-- QFD/Cosmology/VacuumRefraction.lean import QFD.Schema.Couplings import QFD.Cosmology.RadiativeTransfer import Mathlib.Tactic.Linarith import Mathlib.Tactic.NormNum import Mathlib.Analysis.SpecialFunctions.Exp import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic noncomputable section namespace QFD.Cosmology open QFD.Schema open Real /-! # QFD Vacuum Refraction and CMB Power Spectrum Modulation This module formalizes the mechanism by which photon-photon scattering mediated by the ψ-field creates oscillatory modulation in the CMB angular power spectrum. ## Physical Framework **Standard Cosmology**: CMB acoustic peaks arise from sound waves in the primordial plasma at recombination (z ~ 1100). Baryon-photon fluid oscillates, creating characteristic angular scale. **QFD Alternative**: CMB power spectrum modulation arises from vacuum refraction - photon-photon scattering mediated by a scalar field ψ with characteristic correlation length r_ψ. This creates interference patterns that mimic acoustic oscillations. ## Key Mechanism The ψ-field correlation function: ⟨ψ(x)ψ(x')⟩ ~ exp(-|x-x'|/r_ψ) imprints a characteristic scale on photon scattering. Photons traversing the vacuum experience phase shifts that coherently add, creating oscillatory modulation in angular power spectrum C_ℓ with period Δℓ ~ D_A/r_ψ where D_A is angular diameter distance. ## Testable Predictions 1. **Oscillation amplitude**: A_osc bounded by unitarity (can't scatter > 100%) 2. **Correlation scale**: r_ψ determines oscillation frequency 3. **Phase coherence**: Oscillations persist across all ℓ (unlike acoustic damping) 4. **Polarization**: Different modulation for TT, TE, EE References: - QFD Appendix J (Time Refraction) - Planck 2018 Power Spectra (arXiv:1807.06209) -/ /-- Vacuum refraction parameters for CMB power spectrum modulation -/ structure VacuumRefractionParams where -- Correlation scale of ψ-field r_psi : ℝ -- Correlation length (Mpc) -- Oscillation amplitude A_osc : Unitless -- Modulation amplitude (dimensionless) -- Phase offset phi : ℝ -- Phase (radians) -- Angular diameter distance (cosmology-dependent) D_A : ℝ -- Mpc -- Base scattering parameters (from SNe fit) alpha : Unitless -- From radiative transfer beta : Unitless -- From radiative transfer /-- Physical constraints on vacuum refraction parameters -/ structure VacuumRefractionConstraints (p : VacuumRefractionParams) : Prop where -- Correlation length: must be positive and cosmologically reasonable r_psi_positive : p.r_psi > 0.0 r_psi_bounded : p.r_psi < 1000.0 -- Mpc (smaller than Hubble radius) -- Oscillation amplitude: bounded by unitarity A_osc_nonneg : p.A_osc.val ≥ 0.0 A_osc_unitary : p.A_osc.val < 1.0 -- Can't modulate by more than 100% -- Phase: periodic phi_range : -π ≤ p.phi ∧ p.phi ≤ π -- Angular diameter distance: positive D_A_positive : p.D_A > 0.0 -- Scattering parameters (inherited from radiative transfer) alpha_bounds : 0.0 < p.alpha.val ∧ p.alpha.val < 2.0 beta_bounds : 0.4 ≤ p.beta.val ∧ p.beta.val ≤ 1.0 /-! ## Oscillatory Modulation Function -/ /-- Characteristic angular scale for oscillations. The ψ-field correlation length r_ψ subtends an angular scale: θ_scale = r_ψ / D_A In multipole space: ℓ_scale = π / θ_scale = π D_A / r_ψ This is the fundamental oscillation frequency in ℓ-space. -/ def characteristic_ell_scale (r_psi : ℝ) (D_A : ℝ) : ℝ := π * D_A / r_psi /-- Oscillatory modulation function for CMB power spectrum. The transfer function relates QFD power spectrum to standard (ΛCDM) prediction: C_ℓ^QFD = C_ℓ^ΛCDM × M(ℓ) where the modulation function is: M(ℓ) = 1 + A_osc × cos(2π ℓ/ℓ_scale + φ) Physical interpretation: - Unity baseline: no modulation in limit A_osc → 0 - Cosine oscillation: periodic modulation from ψ-field interference - Amplitude A_osc: strength of vacuum refraction effect - Period Δℓ = ℓ_scale: determined by correlation length r_ψ - Phase φ: depends on line-of-sight integration details -/ def modulation_function (ell : ℝ) (p : VacuumRefractionParams) : ℝ := let ell_scale := characteristic_ell_scale p.r_psi p.D_A 1.0 + p.A_osc.val * cos (2 * π * ell / ell_scale + p.phi) /-- **Theorem 1: Modulation function is bounded** The modulation function M(ℓ) satisfies: 1 - A_osc ≤ M(ℓ) ≤ 1 + A_osc This ensures physical power spectrum: if C_ℓ^ΛCDM > 0 and A_osc < 1, then C_ℓ^QFD = M(ℓ) × C_ℓ^ΛCDM > 0. -/ theorem modulation_bounded (ell : ℝ) (p : VacuumRefractionParams) (h_A : p.A_osc.val < 1.0) (h_A_pos : p.A_osc.val ≥ 0.0) : 1.0 - p.A_osc.val ≤ modulation_function ell p ∧ modulation_function ell p ≤ 1.0 + p.A_osc.val := by unfold modulation_function let cos_val := cos (2 * π * ell / (characteristic_ell_scale p.r_psi p.D_A) + p.phi) have h_cos_bounds : -1 ≤ cos_val ∧ cos_val ≤ 1 := by constructor · exact neg_one_le_cos _ · exact cos_le_one _ have h_A_pos' : 0 ≤ p.A_osc.val := by linarith constructor · -- Lower bound: 1 - A_osc have h_mul_ge : p.A_osc.val * cos_val ≥ p.A_osc.val * (-1) := by exact mul_le_mul_of_nonneg_left h_cos_bounds.1 h_A_pos' linarith · -- Upper bound: 1 + A_osc have h_mul_le : p.A_osc.val * cos_val ≤ p.A_osc.val * 1 := by exact mul_le_mul_of_nonneg_left h_cos_bounds.2 h_A_pos' linarith /-- **Theorem 2: Modulation preserves positivity** If the baseline power spectrum is positive (C_ℓ > 0) and unitarity holds (A_osc < 1), then the modulated spectrum remains positive. -/ theorem modulation_preserves_positivity (ell : ℝ) (C_ell_base : ℝ) (p : VacuumRefractionParams) (h_C_pos : C_ell_base > 0) (h_A : p.A_osc.val < 1.0) (h_A_pos : p.A_osc.val ≥ 0.0) : C_ell_base * modulation_function ell p > 0 := by have h_mod_bounds := modulation_bounded ell p h_A h_A_pos have h_mod_pos : modulation_function ell p > 0 := by linarith [h_mod_bounds.1] exact mul_pos h_C_pos h_mod_pos /-- **Theorem 3: Oscillation period determined by correlation scale** The modulation function has period Δℓ = ℓ_scale in multipole space. -/ theorem modulation_periodic (ell : ℝ) (p : VacuumRefractionParams) (h_p : VacuumRefractionConstraints p) : let ell_scale := characteristic_ell_scale p.r_psi p.D_A modulation_function (ell + ell_scale) p = modulation_function ell p := by unfold modulation_function characteristic_ell_scale simp only have h_r_psi_pos : 0 < p.r_psi := by linarith [h_p.r_psi_positive] have h_DA_pos : 0 < p.D_A := by linarith [h_p.D_A_positive] have h_r_psi_ne_zero : p.r_psi ≠ 0 := ne_of_gt h_r_psi_pos have h_DA_ne_zero : p.D_A ≠ 0 := ne_of_gt h_DA_pos have h_scale_ne_zero : π * p.D_A / p.r_psi ≠ 0 := by apply div_ne_zero · apply mul_ne_zero pi_ne_zero h_DA_ne_zero · exact h_r_psi_ne_zero -- Simplify: need to show cos(2π(ell + scale)/scale + φ) = cos(2πell/scale + φ) -- This follows from: (ell + scale)/scale = ell/scale + 1, so argument shifts by 2π congr 1 have h_algebra : 2 * π * (ell + π * p.D_A / p.r_psi) / (π * p.D_A / p.r_psi) + p.phi = 2 * π * ell / (π * p.D_A / p.r_psi) + p.phi + 2 * π := by field_simp ring rw [h_algebra, cos_add_two_pi] /-- **Definition: Unitarity bound** The oscillation amplitude should not exceed what's physically allowed by the survival fraction from scattering. -/ def unitarity_bound (p : VacuumRefractionParams) (z : ℝ) : Prop := p.A_osc.val ≤ 1.0 - exp (-(p.alpha.val * z ^ p.beta.val)) /-- **Theorem 4: Unitarity bound is physical** If A_osc satisfies the unitarity bound, it is less than 1. -/ theorem unitarity_implies_physical (p : VacuumRefractionParams) (z_CMB : ℝ) (h_z : z_CMB > 0) (h_alpha : p.alpha.val > 0) (h_beta : p.beta.val > 0) (h_unit : unitarity_bound p z_CMB) : p.A_osc.val < 1.0 := by unfold unitarity_bound at h_unit have h_tau_pos : p.alpha.val * z_CMB ^ p.beta.val > 0 := by apply mul_pos h_alpha apply rpow_pos_of_pos h_z have h_exp_pos : 0 < exp (-(p.alpha.val * z_CMB ^ p.beta.val)) := exp_pos _ have h_exp_lt_one : exp (-(p.alpha.val * z_CMB ^ p.beta.val)) < 1 := by rw [exp_lt_one_iff] linarith linarith [h_exp_pos] /-! ## CMB Power Spectrum Predictions -/ /-- QFD prediction for CMB TT power spectrum. C_ℓ^TT,QFD = C_ℓ^TT,ΛCDM × M(ℓ, r_ψ, A_osc, φ) where C_ℓ^TT,ΛCDM is the standard prediction from CAMB/CLASS. -/ def C_ell_TT_QFD (ell : ℝ) (C_ell_LCDM : ℝ) (p : VacuumRefractionParams) : ℝ := C_ell_LCDM * modulation_function ell p /-- QFD prediction for CMB TE power spectrum. The cross-correlation (temperature-E-mode polarization) may have a different modulation pattern due to different scattering processes for temperature vs polarization fluctuations. For simplicity, we assume the same modulation (can be refined): C_ℓ^TE,QFD = C_ℓ^TE,ΛCDM × M(ℓ) -/ def C_ell_TE_QFD (ell : ℝ) (C_ell_LCDM : ℝ) (p : VacuumRefractionParams) : ℝ := C_ell_LCDM * modulation_function ell p /-- QFD prediction for CMB EE power spectrum. E-mode polarization power spectrum with same modulation assumption. -/ def C_ell_EE_QFD (ell : ℝ) (C_ell_LCDM : ℝ) (p : VacuumRefractionParams) : ℝ := C_ell_LCDM * modulation_function ell p /-! ## Falsifiability -/ /-- **Distinguishing prediction: Phase coherence across all scales** Standard acoustic oscillations have damping at high ℓ due to photon diffusion. QFD vacuum refraction predicts persistent oscillations (constant A_osc) across all ℓ where scattering is coherent. Test: Fit A_osc separately in low-ℓ and high-ℓ bins. - Standard: A_osc(high-ℓ) << A_osc(low-ℓ) (damping tail) - QFD: A_osc(high-ℓ) ≈ A_osc(low-ℓ) (persistent modulation) -/ def phase_coherence_test (A_osc_low : Unitless) (A_osc_high : Unitless) : Prop := -- QFD predicts similar amplitudes abs (A_osc_low.val - A_osc_high.val) < 0.2 * A_osc_low.val /-- **Falsification criterion 1: Unphysical oscillation amplitude** If fitted A_osc > 1, the model violates unitarity and is falsified. -/ def falsified_by_unitarity (A_osc : Unitless) : Prop := A_osc.val ≥ 1.0 /-- **Falsification criterion 2: No oscillations** If fitted A_osc is consistent with zero (A_osc < threshold), vacuum refraction is undetectable and the model adds no explanatory power. -/ def falsified_by_null_detection (A_osc : Unitless) (threshold : ℝ) : Prop := A_osc.val < threshold /-- **Theorem 5: Vacuum refraction model makes falsifiable predictions** There exist parameter values that violate observational constraints. -/ theorem vacuum_refraction_is_falsifiable : ∃ (p : VacuumRefractionParams), falsified_by_unitarity p.A_osc ∨ falsified_by_null_detection p.A_osc 0.01 := by use { r_psi := 100.0, A_osc := ⟨1.5⟩, phi := 0.0, D_A := 1000.0, alpha := ⟨0.5⟩, beta := ⟨0.7⟩ } left unfold falsified_by_unitarity norm_num /-! ## Integration with Grand Solver -/ /-- **Parameter space for Planck fit** Free parameters to be fitted against Planck 2018 TT/TE/EE power spectra: 1. r_ψ: Correlation length (determines oscillation frequency) 2. A_osc: Oscillation amplitude (strength of modulation) 3. φ: Phase offset (line-of-sight integration detail) Fixed/constrained: - D_A: Angular diameter distance (from cosmology) - α, β: Scattering parameters (from SNe + CMB spectrum fit) -/ def planck_fit_parameters : List String := ["r_psi", "A_osc", "phi"] /-- **Success criterion for QFD hypothesis** QFD successfully explains CMB acoustic peaks if: 1. Fitted parameters within physical bounds (Lean constraints satisfied) 2. χ² comparable to standard ΛCDM + primordial inflation 3. A_osc > detection threshold (oscillations present) 4. r_ψ consistent with independent QFD predictions (if any) -/ def qfd_explains_acoustic_peaks (chi2_QFD : ℝ) (chi2_standard : ℝ) (p : VacuumRefractionParams) (constraints : VacuumRefractionConstraints p) : Prop := -- Comparable fit quality chi2_QFD ≤ chi2_standard * 1.1 ∧ -- Oscillations detected p.A_osc.val ≥ 0.05 ∧ -- Physical parameters constraints.A_osc_unitary end QFD.Cosmology end