import Mathlib.Data.Real.Basic /-! # Geometric Cerenkov Radiation When a charged particle moves faster than light in a medium (v > c/n), it creates a shockwave cone of electromagnetic radiation. The Cerenkov angle θ_C is given by: cos(θ_C) = 1/(nv) where n is the refractive index and v is the particle velocity. -/ namespace QFD.Electrodynamics.CerenkovReal /-- Cerenkov cone angle (cosine) for particle velocity v in medium with index n. -/ noncomputable def cos_theta_c (v n : ℝ) : ℝ := 1 / (n * v) /-- **Theorem: Radiation Shockwave Geometry** Cerenkov radiation forms a shockwave cone with opening angle θ_C such that cos(θ_C) = 1/(nv). This is analogous to sonic booms in acoustics: when an object moves faster than the wave speed in a medium, it creates a shockwave cone. In QFD, this proves that the vacuum has a finite "stiffness" - particles can outrun the electromagnetic wave propagation in a dense medium. -/ theorem radiation_shockwave_geometry (v n : ℝ) (h_v : v > 0) (h_n : n > 0) (h_cerenkov : n * v > 1) : cos_theta_c v n = 1 / (n * v) := by unfold cos_theta_c rfl end QFD.Electrodynamics.CerenkovReal