import QFD.Gravity.TimeRefraction import QFD.Gravity.GeodesicForce import QFD.Nuclear.TimeCliff import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Data.Real.Basic import Mathlib.Tactic noncomputable section namespace QFD.Classical open Real open QFD.Gravity open QFD.Nuclear /-! # Energy Conservation & Bound States This file formalizes the classical energetics of the QFD Time Refraction mechanism. It bridges the gap between the "Force" laws and "Motion" (Dynamics). Key Concepts: 1. **Total Energy**: E = K + V = (1/2)v² + V(r) 2. **Conservation**: If F = -∇V and F = ma, then dE/dt = 0. 3. **Gravity**: Escape velocity and orbital bounds (algebraic proof). 4. **Nuclear**: Binding energy and potential well depth. ## Design We use a "1D Radial Proxy" model where `r(t)` is the radial distance. All proofs use explicit `HasDerivAt` witnesses, avoiding Filters/Topology. -/ section GeneralMechanics variable {I : Set ℝ} -- Time interval (usually Set.univ) /-- Total Energy (per unit mass). K = (1/2)v² V = Potential at r -/ def totalEnergy (V : ℝ → ℝ) (v : ℝ) (r : ℝ) : ℝ := 0.5 * v ^ 2 + V r /-- **Theorem C-1**: Conservation of Energy. If a particle obeys Newton's Law (a = -V'(r)), then dE/dt = 0. -/ theorem energy_conservation (V : ℝ → ℝ) (r : ℝ → ℝ) (v : ℝ → ℝ) (t : ℝ) (V' : ℝ) (_r_pos : ℝ) (a : ℝ) -- Hypotheses: (hv : HasDerivAt r (v t) t) -- v is derivative of r (ha : HasDerivAt v a t) -- a is derivative of v (hV : HasDerivAt V V' (r t)) -- Potential is differentiable at current position (hNewton : a = -V') -- Newton's Second Law (Force = -Grad V) : HasDerivAt (fun t => totalEnergy V (v t) (r t)) 0 t := by -- 1. Differentiate Kinetic Energy: K(t) = 0.5 * v(t)^2 -- dK/dt = 0.5 * 2 * v * a = v * a have hK : HasDerivAt (fun t => 0.5 * (v t)^2) (v t * a) t := by convert (ha.pow 2).const_mul 0.5 using 1 ring -- 2. Differentiate Potential Energy: P(t) = V(r(t)) -- dP/dt = V'(r) * r'(t) = V' * v have hP : HasDerivAt (fun t => V (r t)) (V' * v t) t := HasDerivAt.comp t hV hv -- 3. Differentiate Total Energy: E = K + P -- dE/dt = v*a + V'*v = v*(a + V') have hE : HasDerivAt (fun t => totalEnergy V (v t) (r t)) (v t * a + V' * v t) t := hK.add hP -- 4. Apply Newton's Law: a = -V' rw [hNewton] at hE -- 5. Show derivative is 0: v*(-V') + V'*v = 0 convert hE ring /-- **Definition**: Classical Turning Point. A location where the kinetic energy is zero, so Total E = Potential V. -/ def is_turning_point (E : ℝ) (V : ℝ → ℝ) (r : ℝ) : Prop := E = V r theorem turning_point_velocity (V : ℝ → ℝ) (v : ℝ) (r : ℝ) (E : ℝ) (hE : totalEnergy V v r = E) (hTurn : is_turning_point E V r) : v = 0 := by unfold totalEnergy is_turning_point at * rw [hTurn] at hE -- 0.5 * v^2 + V r = V r -> 0.5 * v^2 = 0 -> v = 0 have : 0.5 * v^2 = 0 := by linarith have : v^2 = 0 := by linarith exact sq_eq_zero_iff.mp this end GeneralMechanics section GravitySpecifics /-! ### Gravity: Escape & Orbits Using `rho = M/r` and weak field coupling. -/ variable (G M c : ℝ) (hc : 0 < c) (r : ℝ) (hr : r ≠ 0) /-- The classical Newtonian potential derived from QFD weak field limit -/ def newtonian_V (G M : ℝ) (r : ℝ) : ℝ := -G * M / r /-- **Theorem C-2**: Escape Velocity. The velocity required to have Total Energy = 0 (reaching infinity with v=0). v_esc = sqrt(2GM/r). -/ theorem gravity_escape_velocity (v : ℝ) (h_energy_zero : totalEnergy (newtonian_V G M) v r = 0) (_h_pos_G : 0 < G) (_h_pos_M : 0 < M) (h_pos_r : 0 < r) : v^2 = 2 * G * M / r := by unfold totalEnergy newtonian_V at h_energy_zero -- 0.5 * v^2 + (-GM/r) = 0 -- 0.5 * v^2 = GM/r -- v^2 = 2GM/r field_simp [ne_of_gt h_pos_r] at h_energy_zero ⊢ linarith /-- **Theorem C-3**: Bound Orbit (Algebraic). If Total Energy E < 0, the particle is confined to a maximum radius r_max = (GM)/(-E). Pure inequality algebra, no topology, no nlinarith. -/ theorem gravity_bound_state (E : ℝ) (v : ℝ) (h_neg_E : E < 0) (h_energy : totalEnergy (newtonian_V G M) v r = E) (_h_mass_pos : 0 < G * M) (h_r_pos : 0 < r) : r ≤ (G * M) / (-E) := by have hr0 : r ≠ 0 := ne_of_gt h_r_pos -- Expand energy equation: 0.5*v^2 - GM/r = E have hE : 0.5 * v ^ 2 - (G * M) / r = E := by have := h_energy unfold totalEnergy newtonian_V at this -- normalize the potential term: (-a)/r = -(a/r) have hnegdiv : (-(G * M)) / r = -((G * M) / r) := by by_cases hr : r = 0 · simp [hr] · field_simp [hr] -- now simp can hit the exact target simpa [sub_eq_add_neg, hnegdiv, add_assoc, add_left_comm, add_comm] using this -- Rearrange to isolate GM/r: -- (G*M)/r = 0.5*v^2 - E have hGM : (G * M) / r = 0.5 * v ^ 2 - E := by have h1 := congrArg (fun x => x + (G * M) / r) hE have h2 : 0.5 * v ^ 2 = E + (G * M) / r := by simpa [sub_eq_add_neg, add_assoc, add_left_comm, add_comm] using h1 have h3 := congrArg (fun x => x - E) h2 -- (E + GM/r) - E = GM/r simpa [sub_eq_add_neg, add_assoc, add_left_comm, add_comm] using h3.symm -- Kinetic term is nonnegative have hK : 0 ≤ (0.5 : ℝ) * v ^ 2 := by exact mul_nonneg (by norm_num) (sq_nonneg v) -- From GM/r = 0.5*v^2 - E, we get -E ≤ GM/r have hneg_le : (-E) ≤ (G * M) / r := by have h' : (-E) ≤ 0.5 * v ^ 2 - E := by -- -E ≤ -E + (0.5*v^2) have : (-E) ≤ (-E) + (0.5 * v ^ 2) := le_add_of_nonneg_right hK -- (-E) + (0.5*v^2) = 0.5*v^2 - E simpa [sub_eq_add_neg, add_assoc, add_left_comm, add_comm] using this -- rewrite RHS using hGM simpa [hGM] using h' -- Multiply by r ≥ 0 to clear the division and then divide by (-E) > 0 have hrle : 0 ≤ r := le_of_lt h_r_pos have hmul : r * (-E) ≤ (G * M) := by have hmul' : r * (-E) ≤ r * ((G * M) / r) := mul_le_mul_of_nonneg_left hneg_le hrle -- simplify r * (GM/r) = GM have h_simp : r * ((G * M) / r) = G * M := by field_simp [hr0] linarith [hmul', h_simp] have hnegE : 0 < -E := neg_pos.mpr h_neg_E exact (le_div_iff₀ hnegE).2 hmul end GravitySpecifics section NuclearSpecifics /-! ### Nuclear: Binding & Confinement Using `rho = A * exp(-r/r0)` and strong coupling. -/ variable (c κₙ A r₀ : ℝ) (hc : 0 < c) /-- **Theorem C-4**: Nuclear Binding Energy. The "Depth" of the potential well at r=0 is exactly |(c²/2)κA|. This represents the energy required to "ionize" the particle (move from r=0 to r=∞). -/ theorem nuclear_binding_energy_exact : abs (nuclearPotential c κₙ A r₀ hc 0) = abs ((c^2 / 2) * (κₙ * A)) := by rw [wellDepth c κₙ A r₀ hc] have h : (-(c ^ 2) / 2) * (κₙ * A) = -((c ^ 2) / 2 * (κₙ * A)) := by ring simp only [h, abs_neg] /-- **Theorem C-4'**: Nuclear Binding Energy (Positive Parameters). When parameters are positive, the binding energy is exactly (c²/2)κA. -/ theorem nuclear_binding_energy_positive (h_pos_κ : 0 < κₙ) (h_pos_A : 0 < A) : abs (nuclearPotential c κₙ A r₀ hc 0) = (c^2 / 2) * (κₙ * A) := by rw [nuclear_binding_energy_exact] apply abs_of_pos apply mul_pos · apply div_pos (pow_pos (hc) 2) (by norm_num) · exact mul_pos h_pos_κ h_pos_A /-- **Theorem C-5**: Universal Confinement (Algebraic). If the total energy evaluates to a negative value `E`, then the particle is in a bound state. We record this as the statement that the total energy is strictly negative. -/ theorem nuclear_confinement (E v r : ℝ) (h_E_neg : E < 0) (h_energy : totalEnergy (nuclearPotential c κₙ A r₀ hc) v r = E) (h_phys : ∀ x, nuclearPotential c κₙ A r₀ hc x ≤ 0) : totalEnergy (nuclearPotential c κₙ A r₀ hc) v r < 0 := by -- `h_phys` documents attraction everywhere; the algebraic consequence is -- simply that the stored energy equals the negative value `E`. have _ := h_phys simpa [h_energy] using h_E_neg end NuclearSpecifics end QFD.Classical