import QFD.GA.Cl33 import QFD.GA.BasisReduction import QFD.GA.BasisProducts import QFD.Conservation.NeutrinoID_Simple namespace QFD.Conservation.NeutrinoID.Automated open QFD.GA open QFD.Conservation.NeutrinoID open CliffordAlgebra /-- Disjoint bivectors commute (all four indices distinct). -/ lemma disjoint_bivectors_commute : (e 0 * e 1) * (e 3 * e 4) = (e 3 * e 4) * (e 0 * e 1) := QFD.GA.BasisProducts.e01_commutes_e34 theorem no_EM_interaction : Interaction F_EM Nu = 0 := by unfold Interaction F_EM Nu have h := disjoint_bivectors_commute have h_sub : (e 0 * e 1) * (e 3 * e 4) - (e 3 * e 4) * (e 0 * e 1) = 0 := sub_eq_zero.mpr h simpa [F_EM, Nu, sub_eq_add_neg] using h_sub section Nontrivial variable [Nontrivial Cl33] theorem has_nonzero_spin : Nu * Nu ≠ 0 := by simpa using QFD.Conservation.NeutrinoID.has_nonzero_spin theorem neutrino_is_necessary : Nu ≠ 0 := by simpa using QFD.Conservation.NeutrinoID.neutrino_is_necessary end Nontrivial end QFD.Conservation.NeutrinoID.Automated