/- Proof: Black Hole Saturation vs. Singularity Theorem: bounded_density Description: Proves that the quartic term in the QFD potential (V ~ Beta * Psi^4) ensures that the field density remains finite everywhere, even at the center of a black hole. -/ import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Data.Real.Basic import Mathlib.Tactic.Linarith import Mathlib.Tactic.NormNum import Mathlib.Tactic.Positivity namespace QFD_Proofs /-- The QFD Potential V(ψ) = -ψ^2 + β*ψ^4 Includes a quartic (ψ^4) term which acts as a 'repulsive wall' at high density. -/ noncomputable def qfd_potential (β : ℝ) (ψ : ℝ) : ℝ := - ψ^2 + β * ψ^4 /-- Theorem: The potential is coercive (goes to infinity as |ψ| -> infinity). Therefore, any state with finite Energy E < V_limit must have bounded ψ. Proof: We show V(ψ) = β*ψ⁴ - ψ² → ∞ as |ψ| → ∞, which bounds the sublevel set. Key: V(ψ) = ψ²(β*ψ² - 1), and for |ψ| > 1/√β, this is positive and growing. -/ theorem bounded_density (β : ℝ) (E_max : ℝ) (h_beta : β > 0) : ∃ B : ℝ, ∀ ψ : ℝ, qfd_potential β ψ ≤ E_max → |ψ| < B := by -- Choose B = max of several bounds to ensure V(B) > E_max -- Simple choice: B = (|E_max| + 4) / β + 2 use (abs E_max + 4) / β + 2 intro ψ h_pot by_contra h_unbounded push_neg at h_unbounded -- We have |ψ| ≥ B = (|E_max| + 4) / β + 2 have h_big : |ψ| ≥ (abs E_max + 4) / β + 2 := h_unbounded -- Step 1: |ψ| ≥ 2 have h_psi_ge_2 : |ψ| ≥ 2 := by have h_pos : (abs E_max + 4) / β ≥ 0 := by positivity linarith -- Step 2: ψ² ≥ 4 have h_psi_sq_ge_4 : ψ^2 ≥ 4 := by have h_sq_abs := sq_abs ψ nlinarith [h_psi_ge_2] -- Step 3: ψ⁴ ≥ 4*ψ² (since ψ² ≥ 4) have h_psi_fourth : ψ^4 ≥ 4 * ψ^2 := by have : ψ^4 = (ψ^2)^2 := by ring nlinarith [h_psi_sq_ge_4] -- Step 4: |ψ|² ≥ (|E_max| + 4) / β (from h_big) have h_psi_sq_from_big : ψ^2 ≥ (abs E_max + 4) / β := by have h_sq_abs := sq_abs ψ nlinarith [h_big] -- Step 5: β * ψ² ≥ |E_max| + 4 have h_beta_psi_sq : β * ψ^2 ≥ abs E_max + 4 := by have h1 : β * ((abs E_max + 4) / β) = abs E_max + 4 := by field_simp nlinarith [h_psi_sq_from_big, h_beta] -- Step 6: Show V(ψ) > E_max -- V(ψ) = -ψ² + β*ψ⁴ = ψ²*(β*ψ² - 1) -- Since β*ψ² ≥ |E_max| + 4 and ψ² ≥ 4, -- ψ²*(β*ψ² - 1) ≥ 4*(|E_max| + 4 - 1) = 4*(|E_max| + 3) > E_max have h_V_big : qfd_potential β ψ > E_max := by unfold qfd_potential -- -ψ² + β*ψ⁴ = ψ²*(β*ψ² - 1) have h_factor : -ψ^2 + β * ψ^4 = ψ^2 * (β * ψ^2 - 1) := by ring rw [h_factor] -- β*ψ² - 1 ≥ |E_max| + 3 have h1 : β * ψ^2 - 1 ≥ abs E_max + 3 := by linarith [h_beta_psi_sq] -- ψ²*(β*ψ² - 1) ≥ 4*(|E_max| + 3) have h1_pos : β * ψ^2 - 1 ≥ 0 := by linarith [h1, abs_nonneg E_max] have h_psi_sq_pos : ψ^2 ≥ 0 := sq_nonneg ψ have h_emax_pos : abs E_max + 3 ≥ 0 := by linarith [abs_nonneg E_max] have h2 : ψ^2 * (β * ψ^2 - 1) ≥ 4 * (abs E_max + 3) := by have hmul := mul_le_mul h_psi_sq_ge_4 h1 h_emax_pos h_psi_sq_pos linarith -- 4*(|E_max| + 3) = 4*|E_max| + 12 > E_max (since |E_max| ≥ -E_max) have h_abs := abs_nonneg E_max have h_abs2 : E_max ≤ abs E_max := le_abs_self E_max nlinarith [h2, h_abs, h_abs2] linarith end QFD_Proofs