import QFD.GA.Cl33 import QFD.QM_Translation.DiracRealization /- # Maxwell's Real Equation Priority-2 scaffolding that states the GA form of Maxwell's equations. -/ namespace QFD.Electrodynamics.MaxwellReal open QFD.GA open CliffordAlgebra open QFD.QM_Translation.DiracRealization /-- Field is a bivector-valued field. -/ def EM_Field_Vector := Fin 6 → Cl33 /-- Current is a vector-valued field. -/ def Current_Vector := Fin 6 → Cl33 /-- Algebraic gradient (momentum-space proxy). Simulates `D = γ^μ k_μ`. -/ def GeometricGradient (k : Fin 4 → ℝ) : Cl33 := ∑ i : Fin 4, algebraMap ℝ Cl33 (k i) * gamma i /-- The geometric Maxwell decomposition: grad·F (sources) + grad∧F (Bianchi). -/ theorem maxwell_decomposition (k : Fin 4 → ℝ) (F : Cl33) : let grad := GeometricGradient k grad * F = (1 / 2 : ℝ) • (grad * F + F * grad) + (1 / 2 : ℝ) • (grad * F - F * grad) := by intro grad -- Show: grad*F = (1/2)•(grad*F + F*grad) + (1/2)•(grad*F - F*grad) -- by showing RHS simplifies back to grad*F symm calc (1 / 2 : ℝ) • (grad * F + F * grad) + (1 / 2 : ℝ) • (grad * F - F * grad) = (1 / 2 : ℝ) • (grad * F) + (1 / 2 : ℝ) • (F * grad) + ((1 / 2 : ℝ) • (grad * F) - (1 / 2 : ℝ) • (F * grad)) := by rw [smul_add, smul_sub] _ = ((1 / 2 : ℝ) + (1 / 2 : ℝ)) • (grad * F) + ((1 / 2 : ℝ) - (1 / 2 : ℝ)) • (F * grad) := by rw [add_smul, sub_smul]; abel _ = (1 : ℝ) • (grad * F) + (0 : ℝ) • (F * grad) := by norm_num _ = grad * F := by simp end QFD.Electrodynamics.MaxwellReal