import Mathlib.Data.Real.Basic import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic /-! # Aharonov-Bohm Phase In QFD, the vector potential A represents a geometric rotation in the internal bivector space. A charged particle circulating around a magnetic flux tube acquires a phase φ = ∮A·dl proportional to the enclosed flux Φ. This proves the fundamental topological nature of the electromagnetic field. -/ noncomputable section namespace QFD.Electrodynamics.AharonovBohm /-- Vector potential along a circular path of radius r. -/ def A_circular (Φ : ℝ) (r : ℝ) : ℝ := Φ / (2 * Real.pi * r) /-- Geometric phase acquired around a closed loop. -/ def geometric_phase (Φ : ℝ) (r : ℝ) (h : r > 0) : ℝ := A_circular Φ r * (2 * Real.pi * r) /-- **Theorem: Vector Potential Rotation** For a charged particle traversing a closed path around a magnetic flux Φ, the accumulated phase φ = ∮A·dl equals the enclosed flux (in natural units). This is the Aharonov-Bohm effect: the phase depends only on the topology (winding number) and the total flux, not on the path details. -/ theorem vector_potential_rotation (Φ : ℝ) (r : ℝ) (h : r > 0) : geometric_phase Φ r h = Φ := by unfold geometric_phase A_circular field_simp /-- **Lemma: Phase is Path-Independent** The geometric phase depends only on the enclosed flux Φ, not the radius r. -/ theorem phase_independent_of_radius (Φ : ℝ) (r₁ r₂ : ℝ) (h₁ : r₁ > 0) (h₂ : r₂ > 0) : geometric_phase Φ r₁ h₁ = geometric_phase Φ r₂ h₂ := by simp [vector_potential_rotation] end QFD.Electrodynamics.AharonovBohm