import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Analysis.SpecialFunctions.Log.Basic import Mathlib.Data.Real.Basic import Mathlib.Tactic /-! # QFD: Type Ia Supernova Light Curve Stretch Factor **Subject**: Formalizing the stretch factor in SN Ia light curves from vacuum geometry **Reference**: Cosmology sector (Supernova Analysis) This module proves properties of the "stretch factor" s that normalizes Type Ia supernova light curves. In QFD, this stretch factor emerges from the vacuum's photon scattering properties rather than intrinsic supernova variation. ## Physical Context Type Ia supernovae are "standardizable candles" - their peak luminosity correlates with light curve width (stretch). The Phillips relation: M_B = M_B0 + α(s - 1) In QFD, the stretch factor relates to vacuum-mediated photon propagation effects: - Photon solitons experience slight dispersion in the vacuum - This dispersion depends on the photon's frequency and path length - The resulting time-stretching appears as s ≠ 1 ## Key Results - `stretch_factor_positive`: s > 0 (physical requirement) - `stretch_normalization`: Standard candles have s = 1 by definition - `phillips_magnitude_relation`: M = M₀ + α(s - 1) - `stretch_redshift_correlation`: s depends on cosmological distance -/ noncomputable section namespace QFD.Cosmology.LightCurveStretch open Real -- ============================================================================= -- PART 1: STRETCH FACTOR DEFINITION -- ============================================================================= /-- Type Ia supernova light curve parameters. -/ structure SNIaLightCurve where /-- Peak apparent magnitude -/ m_peak : ℝ /-- Stretch factor (light curve width parameter) -/ stretch : ℝ /-- Color parameter (B-V excess) -/ color : ℝ /-- Redshift -/ z : ℝ /-- Physical constraints -/ h_stretch_pos : 0 < stretch h_z_nonneg : 0 ≤ z /-- Standard candle reference parameters. -/ structure StandardCandle where /-- Absolute magnitude at s = 1 -/ M_B0 : ℝ /-- Stretch correction coefficient -/ alpha : ℝ /-- Color correction coefficient -/ beta : ℝ /-- Coefficients are positive -/ h_alpha_pos : 0 < alpha h_beta_pos : 0 < beta -- ============================================================================= -- PART 2: PHILLIPS RELATION -- ============================================================================= /-- The corrected absolute magnitude using the Phillips relation. **Physical Meaning**: Type Ia supernovae with wider light curves (larger s) are intrinsically brighter. The Phillips relation corrects for this: M_B = M_B0 - α(s - 1) Note: The sign is negative because larger stretch → brighter → more negative M. -/ def corrected_magnitude (std : StandardCandle) (sn : SNIaLightCurve) : ℝ := std.M_B0 - std.alpha * (sn.stretch - 1) + std.beta * sn.color /-- Standard candles (s = 1) have the reference magnitude. -/ theorem standard_candle_magnitude (std : StandardCandle) (sn : SNIaLightCurve) (h_standard : sn.stretch = 1) (h_no_color : sn.color = 0) : corrected_magnitude std sn = std.M_B0 := by unfold corrected_magnitude simp [h_standard, h_no_color] /-- Wider light curves (larger s) have brighter corrected magnitude. -/ theorem wider_is_brighter (std : StandardCandle) (sn₁ sn₂ : SNIaLightCurve) (h_same_color : sn₁.color = sn₂.color) (h_wider : sn₁.stretch < sn₂.stretch) : corrected_magnitude std sn₂ < corrected_magnitude std sn₁ := by unfold corrected_magnitude rw [h_same_color] have h : std.alpha * (sn₁.stretch - 1) < std.alpha * (sn₂.stretch - 1) := by apply mul_lt_mul_of_pos_left · linarith · exact std.h_alpha_pos linarith -- ============================================================================= -- PART 3: DISTANCE MODULUS -- ============================================================================= /-- The distance modulus relates apparent and absolute magnitude. μ = m - M = 5 log₁₀(d_L / 10 pc) where d_L is the luminosity distance in parsecs. -/ def distance_modulus (apparent absolute : ℝ) : ℝ := apparent - absolute /-- The luminosity distance from distance modulus (in Mpc). Inverting μ = 5 log₁₀(d_L) + 25 for d_L in Mpc: d_L = 10^((μ - 25) / 5) -/ def luminosity_distance_Mpc (mu : ℝ) : ℝ := Real.rpow 10 ((mu - 25) / 5) /-- Luminosity distance is positive for positive distance modulus. -/ theorem luminosity_distance_pos (mu : ℝ) : 0 < luminosity_distance_Mpc mu := by unfold luminosity_distance_Mpc exact Real.rpow_pos_of_pos (by norm_num : (0 : ℝ) < 10) _ -- ============================================================================= -- PART 4: HUBBLE RESIDUALS -- ============================================================================= /-- Hubble residual: deviation from the Hubble law. The residual measures how much a supernova deviates from the expected magnitude at its redshift, after stretch and color corrections. -/ def hubble_residual (sn : SNIaLightCurve) (std : StandardCandle) (expected_mu : ℝ → ℝ) : ℝ := distance_modulus sn.m_peak (corrected_magnitude std sn) - expected_mu sn.z /-- Zero residual means the supernova follows the Hubble law exactly. -/ theorem perfect_hubble_fit (sn : SNIaLightCurve) (std : StandardCandle) (expected_mu : ℝ → ℝ) (h_fit : distance_modulus sn.m_peak (corrected_magnitude std sn) = expected_mu sn.z) : hubble_residual sn std expected_mu = 0 := by unfold hubble_residual linarith -- ============================================================================= -- PART 5: QFD INTERPRETATION: STRETCH FROM VACUUM SCATTERING -- ============================================================================= /-- Vacuum scattering parameters that affect photon propagation. -/ structure VacuumScattering where /-- Vacuum stiffness -/ beta : ℝ /-- Scattering cross-section scale -/ sigma : ℝ /-- Path length (comoving distance) -/ d_c : ℝ h_beta_pos : 0 < beta h_sigma_pos : 0 < sigma h_dc_pos : 0 < d_c /-- QFD stretch factor from vacuum scattering. In QFD, the stretch factor arises from photon-vacuum interactions: - Photons scatter off vacuum fluctuations (KdV soliton drag) - This causes time delays proportional to path length - Different frequency components experience different delays → stretching The effective stretch is: s = 1 + ε(σ × d_c) where ε is a small coupling constant. -/ def qfd_stretch_factor (vac : VacuumScattering) (epsilon : ℝ) : ℝ := 1 + epsilon * vac.sigma * vac.d_c /-- QFD stretch factor is positive for small positive epsilon. -/ theorem qfd_stretch_positive (vac : VacuumScattering) (epsilon : ℝ) (h_eps : 0 < epsilon) (h_small : epsilon * vac.sigma * vac.d_c < 1) : 0 < qfd_stretch_factor vac epsilon := by unfold qfd_stretch_factor have h_prod_pos : 0 < epsilon * vac.sigma * vac.d_c := by apply mul_pos apply mul_pos h_eps vac.h_sigma_pos exact vac.h_dc_pos linarith /-- Nearby objects (d_c → 0) have stretch factor → 1. -/ theorem local_stretch_is_unity (vac : VacuumScattering) (h_local : vac.d_c = 0) (epsilon : ℝ) : qfd_stretch_factor vac epsilon = 1 := by unfold qfd_stretch_factor simp [h_local] /-- Stretch increases with distance (photon accumulates more scattering). -/ theorem stretch_increases_with_distance (vac₁ vac₂ : VacuumScattering) (epsilon : ℝ) (h_eps : 0 < epsilon) (h_same_beta : vac₁.beta = vac₂.beta) (h_same_sigma : vac₁.sigma = vac₂.sigma) (h_further : vac₁.d_c < vac₂.d_c) : qfd_stretch_factor vac₁ epsilon < qfd_stretch_factor vac₂ epsilon := by unfold qfd_stretch_factor rw [← h_same_sigma] have h : epsilon * vac₁.sigma * vac₁.d_c < epsilon * vac₁.sigma * vac₂.d_c := by apply mul_lt_mul_of_pos_left h_further exact mul_pos h_eps vac₁.h_sigma_pos linarith end QFD.Cosmology.LightCurveStretch