
TESSA - Terrarium Environmental System with Smart Automation

Documentation and Build Guide

Antonius Torode

September 21, 2023

Contents

1 Introduction 2
2 Project Overview 2
3 Components and Materials 3

3.0.1 Arduino Setup Components List . 3
3.0.2 Raspberry Pi Setup Components List . 3

3.1 Component Descriptions . 3
3.1.1 DHT11 . 3
3.1.2 Mini Submersible Water Pump . 3
3.1.3 SSD1306 I2C OLED Display . 4
3.1.4 2N 2222A NPN Transistor . 4
3.1.5 Arduino Nano . 4
3.1.6 Raspberry Pi . 5

4 System Architecture 5
5 Raspberry Pi Implementation 5

5.1 Circuit Diagram and Wiring . 5
5.2 Software Setup . 5
5.3 Python Code . 5
5.4 Testing and Troubleshooting . 5

6 Arduino Nano Implementation 6
6.1 Circuit Diagram and Wiring . 6
6.2 Software Setup . 6
6.3 Arduino Code . 6
6.4 Testing and Troubleshooting . 6

7 3D Printed Enclosure 6
8 Power Supply 6
9 Usage and Operation 6
10 Maintenance and Troubleshooting 6
11 Full Enclosure Setup 6

11.1 Equipment and Tools . 6
11.2 Setup and Implementation . 6

12 Future Enhancements 7
13 Author Contact Information 7
14 Appendices 7

14.1 Appendix A: Bill of Materials . 7
14.2 Appendix B: Schematics and PCB Designs . 8

14.2.1 Arduino Nano Circuit Design . 8
14.2.2 Arduino Nano Circuit Design With Extra Pump(s) . 8
14.2.3 Arduino Nano PCB schematic . 9

1

14.2.4 Arduino Nano Implementation Final Board . 10
14.2.5 Raspberry Pi Circuit Design . 11

14.3 Appendix C: Code Samples . 11
14.3.1 Raspberry Pi Python Code: Run all features (one pump installed) 11
14.3.2 Raspberry Pi Python Code: Test DHT11 with OLED display 13
14.3.3 Raspberry Pi Python Code: Test the motor . 14
14.3.4 Arduino Nano Code: Complete 2 pump setup . 14
14.3.5 Arduino Nano Code: OLED display testing . 16

14.4 Appendix D: 3D Printing Files . 17
14.5 Appendix E: Micro-Controller Pin Diagrams . 17

14.5.1 Arduino Nano Pinout . 17
14.5.2 Raspberry Pi Pinout . 18

Abstract

This project addresses the need for automated monitoring and periodic watering in a terrarium
housing small geckos. The terrarium contains live plants and animals which will benefit from consistent
monitoring of humidity and temperature. To ensure the geckos’ well-being during extended absences, an
automated system was developed to monitor and display environmental data. Additionally, the system
includes a timer-based water dispensing mechanism for the plants and geckos. The project explores two
implementations: one utilizing a Raspberry Pi and the other an Arduino Nano micro-controller. Both
implementations involve the creation of a self-contained system adaptable to various scenarios, with a
primary focus on automating environmental data display and periodic plant watering.

1 Introduction

Recently, I acquired two small gecko’s (I caught them roaming about my living room). I created a terrarium
enclosure for them to live, where I have provided them with a few plants, live crickets for food, and a large
hollowed rock which I keep full of water. Every now and then I spray down the plants (to give them water)
as well as filling the water dish. Unfortunately with the approach of a long needed vacation, a need for
automation arose. I cannot leave the water dish for the length of my trip without it evaporating and them
running out of water. Therefore, I decided to create an automated system for keeping their water full and
plants watered. This opportunity serves as the perfect one for re-learning some circuitry skills as well as
developing them further.

At the time of inception for this project, I had a few things laying around (including a Raspberry Pi).
Therefore, a Raspberry Pi implementation was developed. With the desire to simplify the cost of the project
as well as create a standalone system that doesn’t rely on an OS, I explored using an Arduino Nano, and
created an implementation using that as well. The primary goal of this project was both to automate and
care for my gecko’s enclosure while also furthering my skills and knowledge. It was decided (as I had never
done it before) to create a complete integrated circuit (from a bare board and some pre-made components)
for this project.

2 Project Overview

This is a simple project that utilizes an Arduino Nano (or a separate Raspberry Pi implementation) to setup
an automated temperature/humidity monitoring for a terrarium as well as automating watering for filling
a water dish and/or watering plants. The project involves created a self contained system. This system is
highly versatile and the principals and components contained can be modified to fit a variety of situations
and needs.

For more project details, files, and a complete set of supplemental material - see the git repository
here:

https://github.com/torodean/Antonius-Personal/tree/master/TESSA

2

3 Components and Materials

At the heart of this project, some sort of micro-
controller will be needed (i.e. Arduino Nano). This
will store the basic timing and control components
for the various components. These components in-
clude a temperature and humidity sensor (DHT11),
a submersible low voltage water pump, and a display
for output (OLED). the setup for this type of system
is highly configurable and therefore the components
can also vary widely. Basic circuit components will
also be needed.

For testing the system, jumper cables and a bread-
board are recommended. A complete components list
is available for two various/possible setups.

Arduino Setup Components List

� 1 Arduino Nano

� 1 DHT11 Sensor

� 1 SSD1306 OLED Display

� 1 micro 5V submersible pump

� 1 10kΩ resistor

� 1 diode (1N4001-1N4007)

� 1 2N 2222A Transistor (or similar NPN tran-
sistor)

� 1 10×24 PCB

� Wires (varying sizes)

� Soldering kit (Solder Iron, Solder, Flux, etc)

Raspberry Pi Setup Components List

� 1 Raspberry Pi

� 1 DHT11 Sensor

� 1 SSD1306 OLED Display (optional)

� 1 micro 5V submersible pump

� 1 10kΩ resistor

� Wires (varying sizes)

� Jumper cables

Component Descriptions

This project can be accomplished using many differ-
ent components. Below is a list and description of
some of the components used for this specific imple-
mentation. Some components have subtleties in how
they should be implemented. It is recommended to
read documentation on the components before using
them.

DHT11

The DHT11 sensor is a low-cost and easy to use sen-
sor for measuring temperature and humidity levels.
The sensor provides digital output, making it easy
to interface with micro-controllers like Arduino or
Raspberry Pi. It uses a single wire to transmit two
environmental data points in a single package. The
DHT11 has the following features:

� 3 to 5V power and I/O

� 2.5mA max current use during conversion
(while requesting data)

� Good for 20-80% humidity readings with 5%
accuracy

� Good for 0-50◦C temperature readings ±2◦C
accuracy

� No more than 1 Hz sampling rate (once every
second)

� Body size 15.5mm × 12mm × 5.5mm

� 4 pins with 0.1” spacing

DHT11

5V

S
10 kΩ

Figure 1: The DHT11 circuit setup. The GND pin
needs connected to ground. The 5V pin needs con-
nected to a constant 5V DC source. The data pin
needs connected to the proper data channel to read
from. A 10kΩ resistor is connected between the data
pin and voltage pin that serves as a ‘pull-up’ for the
data.

Mini Submersible Water Pump

The pump I found for this project was a micro sub-
mersible mini water pump. It has the following fea-
tures:

� Rated voltage: 3.3V or 5V DC

� No load of water discharge capacity: 100L / H

� Load rated current: 150-250mA, Use: diving
type

3

Pump 5V

Figure 2: The water pump only has two connectors,
one for voltage, and the other for ground.

SSD1306 I2C OLED Display

The display I used for this project is a SSD1306 0.96
inch I2C organic light-emitting diode (OLED) dis-
play. The OLED display doesn’t require a back light
and the pixels only consume energy when on. The
model I am using has 4 pins (Vin, GND, SCL, SDA).
Some features of the display are as follows:

� Resolution: 128 x 64 dot matrix panel

� Support voltage: 3.3V-5V DC

� Wide range of operating temperature: -40◦C to
85◦C

� Embedded Driver IC: SSD1306. Communica-
tion: I2C/IIC Interface, only need two I / O
ports

The I2C driver means the bus consists of two sig-
nals: SDA and SCL. SDA (Serial Data) is the data
signal and SCL (Serial Clock) is the clock signal.

OLED

5V

SCL

SDA

Figure 3: The OLED display has 4 inputs. The
VCC is the power input, GND is ground, SDA is the
serial data connector and SCL is the serial clock.

2N 2222A NPN Transistor

A transistor can be used as a switch by controlling
the flow of current between its collector and emit-
ter terminals. When a small current flows into the
transistor’s base terminal, it allows a larger current
to pass from the collector to the emitter, effectively
acting as an electronic switch that can be turned on
and off based on the base current.

C

E

B

5V

OUT

IN

Figure 4: The 2N 2222A NPN Transistor. The
IN is the triggering 3.3V input signal. The OUT is
connected to the device being powered and is acti-
vated when the IN voltage is powered on. A common
ground should be used among the connected compo-
nents.

Arduino Nano

The Arduino Nano is a compact and versatile micro-
controller board designed for embedded electronics
projects and prototyping. The Nano is known for
its small physical size, making it suitable for applica-
tions with limited space or when a compact design is
essential. The Nano includes a set of digital and ana-
log pins, allowing you to interface with sensors, actu-
ators, and other electronic components. These pins
can be programmed for input or output. It features a
USB connector for easy programming and communi-
cation with a computer. This makes it convenient for
uploading code and debugging. It is programmed us-
ing the Arduino IDE, which provides a user-friendly
interface for writing, uploading, and debugging code.
A large community and extensive libraries are avail-
able to simplify development. Like other Arduino
boards, the Nano is open-source hardware and soft-
ware. This means that the design files, schematics,
and software are freely available for modification and
customization.

Some features of the arduino nano that are im-
portant for this project are as follows:

� High-performance low-power 8-bit processor

� Has a 5V DC output pin.

� Has multiple programmable I/O pins.

� Has SDA and SCL connections for I2C commu-
nication.

1This is important because the newer versions of the Arduino IDE are not pre-built for the ARM architecture.

4

Raspberry Pi

The Raspberry Pi is a versatile and powerful single-
board computer designed for various computing
and electronics projects. The Raspberry Pi is
equipped with a high-performance ARM-based1 pro-
cessor (varies by model) that provides the process-
ing power needed for a wide range of applications.
It features a set of General-Purpose Input/Output
(GPIO) pins, which can be programmed for digi-
tal input and output as well as hardware interfac-
ing. These pins are crucial for connecting sensors,
actuators, and other components. The Raspberry Pi
supports communication protocols like I2C and SPI,
allowing you to connect and communicate with a va-
riety of sensors and devices easily. Like Arduino, the
Raspberry Pi is open-source hardware and software.
It has a large and active community that offers sup-
port, tutorials, and a wide range of software packages.

Some Raspberry Pi models include built-in Wi-Fi
and Bluetooth capabilities, making wireless commu-
nication and IoT projects convenient. The Raspberry
Pi has an HDMI output for connecting to displays,
making it suitable for applications that require visual
feedback. Between these two features, a lot of possi-
bilities open up with allowing the DHT11 sensor to
be displayed on Pi screen rather than an OLED as
well as potentially being able to monitor it remotely.

Some features of the Raspberry Pi has that are
important for this project are as follows:

� Has a 5V DC output pin.

� Has multiple programmable GPIO pins.

� Has SDA and SCL connections for I2C commu-
nication.

4 System Architecture

Given the two approaches outlined below for this
project, there are a few things of importance to note
when setting up and working with the various compo-
nents. For the Raspberry Pi implementation, I used
an Ubuntu 22.04.2 LTS install. Using the Raspian
OS, things may vary slightly but shouldn’t differ
much.

When working with and programming the Ar-
duino Nano, I used the Raspberry Pi system as my
working/development machine. As an afterthought,
this is not recommended. The Raspberry Pi uses an
ARM processor architecture which requires a few ex-
tra steps for setting up the Arduino IDE. After set-
ting this up on a separate laptop, it was much easier
to get things going (as well as things working a lot

faster on a faster machine) as far as setup and devel-
opment.

5 Raspberry Pi Implementa-
tion

Circuit Diagram and Wiring

See figure 9 in section 14.2.

Software Setup

1. Setup and Install Python3 for development

� sudo apt-get install python3

� sudo apt-get install python3-pip

� sudo apt-get install build-essential
python3-dev

2. Setup and Install git

� sudo apt-get install git-core

3. Install DHT11 Drivers

� git clone https://github.com/adafruit/
Adafruit Python DHT.git

� cd Adafruit Python DHT

� sudo python3 setup.py install

4. Install OLED Drivers

� THIS SECTION IN PROGRESS.

� sudo python3 setup.py install

Python Code

For testing, two separate programs were created. One
which tests the DHT11 sensor and displays the out-
put to the OLED and one which tests the pump tim-
ing. After these were working, another python script
was made which combines these functions into one
script. These can all be seen in section 14.3.

Testing and Troubleshooting

I did not really experience any issues with this setup,
so I have no troubleshooting advice to give here.

5

6 Arduino Nano Implementa-
tion

This is the implementation using the Arduino Nano
as the micro-controller. This setup is completely
standalone and does not require a desktop monitor
hookup once finished. Rather, it displays all the in-
formation on the OLED display and runs the pump
based on a pre-programmed timer. A separate ma-
chine will be required to program the Arduino Nano.
I recommend using a laptop or desktop running Linux
(I have not tried this on a windows machine). If
a Raspberry Pi is used as the development machine
(this is what I used), a few extra steps will be needed
to get the Arduino IDE software functioning.

Circuit Diagram and Wiring

See figure 5 and figure 6 in section 14.2 for circuit
diagrams. For a PCB schematic, see figure 8.

Software Setup

1. Install Arduino IDE

� The steps for this will vary depending on
the development machine.

2. Install DHT11 Drivers

� This should show as “” in the Arduino IDE
Library Manager

3. Install SSD1306 Drivers

� This should show as “Adafruit SSD1306”
in the Arduino IDE Library Manager

Arduino Code

For testing, three separate programs were created.
One which tests the OLED display on it’s own, and
one which tests the DHT11 sensor and displays the
output to the OLED and one which tests the pump
timing. After these were working, the latter two
scripts were combined with the OLED code to add
these functions into one script. The first program
and final can be seen in section 14.3. Unfortunately,
I forgot to save the code that only tested the DHT11
sensor and displays the output to the OLED as well
as the simple timing code. Fortunately, those were
quite simple and not needed.

Testing and Troubleshooting

If you are testing the setup using a breadboard, I
recommend making sure the Arduino Nano jumper
pins (at least the ones being used) are soldered on.
If they are not soldered on, some of the jumper pins
may not have a good connection and things can work
unexpectedly.

7 3D Printed Enclosure

At the time of creating this project, no 3D printed
enclosure was designed. This is, however, a plan for
the future to keep everything protected and enclosed.

8 Power Supply

For the Raspberry Pi implementation, all power
comes from the Raspberry Pi itself, therefore no ex-
tra power sources are needed2. For the Arduino Nano
implementation, the power comes from a dedicated
USB powered cable. This can be accomplished in
any of the usual ways that a USB device is charged
(I would not recommend trying fast chargers as I have
no tested with any of those).

9 Usage and Operation

THIS SECTION IN PROGRESS.

10 Maintenance and Trou-
bleshooting

THIS SECTION IN PROGRESS.

11 Full Enclosure Setup

The complete setup and implementation will vary for
every setup. This is simply what I have used and
designed for my specific setup and needs.

Equipment and Tools

THIS SECTION IN PROGRESS.

Setup and Implementation

THIS SECTION IN PROGRESS.

2If this project is adapted to use a more powerful pump, this will of course change.

6

12 Future Enhancements

There are many additions or future enhancements
that can be made to this system. These can include
(but are not limited to) the following:

� Add in an override switch for activating the
pump outside of the normal programmed tim-
ing for the Arduino Nano setup.

� External monitoring for the Arduino implemen-
tation would be nice. Perhaps some sort of

wireless signal output that can be monitored
to display status messaging.

13 Author Contact Informa-
tion

If you have any questions or comments about this
project, you can find the authors contact information
on his website at the following link:

https://torodean.github.io

References

[1] DHT11: https://www.adafruit.com/product/386

[2] SSD1306 Datasheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf

[3] Arduino Nano: https://docs.arduino.cc/hardware/nano

14 Appendices

These Appendices include extra data and supplemental material for the sections above.

Appendix A: Bill of Materials

Most of the components for this project were purchased in kits of other components. Therefore, this is an
approximate (overestimate in most cases) cost of components for items used in this project.

� Raspberry Pi Implementation

– Raspberry Pi 4: $70

– Mini Water Pump: $2

– DHT11 sensor: $2

– (optional) OLED display: $3

– Jumper Cables/wiring: $2

– Resistor/Transistor/Diode: $1

– Breadboard: $3

– Total: $83

� Arduino Nano Implementation

– Arduino Nano V3.0: $6

– Mini Water Pump: $2

– DHT11 sensor: $2

– OLED display: $3

– 10×24 blank PCB: $1

– Jumper Cables/wiring: $2

– Resistor/Transistor/Diode: $1

– (optional for testing) Breadboard: $3

– Soldering iron, wire cutters, solder, flux,
etc: Variable

– Total: $20

7

Appendix B: Schematics and PCB Designs

Arduino Nano Circuit Design

DHT11

5V Pump

OLED

11
10 kΩ

C E

B

12

A5

A4

Figure 5: The Circuit diagram for the Arduino Nano setup. All grounds must be common. The A4 and A5 pins correspond
to the Arduino Nano’s SDA/SCL pins and should not be modified. The other circle connectors 11 and 12 correspond to the
I/O pins on the Nano and can be changed to any of the other I/O pins if desired (the code and circuitry would need updated
appropriately).

Arduino Nano Circuit Design With Extra Pump(s)

DHT11

5V Pump 1

Pump 2

OLED

11
10 kΩ

C E

B

C E

B

12

4

A5

A4

Figure 6: The Circuit diagram for the Arduino Nano setup. All grounds must be common. The A4 and A5 pins correspond
to the Arduino Nano’s SDA/SCL pins and should not be modified. The other circle connectors 4, 11 and 12 correspond to the
I/O pins on the Nano and can be changed to any of the other I/O pins if desired (the code and circuitry would need updated
appropriately).

8

Arduino Nano PCB schematic

Figure 7: The Circuit PCB schematic for the Arduino Nano setup (one pump displayed). The colored lines represent soldered
connections or wires. The yellow circles indicate wires on the other side of the board. The green dots are the placement of the
Arduino Nano.

9

Arduino Nano Implementation Final Board

Figure 8: The Circuit PCB board for the Arduino Nano setup (two pumps supported). Front and back view

10

Raspberry Pi Circuit Design

DHT11

5V Pump

OLED

17
10 kΩ

C E

B

18

2

3

OPTIONAL

OLED

Figure 9: The Circuit diagram for the Raspberry Pi setup. All grounds must be common. The OLED section is optional
and can be omitted if the user would rather monitor from the same display as the Raspberry Pi. the circles with numbers
correspond to the GPIO pins on the Raspberry Pi. Pins 2 and 3 are the SDA/SCL pins respectively and should be kept as
they are but the others can be used with other GPIO pins if desired (the code will need updated appropriately).

Appendix C: Code Samples

Raspberry Pi Python Code: Run all features (one pump installed)

1 import Adafruit_DHT

2 import Adafruit_SSD1306

3 from PIL import Image , ImageDraw , ImageFont

4 import RPi.GPIO as GPIO

5 import time

6 import threading

7

8 # Set the GPIO mode to BCM

9 GPIO.setmode(GPIO.BCM)

10

11 # Define the GPIO pin you want to use

12 gpio_pin = 18 # Replace with the actual GPIO pin number

13

14 # Set the GPIO pin as an output

15 GPIO.setup(gpio_pin , GPIO.OUT)

16

17 # Constants for DHT11 sensor and GPIO pin

18 DHT_SENSOR = Adafruit_DHT.DHT11

19 DHT_PIN = 4

20

21 # Initialize the OLED display

22 disp = Adafruit_SSD1306.SSD1306_128_64(rst=None)

23 disp.begin ()

24

25 # Clear the display

26 disp.clear ()

11

27 disp.display ()

28

29 # Create a blank image for drawing

30 width = disp.width

31 height = disp.height

32 image = Image.new("1", (width , height))

33

34 # Create a drawing object

35 draw = ImageDraw.Draw(image)

36

37 # Load a font

38 font = ImageFont.load_default ()

39

40 # Initialize the device status variable

41 device_running = False

42

43 def device_ON(t=5):

44 """

45 Turns the device on for t seconds.

46 """

47 global device_running

48 # Set the device status to running

49 device_running = True

50

51 # Turn on the 5V output

52 GPIO.output(gpio_pin , GPIO.HIGH)

53 print("Device is ON")

54

55 # Wait for some time (you can perform other tasks here)

56 time.sleep(t) # Wait for t seconds

57

58 # Turn off the 5V output

59 GPIO.output(gpio_pin , GPIO.LOW)

60 print("Device is OFF")

61

62 # Set the device status to not running

63 device_running = False

64

65 def device_control_thread ():

66 while True:

67 device_ON ()

68 time.sleep (30) # Run device_ON () every 30 seconds

69

70 # Create a separate thread for device control

71 device_thread = threading.Thread(target=device_control_thread)

72 device_thread.daemon = True # This allows the thread to exit when the main

program exits

73 device_thread.start()

74

75 try:

76 while True:

77 # Read data from the DHT11 sensor

78 humidity , temperature = Adafruit_DHT.read(DHT_SENSOR , DHT_PIN)

79

80 # Check if data is valid

81 if humidity is not None and temperature is not None:

82 # Clear the previous content on the OLED display

83 draw.rectangle ((0, 0, width , height), outline=0, fill =0)

84

12

85 # Format and display the temperature and humidity

86 message = f"Temp: {temperature :.1f}C\nHumidity: {humidity :.1f}%"

87 draw.text((5, 5), message , font=font , fill =255)

88

89 # Display the device status

90 status_message = "Pump ACTIVE" if device_running else "Pump IDLE"

91 draw.text((5, height - 15), status_message , font=font , fill =255)

92

93 # Display the updated content on the OLED

94 disp.image(image)

95 disp.display ()

96 except KeyboardInterrupt:

97 pass

98 finally:

99 # Clear the display and turn it off

100 disp.clear()

101 disp.display ()

102 # Clean up GPIO configuration

103 GPIO.cleanup ()

Raspberry Pi Python Code: Test DHT11 with OLED display

1 import Adafruit_DHT

2 import Adafruit_SSD1306

3 from PIL import Image , ImageDraw , ImageFont

4

5 # Constants for DHT11 sensor and GPIO pin

6 DHT_SENSOR = Adafruit_DHT.DHT11

7 DHT_PIN = 4

8

9 # Initialize the OLED display

10 disp = Adafruit_SSD1306.SSD1306_128_64(rst=None)

11 disp.begin ()

12

13 # Clear the display

14 disp.clear ()

15 disp.display ()

16

17 # Create a blank image for drawing

18 width = disp.width

19 height = disp.height

20 image = Image.new("1", (width , height))

21

22 # Create a drawing object

23 draw = ImageDraw.Draw(image)

24

25 # Load a font

26 font = ImageFont.load_default ()

27

28 try:

29 while True:

30 # Read data from the DHT11 sensor

31 humidity , temperature = Adafruit_DHT.read(DHT_SENSOR , DHT_PIN)

32

33 # Check if data is valid

34 if humidity is not None and temperature is not None:

35 # Clear the previous content on the OLED display

36 draw.rectangle ((0, 0, width , height), outline=0, fill =0)

13

37

38 # Format and display the temperature and humidity

39 message = f"Temp: {temperature :.1f}C\nHumidity: {humidity :.1f}%"

40 draw.text((5, 5), message , font=font , fill =255)

41

42 # Display the updated content on the OLED

43 disp.image(image)

44 disp.display ()

45 except KeyboardInterrupt:

46 pass

47 finally:

48 # Clear the display and turn it off

49 disp.clear()

50 disp.display ()

Raspberry Pi Python Code: Test the motor

1 import RPi.GPIO as GPIO

2 import time

3

4 # Set the GPIO mode to BCM (Broadcom SOC channel)

5 GPIO.setmode(GPIO.BCM)

6

7 # Set the pin 12 (GPIO18) as an output

8 gpio_pin = 18 # This corresponds to GPIO18

9 GPIO.setup(gpio_pin , GPIO.OUT)

10

11 try:

12 # Turn on the GPIO pin

13 GPIO.output(gpio_pin , GPIO.HIGH)

14 print(f"GPIO pin {gpio_pin} is turned ON.")

15

16 # Run for 5 seconds

17 time.sleep (5)

18

19 # Turn off the GPIO pin

20 GPIO.output(gpio_pin , GPIO.LOW)

21 print(f"GPIO pin {gpio_pin} is turned OFF.")

22

23 except KeyboardInterrupt:

24 # Clean up GPIO configuration on Ctrl+C

25 GPIO.cleanup ()

26

27 finally:

28 # Clean up GPIO configuration on program exit

29 GPIO.cleanup ()

Arduino Nano Code: Complete 2 pump setup

1 #include <Wire.h> /*Wire Communication library */

2 #include <Adafruit_GFX.h>

3 #include <Adafruit_SSD1306.h> /*OLED Adafruit library */

4 #include <Adafruit_Sensor.h>

5 #include <DHT.h> /*DHT sensor library */

6

7 #define SCREEN_WIDTH 128 /*128 width OLED in pixels */

14

8 #define SCREEN_HEIGHT 64 /*64 height OLED in pixel*/

9

10 Adafruit_SSD1306 display(SCREEN_WIDTH , SCREEN_HEIGHT , &Wire , -1); /*I2C

Display initialization */

11

12 #define DHTPIN 12 /* DHT11 signal pin*/

13 #define DHTTYPE DHT11

14 #define PUMPPIN1 10 /*Pump 1 signal pin*/

15 #define PUMPPIN2 4 /*Pump 2 signal pin*/

16

17 DHT dht(DHTPIN , DHTTYPE);

18

19 void setup () {

20 pinMode(PUMPPIN1 , OUTPUT);

21 pinMode(PUMPPIN2 , OUTPUT);

22 Serial.begin (9600);

23 dht.begin();

24 if(! display.begin(SSD1306_SWITCHCAPVCC , 0x3C)) { /*OLED I2C Address */

25 Serial.println(F("SSD1306 allocation failed"));

26 for (;;);

27 }

28 // Show initial display buffer contents on the screen --

29 // the library initializes this with an Adafruit splash screen.

30 display.display ();

31 delay (2000);

32 display.clearDisplay ();

33 display.setTextColor(WHITE); /*Text color */

34 }

35

36 long count = 0;

37

38 // The time to keep the first pump on.

39 long onTime = 30;

40

41 // The time to keep the second pump on.

42 long onTime2 = 30;

43

44 // The delay for turning the pump on.

45 long delayTime = 24L*60L*60L - onTime - onTime2; // one day - on times.

46

47 void loop() {

48 delay (1000);

49 count ++;

50 if (count >= delayTime + onTime + onTime2) {

51 digitalWrite(PUMPPIN2 , LOW);

52 displayText(false);

53 count = 0;

54 } else if(count >= delayTime + onTime){

55 digitalWrite(PUMPPIN2 , HIGH);

56 digitalWrite(PUMPPIN1 , LOW);

57 displayText(true);

58 } else if(count >= delayTime){

59 digitalWrite(PUMPPIN1 , HIGH);

60 displayText(true);

61 } else {

62 displayText(false);

63 }

64 }

65

15

66 void displayText(bool pumpStatus){

67 float t = dht.readTemperature (); /*read temp*/

68 float h = dht.readHumidity (); /*read humidity */

69 if (isnan(h) || isnan(t)) {

70 Serial.println("Failed to read from DHT sensor!");

71 }

72 display.clearDisplay (); /* clear display */

73 display.setTextSize (1); /*OLED font size*/

74 display.setCursor (0,0);

75 display.print("Temp: ");

76 display.print(t); /* print temp in Celsius */

77 display.print(" ");

78 display.cp437(true);

79 display.write (167);

80 display.print("C");

81 display.setCursor(0, 10);

82 display.print("Humidity: ");

83 display.print(h); /* prints humidity percentage */

84 display.print(" %");

85 if (pumpStatus) {

86 display.setCursor(0, 35);

87 display.print("Pump ACTIVE");

88 } else {

89 display.setCursor(0, 35);

90 display.print("Pump IDLE");

91 }

92 display.display ();

93 }

Arduino Nano Code: OLED display testing

1 #include <Wire.h>

2 #include <Adafruit_GFX.h>

3 #include <Adafruit_SSD1306.h>

4

5 #define SCREEN_WIDTH 128 /*128 width of OLED in pixels */

6 #define SCREEN_HEIGHT 64 /*64 height of OLED in pixels */

7

8 Adafruit_SSD1306 display(SCREEN_WIDTH , SCREEN_HEIGHT , &Wire , -1); /*OLED

display connected at I2C pins (SDA , SCL)*/

9

10 void setup () {

11 Serial.begin (115200); /*Baud rate UART communication */

12 if(! display.begin(SSD1306_SWITCHCAPVCC , 0x3C)) { /*I2C Address at which

OLED will communicate */

13 Serial.println(F("SSD1306 allocation failed"));

14 for (;;);

15 }

16 delay (2000);

17 display.clearDisplay (); /* Clear display */

18 display.setTextSize (2); /*OLED screen text size defined */

19 display.setTextColor(WHITE); /*OLED screen text color */

20 display.setCursor(0, 10); /* Display static text*/

21 display.println("HELLO WORLD!!"); /* String to represent on OLED display

*/

22 display.display ();

23 }

24

16

25 void loop() {}

Appendix D: 3D Printing Files

THIS SECTION IN PROGRESS.

Appendix E: Micro-Controller Pin Diagrams

Arduino Nano Pinout

17

Raspberry Pi Pinout

18

