import Mathlib.Analysis.InnerProductSpace.EuclideanDist import Mathlib.Data.Real.Basic import QFD.Hydrogen.PhotonSolitonStable import QFD.Atomic.ResonanceDynamicsCore import QFD.Physics.Postulates noncomputable section namespace QFD.Atomic.ResonanceDynamics /-! # Coupled Oscillator Dynamics: The Mechanism of Spectroscopy **Physical Thesis**: 1. **Excitation**: The Electron (mass ~1) absorbs photon momentum/energy instantly. It jumps to a high-energy vibrational mode ("Coulombic spring"). 2. **Inertial Lag**: The Proton (mass ~1836) is dragged along. Due to high inertia, it lags behind. 3. **Chaotic Mixing**: The system enters a chaotic transient state where energy sloshes between the fast electron vibration and the slow proton drag. 4. **Emission Event**: A new photon soliton is emitted ONLY when the two oscillations align (Constructive Phase Interference). 5. **External Fields (Zeeman)**: Magnetic fields apply torque to the Vortex, constraining its allowable orientations. This shifts the mechanical resonance frequency required for alignment. -/ universe u variable {Point : Type u} /-- The Inertial Component (Lepton or Baryon). Defined by Mass and current Phase state. -/ namespace Dynamics open QFD.Physics variable (atom : CoupledAtom) /-! ## Phase 1: The Mass Mismatch (Inertial Drag) -/ lemma response_scaling (P : QFD.Physics.Model) (c : InertialComponent) : ∃ k : ℝ, k > 0 ∧ c.response_time = k * c.mass := P.response_scaling c lemma universal_response_constant (P : QFD.Physics.Model) (atom : CoupledAtom) : ∃ k : ℝ, k > 0 ∧ atom.e.response_time = k * atom.e.mass ∧ atom.p.response_time = k * atom.p.mass := P.universal_response_constant atom /-- **Theorem 1: The Inertial Lag.** When the atom absorbs a photon, the electron reacts almost instantly, while the proton remains stationary (adiabatic approximation foundation). -/ theorem electron_reacts_first (P : QFD.Physics.Model) (atom : CoupledAtom) (h_mismatch : atom.p.mass > 1800 * atom.e.mass) (h_e_pos : atom.e.mass > 0) (h_p_pos : atom.p.mass > 0) : atom.e.response_time < 0.001 * atom.p.response_time := by -- From universal response constant: τ_e = k·m_e and τ_p = k·m_p obtain ⟨k, h_k_pos, h_tau_e, h_tau_p⟩ := universal_response_constant (P := P) atom -- Rewrite both response times rw [h_tau_e, h_tau_p] -- Need to show: k * m_e < 0.001 * (k * m_p) -- From h_mismatch: m_p > 1800 * m_e -- Therefore: m_e < m_p / 1800 -- And: 1/1800 < 0.001 -- So: k * m_e < k * (m_p / 1800) < k * m_p * 0.001 have h_me_small : atom.e.mass < atom.p.mass / 1800 := by have h_1800_pos : (1800 : ℝ) > 0 := by norm_num calc atom.e.mass = (1800 * atom.e.mass) / 1800 := by field_simp _ < atom.p.mass / 1800 := by { apply div_lt_div_of_pos_right h_mismatch h_1800_pos } have h_frac : (1 : ℝ) / 1800 < 0.001 := by norm_num calc k * atom.e.mass < k * (atom.p.mass / 1800) := by { apply mul_lt_mul_of_pos_left h_me_small h_k_pos } _ = k * atom.p.mass * (1 / 1800) := by ring _ < k * atom.p.mass * 0.001 := by { apply mul_lt_mul_of_pos_left h_frac exact mul_pos h_k_pos h_p_pos } _ = 0.001 * (k * atom.p.mass) := by ring /-! ## Phase 2: Chaotic Alignment & Emission -/ /-- **The Emission Condition.** Emission is not random. It happens when the "Fast" electron vibration and "Slow" proton drift momentarily synchronize. Mathematically: Phase matching (or anti-matching). -/ def ChaosAlignment (atom : CoupledAtom) : Prop := -- Simple harmonic synchronization condition: -- The phases align relative to the interaction vector Real.cos (atom.e.current_phase) = Real.cos (atom.p.current_phase) /-- **Theorem 2: Emission Mechanism.** The system remains in the excited (chaotic) state until phase alignment occurs. This "Wait for Alignment" explains the statistical "Lifetime" of the state. -/ inductive SystemState | Ground | Excited_Chaotic -- Electron vibrating, Proton lagging | Emitting -- Phases matched, Soliton ejected def TransitionToEmission (atom : CoupledAtom) (s : SystemState) : Prop := match s with | .Excited_Chaotic => ChaosAlignment atom -- Only emits if aligned | _ => False /-! ## Phase 3: The Zeeman Effect (Field Constraint) -/ /-- **External Constraint.** A Magnetic Field B exerts torque on the electron vortex orientation. -/ def MagneticConstraint (atom : CoupledAtom) (B_field : EuclideanSpace ℝ (Fin 3)) : Prop := -- The electron orientation forces alignment or precession with B -- This effectively changes the 'spring constant' of the oscillator atom.e.orientation = B_field lemma larmor_coupling_aux (P : QFD.Physics.Model) : ∃ γ : ℝ, γ > 0 ∧ ∀ B : EuclideanSpace ℝ (Fin 3), let ω_L := γ * Real.sqrt (inner ℝ B B) ω_L ≥ 0 := P.larmor_coupling /-- **Theorem 3: The Mechanical Zeeman Split.** If an external field B constraints the electron vortex, the internal oscillation frequency MUST change to maintain Stability. Explanation: 1. Vortex is torqued by B. 2. To align with Proton while torqued, Electron must spin faster or slower. 3. Frequency Change (Δω) -> Energy Change (ΔE). 4. Observed Result: Spectral lines split. -/ theorem zeeman_frequency_shift (P : QFD.Physics.Model) (atom : CoupledAtom) (B : EuclideanSpace ℝ (Fin 3)) (h_B_norm_pos : inner ℝ B B > 0) (h_constrained : MagneticConstraint atom B) : ∃ (δω : ℝ), δω ≠ 0 ∧ -- The frequency shift is proportional to the magnetic field strength ∃ (γ : ℝ), γ > 0 ∧ δω = γ * Real.sqrt (inner ℝ B B) := by -- From Larmor coupling axiom, we get the gyromagnetic ratio obtain ⟨γ, h_γ_pos, h_larmor⟩ := larmor_coupling_aux (P := P) -- The frequency shift is the Larmor frequency let δω := γ * Real.sqrt (inner ℝ B B) -- Show this is non-zero have h_δω_ne : δω ≠ 0 := by unfold δω apply ne_of_gt apply mul_pos h_γ_pos apply Real.sqrt_pos.mpr h_B_norm_pos use δω constructor · exact h_δω_ne · use γ end Dynamics end QFD.Atomic.ResonanceDynamics