g is the function00XU

g∗ : HomC(A,B) → HomC(A,C)

defined by
g∗(φ) def= g ◦ φ

for each φ ∈ HomC(A,B).

Proposition 8.1.6.1.2.00XV Let A,B,C,D ∈ Obj(C) and let f : A → B
and g : B → C be morphisms of C.

https://topological-modular-forms.github.io/the-clowder-project/tag/00XM
https://topological-modular-forms.github.io/the-clowder-project/tag/00XN
https://topological-modular-forms.github.io/the-clowder-project/tag/00XP
https://topological-modular-forms.github.io/the-clowder-project/tag/00XQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00XR
https://topological-modular-forms.github.io/the-clowder-project/tag/00XS
https://topological-modular-forms.github.io/the-clowder-project/tag/00XT
https://topological-modular-forms.github.io/the-clowder-project/tag/00XU
https://topological-modular-forms.github.io/the-clowder-project/tag/00XV
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1. Interaction Between Precomposition and Postcomposition.00XW We
have

g∗ ◦ f∗ = f∗ ◦ g∗,

HomC(B,C) HomC(B,D)

HomC(A,C) HomC(A,D).

g∗

f∗ f∗

g∗

2. Interaction With Composition I.00XX We have

(g ◦ f)∗ = f∗ ◦ g∗,

HomC(X,A) HomC(X,B)

HomC(X,C),

f∗

(g◦f)∗
g∗

(g ◦ f)∗ = g∗ ◦ f∗,

HomC(C,X) HomC(B,X)

HomC(A,X).

g∗

(g◦f)∗ f∗

3. Interaction With Composition II.00XY We have

pt HomC(A,B)

HomC(A,C)

[f ]

[g◦f ]
g∗

[g ◦ f ] = g∗ ◦ [f ],
[g ◦ f ] = f∗ ◦ [g],

pt HomC(B,C)

HomC(A,C).

[g]

[g◦f ]
f∗

4. Interaction With Composition III.00XZ We have

f∗ ◦ ◦CA,B,C = ◦CX,B,C ◦ (f∗ × id),

HomC(B, C) × HomC(A, B) HomC(A, C)

HomC(B, C) × HomC(X, B) HomC(X, C),

◦C
A,B,C

id×f∗ f∗

◦C
X,B,C

g∗ ◦ ◦CA,B,C = ◦CA,B,D ◦ (id × g∗),

HomC(B, C) × HomC(A, B) HomC(A, C)

HomC(B, D) × HomC(A, B) HomC(A, D).

◦C
A,B,C

g∗×id g∗

◦C
A,B,D

https://topological-modular-forms.github.io/the-clowder-project/tag/00XW
https://topological-modular-forms.github.io/the-clowder-project/tag/00XX
https://topological-modular-forms.github.io/the-clowder-project/tag/00XY
https://topological-modular-forms.github.io/the-clowder-project/tag/00XZ
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5. Interaction With Identities.00Y0 We have

(idA)∗ = idHomC(A,B),

(idB)∗ = idHomC(A,B).

Proof. Item 1, Interaction Between Precomposition and Postcomposition:
Clear.
Item 2, Interaction With Composition I : Clear.
Item 3, Interaction With Composition II : Clear.
Item 4, Interaction With Composition III : Clear.
Item 5, Interaction With Identities: Clear.

8.2 The Quadruple Adjunction With Sets00Y1

8.2.1 Statement00Y2

Let C be a category.

Proposition 8.2.1.1.1.00Y3 We have a quadruple adjunction

(π0 a (−)disc a Obj a (−)indisc):

π0

(−)disc

Obj

(−)indisc

a
a

a

Sets Cats,

witnessed by bijections of sets

HomSets(π0(C), X) ∼= HomCats(C, Xdisc),
HomCats(Xdisc,C) ∼= HomSets(X,Obj(C)),

HomSets(Obj(C), X) ∼= HomCats(C, Xindisc),

natural in C ∈ Obj(Cats) and X ∈ Obj(Sets), where

• The functor
π0 : Cats → Sets,

the connected components functor, is the functor sending a
category to its set of connected components of Definition 8.2.2.2.1.

• The functor
(−)disc : Sets → Cats,

the discrete category functor, is the functor sending a set to its
associated discrete category of Item 1.

https://topological-modular-forms.github.io/the-clowder-project/tag/00Y0
https://topological-modular-forms.github.io/the-clowder-project/tag/00Y1
https://topological-modular-forms.github.io/the-clowder-project/tag/00Y2
https://topological-modular-forms.github.io/the-clowder-project/tag/00Y3
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• The functor
Obj : Cats → Sets,

the object functor, is the functor sending a category to its set of
objects.

• The functor
(−)indisc : Sets → Cats,

the indiscrete category functor, is the functor sending a set to
its associated indiscrete category of Item 1.

Proof. Omitted.

8.2.2 Connected Components and Connected Categories00Y4

8.2.2.1 Connected Components of Categories00Y5

Let C be a category.

Definition 8.2.2.1.1.00Y6 A connected component of C is a full subcate-
gory I of C satisfying the following conditions:9

1. Non-Emptiness. We have Obj(I) 6= ∅.

2. Connectedness. There exists a zigzag of arrows between any two
objects of I.

8.2.2.2 Sets of Connected Components of Categories00Y7

Let C be a category.

Definition 8.2.2.2.1.00Y8 The set of connected components of C is the
set π0(C) whose elements are the connected components of C.

Proposition 8.2.2.2.2.00Y9 Let C be a category.

1. Functoriality.00YA The assignment C 7→ π0(C) defines a functor

π0 : Cats → Sets.

2. Adjointness.00YB We have a quadruple adjunction

(π0 a (−)disc a Obj a (−)indisc):

π0

(−)disc

Obj

(−)indisc

a
a

a

Sets Cats.

9In other words, a connected component of C is an element of the set Obj(C)/∼

https://topological-modular-forms.github.io/the-clowder-project/tag/00Y4
https://topological-modular-forms.github.io/the-clowder-project/tag/00Y5
https://topological-modular-forms.github.io/the-clowder-project/tag/00Y6
https://topological-modular-forms.github.io/the-clowder-project/tag/00Y7
https://topological-modular-forms.github.io/the-clowder-project/tag/00Y8
https://topological-modular-forms.github.io/the-clowder-project/tag/00Y9
https://topological-modular-forms.github.io/the-clowder-project/tag/00YA
https://topological-modular-forms.github.io/the-clowder-project/tag/00YB
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3. Interaction With Groupoids.00YC If C is a groupoid, then we have an
isomorphism of categories

π0(C) ∼= K(C),

where K(C) is the set of isomorphism classes of C of ??.

4. Preservation of Colimits.00YD The functor π0 of Item 1 preserves
colimits. In particular, we have bijections of sets

π0(C
∐
D) ∼= π0(C)

∐
π0(D),

π0(C
∐
E D) ∼= π0(C)

∐
π0(E) π0(D),

π0

(
CoEq

(
C

F
⇒
G
D

))
∼= CoEq

(
π0(C)

π0(F )
⇒

π0(G)
π0(D)

)
,

natural in C,D,E ∈ Obj(Cats).

5. Symmetric Strong Monoidality With Respect to Coproducts.00YE The
connected components functor of Item 1 has a symmetric strong
monoidal structure(

π0, π
∐
0 , π

∐
0|1

)
: (Cats,

∐
, ∅cat) → (Sets,

∐
, ∅),

being equipped with isomorphisms

π

∐
0|C,D : π0(C)

∐
π0(D)

∼=−→ π0(C
∐
D),

π

∐
0|1 : ∅

∼=−→ π0(∅cat),

natural in C,D ∈ Obj(Cats).

6. Symmetric Strong Monoidality With Respect to Products.00YF The
connected components functor of Item 1 has a symmetric strong
monoidal structure(

π0, π
×
0 , π

×
0|1

)
: (Cats,×, pt) → (Sets,×,pt),

being equipped with isomorphisms

π×
0|C,D : π0(C) × π0(D)

∼=−→ π0(C ×D),

π×
0|1 : pt

∼=−→ π0(pt),

natural in C,D ∈ Obj(Cats).

https://topological-modular-forms.github.io/the-clowder-project/tag/00YC
https://topological-modular-forms.github.io/the-clowder-project/tag/00YD
https://topological-modular-forms.github.io/the-clowder-project/tag/00YE
https://topological-modular-forms.github.io/the-clowder-project/tag/00YF
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Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.
Item 3, Interaction With Groupoids: Clear.
Item 4, Preservation of Colimits: This follows from Item 2 and ?? of ??.
Item 5, Symmetric Strong Monoidality With Respect to Coproducts:
Clear.
Item 6, Symmetric Strong Monoidality With Respect to Products: Clear.

8.2.2.3 Connected Categories00YG

Definition 8.2.2.3.1.00YH A category C is connected if π0(C) ∼= pt.10,11

8.2.3 Discrete Categories00YJ

Definition 8.2.3.1.1.00YK Let X be a set.

1. The discrete category on X is the category Xdisc where00YL

• Objects. We have

Obj(Xdisc)
def= X.

• Morphisms. For each A,B ∈ Obj(Xdisc), we have

HomXdisc(A,B) def=
{

idA if A = B,
∅ if A 6= B.

• Identities. For each A ∈ Obj(Xdisc), the unit map

1Xdisc
A : pt → HomXdisc(A,A)

of Xdisc at A is defined by

idXdisc
A

def= idA.

• Composition. For each A,B,C ∈ Obj(Xdisc), the composition
map

◦Xdisc
A,B,C : HomXdisc(B,C) × HomXdisc(A,B) → HomXdisc(A,C)

of Xdisc at (A,B,C) is defined by

idA ◦ idA
def= idA.

with ∼ the equivalence relation generated by the relation ∼′ obtained by declaring
A ∼′ B iff there exists a morphism of C from A to B.

10Further Terminology: A category is disconnected if it is not connected.
11Example: A groupoid is connected iff any two of its objects are isomorphic.

https://topological-modular-forms.github.io/the-clowder-project/tag/00YG
https://topological-modular-forms.github.io/the-clowder-project/tag/00YH
https://topological-modular-forms.github.io/the-clowder-project/tag/00YJ
https://topological-modular-forms.github.io/the-clowder-project/tag/00YK
https://topological-modular-forms.github.io/the-clowder-project/tag/00YL
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2. A category C is discrete if it is equivalent to Xdisc for some set X.
00YM

Proposition 8.2.3.1.2.00YN Let X be a set.

1. Functoriality.00YP The assignment X 7→ Xdisc defines a functor

(−)disc : Sets → Cats.

2. Adjointness.00YQ We have a quadruple adjunction

(π0 a (−)disc a Obj a (−)indisc):

π0

(−)disc

Obj

(−)indisc

a
a

a

Sets Cats.

3. Symmetric Strong Monoidality With Respect to Coproducts.00YR The
functor of Item 1 has a symmetric strong monoidal structure(

(−)disc, (−)
∐
disc, (−)

∐
disc|1

)
: (Sets,

∐
, ∅) → (Cats,

∐
, ∅cat),

being equipped with isomorphisms

(−)
∐
disc|X,Y : Xdisc

∐
Ydisc

∼=−→ (X
∐
Y )disc,

(−)
∐
disc|1 : ∅cat

∼=−→ ∅disc,

natural in X,Y ∈ Obj(Sets).

4. Symmetric Strong Monoidality With Respect to Products.00YS The
functor of Item 1 has a symmetric strong monoidal structure(

(−)disc, (−)×
disc, (−)×

disc|1

)
: (Sets,×,pt) → (Cats,×, pt),

being equipped with isomorphisms

(−)×
disc|X,Y : Xdisc × Ydisc

∼=−→ (X × Y )disc,

(−)×
disc|1 : pt

∼=−→ ptdisc,

natural in X,Y ∈ Obj(Sets).

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.
Item 3, Symmetric Strong Monoidality With Respect to Coproducts:
Clear.
Item 4, Symmetric Strong Monoidality With Respect to Products: Clear.

https://topological-modular-forms.github.io/the-clowder-project/tag/00YM
https://topological-modular-forms.github.io/the-clowder-project/tag/00YN
https://topological-modular-forms.github.io/the-clowder-project/tag/00YP
https://topological-modular-forms.github.io/the-clowder-project/tag/00YQ
https://topological-modular-forms.github.io/the-clowder-project/tag/00YR
https://topological-modular-forms.github.io/the-clowder-project/tag/00YS
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8.2.4 Indiscrete Categories00YT

Definition 8.2.4.1.1.00YU Let X be a set.

1. The indiscrete category on X00YV 12 is the category Xindisc where

• Objects. We have

Obj(Xindisc)
def= X.

• Morphisms. For each A,B ∈ Obj(Xindisc), we have

HomXdisc(A,B) def= {[A] → [B]}
∼= pt.

• Identities. For each A ∈ Obj(Xindisc), the unit map

1Xindisc
A : pt → HomXindisc(A,A)

of Xindisc at A is defined by

idXindisc
A

def= {[A] → [A]}.

• Composition. For each A,B,C ∈ Obj(Xindisc), the composi-
tion map

◦Xindisc
A,B,C : HomXindisc(B,C) × HomXindisc(A,B) → HomXindisc(A,C)

of Xdisc at (A,B,C) is defined by

([B] → [C]) ◦ ([A] → [B]) def= ([A] → [C]).

2. A category C is indiscrete if it is equivalent to Xindisc for some
set X.00YW

Proposition 8.2.4.1.2.00YX Let X be a set.

1. Functoriality.00YY The assignment X 7→ Xindisc defines a functor

(−)indisc : Sets → Cats.

2. Adjointness.00YZ We have a quadruple adjunction

(π0 a (−)disc a Obj a (−)indisc):

π0

(−)disc

Obj

(−)indisc

a
a

a

Sets Cats.

12Further Terminology: Sometimes called the chaotic category on X.

https://topological-modular-forms.github.io/the-clowder-project/tag/00YT
https://topological-modular-forms.github.io/the-clowder-project/tag/00YU
https://topological-modular-forms.github.io/the-clowder-project/tag/00YV
https://topological-modular-forms.github.io/the-clowder-project/tag/00YW
https://topological-modular-forms.github.io/the-clowder-project/tag/00YX
https://topological-modular-forms.github.io/the-clowder-project/tag/00YY
https://topological-modular-forms.github.io/the-clowder-project/tag/00YZ
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3. Symmetric Strong Monoidality With Respect to Products.00Z0 The
functor of Item 1 has a symmetric strong monoidal structure(

(−)indisc, (−)×
indisc, (−)×

indisc|1

)
: (Sets,×,pt) → (Cats,×, pt),

being equipped with isomorphisms

(−)×
indisc|X,Y : Xindisc × Yindisc

∼=−→ (X × Y )indisc,

(−)×
indisc|1 : pt

∼=−→ ptindisc,

natural in X,Y ∈ Obj(Sets).

Proof. Item 1, Functoriality: Clear.
Item 2, Adjointness: This is proved in Proposition 8.2.1.1.1.
Item 3, Symmetric Strong Monoidality With Respect to Products: Clear.

8.3 Groupoids00Z1

8.3.1 Foundations00Z2

Let C be a category.

Definition 8.3.1.1.1.00Z3 A morphism f : A → B of C is an isomorphism
if there exists a morphism f−1 : B → A of C such that

f ◦ f−1 = idB,
f−1 ◦ f = idA.

Notation 8.3.1.1.2.00Z4 We write IsoC(A,B) for the set of all isomorphisms
in C from A to B.

Definition 8.3.1.1.3.00Z5 A groupoid is a category in which every mor-
phism is an isomorphism.

8.3.2 The Groupoid Completion of a Category00Z6

Let C be a category.

Definition 8.3.2.1.1.00Z7 The groupoid completion of C13 is the pair
(K0(C), ιC) consisting of

• A groupoid K0(C);
13Further Terminology: Also called the Grothendieck groupoid of C or the

Grothendieck groupoid completion of C.

https://topological-modular-forms.github.io/the-clowder-project/tag/00Z0
https://topological-modular-forms.github.io/the-clowder-project/tag/00Z1
https://topological-modular-forms.github.io/the-clowder-project/tag/00Z2
https://topological-modular-forms.github.io/the-clowder-project/tag/00Z3
https://topological-modular-forms.github.io/the-clowder-project/tag/00Z4
https://topological-modular-forms.github.io/the-clowder-project/tag/00Z5
https://topological-modular-forms.github.io/the-clowder-project/tag/00Z6
https://topological-modular-forms.github.io/the-clowder-project/tag/00Z7


8.3. Groupoids 363

• A functor ιC : C → K0(C);

satisfying the following universal property:14

(UP) Given another such pair (G, i), there exists a unique functor
K0(C) ∃!−−→ G making the diagram

K0(C)

C G

∃!

i

ιC

commute.

Construction 8.3.2.1.2.00Z8 Concretely, the groupoid completion of C is
the Gabriel–Zisman localisation Mor(C)−1

C of C at the set Mor(C) of
all morphisms of C; see ??.
(To be expanded upon later on.)

Proof. Omitted.

Proposition 8.3.2.1.3.00Z9 Let C be a category.

1. Functoriality.00ZA The assignment C 7→ K0(C) defines a functor

K0 : Cats → Grpd.

2. 2-Functoriality.00ZB The assignment C 7→ K0(C) defines a 2-functor

K0 : Cats2 → Grpd2.

3. Adjointness.00ZC We have an adjunction

(K0 a ι):
K0

ι

aCats Grpd,

witnessed by a bijection of sets

HomGrpd(K0(C),G) ∼= HomCats(C,G),

natural in C ∈ Obj(Cats) and G ∈ Obj(Grpd), forming, together
with the functor Core of Item 1 of Proposition 8.3.3.1.4, a triple
adjunction

(K0 a ι a Core):

K0

Core

ι

a
aCats Grpd,

14See Item 5 of Proposition 8.3.2.1.3 for an explicit construction.

https://topological-modular-forms.github.io/the-clowder-project/tag/00Z8
https://topological-modular-forms.github.io/the-clowder-project/tag/00Z9
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZA
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZB
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZC
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witnessed by bijections of sets

HomGrpd(K0(C),G) ∼= HomCats(C,G),
HomCats(G,D) ∼= HomGrpd(G,Core(D)),

natural in C,D ∈ Obj(Cats) and G ∈ Obj(Grpd).

4. 2-Adjointness.00ZD We have a 2-adjunction

(K0 a ι):
K0

ι
a

2Cats Grpd,

witnessed by an isomorphism of categories

Fun(K0(C),G) ∼= Fun(C,G),

natural in C ∈ Obj(Cats) and G ∈ Obj(Grpd), forming, together
with the 2-functor Core of Item 2 of Proposition 8.3.3.1.4, a triple
2-adjunction

(K0 a ι a Core):

K0

Core

ι

a

2

a

2

Cats Grpd,

witnessed by isomorphisms of categories

Fun(K0(C),G) ∼= Fun(C,G),
Fun(G,D) ∼= Fun(G,Core(D)),

natural in C,D ∈ Obj(Cats) and G ∈ Obj(Grpd).

5. Interaction With Classifying Spaces.00ZE We have an isomorphism of
groupoids

K0(C) ∼= Π≤1(|N•(C)|),

natural in C ∈ Obj(Cats); i.e. the diagram

Cats Grp

sSets Top

K0

N•

|−|

Π≤1∼

commutes up to natural isomorphism.

https://topological-modular-forms.github.io/the-clowder-project/tag/00ZD
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZE
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6. Symmetric Strong Monoidality With Respect to Coproducts.00ZF The
groupoid completion functor of Item 1 has a symmetric strong
monoidal structure(

K0,K
∐
0 ,K

∐
0|1

)
: (Cats,

∐
, ∅cat) → (Grpd,

∐
, ∅cat)

being equipped with isomorphisms

K
∐
0|C,D : K0(C)

∐
K0(D)

∼=−→ K0(C
∐
D),

K
∐
0|1 : ∅cat

∼=−→ K0(∅cat),

natural in C,D ∈ Obj(Cats).

7. Symmetric Strong Monoidality With Respect to Products.00ZG The
groupoid completion functor of Item 1 has a symmetric strong
monoidal structure(

K0,K×
0 ,K

×
0|1

)
: (Cats,×, pt) → (Grpd,×, pt)

being equipped with isomorphisms

K×
0|C,D : K0(C) × K0(D)

∼=−→ K0(C ×D),

K×
0|1 : pt

∼=−→ K0(pt),

natural in C,D ∈ Obj(Cats).

Proof. Item 1, Functoriality: Omitted.
Item 2, 2-Functoriality: Omitted.
Item 3, Adjointness: Omitted.
Item 4, 2-Adjointness: Omitted.
Item 5, Interaction With Classifying Spaces: See Corollary 18.33 of https:
//web.ma.utexas.edu/users/dafr/M392C-2012/Notes/lecture18.pdf.
Item 6, Symmetric Strong Monoidality With Respect to Coproducts:
Omitted.
Item 7, Symmetric Strong Monoidality With Respect to Products: Omitted.

8.3.3 The Core of a Category00ZH

Let C be a category.

Definition 8.3.3.1.1.00ZJ The core of C is the pair (Core(C), ιC) consisting
of

• A groupoid Core(C);

https://topological-modular-forms.github.io/the-clowder-project/tag/00ZF
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZG
https://web.ma.utexas.edu/users/dafr/M392C-2012/Notes/lecture18.pdf
https://web.ma.utexas.edu/users/dafr/M392C-2012/Notes/lecture18.pdf
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZH
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZJ
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• A functor ιC : Core(C) ↪→ C;

satisfying the following universal property:

(UP) Given another such pair (G, i), there exists a unique functor G ∃!−−→
Core(C) making the diagram

Core(C)

G C

ιC
∃!

i

commute.

Notation 8.3.3.1.2.00ZK We also write C' for Core(C).

Construction 8.3.3.1.3.00ZL The core of C is the wide subcategory of C
spanned by the isomorphisms of C, i.e. the category Core(C) where15

1. Objects. We have

Obj(Core(C)) def= Obj(C).

2. Morphisms. The morphisms of Core(C) are the isomorphisms of C.

Proof. This follows from the fact that functors preserve isomorphisms
(Item 1 of Proposition 8.4.1.1.6).

Proposition 8.3.3.1.4.00ZM Let C be a category.

1. Functoriality.00ZN The assignment C 7→ Core(C) defines a functor

Core : Cats → Grpd.

2. 2-Functoriality.00ZP The assignment C 7→ Core(C) defines a 2-functor

Core : Cats2 → Grpd2.

3. Adjointness.00ZQ We have an adjunction

(ι a Core):
ι

Core

aGrpd Cats,

15Slogan: The groupoid Core(C) is the maximal subgroupoid of C.

https://topological-modular-forms.github.io/the-clowder-project/tag/00ZK
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZL
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZM
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZN
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZP
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZQ
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witnessed by a bijection of sets

HomCats(G,D) ∼= HomGrpd(G,Core(D)),

natural in G ∈ Obj(Grpd) and D ∈ Obj(Cats), forming, together
with the functor K0 of Item 1 of Proposition 8.3.2.1.3, a triple
adjunction

(K0 a ι a Core):

K0

Core

ι
a

aCats Grpd,

witnessed by bijections of sets

HomGrpd(K0(C),G) ∼= HomCats(C,G),
HomCats(G,D) ∼= HomGrpd(G,Core(D)),

natural in C,D ∈ Obj(Cats) and G ∈ Obj(Grpd).

4. 2-Adjointness.00ZR We have an adjunction

(ι a Core):
ι

Core

a

2Grpd Cats,

witnessed by an isomorphism of categories

Fun(G,D) ∼= Fun(G,Core(D)),

natural in G ∈ Obj(Grpd) and D ∈ Obj(Cats), forming, together
with the 2-functor K0 of Item 2 of Proposition 8.3.2.1.3, a triple
2-adjunction

(K0 a ι a Core):

K0

Core

ι

a

2

a

2

Cats Grpd,

witnessed by isomorphisms of categories

Fun(K0(C),G) ∼= Fun(C,G),
Fun(G,D) ∼= Fun(G,Core(D)),

natural in C,D ∈ Obj(Cats) and G ∈ Obj(Grpd).

https://topological-modular-forms.github.io/the-clowder-project/tag/00ZR
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5. Symmetric Strong Monoidality With Respect to Products.00ZS The
core functor of Item 1 has a symmetric strong monoidal structure(

Core,Core×,Core×
1

)
: (Cats,×, pt) → (Grpd,×, pt)

being equipped with isomorphisms

Core×
C,D : Core(C) × Core(D)

∼=−→ Core(C ×D),

Core×
1 : pt

∼=−→ Core(pt),

natural in C,D ∈ Obj(Cats).

6. Symmetric Strong Monoidality With Respect to Coproducts.00ZT The
core functor of Item 1 has a symmetric strong monoidal structure(

Core,Core
∐
,Core

∐
1

)
: (Cats,

∐
, ∅cat) → (Grpd,

∐
, ∅cat)

being equipped with isomorphisms

Core
∐
C,D : Core(C)

∐
Core(D)

∼=−→ Core(C
∐
D),

Core
∐
1 : ∅cat

∼=−→ Core(∅cat),

natural in C,D ∈ Obj(Cats).

Proof. Item 1, Functoriality: Omitted.
Item 2, 2-Functoriality: Omitted.
Item 3, Adjointness: Omitted.
Item 4, 2-Adjointness: Omitted.
Item 5, Symmetric Strong Monoidality With Respect to Products: Omit-
ted.
Item 6, Symmetric Strong Monoidality With Respect to Coproducts:
Omitted.

8.4 Functors00ZU

8.4.1 Foundations00ZV

Let C and D be categories.

Definition 8.4.1.1.1.00ZW A functor F : C → D from C to D16 consists
of:

16Further Terminology: Also called a covariant functor.

https://topological-modular-forms.github.io/the-clowder-project/tag/00ZS
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZT
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZU
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZV
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZW
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1. Action on Objects. A map of sets

F : Obj(C) → Obj(D),

called the action on objects of F .

2. Action on Morphisms. For each A,B ∈ Obj(C), a map

FA,B : HomC(A,B) → HomD(F (A), F (B)),

called the action on morphisms of F at (A,B)17.

satisfying the following conditions:

1. Preservation of Identities. For each A ∈ Obj(C), the diagram

pt

HomC(A,A) HomD(F (A), F (A))

1CA

1D
F (A)

FA,A

commutes, i.e. we have

F (idA) = idF (A).

2. Preservation of Composition. For each A,B,C ∈ Obj(C), the
diagram

HomC(B,C) × HomC(A,B) HomC(A,C)

HomD(F (B), F (C)) × HomD(F (A), F (B)) HomD(F (A), F (C))

FB,C×FA,B

◦CA,B,C

FA,C

◦D
F (A),F (B),F (C)

commutes, i.e. for each composable pair (g, f) of morphisms of C,
we have

F (g ◦ f) = F (g) ◦ F (f).

Notation 8.4.1.1.2.00ZX Let C and D be categories, and write Cop for the
opposite category of C of ??.

1. Given a functor00ZY
F : C → D,

we also write FA for F (A).
17Further Terminology: Also called action on Hom-sets of F at (A, B).

https://topological-modular-forms.github.io/the-clowder-project/tag/00ZX
https://topological-modular-forms.github.io/the-clowder-project/tag/00ZY
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2. Given a functor00ZZ
F : Cop → D,

we also write FA for F (A).

3. Given a functor0100
F : C × C → D,

we also write FA,B for F (A,B).

4. Given a functor0101

F : Cop × C → D,

we also write FAB for F (A,B).
We employ a similar notation for morphisms, writing e.g. Ff for F (f)
given a functor F : C → D.

Notation 8.4.1.1.3.0102 Following the notation Jx 7→ f(x)K for a function
f : X → Y introduced in Notation 1.1.1.1.2, we will sometimes denote a
functor F : C → D by

F
def= JA 7→ F (A)K,

specially when the action on morphisms of F is clear from its action on
objects.

Example 8.4.1.1.4.0103 The identity functor of a category C is the
functor idC : C → C where

1. Action on Objects. For each A ∈ Obj(C), we have

idC(A) def= A.

2. Action on Morphisms. For each A,B ∈ Obj(C), the action on
morphisms

(idC)A,B : HomC(A,B) → HomC(idC(A), idC(B))︸ ︷︷ ︸
def=HomC(A,B)

of idC at (A,B) is defined by

(idC)A,B
def= idHomC(A,B).

Proof. Preservation of Identities: We have idC(idA) def= idA for each
A ∈ Obj(C) by definition.
Preservation of Compositions: For each composable pair A f−→ B

g−→ B of
morphisms of C, we have

idC(g ◦ f) def= g ◦ f
def= idC(g) ◦ idC(f).

This finishes the proof.

https://topological-modular-forms.github.io/the-clowder-project/tag/00ZZ
https://topological-modular-forms.github.io/the-clowder-project/tag/0100
https://topological-modular-forms.github.io/the-clowder-project/tag/0101
https://topological-modular-forms.github.io/the-clowder-project/tag/0102
https://topological-modular-forms.github.io/the-clowder-project/tag/0103
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Definition 8.4.1.1.5.0104 The composition of two functors F : C → D

and G : D → E is the functor G ◦ F where

• Action on Objects. For each A ∈ Obj(C), we have

[G ◦ F ](A) def= G(F (A)).

• Action on Morphisms. For each A,B ∈ Obj(C), the action on
morphisms

(G ◦ F )A,B : HomC(A,B) → HomE(GFA
, GFB

)

of G ◦ F at (A,B) is defined by

[G ◦ F ](f) def= G(F (f)).

Proof. Preservation of Identities: For each A ∈ Obj(C), we have

GFidA
= GidFA

(functoriality of F )
= idGFA

. (functoriality of G)

Preservation of Composition: For each composable pair (g, f) of mor-
phisms of C, we have

GFg◦f
= GFg◦Ff

(functoriality of F )
= GFg ◦GFf

. (functoriality of G)

This finishes the proof.

Proposition 8.4.1.1.6.0105 Let F : C → D be a functor.

1. Preservation of Isomorphisms.0106 If f is an isomorphism in C, then
F (f) is an isomorphism in D.18

Proof. Item 1, Preservation of Isomorphisms: Indeed, we have

F (f)−1 ◦ F (f) = F
(
f−1 ◦ f

)
= F (idA)
= idF (A)

and

F (f) ◦ F (f)−1 = F
(
f ◦ f−1

)
= F (idB)
= idF (B),

showing F (f) to be an isomorphism.
18When the converse holds, we call F conservative, see Definition 8.5.4.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/0104
https://topological-modular-forms.github.io/the-clowder-project/tag/0105
https://topological-modular-forms.github.io/the-clowder-project/tag/0106
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8.4.2 Contravariant Functors0107

Let C and D be categories, and let Cop denote the opposite category of
C of ??.
Definition 8.4.2.1.1.0108 A contravariant functor from C to D is a
functor from Cop to D.
Remark 8.4.2.1.2.0109 In detail, a contravariant functor from C to D
consists of:

1. Action on Objects. A map of sets

F : Obj(C) → Obj(D),

called the action on objects of F .

2. Action on Morphisms. For each A,B ∈ Obj(C), a map

FA,B : HomC(A,B) → HomD(F (B), F (A)),

called the action on morphisms of F at (A,B).
satisfying the following conditions:

1. Preservation of Identities. For each A ∈ Obj(C), the diagram

pt

HomC(A,A) HomD(F (A), F (A))

1CA

1D
F (A)

FA,A

commutes, i.e. we have

F (idA) = idF (A).

2. Preservation of Composition. For each A,B,C ∈ Obj(C), the
diagram

HomD(F (C), F (B)) × HomD(F (B), F (A))

HomC(B,C) × HomC(A,B)HomD(F (B), F (A)) × HomD(F (C), F (B))

HomC(A,C) HomD(F (C), F (A))

FB,C×FA,B ∼
σSets

HomD(F (C),F (B)),HomD(F (B),F (A))

◦D
F (C),F (B),F (A)◦CA,B,C

FA,C

https://topological-modular-forms.github.io/the-clowder-project/tag/0107
https://topological-modular-forms.github.io/the-clowder-project/tag/0108
https://topological-modular-forms.github.io/the-clowder-project/tag/0109
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commutes, i.e. for each composable pair (g, f) of morphisms of C,
we have

F (g ◦ f) = F (f) ◦ F (g).

Remark 8.4.2.1.3.010A Throughout this work we will not use the term
“contravariant” functor, speaking instead simply of functors F : Cop → D.
We will usually, however, write

FA,B : HomC(A,B) → HomD(F (B), F (A))

for the action on morphisms

FA,B : HomCop(A,B) → HomD(F (A), F (B))

of F , as well as write F (g ◦ f) = F (f) ◦ F (g).

8.4.3 Forgetful Functors010B

Definition 8.4.3.1.1.010C There isn’t a precise definition of a forgetful
functor.

Remark 8.4.3.1.2.010D Despite there not being a formal or precise definition
of a forgetful functor, the term is often very useful in practice, similarly
to the word “canonical”. The idea is that a “forgetful functor” is a
functor that forgets structure or properties, and is best explained through
examples, such as the ones below (see Examples 8.4.3.1.3 and 8.4.3.1.4).

Example 8.4.3.1.3.010E Examples of forgetful functors that forget structure
include:

1. Forgetting Group Structures.010F The functor Grp → Sets sending a
group (G,µG, ηG) to its underlying set G, forgetting the multipli-
cation and unit maps µG and ηG of G.

2. Forgetting Topologies.010G The functor Top → Sets sending a topolog-
ical space (X, TX) to its underlying set X, forgetting the topology
TX .

3. Forgetting Fibrations.010H The functor FibSets(K) → Sets sending a
K-fibred set φX : X → K to the set X, forgetting the map φX and
the base set K.

Example 8.4.3.1.4.010J Examples of forgetful functors that forget properties
include:

1. Forgetting Commutativity.010K The inclusion functor ι : CMon ↪→ Mon
which forgets the property of being commutative.

https://topological-modular-forms.github.io/the-clowder-project/tag/010A
https://topological-modular-forms.github.io/the-clowder-project/tag/010B
https://topological-modular-forms.github.io/the-clowder-project/tag/010C
https://topological-modular-forms.github.io/the-clowder-project/tag/010D
https://topological-modular-forms.github.io/the-clowder-project/tag/010E
https://topological-modular-forms.github.io/the-clowder-project/tag/010F
https://topological-modular-forms.github.io/the-clowder-project/tag/010G
https://topological-modular-forms.github.io/the-clowder-project/tag/010H
https://topological-modular-forms.github.io/the-clowder-project/tag/010J
https://topological-modular-forms.github.io/the-clowder-project/tag/010K
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2. Forgetting Inverses.010L The inclusion functor ι : Grp ↪→ Mon which
forgets the property of having inverses.

Notation 8.4.3.1.5.010M Throughout this work, we will denote forgetful
functors that forget structure by 忘, e.g. as in

忘 : Grp → Sets.

The symbol 忘, pronounced wasureru (see Item 1 of Remark 8.4.3.1.6
below), means to forget, and is a kanji found in the following words in
Japanese and Chinese:

1. 忘れる, transcribed as wasureru, meaning to forget.010N

2. 忘却関手, transcribed as boukyaku kanshu, meaning forgetful func-
tor.010P

3. 忘记 or 忘記, transcribed as wàngjì, meaning to forget.010Q

4. 遗忘函子 or 遺忘函子, transcribed as yíwàng hánzǐ, meaning for-
getful functor.010R

Remark 8.4.3.1.6.010S Here we collect the pronunciation of the words in
Notation 8.4.3.1.5 for accuracy and completeness.

1. Pronunciation of 忘れる:010T

• Audio: see https://topological-modular-forms.github.io
/the-clowder-project/static/sounds/wasureru-01.mp3

• IPA broad transcription: [wäsɯɾe̞ɾɯ].
• IPA narrow transcription: [ɰᵝäsɨᵝɾe̞ɾɯ̟ᵝ].

2. Pronunciation of 忘却関手:010U Pronunciation:

• Audio: see https://topological-modular-forms.github.io
/the-clowder-project/static/sounds/wasureru-02.mp3

• IPA broad transcription: [bo̞ːkʲäkɯ kä̃ɰ̃ɕɯ].
• IPA narrow transcription: [bo̞ːkʲäkɯ̟ᵝ kä̃ɰ̃ɕɯᵝ].

3. Pronunciation of 忘记:010V

• Audio: see https://topological-modular-forms.github.io
/the-clowder-project/static/sounds/wasureru-03.ogg

• Broad IPA transcription: [wɑŋtɕi].
• Sinological IPA transcription: [wɑŋ⁵¹⁻⁵³tɕ͡i⁵¹].

4. Pronunciation of 遗忘函子:010W

https://topological-modular-forms.github.io/the-clowder-project/tag/010L
https://topological-modular-forms.github.io/the-clowder-project/tag/010M
https://topological-modular-forms.github.io/the-clowder-project/tag/010N
https://topological-modular-forms.github.io/the-clowder-project/tag/010P
https://topological-modular-forms.github.io/the-clowder-project/tag/010Q
https://topological-modular-forms.github.io/the-clowder-project/tag/010R
https://topological-modular-forms.github.io/the-clowder-project/tag/010S
https://topological-modular-forms.github.io/the-clowder-project/tag/010T
https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-01.mp3
https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-01.mp3
https://topological-modular-forms.github.io/the-clowder-project/tag/010U
https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-02.mp3
https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-02.mp3
https://topological-modular-forms.github.io/the-clowder-project/tag/010V
https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-03.ogg
https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-03.ogg
https://topological-modular-forms.github.io/the-clowder-project/tag/010W
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• Audio: see https://topological-modular-forms.github.io
/the-clowder-project/static/sounds/wasureru-04.mp3

• Broad IPA transcription: [iwɑŋ xänt͡sz̩ɨ].
• Sinological IPA transcription: [i³⁵wɑŋ⁵¹ xän³⁵t͡sz̩²¹⁴⁻²¹⁽⁴⁾].

8.4.4 The Natural Transformation Associated to a Functor010X

Definition 8.4.4.1.1.010Y Every functor F : C → D defines a natural trans-
formation19

F † : HomC =⇒ HomD ◦ (F op × F ),

Cop × C Dop ×D

Sets,

F op×F

HomC HomD
F †

called the natural transformation associated to F , consisting of the
collection{

F †
A,B : HomC(A,B) → HomD(FA, FB)

}
(A,B)∈Obj(Cop×C)

with
F †
A,B

def= FA,B.

Proof. The naturality condition for F † is the requirement that for each
morphism

(φ, ψ) : (X,Y ) → (A,B)

of Cop × C, the diagram

HomC(X,Y ) HomC(A,B)

HomD(FX , FY ) HomD(FA, FB),

φ∗◦ψ∗=ψ∗◦φ∗

FX,Y FA,B

F (φ)∗◦F (ψ)∗=F (ψ)∗◦F (φ)∗

acting on elements as

f ψ ◦ f ◦ φ

F (f) F (ψ) ◦ F (f) ◦ F (ψ) = F (ψ ◦ f ◦ φ)

commutes, which follows from the functoriality of F .
19This is the 1-categorical version of Item 1 of Proposition 2.4.1.1.3.

https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-04.mp3
https://topological-modular-forms.github.io/the-clowder-project/static/sounds/wasureru-04.mp3
https://topological-modular-forms.github.io/the-clowder-project/tag/010X
https://topological-modular-forms.github.io/the-clowder-project/tag/010Y
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Proposition 8.4.4.1.2.010Z Let F : C → D and G : D → E be functors.

1. Interaction With Natural Isomorphisms.0110 The following conditions
are equivalent:

(a) The natural transformation F † : HomC =⇒ HomD ◦(F op × F )
associated to F is a natural isomorphism.0111

(b) The functor F is fully faithful.0112

2. Interaction With Composition.0113 We have an equality of pasting
diagrams

Cop × C Dop ×D Eop × E

Sets

F op×F

HomC

Gop×G

HomD HomE

F † G† =
Cop × C Eop × E,

Sets

(G◦F )op×(G◦F )

HomC HomE

(G◦F )†

in Cats2, i.e. we have

(G ◦ F )† =
(
G† ? idF op×F

)
◦ F †.

3. Interaction With Identities.0114 We have

id†
C = idHomC(−1,−2),

i.e. the natural transformation associated to idC is the identity
natural transformation of the functor HomC(−1,−2).

Proof. Item 1, Interaction With Natural Isomorphisms: Clear.
Item 2, Interaction With Composition: Clear.
Item 3, Interaction With Identities: Clear.

8.5 Conditions on Functors0115

8.5.1 Faithful Functors0116

Let C and D be categories.

Definition 8.5.1.1.1.0117 A functor F : C → D is faithful if, for each
A,B ∈ Obj(C), the action on morphisms

FA,B : HomC(A,B) → HomD(FA, FB)

of F at (A,B) is injective.

Proposition 8.5.1.1.2.0118 Let F : C → D be a functor.

https://topological-modular-forms.github.io/the-clowder-project/tag/010Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0110
https://topological-modular-forms.github.io/the-clowder-project/tag/0111
https://topological-modular-forms.github.io/the-clowder-project/tag/0112
https://topological-modular-forms.github.io/the-clowder-project/tag/0113
https://topological-modular-forms.github.io/the-clowder-project/tag/0114
https://topological-modular-forms.github.io/the-clowder-project/tag/0115
https://topological-modular-forms.github.io/the-clowder-project/tag/0116
https://topological-modular-forms.github.io/the-clowder-project/tag/0117
https://topological-modular-forms.github.io/the-clowder-project/tag/0118
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1. Interaction With Postcomposition.0119 The following conditions are
equivalent:

(a) The functor F : C → D is faithful.011A

(b) For each X ∈ Obj(Cats), the postcomposition functor011B

F∗ : Fun(X,C) → Fun(X,D)

is faithful.
(c) The functor F : C → D is a representably faithful morphism

in Cats2 in the sense of Definition 9.1.1.1.1.011C

2. Interaction With Precomposition I.011D Let F : C → D be a functor.

(a) If F is faithful, then the precomposition functor011E

F ∗ : Fun(D,X) → Fun(C,X)

can fail to be faithful.
(b) Conversely, if the precomposition functor011F

F ∗ : Fun(D,X) → Fun(C,X)

is faithful, then F can fail to be faithful.

3. Interaction With Precomposition II.011G If F is essentially surjective,
then the precomposition functor

F ∗ : Fun(D,X) → Fun(C,X)

is faithful.

4. Interaction With Precomposition III.011H The following conditions are
equivalent:

(a) For each X ∈ Obj(Cats), the precomposition functor011J

F ∗ : Fun(D,X) → Fun(C,X)

is faithful.
(b) For each X ∈ Obj(Cats), the precomposition functor011K

F ∗ : Fun(D,X) → Fun(C,X)

is conservative.

https://topological-modular-forms.github.io/the-clowder-project/tag/0119
https://topological-modular-forms.github.io/the-clowder-project/tag/011A
https://topological-modular-forms.github.io/the-clowder-project/tag/011B
https://topological-modular-forms.github.io/the-clowder-project/tag/011C
https://topological-modular-forms.github.io/the-clowder-project/tag/011D
https://topological-modular-forms.github.io/the-clowder-project/tag/011E
https://topological-modular-forms.github.io/the-clowder-project/tag/011F
https://topological-modular-forms.github.io/the-clowder-project/tag/011G
https://topological-modular-forms.github.io/the-clowder-project/tag/011H
https://topological-modular-forms.github.io/the-clowder-project/tag/011J
https://topological-modular-forms.github.io/the-clowder-project/tag/011K
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(c) For each X ∈ Obj(Cats), the precomposition functor011L

F ∗ : Fun(D,X) → Fun(C,X)

is monadic.
(d) The functor F : C → D is a corepresentably faithful morphism

in Cats2 in the sense of Definition 9.2.1.1.1.011M

(e) The components011N

ηG : G =⇒ RanF (G ◦ F )

of the unit

η : idFun(D,X) =⇒ RanF ◦ F ∗

of the adjunction F ∗ a RanF are all monomorphisms.
(f) The components011P

εG : LanF (G ◦ F ) =⇒ G

of the counit

ε : LanF ◦ F ∗ =⇒ idFun(D,X)

of the adjunction LanF a F ∗ are all epimorphisms.
(g) The functor F is dominant (Definition 8.6.1.1.1), i.e. every

object of D is a retract of some object in Im(F ):011Q

(?) For each B ∈ Obj(D), there exist:
– An object A of C;
– A morphism s : B → F (A) of D;
– A morphism r : F (A) → B of D;

such that r ◦ s = idB.

Proof. Item 1, Interaction With Postcomposition: Omitted.
Item 2, Interaction With Precomposition I : See [MSE 733163] for Item 2a.
Item 2b follows from Item 3 and the fact that there are essentially
surjective functors that are not faithful.
Item 3, Interaction With Precomposition II : Omitted, but see https:
//unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor
y.precomp_fully_faithful.html for a formalised proof.
Item 4, Interaction With Precomposition III : We claim Items 4a to 4g
are equivalent:

• Items 4a and 4d Are Equivalent: This is true by the definition of
corepresentably faithful morphism; see Definition 9.2.1.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/011L
https://topological-modular-forms.github.io/the-clowder-project/tag/011M
https://topological-modular-forms.github.io/the-clowder-project/tag/011N
https://topological-modular-forms.github.io/the-clowder-project/tag/011P
https://topological-modular-forms.github.io/the-clowder-project/tag/011Q
https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html
https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html
https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html
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• Items 4a to 4c and 4g Are Equivalent: See [Adá+01, Proposition
4.1] or alternatively [Fre09, Lemmas 3.1 and 3.2] for the equivalence
between Items 4a and 4g.

• Items 4a, 4e and 4f Are Equivalent: See ?? of ??.

This finishes the proof.

8.5.2 Full Functors011R

Let C and D be categories.

Definition 8.5.2.1.1.011S A functor F : C → D is full if, for each A,B ∈
Obj(C), the action on morphisms

FA,B : HomC(A,B) → HomD(FA, FB)

of F at (A,B) is surjective.

Proposition 8.5.2.1.2.011T Let F : C → D be a functor.

1. Interaction With Postcomposition.011U The following conditions are
equivalent:

(a) The functor F : C → D is full.011V

(b) For each X ∈ Obj(Cats), the postcomposition functor011W

F∗ : Fun(X,C) → Fun(X,D)

is full.
(c) The functor F : C → D is a representably full morphism in

Cats2 in the sense of Definition 9.1.2.1.1.011X

2. Interaction With Precomposition I.011Y If F is full, then the precom-
position functor

F ∗ : Fun(D,X) → Fun(C,X)

can fail to be full.

3. Interaction With Precomposition II.011Z If the precomposition functor

F ∗ : Fun(D,X) → Fun(C,X)

is full, then F can fail to be full.

4. Interaction With Precomposition III.0120 If F is essentially surjective

https://topological-modular-forms.github.io/the-clowder-project/tag/011R
https://topological-modular-forms.github.io/the-clowder-project/tag/011S
https://topological-modular-forms.github.io/the-clowder-project/tag/011T
https://topological-modular-forms.github.io/the-clowder-project/tag/011U
https://topological-modular-forms.github.io/the-clowder-project/tag/011V
https://topological-modular-forms.github.io/the-clowder-project/tag/011W
https://topological-modular-forms.github.io/the-clowder-project/tag/011X
https://topological-modular-forms.github.io/the-clowder-project/tag/011Y
https://topological-modular-forms.github.io/the-clowder-project/tag/011Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0120
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and full, then the precomposition functor

F ∗ : Fun(D,X) → Fun(C,X)

is full (and also faithful by Item 3 of Proposition 8.5.1.1.2).

5. Interaction With Precomposition IV.0121 The following conditions are
equivalent:

(a) For each X ∈ Obj(Cats), the precomposition functor0122

F ∗ : Fun(D,X) → Fun(C,X)

is full.
(b) The functor F : C → D is a corepresentably full morphism in

Cats2 in the sense of Definition 9.2.1.1.1.0123

(c) The components0124

ηG : G =⇒ RanF (G ◦ F )

of the unit

η : idFun(D,X) =⇒ RanF ◦ F ∗

of the adjunction F ∗ a RanF are all retractions/split epimor-
phisms.

(d) The components0125

εG : LanF (G ◦ F ) =⇒ G

of the counit

ε : LanF ◦ F ∗ =⇒ idFun(D,X)

of the adjunction LanF a F ∗ are all sections/split monomor-
phisms.

(e) For each B ∈ Obj(D), there exist:0126

• An object AB of C;
• A morphism sB : B → F (AB) of D;
• A morphism rB : F (AB) → B of D;

satisfying the following condition:
(?) For each A ∈ Obj(C) and each pair of morphisms

r : F (A) → B,

s : B → F (A)

of D, we have

[(AB, sB, rB)] = [(A, s, r ◦ sB ◦ rB)]

in
∫ A∈C hB

′
FA

× hFA
B .

https://topological-modular-forms.github.io/the-clowder-project/tag/0121
https://topological-modular-forms.github.io/the-clowder-project/tag/0122
https://topological-modular-forms.github.io/the-clowder-project/tag/0123
https://topological-modular-forms.github.io/the-clowder-project/tag/0124
https://topological-modular-forms.github.io/the-clowder-project/tag/0125
https://topological-modular-forms.github.io/the-clowder-project/tag/0126
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Proof. Item 1, Interaction With Postcomposition: Omitted.
Item 2, Interaction With Precomposition I : Omitted.
Item 3, Interaction With Precomposition II : See [BS10, p. 47].
Item 4, Interaction With Precomposition III : Omitted, but see https:
//unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor
y.precomp_fully_faithful.html for a formalised proof.
Item 5, Interaction With Precomposition IV : We claim Items 5a to 5e
are equivalent:

• Items 5a and 5b Are Equivalent: This is true by the definition of
corepresentably full morphism; see Definition 9.2.2.1.1.

• Items 5a, 5c and 5d Are Equivalent: See ?? of ??.

• Items 5a and 5e Are Equivalent: See [Adá+01, Item (b) of Remark
4.3].

This finishes the proof.

Question 8.5.2.1.3.0127 Item 5 of Proposition 8.5.2.1.2 gives a characteri-
sation of the functors F for which F ∗ is full, but the characterisations
given there are really messy. Are there better ones?
This question also appears as [MO 468121b].

8.5.3 Fully Faithful Functors0128

Let C and D be categories.

Definition 8.5.3.1.1.0129 A functor F : C → D is fully faithful if F is full
and faithful, i.e. if, for each A,B ∈ Obj(C), the action on morphisms

FA,B : HomC(A,B) → HomD(FA, FB)

of F at (A,B) is bijective.

Proposition 8.5.3.1.2.012A Let F : C → D be a functor.

1. Characterisations.012B The following conditions are equivalent:

(a) The functor F is fully faithful.012C

(b) We have a pullback square012D

Arr(C) ∼= (C × C) ×D×D Arr(D),

Arr(C) Arr(D)

C × C D ×D

Arr(F )

src×tgt
y

src×tgt

F×F

in Cats.

https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html
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2. Conservativity.012E If F is fully faithful, then F is conservative.

3. Essential Injectivity.012F If F is fully faithful, then F is essentially
injective.

4. Interaction With Co/Limits.012G If F is fully faithful, then F reflects
co/limits.

5. Interaction With Postcomposition.012H The following conditions are
equivalent:

(a) The functor F : C → D is fully faithful.012J

(b) For each X ∈ Obj(Cats), the postcomposition functor012K

F∗ : Fun(X,C) → Fun(X,D)

is fully faithful.
(c) The functor F : C → D is a representably fully faithful mor-

phism in Cats2 in the sense of Definition 9.1.3.1.1.012L

6. Interaction With Precomposition I.012M If F is fully faithful, then the
precomposition functor

F ∗ : Fun(D,X) → Fun(C,X)

can fail to be fully faithful.

7. Interaction With Precomposition II.012N If the precomposition functor

F ∗ : Fun(D,X) → Fun(C,X)

is fully faithful, then F can fail to be fully faithful (and in fact it
can also fail to be either full or faithful).

8. Interaction With Precomposition III.012P If F is essentially surjective
and full, then the precomposition functor

F ∗ : Fun(D,X) → Fun(C,X)

is fully faithful.

9. Interaction With Precomposition IV.012Q The following conditions are
equivalent:

(a) For each X ∈ Obj(Cats), the precomposition functor012R

F ∗ : Fun(D,X) → Fun(C,X)

is fully faithful.

https://topological-modular-forms.github.io/the-clowder-project/tag/012E
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https://topological-modular-forms.github.io/the-clowder-project/tag/012P
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(b) The precomposition functor012S

F ∗ : Fun(D, Sets) → Fun(C,Sets)

is fully faithful.
(c) The functor012T

LanF : Fun(C, Sets) → Fun(D, Sets)

is fully faithful.
(d) The functor F is a corepresentably fully faithful morphism in

Cats2 in the sense of Definition 9.2.3.1.1.012U

(e) The functor F is absolutely dense.012V

(f) The components012W

ηG : G =⇒ RanF (G ◦ F )

of the unit

η : idFun(D,X) =⇒ RanF ◦ F ∗

of the adjunction F ∗ a RanF are all isomorphisms.
(g) The components012X

εG : LanF (G ◦ F ) =⇒ G

of the counit

ε : LanF ◦ F ∗ =⇒ idFun(D,X)

of the adjunction LanF a F ∗ are all isomorphisms.
(h) The natural transformation012Y

α : LanhF

(
hF
)

=⇒ h

with components

αB′,B :
∫ A∈C

hB
′

FA
× hFA

B → hB
′

B

given by
αB′,B([(φ, ψ)]) = ψ ◦ φ

is a natural isomorphism.
(i) For each B ∈ Obj(D), there exist:012Z

• An object AB of C;

https://topological-modular-forms.github.io/the-clowder-project/tag/012S
https://topological-modular-forms.github.io/the-clowder-project/tag/012T
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• A morphism sB : B → F (AB) of D;
• A morphism rB : F (AB) → B of D;

satisfying the following conditions:
i. The triple (F (AB), rB, sB) is a retract of B, i.e. we have
rB ◦ sB = idB.0130

ii. For each morphism f : B′ → B of D, we have0131

[(AB, sB′ , f ◦ rB′)] = [(AB, sB ◦ f, rB)]

in
∫ A∈C hB

′
FA

× hFA
B .

Proof. Item 1, Characterisations: Omitted.
Item 2, Conservativity: This is a repetition of Item 2 of Proposi-
tion 8.5.4.1.2, and is proved there.
Item 3, Essential Injectivity: Omitted.
Item 4, Interaction With Co/Limits: Omitted.
Item 5, Interaction With Postcomposition: This follows from Item 1 of
Proposition 8.5.1.1.2 and Item 1 of Proposition 8.5.2.1.2.
Item 6, Interaction With Precomposition I : See [MSE 733161] for an
example of a fully faithful functor whose precomposition with which fails
to be full.
Item 7, Interaction With Precomposition II : See [MSE 749304, Item 3].
Item 8, Interaction With Precomposition III : Omitted, but see https:
//unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheor
y.precomp_fully_faithful.html for a formalised proof.
Item 9, Interaction With Precomposition IV : We claim Items 9a to 9i
are equivalent:

• Items 9a and 9d Are Equivalent: This is true by the definition of
corepresentably fully faithful morphism; see Definition 9.2.3.1.1.

• Items 9a, 9f and 9g Are Equivalent: See ?? of ??.

• Items 9a to 9c Are Equivalent: This follows from [Low15, Proposi-
tion A.1.5].

• Items 9a, 9e, 9h and 9i Are Equivalent: See [Fre09, Theorem 4.1]
and [Adá+01, Theorem 1.1].

This finishes the proof.

8.5.4 Conservative Functors0132

Let C and D be categories.

https://topological-modular-forms.github.io/the-clowder-project/tag/0130
https://topological-modular-forms.github.io/the-clowder-project/tag/0131
https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html
https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html
https://unimath.github.io/doc/UniMath/d4de26f//UniMath.CategoryTheory.precomp_fully_faithful.html
https://topological-modular-forms.github.io/the-clowder-project/tag/0132
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Definition 8.5.4.1.1.0133 A functor F : C → D is conservative if it
satisfies the following condition:20

(?) For each f ∈ Mor(C), if F (f) is an isomorphism in D, then f is
an isomorphism in C.

Proposition 8.5.4.1.2.0134 Let F : C → D be a functor.

1. Characterisations.0135 The following conditions are equivalent:

(a) The functor F is conservative.0136

(b) For each f ∈ Mor(C), the morphism F (f) is an isomorphism
in D iff f is an isomorphism in C.0137

2. Interaction With Fully Faithfulness.0138 Every fully faithful functor
is conservative.

3. Interaction With Precomposition.0139 The following conditions are
equivalent:

(a) For each X ∈ Obj(Cats), the precomposition functor013A

F ∗ : Fun(D,X) → Fun(C,X)

is conservative.
(b) The equivalent conditions of Item 4 of Proposition 8.5.1.1.2

are satisfied.013B

Proof. Item 1, Characterisations: This follows from Item 1 of Proposi-
tion 8.4.1.1.6.
Item 2, Interaction With Fully Faithfulness: Let F : C → D be a fully
faithful functor, let f : A → B be a morphism of C, and suppose that Ff
is an isomorphism. We have

F (idB) = idF (B)

= F (f) ◦ F (f)−1

= F
(
f ◦ f−1

)
.

Similarly, F (idA) = F
(
f−1 ◦ f

)
. But since F is fully faithful, we must

have

f ◦ f−1 = idB,
f−1 ◦ f = idA,

showing f to be an isomorphism. Thus F is conservative.
20Slogan: A functor F is conservative if it reflects isomorphisms.

https://topological-modular-forms.github.io/the-clowder-project/tag/0133
https://topological-modular-forms.github.io/the-clowder-project/tag/0134
https://topological-modular-forms.github.io/the-clowder-project/tag/0135
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https://topological-modular-forms.github.io/the-clowder-project/tag/0137
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https://topological-modular-forms.github.io/the-clowder-project/tag/013A
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Question 8.5.4.1.3.013C Is there a characterisation of functors F : C → D
satisfying the following condition:

(?) For each X ∈ Obj(Cats), the postcomposition functor

F∗ : Fun(X,C) → Fun(X,D)

is conservative?

This question also appears as [MO 468121a].

8.5.5 Essentially Injective Functors013D

Let C and D be categories.

Definition 8.5.5.1.1.013E A functor F : C → D is essentially injective if
it satisfies the following condition:

(?) For each A,B ∈ Obj(C), if F (A) ∼= F (B), then A ∼= B.

Question 8.5.5.1.2.013F Is there a characterisation of functors F : C → D
such that:

1. For each X ∈ Obj(Cats), the precomposition functor013G

F ∗ : Fun(D,X) → Fun(C,X)

is essentially injective, i.e. if φ ◦ F ∼= ψ ◦ F , then φ ∼= ψ for all
functors φ and ψ?

2. For each X ∈ Obj(Cats), the postcomposition functor013H

F∗ : Fun(X,C) → Fun(X,D)

is essentially injective, i.e. if F ◦ φ ∼= F ◦ ψ, then φ ∼= ψ?

This question also appears as [MO 468121a].

8.5.6 Essentially Surjective Functors013J

Let C and D be categories.

Definition 8.5.6.1.1.013K A functor F : C → D is essentially surjective21

if it satisfies the following condition:

(?) For each D ∈ Obj(D), there exists some object A of C such that
F (A) ∼= D.

21Further Terminology: Also called an eso functor, where the name “eso” comes

https://topological-modular-forms.github.io/the-clowder-project/tag/013C
https://topological-modular-forms.github.io/the-clowder-project/tag/013D
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https://topological-modular-forms.github.io/the-clowder-project/tag/013F
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Question 8.5.6.1.2.013L Is there a characterisation of functors F : C → D
such that:

1. For each X ∈ Obj(Cats), the precomposition functor013M

F ∗ : Fun(D,X) → Fun(C,X)

is essentially surjective?

2. For each X ∈ Obj(Cats), the postcomposition functor013N

F∗ : Fun(X,C) → Fun(X,D)

is essentially surjective?

This question also appears as [MO 468121a].

8.5.7 Equivalences of Categories013P

Definition 8.5.7.1.1.013Q Let C and D be categories.

1. An equivalence of categories between C and D consists of a
pair of functors013R

F : C → D,
G : D → C

together with natural isomorphisms

η : idC
∼=⇒G ◦ F,

ε : F ◦G ∼=⇒ idD .

2. An adjoint equivalence of categories between C and D is an
equivalence (F,G, η, ε) between C and D which is also an adjunc-
tion.013S

Proposition 8.5.7.1.2.013T Let F : C → D be a functor.

1. Characterisations.013U If C and D are small22, then the following
conditions are equivalent:23

from essentially surjective on objects.
22Otherwise there will be size issues. One can also work with large categories and

universes, or require F to be constructively essentially surjective; see [MSE 1465107].
23In ZFC, the equivalence between Item 1a and Item 1b is equivalent to the axiom

of choice; see [MO 119454].
In Univalent Foundations, this is true without requiring neither the axiom of choice

nor the law of excluded middle.

https://topological-modular-forms.github.io/the-clowder-project/tag/013L
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(a) The functor F is an equivalence of categories.013V

(b) The functor F is fully faithful and essentially surjective.013W

(c) The induced functor013X

F |Sk(C) : Sk(C) → Sk(D)

is an isomorphism of categories.
(d) For each X ∈ Obj(Cats), the precomposition functor013Y

F ∗ : Fun(D,X) → Fun(C,X)

is an equivalence of categories.
(e) For each X ∈ Obj(Cats), the postcomposition functor013Z

F∗ : Fun(X,C) → Fun(X,D)

is an equivalence of categories.

2. Two-Out-of-Three.0140 Let

C E

D
F

G◦F

G

be a diagram in Cats. If two out of the three functors among F , G,
and G ◦ F are equivalences of categories, then so is the third.

3. Stability Under Composition.0141 Let

C D E
F

G

F ′

G′

be a diagram in Cats. If (F,G) and (F ′, G′) are equivalences of
categories, then so is their composite (F ′ ◦ F,G′ ◦G).

4. Equivalences vs.Adjoint Equivalences.0142 Every equivalence of cate-
gories can be promoted to an adjoint equivalence.24

5. Interaction With Groupoids.0143 If C and D are groupoids, then the
following conditions are equivalent:

(a) The functor F is an equivalence of groupoids.0144

(b) The following conditions are satisfied:0145

24More precisely, we can promote an equivalence of categories (F, G, η, ε) to adjoint
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i. The functor F induces a bijection0146

π0(F ) : π0(C) → π0(D)

of sets.
ii. For each A ∈ Obj(C), the induced map0147

Fx,x : AutC(A) → AutD(FA)

is an isomorphism of groups.

Proof. Item 1, Characterisations: We claim that Items 1a to 1e are
indeed equivalent:

1. Item 1a =⇒ Item 1b: Clear.

2. Item 1b =⇒ Item 1a: Since F is essentially surjective and C and
D are small, we can choose, using the axiom of choice, for each
B ∈ Obj(D), an object jB of C and an isomorphism iB : B → FjB
of D.
Since F is fully faithful, we can extend the assignment B 7→ jB to a
unique functor j : D → C such that the isomorphisms iB : B → FjB
assemble into a natural isomorphism η : idD

∼=⇒F ◦j, with a similar
natural isomorphism ε : idC

∼=⇒ j ◦ F . Hence F is an equivalence.

3. Item 1a =⇒ Item 1c: This follows from Item 4 of Proposi-
tion 8.1.5.1.3.

4. Item 1c =⇒ Item 1a: Omitted.

5. Items 1a, 1d and 1e Are Equivalent: This follows from ??.

This finishes the proof of Item 1.
Item 2, Two-Out-of-Three: Omitted.
Item 3, Stability Under Composition: Clear.
Item 4, Equivalences vs.Adjoint Equivalences: See [Rie17, Proposition
4.4.5].
Item 5, Interaction With Groupoids: See [nLa24, Proposition 4.4].

8.5.8 Isomorphisms of Categories0148

Definition 8.5.8.1.1.0149 An isomorphism of categories is a pair of
functors

F : C → D,
G : D → C

https://topological-modular-forms.github.io/the-clowder-project/tag/0146
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such that we have

G ◦ F = idC,

F ◦G = idD .

Example 8.5.8.1.2.014A Categories can be equivalent but non-isomorphic.
For example, the category consisting of two isomorphic objects is equiva-
lent to pt, but not isomorphic to it.

Proposition 8.5.8.1.3.014B Let F : C → D be a functor.

1. Characterisations.014C If C and D are small, then the following
conditions are equivalent:

(a) The functor F is an isomorphism of categories.014D

(b) The functor F is fully faithful and bijective on objects.014E

(c) For each X ∈ Obj(Cats), the precomposition functor014F

F ∗ : Fun(D,X) → Fun(C,X)

is an isomorphism of categories.
(d) For each X ∈ Obj(Cats), the postcomposition functor014G

F∗ : Fun(X,C) → Fun(X,D)

is an isomorphism of categories.

Proof. Item 1, Characterisations: We claim that Items 1a to 1d are
indeed equivalent:

1. Items 1a and 1b Are Equivalent: Omitted, but similar to Item 1 of
Proposition 8.5.7.1.2.

2. Items 1a, 1c and 1d Are Equivalent: This follows from ??.

This finishes the proof.

8.6 More Conditions on Functors014H

8.6.1 Dominant Functors014J

Let C and D be categories.

Definition 8.6.1.1.1.014K A functor F : C → D is dominant if every object
of D is a retract of some object in Im(F ), i.e.:

https://topological-modular-forms.github.io/the-clowder-project/tag/014A
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(?) For each B ∈ Obj(D), there exist:

– An object A of C;
– A morphism r : F (A) → B of D;
– A morphism s : B → F (A) of D;

such that we have

r ◦ s = idB,

B F (A)

B.

s

idB
r

Proposition 8.6.1.1.2.014L Let F,G : C ⇒ D be functors and let I : X → C
be a functor.

1. Interaction With Right Whiskering.014M If I is full and dominant,
then the map

− ? idI : Nat(F,G) → Nat(F ◦ I,G ◦ I)

is a bijection.

2. Interaction With Adjunctions.014N Let (F,G) : C�D be an adjunc-
tion.

(a) If F is dominant, then G is faithful.014P

(b) The following conditions are equivalent:014Q

i. The functor G is full.014R

ii. The restriction014S

G|ImF
: Im(F ) → C

of G to Im(F ) is full.

Proof. Item 1, Interaction With Right Whiskering: See [DFH75, Propo-
sition 1.4].
Item 2, Interaction With Adjunctions: See [DFH75, Proposition 1.7].

Question 8.6.1.1.3.014T Is there a characterisation of functors F : C → D
such that:

equivalences (F, G, η′, ε) and (F, G, η, ε′).
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1. For each X ∈ Obj(Cats), the precomposition functor014U

F ∗ : Fun(D,X) → Fun(C,X)

is dominant?

2. For each X ∈ Obj(Cats), the postcomposition functor014V

F∗ : Fun(X,C) → Fun(X,D)

is dominant?

This question also appears as [MO 468121a].

8.6.2 Monomorphisms of Categories014W

Let C and D be categories.

Definition 8.6.2.1.1.014X A functor F : C → D is a monomorphism of
categories if it is a monomorphism in Cats (see ??).

Proposition 8.6.2.1.2.014Y Let F : C → D be a functor.

1. Characterisations.014Z The following conditions are equivalent:

(a) The functor F is a monomorphism of categories.0150

(b) The functor F is injective on objects and morphisms, i.e. F is
injective on objects and the map0151

F : Mor(C) → Mor(D)

is injective.

Proof. Item 1, Characterisations: Omitted.

Question 8.6.2.1.3.0152 Is there a characterisation of functors F : C → D
such that:

1. For each X ∈ Obj(Cats), the precomposition functor0153

F ∗ : Fun(D,X) → Fun(C,X)

is a monomorphism of categories?

2. For each X ∈ Obj(Cats), the postcomposition functor0154

F∗ : Fun(X,C) → Fun(X,D)

is a monomorphism of categories?

This question also appears as [MO 468121a].
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8.6.3 Epimorphisms of Categories0155

Let C and D be categories.

Definition 8.6.3.1.1.0156 A functor F : C → D is a epimorphism of
categories if it is a epimorphism in Cats (see ??).

Proposition 8.6.3.1.2.0157 Let F : C → D be a functor.

1. Characterisations.0158 The following conditions are equivalent:25

(a) The functor F is a epimorphism of categories.0159

(b) For each morphism f : A → B of D, we have a diagram015A

A

X1 X2 X3 · · · Xm A

Y1 Y2 · · · Ym

B

φ1
φ2 φ3 φm

idA

α1 α2 α3 α4 α6 α2m−2 α2m−1 α2m

α0

ψ1 ψ2 ψ3 ψm

in D satisfying the following conditions:
i. We have f = α0 ◦ φ1.015B

ii. We have f = ψm ◦ α2m.015C

iii. For each 0 ≤ i ≤ 2m, we have αi ∈ Mor(Im(F )).015D

2. Surjectivity on Objects.015E If F is an epimorphism of categories, then
F is surjective on objects.

Proof. Item 1, Characterisations: See [Isb68].
Item 2, Surjectivity on Objects: Omitted.

Question 8.6.3.1.3.015F Is there a characterisation of functors F : C → D
such that:

1. For each X ∈ Obj(Cats), the precomposition functor015G

F ∗ : Fun(D,X) → Fun(C,X)

is an epimorphism of categories?
25Further Terminology: This statement is known as Isbell’s zigzag theorem.
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2. For each X ∈ Obj(Cats), the postcomposition functor015H

F∗ : Fun(X,C) → Fun(X,D)

is an epimorphism of categories?

This question also appears as [MO 468121a].

8.6.4 Pseudomonic Functors015J

Let C and D be categories.

Definition 8.6.4.1.1.015K A functor F : C → D is pseudomonic if it
satisfies the following conditions:

1. For all diagrams of the form015L

X C D,

φ

ψ

F
α β

if we have
idF ? α = idF ? β,

then α = β.

2. For each X ∈ Obj(Cats) and each natural isomorphism015M

β : F ◦ φ ∼=⇒ F ◦ ψ, X D,

F◦φ

F◦ψ

β

there exists a natural isomorphism

α : φ ∼=⇒ ψ, X C

φ

ψ

α

such that we have an equality

X C D

φ

ψ

F
α = X D

F◦φ

F◦ψ

β

of pasting diagrams, i.e. such that we have

β = idF ? α.

https://topological-modular-forms.github.io/the-clowder-project/tag/015H
https://topological-modular-forms.github.io/the-clowder-project/tag/015J
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Proposition 8.6.4.1.2.015N Let F : C → D be a functor.

1. Characterisations.015P The following conditions are equivalent:

(a) The functor F is pseudomonic.015Q

(b) The functor F satisfies the following conditions:015R

i. The functor F is faithful, i.e. for each A,B ∈ Obj(C), the
action on morphisms015S

FA,B : HomC(A,B) → HomD(FA, FB)

of F at (A,B) is injective.
ii. For each A,B ∈ Obj(C), the restriction015T

F iso
A,B : IsoC(A,B) → IsoD(FA, FB)

of the action on morphisms of F at (A,B) to isomorphisms
is surjective.

(c) We have an isocomma square of the form015U

C
eq.∼= C

↔
×D C,

C C

C D

idC

idC F

F

in Cats2 up to equivalence.
(d) We have an isocomma square of the form015V

C
eq.∼= C

↔
×Arr(D) D,

C Arr(C)

D Arr(D)

F Arr(F )

in Cats2 up to equivalence.
(e) For each X ∈ Obj(Cats), the postcomposition015W 26 functor

F∗ : Fun(X,C) → Fun(X,D)

is pseudomonic.
26Asking the precomposition functors

F ∗ : Fun(D,X) → Fun(C,X)

https://topological-modular-forms.github.io/the-clowder-project/tag/015N
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2. Conservativity.015X If F is pseudomonic, then F is conservative.

3. Essential Injectivity.015Y If F is pseudomonic, then F is essentially
injective.

Proof. Item 1, Characterisations: Omitted.
Item 2, Conservativity: Omitted.
Item 3, Essential Injectivity: Omitted.

8.6.5 Pseudoepic Functors015Z

Let C and D be categories.

Definition 8.6.5.1.1.0160 A functor F : C → D is pseudoepic if it satisfies
the following conditions:

1. For all diagrams of the form0161

C D X,F

φ

ψ

α β

if we have
α ? idF = β ? idF ,

then α = β.

2. For each X ∈ Obj(C) and each 2-isomorphism0162

β : φ ◦ F ∼=⇒ ψ ◦ F, C X

φ◦F

ψ◦F

β

of C, there exists a 2-isomorphism

α : φ ∼=⇒ ψ, D X

φ

ψ

α

of C such that we have an equality

C D X
F

φ

ψ

α = C X

φ◦F

ψ◦F

β

of pasting diagrams in C, i.e. such that we have

β = α ? idF .

https://topological-modular-forms.github.io/the-clowder-project/tag/015X
https://topological-modular-forms.github.io/the-clowder-project/tag/015Y
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Proposition 8.6.5.1.2.0163 Let F : C → D be a functor.

1. Characterisations.0164 The following conditions are equivalent:

(a) The functor F is pseudoepic.0165

(b) For each X ∈ Obj(Cats), the functor0166

F ∗ : Fun(D,X) → Fun(C,X)

given by precomposition by F is pseudomonic.
(c) We have an isococomma square of the form0167

D
eq.∼= D

↔∐
C D,

D D

D C

idD

idD F

F

in Cats2 up to equivalence.

2. Dominance.0168 If F is pseudoepic, then F is dominant (Defini-
tion 8.6.1.1.1).

Proof. Item 1, Characterisations: Omitted.
Item 2, Dominance: If F is pseudoepic, then

F ∗ : Fun(D,X) → Fun(C,X)

is pseudomonic for all X ∈ Obj(Cats), and thus in particular faithful. By
Item 4g of Item 4 of Proposition 8.5.1.1.2, this is equivalent to requiring
F to be dominant.

Question 8.6.5.1.3.0169 Is there a nice characterisation of the pseudoepic
functors, similarly to the characterisaiton of pseudomonic functors given
in Item 1b of Item 1 of Proposition 8.6.4.1.2?
This question also appears as [MO 321971].

Question 8.6.5.1.4.016A A pseudomonic and pseudoepic functor is dominant,
faithful, essentially injective, and full on isomorphisms. Is it necessarily
an equivalence of categories? If not, how bad can this fail, i.e. how far
can a pseudomonic and pseudoepic functor be from an equivalence of
categories?
This question also appears as [MO 468334].
to be pseudomonic leads to pseudoepic functors; see Item 1b of Item 1 of
Proposition 8.6.5.1.2.

https://topological-modular-forms.github.io/the-clowder-project/tag/0163
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Question 8.6.5.1.5.016B Is there a characterisation of functors F : C → D
such that:

1. For each X ∈ Obj(Cats), the precomposition functor016C

F ∗ : Fun(D,X) → Fun(C,X)

is pseudoepic?

2. For each X ∈ Obj(Cats), the postcomposition functor016D

F∗ : Fun(X,C) → Fun(X,D)

is pseudoepic?

This question also appears as [MO 468121a].

8.7 Even More Conditions on Functors016E

8.7.1 Injective on Objects Functors016F

Let C and D be categories.

Definition 8.7.1.1.1.016G A functor F : C → D is injective on objects if
the action on objects

F : Obj(C) → Obj(D)

of F is injective.

Proposition 8.7.1.1.2.016H Let F : C → D be a functor.

1. Characterisations.016J The following conditions are equivalent:

(a) The functor F is injective on objects.016K

(b) The functor F is an isocofibration in Cats2.016L

Proof. Item 1, Characterisations: Omitted.

8.7.2 Surjective on Objects Functors016M

Let C and D be categories.

Definition 8.7.2.1.1.016N A functor F : C → D is surjective on objects
if the action on objects

F : Obj(C) → Obj(D)

of F is surjective.

https://topological-modular-forms.github.io/the-clowder-project/tag/016B
https://topological-modular-forms.github.io/the-clowder-project/tag/016C
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https://topological-modular-forms.github.io/the-clowder-project/tag/016F
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8.7.3 Bijective on Objects Functors016P

Let C and D be categories.

Definition 8.7.3.1.1.016Q A functor F : C → D is bijective on objects27

if the action on objects

F : Obj(C) → Obj(D)

of F is a bijection.

8.7.4 Functors Representably Faithful on Cores016R

Let C and D be categories.

Definition 8.7.4.1.1.016S A functor F : C → D is representably faithful
on cores if, for each X ∈ Obj(Cats), the postcomposition by F functor

F∗ : Core(Fun(X,C)) → Core(Fun(X,D))

is faithful.

Remark 8.7.4.1.2.016T In detail, a functor F : C → D is representably
faithful on cores if, given a diagram of the form

X C D,

φ

ψ

F
α β

if α and β are natural isomorphisms and we have

idF ? α = idF ? β,

then α = β.

Question 8.7.4.1.3.016U Is there a characterisation of functors representably
faithful on cores?

8.7.5 Functors Representably Full on Cores016V

Let C and D be categories.

Definition 8.7.5.1.1.016W A functor F : C → D is representably full on
cores if, for each X ∈ Obj(Cats), the postcomposition by F functor

F∗ : Core(Fun(X,C)) → Core(Fun(X,D))

is full.
27Further Terminology: Also called a bo functor.

https://topological-modular-forms.github.io/the-clowder-project/tag/016P
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Remark 8.7.5.1.2.016X In detail, a functor F : C → D is representably
full on cores if, for each X ∈ Obj(Cats) and each natural isomorphism

β : F ◦ φ ∼=⇒ F ◦ ψ, X D,

F◦φ

F◦ψ

β

there exists a natural isomorphism

α : φ ∼=⇒ ψ, X C

φ

ψ

α

such that we have an equality

X C D

φ

ψ

F
α = X D

F◦φ

F◦ψ

β

of pasting diagrams in Cats2, i.e. such that we have

β = idF ? α.

Question 8.7.5.1.3.016Y Is there a characterisation of functors representably
full on cores?
This question also appears as [MO 468121a].

8.7.6 Functors Representably Fully Faithful on Cores016Z

Let C and D be categories.

Definition 8.7.6.1.1.0170 A functor F : C → D is representably fully
faithful on cores if, for each X ∈ Obj(Cats), the postcomposition by
F functor

F∗ : Core(Fun(X,C)) → Core(Fun(X,D))
is fully faithful.

Remark 8.7.6.1.2.0171 In detail, a functor F : C → D is representably
fully faithful on cores if it satisfies the conditions in Remarks 8.7.4.1.2
and 8.7.5.1.2, i.e.:

1. For all diagrams of the form0172

X C D,

φ

ψ

F
α β

with α and β natural isomorphisms, if we have idF ? α = idF ? β,
then α = β.

https://topological-modular-forms.github.io/the-clowder-project/tag/016X
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2. For each X ∈ Obj(Cats) and each natural isomorphism0173

β : F ◦ φ ∼=⇒ F ◦ ψ, X D

F◦φ

F◦ψ

β

of C, there exists a natural isomorphism

α : φ ∼=⇒ ψ, X C

φ

ψ

α

of C such that we have an equality

X C D

φ

ψ

F
α = X D

F◦φ

F◦ψ

β

of pasting diagrams in Cats2, i.e. such that we have

β = idF ? α.

Question 8.7.6.1.3.0174 Is there a characterisation of functors representably
fully faithful on cores?

8.7.7 Functors Corepresentably Faithful on Cores0175

Let C and D be categories.

Definition 8.7.7.1.1.0176 A functor F : C → D is corepresentably faith-
ful on cores if, for each X ∈ Obj(Cats), the postcomposition by F
functor

F∗ : Core(Fun(X,C)) → Core(Fun(X,D))
is faithful.

Remark 8.7.7.1.2.0177 In detail, a functor F : C → D is corepresentably
faithful on cores if, given a diagram of the form

C D X,F

φ

ψ

α β

if α and β are natural isomorphisms and we have

α ? idF = β ? idF ,

then α = β.

Question 8.7.7.1.3.0178 Is there a characterisation of functors corepre-
sentably faithful on cores?

https://topological-modular-forms.github.io/the-clowder-project/tag/0173
https://topological-modular-forms.github.io/the-clowder-project/tag/0174
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8.7.8 Functors Corepresentably Full on Cores0179

Let C and D be categories.

Definition 8.7.8.1.1.017A A functor F : C → D is corepresentably full
on cores if, for each X ∈ Obj(Cats), the postcomposition by F functor

F∗ : Core(Fun(X,C)) → Core(Fun(X,D))

is full.

Remark 8.7.8.1.2.017B In detail, a functor F : C → D is corepresentably
full on cores if, for each X ∈ Obj(Cats) and each natural isomorphism

β : φ ◦ F ∼=⇒ ψ ◦ F, C X,

φ◦F

ψ◦F

β

there exists a natural isomorphism

α : φ ∼=⇒ ψ, D X

φ

ψ

α

such that we have an equality

X C D

φ

ψ

F
α = X D

F◦φ

F◦ψ

β

of pasting diagrams in Cats2, i.e. such that we have

β = α ? idF .

Question 8.7.8.1.3.017C Is there a characterisation of functors corepre-
sentably full on cores?
This question also appears as [MO 468121a].

8.7.9 Functors Corepresentably Fully Faithful on Cores017D

Let C and D be categories.

Definition 8.7.9.1.1.017E A functor F : C → D is corepresentably fully
faithful on cores if, for each X ∈ Obj(Cats), the postcomposition by
F functor

F∗ : Core(Fun(X,C)) → Core(Fun(X,D))

is fully faithful.

https://topological-modular-forms.github.io/the-clowder-project/tag/0179
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Remark 8.7.9.1.2.017F In detail, a functor F : C → D is corepresentably
fully faithful on cores if it satisfies the conditions in Remarks 8.7.7.1.2
and 8.7.8.1.2, i.e.:

1. For all diagrams of the form017G

C D X,F

φ

ψ

α β

if α and β are natural isomorphisms and we have

α ? idF = β ? idF ,

then α = β.

2. For each X ∈ Obj(Cats) and each natural isomorphism017H

β : φ ◦ F ∼=⇒ ψ ◦ F, C X,

φ◦F

ψ◦F

β

there exists a natural isomorphism

α : φ ∼=⇒ ψ, D X

φ

ψ

α

such that we have an equality

X C D

φ

ψ

F
α = X D

F◦φ

F◦ψ

β

of pasting diagrams in Cats2, i.e. such that we have

β = α ? idF .

Question 8.7.9.1.3.017J Is there a characterisation of functors corepre-
sentably fully faithful on cores?

8.8 Natural Transformations017K

8.8.1 Transformations017L

Let C and D be categories and F,G : C ⇒ D be functors.

https://topological-modular-forms.github.io/the-clowder-project/tag/017F
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Definition 8.8.1.1.1.017M A transformation28 α : F ⇒ G from F to G
is a collection

{αA : F (A) → G(A)}A∈Obj(C)

of morphisms of D.

Notation 8.8.1.1.2.017N We write Trans(F,G) for the set of transformations
from F to G.

8.8.2 Natural Transformations017P

Let C and D be categories and F,G : C ⇒ D be functors.

Definition 8.8.2.1.1.017Q A natural transformation α : F =⇒ G from
F to G is a transformation

{αA : F (A) → G(A)}A∈Obj(C)

from F to G such that, for each morphism f : A → B of C, the diagram

F (A) F (B)

G(A) G(B)

F (f)

αA αB

G(f)

commutes.29

Remark 8.8.2.1.2.017R We denote natural transformations in diagrams as

C D.

F

G

α

Notation 8.8.2.1.3.017S We write Nat(F,G) for the set of natural transfor-
mations from F to G.

Example 8.8.2.1.4.017T The identity natural transformation idF : F =⇒
F of F is the natural transformation consisting of the collection{

idF (A) : F (A) → F (A)
}
A∈Obj(C)

.

Proof. The naturality condition for idF is the requirement that, for each
28Further Terminology: Also called an unnatural transformation for emphasis.
29Further Terminology: The morphism αA : FA → GA is called the component of

α at A.
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morphism f : A → B of C, the diagram

F (A) F (B)

F (A) F (B)

F (f)

idF (A) idF (B)

F (f)

commutes, which follows from unitality of the composition of C.

Definition 8.8.2.1.5.017U Two natural transformations α, β : F =⇒ G are
equal if we have

αA = βA

for each A ∈ Obj(C).

8.8.3 Vertical Composition of Natural Transformations017V

Definition 8.8.3.1.1.017W The vertical composition of two natural trans-
formations α : F =⇒ G and β : G =⇒ H as in the diagram

C D

F

G

H

α

β

is the natural transformation β ◦ α : F =⇒ H consisting of the collection

{(β ◦ α)A : F (A) → H(A)}A∈Obj(C)

with
(β ◦ α)A

def= βA ◦ αA
for each A ∈ Obj(C).

Proof. The naturality condition for β ◦ α is the requirement that the
boundary of the diagram

F (A) F (B)

G(A) G(B)

H(A) H(B)

F (f)

αA αB

G(f)

βA βB

H(f)

(1)

(2)

commutes. Since

https://topological-modular-forms.github.io/the-clowder-project/tag/017U
https://topological-modular-forms.github.io/the-clowder-project/tag/017V
https://topological-modular-forms.github.io/the-clowder-project/tag/017W
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1. Subdiagram (1) commutes by the naturality of α.

2. Subdiagram (2) commutes by the naturality of β.

so does the boundary diagram. Hence β ◦ α is a natural transformation.

Proposition 8.8.3.1.2.017X Let C, D, and E be categories.

1. Functionality.017Y The assignment (β, α) 7→ β ◦ α defines a function

◦F,G,H : Nat(G,H) × Nat(F,G) → Nat(F,H).

2. Associativity.017Z Let F,G,H,K : C
⇒
⇒ D be functors. The diagram

Nat(H,K) × (Nat(G,H) × Nat(F,G))

(Nat(H,K) × Nat(G,H)) × Nat(F,G) Nat(H,K) × Nat(F,H)

Nat(G,K) × Nat(F,G) Nat(F,K)

αSets
Nat(H,K),Nat(G,H),Nat(F,G)

∼
idNat(H,K)×◦F,G,H

◦F,H,K◦G,H,K×idNat(F,G)

◦F,G,K

commutes, i.e. given natural transformations

F
α=⇒G

β=⇒H
γ=⇒K,

we have
(γ ◦ β) ◦ α = γ ◦ (β ◦ α).

3. Unitality.0180 Let F,G : C ⇒ D be functors.

(a) Left Unitality. The diagram

pt × Nat(F,G)

Nat(G,G) × Nat(F,G) Nat(F,G)

λSets
Nat(F,G)

∼[idG]×idNat(F,G)

◦F,G,G

commutes, i.e. given a natural transformation α : F =⇒ G,
we have

idG ◦ α = α.

https://topological-modular-forms.github.io/the-clowder-project/tag/017X
https://topological-modular-forms.github.io/the-clowder-project/tag/017Y
https://topological-modular-forms.github.io/the-clowder-project/tag/017Z
https://topological-modular-forms.github.io/the-clowder-project/tag/0180
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(b) Right Unitality. The diagram

Nat(F,G) × pt

Nat(F,G) × Nat(F, F ) Nat(F,G)

ρSets
Nat(F,G)

∼idNat(F,G)×[idF ]

◦CF,F,G

commutes, i.e. given a natural transformation α : F =⇒ G,
we have

α ◦ idF = α.

4. Middle Four Exchange.0181 Let F1, F2, F3 : C → D andG1, G2, G3 : D →
E be functors. The diagram

(Nat(G2, G3) × Nat(G1, G2)) × (Nat(F2, F3) × Nat(F1, F2)) (Nat(G2, G3) × Nat(F2, F3)) × (Nat(G1, G2) × Nat(F1, F2))

Nat(G1, G3) × Nat(F1, F3) Nat(G2 ◦ F2, G3 ◦ F3) × Nat(G1 ◦ F1, G2 ◦ F2)

Nat(G1 ◦ F1, G3 ◦ F3)

µ4
∼

◦G1,G2,G3 ×◦F1,F2,F3 ?F2,F3,G2,G3 ×?F1,F2,G1,G2

?F1,F3,G1,G3 ◦G1◦F1,G2◦F2,G3◦F3

commutes, i.e. given a diagram

C D E

F1

F2

F3

G1

G2

G3

α

α′

β

β′

in Cats2, we have(
β′ ? α′) ◦ (β ? α) =

(
β′ ◦ β

)
?
(
α′ ◦ α

)
.

Proof. Item 1, Functionality: Clear.
Item 2, Associativity: Indeed, we have

((γ ◦ β) ◦ α)A
def= (γ ◦ β)A ◦ αA
def= (γA ◦ βA) ◦ αA
= γA ◦ (βA ◦ αA)
def= γA ◦ (β ◦ α)A
def= (γ ◦ (β ◦ α))A

https://topological-modular-forms.github.io/the-clowder-project/tag/0181
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for each A ∈ Obj(C), showing the desired equality.
Item 3, Unitality: We have

(idG ◦ α)A = idG ◦ αA
= αA,

(α ◦ idF )A = αA ◦ idF
= αA

for each A ∈ Obj(C), showing the desired equality.
Item 4, Middle Four Exchange: This is proved in Item 4 of Proposi-
tion 8.8.4.1.3.

8.8.4 Horizontal Composition of Natural Transformations0182

Definition 8.8.4.1.1.0183 The horizontal composition30,31 of two natural
transformations α : F =⇒ G and β : H =⇒ K as in the diagram

C D E

F

G

H

K

α β

of α and β is the natural transformation

β ? α : (H ◦ F ) =⇒ (K ◦G),

as in the diagram

C E,

H◦F

K◦G

β?α

consisting of the collection

{(β ? α)A : H(F (A)) → K(G(A))}A∈Obj(C),

of morphisms of E with

(β ? α)A
def= βG(A) ◦H(αA)
= K(αA) ◦ βF (A),

H(F (A)) H(G(A))

K(F (A)) K(G(A)).

H(αA)

βF (A) βG(A)

K(αA)
30Further Terminology: Also called the Godement product of α and β.
31Horizontal composition forms a map

?(F,H),(G,K) : Nat(H, K) × Nat(F, G) → Nat(H ◦ F, K ◦ G).

https://topological-modular-forms.github.io/the-clowder-project/tag/0182
https://topological-modular-forms.github.io/the-clowder-project/tag/0183
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Proof. First, we claim that we indeed have

βG(A) ◦H(αA) = K(αA) ◦ βF (A),

H(F (A)) H(G(A))

K(F (A)) K(G(A)).

H(αA)

βF (A) βG(A)

K(αA)

This is, however, simply the naturality square for β applied to the
morphism αA : F (A) → G(A). Next, we check the naturality condition
for β ? α, which is the requirement that the boundary of the diagram

H(F (A)) H(F (B))

H(G(A)) H(G(B))

K(G(A)) K(G(B))

H(F (f))

H(αA) H(αB)

H(G(f))

βG(A) βG(B)

K(G(f))

(1)

(2)

commutes. Since

1. Subdiagram (1) commutes by the naturality of α.

2. Subdiagram (2) commutes by the naturality of β.

so does the boundary diagram. Hence β ◦α is a natural transformation.32

Definition 8.8.4.1.2.0184 Let

X C D Y
F

φ

ψ

Gα

be a diagram in Cats2.

32Reference: [Bor94, Proposition 1.3.4].

https://topological-modular-forms.github.io/the-clowder-project/tag/0184
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1. The left whiskering of α with G is the natural transformation0185 33

idG ? α : G ◦ φ =⇒ G ◦ ψ.

2. The right whiskering of α with F is the natural transforma-
tion0186 34

α ? idF : φ ◦ F =⇒ ψ ◦ F.

Proposition 8.8.4.1.3.0187 Let C, D, and E be categories.

1. Functionality.0188 The assignment (β, α) 7→ β ? α defines a function

?(F,G),(H,K) : Nat(H,K) × Nat(F,G) → Nat(H ◦ F,K ◦G).

2. Associativity.0189 Let

C D E F
F1

G1

F2

G2

F3

G3

be a diagram in Cats2. The diagram

Nat(F3, G3) × Nat(F2, G2) × Nat(F1, G1) Nat(F3 ◦ F2, G3 ◦G2) × Nat(F1, G1)

Nat(F3, G3) × Nat(F2 ◦ F1, G2 ◦G1) Nat(F3 ◦ F2 ◦ F1, G3 ◦G2 ◦G1)

?(F2,G2),(F3,G3)×id

id×?(F1,G1),(F2,G2) ?(F3◦F2),(G3◦G2,F1,G1)

?(F2◦F1),(G2◦G1,F3,G3)

commutes, i.e. given natural transformations

C D E F ,

F1

G1

F2

G2

F3

G3

α β γ

we have
(γ ? β) ? α = γ ? (β ? α).

3. Interaction With Identities.018A Let F : C → D and G : D → E be
functors. The diagram

pt × pt Nat(G,G) × Nat(F, F )

pt Nat(G ◦ F,G ◦ F )

[idG]×[idF ]

?(F,F ),(G,G)

[idG◦F ]

∼

33Further Notation: Also written Gα or G ? α, although we won’t use either of these
notations in this work.

34Further Notation: Also written αF or α ? F , although we won’t use either of these

https://topological-modular-forms.github.io/the-clowder-project/tag/0185
https://topological-modular-forms.github.io/the-clowder-project/tag/0186
https://topological-modular-forms.github.io/the-clowder-project/tag/0187
https://topological-modular-forms.github.io/the-clowder-project/tag/0188
https://topological-modular-forms.github.io/the-clowder-project/tag/0189
https://topological-modular-forms.github.io/the-clowder-project/tag/018A
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commutes, i.e. we have

idG ? idF = idG◦F .

4. Middle Four Exchange.018B Let F1, F2, F3 : C → D andG1, G2, G3 : D →
E be functors. The diagram

(Nat(G2, G3) × Nat(G1, G2)) × (Nat(F2, F3) × Nat(F1, F2)) (Nat(G2, G3) × Nat(F2, F3)) × (Nat(G1, G2) × Nat(F1, F2))

Nat(G1, G3) × Nat(F1, F3) Nat(G2 ◦ F2, G3 ◦ F3) × Nat(G1 ◦ F1, G2 ◦ F2)

Nat(G1 ◦ F1, G3 ◦ F3)

µ4
∼

◦G1,G2,G3 ×◦F1,F2,F3 ?F2,F3,G2,G3 ×?F1,F2,G1,G2

?F1,F3,G1,G3 ◦G1◦F1,G2◦F2,G3◦F3

commutes, i.e. given a diagram

C D E

F1

F2

F3

G1

G2

G3

α

α′

β

β′

in Cats2, we have(
β′ ? α′) ◦ (β ? α) =

(
β′ ◦ β

)
?
(
α′ ◦ α

)
.

Proof. Item 1, Functionality: Clear.
Item 2, Associativity: Omitted.
Item 3, Interaction With Identities: We have

(idG ? idF )A
def= (idG)FA

◦G(idF )A
def= idGFA

◦GidFA

= idGFA
◦ idGFA

= idGFA
def= (idG◦F )A

for each A ∈ Obj(C), showing the desired equality.

notations in this work.

https://topological-modular-forms.github.io/the-clowder-project/tag/018B
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Item 4, Middle Four Exchange: Let A ∈ Obj(C) and consider the diagram

G1(F3(A))

G1(F1(A)) G1(F2(A)) G2(F3(A)) G3(F3(A)).

G2(F2(A))

βF3(A)

G1(αA)

G1
(
α′

A

)

βF2(A)

β′
F3(A)

G2
(
α′

A

)
(1)

The top composition

G1(F3(A))

G1(F1(A)) G1(F2(A)) G2(F3(A)) G3(F3(A)).

G2(F2(A))

βF3(A)

G1(αA)

G1
(
α′

A

)

βF2(A)

β′
F3(A)

G2
(
α′

A

)
(1)

is given by ((β′ ◦ β) ? (α′ ◦ α))A, while the bottom composition

G1(F3(A))

G1(F1(A)) G1(F2(A)) G2(F3(A)) G3(F3(A)).

G2(F2(A))

βF3(A)

G1(αA)

G1
(
α′

A

)

βF2(A)

β′
F3(A)

G2
(
α′

A

)
(1)

is given by ((β′ ? α′) ◦ (β ? α))A. Now, Subdiagram (1) corresponds to
the naturality condition

G2
(
α′
A

)
◦ βF2(A) = βF3(A) ◦G1

(
α′
A

)
,

G1(F2(A)) G1(F3(A))

G2(F2(A)) G2(F3(A))

G1
(
α′

A

)
βF2(A) βF3(A)

G2
(
α′

A

)
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for β : G1 =⇒ G2 at α′
A : F2(A) → F3(A), and thus commutes. Thus we

have ((
β′ ◦ β

)
?
(
α′ ◦ α

))
A =

((
β′ ? α′) ◦ (β ? α)

)
A

for each A ∈ Obj(C) and therefore(
β′ ? α′) ◦ (β ? α) =

(
β′ ◦ β

)
?
(
α′ ◦ α

)
.

This finishes the proof.

8.8.5 Properties of Natural Transformations018C

Proposition 8.8.5.1.1.018D Let F,G : C ⇒ D be functors. The following
data are equivalent:35

1. A natural transformation α : F =⇒ G.018E

2. A functor [α] : C → D1 filling the diagram018F

D

C D1.

D

F

G

[α]

ev0

ev1

3. A functor [α] : C × 1 → D filling the diagram018G

C

C × 1 D.

C

Fev0

ev1

[α]

G

Proof. From Item 1 to Item 2 and Back: We may identify D1 with
35Taken from [MO 64365].

https://topological-modular-forms.github.io/the-clowder-project/tag/018C
https://topological-modular-forms.github.io/the-clowder-project/tag/018D
https://topological-modular-forms.github.io/the-clowder-project/tag/018E
https://topological-modular-forms.github.io/the-clowder-project/tag/018F
https://topological-modular-forms.github.io/the-clowder-project/tag/018G
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Arr(D). Given a natural transformation α : F =⇒ G, we have a functor

[α] : C D1

A αA

(f : A → B)


FA FB

GA GB

Ff

αA αB

Gf


making the diagram in Item 2 commute. Conversely, every such functor
gives rise to a natural transformation from F to G, and these construc-
tions are inverse to each other.
From Item 2 to Item 3 and Back: This follows from Item 3 of Proposi-
tion 8.9.1.1.2.

8.8.6 Natural Isomorphisms018H

Let C and D be categories and let F,G : C ⇒ D be functors.

Definition 8.8.6.1.1.018J A natural transformation α : F =⇒ G is a natu-
ral isomorphism if there exists a natural transformation α−1 : G =⇒ F
such that

α−1 ◦ α = idF ,
α ◦ α−1 = idG.

Proposition 8.8.6.1.2.018K Let α : F =⇒ G be a natural transformation.

1. Characterisations.018L The following conditions are equivalent:

(a) The natural transformation α is a natural isomorphism.018M

(b) For each A ∈ Obj(C), the morphism αA : FA → GA is an
isomorphism.018N

2. Componentwise Inverses of Natural Transformations Assemble Into
Natural Transformations.018P Let α−1 : G =⇒ F be a transformation
such that, for each A ∈ Obj(C), we have

α−1
A ◦ αA = idF (A),

αA ◦ α−1
A = idG(A).

Then α−1 is a natural transformation.

https://topological-modular-forms.github.io/the-clowder-project/tag/018H
https://topological-modular-forms.github.io/the-clowder-project/tag/018J
https://topological-modular-forms.github.io/the-clowder-project/tag/018K
https://topological-modular-forms.github.io/the-clowder-project/tag/018L
https://topological-modular-forms.github.io/the-clowder-project/tag/018M
https://topological-modular-forms.github.io/the-clowder-project/tag/018N
https://topological-modular-forms.github.io/the-clowder-project/tag/018P
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Proof. Item 1, Characterisations: The implication Item 1a =⇒ Item 1b
is clear, whereas the implication Item 1b =⇒ Item 1a follows from Item 2.
Item 2, Componentwise Inverses of Natural Transformations Assem-
ble Into Natural Transformations: The naturality condition for α−1

corresponds to the commutativity of the diagram

G(A) G(B)

F (A) F (B)

G(f)

α−1
A α−1

B

F (f)

for each A,B ∈ Obj(C) and each f ∈ HomC(A,B). Considering the
diagram

G(A) G(B)

F (A) F (B)

G(A) G(B),

G(f)

α−1
A α−1

B

F (f)

αA αB

G(f)

(1)

(2)

where the boundary diagram as well as Subdiagram (2) commute, we
have

G(f) = G(f) ◦ idG(A)

= G(f) ◦ αA ◦ α−1
A

= αB ◦ F (f) ◦ α−1
A .

Postcomposing both sides with α−1
B , we get

α−1
B ◦G(f) = α−1

B ◦ αB ◦ F (f) ◦ α−1
A

= idF (B) ◦ F (f) ◦ α−1
A

= F (f) ◦ α−1
A ,

which is the naturality condition we wanted to show. Thus α−1 is a
natural transformation.

8.9 Categories of Categories018Q

8.9.1 Functor Categories018R

Let C be a category and D be a small category.

https://topological-modular-forms.github.io/the-clowder-project/tag/018Q
https://topological-modular-forms.github.io/the-clowder-project/tag/018R
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Definition 8.9.1.1.1.018S The category of functors from C to D36 is
the category Fun(C,D)37 where

• Objects. The objects of Fun(C,D) are functors from C to D.

• Morphisms. For each F,G ∈ Obj(Fun(C,D)), we have

HomFun(C,D)(F,G) def= Nat(F,G).

• Identities. For each F ∈ Obj(Fun(C,D)), the unit map

1Fun(C,D)
F : pt → Nat(F, F )

of Fun(C,D) at F is given by

idFun(C,D)
F

def= idF ,

where idF : F =⇒ F is the identity natural transformation of F of
Example 8.8.2.1.4.

• Composition. For each F,G,H ∈ Obj(Fun(C,D)), the composition
map

◦Fun(C,D)
F,G,H : Nat(G,H) × Nat(F,G) → Nat(F,H)

of Fun(C,D) at (F,G,H) is given by

β ◦Fun(C,D)
F,G,H α

def= β ◦ α,

where β ◦ α is the vertical composition of α and β of Item 1 of
Proposition 8.8.3.1.2.

Proposition 8.9.1.1.2.018T Let C and D be categories and let F : C → D
be a functor.

1. Functoriality.018U The assignments C,D, (C,D) 7→ Fun(C,D) define
functors

Fun(C,−2) : Cats → Cats,
Fun(−1,D) : Catsop → Cats,

Fun(−1,−2) : Catsop × Cats → Cats.

2. 2-Functoriality.018V The assignments C,D, (C,D) 7→ Fun(C,D)
define 2-functors

Fun(C,−2) : Cats2 → Cats2,

Fun(−1,D) : Catsop
2 → Cats2,

Fun(−1,−2) : Catsop
2 × Cats2 → Cats2.

36Further Terminology: Also called the functor category Fun(C,D).
37Further Notation: Also written DC and [C,D].

https://topological-modular-forms.github.io/the-clowder-project/tag/018S
https://topological-modular-forms.github.io/the-clowder-project/tag/018T
https://topological-modular-forms.github.io/the-clowder-project/tag/018U
https://topological-modular-forms.github.io/the-clowder-project/tag/018V
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3. Adjointness.018W We have adjunctions

(C × − a Fun(C,−)) :
C×−

Fun(C,−)

aCats Cats,

(− ×D a Fun(D,−)) :
−×D

Fun(D,−)
aCats Cats,

witnessed by bijections of sets

HomCats(C ×D,E) ∼= HomCats(D,Fun(C, E)),
HomCats(C ×D,E) ∼= HomCats(C,Fun(D, E)),

natural in C,D,E ∈ Obj(Cats).

4. 2-Adjointness.018X We have 2-adjunctions

(C × − a Fun(C,−)):
C×−

Fun(C,−)

a

2Cats2 Cats2,

(− ×D a Fun(D,−)):
−×D

Fun(D,−)

a

2Cats2 Cats2,

witnessed by isomorphisms of categories

Fun(C ×D,E) ∼= Fun(D,Fun(C,E)),
Fun(C ×D,E) ∼= Fun(C,Fun(D,E)),

natural in C,D,E ∈ Obj(Cats2).

5. Interaction With Punctual Categories.018Y We have a canonical
isomorphism of categories

Fun(pt,C) ∼= C,

natural in C ∈ Obj(Cats).

6. Objectwise Computation of Co/Limits.018Z Let

D : I → Fun(C,D)

be a diagram in Fun(C,D). We have isomorphisms

lim(D)A ∼= lim
i∈I

(Di(A)),

colim(D)A ∼= colim
i∈I

(Di(A)),

naturally in A ∈ Obj(C).

https://topological-modular-forms.github.io/the-clowder-project/tag/018W
https://topological-modular-forms.github.io/the-clowder-project/tag/018X
https://topological-modular-forms.github.io/the-clowder-project/tag/018Y
https://topological-modular-forms.github.io/the-clowder-project/tag/018Z
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7. Interaction With Co/Completeness.0190 If E is co/complete, then so
is Fun(C, E).

8. Monomorphisms and Epimorphisms.0191 Let α : F =⇒ G be a
morphism of Fun(C,D). The following conditions are equivalent:

(a) The natural transformation0192

α : F =⇒ G

is a monomorphism (resp. epimorphism) in Fun(C,D).
(b) For each A ∈ Obj(C), the morphism0193

αA : FA → GA

is a monomorphism (resp. epimorphism) in D.

Proof. Item 1, Functoriality: Omitted.
Item 2, 2-Functoriality: Omitted.
Item 3, Adjointness: Omitted.
Item 4, 2-Adjointness: Omitted.
Item 5, Interaction With Punctual Categories: Omitted.
Item 6, Objectwise Computation of Co/Limits: Omitted.
Item 7, Interaction With Co/Completeness: This follows from ??.
Item 8, Monomorphisms and Epimorphisms: Omitted.

8.9.2 The Category of Categories and Functors0194

Definition 8.9.2.1.1.0195 The category of (small) categories and func-
tors is the category Cats where

• Objects. The objects of Cats are small categories.

• Morphisms. For each C,D ∈ Obj(Cats), we have

HomCats(C,D) def= Obj(Fun(C,D)).

• Identities. For each C ∈ Obj(Cats), the unit map

1Cats
C : pt → HomCats(C,C)

of Cats at C is defined by

idCats
C

def= idC,

where idC : C → C is the identity functor of C of Example 8.4.1.1.4.

https://topological-modular-forms.github.io/the-clowder-project/tag/0190
https://topological-modular-forms.github.io/the-clowder-project/tag/0191
https://topological-modular-forms.github.io/the-clowder-project/tag/0192
https://topological-modular-forms.github.io/the-clowder-project/tag/0193
https://topological-modular-forms.github.io/the-clowder-project/tag/0194
https://topological-modular-forms.github.io/the-clowder-project/tag/0195
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• Composition. For each C,D, E ∈ Obj(Cats), the composition map

◦Cats
C,D,E : HomCats(D, E) × HomCats(C,D) → HomCats(C,E)

of Cats at (C,D,E) is given by

G ◦Cats
C,D,E F

def= G ◦ F,

where G ◦ F : C → E is the composition of F and G of Defini-
tion 8.4.1.1.5.

Proposition 8.9.2.1.2.0196 Let C be a category.

1. Co/Completeness.0197 The category Cats is complete and cocomplete.

2. Cartesian Monoidal Structure.0198 The quadruple (Cats,×, pt,Fun)
is a Cartesian closed monoidal category.

Proof. Item 1, Co/Completeness: Omitted.
Item 2, Cartesian Monoidal Structure: Omitted.

8.9.3 The 2-Category of Categories, Functors, and Natural
Transformations0199

Definition 8.9.3.1.1.019A The 2-category of (small) categories, func-
tors, and natural transformations is the 2-category Cats2 where

• Objects. The objects of Cats2 are small categories.

• Hom-Categories. For each C,D ∈ Obj(Cats2), we have

HomCats2(C,D) def= Fun(C,D).

• Identities. For each C ∈ Obj(Cats2), the unit functor

1Cats2
C : pt → Fun(C,C)

of Cats2 at C is the functor picking the identity functor idC : C → C
of C.

• Composition. For each C,D, E ∈ Obj(Cats2), the composition
bifunctor

◦Cats2
C,D,E : HomCats2(D, E) × HomCats2(C,D) → HomCats2(C, E)

of Cats2 at (C,D, E) is the functor where

– Action on Objects. For each object (G,F ) ∈ Obj(HomCats2(D,E) × HomCats2(C,D)),
we have

◦Cats2
C,D,E(G,F ) def= G ◦ F.

https://topological-modular-forms.github.io/the-clowder-project/tag/0196
https://topological-modular-forms.github.io/the-clowder-project/tag/0197
https://topological-modular-forms.github.io/the-clowder-project/tag/0198
https://topological-modular-forms.github.io/the-clowder-project/tag/0199
https://topological-modular-forms.github.io/the-clowder-project/tag/019A
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– Action on Morphisms. For each morphism (β, α) : (K,H) =⇒
(G,F ) of HomCats2(D, E) × HomCats2(C,D), we have

◦Cats2
C,D,E(β, α) def= β ? α,

where β ? α is the horizontal composition of α and β of Defi-
nition 8.8.4.1.1.

Proposition 8.9.3.1.2.019B Let C be a category.

1. 2-Categorical Co/Completeness.019C The 2-category Cats2 is com-
plete and cocomplete as a 2-category, having all 2-categorical and
bicategorical co/limits.

Proof. Item 1, Co/Completeness: Omitted.

8.9.4 The Category of Groupoids019D

Definition 8.9.4.1.1.019E The category of (small) groupoids is the full
subcategory Grpd of Cats spanned by the groupoids.

8.9.5 The 2-Category of Groupoids019F

Definition 8.9.5.1.1.019G The 2-category of (small) groupoids is the
full sub-2-category Grpd2 of Cats2 spanned by the groupoids.
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Chapter 9

Types of Morphisms in
Bicategories

019H In this chapter, we study special kinds of morphisms in bicategories:

1. Monomorphisms and Epimorphisms in Bicategories (Sections 9.1
and 9.2). There is a large number of different notions capturing the
idea of a “monomorphism” or of an “epimorphism” in a bicategory.
Arguably, the notion that best captures these concepts is that of
a pseudomonic morphism (Definition 9.1.10.1.1) and of a pseu-
doepic morphism (Definition 9.2.10.1.1), although the other notions
introduced in Sections 9.1 and 9.2 are also interesting on their own.
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9.1 Monomorphisms in Bicategories019J

9.1.1 Representably Faithful Morphisms019K

Let C be a bicategory.

Definition 9.1.1.1.1.019L A 1-morphism f : A → B of C is representably
faithful1 if, for each X ∈ Obj(C), the functor

f∗ : HomC(X,A) → HomC(X,B)

given by postcomposition by f is faithful.

Remark 9.1.1.1.2.019M In detail, f is representably faithful if, for all
diagrams in C of the form

X A B,

φ

ψ

f
α β

if we have
idf ? α = idf ? β,

then α = β.

Example 9.1.1.1.3.019N Here are some examples of representably faithful
morphisms.

1Further Terminology: Also called simply a faithful morphism, based on Item 1
of Example 9.1.1.1.3.

https://topological-modular-forms.github.io/the-clowder-project/tag/019J
https://topological-modular-forms.github.io/the-clowder-project/tag/019K
https://topological-modular-forms.github.io/the-clowder-project/tag/019L
https://topological-modular-forms.github.io/the-clowder-project/tag/019M
https://topological-modular-forms.github.io/the-clowder-project/tag/019N
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1. Representably Faithful Morphisms in Cats2.019P The representably
faithful morphisms in Cats2 are precisely the faithful functors; see
Item 1 of Proposition 8.5.1.1.2.

2. Representably Faithful Morphisms in Rel.019Q Every morphism of Rel
is representably faithful; see Item 1 of Proposition 5.3.8.1.1.

9.1.2 Representably Full Morphisms019R

Let C be a bicategory.

Definition 9.1.2.1.1.019S A 1-morphism f : A → B of C is representably
full2 if, for each X ∈ Obj(C), the functor

f∗ : HomC(X,A) → HomC(X,B)

given by postcomposition by f is full.

Remark 9.1.2.1.2.019T In detail, f is representably full if, for each X ∈
Obj(C) and each 2-morphism

β : f ◦ φ =⇒ f ◦ ψ, X B

f◦φ

f◦ψ

β

of C, there exists a 2-morphism

α : φ =⇒ ψ, X A

φ

ψ

α

of C such that we have an equality

X A B

φ

ψ

f
α = X B

f◦φ

f◦ψ

β

of pasting diagrams in C, i.e. such that we have

β = idf ? α.

Example 9.1.2.1.3.019U Here are some examples of representably full mor-
phisms.

1. Representably Full Morphisms in Cats2.019V The representably full
morphisms in Cats2 are precisely the full functors; see Item 1 of
Proposition 8.5.2.1.2.

2. Representably Full Morphisms in Rel.019W The representably full mor-
phisms in Rel are characterised in Item 2 of Proposition 5.3.8.1.1.

2Further Terminology: Also called simply a full morphism, based on Item 1 of

https://topological-modular-forms.github.io/the-clowder-project/tag/019P
https://topological-modular-forms.github.io/the-clowder-project/tag/019Q
https://topological-modular-forms.github.io/the-clowder-project/tag/019R
https://topological-modular-forms.github.io/the-clowder-project/tag/019S
https://topological-modular-forms.github.io/the-clowder-project/tag/019T
https://topological-modular-forms.github.io/the-clowder-project/tag/019U
https://topological-modular-forms.github.io/the-clowder-project/tag/019V
https://topological-modular-forms.github.io/the-clowder-project/tag/019W
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9.1.3 Representably Fully Faithful Morphisms019X

Let C be a bicategory.

Definition 9.1.3.1.1.019Y A 1-morphism f : A → B of C is representably
fully faithful3 if the following equivalent conditions are satisfied:

1. The 1-morphism f is representably faithful (Definition 9.1.1.1.1)
and representably full (Definition 9.1.2.1.1).019Z

2. For each X ∈ Obj(C), the functor01A0

f∗ : HomC(X,A) → HomC(X,B)

given by postcomposition by f is fully faithful.

Remark 9.1.3.1.2.01A1 In detail, f is representably fully faithful if the
conditions in Remark 9.1.1.1.2 and Remark 9.1.2.1.2 hold:

1. For all diagrams in C of the form

X A B,

φ

ψ

f
α β

if we have
idf ? α = idf ? β,

then α = β.

2. For each X ∈ Obj(C) and each 2-morphism

β : f ◦ φ =⇒ f ◦ ψ, X B

f◦φ

f◦ψ

β

of C, there exists a 2-morphism

α : φ =⇒ ψ, X A

φ

ψ

α

of C such that we have an equality

X A B

φ

ψ

f
α = X B

f◦φ

f◦ψ

β

Example 9.1.2.1.3.
3Further Terminology: Also called simply a fully faithful morphism, based on

https://topological-modular-forms.github.io/the-clowder-project/tag/019X
https://topological-modular-forms.github.io/the-clowder-project/tag/019Y
https://topological-modular-forms.github.io/the-clowder-project/tag/019Z
https://topological-modular-forms.github.io/the-clowder-project/tag/01A0
https://topological-modular-forms.github.io/the-clowder-project/tag/01A1
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of pasting diagrams in C, i.e. such that we have

β = idf ? α.

Example 9.1.3.1.3.01A2 Here are some examples of representably fully
faithful morphisms.

1. Representably Fully Faithful Morphisms in Cats2.01A3 The repre-
sentably fully faithful morphisms in Cats2 are precisely the fully
faithful functors; see Item 5 of Proposition 8.5.3.1.2.

2. Representably Fully Faithful Morphisms in Rel.01A4 The repre-
sentably fully faithful morphisms of Rel coincide (Item 3 of Proposi-
tion 5.3.8.1.1) with the representably full morphisms in Rel, which
are characterised in Item 2 of Proposition 5.3.8.1.1.

9.1.4 Morphisms Representably Faithful on Cores01A5

Let C be a bicategory.

Definition 9.1.4.1.1.01A6 A 1-morphism f : A → B of C is representably
faithful on cores if, for each X ∈ Obj(C), the functor

f∗ : Core(HomC(X,A)) → Core(HomC(X,B))

given by postcomposition by f is faithful.

Remark 9.1.4.1.2.01A7 In detail, f is representably faithful on cores if, for
all diagrams in C of the form

X A B,

φ

ψ

f
α β

if α and β are 2-isomorphisms and we have

idf ? α = idf ? β,

then α = β.

9.1.5 Morphisms Representably Full on Cores01A8

Let C be a bicategory.

Item 1 of Example 9.1.3.1.3.

https://topological-modular-forms.github.io/the-clowder-project/tag/01A2
https://topological-modular-forms.github.io/the-clowder-project/tag/01A3
https://topological-modular-forms.github.io/the-clowder-project/tag/01A4
https://topological-modular-forms.github.io/the-clowder-project/tag/01A5
https://topological-modular-forms.github.io/the-clowder-project/tag/01A6
https://topological-modular-forms.github.io/the-clowder-project/tag/01A7
https://topological-modular-forms.github.io/the-clowder-project/tag/01A8
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Definition 9.1.5.1.1.01A9 A 1-morphism f : A → B of C is representably
full on cores if, for each X ∈ Obj(C), the functor

f∗ : Core(HomC(X,A)) → Core(HomC(X,B))

given by postcomposition by f is full.

Remark 9.1.5.1.2.01AA In detail, f is representably full on cores if, for each
X ∈ Obj(C) and each 2-isomorphism

β : f ◦ φ ∼=⇒ f ◦ ψ, X B

f◦φ

f◦ψ

β

of C, there exists a 2-isomorphism

α : φ ∼=⇒ ψ, X A

φ

ψ

α

of C such that we have an equality

X A B

φ

ψ

f
α = X B

f◦φ

f◦ψ

β

of pasting diagrams in C, i.e. such that we have

β = idf ? α.

9.1.6 Morphisms Representably Fully Faithful on Cores01AB

Let C be a bicategory.

Definition 9.1.6.1.1.01AC A 1-morphism f : A → B of C is representably
fully faithful on cores if the following equivalent conditions are satis-
fied:

1. The 1-morphism f is representably faithful on cores (Definition 9.1.5.1.1)
and representably full on cores (Definition 9.1.4.1.1).01AD

2. For each X ∈ Obj(C), the functor01AE

f∗ : Core(HomC(X,A)) → Core(HomC(X,B))

given by postcomposition by f is fully faithful.

https://topological-modular-forms.github.io/the-clowder-project/tag/01A9
https://topological-modular-forms.github.io/the-clowder-project/tag/01AA
https://topological-modular-forms.github.io/the-clowder-project/tag/01AB
https://topological-modular-forms.github.io/the-clowder-project/tag/01AC
https://topological-modular-forms.github.io/the-clowder-project/tag/01AD
https://topological-modular-forms.github.io/the-clowder-project/tag/01AE
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Remark 9.1.6.1.2.01AF In detail, f is representably fully faithful on cores
if the conditions in Remark 9.1.4.1.2 and Remark 9.1.5.1.2 hold:

1. For all diagrams in C of the form

X A B,

φ

ψ

f
α β

if α and β are 2-isomorphisms and we have

idf ? α = idf ? β,

then α = β.

2. For each X ∈ Obj(C) and each 2-isomorphism

β : f ◦ φ ∼=⇒ f ◦ ψ, X B

f◦φ

f◦ψ

β

of C, there exists a 2-isomorphism

α : φ ∼=⇒ ψ, X A

φ

ψ

α

of C such that we have an equality

X A B

φ

ψ

f
α = X B

f◦φ

f◦ψ

β

of pasting diagrams in C, i.e. such that we have

β = idf ? α.

9.1.7 Representably Essentially Injective Morphisms01AG

Let C be a bicategory.

Definition 9.1.7.1.1.01AH A 1-morphism f : A → B of C is representably
essentially injective if, for each X ∈ Obj(C), the functor

f∗ : HomC(X,A) → HomC(X,B)

given by postcomposition by f is essentially injective.

Remark 9.1.7.1.2.01AJ In detail, f is representably essentially injective if,
for each pair of morphisms φ, ψ : X ⇒ A of C, the following condition is
satisfied:

(?) If f ◦ φ ∼= f ◦ ψ, then φ ∼= ψ.

https://topological-modular-forms.github.io/the-clowder-project/tag/01AF
https://topological-modular-forms.github.io/the-clowder-project/tag/01AG
https://topological-modular-forms.github.io/the-clowder-project/tag/01AH
https://topological-modular-forms.github.io/the-clowder-project/tag/01AJ
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9.1.8 Representably Conservative Morphisms01AK

Let C be a bicategory.

Definition 9.1.8.1.1.01AL A 1-morphism f : A → B of C is representably
conservative if, for each X ∈ Obj(C), the functor

f∗ : HomC(X,A) → HomC(X,B)

given by postcomposition by f is conservative.

Remark 9.1.8.1.2.01AM In detail, f is representably conservative if, for each
pair of morphisms φ, ψ : X ⇒ A and each 2-morphism

α : φ =⇒ ψ, X A

φ

ψ

α

of C, if the 2-morphism

idf ? α : f ◦ φ =⇒ f ◦ ψ, X B

f◦φ

f◦ψ

idf?α

is a 2-isomorphism, then so is α.

9.1.9 Strict Monomorphisms01AN

Let C be a bicategory.

Definition 9.1.9.1.1.01AP A 1-morphism f : A → B of C is a strict
monomorphism if, for each X ∈ Obj(C), the functor

f∗ : HomC(X,A) → HomC(X,B)

given by postcomposition by f is injective on objects, i.e. its action on
objects

f∗ : Obj(HomC(X,A)) → Obj(HomC(X,B))

is injective.

Remark 9.1.9.1.2.01AQ In detail, f is a strict monomorphism in C if, for
each diagram in C of the form

X A B,
φ

ψ

f

if f ◦ φ = f ◦ ψ, then φ = ψ.

https://topological-modular-forms.github.io/the-clowder-project/tag/01AK
https://topological-modular-forms.github.io/the-clowder-project/tag/01AL
https://topological-modular-forms.github.io/the-clowder-project/tag/01AM
https://topological-modular-forms.github.io/the-clowder-project/tag/01AN
https://topological-modular-forms.github.io/the-clowder-project/tag/01AP
https://topological-modular-forms.github.io/the-clowder-project/tag/01AQ
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Example 9.1.9.1.3.01AR Here are some examples of strict monomorphisms.

1. Strict Monomorphisms in Cats2.01AS The strict monomorphisms in
Cats2 are precisely the functors which are injective on objects and
injective on morphisms; see Item 1 of Proposition 8.6.2.1.2.

2. Strict Monomorphisms in Rel.01AT The strict monomorphisms in Rel
are characterised in Proposition 5.3.7.1.1.

9.1.10 Pseudomonic Morphisms01AU

Let C be a bicategory.

Definition 9.1.10.1.1.01AV A 1-morphism f : A → B of C is pseudomonic
if, for each X ∈ Obj(C), the functor

f∗ : HomC(X,A) → HomC(X,B)

given by postcomposition by f is pseudomonic.

Remark 9.1.10.1.2.01AW In detail, a 1-morphism f : A → B of C is pseu-
domonic if it satisfies the following conditions:

1. For all diagrams in C of the form01AX

X A B,

φ

ψ

f
α β

if we have
idf ? α = idf ? β,

then α = β.

2. For each X ∈ Obj(C) and each 2-isomorphism01AY

β : f ◦ φ ∼=⇒ f ◦ ψ, X B

f◦φ

f◦ψ

β

of C, there exists a 2-isomorphism

α : φ ∼=⇒ ψ, X A

φ

ψ

α

https://topological-modular-forms.github.io/the-clowder-project/tag/01AR
https://topological-modular-forms.github.io/the-clowder-project/tag/01AS
https://topological-modular-forms.github.io/the-clowder-project/tag/01AT
https://topological-modular-forms.github.io/the-clowder-project/tag/01AU
https://topological-modular-forms.github.io/the-clowder-project/tag/01AV
https://topological-modular-forms.github.io/the-clowder-project/tag/01AW
https://topological-modular-forms.github.io/the-clowder-project/tag/01AX
https://topological-modular-forms.github.io/the-clowder-project/tag/01AY
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of C such that we have an equality

X A B

φ

ψ

f
α = X B

f◦φ

f◦ψ

β

of pasting diagrams in C, i.e. such that we have

β = idf ? α.

Proposition 9.1.10.1.3.01AZ Let f : A → B be a 1-morphism of C.

1. Characterisations.01B0 The following conditions are equivalent:

(a) The morphism f is pseudomonic.01B1

(b) The morphism f is representably full on cores and repre-
sentably faithful.01B2

(c) We have an isocomma square of the form01B3

A
eq.∼= A

↔
×B A,

A A

A B

idA

idA F

F

in C up to equivalence.

2. Interaction With Cotensors.01B4 If C has cotensors with 1, then the
following conditions are equivalent:

(a) The morphism f is pseudomonic.
(b) We have an isocomma square of the form

A
eq.∼= A

↔
×1tF B,

A 1 t A

B 1 t B

F 1tF

in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.
Item 2, Interaction With Cotensors: Omitted.

https://topological-modular-forms.github.io/the-clowder-project/tag/01AZ
https://topological-modular-forms.github.io/the-clowder-project/tag/01B0
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9.2 Epimorphisms in Bicategories01B5

9.2.1 Corepresentably Faithful Morphisms01B6

Let C be a bicategory.

Definition 9.2.1.1.1.01B7 A 1-morphism f : A → B of C is corepre-
sentably faithful if, for each X ∈ Obj(C), the functor

f∗ : HomC(B,X) → HomC(A,X)

given by precomposition by f is faithful.

Remark 9.2.1.1.2.01B8 In detail, f is corepresentably faithful if, for all
diagrams in C of the form

A B X,
f

φ

ψ

α β

if we have
α ? idf = β ? idf ,

then α = β.

Example 9.2.1.1.3.01B9 Here are some examples of corepresentably faithful
morphisms.

1. Corepresentably Faithful Morphisms in Cats2.01BA The corepresentably
faithful morphisms in Cats2 are characterised in Item 4 of Proposi-
tion 8.5.1.1.2.

2. Corepresentably Faithful Morphisms in Rel.01BB Every morphism of
Rel is corepresentably faithful; see Item 1 of Proposition 5.3.10.1.1.

9.2.2 Corepresentably Full Morphisms01BC

Let C be a bicategory.

Definition 9.2.2.1.1.01BD A 1-morphism f : A → B of C is corepre-
sentably full if, for each X ∈ Obj(C), the functor

f∗ : HomC(B,X) → HomC(A,X)

given by precomposition by f is full.

https://topological-modular-forms.github.io/the-clowder-project/tag/01B5
https://topological-modular-forms.github.io/the-clowder-project/tag/01B6
https://topological-modular-forms.github.io/the-clowder-project/tag/01B7
https://topological-modular-forms.github.io/the-clowder-project/tag/01B8
https://topological-modular-forms.github.io/the-clowder-project/tag/01B9
https://topological-modular-forms.github.io/the-clowder-project/tag/01BA
https://topological-modular-forms.github.io/the-clowder-project/tag/01BB
https://topological-modular-forms.github.io/the-clowder-project/tag/01BC
https://topological-modular-forms.github.io/the-clowder-project/tag/01BD
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Remark 9.2.2.1.2.01BE In detail, f is corepresentably full if, for each
X ∈ Obj(C) and each 2-morphism

β : φ ◦ f =⇒ ψ ◦ f, A X

φ◦f

ψ◦f

β

of C, there exists a 2-morphism

α : φ =⇒ ψ, B X

φ

ψ

α

of C such that we have an equality

A B X
f

φ

ψ

α = A X

φ◦f

ψ◦f

β

of pasting diagrams in C, i.e. such that we have

β = α ? idf .

Example 9.2.2.1.3.01BF Here are some examples of corepresentably full
morphisms.

1. Corepresentably Full Morphisms in Cats2.01BG The corepresentably
full morphisms in Cats2 are characterised in Item 5 of Proposi-
tion 8.5.2.1.2.

2. Corepresentably Full Morphisms in Rel.01BH The corepresentably full
morphisms in Rel are characterised in ?? of Proposition 5.3.8.1.1.

9.2.3 Corepresentably Fully Faithful Morphisms01BJ

Let C be a bicategory.

Definition 9.2.3.1.1.01BK A 1-morphism f : A → B of C is corepre-
sentably fully faithful4 if the following equivalent conditions are
satisfied:

1. The 1-morphism f is corepresentably full (Definition 9.2.2.1.1) and
corepresentably faithful (Definition 9.2.1.1.1).01BL

4Further Terminology: Corepresentably fully faithful morphisms have also been
called lax epimorphisms in the literature (e.g. in [Adá+01]), though we will always
use the name “corepresentably fully faithful morphism” instead in this work.

https://topological-modular-forms.github.io/the-clowder-project/tag/01BE
https://topological-modular-forms.github.io/the-clowder-project/tag/01BF
https://topological-modular-forms.github.io/the-clowder-project/tag/01BG
https://topological-modular-forms.github.io/the-clowder-project/tag/01BH
https://topological-modular-forms.github.io/the-clowder-project/tag/01BJ
https://topological-modular-forms.github.io/the-clowder-project/tag/01BK
https://topological-modular-forms.github.io/the-clowder-project/tag/01BL
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2. For each X ∈ Obj(C), the functor01BM

f∗ : HomC(B,X) → HomC(A,X)

given by precomposition by f is fully faithful.
Remark 9.2.3.1.2.01BN In detail, f is corepresentably fully faithful if the
conditions in Remark 9.2.1.1.2 and Remark 9.2.2.1.2 hold:

1. For all diagrams in C of the form

A B X,
f

φ

ψ

α β

if we have
α ? idf = β ? idf ,

then α = β.

2. For each X ∈ Obj(C) and each 2-morphism

β : φ ◦ f =⇒ ψ ◦ f, A X

φ◦f

ψ◦f

β

of C, there exists a 2-morphism

α : φ =⇒ ψ, B X

φ

ψ

α

of C such that we have an equality

A B X
f

φ

ψ

α = A X

φ◦f

ψ◦f

β

of pasting diagrams in C, i.e. such that we have

β = α ? idf .

Example 9.2.3.1.3.01BP Here are some examples of corepresentably fully
faithful morphisms.

1. Corepresentably Fully Faithful Morphisms in Cats2.01BQ The fully
faithful epimorphisms in Cats2 are characterised in Item 9 of Propo-
sition 8.5.3.1.2.

2. Corepresentably Fully Faithful Morphisms in Rel.01BR The corep-
resentably fully faithful morphisms of Rel coincide (Item 3 of
Proposition 5.3.10.1.1) with the corepresentably full morphisms in
Rel, which are characterised in Item 2 of Proposition 5.3.10.1.1.

https://topological-modular-forms.github.io/the-clowder-project/tag/01BM
https://topological-modular-forms.github.io/the-clowder-project/tag/01BN
https://topological-modular-forms.github.io/the-clowder-project/tag/01BP
https://topological-modular-forms.github.io/the-clowder-project/tag/01BQ
https://topological-modular-forms.github.io/the-clowder-project/tag/01BR
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9.2.4 Morphisms Corepresentably Faithful on Cores01BS

Let C be a bicategory.

Definition 9.2.4.1.1.01BT A 1-morphism f : A → B of C is corepre-
sentably faithful on cores if, for each X ∈ Obj(C), the functor

f∗ : Core(HomC(B,X)) → Core(HomC(A,X))

given by precomposition by f is faithful.

Remark 9.2.4.1.2.01BU In detail, f is corepresentably faithful on cores if,
for all diagrams in C of the form

A B X,
f

φ

ψ

α β

if α and β are 2-isomorphisms and we have

α ? idf = β ? idf ,

then α = β.

9.2.5 Morphisms Corepresentably Full on Cores01BV

Let C be a bicategory.

Definition 9.2.5.1.1.01BW A 1-morphism f : A → B of C is corepre-
sentably full on cores if, for each X ∈ Obj(C), the functor

f∗ : Core(HomC(B,X)) → Core(HomC(A,X))

given by precomposition by f is full.

Remark 9.2.5.1.2.01BX In detail, f is corepresentably full on cores if, for
each X ∈ Obj(C) and each 2-isomorphism

β : φ ◦ f ∼=⇒ ψ ◦ f, A X

φ◦f

ψ◦f

β

of C, there exists a 2-isomorphism

α : φ ∼=⇒ ψ, B X

φ

ψ

α

https://topological-modular-forms.github.io/the-clowder-project/tag/01BS
https://topological-modular-forms.github.io/the-clowder-project/tag/01BT
https://topological-modular-forms.github.io/the-clowder-project/tag/01BU
https://topological-modular-forms.github.io/the-clowder-project/tag/01BV
https://topological-modular-forms.github.io/the-clowder-project/tag/01BW
https://topological-modular-forms.github.io/the-clowder-project/tag/01BX
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of C such that we have an equality

A B X
f

φ

ψ

α = A X

φ◦f

ψ◦f

β

of pasting diagrams in C, i.e. such that we have

β = α ? idf .

9.2.6 Morphisms Corepresentably Fully Faithful on Cores01BY

Let C be a bicategory.

Definition 9.2.6.1.1.01BZ A 1-morphism f : A → B of C is corepre-
sentably fully faithful on cores if the following equivalent conditions
are satisfied:

1. The 1-morphism f is corepresentably full on cores (Definition 9.2.5.1.1)
and corepresentably faithful on cores (Definition 9.2.1.1.1).01C0

2. For each X ∈ Obj(C), the functor01C1

f∗ : Core(HomC(B,X)) → Core(HomC(A,X))

given by precomposition by f is fully faithful.

Remark 9.2.6.1.2.01C2 In detail, f is corepresentably fully faithful on cores
if the conditions in Remark 9.2.4.1.2 and Remark 9.2.5.1.2 hold:

1. For all diagrams in C of the form

A B X,
f

φ

ψ

α β

if α and β are 2-isomorphisms and we have

α ? idf = β ? idf ,

then α = β.

2. For each X ∈ Obj(C) and each 2-isomorphism

β : φ ◦ f ∼=⇒ ψ ◦ f, A X

φ◦f

ψ◦f

β

https://topological-modular-forms.github.io/the-clowder-project/tag/01BY
https://topological-modular-forms.github.io/the-clowder-project/tag/01BZ
https://topological-modular-forms.github.io/the-clowder-project/tag/01C0
https://topological-modular-forms.github.io/the-clowder-project/tag/01C1
https://topological-modular-forms.github.io/the-clowder-project/tag/01C2
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of C, there exists a 2-isomorphism

α : φ ∼=⇒ ψ, B X

φ

ψ

α

of C such that we have an equality

A B X
f

φ

ψ

α = A X

φ◦f

ψ◦f

β

of pasting diagrams in C, i.e. such that we have

β = α ? idf .

9.2.7 Corepresentably Essentially Injective Morphisms01C3

Let C be a bicategory.

Definition 9.2.7.1.1.01C4 A 1-morphism f : A → B of C is corepre-
sentably essentially injective if, for each X ∈ Obj(C), the functor

f∗ : HomC(B,X) → HomC(A,X)

given by precomposition by f is essentially injective.

Remark 9.2.7.1.2.01C5 In detail, f is corepresentably essentially injective
if, for each pair of morphisms φ, ψ : B ⇒ X of C, the following condition
is satisfied:

(?) If φ ◦ f ∼= ψ ◦ f , then φ ∼= ψ.

9.2.8 Corepresentably Conservative Morphisms01C6

Let C be a bicategory.

Definition 9.2.8.1.1.01C7 A 1-morphism f : A → B of C is corepre-
sentably conservative if, for each X ∈ Obj(C), the functor

f∗ : HomC(B,X) → HomC(A,X)

given by precomposition by f is conservative.

Remark 9.2.8.1.2.01C8 In detail, f is corepresentably conservative if, for
each pair of morphisms φ, ψ : B ⇒ X and each 2-morphism

α : φ ∼=⇒ ψ, B X

φ

ψ

α

https://topological-modular-forms.github.io/the-clowder-project/tag/01C3
https://topological-modular-forms.github.io/the-clowder-project/tag/01C4
https://topological-modular-forms.github.io/the-clowder-project/tag/01C5
https://topological-modular-forms.github.io/the-clowder-project/tag/01C6
https://topological-modular-forms.github.io/the-clowder-project/tag/01C7
https://topological-modular-forms.github.io/the-clowder-project/tag/01C8
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of C, if the 2-morphism

α ? idf : φ ◦ f =⇒ ψ ◦ f, A X

φ◦f

ψ◦f

α?idf

is a 2-isomorphism, then so is α.

9.2.9 Strict Epimorphisms01C9

Let C be a bicategory.

Definition 9.2.9.1.1.01CA A 1-morphism f : A → B is a strict epimor-
phism in C if, for each X ∈ Obj(C), the functor

f∗ : HomC(B,X) → HomC(A,X)

given by precomposition by f is injective on objects, i.e. its action on
objects

f∗ : Obj(HomC(B,X)) → Obj(HomC(A,X))

is injective.

Remark 9.2.9.1.2.01CB In detail, f is a strict epimorphism if, for each
diagram in C of the form

A B X,
f φ

ψ

if φ ◦ f = ψ ◦ f , then φ = ψ.

Example 9.2.9.1.3.01CC Here are some examples of strict epimorphisms.

1. Strict Epimorphisms in Cats2.01CD The strict epimorphisms in Cats2
are characterised in Item 1 of Proposition 8.6.3.1.2.

2. Strict Epimorphisms in Rel.01CE The strict epimorphisms in Rel are
characterised in Proposition 5.3.9.1.1.

9.2.10 Pseudoepic Morphisms01CF

Let C be a bicategory.

Definition 9.2.10.1.1.01CG A 1-morphism f : A → B of C is pseudoepic
if, for each X ∈ Obj(C), the functor

f∗ : HomC(B,X) → HomC(A,X)

given by precomposition by f is pseudomonic.

https://topological-modular-forms.github.io/the-clowder-project/tag/01C9
https://topological-modular-forms.github.io/the-clowder-project/tag/01CA
https://topological-modular-forms.github.io/the-clowder-project/tag/01CB
https://topological-modular-forms.github.io/the-clowder-project/tag/01CC
https://topological-modular-forms.github.io/the-clowder-project/tag/01CD
https://topological-modular-forms.github.io/the-clowder-project/tag/01CE
https://topological-modular-forms.github.io/the-clowder-project/tag/01CF
https://topological-modular-forms.github.io/the-clowder-project/tag/01CG
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Remark 9.2.10.1.2.01CH In detail, a 1-morphism f : A → B of C is pseu-
doepic if it satisfies the following conditions:

1. For all diagrams in C of the form01CJ

A B X,
f

φ

ψ

α β

if we have
α ? idf = β ? idf ,

then α = β.

2. For each X ∈ Obj(C) and each 2-isomorphism01CK

β : φ ◦ f ∼=⇒ ψ ◦ f, A X

φ◦f

ψ◦f

β

of C, there exists a 2-isomorphism

α : φ ∼=⇒ ψ, B X

φ

ψ

α

of C such that we have an equality

A B X
f

φ

ψ

α = A X

φ◦f

ψ◦f

β

of pasting diagrams in C, i.e. such that we have

β = α ? idf .

Proposition 9.2.10.1.3.01CL Let f : A → B be a 1-morphism of C.

1. Characterisations.01CM The following conditions are equivalent:

(a) The morphism f is pseudoepic.01CN

(b) The morphism f is corepresentably full on cores and corepre-
sentably faithful.01CP

https://topological-modular-forms.github.io/the-clowder-project/tag/01CH
https://topological-modular-forms.github.io/the-clowder-project/tag/01CJ
https://topological-modular-forms.github.io/the-clowder-project/tag/01CK
https://topological-modular-forms.github.io/the-clowder-project/tag/01CL
https://topological-modular-forms.github.io/the-clowder-project/tag/01CM
https://topological-modular-forms.github.io/the-clowder-project/tag/01CN
https://topological-modular-forms.github.io/the-clowder-project/tag/01CP
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(c) We have an isococomma square of the form01CQ

B
eq.∼= B

↔∐
A B,

B B

B A

idB

idB F

F

in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.

Appendices
9.A Other Chapters

Sets

1. Sets

2. Constructions With Sets

3. Pointed Sets

4. Tensor Products of Pointed
Sets

Relations

5. Relations

6. Constructions With Relations

7. Equivalence Relations and
Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicat-
egories

https://topological-modular-forms.github.io/the-clowder-project/tag/01CQ
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10.1 To Do List01CS

10.1.1 Omitted Proofs To Add01CT

Не так благотворна истина, как

зловредна ее видимость.

Даниил Данковский

Truth does not do as much good in
the world as the appearance of
truth does evil.

Daniil Dankovsky

There’s a very large number of omitted proofs throughout these notes.
Here I list them in decreasing order of how nice it would be to add them.

Remark 10.1.1.1.1.01CU Proofs that need to be added at some point:

1. ??.

2. ??.

3. Horizontal composition of natural transformations is associative:
?? of ??.

4. Fully faithful functors are essentially injective: ?? of ??.

Proofs that would be very nice to be added at some point:

442

https://topological-modular-forms.github.io/the-clowder-project/tag/01CR
https://topological-modular-forms.github.io/the-clowder-project/tag/01CS
https://topological-modular-forms.github.io/the-clowder-project/tag/01CT
https://topological-modular-forms.github.io/the-clowder-project/tag/01CU
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1. Properties of pseudomonic functors: ??.

2. Characterisation of fully faithful functors: ?? of ??.

Proofs that would be nice to be added at some point:

1. Properties of posetal categories: ??.

2. The quadruple adjunction between categories and sets: ??.

3. Properties of groupoid completions: ??.

4. Properties of cores: ??.

5. F∗ faithful iff F faithful: ?? of ??.

6. F∗ full iff F full: ?? of ??.

7. Injective on objects functors are precisely the isocofibrations in
Cats2: ?? of ??.

8. Characterisations of monomorphisms of categories: ?? of ??.

9. Epimorphisms of categories are surjective on objects: ?? of ??.

10. Properties of pseudoepic functors: ??.

10.1.2 Things To Explore/Add01CV

Here we list things to be explored/added to this work in the future.

Remark 10.1.2.1.1.01CW Set theory through a category theory lens:

1. Isbell duality for sets.

2. Density comonads and codensity monads for sets.

Relations:

1. 2-Categorical monomorphisms and epimorphisms in Rel.

2. Co/limits in Rel.

3. Apartness composition, categorical properties of Rel with apartness,
and apartness relations.

4. Apartness defines a composition for relations, but its analogue

q� p
def=
∫
A∈C

p−1
A

∐
qA−2

fails to be unital for profunctors. Is there a less obvious analogue
of apartness composition for profunctors?

https://topological-modular-forms.github.io/the-clowder-project/tag/01CV
https://topological-modular-forms.github.io/the-clowder-project/tag/01CW
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5. Codensity monad RanJ(J) of a relation (What about RiftJ(J)?)

6. Relative comonads in the 2-category of relations

7. Discrete fibrations and Street fibrations in Rel.

8. Consider adding the sections

• The Monoidal Bicategory of Relations
• The Monoidal Double Category of Relations

to Relations.

Spans:

1. Universal property of the bicategory of spans, https://ncatlab.
org/nlab/show/span

2. Write about cospans.

Un/Straightening:

1. Write proper sections on straightening for lax functors from sets to
Rel or Span (displayed sets)

Categories:

1. Expand ?? and add a proof to it.

2. Sections and retractions; retracts, https://ncatlab.org/nlab/s
how/retract.

3. Regular categories: https://arxiv.org/pdf/2004.08964.pdf.

4. Are pseudoepic functors those functors whose restricted Yoneda
embedding is pseudomonic and Yoneda preserves absolute colimits?

5. Absolutely dense functors enriched over R+ apparently reduce to
topological density

Types of Morphisms in Categories:

1. Behaviour in Fun(C,D), e.g. pointwise sections vs. sections in
Fun(C,D).

2. A faithful functor from balanced category is conservative

Yoneda stuff:

1. Properties of restricted Yoneda embedding, e.g. if the restricted
Yoneda embedding is full, then what can we conclude? Related:
https://qchu.wordpress.com/2015/05/17/generators/

https://ncatlab.org/nlab/show/span
https://ncatlab.org/nlab/show/span
https://ncatlab.org/nlab/show/retract
https://ncatlab.org/nlab/show/retract
https://arxiv.org/pdf/2004.08964.pdf
https://qchu.wordpress.com/2015/05/17/generators/
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Adjunctions:

1. Adjunctions, units, counits, and fully faithfulness as in https:
//mathoverflow.net/questions/100808/properties-of-functor
s-and-their-adjoints.

2. Morphisms between adjunctions and bicategory Adj(C).

3. https://ncatlab.org/nlab/show/transformation+of+adjoints

Constructions With Categories:

1. Comparison between pseudopullbacks and isocomma categories:
the “evident” functor C ×ps

E D → C
↔
×E D is essentially surjective

and full, but not faithful in general.

Co/limits:

1. Add the characterisations of absolutely dense functors given in ??
to ??.

2. Absolutely dense functors, https://ncatlab.org/nlab/show/abso
lutely+dense+functor. Also theorem 1.1 here: http://www.tac.
mta.ca/tac/volumes/8/n20/n20.pdf.

3. Dense functors, codense functors, and absolutely codense functors.

Co/ends:

1. Examples of co/ends: https://mathoverflow.net/a/461814

2. Cofinality for co/ends, https://mathoverflow.net/questions/3
53876

Fibred category theory:

1. Internal Hom in categories of co/Cartesian fibrations.

2. Tensor structures on fibered categories by Luca Terenzi: https:
//arxiv.org/abs/2401.13491. Check also the other papers by
Luca Terenzi.

3. https://ncatlab.org/nlab/show/cartesian+natural+transfor
mation (this is a cartesian morphism in Fun(C,D) apparently)

4. CoCartesian fibration classifying Fun(F,G), https://mathoverfl
ow.net/questions/457533/cocartesian-fibration-classifying
-mathrmfunf-g

Monoidal categories:

https://mathoverflow.net/questions/100808/properties-of-functors-and-their-adjoints
https://mathoverflow.net/questions/100808/properties-of-functors-and-their-adjoints
https://mathoverflow.net/questions/100808/properties-of-functors-and-their-adjoints
https://ncatlab.org/nlab/show/transformation+of+adjoints
https://ncatlab.org/nlab/show/absolutely+dense+functor
https://ncatlab.org/nlab/show/absolutely+dense+functor
http://www.tac.mta.ca/tac/volumes/8/n20/n20.pdf
http://www.tac.mta.ca/tac/volumes/8/n20/n20.pdf
https://mathoverflow.net/a/461814
https://mathoverflow.net/questions/353876
https://mathoverflow.net/questions/353876
https://arxiv.org/abs/2401.13491
https://arxiv.org/abs/2401.13491
https://ncatlab.org/nlab/show/cartesian+natural+transformation
https://ncatlab.org/nlab/show/cartesian+natural+transformation
https://mathoverflow.net/questions/457533/cocartesian-fibration-classifying-mathrmfunf-g
https://mathoverflow.net/questions/457533/cocartesian-fibration-classifying-mathrmfunf-g
https://mathoverflow.net/questions/457533/cocartesian-fibration-classifying-mathrmfunf-g
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1. Free braided monoidal category with a braided monoid: https:
//ncatlab.org/nlab/show/vine

Skew monoidal categories:

1. Does the E1 tensor product of monoids admit a skew monoidal
category structure?

2. Is there a (right?) skew monoidal category structure on Fun(C,D)
using right Kan extensions instead of left Kan extensions?

3. Similarly, are there skew monoidal category structures on the
subcategory of Rel(A,B) spanned by the functions using left Kan
extensions and left Kan lifts?

Higher categories:

1. Internal adjunctions in Mod as in [JY21, Section 6.3]; see [JY21,
Example 6.2.6].

2. Comonads in the bicategory of profunctors.

Monoids:

1. Isbell’s zigzag theorem for semigroups: the following conditions are
equivalent:

(a) A morphism f : A → B of semigroups is an epimorphism.
(b) For each b ∈ B, one of the following conditions is satisfied:

• We have f(a) = b.
• There exist some m ∈ N≥1 and two factorisations

b = a0y1,

b = xma2m

connected by relations

a0 = x1a1,

a1y1 = a2y2,

x1a2 = x2a3,

a2m−1ym = a2m

such that, for each 1 ≤ i ≤ m, we have ai ∈ Im(f).

Wikipedia says in https://en.wikipedia.org/wiki/Isbell%27s
_zigzag_theorem:

https://ncatlab.org/nlab/show/vine
https://ncatlab.org/nlab/show/vine
https://en.wikipedia.org/wiki/Isbell%27s_zigzag_theorem
https://en.wikipedia.org/wiki/Isbell%27s_zigzag_theorem
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For monoids, this theorem can be written more concisely:

Types of morphisms in bicategories:

1. Behaviour in 2-categories of pseudofunctors (or lax functors, etc.),
e.g. pointwise pseudoepic morphisms in vs. pseudoepic morphisms
in 2-categories of pseudofunctors.

2. Statements like “coequifiers are lax epimorphisms”, Item 2 of Ex-
amples 2.4 of https://arxiv.org/abs/2109.09836, along with
most of the other statements/examples there.

3. Dense, absolutely dense, etc. morphisms in bicategories

Other:

1. https://qchu.wordpress.com/

2. https://aroundtoposes.com/

3. https://ncatlab.org/nlab/show/essentially+surjective+and
+full+functor

4. https://mathoverflow.net/questions/415363/objects-whose-r
epresentable-presheaf-is-a-fibration

5. https://mathoverflow.net/questions/460146/universal-prope
rty-of-isbell-duality

6. http://www.tac.mta.ca/tac/volumes/36/12/36-12abs.html (
Isbell conjugacy and the reflexive completion )

7. https://ncatlab.org/nlab/show/enrichment+versus+internal
isation

8. The works of Philip Saville, https://philipsaville.co.uk/

9. https://golem.ph.utexas.edu/category/2024/02/from_cartes
ian_to_symmetric_mo.html

10. https://mathoverflow.net/q/463855 (One-object lax transforma-
tions)

11. https://ncatlab.org/nlab/show/analytic+completion+of+a+r
ing

12. https://en.wikipedia.org/wiki/Quaternionic_analysis

13. https://arxiv.org/abs/2401.15051 (The Norm Functor over
Schemes)

https://arxiv.org/abs/2109.09836
https://qchu.wordpress.com/
https://aroundtoposes.com/
https://ncatlab.org/nlab/show/essentially+surjective+and+full+functor
https://ncatlab.org/nlab/show/essentially+surjective+and+full+functor
https://mathoverflow.net/questions/415363/objects-whose-representable-presheaf-is-a-fibration
https://mathoverflow.net/questions/415363/objects-whose-representable-presheaf-is-a-fibration
https://mathoverflow.net/questions/460146/universal-property-of-isbell-duality
https://mathoverflow.net/questions/460146/universal-property-of-isbell-duality
http://www.tac.mta.ca/tac/volumes/36/12/36-12abs.html
https://ncatlab.org/nlab/show/enrichment+versus+internalisation
https://ncatlab.org/nlab/show/enrichment+versus+internalisation
https://philipsaville.co.uk/
https://golem.ph.utexas.edu/category/2024/02/from_cartesian_to_symmetric_mo.html
https://golem.ph.utexas.edu/category/2024/02/from_cartesian_to_symmetric_mo.html
https://mathoverflow.net/q/463855
https://ncatlab.org/nlab/show/analytic+completion+of+a+ring
https://ncatlab.org/nlab/show/analytic+completion+of+a+ring
https://en.wikipedia.org/wiki/Quaternionic_analysis
https://arxiv.org/abs/2401.15051
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14. https://mathoverflow.net/questions/407291/ (Adjunctions
with respect to profunctors)

15. https://mathoverflow.net/a/462726 (Prof is free completion of
Cats under right extensions)

16. there’s some cool stuff in https://arxiv.org/abs/2312.00990
(Polynomial Functors: A Mathematical Theory of Interaction), e.g.
on cofunctors.

17. https://ncatlab.org/nlab/show/adjoint+lifting+theorem

18. https://ncatlab.org/nlab/show/Gabriel%E2%80%93Ulmer+dual
ity

Appendices
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https://mathoverflow.net/questions/407291/
https://mathoverflow.net/a/462726
https://arxiv.org/abs/2312.00990
https://ncatlab.org/nlab/show/adjoint+lifting+theorem
https://ncatlab.org/nlab/show/Gabriel%E2%80%93Ulmer+duality
https://ncatlab.org/nlab/show/Gabriel%E2%80%93Ulmer+duality
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partial equivalence relation,

336
poset of, 229, 331, 333, 336
product of, 295
product of a family of, 297
range of, 291

reflexive, 329
reflexive closure of, 329
reflexive, poset of, 329
reflexive, set of, 329
representable, 290
set of, 229
symmetric, 331
symmetric closure of, 331
symmetric, set of, 331
total, 236
transitive, 333
transitive closure of, 334
transitive, set of, 333
trivial, 233
2-category of, 242
union of, 292
union of a family of, 293

right tensor product of pointed
sets

diagonal, 187
right skew unit of, 180
skew associator, 180
skew left unitor, 183
skew right unitor, 184

S
semimodule

underlying pointed set of,
101

set
Hom, 47
of maps, 47

set of bilinear morphisms of
pointed sets, 139

left, 137
right, 138

singleton set, 46
smash product

of a family of pointed sets,
223

of pointed sets, 196
smash product of pointed sets
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associator, 207
diagonal, 215
left unitor, 209
monoidal unit of, 206
right unitor, 211
symmetry, 213

symmetric difference of sets, 58

T
terminal pointed set, 106

terminal set, 12

U
union, 48

of a family of sets, 48

Z
0-category, 8
0-groupoid, 8
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A
adjoint equivalence of categories,

387

C
category, 346

adjoint equivalence of, 387
connected, 359
connected component, 357
connected component, set

of, 357
core of, 365
disconnected, 359
discrete, 360
empty, 349
equivalence of, 387
groupoid completion of, 362
indiscrete, 361
isomorphism of, 389
κ-small, 348
locally essentially small, 348
locally small, 348
of small groupoids, 420
skeletal, 353
skeleton of, 353
small, 348
thin, 352

category of categories, 418
contravariant functor, 372

D

discrete category
on a set, 359

E
equivalence of categories, 387

F
forgetful functor, 373
functor, 368

bijective on objects, 399
bo, 399
composition of, 371
conservative, 385
contravariant, 372
corepresentably faithful on

cores, 401
corepresentably full on

cores, 402
corepresentably fully

faithful on cores, 402
dominant, 390
epimorphism, 393
eso, 386
essentially injective, 386
essentially surjective, 386
faithful, 376
forgetful, 373
full, 379
fully faithful, 381
identity, 370
injective on objects, 398
monomorphism, 392
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pseudoepic, 396
pseudomonic, 394
representably faithful on

cores, 399
representably full on cores,

399
representably fully faithful

on cores, 400
surjective on objects, 398
transformation of, 404

functor category, 416

G
Godement product, see natural

transformation,
horizontal composition

Grothendieck groupoid
of a category, 362

groupoid, 362
groupoid completion, 362

I
indiscrete category

on a set, 361
Isbell’s zigzag theorem, 393
isomorphism, 362
isomorphism of categories, 389

M
middle four exchange

in Cats, 407, 411

N
natural isomorphism, 414
natural transformation, 404

associated to a functor, 375
equality of, 405
horizontal composition, 408

identity natural
transformation, 404

vertical composition, 405

O
ordinal category, 350

P
posetal category, 352

associated to a poset, 351
postcomposition, 354
precomposition, 354
punctual category, 348

S
singleton category, see punctual

category
subcategory, 353

full, 353
lluf, 353
strictly full, 353
wide, 353

T
transformation between

functors, 404
2-category

of small categories, 419
of small groupoids, 420

W
whiskering

left, 410
right, 410

Z
(0, 1)-category, 352
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D
double category

of relations, 242

E
epimorphism

strict, 438

M
monomorphism

strict, 429

O
1-morphism

corepresentably
conservative, 437

corepresentably essentially
injective, 437

corepresentably faithful, 432
corepresentably faithful on

cores, 435

corepresentably full, 432
corepresentably full on

cores, 435
corepresentably fully

faithful, 433
corepresentably fully

faithful on cores, 436
pseudoepic, 438
pseudomonic, 430
representably conservative,

429
representably essentially

injective, 428
representably faithful, 423
representably faithful on

cores, 426
representably full, 424
representably full on cores,

427
representably fully faithful,

425
representably fully faithful

on cores, 427
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