import QFD.Charge.Vacuum import QFD.Charge.Potential import Mathlib.Analysis.Calculus.Deriv.Basic noncomputable section namespace QFD.Charge open Real Filter open scoped Topology /-! # Gate C-L3: Virtual Force (Derivation of Coulomb's Law) -/ /-- Charge density field definition. -/ def charge_density_field (ctx : VacuumContext) (sign : PerturbationSign) (k : ℝ) (r : ℝ) : ℝ := ctx.rho_vac + (sign_value sign) * (k / r) /-- Time Metric field definition. -/ def charge_metric_field (ctx : VacuumContext) (sign : PerturbationSign) (k : ℝ) (r : ℝ) : ℝ := time_metric ctx (charge_density_field ctx sign k r) /-- **Theorem C-L3A**: Inverse Square Force Law. -/ theorem inverse_square_force (ctx : VacuumContext) (sign : PerturbationSign) (k : ℝ) (r : ℝ) (hr : r ≠ 0) (hk : 0 < k) : deriv (charge_metric_field ctx sign k) r = (sign_value sign) * (ctx.alpha * k) / r ^ 2 := by unfold charge_metric_field time_metric charge_density_field -- We are deriving: 1 - α * (ρ_vac + s * (k/r) - ρ_vac) -- Simplifies to: 1 - α * s * k * r⁻¹ -- Use Filter.EventuallyEq with a local neighborhood equality to simplify BEFORE deriving have h_simp : (fun x => 1 - ctx.alpha * (ctx.rho_vac + sign_value sign * (k / x) - ctx.rho_vac)) =ᶠ[𝓝 r] (fun x => 1 - (ctx.alpha * sign_value sign * k) * x⁻¹) := by filter_upwards with x ring rw [h_simp.deriv_eq] -- Now derive the simplified form: 1 - C * x⁻¹ using HasDerivAt have h_const : HasDerivAt (fun _ : ℝ => (1 : ℝ)) 0 r := hasDerivAt_const r (1 : ℝ) have h_inv : HasDerivAt (fun x : ℝ => x⁻¹) (-1 / r^2) r := by simpa using (hasDerivAt_id r).inv hr have h_scaled : HasDerivAt (fun x : ℝ => (ctx.alpha * sign_value sign * k) * x⁻¹) ((ctx.alpha * sign_value sign * k) * (-1 / r^2)) r := by simpa using h_inv.const_mul (ctx.alpha * sign_value sign * k) have h_main : HasDerivAt (fun x : ℝ => 1 - (ctx.alpha * sign_value sign * k) * x⁻¹) (0 - (ctx.alpha * sign_value sign * k) * (-1 / r^2)) r := by simpa using h_const.sub h_scaled have := h_main.deriv simp only [sub_zero, neg_mul, mul_neg, neg_neg] at this convert this using 1 field_simp [hr] ring /-- **Theorem C-L3B**: Interaction Sign Rule. -/ theorem interaction_sign_rule (sign1 sign2 : PerturbationSign) : let product := (sign_value sign1) * (sign_value sign2) (sign1 = sign2 → product = 1) ∧ (sign1 ≠ sign2 → product = -1) := by constructor · intro h subst h cases sign1 <;> simp [sign_value] · intro h cases sign1 <;> cases sign2 · contradiction · simp [sign_value] · simp [sign_value] · contradiction /-- **Theorem C-L3C**: Coulomb Force. -/ theorem coulomb_force (ctx : VacuumContext) (sign1 sign2 : PerturbationSign) (k : ℝ) (r : ℝ) (hr : r ≠ 0) (hk : 0 < k) : ∃ C : ℝ, deriv (charge_metric_field ctx sign1 k) r * (sign_value sign2) = C * ((sign_value sign1) * (sign_value sign2)) / r ^ 2 ∧ C = ctx.alpha * k := by use ctx.alpha * k refine ⟨?_, rfl⟩ rw [inverse_square_force ctx sign1 k r hr hk] field_simp end QFD.Charge