import QFD.GA.Cl33 import QFD.GA.Cl33Instances import QFD.GA.BasisOperations import QFD.GA.BasisProducts /-! # Neutrino Electromagnetic Decoupling - Simplified Version This file provides simple, building proofs for neutrino properties. **Status**: ✅ COMPLETE (0 Sorries) **Date**: 2025-12-29 -/ namespace QFD.Conservation.NeutrinoID open QFD.GA open CliffordAlgebra ----------------------------------------------------------- -- Definitions ----------------------------------------------------------- /-- EM field bivector (spatial component) -/ def F_EM : Cl33 := e 0 * e 1 /-- Electromagnetic interaction (commutator) -/ def Interaction (Field : Cl33) (Particle : Cl33) : Cl33 := Field * Particle - Particle * Field /-- Neutrino bivector (time-internal mixing) -/ def Nu : Cl33 := e 3 * e 4 ----------------------------------------------------------- -- Main Theorems ----------------------------------------------------------- /-- Theorem: Neutrino has zero EM interaction Physical: Neutrinos don't couple to photons Mathematical: Disjoint bivectors commute -/ theorem no_EM_interaction : Interaction F_EM Nu = 0 := by unfold Interaction F_EM Nu -- We need to show `(e₀∧e₁)` commutes with `(e₃∧e₄)` have h_comm := QFD.GA.BasisProducts.e01_commutes_e34 simp [h_comm] section Nontrivial variable [Nontrivial Cl33] /-- Theorem: Neutrino has nonzero spin Physical: Neutrinos have Spin 1/2 → geometric reality Mathematical: (e₃∧e₄)² = -1 ≠ 0 -/ theorem has_nonzero_spin : Nu * Nu ≠ 0 := by unfold Nu -- Compute (e3*e4)^2 using anticommutation have h_anticomm : e 4 * e 3 = - e 3 * e 4 := QFD.GA.basis_anticomm (by decide : (4:Fin 6) ≠ 3) have h3_sq : e 3 * e 3 = algebraMap ℝ Cl33 (-1) := by rw [QFD.GA.basis_sq 3]; simp [signature33] have h4_sq : e 4 * e 4 = algebraMap ℝ Cl33 (-1) := by rw [QFD.GA.basis_sq 4]; simp [signature33] -- The key calculation have square_neg_one : (e 3 * e 4) * (e 3 * e 4) = algebraMap ℝ Cl33 (-1) := by calc (e 3 * e 4) * (e 3 * e 4) = e 3 * (e 4 * e 3) * e 4 := by simp [mul_assoc] _ = e 3 * ((- e 3) * e 4) * e 4 := by simpa [mul_assoc, h_anticomm] _ = e 3 * (- e 3) * e 4 * e 4 := by simp [mul_assoc] _ = - (e 3 * e 3) * e 4 * e 4 := by simp [mul_assoc] _ = -((e 3 * e 3) * (e 4 * e 4)) := by simp [mul_assoc] _ = -(algebraMap ℝ Cl33 (-1) * algebraMap ℝ Cl33 (-1)) := by simpa [h3_sq, h4_sq] _ = -(algebraMap ℝ Cl33 ((-1 : ℝ) * (-1 : ℝ))) := by simpa using (map_mul (algebraMap ℝ Cl33) (-1 : ℝ) (-1 : ℝ)) _ = -(algebraMap ℝ Cl33 (1 : ℝ)) := by simp _ = algebraMap ℝ Cl33 (-1) := by simp intro h_zero rw [square_neg_one] at h_zero -- Now algebraMap ℝ Cl33 (-1) = 0, which is false have : (-1 : ℝ) = 0 := by have inj : Function.Injective (algebraMap ℝ Cl33) := RingHom.injective _ exact inj h_zero norm_num at this /-- Theorem: Neutrino is necessary Physical: Beta decay requires the remainder Mathematical: If Nu = 0 then Nu² = 0, contradiction -/ theorem neutrino_is_necessary : Nu ≠ 0 := by intro h_zero have : Nu * Nu = 0 := by rw [h_zero]; simp exact has_nonzero_spin this end Nontrivial end QFD.Conservation.NeutrinoID